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Observational research promises to complement experimental re-
search by providing large, diverse populations that would be
infeasible for an experiment. Observational research can test its
own clinical hypotheses, and observational studies also can contrib-
ute to the design of experiments and inform the generalizability of
experimental research. Understanding the diversity of populations
and the variance in care is one component. In this study, the
Observational Health Data Sciences and Informatics (OHDSI) collab-
oration created an international data network with 11 data sources
from four countries, including electronic health records and admin-
istrative claims data on 250 million patients. All data were mapped to
common data standards, patient privacy was maintained by using a
distributed model, and results were aggregated centrally. Treatment
pathways were elucidated for type 2 diabetes mellitus, hypertension,
and depression. The pathways revealed that the world is moving
toward more consistent therapy over time across diseases and across
locations, but significant heterogeneity remains among sources,
pointing to challenges in generalizing clinical trial results. Diabetes
favored a single first-line medication, metformin, to a much greater
extent than hypertension or depression. About 10% of diabetes and
depression patients and almost 25% of hypertension patients
followed a treatment pathway that was unique within the cohort.
Aside from factors such as sample size and underlying population
(academic medical center versus general population), electronic
health records data and administrative claims data revealed similar
results. Large-scale international observational research is feasible.

observational research | data network | treatment pathways

Alearning health system (1) must systematically evaluate the
effects of medical interventions to enable evidence-based

medical decision-making. Randomized clinical trials serve as the
cornerstone for causal evidence about medical products (2, 3), but
evidence from these trials may be limited by an insufficient number
of persons exposed, insufficient length of exposure, and inadequate
coverage of the target population, factors that limit external gen-
eralizability. Observational studies can contribute to the larger goal
of causal inference at three stages: (i) the design of experiments,
such as determining what are the current therapies that should be
compared with a new therapy; (ii) the direct testing of clinical
hypotheses on observational data (4–8) using methods to correct
for nonrandom treatment assignment as part of the effect estima-
tion process; and (iii) better understanding of population charac-
teristics to improve the extrapolation of both observational and
experimental results to new groups.

Without sufficiently broad databases available in the first stage,
randomized trials are designed without explicit knowledge of ac-
tual disease status and treatment practice. Literature reviews are
restricted to the population choices of previous investigations, and
pilot studies usually are limited in scope. By exploiting the
ClinicalTrials.gov national trial registry (9) and electronic health
records, researchers already have demonstrated the discrepancy
between targeted populations and populations available for
study (10), raising the concern that designs may not be optimal.
Designs cannot be based simply on current treatment recom-
mendations. Local stakeholders (patient, family, physician, and
consultant) and global stakeholders (industry, regulators, aca-
demics, and the public) interact in complex ways (social media,
literature, lay press, guidelines, advertising, formularies, package
inserts, and direct interaction) to generate choices based on a
variety of inputs (indication, feasibility, preference, and cost)
(11–16). Because of this complexity, actual practice can be
characterized only empirically, answering questions such as what
treatment choices are being made in clinical practice, how many
patients experience which combination of therapies, and how
patterns may change over time or across different locations and
practice types. Just as sample size calculations have become stan-
dard in trial design, so large-scale characterizations of current
treatment practices may become standard in the future.
To carry out this systematic characterization on a very large scale,

observational research will have several requirements: a multina-
tional collaboration, common data standards, access to clinical data,
compliance with regulatory and privacy laws in multiple nations, and
appropriate methods and tools to implement the characterization.

This paper results from the Arthur M. Sackler Colloquium of the National Academy of
Sciences, “Drawing Causal Inference from Big Data,” held March 26–27, 2015, at the
National Academies of Sciences in Washington, DC. The complete program and video
recordings of most presentations are available on the NAS website at www.nasonline.org/
Big-data.
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Observational Health Data Sciences and Informatics (OHDSI,
pronounced “Odyssey”) (17) is an international collaboration of
more than 120 researchers from 12 countries that contributes ex-
pertise at all levels, from infrastructure to clinical research, ensuring
that the developed infrastructure meets clinical research needs.
OHDSI’s Common Data Model (18), originally developed as part
of the Observational Medical Outcomes Partnership (19), is a deep
information model that specifies how to encode and store clinical
data at a fine-grained level, ensuring that the same query can be
applied consistently to databases around the world. OHDSI has
chosen data integration standards that dovetail with those of the
United States government and the international community, and it
also supplies tools and mapping tables for converting data from
other standards.
At last count, 52 databases, with a total of 682 million patient

records, had been created using the Common Data Model (17);
this number may include duplicate records for databases with
overlapping populations. This study used 11 of those databases with
more than 250 million records. Privacy is maintained by having data
nodes retain protected health information within their firewalls.
Queries are distributed and run locally, and only aggregate results
are returned centrally. OHDSI develops new methods to analyze
observational data, such as algorithms to minimize confounding
(20) and methods to calibrate significance tests (21). They are
implemented as an open-source set of tools that can be used by
observational researchers around the world.

We used OHDSI’s large, diverse population to characterize
treatment pathways—defined here as the ordered sequence of
medications that a patient is prescribed—to provide unprecedented
(and, in fact, heretofore unavailable) insight into clinical practice.
We addressed three common diseases (Table 1): type 2 diabetes
mellitus, hypertension, and depression. Given patients newly diag-
nosed with the disease and treated for at least 3 y, the query
returned the sequences of medications that patients were placed on
during those 3 y (Fig. 1). The sequences included changes in med-
ication and additions of medication. Our aim was to reveal patterns
and variation in treatment among data sources and diseases.

Results
Fig. 2 illustrates the treatment pathways for the three diseases
across all data sources. For diabetes, metformin was the most
commonly prescribed medication; it was prescribed 75% of the
time as the first medication and remained the only medication 29%
of the time, thus confirming general adoption of the first-line rec-
ommendation of the American Association of Clinical Endocri-
nologists diabetes treatment algorithm (22). Hypertension shows
the slight predominance of hydrochlorothiazide as a starting med-
ication but the more significant predominance of lisinopril as a sole
therapy, with hydrochlorothiazide being a sole therapy only rarely
(hydrochlorothiazide is frequently paired with another active in-
gredient in combination medications). Depression shows a more
even spread of medications. Of note, 10% of diabetes patients,

Table 1. Disease definitions

Disease Medication classes Diagnosis Exclusions

Hypertension Antihypertensives, diuretics, peripheral
vasodilators, beta blocking agents,
calcium channel blockers, agents acting
on the renin-angiotensin system*

Hyperpiesis† Pregnancy observations†

Diabetes mellitus, type 2 (Diabetes) Drugs used in diabetes*, diabetic therapy‡ Diabetes mellitus† Pregnancy observations†, type 1
diabetes mellitus§

Depression Antidepressants*, antidepressants‡ Depressive disorder† Pregnancy observations†,
bipolar I disorder†, schizophrenia†

*Terms are defined in the Anatomical Therapeutic Chemical (ATC) Classification System (23).
†Terms are defined in the Systematized Nomenclature of Medicine (SNOMED) (37).
‡Terms defined in First Databank (FDB) (42).
§Terms are defined in the Medical Dictionary for Regulatory Activities (MedDRA) (40).

Fig. 1. Treatment pathway event flow. The index date for each case was the time of first exposure to one of the medications deemed relevant to that disease
according to the medication classes defined in Table 1. The patient had to have been observed for at least 1 y before the index date. The patient had to have
at least one diagnosis code from Table 1 within the 1-y preindex to 3-y postindex period, and the patient could have no codes from the exclusions in Table 1.
In addition, the patient had to have an exposure to one of the relevant medications for that disease in each 120-d period after the index date. For data
sources that allowed less-frequent updates (180 d for a prescription and five refills), the windows were adjusted.
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24% of hypertension patients, and 11% of depression patients
followed a treatment pathway that was shared with no one else in
any of the data sources. That is, for almost one quarter of hyper-
tension patients, the response to the question, “In an underlying
population of 250 million, based on my 3-y treatment pathway,
what patients are like me?” would be “No one.”
Fig. 3 shows the treatment pathways for selected data sources to

illustrate their heterogeneity (see Supporting Information and Figs.
S1–S3 for all data sources). The use of metformin in diabetes is not
quite ubiquitous, as shown by comparing the Japan Medical Data

Center (JMDC) (Fig. 3C) with United States Commercial Claims
and Encounters (CCAE) (Fig. 3A). Second-line diabetes therapy is
far more variable. For example, gliclazide use is reported only in the
United Kingdom Clinical Practice Research Datalink (CPRD) (Fig.
3B), in which it is the predominant second-line therapy. Hyper-
tension shows a wide array of starting medications that are not
consistent among the sources. Hydrochlorothiazide is used to
varying degrees (Fig. 3 D–F), but lisinopril is relatively consistent
in its use and placement as the top solo medication. Depression
shows a generally more even distribution of medication use, but the
most common medication varies by sources even within the United
States (Fig. 3 G–I).
Fig. 4 shows several metrics of medication use for the three dis-

eases. Fig. 4A shows a trend of increasing use of monotherapy
(defined here as the use of a single medication in the entire 3-y
window) from 2000 to 2012 for all three diseases, equally high for
diabetes and depression. Fig. 4B illustrates that for hypertension and
depression, unlike diabetes, the monotherapy trend is not driven by
a single medication. Fig. 4C shows the degree to which a single
medication dominates as a starting medication for the disease, with
less convergence for hypertension and depression than for diabetes.
The same metrics, split out by data source, are shown in Fig. 5.

The figure confirms the overall trends but also illustrates hetero-
geneity by source. Fig. 5A shows that diabetes monotherapy ranges
from 10% in General Electric Centricity (GE) to 80% in Ajou
University School of Medicine (AUSOM). In the adoption of
metformin as a first (Fig. 5C) and single (Fig. 5B) medication over
the studied time period, several data sources, such as Stanford
Translational Research Integrated Database Environment (STRIDE)
and Columbia University Medical Center (CUMC), lag the group.
Although this difference could be a data-collection issue, it may
simply reflect the difference in the severity of illness of patients
represented by these two academic medical centers compared with
broader populations or even differences in skill levels of prescribers
at different sites. For hypertension and depression there was no one
dominant medication (Fig. 5 E and H). Fig. 5F shows the effects of
differing formularies (i.e., list of allowable drugs): the United
Kingdom (CPRD) and Japan (JMDC) show no use of hydrochlo-
rothiazide, Sound Korea (AUSOM) shows significant use, and the
United States sources are generally between these extremes.
Fig. 5 is also significant for what it fails to show: It fails to show a

consistent bias between use of electronic health record data and
use of claims data, other than that explained by sample size and
differences in population (e.g., academic medical center, as noted
above). For example, even though health records report medica-
tion orders and claims data report medication prescription fills, the
two types of sources corroborate each other. On the graphs,
sources are not generally grouped by type. For example, in many
cases, United States claims (CCAE) and United Kingdom health
records (CPRD) track each other well (Fig. 5 A–D, G, and H).
Other factors apparently have a larger effect on variance. The one
consistent difference is the reduced noise associated with the larger
sample sizes (Table 2) generally available in claims databases.
We used the World Health Organization’s Anatomical Thera-

peutic Chemical classification (23) to group medications into
classes to see if diseases varied in the extent to which medications
were changed or added within the same medication class (within-
class medication change) or a different one (between-class medi-
cation change). The three diseases did not show a large change
over the time period (Fig. 6). Depression shows a stronger ten-
dency to stay within class than diabetes or hypertension, but it had
fewer classes (6 classes; also see Supporting Information and Table
S1) than diabetes (23 classes) or hypertension (29 classes).

Discussion
This descriptive analysis demonstrates that coordinated efforts
across an international collaborative can overcome many of the
logistic and methodological challenges associated with observational

Diabetes

HTN

Depression

A

B

C

Fig. 2. Treatment pathways for all data sources. For each disease, diabetes
(A), hypertension (B), and depression (C), and across all data sources, the
inner circle shows the first relevant medication that the patient took, the
second circle shows the second medication, and so forth. Only four levels are
shown, but up to 20 medications were recorded. For example, 76% of di-
abetes patients started with metformin, and 29% took only metformin.
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study designs. The profiles of treatment pathways are based on
more than 250 million patient records, although some overlap is
possible because of payers and health care providers reporting on
the same patients. OHDSI successfully addressed patient privacy
and diverse research regulatory constraints, adopted a consistent
data model, and distributed queries across a broad population.
Furthermore, although this study happened to be of treatment
pathways for three diseases, all the involved data sources have
adopted a common industry standard for longitudinally recorded
visits, diagnoses, procedures, medications, and (where available)
laboratory tests, and any combination of the data can be used to
answer future questions across medicine. A query authored at one
OHDSI site may be run at all sites without further modification.
Despite the wide variety of data sources, significant consistency

is shown in Fig. 5, with largely similar rates and similar upswing.
The world is moving toward more consistent therapy over time
across diseases and across locations. Nevertheless, outliers are also
seen, highlighting the danger of drawing broad inferences from
single-site or even single-country observational studies. This study
corroborates previous work by the OHDSI researchers, which il-
lustrated the danger of naively combining data from disparate
sources (24). The differences in treatment pathways over time,
between countries, between practice types, and across sites—such
as the apparent lag in the adoption of metformin for treatment of
diabetes mellitus in some sites—points to potential challenges for
generalizing randomized trial results. For example, differences in
treatment practices between studied and nonstudied groups could
threaten the ability to generalize the efficacy of even non-
medication interventions such as education to nonstudied groups.
Comparing diseases, we see consistent differences, perhaps re-

lated to the availability, appropriateness, or acceptance of concrete
recommendations. Diabetes shows greater adoption of a single
medication, especially in recent years. Depression, which has far less
concrete guidelines, has a roughly similar rate of single-medication

use, but no one medication stands out as predominant. Additions
and changes of medications are more likely to be within the same
medication class for depression than for the other diseases. These
differences among diseases are not solely the result of formal rec-
ommendations, however. Metformin, which was approved in the
United States relatively recently (1995), already dominated the
market as a first-line therapy in 2000 (Fig. 4C).
The proportion of patients with a sequence of medication use

that is unique across all data sources—almost one quarter the pa-
tients with hypertension—is striking. It may point to a failure of the
field to converge on an effective treatment. The variation in first
medications (Fig. 3 D–F) corroborates this fact. When precision
medicine becomes a reality, with fine-grained, reliable knowledge
of patient characteristics, it may be possible to assign a unique
sequence tailored to a patient. For the time being, however, much
of this variation probably reflects ineffective differences in practice
and a trial-and-error approach to diseases that are difficult to treat.
These results have general and specific implications for ran-

domized clinical trials. The heterogeneity implies that randomized
trials may not be broadly generalizable if not designed properly.
Multicenter trials should not be a convenient sample of academic
medical centers but a purposeful selection of environments that
represent the diversity of practice in health care. During analysis,
trial results cannot simply be aggregated but may need to be
stratified by practice characteristics. More specifically, trials in di-
abetes, hypertension, and depression can use our uncovered path-
ways and their prevalences for future trial design. For example,
hypotheses and control groups for trials in these diseases should
consider actual rather than assumed practice. For example, if a
medication of interest is always given in sequence after another
one, then a randomized trial of the causal effect of new-onset use of
that medication will not be relevant to current practice.
There has been related work on empirical treatment pathways.

One project generated algorithms for mining time dependencies,

OPTUM

GE

MDCDCUMC

INPC

MDCR

CCAE

CPRD

JMDC

Type 2 Diabetes Mellitus Hypertension DepressionA

B E

C

D G

H

IF

Fig. 3. For each disease, diabetes (A–C), hypertension (D–F), and depression (G–I), the inner circle shows the first relevant medication that the patient took, the
second circle shows the second medication, and so forth. Three data sources are shown for each disease; the data source abbreviations are defined in Table 2.
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although it was applied only to a cohort of 113 stroke patients (25),
and is most appropriate to extract the maximum information from a
small dataset in terms of the computation required and the detail
returned per case. Using previous experience to guide future rec-
ommendations is a related area. Previous experience, especially
experience explicitly rated by physicians, can be used to generate
recommendations (26). Detailed pathways can be extracted from
hospital event logs (27), although they generally have been extracted
from a single environment. Large-scale data have been used to study
specific medications in specific diseases, such as rosiglitazone in di-
abetes using the Clinical Practice Research Datalink database (28).

In the future, our OHDSI framework may be able to facilitate
randomized trials at three stages: design, execution, and general-
ization. At the design stage, in addition to the characterization
illustrated in this study and discussed above, observational data-
bases may improve both the estimation of the number of subjects
available and the gross estimation of the effect sizes and variances
to calculate the number of subjects needed. For execution, ob-
servational databases may facilitate subject recruitment and data
collection in pragmatic trials (29), and—more ambitiously—they
may complement randomized trials by providing direct evidence
for causation. A key problem is avoiding or controlling con-
founding, using methods that model statistical and information
theoretic relationships within a set of variables such as structural
equations and graphical models (30), methods that place candi-
date associations in a context to judge the plausibility of causation
such as the Hill Criteria (31), methods that correct effect size
estimations such as the use of propensity scores (32), designs that
reduce confounding such as self-controlled case series (33), and
others (34). If confounding can be addressed, then observational
trials can increase sample size, add diversity, and handle more
complex interventions such as sequences of treatments. In addi-
tion to the characterization illustrated in this study to assess the
risk of generalization failure, observational databases may be able
to improve generalization (35, 36). By mimicking the randomized
clinical trial in the study population as well as other target pop-
ulations, the observational version may reveal trends in effect sizes
that are applicable to the randomized trial. We believe that the
leap from observational research’s associations to causality is
similar to the leap from randomized trial’s causes to individual
treatment because both are subject to assumptions and con-
founders. Fuller (37) separates the generalization procedure into
two parts: (i) going from the study population in which the trial
was carried out to the local population to which the individual
belongs, and (ii) going from the local population to the individual.
The former may be aided by observational databases, and the
latter is an example of precision medicine.
The full count of 682 million records (17) that have been con-

verted to OHDSI’s data model has implications for a worldwide
database. Although that number includes duplicate patients,
OHDSI’s successful conversion of a number of records equal to
almost 1/10th of the world’s population as a voluntary effort im-
plies that converting the entire world population to a single, highly
detailed data model is technically feasible. It also shows the suc-
cess of an open, voluntary approach. OHDSI will distribute an
open request for applications for queries against its databases
for researchers at any level, from high school student to Nobel
Laureate, selecting queries based on feasibility and potential impact.
The study and the OHDSI framework have limitations. In this

study, the strict definition of 1 y off treatment followed by 3 y on
continuous treatment reduces sample size and could cause biases
such as loss of patients with severe disease who die within 3 y. More
generally, data derived from electronic health records and from
claims databases are naturally noisy with missing values, and ob-
servational data are subject to confounding, both measured and
unmeasured. The OHDSI network is voluntary, so participation
may vary from study to study.
In summary, the OHDSI project exploited 250 million patient

records and assessed treatment pathways for three different chronic
diseases over time, across national boundaries, and across distinct
data sources. The study proved feasible, with largely consistent
results but also with significant heterogeneity. Variability in treat-
ment pathways was found, and diseases differed in patterns of drug
use such as the favoring of a single medication. Large-scale in-
ternational observational studies can use a consistent data model,
cover a broad population, and address patient privacy.
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Fig. 4. Medication-use metrics across all sources. Graphs show proportion by
year for across all data sources for (A) cases with only one medication in the
sequence (monotherapy); (B) cases in which the sequence contains only the
most common monotherapy medication for that disease (medication listed
with disease); and (C) cases in which a sequence begins with the most common
starting medication for that disease (medication listed with disease).
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Materials and Methods
Each site’s Common Data Model (23) was populated with patient char-
acteristics, health care visits, diseases, medications, procedures, and,
optionally, other types of data such as laboratory tests. Data elements
were translated to standard terminologies such as Systematized Nomen-
clature of Medicine (diseases, procedures) (38), RxNorm (medications) (39),
and Logical Observation Identifiers Names and Codes (laboratory tests)
(40). The data sources depended on the site. Some sites used administra-
tive claims, usually obtained from clinical data distributors, and other sites
used local electronic health record data. Medication information came
from insurance claims, pharmacy fulfillments, prescriptions, or clinical
narrative documentation.

We developed a query against the OHDSI Common DataModel as follows
(also see Supporting Information, including de-identified Datasets S1–S4).
Patients were included if they had at least one exposure to an anti-
hyperglycemic, antihypertensive, or antidepressant medication and at least
one diagnosis code for the corresponding disease—type 2 diabetes mellitus,

hypertension, or depression—at any time in their record and had no ex-
cluded diagnoses. The index date was considered to be the first exposure to
the medication. The patient had to have at least 1 y of history in the da-
tabase before the index date to increase the likelihood that this was a first
treatment of the disease by any medication. The patient had to have at
least 3 y of continuous treatment after the index date with some medica-
tion targeted to the disease. Three years was chosen to ensure sufficient
time to characterize a pathway, although this requirement lost patients
who died within the 3-y period. Continuous treatment was required to
ensure that patients were not treated elsewhere during the period. Al-
though these strict definitions reduced the number who qualified—
327,110 diabetes patients, 1,182,792 hypertension patients, and 264,841
depression patients had 3 y of uninterrupted therapy—it produced a more
consistent cohort across data sources. Fig. 1 shows the flow of events
necessary for a patient to qualify for the study. A patient’s sequence could
come from any time in a database as long as it satisfied the 4-y time
window (1 y before and 3 y after the index date). In tabulations and graphs,
we use a sequence’s index date to determine its year. The diagnosis code
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Fig. 5. Medication-use metrics by data source. For three diseases, diabetes (A–C), hypertension (D–F), and depression (G–I), the graphs show the proportion of cases
with only one medication in the sequence (monotherapy: A, D, and G), the proportion of cases in which the sequence contains only the most common monotherapy
medication for that disease (B: metformin for diabetes; E: lisinopril for hypertension; andH: sertraline for depression), and the proportion of cases in which a sequence
begins with the most common starting medication for that disease (C: metformin for diabetes; F: hydrochlorothiazide for hypertension; and I: citalopram for de-
pression). The vertical axes in the graphs in E andH are expanded in the Insets. The horizontal axis shows the year. Abbreviations in the data source legend are defined
in Table 2; the country of origin is given in parentheses. Asterisks mark electronic health record data, and hashtags mark claims data.
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was defined in Systematized Nomenclature of Medicine (38) and in the
Medical Dictionary for Regulatory Activities (41) and was mapped to other
terminologies including the International Classification of Diseases, Ninth
Revision, Clinical Modification (42). The medications were defined according
to their ingredients using the RxNorm terminology (39) and were
grouped according to classification hierarchies such as Anatomical Thera-
peutic Chemical classification (23) and First Data Bank’s terminology (43).
The chosen medication classes and diagnoses are listed in Table 1. For the
purpose of measuring intraclass medication changes, classes were defined
at the second level of the Anatomical Therapeutic Chemical classification
hierarchy (23).

The sequence ofmedications taken by each patientwas extracted from the
databases, ordering them by first exposure to the medication. Note that only
the first exposure was recorded for patients who switched from a medication
and then back to it. The sequence does not distinguish between switching
medications and adding medications. Combination medications with multi-
ple active ingredients were treated as if the multiple ingredients were
prescribed independently but simultaneously to avoid inducing measured
diversity. Sequences were limited to 20 medications. We then counted the
number of individuals within the database who had each observed sequence.
We created tabular and graphical summaries of the sequence results,
stratifying by disease, database, and index year. We ran the analyses on 11
databases, summarized in Table 2. The full source code for the analysis is
freely available (44); it is implemented in Structured Query Language cou-
pled with R (45) for aggregated data generation.

Sunburst plots were generated from medication sequences (using
software written in Hypertext Markup Language 5 and JavaScript using
Data-Driven Documents, available at OHDSI.org). To compare consis-
tency of medication use across diseases, we defined three metrics: (i ) the

Table 2. Data source descriptions

Abbreviation Name Description
Population,
millions

AUSOM Ajou University School
of Medicine

Electronic health record data from a Korean tertiary teaching hospital
with 1,096 patient beds and 23 operating rooms that adopted a
computerized provider order entry system in 1994 and a comprehensive
electronic health record system in March 2010

2

CCAE MarketScan Commercial
Claims and Encounters

An administrative health claims database for active employees, early retirees,
COBRA continues, and their dependents ensured by employer‐sponsored
plans (individuals in plans or product lines with fee‐for‐service plans and
fully capitated or partially capitated plans)

119

CPRD UK Clinical Practice
Research Datalink

Anonymized longitudinal electronic health records from primary care
practices in the United Kingdom. Patient management system with
many aspects of patient care covered, including diagnoses, prescriptions,
signs and symptoms, procedures, laboratories, lifestyle factors, clinical
and administrative/social data

11

CUMC Columbia University
Medical Center

Electronic health record data from the Columbia University Medical Center
and NewYork-Presbyterian Hospital clinical transaction-based data repository

4

GE General Electric Centricity Derived from data pooled from providers who use GE Centricity Office
(an ambulatory electronic health record) into a data warehouse in a
Health Insurance Portability and Accountability Act–compliant manner

33

INPC Regenstrief Institute,
Indiana Network for
Patient Care

Population-based, longitudinal, and structured coded and text data captured
from hospitals, physician practices, public health departments, laboratories,
radiology centers, pharmacies, pharmacy benefit managers, and payers in the
Indiana Network

15

JMDC Japan Medical Data
Center

An administrative health claims database for patients with private insurance
plans in Japan

3

MDCD MarketScan Medicaid
Multi-State

An administrative health claims database for the pooled healthcare
experience of Medicaid enrollees from multiple states

17

MDCR MarketScan Medicare
Supplemental and
Coordination of Benefits

An administrative health claims database for Medicare‐eligible active and retired
employees and their Medicare-eligible dependents from employer‐sponsored
supplemental plans (predominantly fee‐for-service plans). Only plans in which
both the Medicare‐paid amounts and the employer‐paid amounts were
available and evident on the claims were selected for this database.

9

OPTUM Optum ClinFormatics An administrative health claims database for members of United Healthcare,
who enrolled in commercial plans (including ASO), Medicaid (before July 201)
and Legacy Medicare Choice (before January 2006) with both medical and
prescription drug coverage

40

STRIDE Stanford Translational
Research Integrated
Database Environment

Electronic health record data derived from all patients treated as outpatients
and inpatients at Stanford Hospital and Clinics from 1995 to 2013,
including structured clinical data and unstructured clinical notes

2
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Fig. 6. Changes and additions to medication within structural medication class.
Medication class was defined by the Anatomical Therapeutic Chemical classifi-
cation hierarchy. For each disease, the graph shows the proportion of medica-
tion changes that were within class versus changes that were between classes.
Over this period, the number of classes per disease was approximately constant:
Diabetes had 16 or 17, hypertension (HTN) had 17–19, and depression had 13.
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proportion of cases with only one medication in the sequence (mono-
therapy); (ii) the proportion of cases in which the sequence contains only the
most common monotherapy medication for that disease; and (iii) the pro-
portion of cases in which a sequence begins with the most common starting
medication for that disease. These metrics were chosen so that we could
compare diseases in a generic way, with no specific knowledge of the diseases
other than tallying the most common medications. Higher proportions gen-
erally imply greater agreement on treatment.

Each site confirmed Institutional Review Board approval for the study or
confirmed that their analysis did not require approval because it was exempt

or was deemed nonhuman subjects research (e.g., because the database had
previously been de-identified).
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