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Implementation of a plug-and-play reusable 

level-set topology optimization framework 

via COMSOL Multiphysics 

Alexandre T. Guibert1, Jaeyub Hyun2, Andreas Neofytou3 and H. Alicia 

Kim4 
University of California San Diego, San Diego, California, 92093, USA 

This work is aimed at developing a workflow to use state-of-the-art level-set topology 

optimization (LSTO) methods with COMSOL Multiphysics. The graphical user interface 

(GUI) and solver of COMSOL Multiphysics are used to simplify the implementation of the 

considered physics problem. A physics model file (.m file) is then extracted from COMSOL 

Multiphysics, which can be called from and adjusted in MATLAB to make an interface with 

the level-set module. The LSTO modules written in C++ are imported into MATLAB to 

interface with the physics model extracted from COMSOL Multiphysics. The element 

sensitivities are computed in COMSOL Multiphysics and combined with the boundary 

perturbation method to calculate the boundary point (or shape) sensitivities using the discrete 

adjoint method. The capabilities of the proposed workflow are demonstrated with numerical 

examples. The proposed workflow alleviates the difficulty of implementing LSTO, especially 

in the case of coupled multiphysics problems.  

I. Introduction 

Topology Optimization (TO) is a design optimization method that aims to produce a design by modifying the material 

distribution in the design domain based on one or more objectives and constraints. Many variants of TO have been 

developed thus far, such as the density-based TO, boundary-based TO or bi-directional evolutionary structural 

optimization (BESO) [1]. Among those, the level-set topology optimization (LSTO) method is a popular boundary-

based TO technique. The key idea is to represent the geometry of the part using an implicit level-set function and to 

update this function by solving an advection equation, so-called the Hamilton-Jacobi equation. The level-set function 

handles naturally the topological changes occurring during the optimization. In contrast to the other methods, the 

LSTO method [2] does not require filtering. However, LSTO is not widely available in commercial software. For 

more information regarding the availability of LSTO, a comprehensive review of the different LSTO codes is 

presented in [3]. Additionally, open-source software usually requires the user to be a proficient programmer in the 

language the tool was developed in, and this can present a challenging entry barrier to new users to LSTO. 

 

In this paper, we present an efficient workflow to address this challenge and make LSTO more accessible. The model 

is first created in the graphical user interface (GUI) of COMSOL Multiphysics, and a physics model file (.m file) is 

easily extracted from the model created in the GUI, which is directly utilized in MATLAB. MATLAB has been chosen 

as the interface environment for its ease of use and popularity in engineering. COMSOL Multiphysics is integrated 

with MATLAB via its LiveLink feature. Only a few lines of code in MATLAB are then needed to call the LSTO 

modules from MATLAB. The workflow has been developed to offer the user a seamless experience and lower the 

entry barrier. The authors believe that this workflow is especially appropriate for newcomers and for educators, who 

are interested in utilizing the LSTO for coupled multiphysics problems.  
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II. The Level-Set Topology Optimization Method 

The LSTO method is a powerful gradient-based topology optimization technique where the structure is represented 

by an implicit function φ, for which a signed distance function is usually used. The LSTO method here does not 

require filtering and/or projection scheme as the structural boundary is clearly defined. The boundary of the structure 

is implicitly described as  {𝑥 | φ(𝑥)  =  0}  where 𝑥  is a point in the design domain and the overall structure is 

described as {𝑥 | φ(𝑥)  ≥  0}. At each iteration of optimization, the boundary is updated via the following Hamilton-

Jacobi equation. 
dφ

dt
+ 𝑉𝑛|∇φ| = 0 (1) 

 

where 𝑉𝑛 is the design velocity normal to the boundary and t is the pseudo time. The design velocity is then computed 

through a linearized sub-optimization problem as presented in [4]. For more information on LSTO, the reader is 

referred to [5] and [6] where the method is described in detail.  

 

Our LSTO method is written in C++ and imported into MATLAB using the MEX Package [7]. The element 

sensitivities of any functions of interest with respect to the design variables are computed using COMSOL 

Multiphysics’ inherent symbolic differentiation capability. They are then passed to the LSTO modules where a 

boundary perturbation scheme is used for calculating the boundary point sensitivities. More details on the sensitivity 

analysis scheme can be found in [8]. The overall architecture is presented in Fig. 1. 

 

 

Fig. 1. Overall architecture of the proposed LSTO framework with COMSOL Multiphysics 
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III. Implementation of LSTO in MATLAB 

The physics model is created in COMSOL Multiphysics GUI and saved as a MATLAB file using COMSOL 

Multiphysics LiveLink feature [9]. A few lines are then added for optimization and the analysis portion of the code is 

placed in an optimization loop to carry out the finite element analysis at each iteration. The design is updated with the 

Hamilton-Jacobi equation (1) and a fixed grid is used during the analysis so that remeshing of the domain is not 

needed. The material property of each finite element is updated through a material interpolation scheme specific to 

the discipline considered. The lines of code added for optimization are detailed in this section and the optimization 

workflow is presented in Fig. 2. Four different steps are needed: computation of the element sensitivities, computation 

of the boundary point sensitivities based on the element sensitivities, computation of the velocities and update of the 

current design. Each of these are presented in the following paragraphs.  

 

Fig. 2. Workflow of the LSTO process implemented in MATLAB  

The first step is to compute the element sensitivities. COMSOL Multiphysics built-in function fsens() is used to 

evaluate the element sensitivities with the adjoint method. The user first adds a sensitivity study in COMSOL 

Multiphysics GUI and defines a control variable, i.e., a design variable which corresponds to the element density (ED) 

in our LSTO. Then, the element sensitivities can be evaluated in the following fashion with MATLAB: 

    J = mphint2(model,'comp1.solid.Ws','volume','selection',[1]); 1 
    df_drho_COMSOL = mphgetu(model, 'type', 'fsens(ED)'); 2 
    df_drho_COMSOL = df_drho_COMSOL(ED_index_set); 3 
    df_drho_LSM = df_drho_COMSOL(physics_to_LSM_map);  4  

Here, the element sensitivities are computed for an objective of structural compliance J defined as an integral of the 

strain energy over the entire domain. Note that the computation of the objective value is not strictly necessary as only 

the sensitivities are needed for the objective function, but the magnitude of the objective can be used to monitor the 

convergence history [10]. The mapping between the level-set indices and COMSOL Multiphysics indices is done 

through a MATLAB method developed in-house that returns physics_to_LSM_map and ED_index_set is the 

indices corresponding to the sensitivity analysis.   
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The second step is to compute the boundary point sensitivities with the discrete adjoint method. This is done with a 

C++ in-house function MapSensitivities which is general for any function of interest and is called in MATLAB 

as follows 
    df_dbpt = lsm.MapSensitivities(df_drho_LSM, true); 1 
    dg_dbpt = lsm.MapVolumeSensitivities(); 2  

The C++ function MapVolumeSensitivities is specifically for volume constraint or objective. Once the boundary 

point sensitivities have been computed, a suboptimization problem is solved using the C++ function Solve that 

returns the velocities needed to update the design. In addition, the maximum allowed movement of a boundary point 

is limited for numerical stabilities with the SetLimits function based on the CFL condition. Finally, the level-set 

function is updated using Eq. (1) discretized. These two steps are presented in the following.  

    up = zeros(1,length(df_dbpt)); low = zeros(1,length(df_dbpt));     1 
    curr_cons_vals = lsm.GetVolume(); 2 
    for i=1:length(df_dbpt) 3 
        up(i) = move_limit; low(i) = -move_limit;  4 
    end 5 
    opt.SetLimits(up, low); 6 
    velocities = opt.Solve(df_dbpt, dg_dbpt, curr_cons_vals, false); 7 
    lsm.Update(velocities, move_limit, false); 8  

The entire optimization loop used for an LSTO example is presented below. 
n_iterations = 0; max_it = 200; move_limit = 0.1; 1 
opt = myMex.OptimizerWrapper(1, volfrac, 2); 2 
while n_iterations < max_it     3 
    n_iterations = n_iterations + 1; 4 
    % Step 1: Solve the model: Forward analysis 5 
    ED_LSM = lsm.CalculateElementDensities(true); 6 
    for i = 1:length(ED_LSM) 7 
        if ED_LSM(i) < 1e-3 8 
            ED_LSM(i) = 1e-3; 9 
        end 10 
    end 11 
    ED_COMSOL = ED_LSM(LSM_to_physics_map); % Sort the element densities  12 
    % Assign the sorted element densities to COMSOL 13 
    U_sol = mphgetu(model, 'type', 'sol'); 14 
    U_sol(ED_index_set) = ED_COMSOL; 15 
    model.sol('sol1').setU(U_sol); 16 
    model.sol('sol1').createSolution; 17 
    model.sol('sol1').feature('v1').set('initmethod','sol'); 18 
    model.sol('sol1').feature('v1').set('initsol','sol1'); 19 
    model.sol('sol1').feature('v1').set('notsolmethod','sol'); 20 
    model.sol('sol1').feature('v1').set('notsol','sol1'); 21 
    model.sol('sol1').runAll; % Perform FEA with the assigned element densities    22 
    % Step 2: Calculate the objective function & its sensitivities 23 
    J = mphint2(model,'comp1.solid.Ws','volume','selection',[1]); 24 
    df_drho_COMSOL = mphgetu(model, 'type', 'fsens(ED)'); 25 
    df_drho_COMSOL = df_drho_COMSOL(ED_index_set); 26 
    df_drho_LSM = df_drho_COMSOL(physics_to_LSM_map);  27 
    % Step 3: Compute the boundary point sensitivities 28 
    df_dbpt = lsm.MapSensitivities(df_drho_LSM, true); 29 
    dg_dbpt = lsm.MapVolumeSensitivities(); 30 
    % Step 4: Solve the sub-optimization problem (for design velocities) 31 
    up = zeros(1,length(df_dbpt)); low = zeros(1,length(df_dbpt));     32 
    curr_cons_vals = lsm.GetVolume(); 33 
    for i=1:length(df_dbpt) 34 
        up(i) = move_limit; low(i) = -move_limit;  35 
    end 36 
    opt.SetLimits(up, low); 37 
    velocities = opt.Solve(df_dbpt, dg_dbpt, curr_cons_vals, false); 38 
    % Step 5: Update the level-set function and write STL file 39 
    lsm.Update(velocities, move_limit, false); 40 
    lsm.WriteStl(n_iterations, STLfiles_path, 'levelset');         41 
end 42  
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IV. Numerical examples 

The capability of the LSTO workflow is demonstrated with 3 examples. As the first example, a three-dimensional 

(3D) cantilever beam is optimized for structural functionality. Then, a heat transfer problem is considered, and the 

design for a fluid flow problem is optimized.  

A. Structural optimization 

We consider a cantilever beam made of aluminum and linear elasticity is assumed. The Young’s modulus of the eth 

finite element 𝐸𝑒 is defined as 𝐸𝑒 = 𝜒𝐸0 where 𝐸0 is the Young’s modulus of the solid, and 𝜒 is the element density 

(ED) defined as the fraction of the element that lies in the solid phase, i.e., where φ ≥ 0. For numerical stability, the 

values of 𝐸𝑒 less or equal than 𝐸0 × 10−3 are maintained at this threshold with an if statement in MATLAB. The 

configuration of the problem is presented in Fig. 3. 

 
Fig. 3. Configuration of the structural problem 

The cantilever beam is optimized to minimize structural compliance with a volume constraint to obtain a stiff and 

lightweight structure. The optimization problem can be stated as,  

Find Ω 

min               𝐶 = 𝒖𝑻𝐊𝒖 

subject to    𝑉 − (𝑉𝐹)𝑉0 ≤ 0 

      𝐊𝐮 = 𝐅 

(2) 

where 𝒖 is the vector of nodal displacement, 𝐊 is the stiffness matrix, 𝑉 is the current global volume, 𝑉𝐹 is the target 

volume fraction, 𝑉0 is the global volume of entire design domain, and 𝐅 is the vector of applied force. The target 

volume fraction is fixed to 20 % and the optimization results are presented in Fig. 4. As expected, the results are 

similar to an I-beam with similar features such as a web and flanges. 

  

Fig. 4. Optimization results 
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B. Heat transfer optimization 

As the second problem, we consider optimization of a heat exchanger, and conduction is modeled. The thermal 

conductivity of the eth finite element 𝜅𝑒 is defined as 𝜅𝑒 = 𝜒𝜅0 where 𝜅0 is the thermal conductivity of the solid. 

Again, for numerical stability, the element thermal conductivity is constrained to be greater than or equal to 𝜅0 × 10−3. 

The configuration of the problem is presented in Fig. 5. 

 
Fig. 5. Configuration of the thermal problem 

The optimization is formulated such that the thermal compliance is being minimized and the maximum volume is 

enforced. This formulation can be interpreted as the minimization of the stored thermal energy for a given volume. 

The optimization problem can be stated as,  

Find Ω 

min               𝐶𝑇ℎ = 𝑻𝑻𝐊𝐓𝑻 

subject to    𝑉 − (𝑉𝐹)𝑉0 ≤ 0 

      𝐊𝑻𝑻 = 𝐅𝑻 

(3) 

where 𝑻 is the vector of nodal temperatures, 𝐊𝐓 is the conductivity matrix, and 𝐅𝑻 is the vector of applied heat. The 

volume fraction is fixed to 15 % and the optimization results are presented in Fig. 6. As anticipated, we observe that 

the optimizer creates conduction paths to transfer heat throughout the domain to the heat sink. The results are similar 

to the one reported in [11].  

   

Fig. 6. Optimization results for the heat transfer problem 
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C. Fluid flow optimization 

Finally, we consider the optimization of a fluid problem and compare the optimization results with two different inlet 

velocities. The laminar incompressible flow model is used, and the Brinkman penalization term is employed. The 

permeability of the material is interpolated using a RAMP scheme such that the inverse permeability of the solid phase 

is large and thus the velocity of the fluid is null in that region, where 105 is used in this paper. For more details 

regarding the interpolation scheme, please refer to [12]. The configuration of the problem is presented in Fig. 7. 

 

Fig. 7. Configuration of the fluid flow problem 

The pressure drop is minimized so that the difference in pressure between inlet and outlet in the domain is minimized 

and once again the volume constrained. Thus, the optimization problem can be stated as,  

Find Ω 

min                𝐽 = 𝑃𝑑 

subject to    𝑉 − (𝑉𝐹)𝑉0 ≤ 0 

      [
𝐊𝒖𝒖 + 𝐂𝒖𝒖 + 𝐀𝒖𝒖 𝐊𝒖𝑷

𝐊𝒖𝑷
T 𝟎

] {
𝒖
𝑷

}  = {
𝑭𝒖

𝟎
}   

(3) 

where 𝑃𝑑  is the pressure drop, 𝐊𝒖𝒖  is the stiffness matrix for velocity, 𝐂𝒖𝒖  is the convective matrix, 𝐀𝒖𝒖  is the 

artificial damping matrix, 𝐊𝒖𝑷 is the coupling matrix, 𝒖 is the vector of nodal velocities, 𝑷 is the vector of nodal 

pressures, and 𝐅𝒖 is the vector of external forces. 

The optimization results are presented in Fig. 8 for  two cases: 𝑣0 = 0.002 𝑚/𝑠 and 𝑣0 = 0.0005 𝑚/𝑠. The optimized 

result at a lower velocity creates a shorter channel from inlet to outlet whereas at a higher velocity the inertia of the 

fluid has a greater impact and creates a wider channel.  D
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Fig. 8. Optimization results for the fluid flow problem and associated velocity field. Left, 𝒗𝟎 = 𝟎. 𝟎𝟎𝟐 𝒎/𝒔 

and right, 𝒗𝟎 = 𝟎. 𝟎𝟎𝟎𝟓 𝒎/𝒔.  
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V. Conclusion 

In this work, we introduce an easy-to-use plug-and-play optimization workflow that allows the user to utilize state-of-

the-art LSTO in C++ with any physics model created in the GUI of COMSOL Multiphysics. For ease of 

communication between the LSTO modules and the physics model from COMSOL Multiphysics, MATLAB is used 

as the interface between the two. The workflow was developed in such a way that only a few lines need to be modified 

from one model to another. Additionally, the capabilities of the framework were demonstrated with three numerical 

examples from three different governing equations, namely structural mechanics, heat transfer conduction, and fluid 

flow. This proposed workflow would make it easy to add new functionalities via customized functions either in 

MATLAB or in the LSTO modules in the C++ code directly. We believe that the proposed workflow will improve 

the accessibility of LSTO for newcomers in the field of TO and can foster cross-disciplinary collaborations amongst 

multidisciplinary sciences.  
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