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Chromatin, Gene, and RNA Regulation

Kinesin Family Deregulation Coordinated by Bromodomain
Protein ANCCA and Histone Methyltransferase MLL for
Breast Cancer Cell Growth, Survival, and Tamoxifen
Resistance

June X. Zou1,4, Zhijian Duan2,4, Junjian Wang2,4, Alex Sokolov2,4, Jianzhen Xu5, Christopher Z. Chen2,4,
Jian Jian Li3, and Hong-Wu Chen2,4

Abstract
Kinesins are a superfamily ofmotor proteins and often deregulated in different cancers. However, themechanism

of their deregulation has been poorly understood. Through examining kinesin gene family expression in estrogen
receptor (ER)-positive breast cancer cells, we found that estrogen stimulation of cancer cell proliferation involves a
concerted regulation of specific kinesins. Estrogen strongly induces expression of 19 kinesin genes such asKif4A/4B,
Kif5A/5B, Kif10, Kif11, Kif15, Kif18A/18B, Kif20A/20B, Kif21, Kif23, Kif24, Kif25, and KifC1, whereas
suppresses the expression of seven others, including Kif1A, Kif1C, Kif7, and KifC3. Interestingly, the bromo-
domain protein ANCCA/ATAD2, previously shown to be an estrogen-induced chromatin regulator, plays a crucial
role in the up- and downregulation of kinesins by estrogen. Its overexpression drives estrogen-independent
upregulation of specific kinesins. Mechanistically, ANCCA (AAA nuclear coregulator cancer associated) mediates
E2-dependent recruitment of E2F and MLL1 histone methyltransferase at kinesin gene promoters for gene
activation–associated H3K4me3 methylation. Importantly, elevated levels of Kif4A, Kif15, Kif20A, and Kif23
correlate with that of ANCCA in the tumors and with poor relapse-free survival of patients with ER-positive breast
cancer. Their knockdown strongly impeded proliferation and induced apoptosis of both tamoxifen-sensitive and
resistant cancer cells. Together, the study reveals ANCCA as a keymediator of kinesin family deregulation in breast
cancer and the crucial role of multiple kinesins in growth and survival of the tumor cells.

Implications: These findings support the development of novel inhibitors of cancer-associated kinesins and their
regulator ANCCA for effective treatment of cancers including tamoxifen-resistant breast cancers.Mol Cancer Res;
12(4); 539–49. �2014 AACR.

Introduction
The kinesin superfamily of motor proteins is encoded by

more than 40 different genes in humans. They function by
traveling unidirectionally along the microtubules for intra-
cellular transport of molecules or organelles. Many of them
such as Kif4A, Kif10/CENPE, and Kif11/Eg5 play impor-
tant roles in cell division, particularly in different stages of

mitosis and cytokinesis (1). Several kinesins including
Kif1A, Kif7, and KifC3 function primarily in nonmitotic
processes such as protein complex or organelle movement
and cellular signaling (2–6). Overexpression of mitotic
kinesins including KifC1, Kif10/CENPE, and Kif18A was
found in several human cancers including breast cancer (7–
11). However, it is unclear whether other kinesins are
aberrantly expressed in breast cancer and whether they play
roles in the cancer cell proliferation and survival. Moreover,
little is known about the mechanisms how the kinesin gene
expression is deregulated in cancer cells.
The mitogenic effect of estrogen 17b-estradiol (E2) is

primarily through its receptor estrogen receptor-a (ERa) to
control gene expression. E2, through binding to ERs, plays
pivotal roles in breast cancer development and progression.
In cells, E2 treatment elicits changes in expression of
hundreds of genes with the ones involved in cell-cycle
progression, DNA synthesis and replication being the most
robustly upregulated. Interestingly, estrogen also strongly
represses many antiproliferative and proapoptotic genes.
Although the majority of them are likely direct targets of
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ERa, many are regulated indirectly through estrogen control
of other transcriptional regulators (12–18).
ER-mediated transcriptional regulation involves assem-

bly at target gene loci of chromatin regulators such as the
p160/SRC coactivators, histone modifying or demodify-
ing enzymes, and the ATP-dependent chromatin-remo-
deling proteins (15, 16, 19–21). Different ER target genes
may use different sets of specific chromatin regulators,
which often act through transient and dynamic protein–
protein interactions (19, 22). ANCCA (AAA nuclear
coregulator cancer associated), a bromodomain contain-
ing, ATPase protein, was identified by us as a novel ERa
coregulator and shown to play a critical function in
mediating ER activation of CCND1, MYC, and E2F1
as well as E2-stimulated breast cancer cell proliferation
(23–28). Importantly, ANCCA expression is strongly
induced by E2 in ER-positive breast cancer cells. Its
overexpression in tumors is highly associated with poor
outcomes of patients with breast cancer (26). Here, we
examined the function of ANCCA in estrogen control of
kinesin family gene expression. Our results revealed a
pivotal role played by ANCCA in mediating both estrogen
induction and repression of specific kinesins and demon-
strated a critical function of ANCCA-activated kinesins in
breast cancer cell proliferation and survival.

Materials and Methods
Cell culture, hormone treatment, and siRNA transfection
MCF-7 and T-47D cells were obtained from the Amer-

ican Type Culture Collection (ATCC) and cultured in
Dulbecco's Modified Eagle Medium (DMEM) or RPMI-
1640 (Invitrogen), respectively, with 10% FBS (Gemini).
For ligand treatment, cells were grown in phenol red–free
medium supplemented with 10% charcoal–dextran–
stripped (cds) FBS (J R Scientific) for 3 days before being
treated with E2 (at 10�8 mol/L), 4-hydroxytamoxifen
(Tam, at 10�6 mol/L), or fulvestrant (at 10�7 mol/L; all
from Sigma-Aldrich) for indicated times. MCF-7 cells that
ectopically express ANCCA were generated by transfec-
tion with pcD-HCMV-ANCCA (23, 28), and stable
transfectant cells were clonally isolated and expanded in
the presence of G418 (300 mg/mL). Tamoxifen-resistant
MCF-7 subline LCC2 cells (a kind gift from Dr. Robert
Clarke at Georgetown University, Washington, DC) were
cultured in DMEM þ 10% cds–FBS containing 10�6

mol/L 4-hydroxytamoxifen. For siRNA transfection, cells
were seeded at 2 � 105 cells per well in 6-well plates in
phenol red–free DMEM supplemented with 5% cds–FBS
and transfected using DharmaFECT with siRNAs (Dhar-
macon) targeting ANCCA (29), MLL1 (30) or Kif4A,
Kif15, Kif20A, and Kif23 (Supplementary Materials and
Methods).

Quantitative real-time PCR and immunoblot analysis
Total RNA was isolated and the cDNA was prepared,

amplified, and detected in the presence of SYBR as pre-
viously (29). The fluorescent values were collected and a
melting curve analysis was performed. Fold difference was

calculated as described previously (29). Cell lysates were
analyzed by immunoblotting with antibodies against
specific kinesins, ANCCA, and other proteins. The PCR
primers, details of cell lysates, and immnoblotting and
antibodies are listed in the Supplementary Materials and
methods.

Apoptosis and cell growth assays
For apoptosis, cells were transfected with siRNA on glass

chamber slides and processed for TUNEL assay using the In
Situ Cell Death Detection Kit (Roche) as previously
described (26). Random fields (10 fields per condition) of
TUNEL-positive cells were counted and averaged. For cell
growth, cells were seeded in 6-well plates at 1� 105 per well
and treated as indicated. Total cell numbers were counted
using a Coulter cell counter. The assays were performed in
triplicates and the entire experiments were repeated three
times.

Chromatin immunoprecipitation (ChIP) assay
ChIP was performed essentially as described previously

(27, 28) with the following modifications. Cells were lysed
and sonicated using Sonic Dismembrator 550 (Fisher
Scientific). The crude chromatin solutions were first
cleared with protein A beads (Invitrogen) that had been
precoated with preimmune serum or normal immuno-
globulin G (IgG) for 2 hours at 4�C. Then, the precleared
solutions were incubated at 4�C overnight with antibodies
against ANCCA (26), E2F1 (1:1 mixture of C-20 and
KH-95; Santa Cruz Biotechnology), MLL (clone 9–12;
Millipore), H3K4me3 and H3K27ac (ab8580 and
ab4729, ChIP grade; both from Abcam), before precip-
itation with protein A beads that had been preblocked
with bovine serum albumin (BSA) and sonicated salmon
sperm DNA. The precipitated DNA was analyzed by real-
time PCR with SYBR green on an iCycler instrument.
Enrichment of genomic DNA was presented as the per-
centage recovery relative to the input. The primers are
listed in the Supplementary Materials and Methods.

Analysis of kinesin expression in tumors for clinical
outcome and ANCCA correlation and statistics
Microarray data from GSE9195 (31) were downloaded

from the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) website
(http://www.ncbi.nlm.nih.gov/gds). The dataset consists
of gene expression profiles of early stage, ER-positive
breast cancer tumors that had received tamoxifen only as
adjuvant treatment. Normalized probe set expression
intensities were obtained using robust multi-array average
for probe summarization and normalization as before (29).
Correlations of ANCCA/atad2 and kinesin expression
were assessed by computing the Pearson correlation coef-
ficient (r) and a two-tailed t test for significance. The
Kaplan–Meier estimates were used to compute the sur-
vival curves. All above computations were conducted in R
statistical package (http://www.r-project.org/). Kinesin
expression and patient survival were also analyzed using
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an online survival analysis tool (32). For the assays, the paired
t test was performed as previously described (26).

Results
Estrogen stimulation of breast cancer cell proliferation
involves a concerted up- and downregulation of specific
kinesin expression
We previously demonstrated that ANCCA is an estrogen

responsive gene and controls the expression of cyclins and
other genes important for cell proliferation and survival
(23, 26). This prompted us to investigate whether ANCCA
plays any function in control of mitotic kinesins in ER-
positive breast cancer cells. Thus, we first identified kinesins
with expression regulated by E2 in estrogen-sensitive MCF7
cells. Remarkably, among the 38 kinesin genes with mRNA
expression detected inMCF7 cells, E2 strongly stimulated the
expression of a large number (19 out of 38, more than 2-fold
in 12 hours and/or 24 hours of E2 treatment) of the detected
kinesins, which include Kif2A, Kif3A, Kif3B, Kif4A, Kif4B,
Kif5B, Kif10/CENPE, Kif11/EG5, Kif15, Kif16A, Kif18A,
Kif18B, Kif20A, Kif20B, Kif21A, Kif23, Kif24, Kif25, and
KifC1 (Fig. 1A). Inmost cases, the induction can be observed

by 12 hours of E2 stimulation. Except Kif2A, Kif5B, and
Kif21A, most of them play important roles in mitosis and/or
cytokinesis (1). Intriguingly, E2 also significantly repressed
several kinesins, including Kif1A, Kif1C, Kif3C, Kif7,
Kif13B, Kif16B, and KifC3. Notably, most of the repressed
kinesins have primary functions in nonmitotic processes such
as synaptic vesicle transport in neurons (Kif1A), integrin
transport for cell migration (Kif1C), control of the Hedgehog
(Hh)-Gli signaling (Kif7) and golgi positioning and integra-
tion with dynein (KifC3; refs. 2, 5, 33).
Given the prominent function of E2-ER in promoting

breast cancer cell proliferation, we focused our further
analysis on mitotic kinesins. As shown before, ANCCA and
its targets cyclin D1 and CDC6 are induced by E2 inMCF7
cells (Fig. 1B). Western blotting with available antibodies
confirmed the E2 induction of mitotic kinesin proteins of
Kif4A, Kif11, Kif15, Kif20A, and Kif23 (Fig. 1B). To
examine whether the E2 regulation is through ERa, cells
were treated with ERa pure antagonist fulvestrant. Indeed,
when cells were treated simultaneously with E2 and fulves-
trant, the kinesin induction by E2 was mostly suppressed
(Fig. 1B, top), indicating that E2 induction of Kif4A, Kif11,
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Figure 1. Coordinated regulation of
kinesin family expression in breast
cancer cells by estrogen-ERa. A,
MCF-7 cells were hormone
depleted for 3 days and then
treated with E2 at 10�8 mol/L for
the indicated hours before
harvesting for real-time RT-PCR
analysis. Fold change was
obtained by comparing the
normalized quantitative PCR value
fromE2-treated cellswith the value
from cells without E2 harvested at
the same time point. The data are
expressed as the mean � SD from
three independent experiments. B,
MCF-7 and T-47D cells were
treated with E2 as in A, or
fulvestran/ICI182,780 (ICI) at 10�7

mol/L for the indicated hours
before harvesting for
immunoblotting with the indicated
antibodies.
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Kif15, Kif20A, and Kif23 is through ERa. Similar results
were obtained from another estrogen-sensitive cell T-47D
(Fig. 1B, bottom). Together, the results suggest that estrogen

via ERa coordinately regulates kinesin family gene expres-
sion with upregulation of mitotic kinesins and downregula-
tion of nonmitotic kinesins.
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Figure 2. ANCCA plays a crucial
role in mediating E2-ER regulation
of kinesin expression. A, MCF-7
cells were in hormone-depleted
medium for 24 hours, transfected
with control or ANCCA siRNA, and
48 hours posttransfection treated
with E2 at 10�8 mol/L for 12 or 24
hours before harvesting for real-
time RT-PCR analysis. Fold
change was obtained by
comparing the E2-induced
quantitative PCR value change
from ANCCA siRNA-transfected
cells with the value change from
control siRNA-transfected cells
harvested at the same time point
of E2 treatment. The data are
expressed as the mean � SD of
three independent experiments.B,
MCF-7 cells were siRNA
transfected and treated with E2 as
in A for the indicated hours before
harvesting for immunoblotting
with indicated antibodies.
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ANCCAplays a crucial role inmediating E2 regulation of
kinesins
To determine whether ANCCA mediates E2 control of

the kinesins, we measured their expression in MCF7 cells
with ANCCA suppressed by siRNA. As shown in Fig. 2A,
ANCCA suppression markedly diminished E2 induction
of most (18 out of 19) of the kinesins, which include
Kif2A, Kif3A, Kif3B, Kif4A, Kif4B, Kif5B, Kif10/CENPE,
Kif11/EG5, Kif15, Kif16A, Kif18A, Kif18B, Kif20A,

Kif20B, Kif21A, Kif23, Kif25, and KifC1. More strikingly,
for the seven kinesins that are repressed by E2, upon
ANCCA silencing by siRNA, their repression by E2 was
largely lost (except for Kif16B). Kif14 is the only one that
was not significantly regulated by E2 but decreased by
ANCCA suppression. Suppression of ANCCAby a different
siRNA yielded essentially the same effects on E2-regulated
kinesin mRNAs (data not shown). As expected, ANCCA
suppression by the two siRNAs resulted in strong reduction
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of protein levels of mitotic kinesin Kif4A, Kif11, Kif15,
Kif20A, and Kif23 in the cancer cells (Fig. 2B).
To further examine the function of ANCCA in control of

kinesin expression, we analyzed whether elevated ANCCA
promotes the kinesin expression. Strikingly, in the absence of
E2, ectopic ANCCA was able to stimulate the mRNA
expression of Kif4A, Kif11, Kif15, Kif20A, and Kif23 to
the level almost equivalent to that induced by E2 in the
vector control cells. Except Kif4A, E2 further stimulated
their expression in the ANCCA-overexpressing cells (Fig.
3A), suggesting that part of the ANCCA enhancement of
kinesin expression is through ERa. Moreover, the ANCCA
stimulatory effects can be observed on the kinesin proteins
(Fig. 3B). Thus, these results strongly suggest that chroma-
tin-associated protein ANCCA is a keymediator of estrogen-
coordinated regulation of kinesin gene family in breast
cancer cells.

E2 induction of kinesins involves the assembly and
function of ANCCA, E2F, and their associated histone
methyltransferase MLL
To examine the mechanism of ANCCA function in

estrogen control of kinesin expression, we first performed
ChIP assays for potential direct involvement of ANCCA.
Indeed, marked ANCCA occupancy was observed at
promoters of Kif4A, Kif15, Kif20A, and Kif23 upon
E2 treatment for 1 or 3 hours (Fig. 4A and B and
Supplementary Fig. S1). Inspection of the local sequences
with ANCCA occupancy suggests binding sites for tran-
scription factors E2Fs and c-Myc at the kinesin promoters.
ChIP with anti-E2F1 antibody demonstrated a significant
E2 induction of recruitment at the same locations, in
support of our previous finding that ANCCA interacts
with E2Fs and acts as a potent coactivator of E2Fs (27).
However, no consistent, E2-induced c-Myc binding was

observed with a c-Myc antibody (data not shown). Nota-
bly, the ANCCA recruitment was associated with a sig-
nificant increase of gene activation–linked histone marks
such as H3K4me3 and H3K27ac, with H3K4me3 being
highly elevated by E2. Because H3K4me3 is primarily
deposited by histone methyltransferases such as MLL1, we
next examined whether MLL1 is involved. Indeed, strong
E2-induced recruitment of MLL1 at the kinesin gene
promoters was observed. To determine the role of
ANCCA in the E2-induced chromatin events, we per-
formed ChIP with si-ANCCA knockdown cells. Remark-
ably, suppression of ANCCA strongly diminished E2-
dependent recruitment of E2F1 and MLL1 at the kinesin
promoters. Expectedly, MLL1-associated H3K4me3 level
was also largely reduced (Fig. 4C and D and Supplemen-
tary Fig. S1). Knockdown of MLL1 strongly mitigated E2
induction of the kinesin expression (Fig. 4E and F).
Together, these results suggest that ANCCA plays an
important role in mediating the assembly of E2F and
MLL complexes, and H3K4me3 mark elevation at the
kinesin gene promoters for E2 induction of their
expression.

Kif4A, Kif15, Kif20A, and Kif23 are important for
proliferation and survival of tamoxifen-sensitive and
resistant breast cancer cells
Several kinesins such as Kif11, Kif14, and Kif18A have

recently been shown to be important for breast cancer cell
proliferation.We, thus, focused on our analysis on the role of
ANCCA-controlled Kif4A, Kif15, Kif20A, and Kif23 in cell
growth and survival. Each of the four kinesins was knocked
down by two different siRNAs. Each knockdown of Kif4A,
Kif15, Kif20A, and Kif23 resulted in strong inhibition of
E2-stimulated proliferation of tamoxifen-sensitive MCF7
cells (Fig. 5A). Consistent with the marked reduction of
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viable cells, depletion of each of the kinesins caused a
pronounced apoptotic cell death as indicated by the number
of TUNEL-positive cells and the induction of cleaved
caspase-7 and PARP1 proteins (Fig. 5B and C).
To further examine the function of ANCCA in control of

kinesins, we performed the knockdowns in a tamoxifen-
resistant subline (LCC2) of MCF-7 cells (34–37). Com-
paring with the MCF-7 cells in which the kinesin and
ANCCA expression was strongly inhibited by tamoxifen,
LCC2 cells were essentially unresponsive to the inhibitory
effect of tamoxifen on Kif4A, Kif15, Kif20A, and Kif23
(Fig. 6A). Interestingly, ANCCA level was significantly
higher in LCC2 cells than MCF-7 cells, especially when
the cells were treatedwith tamoxifen. As expected, tamoxifen
treatment alone did not alter LCC2 cell growth. Silencing
each kinesin in LCC2 cells, however, markedly inhibited
their hormone-independent proliferation (Fig. 6B and Sup-
plementary Fig. S2, compare siCont-Tam and siKif-Tam).
Importantly, the kinesin silencing also dramatically
increased LCC2 cell sensitivity to tamoxifen inhibition
(compare si-ContþTam and siKifþTam). Altogether, the
results suggest that ANCCA-regulated kinesins play crucial
roles in proliferation and survival of both tamoxifen-sensitive
and resistant breast cancer cells.

High level of kinesins correlates with that of ANCCA and
with poor outcome of ER-positive tumors
The above results that ANCCA-regulated kinesins play an

important role in breast cancer cell growth and survival
prompted us to examine the clinical significance of our
experimentalfindings. In a dataset of gene expression profiles
obtained from early stage, ER-positive breast cancer tumors
that had received tamoxifen only as adjuvant treatment, high
expression of Kif4A, Kif15, Kif20A, and Kif23 strongly
correlated with poor relapse-free survival. Importantly, their
expression also correlated significantly with the expression of
ANCCA in the tumors (Fig. 7A and B and Supplementary
Fig. S3). To test further, the impact of high specific kinesin
expression, we used an online survival analysis tool with a
large database of breast cancer (1,413 ER-positive tumors)
and found that high levels of each of the four kinesins tend to
associate with poor prognosis (relapse-free survival; Fig. 7C
and Supplementary Fig. S3). Together, these clinical data
support the role of ANCCA as a key regulator of specific
kinesins and indicate that their overexpression may drive
breast cancer progression such as resistance to tamoxifen
therapy.

Discussion
Little is known about the mechanism of kinesin family

deregulation in human cancers. In this regard, this study
made several unique and unexpected findings. First, a large
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number of kinesins are regulated by estrogen in breast cancer
cells. Mammalian kinesin family has 45 members and many
of them are expressed in tissue or cell-specific manner (1).
Remarkably, among the 38 kinesins with expression

detected in breast cancer MCF-7 cells, 26 of them are
regulated by E2, therefore, likely making it one of the most
closely regulated gene families in estrogen signaling. Second,
estrogen regulation of kinesins is bidirectional. Although
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many of the kinesins are upregulated by E2, at least seven are
strongly downregulated by E2. Third, estrogen-regulated
kinesins seem to play distinct and nonredundant function.
Although many are mitotic regulators (Kif4A, Kif10, Kif11,
Kif15, Kif18A, Kif20A, and Kif23), Kif3B is primarily
involved in cell migration, and Kif24 is a centriolar kinesin
and functions to remodel the local microtubules for cilia
assembly (38). Knockdown of individual mitotic kinesins
such as Kif4A, Kif15, Kif20A, and Kif23 demonstrated that
each of them is critical for cell proliferation or survival.
Interestingly, kinesins repressed by E2, which include
Kif1C, Kif3C, Kif7, Kif16B, and KifC3, are mostly non-
mitotic kinesins (1) and they likely play different functions
too. For instance, Kif1C is involved in stabilization of
cellular trailing adhesions (33). Kif1C gene is foundmutated
in a subset of metastatic, ERa-positive breast cancer (39).
Interestingly, Kif7 plays an important role in regulation of
Hedgehog (Hh)-Gli signaling and its deletion contributes
to the development of skin basal cell carcinoma (40). One
unexpected finding is that both E2-dependent induction
and repression of kinesins involves the function of
ANCCA. We reported previously that ANCCA acts as a
novel coactivator of ERa (23). The fact that ANCCA
depletion results in derepression of specific kinesins strong-
ly suggests that ANCCA also plays an important role in E2-
dependent transcriptional repression. Although future
study is needed to understand the underlying mechanism,
it is conceivable that ANCCA, through its direct interac-
tion with ERa, is recruited to the ER-repressed target genes
and that recruited ANCCA, via its AAA type ATPase
activity, may facilitate the assembly of repressive protein
complexes such as the corepressor-HDAC, NRIP1/RIP140,
or p300-CtBP (41, 42).
We focused our mechanistic analysis on the mitotic kine-

sins Kif4A, Kif15, Kif20A, and Kif23. Our ChIP analysis
clearly showed that ANCCA directly occupies their promoter
in the absence of hormone and that its occupancy is strongly
increased upon E2 treatment. Thus, ANCCA may be
involved in both estrogen-dependent and independent acti-
vation of the kinesins. This is consistent with recent findings
that these mitotic kinesins are overexpressed in many types of
cancers such as lung cancer, pancreatic cancer, and glioma that
generally do not involve strong estrogen stimulation but also
show ANCCA overexpression (41–45). Interestingly, we
showed here that ANCCA is required for E2F1 recruitment
to the kinesin genes. We also found that ANCCA is required
for E2-induced recruitment of MLL1 histone H3K4 meth-
ylase and the E2 induction of H3K4me3 mark at the kinesin
gene promoter, aswe demonstrated for androgen induction of
EZH2 (46). H3K4me3 mark is necessary for the RNA
polymerase II preinitiation complex assembly (47). Thus,
together, our results suggest that upon estrogen stimulation,
ANCCA occupancy at the kinesin genes is enhanced to
facilitate the recruitment of E2F1 and MLL-mediated
H3K4 methylation, which results in the assembly of Pol-II
complex for transcriptional activation.HowE2 stimulates the
function of ANCCA at kinesin promoters is currently
unknown. Although we were able to detect E2-induced

robust recruitment of ERa to cyclin D1 enhancer and
promoter, we were unable to detect any significant ERa
recruitment to theANCCA-occupied promoter regions of the
kinesin genes examined (data not shown). It is possible that
ERa acts through tethering to other transcription factor(s)
(14, 21) or is recruited to an uncharacterized distal enhancer
of the kinesin to facilitate ANCCA loading to the promoter
through chromosomal looping. Future studies will be needed
to determine the functional mechanism of ERa in the
induction of specific kinesins.
Importantly, this study revealed that multiple kinesins

including Kif4A, Kif15, Kif20A, and Kif23 are crucial for
growth and survival of both tamoxifen-sensitive and resistant
breast cancer cells. We also found that among the patients
treated with tamoxifen, high levels of the four kinesins are
strongly associated with poor recurrence-free survival. Thus,
the results strongly suggest that kinesins such as Kif4A,
Kif15, Kif20A, and Kif23 can have important values as both
prognostic factors and new therapeutic targets for endocrine
therapy–resistant breast cancer. However, kinesins may play
similar cellular functions (1), which would necessitate simul-
taneous targeting of multiple kinesins for effective therapy.
One alternative can be blocking MLL-mediated histone
methylation, which is required for the kinesin gene activa-
tion. However, members of the MLL family are found
mutated or deleted in multiple human cancers (48, 49).
Given ANCCA being a common activator of these kinesins,
targeting ANCCA can be a more attractive option.With the
small molecules targeting bromodomain proteins such as
BRD4 are near clinical trial, development of inhibitors
specifically targeting ANCCA bromodomain or its ATPase
is highly desirable for effective treatment of aggressive breast
cancer.
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