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Abstract

Compiling Communication-Minimizing Query Plans

by

Eric J Love

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Krste Asanović, Chair

Because of the low arithmetic intensity of relational database operators, the performance of
in-memory column stores ought to be bound by main-memory bandwidth, and in practice,
highly-optimized operator implementations already achieve close to their peak theoretical
performance. By itself, this would imply that hardware acceleration for analytics would
be of limited utility, but I show that the emergence of full-query compilation presents new
opportunities to reduce memory traffic and trade computation for communication, meaning
that database-oriented processors may yet be worth designing.

Moreover, the communication costs of queries on a given processor and memory hierarchy
are determined by factors below the level of abstraction expressed in traditional query plans,
such as how operators are (or are not) fused together, how execution is parallelized and
cache-blocked, and how intermediate results are arranged in memory. I present a Scala-
embedded programming language called Ressort that exposes these machine-level aspects of
query compilation, and which emits parallel C++/OpenMP code as its target to express a
greater range of algorithmic variants for each query than would be easy to study by hand.



i

Contents

Contents i

1 Introduction & Background 1
1.1 History & Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Databases & Database Machines of Tomorrow . . . . . . . . . . . . . . . . . 5
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Machine-Level Query Optimization 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Dimensions of Machine-Level Planing . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Plan Derivation by Transformation . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Case Study: TPC-H Query 19 . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 HiRes: A Language for MLP 33
3.1 HiRes Operators & Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 HiRes Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 MetaOps: HiRes “Macros” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 HiRes Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Operator Fusion: Constraints & Algorithms 62
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 The Shared Clique Formation Algorithm . . . . . . . . . . . . . . . . . . . . 63
4.3 Inner and Outer Loop Fusion Particulars . . . . . . . . . . . . . . . . . . . . 75

5 Ressort Compiler Architecture & Implementation 81
5.1 HiRes Compilation Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 LoRes Compilation Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Evaluation 103
6.1 Experimental Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 “TPC-H”-Like Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



ii

7 Communication-Aware Query Cost Models 109
7.1 Original Model of Manegold, Boncz, and Pirk . . . . . . . . . . . . . . . . . 109
7.2 Extensions for Communication Bounds . . . . . . . . . . . . . . . . . . . . . 112
7.3 A Manegold-Based Roofline Model . . . . . . . . . . . . . . . . . . . . . . . 121
7.4 Summary & Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.5 Case Study: TPC-H Query 19 . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.6 Proof of NP-Hardness of Single-Phase Allocation . . . . . . . . . . . . . . . 127
7.7 2x Error Bound on Convex Hull Allocation . . . . . . . . . . . . . . . . . . . 128

8 Conclusions & Future Work 130
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.2 Principal Findings & Recommendations . . . . . . . . . . . . . . . . . . . . . 131
8.3 Limitations & Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.4 A Methodological Plea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 133



iii

Acknowledgments

The greatest reward by far of graduate school has been getting to know the friends
and colleagues I met along the way, and this thesis would not have been possible without
their support, encouragement, patience, and advice. I will remain forever grateful to more
individuals than could be named here, but I would like to give special thanks to a few:

• I want to expresss my gratitude to my advisor, Krste Asanović, who generously sup-
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Chapter 1

Introduction & Background

This thesis takes a step towards demarcating the performance limits to the performance of
database analytics queries on the hardware of today and of the next decade. Such workloads,
whether known as decision support queries, data warehouse queries, or online analytics pro-
cessing (OLAP), do largely what is summarized by the SQL in Figure 1.1, the 6th query from
the TPC-H [70] benchmark suite (Q06). They scan large arrays of data, compute various
quantities derived from them, filter them based on those results, and tabulate some final
answer. Other queries may be more complicated, and incorporate relational joins, but this
basic pattern constitutes the bulk of the “work” done in analytics processing.

select

sum(l_extendedprice * l_discount) as revenue

from

lineitem

where

l_shipdate >= date ’1994-01-01’

and l_shipdate < date ’1995-01-01’

and l_discount between 0.06 - 0.01 and 0.06 + 0.01

and l_quantity < 24

Listing 1.1: TPC-H Query 06 in SQL Form

While they may seem computationally simple, significant complexity lurks wherever their
peak performance is sought. And the throughput of queries similar to Q06 has been impor-
tant enough to motivate the design of custom hardware for their acceleration since at least
a century and a half ago. The principal concern of this thesis is how to approach the de-
sign of database hardware for the next decade. However, we do not advance any particular
architecture or accelerator blueprint, and instead argue that the first step towards any such
effort should be to consider the widest possible space of semantically equivalent algorithms
(query plans) that might be employed to implement the range of queries likely to be processed
by the new hypothetical machine, and only then to propose hardware with the “best” of these
algorithmic mappings in mind, rather than optimizing (micro-)architectures for whatever
implementation strategy happened to have superior performance on platforms that exist
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right now. The notion of optimality in this case turns out to be minimal data movement, as
Setion 1.2 later argues.

Consequently, we propose a language and compile framework that widens the space of
hardware-conscious plan choices that query processors can consider, and attempt to predict
how much future hardware could improve its results.

1.1 History & Related Work

Before contemplating the contemporary obstacles to OLAP optimization, though, it is in-
structive to review some characteristic examples from the last hundred years of attempts to
execute analytics queries at ever-greater speeds. At each stage, what changes is the physical
constraints of the underlying hardware.

A Century and a Half of Hardware-Driven Analytics

In the 19th Century

Already in 1888, Herman Hollerith’s tabulation machine [69] was enlisted to analyze the
results of the upcoming American census of 1890. Though it lacked any Turing-complete
processor, it accelerated aggregation “queries” by advancing mechanical dials one step at
a time in response to electrical signals formed where metal springs passed through holes
punched in a paper card to indicate the presence or absence of demographic characteristics. It
also facilitated group-by aggregations using a “sorting drawer” into particular slots of which
operators were instructed to insert cards based on some combination of their attributes.
Moreover, this specific machine was selected for use in the Census because it excelled in an
already-standardized query benchmark contest, comprising the tabulation of prior census
results for some districts of St. Louis, M.O. Thus, even without the benefit of general-
purpose computers, a purely application-specific accelerator approach to query processing
prefigured today’s landscape of database hardware proposals in both its approach and its
metrics.

In the 20th Century

Nearly one century after Hollerith’s pioneering efforts, hardware support for analytics pro-
cessing was deemed of sufficient importance to merit a special issue of the IEEE Transactions
on Computers [30] in 1979. In an era of mainframes, tape drives, and relatively expensive
magnetic disks, “the database machine (DBM) [was] the result of an atchitectural approach
which [...] distributes processing power closer to the devices on which data are stored.” Four
decades ago, then, the idea emerged of processing near data as a way to eliminate the CPU
as a central bottleneck to the processing of data at the aggregate bandwidths supplied by
storage devices; today, proposals for intelligent SSD controllers echo this idea.
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Figure 1.1: The Cost of DRAM Over Time (Data from McCallum [21])

A decade later, the Gamma Database Machine project by DeWitt et al. at the University
of Wisconsin witnessed the dawn of the main memory era, in which multiple megabytes of
DRAM were inexpensive enough to provision for a single compute node, as Figure 1.1 shows.
In their proposal, dozens of Intel processors interconnected with a custom network could
perfom parallel joins by partitioning hash tables into chunks small enough to fit (sometimes)
in the 8MB of DRAM attached to each processr. Their software also compiled some selection
predicates to executable code, foreshadowing the age of query compilation in which SQL
interpretation overhead was an obstacle.

In the 21st Century

By the turn of this century, the cost of DRAM had dropped to mere dollars per megabyte,
making gigabytes available per processor, and fitting entire tables into main memory. The
resulting reduction in disk seeks and increase in scan bandwidth quickly made CPU power a
key performance barrier in a growing number of analytics workloads. This led to the emer-
gence of column stores, which packed all rows of a single attribute together in continuous
extents of memory. This enabled the application of a relational operator to whole columns
of records at a time, whereas under previous execution models, records would have been
processed individually, and any control or interpretive overhead for each operator was in-
curred repeatedly. For example, in the so-called “Volcano” model (after the project of the
same name by Graefe [16]), each operator instantiated in a query plan is an object supplying
a next() method that downstream operators can call to obtain one tuple at a time, and
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which itself would call its own inputs’ next() methods, incurring whatever function call
overhead this entailed many times per record. By contrast, C-Store [66] (later Vertica [28])
and MonetDB [7] (later Vectorwise [76]) were early prominent examples of column stores
that upended this paradigm.

The transition from record-at-a-time to operator-at-a-time query processing also facili-
tated the exploitation of instruction- and data-level parallelism inside the processor, becuase
each operator now consisted of a single tight loop over records that could be unrolled either
dynamically by superscalar pipelines or statically by compilers, and in some cases this even
meant that vectorized instructions could then be emitted. This, in turn, led to a proliferation
of papers explaining how best to hand-optimize common relational operators for emerging
multi-core [26, 5, 3] and multi-socket [29, 59] systems, as well as SIMD instruction set
extensions [57, 71, 51, 48].

Even column-at-a-time execution suffers from the requirement that each operator’s result
be written out fully to memory, before being read back again by the next operator that
consumes it. One way around this problem, implemented by Vectorwise, was to switch from
column-at-a-time processing to block-at-a-time processing, where each block would be small
enough to fit in cache. In this way, dependent operators would pass data to each other
through cache, at least, rather than memory, while still amortizing control overhead across
each block.

Eventually this too proved inadequate, as the highest-performance database architectures
sought to bypass the memory system entirely and pass data between operators through reg-
isters. This required query compilation, and several projects emerged to turn SQL into exe-
cutables, most notably HyPer [25] by Kemper and Neumann, which used the LLVM [31] com-
piler backend to generate machine code. HyPer was eventually commercialized as Tableau [67],
and since then several other academic query compilers have appeared, focusing either on how
to structure such compilers [60, 68], or how to tune code-generation parameters [9].

At the same time, need arose for standard benchmarks for analytics. The Transaction
Processing Council, which had for nearly a decade supplied the industry standard benchmark
for transaction processing performance, devised the “H” suite of about two dozen non-
transactional queries [70]–such as that shown in Listing 1.1. This has animated much of
the research into both hardware- and software-based analytics support ever since, and this
dissertation makes use of it as well, though without following all of its requirements (see
Section 1.3 below).

Database Machines Today

More recently, growing demand for OLAP performance and even lower costs per byte of
DRAM have inspired processor manufacturers to design analytics-tailored hardware. Intel
collaborated with SAP to offer database-oriented servers capable of addressing up to 12TB
of memory from eight sockets [20], while Oracle’s SPARC M7 [43] supports 16TB, and
includes instruction set extensions designed specifically to support analytics by accelerating
scans, filtering, joins, and compression.
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Aside from the instruction-level acceleration offered by Oracle, these offerings mostly
resemble traditional, general-purpose server platforms with board-level support for larger
memory capacities (i.e. custom buffer chips to access more DIMMs and more threads per
socket). However, as Moore’s Law [41] appears to reach its end, and the number of transistors
that can be packed on a single chip at optimal cost no longer doubles every eighteen months,
more application-specific kinds of acceleration will have to replace raw core counts as the
main driver of higher query throughput.

Accordingly, academics have investigated alternative architectures and micro-archtectures.
The most general-purpose of these add, like the SPARC M7, assistance for various aspects
of query processing. Hayes et al. proposed extensions to vector instruction sets to ease the
cache pressure that results from vectorizing radix partitioning and joins [17, 18]. In “Meet
the Walkers” [27], Kocberber et al. offloaded the serial indirect loads (pointer chasing) of
hash-table builds and probes to dedicated functional units that live outside of the proces-
sor’s pipeline, allowing many more memory operations in flight than an out-of-order core
could sustain. At the more application-specific end, Kara et al. proposed an FPGA-based
partitioning accelerator [23], while Wu et al. presented a dataflow architecture for acceler-
ating entire queries on FPGAs with networks of operator-specific accelerators [74]. Finally,
Oracle’s Database Processing Unit (DPU) was published at MICRO’17 [1], and combined
ensembles of 160 small, in-order cores per chip with a 76GB/s memory interface to perform
hash partitioning and other relational operations at line rate.

The efficacy of these proposals has been judged both by way of the TPC-H benchmark
suite, and by others that emerged to address some of its limitations. Leis et al. proposed
a Join Order Benchmark (JOB) [33] to increase the number of joins in sample queries up
to eight or more, unlike the two or three typical of TPC-H, and further proposed the use
of real-world datasets from IMDB instead of the synthetic relations with uniform random
values specified by TPC-H, as these would be more reflective of the queries today’s users
seek to run in practice. In order to facilitate research into database hardware, Shao et al.
proposed DBmbench [61], a suite of microbenchmarks that better represent analytics query
execution with small datasets than would TPC-H scaled to an equivalent size, which would
result in e.g. smaller hash tables and therefore different micro-architectural characteristics.
The work that follows neither makes use of the Join Order Benchmark nor DBmbench, but
does contemplate new standards for evaluating query performance in the future.

1.2 Databases & Database Machines of Tomorrow

In light of the foregoing decades’ worth of query acceleration research, it is reasonable to ask
what a database machine of the next decade might look like, and how one might go about
designing it. The downward trend of Figure 1.1 suggests that the cost of DRAM will only
continue to shrink. Meanwhile, the improving performance of emerging non-volatile mem-
ory (NVM) technologies, like Intel’s Optane DC Persistent Memory Modules (PMMs) [19],
will put terabytes of data within a few hundred nanoseconds of processors, which database
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researchers are beginning to exploit [4, 53]. What sort of system architecture would best be
poised, ten years hence, to make use of this abundance?

Limits to Query Processing Performance

The answer may depend on one further trend in future memory systems: the relatively
stable bandwidths that electrical interconnects can supply between processors and off-chip
memory, which already are scaling more slowly than transistor densities. Memory capacities
continue to rise through the terabyte range, growing numbers of DIMMs to support them
should supply higher aggregate bandwidths even if single DRAM bank cycle times stay fixed.
However, individual chips are limited in the amount of data they can transmit per unit time
via the pins affixed to their packages, whose size does not scale downwards with transistors,
and whose cost remains high relative to other parts of the chip. This limit has remained
within 100-200GB/s per socket over the past few years for the highest-end server parts (such
as the Intel and Oracle DBMs in Section 1.1), and in general, over the past decade, the ratio
of arithmetic capacity to bandwidth has been increasing at a rate of about 20% per year [39],
meaning that a so-called bandwidth wall likely lies ahead.

Arithmetic Intensity of Analytics Queries

TPC-H Q06 query hints at why this bandwidth wall represents a crucial impediment to
analytics performance. Its simplicity makes it very easy to calculate how much data a (näıve)
plan for that query must move between processor and memory: assuming the four attributes
accessed are each encoded as 32-bit values (two single-precision floating point numbers and
two integer-valued dates), then 16 bytes must be scanned per record, for which 7 operations (5
comparisons, one multiply and one add) must be performed, yielding an arithmetic intensity
of 0.44 ops/byte. In Figure 1.2, a roofline model [72] plots the performance limits of
different machines as a function of a workload’s arithmetic intensity. Q06 lies far to the left,
bandwidth-bound side, regardless of whether one considers the roofline for an Intel Xeon E5-
2667 (Broadwell) server part or Google’s custom Tensor Processing Unit (TPU) [22] (chosen
to show two ends of the machine roofline spectrum). 1

The latter, whose crossover point at which workloads can start to become compute-bound
lies beyond 1000 (floating point) ops/byte, is shown to emphasize one point: that hardware
acceleration tends to succeed only when arithmetic intensities are orders of magnitude higher
than that of Q06. Moreover, since empirical measurements of this particular query’s perfor-
mance later on (Chapter 6) show that existing machines already achieve close to 50% of the
roofline’s indicated peak, no amount of custom acceleration hardware could accelerate that
query plan more than 2x unless more bandwidth can be supplied.

1The Oracle DPU [1] would be a more natural comparison here, but we could ascertain from their
publication how much arithmetic bandwidth each DPU die supplies.
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Towards the Bandwidth Wall

Q06 may have been a particularly egregious example, since it consisted of an entirely scan-
based query, but a similar analysis can be extended to more complex analytics operations as
well. Joins, for example, ought to entail more significant data re-use. Using a more elaborate
analysis than the above (see Chapter 7), we have estimated the communication costs–and
therefore peak throughput–of the high-performance hash-join implementation presented by
Schuh et al. [59]. Relative to the specifications of the machine reported in their evaluation,
their measurements already appear to be approaching 40% of the bandwidth-defined peak,
for at least some problem sizes. Similar analysis for other operators–especially using the
AVX256 vectorization results of Polychroniou et al. [48]–gives even higher fractions of the
theoretical machine peak. From this we might extrapolate that the next few years of research,
combined with the increasing prevalence of “SQL-in-Silicon” [43] instruction extensions, will
propel relational operator implementations in high-performance query execution engines ever
closer to their communication-determined limits.

Implications of the Bandwidth Wall

These trends suggest that designers of tomorrow’s DBMs should focus less on hardware
extensions to accelerate individual relational operators and more on customizing the compute
and memory systems to help queries move less data; secondly, they should concentrate on the
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possibilities for reducing memory traffic that arise when full query compilation is employed,
and more inter-operator optimization is possible.

Hardware-Assisted Communication Reduction

Within the former category, designers may consider at the coarsest level of granularity
whether a database-focused processor might for example benefit more than other work-
loads from devoting a larger fraction of fixed silicon budgets to cache rather than pipelines,
or whether analytics workloads can benefit from technologies like High-Bandwidth Memory
(HBM) [36, 47], which places multiple gigabytes of DRAM into the same package as the
processor, enabling much higher access bandwidths2. The utility of either approach depends
on finding temporal locality (data re-use) in query execution, which itself depends critically
on choices made during query compilation.

Specialized hardware can also be employed to reduce the amount of data that must be
brought into the processor in the first place, for instance by performing filtering operations in
memory or SSD controllers [13], as some have explored. Or, designers can consider whether
DBMs might best be constructed with a larger number of smaller sockets, supplying greater
aggregate bandwidth albeit with a higher likelihood of NUMA effects. We forego such
considerations in this study, on the grounds that, eventually, what happens within a single
package still matters.

Some queries like Q06 can really only be sped up if accesses to some fields can be avoided,
or their size can be reduced. To avoid unnecessary accesses, the column imprints technique
of Sidirourgos and Kersten [63] supplies a small secondary index structure to avoid accessing
cache lines if their contents can be determined not to contain relevant values. In complex
predicates, accesses to unneeded attributes can be pruned in the presence of short-circuit
boolean ANDs, as 2 describes, though this can result in steep branch-misprediction penalties
on general-purpose processors. Meanwhile, compression techniques that trade additional
arithmetic for less data movement are another way to reduce traffic, and they can be made
cost-free with hardware support. For queries that use string-valued attributes, dictionary
compression can drastically reduce data movement when the domain of an attribute is small.
This can be combined with bit packing, which places multiple elements of non-byte-sized (e.g.
6- or 11-bit) values contiguously into the same word, requiring unpacking upon access, which
Polychroniou and Ross [50] showed how to do in isolation at line rate on Intel architectures
using AVX SIMD instructions, but which in the context of more complex compiled queries
could likely benefit from hardware support. BitWeaving [34] solves a similar problem with
an even more computationally expensive mechanism.

Clearly, compression and avoidance techniques should be assumed in the design of a
future DBM, but the more interesting implication of the approaching bandwidth wall is
that database hardware should seek to accelerate algorithms and query plans that minimize

2Though not that much higher: the HBM2E parts announced by Samsung [56] in 2019 offer 410GB/s,
which does not represent an order of magnitude difference with regard to the highest-end off-chip memory
products
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data movement, rather than those that simply happen to be the fastest already on today’s
platforms. This might entail tolerating random accesses better than general-purpose out-
of-order cores, as would be necessary to make full use of technologies like HBM [47]. This
consequence of the bandwidth constraint is the focus of the rest of this thesis.

Communication-Minimizing Query Plans

While the arithmetic intensity of individual relational operators is not high relative to that
of other workloads, the trend towards dynamic compilation offers new opportunities to treat
entire query plans as single algorithmic units to be optimized and, conversely, for which to
optimize hardware. Not only does compilation make it possible to reduce communication
by avoiding the materialization of intermediate results, but it means that the memory-
aware optimizations employed by Schuh et al. [59] (and others) to implement individual
operators can be codified into re-usable code generators that can extend their effects across
fused sub-queries while also tailoring them as needed to any combination of input datatypes
and formats. Since the consequences of such choices intimately affect a query’s interaction
with the hardware on which it executes, we call them machine-level plan decisions, and
discuss them at length in Chapter 2. And since they can significantly alter the query’s
data movement requirements in particular, we think that the large plan space they engender
should be studied intensively by the architects of any future DBM. Furthermore, those plans,
or plan choice strategies, that result in the least communication should be the ones DBMs
should be designed to accelerate.

Secondly, it is possible to analyze these communication requirements for a given mem-
ory hierarchy and degree of parallelism without physically measuring the number of bytes
transferred on a physical machine. The cache-miss cost model of Manegold, Boncz, and
Kersten [38] can be leveraged, in modified form, to estimate the number of cache lines that
a query plan–when specified at a sufficiently low level of abstraction–should need to transfer.
If the widest possible space of (machine-level) plans for a query is analyzed in this way, then
the least communicative of these ought to be considered as an upper bound on that query’s
performance for any system with the same bandwidth and cache capacity. If that plan does
not turn out to be the empirically highest-performing on today’s systems, then the task of
a DBM designer is to remove whatever computational bottleneck prevented it from execut-
ing at line rate. At the same time, the results of such study should indicate the answers
to questions about the marginal benefit different classes of query can derive from different
allocations of cache and compute resources, making it possible to co-design the hardware
with query plans.

More generally, it can be hoped that future advances in both hardware and software
approaches to query acceleration be judged relative to the bounds set by the bandwidth
wall, and made knowable by communication cost models. As expectations about query
benchmarks continue to evolve, so too should the methods of interpreting those benchmarks’
results, and the ensuing chapters take initial steps towards that goal.
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1.3 Methodology

A few necessary caveats limit the scope of this study:

• No DB frontend: We cannot compile all the way from SQL directly, as our current
prototype lacks a SQL parser, algebrizer, and logical optimizer.

• Limited benchmark set: We do not present results for any complete benchmark
suite–neither TPC-H nor TPC-DS nor others–but rely instead on a limited subset of
queries for which we could produce plan generators.

• Non-conformance with TPC-H: To the extent that we make use of “TPC-H”
queries, we do not adhere to all of the specification requirements. In particular, all
string-valued attributes are assumed to be dictionary-encoded to the smallest byte-
aligned size that can contain them, and consider only queries for which this is possible.

• Oracular cardinality estimation: Any discussion of “optimal” plan choices assumes
that query optimizers can predict the selectivity of any predicate, which in practice is
not possible.

• Throughput, not latency: Compilation time (both in the Ressort compiler and in
C++ compilation) is excluded from any benchmarking on real systems, as the primary
focus is on maximizing the rate of processing large datasets

• Lock-free algorithms: While many parallelization strategies for the algorithms under
discussion have been devised that rely on either locks or atomic operations, these are
deferred to future evaluation in favor of their lock-free alternatives

• Raw performance: Even if the bandwidth wall stalled query throughput entirely,
custom architectures for analytics could easily increase performance per Watt of the
processor, but we do not consider power or energy normalization here. (It should be
noted, though, that even a zero-Watt processor could not achieve orders-of-magnitude
energy efficiency increases for workloads that saturate memory bandwidth, as the latter
subsystem’s contribution to overall power footprint is substantial.)

1.4 Contributions of this Thesis

In light of the aims outlined above, the main contributions of this thesis are: (1.) the intro-
duction of the concept of machine-level plans (Chapter 2), which unify all communication-
determining aspects of fully-compiled queries into a single abstraction, (2.) the design of a
statically-typed domain-specific language, HiRes (Chapter 3), for representing machine-level
plans, and (3.) a compiler, Ressort (Chapter 5), that refines it to C++ code with parallel
OpenMP [11] annotations that can be compiled and executed with any existing toolchain.
Additionally, Chapter 7 presents a set of refinements to the communication cost model of
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Manegold, Boncz, and Kersten that expand its predictive capability to future memory sys-
tems.
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Chapter 2

Machine-Level Query Optimization

2.1 Introduction

Fully-query compilation, in which SQL programs produce executable binaries, is the state
of the art for high-performance, in-memory query processing engines, as it removes any
per-record SQL interpretation overhead, allows for the exploitation of instruction- and data-
level parallelism within queries, and permits inter-operator optimizations that would be
impossible in any other execution model. Many recent papers have presented advances in
the design and architecture of query compilers [25, 9, 60, 68] and intermediate representation
formats [46, 44] for query plans, making them an active area of current research. At the
same time, the database community has investigated in great depth how to optimize hash
joins [26, 3, 59] and other relational operators [49, 51] for the lowest-level of processor-
specific parameters such as cache geometries, branch predictors, and vector instruction set
extensions. While query compilation frameworks generally acknowledge the importance of
these last-level mapping considerations, and set their parameters at a coarse granularity,
not all the proposals of these works are fully expressible using the lowest level of query
representation such compilers expose. This thesis builds on the rich legacy of research on
hardware-tuning relational operators to design a new, more expressive query compiler back-
end.

More specifically, it introduces the concept of a machine-level plan (MLP) representation,
which makes explicit all the memory-resident data structures needed for query execution,
along with their layout (e.g. row- or column-ordering for each subset of attributes in a
relation), the manner in which they are accessed, and how execution is parallelized. The
choices presented by MLP lie below the traditional level of query optimization, where re-
lational algebra may be rewritten to, e.g., change the order of joins or the application of
where clauses. Once those choices are fixed by a traditional query optimizer, MLP plans
answer questions such as “which attributes in a scan can be skipped based on already-known
predicates?”, and “when are the results of selection compacted into contiguous extents?’”
and “which attributes used after a join are packed into a custom hash-table?” and “where if
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at all in a query should partitioning be inserted to induce parallelism or locality?” Even once
these questions are settled, MLP representation exposes yet another plan tradeoff, namely:
which buffers must be physically materialized in memory, and which may exist only virtually,
in CPU registers? This chapter shows how the both the traditional Volcano (record pull)
[16] and data-centric (record push) processing models enforce one particular set of answers
to this question, while query semantics permit others that may be more optimal.

The rest of this chapter explains the idea of machine-level plans more thoroughly, de-
scribing first the dimensions along which machine-level plans can be varied, how plans can
be generated by transformation from a baseline, what the relative costs and benefits of
each choice are, and, finally, how such choices can combine across a full plan. Put another
way, this chapter codifies the toolbox of optimizations appearing in hand-tuned operator
implementations that others have described, and makes them available for full queries and
for re-targeting to inputs with arbitrary datatypes and formats. We do not claim to have
invented them, but contribute instead a synthesis of these tuning methods, into a generaliz-
able framework. The discussion in this chapter serves to motivate the specific machine-level
plan representation presented in Chapter 3.

Assumptions

In the presentation that follows, the performance implications of machine-level planing
choices are considered relative to two abstract machines. One consists simply of an ide-
alized on-chip storage unit surrounded by idealized compute resources and connected to
memory by a channel of fixed and finite bandwidth. It is limited only by the need to move
data between on-chip and off-chip memory, and represents a purely bandwidth-bound query
processor. Tradeoffs for each plan choice are discussed first relative to this memory or traffic
bound.

The other abstract machine is a server-class, multi-socket, general-purpose multiproces-
sor representative of the machines typically used for high-performance analytics processing
today, and provides context for computational (i.e. not bandwidth-related) bottlenecks that
limit the throughput of query plans on hardware that exists today and which was available
for evaluation. Tradeoffs for machine-level planing are secondarily discussed relative to plat-
forms with real-world artifacts such as branch predictors and load-store queues, as well as a
limited arithmetic bandwidth that requires parallelism to be fully utilized. Units of parallel
execution are referred to as “threads” for the sake of convenience, but could represent some
other abstraction such as SIMD lanes.

A much broader spectrum of compute devices exists, and many of these have been con-
sidered for query processing, from GPUs [52, 57, 75, 8] to FPGAs [73, 74]. We omit explicit
discussion of these platforms, as many insights from the compute-bound analysis are more
or less translatable. Instead, we turn our attention to the most common query processing
machines, and those yet to be built.
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Figure 2.1: Dimensions of Machine-Level Plans

2.2 Dimensions of Machine-Level Planing

The upper box of Figure 2.1 shows the three basic “dimensions” along which machine-level
planing decisions can be made: data structures, access patterns, and parallelism. These
dimensions are not, strictly-speaking, orthogonal, and choice of one may constrain choices
of another, but they are a nonetheless a useful decomposition of the ways in which a query’s
execution maps onto memory hierarchies and computational resources.

Data structures. In the course of execution, various intermediate results will need to
be materialized by some operators into memory-resident buffers for use by others. Even if
a query’s original inputs have a fixed structure of independent, dictionary-compressed, per-
attribute columns, these intermediate products do not need to be arranged the same way, but
different memory layouts, such as row- and column-major order, or non-contiguous buffers
(e.g. those split among NUMA domains), offer different access performance characteristics.
Meanwhile, some buffers may be designed to accommodate an initially-unknown number of
elements, while others may require counting their maximum storage requirements before use,
but allow easier access afterwards.

Access patterns. Some kinds of operations result in different orders of access to data
that is already arranged in memory. For example, selection (filtering) operations can obviate
the need to read individual rows of buffers used in subsequent steps, but avoiding such reads
may result in additional computation, or require buffering indices of valid rows, and then
gathering those that make the cut. Structures that are probed, like hash-tables, may start off
with linked lists of elements that must be traversed, but can be reshaped to flattened forms
after insertion is completed, in order to allow contiguous probes.

Parallelism. Individual operators can be parallelized by dividing up their inputs be-
tween threads, or partitioning them based on data-dependent key values, and either choice
may affect how subsequent operations on their results are parallelized. Two or more opera-
tions can be fused, interleaving their execution on an element-by-element basis without any
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intervening materialization, or by interleaving the processing of smaller blocks of the ele-
ments processed by each (i.e. the block-at-a-time model implemented by Vectorwise [76] as
described in Section 1.1 of the previous chapter. These choices can change communication
patterns and cache working-set sizes substantially.

Within each of these categories, the more specific parameters shown in Figure 2.1’s lower
box can be varied by transforming a default, or baseline, plan into more complex ones by
a series of procedures that require very different realizations as compilable code. Without
presenting a formal representation of query plans at the machine level, the next section
reviews these transformational possibilities abstractly, and describes the benefits they may
provide in terms of communication and computation efficiency, as well as costs they might
entail of the same resources.

2.3 Plan Derivation by Transformation

To illustrate the concrete choices made in each of the three machine-level planning dimen-
sions, consider a query such as TPC-H Query 19, whose SQL is shown in Listing ??. In
classical query planning, a “logical” optimizer would fix the order in which selections occur
before or after a join (in this case realizing that each of the l shipmode and l shipinstruct

clauses is identical and can be factored out before the join), resulting in the plan of Fig-
ure 2.2a. A “physical” planner would choose to instantiate a hash join, for instance, instead
of a nested-loops join.

1 select

2 sum(l_extendedprice* (1 - l_discount)) as revenue

3 from

4 lineitem,

5 part

6 where

7 (p_partkey = l_partkey

8 and p_brand = ’Brand#12’and p_container in (’SM CASE’, ’SM BOX’, ’SM PACK’, ’SM

PKG’)

9 and l_quantity >= 1 and l_quantity <= 1 + 10 and p_size between 1 and 5

10 and l_shipmode in (’AIR’, ’AIR REG’) and l_shipinstruct = ’DELIVER IN PERSON’)

11 or

12 (p_partkey = l_partkey and p_brand = ’Brand#23’

13 and p_container in (’MED BAG’, ’MED BOX’, ’MED PKG’, ’MED PACK’)

14 and l_quantity >= 10 and l_quantity <= 10 + 10 and p_size between 1 and 10

15 and l_shipmode in (’AIR’, ’AIR REG’) and l_shipinstruct = ’DELIVER IN PERSON’)

16 or

17 (p_partkey = l_partkey and p_brand = ’Brand#34’

18 and p_container in (’LG CASE’, ’LG BOX’, ’LG PACK’, ’LG PKG’

19 and l_quantity >= 20 and l_quantity <= 20 + 10 and p_size between 1 and 15

20 and l_shipmode in (’AIR’, ’AIR REG’) and l_shipinstruct = ’DELIVER IN PERSON’);

Listing 2.1: TPC-H Query 19 in SQL Form
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Figure 2.2: Two views of a default plan for TPC-H Query 19

Then, a “machine-level” planner would further refine this into something like Figure 2.2b,
which depicts a query plan’s execution in terms of the flow of a record through space and
time, as well as the layout of relevant data structures, rather than as a DAG of relational
operators, in order to reveal the plan’s machine-level characteristics.

Here, circles represent accesses to one or more attribute columns (scans and gathers)
and the computation of any results from them, while arrows represent actions that each
record may conditionally cause, such a subsequent scan, a hash-table probe, or insertion.
Square boxes denote hash-tables, while dotted vertical lines very coarsely separate the two
relations (the build relation lineitem and probe relation part). Horizontal dotted lines
divide execution into distinct stages; in Figure 2.2, the “hash-table build” stage must com-
plete before the records of lineitem are joined against its result. Thus, these time divisions
correspond–roughly–to separate loops or loop nests in any code that would implement them.

In Figure 2.2b, two relations are joined via a hash-table built from a single key attribute,
preceded by and followed by selection based on others, which are gathered (via position
vectors) from their original columns when needed. The join style is a reasonable default, as
many database engines–especially non-compiled ones–will have a ready-made join operator
that expects a (hash, row-ID) tuple table format.
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This example is fairly representative of many other queries, which differ merely by the
addition of further joins, selections, and aggregations. In each of the sections that follow,
one machine-level plan transformation offers a choice that affects the execution of one of this
plan’s operators; later, Section 2.4 shows how these choices interact across the entirety of a
machine-level plan, and how they can apply recursively.

#1: Split-Merge Parallelization

Process Merge

Figure 2.3: Split-Merge Parallelization

The simplest way to parallelize a query plan is to split a relational operator’s input
records into equal-sized subsets, and apply the operator to those subsets separately. The
kind of independence imposed on the resulting subsets can either be spatial (Figure 2.4a),
or temporal (Figure 2.4b). Spatial parallelism applies when each unit of input is assigned to
a different processing element, such as a thread, processor, socket, or SIMD lane. Temporal
parallelism applies when the units of input are still processed sequentially in time, but the
scope of inputs considered at once is limited in order to reduce contention on some resource
such as cache. The cache blocking of matrix multiply algorithms is an example from another
domain; in relational query optimization, an example would be building independent hash-
tables for subsets of the total input under the assumption that these will fit better in cache.

Costs. Of course, as the latter example highlights, such independence is not free of cost:
in the hash-table case, independent aggregations, for example, would later have to be merged
by aggregating the aggregates themselves. Figure 2.3 depicts this more generally for all kinds
of split-merge parallelism: if blocks of input are processed separately, any operation that re-
orders records based on their values will require a subsequent merge–so called because of its
resemblance to the eponymous step of mergesort–to stitch the results back together. In the
paradigmatic plan of Figure 2.2b, all that follows the initial hash-table build may be split
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Figure 2.4: Spatial and Temporal Parallelism

without a merge; splitting the hash-table build would necessitate a merge of the parallel
tables.

The impact of the split-merge transformation on performance will generally depend on the
relative cost of this merger compared to the benefit of independence. If the data in each block
are sufficiently re-used, then splitting may reduce traffic enough to improve performance even
without the benefit of parallelism. On the other hand, even parallelism may be of minimal
benefit if the merger must be performed serially.

The other possible cost of split-merger is that spatial parallelization sometimes requires
data structures to be replicated once per “thread” (if atomic operations are not available or
are too slow), thus increasing the size of the working set.

#2: Partition Parallelism

If split-merger is limited by the (possible) need to perform an expensive, serial merge op-
eration, then its alternative is partitioning, which divides inputs among several partitions
based on the values of some attribute chosen as the key, which is often a hash function of an
underlying attribute used as a join or aggregation key. In radix partitioning, a subset of the
key’s bits are used as the address of each record’s output partition, making the partitions
independent, because a single key can appear in at most one of them. This value indepen-
dence makes subsequent merging unnecessary. The parallelism induced by partitioning, like
that from splitting, can also be exploited either spatially or temporally.

In the recurring example of Figure 2.2b’s join, partitioning could apply to either the left
(lineitem) side, the right (parts) side, or both. Figure 2.5 shows the consequences of these
strategies in terms of memory access patterns. In the original non-partitioned plan, there
are two operations that resemble Figure 2.5a: (1.) the initial construction of the hash-table
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Figure 2.5: Aggregation, Joins, and Hash Tables with and without Partitioning

of part on key field p partkey, and (2.) the join loop, in which that hash-table is probed
with records from lineitem using the l partkey field as a key. In both cases, the physical
array containing the hash-table acts as the build array, while data values in the two key fields
determine which locations in that array are accessed. This means such accesses are possibly
scattered across the length of the build array (depending on the distribution of the keys),
generating many cache misses if it array is larger than the cache. This is a performance
impediment not only on contemporary general-purpose processors, which can sustain only a
limited number of outstanding misses at a time, but also by the more abstract metric of raw
communication cost, if the width (in bytes) of the attribute fields accessed is much smaller
than the size of a cache line.

Benefits. Partitioning can both reduce the likelihood of such cache misses, and provide
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additional parallelism. In Figure 2.5b, records are first distributed to independent buckets
based on the addresses in the (outer) build array (i.e. keys) to which they will generate
accesses, meaning that those resulting probes (arrows across the vertical dotted line) will
be distributed over narrower ranges, hopefully resulting in more reuse of records once they
have been brought into the cache. It also means that each of the resulting partitions can be
processed in parallel, without atomics or locking, as they are guaranteed to access disjoint
locations in memory (which matters in the aggregation or hash-table build case, though not
in a join). In the case of a join, double-sided partitioning (Figure 2.5c) occurs when the hash-
table build is parallelized by partitioning with the same function used to partition the probe
relation, yielding in a miniature hash join between each corresponding pair of partitions in
the two relations.

Costs. Partitioning requires both extra computation, and extra communication: in radix
partitioning, the key fields of all input records must be first scanned once while a histogram
is built to count the number of elements in each resulting partition, so that sufficient space
in the output buffer can be allocated for them; then, all input records must be scanned
again and scattered to their respective partitions, all while the histogram’s counters must be
incremented to track the offset at which the next record should be emitted. Thus, the total
traffic cost is at least (1.) two full scans of the input keys, (2.) one full scan of input values,
and (3.) one full (scattered) write of the output.

However, cache misses from random accesses may also occur: radix-m partitioning has a
working set of at least 2m cache lines–one per partition–since the next record to be output
at any point could fall into any one, in the worst case of a uniform key distribution. The
histogram, too, is part of the working set, though smaller, as one cache line is likely to hold
several counters. In the worst case, a high-fanout partitioning may result in the transfer
(read-modify-write) of one cache line per record during histogram-building and two during
movement, in addition to the two full sequential scans of the input.

On realistic platforms, other non-bandwidth bottlenecks may emerge: cache misses be-
tween levels of the on-chip hierarchy may degrade performance of general-purpose pipelines
even if no off-chip traffic is incurred, and other real-world constraints like cache conflicts and
the reach of translation lookaside buffers (TLBs) may impede execution if the working set’s
virtual address range exceeds TLB capacity (though there are workarounds for this, such as
huge pages, or software write-combining buffers [57] – see Section 3.1).

In order for partitioning to be profitable under a raw communication metric, it must
eliminate more cache line transfers in a future join or aggregation than it causes in its own
execution. If computation is considered, then any traffic increase must be offset by the
resulting parallelism downstream in the query, which often may only be realized by way of
partitioning.

#3: Attribute Packing & Memory Layout

A classical element of schema design in relational databases is denormalization, which elim-
inates copies of an attribute that is shared between two or more relations, relegating its
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storage instead to a single table. For example, in the TPC-H schema, a lineitem of an order
pertains to a specific part with qualities, such as price, that are common to all orders in
which it might be included. Instead of replicating that price for each lineitem in which the
part is referenced, a separate part table includes a single copy of it, and so computing the
cost of an order requires joining against the part table to retrieve it. This has a clear trade-
off: it reduces the amount of storage required for the whole dataset, at the cost of additional
joins.

Denormalization has an analogue in machine-level planing. Figure 2.2b illustrates the
execution of precisely the join described above. The coarse schematic depicts a hash join
using a table with two columns, which naturally correspond to the join key (the part number,
encoded as l partkey or p partkey in lineitem and part respectively), and a row ID, which
points back to each part’s original location in the part table. When the join is performed,
a matching part for a given partkey has other attributes that can be retrieved by gathering
them from the original part table based on their row IDs. However, this need not be so.
An alternative join style, such as shown in Figure 2.11b, could instead pack all attributes of
the part relation into the hash-table, eliminating the need for any future gather. The same
principle applies to partitioning as well, or any other shuffling operation, including sorting:
when part of a record is moved based on one attribute, the others can either follow it or
remain in place. The choice is not all-or-nothing, either: any subset of possibly-relevant
attributes can be packed or not.

Benefits. Because hash-table construction (most likely) reorders entries significantly,
and randomly, with respect to their original sequence, post-join gather operations will be
scattered randomly over the original table, resulting in poor memory locality and a higher
number of cache misses, which packing can eliminate. Any matching probe to a packed table
can access all relevant attributes at once, in a single cache line, or at least a smaller number
of them.

The decision to pack also offers an opportunity to adjust the memory layout of the re-
ordered table. Just as any table can be arranged in row- or column-major order, so too can
any packed hash-table. While it may seem counterintuitive to lay out packed hash-table
attributes in discontiguous arrays, this can be fruitful when, e.g. the join key is itself rather
selective, or one other attribute is used in a selective post-join filter, prior to others: in this
case, all attributes accessed after the initial join-filter can be co-located in a single array that
forms an effective secondary working set. Of course, such re-shaping of relations need not
be incorporated into a hash-table build or partition, and can be applied on its own prior to
the execution of any other operation.

Costs. In addition to the sequential read traffic required to scan all packed attributes, the
addition of columns to a hash-table or partition output increases the size of the working set
during its construction and, for hash-tables, all subsequent probes. If that increase exceeds
cache capacity, the resulting capacity misses may dwarf any savings from reduced gathers.
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1 size_t count = 0;

2 for (size_t i = 0; i < N; i++) {

3 bool a = A[i], b = B[i]; c = C[i];

4
5
6 rec_t d = D[i];

7 bool mask = a && b && c

8 if (mask) out[count++] = d;

9
10 }

Listing (2.2) Complex predicate filter

size_t count = 0;

for (size_t i = 0; i < N; i++) {

bool a = A[i];

if (a) {

bool b = B[i], c = C[i];

rec_t d = D[i];

bool mask = b && c;

if (mask) out[count++] = d;

}

}

Listing (2.3) A “cracked” version of 2.2

Figure 2.6: C Code for Cracked Predicate Application

#4: Predicate Attribute “Cracking” & Access Serialization

Where attribute packing is not useful, its antithesis may well be. If a filter operator’s
predicate consists of several disjunctive clauses, each of which uses a different attribute,
then loading all fields may consume more bandwidth than necessary if initial clauses are
highly selective. The canonical filter loop in Listing 2.2 exhibits precisely this excess. To
its right, Listing 2.3 wraps accesses to the secondary attributes B[] and C[] (in separate
columns) inside an if statement conditioned on the truth value of A[].

The literature [64] has treated this distinction as one between vectorization (Listing 2.2)
and compilation (Listing 2.3), insofar as the word ‘vectorization’ implies computing the
full predicate for a column of records at a time without any intervening branches, while
‘compilation’ implies the opposite. A more generic term used in this thesis is cracking,
which emphasizes the splitting up of predicate evaluation (and avoids conflicting meanings
of ‘vectorization’, hereafter reserved for the exploitation of data-parallel architectures).

The cracking transformation encompasses not just the serialization of attribute accesses
shown in Listing 2.3 but also any changes to memory layout and execution that result from
choosing whether or not to coalesce the sparse subset of records that survive a filter after
it is applied and before the next materialization occurs. For example, both main loops in
Figure 2.6 build a dense array of valid records in their output, but these loops could be split
into two, with a vector-valued mask output in between, as in Figure 2.7a.

Or, the loop could be split into two with coalescing in between (“collect” in Figure 2.7b),
producing dense runs of elements of A, which may then be processed without any mask. In
this case, “processing” would entail gathering needed elements from B[], C[], and D[] via
position values stored during collection. This is intermediate buffering is sometimes necessary
in real systems to obtain any benefit from the communication reduction of cracking, as
Polychroniou [48] and others have shown. Normally, this buffering would occur on a block-
wise basis: by applying temporal splitting in conjunction with cracking, an idealized query
plan assembles a block of valid addresses to gather in the next loop that is sufficiently large
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to amortize any startup overhead while also small enough not to exhaust cache capacity and
so have to spill to memory between iterations of the outer loop.

Process Mask 
Vector

Outer 
Loop 

Iteration

Record

Select

(a) Masked Execution

Process CompactCollectSelect

(b) Collection & Compaction

Figure 2.7: Masking vs. Collecting & Compacting

Benefits. Under a pure communication cost metric, cracking is beneficial when the
selectivity of each initial predicate is low enough to totally eliminate the need for access to
at least some cache lines containing other attributes. Whether this is the case depends on
both the selectivity and the size of the attribute(s) being accessed, as Pirk et al. [45] show:
if the cache line is larger than the attribute size (e.g. eight 8-byte values in a 64-byte line),
then a 50% selectivity will have for example a negligible impact on the number of lines
transferred, while an 8% selectivity might cut communication roughly in half. The benefit
of coalescing is that fewer cache lines may be needed to contain a materialized output if a
denser packing of valid records causes fewer lines to be touched.

Under a cost metric that also considers computational requirements, cracking can elimi-
nate superfluous expression evaluation in addition to suppressing unneeded loads and stores.
Meanwhile, coalescing obviates the need to access mask or “valid” bits for each tuple, re-
moving conditional branches.

Costs. In terms of memory traffic, cracking should have a worst-case neutral cost when
considered in isolation. However, it conflicts with attribute packing, which negates its ben-
efit by putting separate fields in adjacent memory and thus within the spatial footprint of
a single line transfer. Coalescing can potentially increase memory traffic if it forces the
materialization of intermediate results where none otherwise was needed.

In the real world of general-purpose CPUs, cracking entails additional data-dependent
branches, which can dramatically decrease performance when their selectivity nears 50%
and their outcomes therefore become unpredictable, causing frequent full or partial pipeline
flushes (or other control-flow divergence phenomena on data-parallel processors), as others
have reported [64].
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#5: Dynamic Arrays vs. Pre-Allocation

Common operations such as joins and hash-table builds produce results whose sizes are not
statically knowable in advance, or which are divided into partitions or buckets of initial
unknown lengths. 1

Even if a sophisticated query optimizer estimates join cardinality with high accuracy
(though likely it will not [33]), this guess may still be exceeded at runtime, requiring dynamic
allocation of additional space in necessarily disjoint memory. This discontinuity will affect
all consumers of the operator’s result, which must traverse all extents of records allocated in
the course of execution. Eliminating that discontinuity requires compacting all such extents,
which can be done at any downstream point in the query plan.

Alternatively, the inputs to operators with dynamically-sized output can be processed
in two passes: one to count the number of outputs that will be generated (or the sizes of
each of its buckets or partitions), and one to perform the operation itself. This is almost
universally the case for partitioning, but could be applied to joins as well. Hash tables are
a trickier case, as it is impossible to count in advance the number of distinct keys falling
into each bucket without actually enumerating them, which requires an allocation of space
equal to the number of keys. Still, it is possible to at least tabulate an upper bound on the
number of keys that map to each bucket, which will over-provision space in the case that
many elements share a key and are aggregated, but at least guarantees that the total size of
all buckets combined is no larger than the original input, rather than its square, as would
be needed to pre-allocate without such a count.

Benefits. Pre-allocation eliminates the need for linked list traversals, unpredictable
dynamic allocation, and compaction, and can drastically reduce the need to over-provision
hash-table and partition space in the presence of non-uniform key distributions and imperfect
hash functions. Under a strict communication metric, choosing to pre-allocate may not have
a noticeable salutary effect, but its elimination of irregular branches, serialized memory
accesses, and dynamic allocation may significantly reduce computational bottlenecks on real
systems.

Costs. The traffic cost of pre-allocation is an additional sequential scan of all input
records’ keys, which may be substantial. If the keys themselves are derived from other
attributes, then these may have to be re-scanned as well, or else the computed keys must be
written during the pre-allocation pass and then re-read during the table build or partition
phase. (This is the same as in partitioning.)

1Traditionally, hash-tables are built either with chaining, in which each bucket contains an expansible
linked list of elements, or linear probing, in which a contiguous array of buckets is allocated and entries are
inserted at the first open slot after their buckets’ beginning, and the whole table is re-allocated and re-built
if its space is exhausted. For the sake of brevity we forego consideration of the latter.
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#6: Operator Fusion & Interleaving

A primary benefit of query compilation is the opportunity to fuse together multiple physical
operators into a single compiled unit. Traditionally, this meant identifying chains of depen-
dent operators terminated by a blocking operator, which is one that must fully consume its
inputs before any of its output may be used (e.g. in aggregations and hash-table builds).
Each record produced by one operator in the chain may be consumed by the next without
necessarily being written out to memory, resulting in a single loop over the inputs to the
first operator. All intermediate results simply live in registers.

The various forms of parallelism described above necessitate an extension of this paradigm
to include the fusion, at another level, of even some operators that do forcibly spill to mem-
ory: when a blocking operator such as aggregation processes input that has been parallelized
(in space or time), it need only spill the contents of its local input fragment before a sub-
sequent consumer uses it, as the parallelization transformation must, for correctness, have
included a later merge operation. If parallelization is conceived in terms parallel loops, then
this form of fusion can be said to act on outer loops, with intermediate products confined, if
not to registers, then at least to smaller regions of memory, effectively interleaving execution
of outer-loop-fused operators at the granularity of a block of records. And if special operators
exist to synchronize their parallel brethren, then these are outer-loop fusion’s analogues to
inner-loop fusion blockers (Chapters 3 and 4 supply precise examples).

In either case, the mere presence of blocking operations is not enough to determine
completely the way in which a parallel query plan must be divided into discrete loop nests.
In Figure 2.8, for instance, which shows a plan for some unstated query for the sake of
example, the blocking hash-table build merely precludes its own inclusion in a single (inner)
loop with the downstream join. The rest of the query must also be divided between these
two loops, but cutting the plan along any of the dotted lines (at least) would result in
a valid split. Each one may have communication requirements different from the others,
depending on the size of intermediate results to be materialized. In machine-level planning,
such alternatives must be considered as part of the query’s algorithmic design space.

A somewhat surprising aspect of Figure 2.8’s plan is that it is not tree-structured, and
contains a cycle in the underlying undirected graph. This reflects the possibility that a single
operator’s result may be shared among multiple consumers, all of which may or may not
be fused into the same loop. In this case, a computation (Eval: “evaluate” an expression)
produces an output that may need to be materialized if any of cuts (1), (2), or (3) is drawn.
However, an alternative is possible (Figure 2.9): that node could simply be repeated in two
separate loops to avoid materializing its result, thus potentially trading off extra computation
for reduced communication, though not necessarily.

Benefits. Fusion can dramatically reduce memory traffic by eliminating the material-
ization of large intermediate results, and replication of computation can potentially do the
same. In computational terms, the fusion also removes any load and store operations nec-
essary to write out and then re-scan operators’ outputs, while inner-loop fusion also allows
compilers to optimize operator code across erstwhile loop boundaries.
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Figure 2.8: Where to “cut” inner-loop fusion? HiRes allows a single scan to drive an operator
that produces multiple results, and enables the choice of multiple such fusions, indicated by
dotted lines.

Costs. Even under a strict communication metric, the costs of different fusion choices can
vary wildly depending on the degree to which operators on different loop boundaries change
the size of their outputs, making the DAG cut problem an important optimization parameter.
Additionally, the inclusion of more operators into a fused loop increases the working set of
that loop to the sum of working sets of its components, potentially overflowing available
cache capacity and thus generating a large increase in traffic. For example, two fused or
interleaved hash joins both add their hash-tables to the fused loop’s working set, which very
likely represents a large expansion.

Even the attempted tradeoff of extra computation for reduced traffic in Figure 2.9 can
have the opposite of its intended effect. This happens when, for instance, its input was
already needed–and therefore read by–another operator in the original loop from which it
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Figure 2.9: The “one output per pipeline” model. Following the query DAG model of
HyPer [25] and Hawk [9], this plan first would result from traversing the left side of the join
expression until finding a materializer, to produce one “pipeline”, and then doing the same
for the right. Each fused loop has exactly one output, and the computation (including scans)
in red is repeated.
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was copied, causing its clone to repeat the same scan of records, which may be of greater size
than its output (e.g. an arithmetic expression that adds four integer attributes to produce
a single integer result).

Mere fusion should not impose any additional computation costs, but in the presence
of multi-level memory hierarchies, an increase in working set size that does not result in
traffic to off-chip DRAM may nevertheless cause misses within the upper, on-chip levels of
cache that realistic micro-architectures cannot completely hide. Computational replication,
of course, poses a more direct arithmetic cost.

Summary of MLP Transformations

Transformation Benefits Costs

Split-Merge Parallel.
M Cache blocking (temporal) Final merger
C Parallel processing (spatial)

Partition Parallel.
M Cache Blocking (tmp+spa) Multi-pass, scatter
C Parallelism (spatial) Hist. build

Field Packing M No gathers Bigger working set, scans
Col.-Major Build M Allow cracking within table Excludes packing

Predicate “Cracking”
M Avoid unneeded access Packing precludes
C Data-dependent branches

Mask Compaction
M Smaller mat. output Forced materialization
C No mask branch Less data-parallel

Pre-Allocation
M Smaller output Scan keys twice
C No pointer chase Re-compute keys

Operator Fusion M Intermediates in registers/cache Combine working sets

Figure 2.10: Summary of MLP Transformations. (M = Memory Traffic, C = Compute)

2.4 Case Study: TPC-H Query 19

To illustrate the space of query implementations defined by MLP transformations, and to
show how such choices interact across the across the totality of a query plan, we return to
the running example of Query 19 from the TPC-H benchmark suite.

Packing & Partitioning

Figure 2.11 shows three machine-level plans derived from the baseline plan in Figure 2.2b
taken from the combinatorial space:

S =
{
{partition} × 2{left,right}}× {{pack} × 2{left,right}}
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This set S contains at least |S| = 4×4 = 16 plans, and more if “left” and “right” are allowed
as shorthands for the sets of all subsets of their attributes. Meanwhile, “partition” can be
expanded with a radix parameter, and all plans can be crossed with the set of possible hash
functions on the key, including “none” (giving an array join in the terminology of Schuh et
al.[59], where the values of the keys themselves become indices into a hash-table array). In
reality, the space is even larger, because even the “non-packed” plans can have attributes
packed into their relations’ partitioned forms, if any are used.

The diagrams in Figure 2.11 show, in particular, the execution flow of plans where both
relations are either partitioned, packed, or both. In Sub-Figure 2.11a, partitioning (the key
attribute of) both relations results in (1.) probes that are constrained within partition-
sized–and hopefully cache-sized–subsets of the hash-table, (2.) a hash-table build that can
occur in parallel for each partition, which is independent of all others, (3.) an automatic
parallelization of the join, due to the independence of each pair of corresponding partitions
in the build and probe relations, and (4.) the automatic partition-wise parallelization of
all the comes after the join as well. In 2.11b, all relevant attributes of both relations are
scanned, and packed into contiguous arrays before the join, entirely eliminating the need
for any subsequent gathers, which might otherwise have entailed random accesses to several
cache lines per tuple. Finally, the far right panel depicts a plan in which the parallelism and
locality features of the left are combined with the communication-saving properties of the
middle.

It is clear a priori that not all plans in S are sensible: even Figure 2.11b includes a
“pack” of the build relation, which would be more obviously beneficial if it were re-used,
which it is not. However, these plans are considered here because exposing the broadest
possible space of implementations is a prerequisite to uncovering the unlikely winners, and
the translation of human insight into a useful cost model will take serious effort.

Parallelization

The independent probes depicted in the fully-partitioned plan of Figure 2.11 represent one
form of query parallelization, in which the corresponding partitions of lineitem and part are
distributed across processing elements. Many other parallelizations are possible. Partition-
parallelism may be combined with split-merge parallelism recursively, with the results of
each treated either spatially or temporally.

This paradigmatic single-join query can be parallelized in two phases: the hash-table
build, and then the probe that completes the join. They offer separate, but not completely
independent choices, as the structure of the hash-table(s) impact how the probes may be
parallelized, so we consider that first.

Build Phase

It is worth noting that one plausible build strategy is simply to build the table serially,
especially if the build relation is significantly smaller than the probe relation, or becomes
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so after relevant filters are applied. Though a large size disparity does exist between the
actual relations implicated in Query 19, no appropriate predicates shrink the table size, and
serialization of the build phase has proven a bottleneck in practice ().

Split-merge parallelization is not likely to prove fruitful here, as the merger would have
to be performed serially, negating any benefit of (spatial) splitting. This strategy is generally
profitable only when each parallel build reduces the size of its input dramatically, such as
when aggregation is applied as part of the build, but that is not the case in this query.
Instead, parallelization by partitioning is likely to be more advantageous, and the resulting
independent hash-tables can then be treated separately by the build phase, or as one single
hash-table that simply took less time to create.

Probe Phase

Regardless of how the hash-table build is parallelized, the probe phase can simply be split
spatially, with merger needed only when the resulting parallelism extends across the join
through some other operations (such as aggregation or group-by) that themselves require it
(in this example query, the merge is a reduction by sum of each thread’s final total).

This spatial splitting can combine with partitioning, once again independently of any
partitioning used in the build phase (using a different radix/number of partitions), and with
temporal splitting too. For example, one strategy entails splitting input records spatially
among threads, each of which partitions its separate domain. Then, each thread of execution
may join each of its local partitions in sequence, achieving a greater degree of cache locality.
Furthermore, if the distribution of keys is very uniform, and all threads share a common
outer-level cache, then they will likely share cached regions of the hash-table as they target
overlapping ranges of its buckets. On multi-socket systems, spatial splitting prior to parti-
tioning confines each thread’s scattered writes during the record move phase to be within
its own NUMA domain, potentially ameliorating otherwise problematic cross-socket write
traffic.

An alternative, part-split-build, inverts the preceding by performing parallel parti-
tioning to a set of shared partition buffers, each of which is then processed in sequence
but parallelized across all threads. The entire probe can also be wrapped in a temporal
split that processes one last-level cache-sized block at a time, meaning that partitioning is
cache-blocked at a higher level of the memory hierarchy.

Masking & Filtering

A classical query optimizer will surely preface the join with selection on the l shipinstruct

and l shipmode attributes, as Figure 2.2a indicates, but fusion and parallelization cause
the masking and cracking choices of record selection to “interact” with the choice of join
strategy. If no partitioning is employed, then input records can simply be masked, preventing
deselected records from participating in the probe. However, parallelization of the probe
phase requires that the selection be parallelized in precisely the same manner, or else it
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could not be fused into the same (inner) loop as the probe, necessitating materialization.
Thus, parallelization of the join must occur at the start of the whole plan.

In this particular class of query plans, no explicit mask compaction is necessary, as the
join is “naturally” compacting – the independence between the its input and output sizes
already packs successful probes densely, and records that fail the prior selection simply act
as if they failed to find a match. However, this does not preclude the insertion of explicit
compaction inside the filtering process, as may be desired when it is cracked.

Fusion Choices

If radix partitioning is used as part of the probe strategy, then selection ought to precede
it, as it will reduce the number of records to be moved. Since partitioning has an extra
initial loop to build a histogram, selection must fuse with that if it is to fuse at all, leaving
a choice of what, if anything, to materialize in the process. If selection is mere masking,
then it is possible simply to output nothing, in which case all attributes used to compute
the selection predicate must be re-scanned during the move phase of partitioning, and any
arithmetic expressions must be re-computed.

Alternatively, the mask itself – one bit per record – can be materialized during histogram
building, and re-read during movement. Then, it can be used to skip accesses to input records
whose bit is not set, or not, if the selectivity is close to 50% and this proves counterproductive.
In the latter case, compaction may well be worth fusing into the histogram build.

Conclusion

Many of the plan parameters described above result in fundamentally different code, both in
terms of the bodies of column-processing loops, and the set of loops themselves. As such,
Chapter 3 describes a language and compiler stack for expressing machine-level plans, and
generating their respective programs as explicitly parallel loop nests.
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Chapter 3

HiRes: A Language for MLP

We introduce a language called HiRes whose aim is to expose the six query planning dimen-
sions described in Section 2. It is an array-processing language, where, as in predecessors
such as NESL [6], parallelism is expressed by the depth of array nesting imposed on otherwise
flat data. Unlike NESL, its execution is statically scheduled, and it needs no runtime system
(beyond OpenMP’s) to interpret this structure. HiRes’s constructs give the programmer
(or DBMS, or auto-tuner) control over loop nests, by means of nesting depth and fusion
decisions, and memory layout, by way of its type system, which encodes row- vs. column-
major storage, predicate masks (null bits), fixed- vs. variable-length array dimensions, and
contiguous vs. disjoint buffers, all within an arbitrary array nest.

HiRes is a Scala-embedded domain-specific language (DSL) for expressing machine-level
plans and whose prototype HiRes-compiler emits C++11 code with parallel loop annota-
tions1 suitable for compilation with any standard toolchain2. At the moment, it has no
front-end to parse and algebrize SQL programs, or perform more classical kinds of query
optimization, so we require queries to be input as HiRes code directly. This also bespeaks
the suitability of HiRes as a framework for building more general kinds of collections libraries
for use outside the domain of pure database analytics.

Between HiRes and C++, a C-like intermediate form called LoRes is used to represent
queries as concrete loop nests, and enable several low-level transformation passes. The more
interesting aspects of that process are described at greater length in Chapter 5. The rest of
this chapter, meanwhile, gives an introduction to the HiRes language, surveys its primitive
constructs, and explains how its type system supports the loop nest and memory layout
controls evoked above. The conclusion illustrates how to construct and optimize query plans
with HiRes.

1In future work, we hope to expand this to include SIMD and vector instructions as well.
2Unlike prior work [25], our research prototype does not refine this further to LLVM’s [31] intermediate

language, as we have not yet been concerned with compilation time. There is no fundamental reason it could
not do so in the future, though of course the overhead exporting LLVM IR from the JVM may prove to be
a bottleneck.
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3.1 HiRes Operators & Syntax

To introduce the language, this section presents short snippets of HiRes code as they would
actually be written in the host language, Scala, and highlights their use of syntactic sugar
where appropriate. Operators’ types (whose meanings will be explained more fully in Sec-
tion 3.2) are stated in a symbolic form, since their concrete realizations as Scala values inside
the HiRes compiler are too unwieldy for the printed page, and would often span multiple
lines of text. They rarely need be spelled out inside HiRes programs, however, as the lan-
guage’s implicit typing rules render such verbosity unnecessary. Type annotations such as
scan1: Operator in the examples are thus Scala types, indicating in this case that an
identifier refers to a HiRes Operator AST.

All code listings are examples of meta-programming to various degrees: Scala constructs
(val, var, =, if, for, etc.) are used to assemble HiRes ASTs programmatically. It is beyond
the scope of this thesis to provide a tutorial of the Scala language [42], but it is usually
possible to distinguish its keywords from those of HiRes, as the latter are capitalized.

HiRes Programs as Operator Compositions

A HiRes program is a composition of operators, each of which has the type of a function,
usually from one kind of vector of records to another. Figure 3.2 summarizes all the primitive
operators out of which compound HiRes programs are built. A guiding principle is that each
primitive should translate to one loop nest over its input.

This scan-selection operator is a “Hello World” example:

1 val scan1: Operator = {

2 Let(List(

3 ’cond := ’input(’value < ’maxval),

4 ’mask := Mask(’input, ’cond)

5 ),

6 Collect(’mask.project(’key -> ’key, ’value -> ’value)))

7 }

Listing 3.1: A simple HiRes scan-filter

The above operator selects all records whose value field is less than a threshold, and
might have the type:

(V [((key : Index) , (value : Int))] , Int)→ V̄ [(key : Index, value : Int)]

This signature depends on the surrounding context (i.e. the original type of ’input), as
described below in 3.1, and V [X] is read as “a vector of X”.

On line 3, the ’input(...) term is syntactic sugar for

Eval(IdOp(Id("input")), Id("value") < Id("maxval"))
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The single quote embeds a HiRes symbol in Scala, while the parentheses stand for an Eval()

operator that computes an expression for each record of the input. Inside the Eval() state-
ment, the right-hand side is a scalar, primitive-valued expression where each identifier refers,
implicitly, to the name of a field in the record type of each element in the left-hand side
input. Thus, the above expression is well-typed because we have assumed that the record
contains a numeric-typed field named value. By itself, the evaluation has a function type of

V [((key : Index) , (value : Int))]→ V [Bool]

In this case, the boolean result type is inferred from the value of the expression, for which
the vector structure is copied from the left-hand input.

On line 4, the Mask() operator binds ’cond as a predicate mask for the rows of ’input,
yielding a result in ’mask of type VP [((key : Index) , (value : Int))]. Unlike Eval(), the
Mask() operator does not actually produce any new data, but merely associates the existing
boolean vector ’cond with the existing records of ’input (which can still be accessed un-
masked under that name). ’cond may never even exist as a physical vector in main memory,
since inner loop fusion (Section 4.3) of the whole program will avoid materializing it. The fi-
nal Collect() operator removes the predicate mask, by packing valid elements contiguously
and converting the array type to one with a num-valid marker V̄ [(. . . )]. It is a materializing
operator, meaning that its output must be written out to memory, and that it must finish
fully before a subsequent operator may use its results.

Line 6 desugars to a combination of Let() and Project(), which must be understood
together:

1 Let(List(

2 ’key := Eval(’mask, ’key),

3 ’value := Eval(’mask, ’value)

4 ),

5 Project(’key, ’value))

A projection works in tandem with a Let() to create a new flat record type whose fields bear
the names of the identifiers to which its non-record inputs are bound; any actual records in
included in the input will have their own fields’ names reproduced in the result type. The
counterpart to Project() is Zip(), which creates a new split record type with fields that
reside in physically disjoint columns in memory. This combination is common enough to
warrant its own abbreviation in the form of the Operator class’ .project() and .zip()

methods.
Inside Let(), the final constituent determines the output type and semantics of the whole,

using any bindings brought in scope by the assignment list above it, or which are in scope
due to an outer let statement.

Using HiRes Programs

Most expressions encountered thus far had implicitly inferred types, but compiling an oper-
ator requires at some point that concrete input and output types be specified to enable this
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inference, and to ensure that the implementation conforms to the desired specification. A
Func specifier fulfills this expectation of the compiler’s API:

1 val funcType = {

2 val rec: Record =

3 lo.SplitRecord(

4 lo.Record.Field(lo.Index(), Some(’key)) :: Nil,

5 lo.Record.Field(lo.LoInt(), Some(’value)) :: Nil)

6
7 Func(

8 Map[Id, hi.Data](’input -> Vec(rec), ’maxval -> lo.LoInt()),

9 Vec(rec, numValid=true))

10 }

The preceding lines convey both the undesirability of stipulating every operator’s type sig-
nature, as well as the utility of meta-programming to construct a complex type AST: the
Scala rec variable allows the input and output types to share the same record structure.

Interfacing with the Outside World

Compilation of the last code fragment produces the header file shown in Figure 3.1. In
the C++ output, all physical buffers are declared as res vec vector types whose allocation
routines are more efficient than those of the std::vector<T> class of the C++ Standard
Template Library3, but like the latter still store the size of the underlying buffer. Struct
definitions for implicitly-defined record types are emitted as necessary, such as rss 0, which
contains the named fields of each record in the row-major-ordered output. Although the
names of these types are not fully predictable (the 0 in rss 0 reflects the order in which
it was generated relative to other types), the names of each struct’s member fields can be,
and the C++11 auto keyword can be used to capture the result of the operator’s run()

method in code that interfaces with the auto-generated header file.
The resulting code is more verbose than what a human would write. This is due in part

to aggressive LoRes AST-level common subexpression elimination (described in more detail
in Chapter 5), which is necessary for some of the analyses the compiler was intended to
facilitate, and also does help to mitigate some of the pathologies of auto-generated C++
code in other cases.

Nesting and Threading

HiRes expresses parallelism by increasing the degree of nesting of arrays on top of vectors.
The kind of parallelism implied can be either spatial or temporal (or a combination): in
either case, it really means an additional for-loop level around each (possibly fused) operator,
and this may or may not be annotated with a parallel #pragma4. The twin SplitPar and

3This was found to be a significant bottleneck in earlier versions of the HiRes compiler
4Or equivalent construct in future targets other than OpenMP
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struct __rec1_arr {

res_vec<size_t>* key;

res_vec<int>* value;

};

struct _rss_0 {

size_t key;

int value;

};

struct _lo_arr__rec0 {

res_vec<struct _rss_0>* arr;

size_t nval;

};

class Ressort_scan32indexint

{

public:

struct __rec1_arr* input;

int maxval;

Ressort_scan32indexint () {}

struct _lo_arr__rec0* _run()

{

size_t t0;

size_t t11;

t0 = (*((input->key))).size();

res_vec<struct _rss_0>* t_coll;

t_coll =

new res_vec<struct _rss_0>(t0);

size_t t_nval;

t_nval = t0;

size_t ocur;

ocur = 0;

const size_t _CTMP1_fcur_max = t0;

for(size_t fcur = 0;

fcur<_CTMP1_fcur_max;

fcur = fcur+(1))

{

Listing 3.2: Sample C++ output

size_t t3;

int t4;

bool t7;

t3 = fcur;

t4 = (*((input->value)))[t3];

t11 = ocur;

bool t_;

t_ = t4<maxval;

t7 = t_;

size_t key_;

if(t7)

{

size_t t8;

t8 = (*((input->key)))[t3];

key_ = t8;

}

int value_;

if(t7)

{

value_ = t4;

}

int t_prj_value;

size_t t_prj_key;

if(t7)

{

t_prj_key = key_;

t_prj_value = value_;

((*(t_coll))[t11]).value =

t_prj_value;

((*(t_coll))[t11]).key =

t_prj_key;

ocur = t11+(1);

}

t_nval = ocur;

}

struct _lo_arr__rec0* out_wrap;

out_wrap = new struct

_lo_arr__rec0;

out_wrap->arr = t_coll;

out_wrap->nval = t_nval;

return out_wrap;

}

};

Listing 3.3: (continued)

Figure 3.1: C++ Output from Compilation of Listing 3.1
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Operator Type Rule Description
Data-Parallel “Vector” Operators

IdOp(O) V [S]→ V [S] Scan: contents of column O
Eval(o, e) (V [S1] , S1 → S2)→ V [S2] Compute an expression for each record

Position(o) V [S]→ V [Index] Index of each rec. in array
Hash64(o, n) (V [S] , Int)→ V [Index] 64-bit hash (masked to n bits)

Gather(oidx, otarg) (V [Index] ,V [S])→ V [S] Records at specified positions in otarg
Shape-Changing and Nesting Operators

SplitSeq(o, n) (V [S] , Int)→ A [V [S]] Divide input into n equal-sized blocks
SplitPar(o, n) (V [S] , Int)→ A [V [S]] Same as above, but blocks in parallel

Shell(o) (V [S] , Int)→ A [V [S]] “Repeats” vector across all arrays
Flatten(o) (A) [T ]→ T Removes (array) nesting

Project(o1, . . . , on)
(V [S1] , . . . ,V [Sn])→ Pack all input types into a flat vector

V [(S1, . . . , Sn)]

Zip(o1, . . . , on)
(V [S1] , . . . ,V [Sn])→ Make rec. with multiple columns

V [((S1) , . . . , (Sn))]
Mask(o, ocond) (V [S] ,V [Bool])→ VP [S] Bind ocond as a predicate mask to o

Histogram and Reduction Operators

Histogram(o, n) V [Int]→ Hbuilt Counts each of the n keys in o
Offsets(o, (n)) Hbuilt → Hoff Prefix sum from counts to offsets

Reduce(o,�) � ∈ {+, ∗,max,min, ||} Reduce a vector with op.
V [S]→ S

NestedReduce(o,�) A [S]→ S Reduce an array with op.
Record Movement Operators

Partition(okey, oval, h)
(V [Int] ,V [S] ,Hoff)→ Partitions records based on their keys

(V [S] ,Hend)

Collect(o)
VP [S]→ V̄ [S] , Remove non-masked elements
A
[
VP [S]

]
→ Ā [V [s]]

Compact(o, h)
(
Ā [V [S]] ,Hoff

)
→ A [V [s]] Move recs. to elim. non-valids

InsertionSort(o, k1, . . . ) V [S]→ V [S] Sort records by given key fields
Hash Table Operators (Description in text)

HashTable(o, . . . ) (V [S] , . . . )→ AC [V [(. . . )]] Build a hash table / aggregate

HashJoin(oL, oR . . . )
(V [S1] ,A [V [S2]])→ Join: use keys oL to set array of oR

AC [V [(S1, S2)]]
Control & Declaration Operators

Let(o1 . . . on, in = o, in ) [See text] Re-use nodes, create records
Cat(o1 . . . on) ((t1), . . . , (tn))→ (t1, . . . , tn) Combine all nodes’ outputs
Uncat(o,N) (t1, . . . , tn)→ tN Extracts the Nth input

Figure 3.2: A Summary of HiRes Operators
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SplitSeq constructs express the former and latter conditions, respectively, and both divide
their inputs into N equal-sized sub-arrays (with the 0th containing any elements in the
remainder of that division), and both are merely “shape-changing” operators in that they
do not compute anything, nor do they cause, by themselves, any results to be materialized
into a new buffer.

Thus, to parallelize scan1, we add a new line above line 3:

1 ’input := SplitPar(’input, THREADS)

This changes the meaning of ’input for the rest of the Let(), wherein it now refers to an
array-of-vectors type. However, the output of the program also changes to:

Ā [V [Rec [(key : Index, value : Int)]]]

This is read as “an array of vectors of records”: vectors are always flat containers of data,
while arrays are collections of vectors or of other arrays, as Section 3.2 explains more
thoroughly.

The num-valid-containing type is likely not what the operator’s specification requires,
so to fix it we must wrap it in a Compact(o, Offsets(o)) operator, which first prefix-sum
reduces the valid counts of each vector, and then moves the beginning of each vector to the
end of the previous, resulting in a physically-contiguous output, and the elimination of the
num-valid type decorator:

1 val op2 = {

2 Let(List(

3 ’input := SplitPar(’input, THREADS),

4 ’output := scan1, // (see prev. listing)

5 ’offs = Offsets(’output)),

6 Flatten(Compact(’output, ’offs)))

7 }

The choice of when to perform such collection and compaction operations corresponds to
the “mask vs. collect vs. compact” dimension of the machine-level plan space described in
Chapter 2 (Choice #4).

Partitioning

Radix partitioning is a fundamental building block of efficient joins and aggregations, and a
means of inducing parallelism, so HiRes supplies several constructs to support it. First, the
Histogram(okeys, slots) operator produces a slots-length vector of counts of the number
of times each key k ∈ {0, . . . , slots − 1} appears in okeys. It is assigned a special “built
histogram” type Hbuilt to indicate its intended use in a partition operation, prior to which it
must first be reduced with Offsets(), which yields a new histogram of type Hoff containing
the starting index of each partition’s reservation in the underlying buffer. If originally okeys

were an array type, then one histogram would be built per array element, yielding type
A [Hbuilt].
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More code is needed to actually perform a radix partition with, e.g., the 8 LSBs of a
64-bit hash function of some fields:

1 val part: Operator = {

2 Let(List(

3 ’hash := Hash64(’input(’key), 8),

4 ’pos := Position(’input),

5 ’key := ’input(’key),

6 ’part :=

7 Partition(

8 keys = Hash64(’input(’key), 8),

9 values = Project(’key, ’pos),

10 hist = Offsets(Histogram(’hash, 256))),

11 ’recs := Uncat(’part, 0),

12 ’hist := Uncat(’part, 1)),

13 RestoreHistogram(’recs, ’hist))

14 }

Listing 3.4: Radix Partitioning in HiRes

Here, the Partition() primitive actually moves records based on their partition number
in the keys field, while Project() creates a new flat record type (key : Index, pos : Index).
The implementation generated for the partition operator uses a software write-combining
buffer (SWWCB) as proposed by Satish et al. [57] to eliminate cache conflicts and TLB
misses. For each partition, the SWWCB allocates one cache line worth of records, and par-
titioned records are inserted first into their partition’s SWWCB slot before being explicitly
copied to the appropriate place in the output when that line is full. Since most accesses
will be to the SWWCB, which spans a much smaller range of addresses than the full output
buffer, fewer TLB entries will be required to address its entries, and fewer TLB misses will
be expected per record.

Hash64() is a simple multiply-shift hash function [12] cited by Richter et al. [55]. It has
been made an Operator in its own right, as opposed to a mere expression usable inside of
Eval(), in order to facilitate future automated tuning transformations by making it easier
to “match” joins on the same hash function, though also for the more practical reason that
the code it generates in LoRes is more complicated than a single expression, and requires its
own block of assignment statements.

The result of partitioning is a pair containing the (still flat) vector of partitioned records,
and the histogram, which has been modified in-place as each moved record increments its par-
tition’s counter. The final RestoreHistogram() construct rotates each histogram’s counter
array one place to the right to restore the original offsets, and combines it with the flat vector
of records to produce an array, which under the hood of the compiler is marked specially to
handle its histogram-delineated, variable-length vector elements, but from the programmer’s
perspective looks just like any other A [V [. . . ]] type, yielding a double loop nest for any
operator applied to it.

The reason for separating partitioning into so many disjoint primitives is that each one
corresponds atomically to a single loop (or loop nest) in the generated code; in practice,
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these can be grouped together in a HiRes macro, such as HistRadixPart() supplied in our
standard library. 5

Since the Partition() operator returns two outputs–the partition buffer and the histogram–
a special Uncat() operator is used to extract them separately. It is described with its com-
panion concatenation operator Cat() below.

Parallel Partitioning

Although partitioning creates parallelism by forming independently-accessible arrays, its
own execution is not inherently parallel. Sadly, split operators alone are no panacea:
Partition() and Offsets() must be made aware of their inputs’ nesting to execute in
parallel, or else they would simply produce separate, unrelated partitionings of each in-
put sub-array. Three things must be done to merge elements from separate input arrays
into a single set of output partitions: first, the Offsets() operator must be marked to
“merge” independent histograms’ counters on a per-partition basis. Second, Partition()
itself must be annotated with a parallel flag to ensure that its output removes a layer
of nesting from its input, as this will subsequently be added back by RestoreHistogram()

(effectively, parallel partitioning converts split-based “thread” parallelism into partition par-
allelism). Inside Offsets(), a special depth = n argument controls the depth up to which
per-partition histogram entries are merged to create per-thread offsets within each output
partition buffer. That is, if depth=1 is set, then array t’s nth entry will contain the offset of
thread t within the global nth partition. Lastly, since the final, partitioned output should
contain merely one histogram counter entry per partition, the original multi-threaded his-
togram must be reduced with LastArray(), which returns the (vector- or array-valued) final
element of an array input. In a multi-threaded partitioning, the last thread’s offsets (just
after Partition()-ing) are really the starting offsets of each partition, so they may simply
be extracted before use by RestoreHistogram(). Listing 3.5 puts this all together.

Loop Fusion Control

Attentive readers may wonder why Hash64(’input(’key), 8) has been repeated twice in
the above program, when the ’hash symbol has already been bound to it. The answer is that
the inner-loop fusion of Section 4.3 makes this choice more efficient: since ’hash is used by
the materializing (i.e. blocking) operator Histogram, on which the subsequent Partition()
is dependent, use of ’hash in the latter case would cut across a loop boundary, and thus
require spilling the entirety of its output to and from memory. In this case, that turns out
not to be optimal, although the source needed to recompute ’hash is a large (32-bit) value
in comparison with the 8-bit hash itself, it is re-read anyways because it forms part of the

5Relatedly, the increase in nesting depth is not applied until RestoreHistogram() because this would
complicate its integration into the inner-loop fusion algorithm of Chapter 4, which identifies candidate sub-
DAGs for fusion based on their depths being equal. Future implementations could fix this with a slight
tweak to the algorithm that marks nodes’ depth based on their inputs, rather than output
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1 val partPar: Operator = {

2 Let(List(

3 ’input := SplitPar(’input, threads),

4 ’hash := Hash64(’input(’key), 8),

5 ’pos := Position(’input),

6 ’key := ’input(’key),

7 ’part :=

8 Partition(

9 keys = Hash64(’input(’key), 8),

10 values = Project(’key, ’pos),

11 hist = Offsets(Histogram(’hash, 256), depth=1),

12 parallel = true),

13 ’recs := Uncat(’part, 0),

14 ’hist := Uncat(’part, 1)),

15 RestoreHistogram(’recs, LastArray(’hist)))

16 }

Listing 3.5: Parallel Radix Partitioning

partitioned records; in other cases, however, the choice may be less obvious, especially if
’key were not re-scanned, or if Hash64 were particularly computationally expensive.

A key contribution of HiRes is allowing this choice to be made, even if the tradeoff may be
difficult to analyze. Because the Let construct’s assignment operator := binds its right-hand
side to a particular buffer, it allows the programmer to force the re-use of its concrete result.
However, were this not desired, it would not actually be necessary to physically re-enter the
hashing operator code; instead, Scala’s assignment operator (=) can be used to bind a Scala
symbol hash to HiRes AST node, which would replicate the computation:

1 val hash = Hash64(’input(’key), 8);

Fusion Control with Cat() and Uncat()

Sometimes even the Let()-based mechanism is not sufficient to generate the desired loop
nest, because nodes may be “pulled” too far forward by the fusion algorithm described
in Chapter 4, resulting in an unnecessarily large materialization. Figure 3.3a shows one
common example: a Partition() operator accepts inputs that can be computed at the
same time as the histogram is being built, but since the Histogram() operator (along with
Offsets()) blocks fusion, these additional nodes will be fused with it, forcing their outputs
to be materialized across the fusion boundary.

Figure 3.3b, on the other hand, shows how manual insertion of a Cat() node, which
groups together its inputs as a single operator, forces a different fusion choice by making all
subsequent uses of ’input dependent on the histogram build, thereby preventing them from
being fused with it. The concatenation operator returns an output that is unusable on its
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Figure 3.3: Manual vs. Automatic Fusion Choices
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own. Only by means of an Uncat(O, N) can the N’th input be recovered: 6

1 val part: Operator = {

2 Let(List(

3 ’hash := Hash64(’input(’key), 8),

4 ’hist := Histogram(’hash, 256),

5 ’cat := Cat(’input, ’hash),

6 ’input := Uncat(’cat, 0),

7 ’hist := Uncat(’cat, 1),

8 ’pos := Position(’input),

9 ’key := ’input(’key),

10 ’part :=

11 Partition(

12 keys = Hash64(’input(’key), 8),

13 values = Project(’key, ’pos),

14 hist = Offsets(hist)),

15 ’recs := Uncat(’part, 0),

16 ’hist := Uncat(’part, 1)),

17 RestoreHistogram(’recs, ’hist))

18 }

Listing 3.6: Better Fusion for Listing 3.4

Hash Tables

Both joins and aggregations are facilitated by a flexible HashTable operator, shown here
from an aggregation in TPC-H Query 17:

1 val htbl = {

2 HashTable(

3 ’lineitem.project(

4 ’l_partkey -> ’l_partkey,

5 ’l_quantity -> ’l_quantity,

6 ’count -> DoubleConst(1.0)),

7 aggregates = List(

8 (NFieldName(’l_quantity), PlusOp),

9 (NFieldName(’count), PlusOp)),

10 hash =

11 Some(Hash64(’lineitem(’l_partkey), nbits)),

12 buckets = Some(1 << nbits))

13 }

The HashTable operator uses its input’s record format as the format of the hash table,
and accepts a user-specified hash function whose range must be less than or equal to the
supplied number of buckets. In building the hash table, a probe is assumed to match iff all
fields of the input record match their corresponding fields of the test record, except those

6This grouping mechanism is also used internally by the compiler to implement the fusion pass, so the
“default” fusion choice will insert Cat()s to return multiple outputs as well.
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fields specifically marked by name as aggregates, like ’l quantity and ’count are above, in
which cases the indicated aggregation operation is performed. An optional slots argument
sets the size of each bucket’s initial allocation. Hash tables are built using a special chunk
array data structure (Figure 3.7) whose vector elements expand dynamically once an initially
reserved allocation is exceeded. The result type adds one layer of chunk array nesting (AC [])
to the input type (clearing any others), to indicate that its elements are stored in physically
separate linked list nodes. Chunk nesting can only be removed via Compact() (Section 3.1).

Joins

The HashJoin(left, hash, right) operator, by contrast, expects a nested array-typed
value as its right input, which is probed with records from the left. A hash function–supplied
as a third input–simply selects which element of (the innermost dimension of) the right-side
array to loop over. Thus, a simple nested loops join can be constructed with a one-element
right-side array. A boolean-valued test expression–with access to all fields of an output
record formed by appending all the right-side fields to those of the left–decides if a probe is
a match.

The right hand side must be an array, but it need not be the chunked array output of
a HashTable. Thus, it is possible to construct a hash table multiple ways: one can can
Partition() to the appropriate number of buckets, or use the Compact()’ed output of a
previously-built table, which may be superior for non-uniform key distributions.

By default, the output of a join is itself a chunked-array of length one, which expands by
allocating more chunks if the size of the join output exceeds its predicted allocation. If the
left-side input is an array, however, then the join array will take on the left (probe) array’s
length. In this way, parallel radix joins are processed partition-by-partition, with outputs
maintaining the structure of the probe input. It also means that SplitSeq(o, N) can be
used to to construct an interleaved join (i.e. one that leverages the temporal parallelism of
Figure 2.4b to achieve the “block-wise” execution of Vectorwise [76]), in which two consec-
utive joins are executed for one block of the first join’s probe input, yielding a materialized
output, which is then fed as the probe input to the second join, as the materialization only
interrupts inner-loop fusion, but not outer-loop fusion7.

Indexed Joins & Gather

When no attribute packing (machine-level plan dimension #3 of Chapter 2) is used, hash
tables store only a key and a row-ID (rid), which permits successful probes to re-assemble
other attributes from the original relation by gathering them from their respective column
arrays. HiRes supplies a Position() operator that returns the either the relative or absolute
index (with scalar type Index) of every element in its input, and which can be projected (or
zipped) into a hash table build. Subsequently, a binary Gather(src, dst) operator retrieves

7Ideally we would like to interleave without any materialization, but this would require substantial
revision of the current fusion architecture, and so is reserved for future work.
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elements located at the Index-typed positions in src from dst, which generally should be a
flat vector if absolute indices are used. Only if both sides of the join were already parallelized
before the build (e.g. by partitioning) should relative indices be used, in which case the build
(right) side would be nested.

Reductions

SQL sum(), avg(), count(), and other functions cause reductions of relational attributes.
Depending on context, there are several different ways to realize their semantics in HiRes,
which supplies multiple primitives for implementing generic reduction operators.

Flat (Vector) Reductions

The simplest reducer is Reduce():

1 val avg: Operator = { // Assume ‘’input‘ has type ‘V[UInt32]‘

2 Let(

3 List(

4 ’sum := Reduce(’input, PlusOp),

5 ’count := Reduce(’input(Const(1)), PlusOp)),

6 in = Zip(’sum, ’count)(’sum / ’count))

7 }

Listing 3.7: A avg() Implementation in HiRes

Listing 3.7 demonstrates the construction of an average operator using the Reduce() primi-
tive, which takes an input vector and an aggregation operation (here +) to produce a scalar-
typed result. Recall that Zip() introduces the ’sum and ’count symbols into a single record
namespace, allowing the implicit Eval() on the last line to access them. Additionally, the
’input(Const(1)) expression yields a vector-typed value whose elements are all 1 and whose
length is the same as that of ’input. If ’input were masked, this vector would be masked
too, resulting in a count of only those elements with a set valid bit in the predicate mask
vector.

There is no primitive average operator because such a construct would entail allocating a
separate counter and performing a post-reduction division as in the above example, thus vi-
olating the single-loop-per-primitive principle. However, the pattern of Listing 3.7 can easily
be templated into a macro, such as the HiRes Standard Library’s SumDouble() operator.

Nested (Array) Reductions

Vectors can be reduced to scalars with Reduce(), but arrays of scalars (see Section 3.2) can-
not. The NestedReduce() primitive serves this purpose, and helps to parallelize reductions.
It removes one layer of array nesting, and if a vector type is present, then the nth element
of each vector is reduced with the nth scalar element of each other vector. Thus, when a
sub-query containing reductions is parallelized with SplitPar(), it must be completed with
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a final NestedReduce() much in the same way as an ordinary parallelization would require
a Flatten() at the end:

1 val avgPar: Operator = { // Assume ‘’input‘ has type ‘V[UInt32]‘

2 Let(

3 List(

4 ’input := SplitPar(’input),

5 ’sum := Reduce(’input, PlusOp),

6 ’count := Reduce(’input(Const(1)), PlusOp),

7 ’sum := NestedReduce(’sum, PlusOp),

8 ’count := NestedReduce(’count, PlusOp)),

9 in = Zip(’sum, ’count)(’sum / ’count))

10 }

Listing 3.8: Parallelizing Listing 3.7

Sorting

Sorting has not yet been a primary bottleneck in queries optimized with HiRes, so it does
not yet offer a full panoply of sorting operations. At this time, the only one supplied
natively is insertion sort, though surely future versions of the language would require a
wider range of more efficient building blocks, such as a merge operator (for mergesort), a
hardwired quicksort primitive, and other more data-parallel algorithms as well. However,
reasonably efficient sorting routines can still be constructed by combining insertion sort with
partitioning, wherein it acts as the final stage of (possibly multi-pass) radix sort.

The InsertionSort(o, k1 . . . kn, ) construct is materializing and, like other data move-
ment operators, reproduces the input record format in its output. Here, k1 . . . kn are the
names (or indices) of number-valued key fields within the input record used to determine
the (ascending) sort order; wherever two records have the same value at key k1 . . . ki, then
ki+1 will be used to break the tie. In contrast to partitioning, the keys must necessarily
reside in the output, in order for such comparison to take place, but since the input need not
be material, zip and projection adjustments within a fused operator may reshape it before
sorting materializes it.

3.2 HiRes Type System

The type system of HiRes is designed to facilitate both memory layout and execution flow
optimizations. It is presented in a symbolic representation, summarized in Figure 3.4, for
the sake of brevity and clarity.

Vector and Array Types

The fundamental unit of data in HiRes is a vector, or an extent of data with contigu-
ous indices, denoted by V [S] for scalar elements of type S. A vector corresponds to an
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P ::= Index, Bool, Float, Double Primitives
Int8, Int16, Int32, Int64
UInt8, UInt16, UInt32, UInt64

Rec ::= Rec [f1, . . . , fn] Flat Records
Rec [(f1, . . . , fn) , . . . , (f1, . . . , fm)] Split Records

f ::= ([name] : P) Record Field

S ::= P, Rec Scalars

V ::= V [S] Vectors
V̄ [S] Vectors with num-valid counter
VP [S] Vectors with predicate mask

A ::= A [T, (H)] Arrays (with any decorators)
(A) [T] Arrays with no decorators
Ā [T] Arrays with num-valid counters
AP [T] Arrays with padding
AC [T] Chunked arrays
AD [T] Disjoint Arrays

H ::= Histograms
Hbuilt Built histogram (incremented)
Hoff Reduced histogram (prefix sum)
Hend Histogram after moving records

T ::= S, V, A, H All types

Figure 3.4: HiRes Types

inner loop of a record-processing operator. Nesting operators–such as SplitPar() and
RestoreHistogram()–turn a vector into an array of vectors A [V [S]], or even arrays of ar-
rays of vectors A [A [V [S]]], where each degree of array nesting means one more degree of
outer loop nesting. Since there can be at most one inner loop, at most one degree of vector
typing is allowed. The vector and array levels align roughly with data-level and thread-level
parallelism, respectively.

Not only arrays of vectors, but also arrays of scalars A [S] are possible, and indeed
meaningful: if a binary operator’s inputs have types A [V [S1]] and A [S2], then each of the
latter arrays’ scalar elements would be broadcast (repeated) across all scalar elements in the
corresponding array of the former. Conversely, with inputs typed V [S1] and A [V [S2]], the
vectors of the former would be broadcast across the arrays of the latter. Figure 3.6 illustrates
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(with unequal-length vectors)

Scalar: S

Vector: V [S]

Predicated Vector: VP [S]

Array of Vectors: A [V [S]]

Array of Scalars: A [S]

(with num-valid counters) Ā [V [S]]

Figure 3.5: HiRes Array and Vector Types

both of these properties of array and vector types.
The HiRes type system also aims to ensure that only valid records are used by and

returned from HiRes programs. To that end, array and vector types may also have decorators,
which indicate the presence of metadata such as masks–bit-vectors marking which records
are active and indicated with the superscript VP [S]. When a vector is masked, operations
on its elements will be wrapped in if statements (in the lower-level, C-like intermediate
LoRes) using the mask as a condition to avoid computation and memory accesses for invalid
rows. A decorator also exists for num-valid counters, which are marked Ā [V [S]] for an
array whose vectors each contain valid data in only an initial subset of their physical space.
Fixed numbers of dummy padding elements at the end of each (vector) element of AP [V [S]]
may be marked as well. Chunked decorators AC [V [S]] and disjoint decorators AD [V [S]]
indicate that some portion of each vector is stored in physically disjoint memory (see the next
section). In order to avoid the use of rows with non-valid data, the HiRes type checker rejects
programs that attempt to discard such metadata, insisting that any flattening operation
either perform compaction (Section 3.1), or that the array type in question be pure (indicated
by parentheses: (A) [. . . ]), and contain no decorator.
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+ +

A [V [S]] + A [S]
V [S] + A [V [S]]

Figure 3.6: Depth Promotion: Unequal depth results in scalar or vector broadcast

Chunked Arrays & Hash Tables

Most HiRes datatypes assume to be backed by fixed-length, physically contiguous buffers (at
least, one for each field group), but hash tables and join results may require unpredictable
amounts of per-bucket storage. For this reason, HiRes includes an efficient “chunked hash
table” data structure, shown in Figure 3.7, that optimizes for the common case of (hope-
fully) well-chosen overload factors, permitting each bucket’s initial allocation to reside in
a physically contiguous base buffer, while also enabling graceful overflow to linked lists of
bucket-sized chunks of supplemental storage. It is a kind of compromise between chaining
and linear probing in that probes to a given bucket will scan, in sequence, the all records
in a chunk before traversing the “chain” of further chunks, if any exists. In generating code
to traverse a chunked array, the compiler adds one extra loop level to any iteration over its
“vector” elements to traverse the chain linked list nodes, but this is not semantically exposed
(it does not affect broadcast properties, for example), and in the common case should have
a bound of one.

A chunked array type AC [V [S]] (of which any type may contain at most one chunk
decorator) thus closely resembles a normal array type Ā [V [S]] with N (vector) elements in
that its underlying buffer contains space for N fixed-length vectors, and num-valid counters
in a separate array, but with further ancillary data structures to manage the bucket’s chunk
lists. However, storing counters separately would result in very inefficient probes: if the
first probe to a bucket of a large table is expected to cause a cache miss, then so too would
the access to the separately stored counter indicating how many slots are occupied. For
this reason, an inline counter mode is supported, that allocates an extra “dummy” slot just
before the start of each bucket, in which the bucket’s counter is stored8. If this counter is
greater than the chunk size, then the ancillary list arrays will be consulted, but not otherwise.

8Our current prototype requires that the first field of the table’s record type be large enough to count
the number of records in a chunk; thus if it is a UInt8 type, the chunk size must be no larger than 256
records.
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next
arr

bucket

record

chunk

next
arr

end
list
end
list

end
list

…

count

count

count

…

“dummy 
cell” w/ 
counter

main hash table array

ctr

ctr

record

ctr

…

record

record

next
arr

record

next
arr

record

chunk list
pointer array

“wide”
counter

array

probe

separate per-bucket arrays

Figure 3.7: Efficient “Chunked” Hash Table Format

Because this chunked array type supports the same split and flat record types as regular
arrays, it is possible to create buckets with contiguous extents of a single field (as its own field
group) which, if Split() appropriately, would be amenable to SIMD processing in future
versions of the compiler that support it. Alternatively, when packing (row-major order) is
beneficial, this is supported too.

Disjoint Arrays & Ancillaries

Figure 3.8 depicts another possible array structure in which each element (vector or array)
resides in a disjoint allocation of memory. Unlike chunked arrays, disjoint arrays contain
only one pointer per extent, rather than a linked list of chunks, though the extents may have
different lengths if there is a histogram attached to track them. They can have num-valid
and predicate mask decorators as well.
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Disjoint Array: AD [V [S]]

Figure 3.8: Disjoint Arrays

Disjoint arrays are an important performance optimization in cases where parallel accesses
to contiguous sub-arrays would otherwise cause false sharing or incur the cost of crossing
NUMA domains. Thus, when operators like Histogram() produce ancillary data structures
from nested inputs, they default to disjoint-typed outputs, and split-like operators can be
annotated with a disjoint directive to induce this layout manually. The type-checking rules
in Section 3.2 ensure, as above, that disjoint arrays cannot be flattened without compaction,
or otherwise used where contiguous buffers are required. To ensure the maximum benefit
from chunked arrays, when the compiler generates allocation code for them, it marks the
allocation loop over all sub-arrays as parallel, so that each one will be allocated by the
thread that ultimately uses it9, thereby ensuring that threads will use memory within their
own NUMA domains.

Record & Relation Structure

While array-vector nesting controls execution by imposing loop structure, the concrete type
of scalar S itself determines memory layout. In addition to simple primitive types such
as integers and booleans, scalars in HiRes can also be structured record types: a flat record
contains contiguous fields packed together in a struct, while a split record has multiple groups
of fields that each reside in separate physical columns of memory when that record type is
instantiated in a vector. Thus, the HiRes type system partially orthogonalizes execution
concerns–how rows are divided between loop iterations and which ones are valid–from storage
concerns and how memory for each relation and intermediate result is accessed.

Records consist of ordered fields of primitive types and optional names. A flat record is
denoted by

(key : UInt32, value : Index)

for a tuple with a 32-bit unsigned key field, and a value field equal in size to the native C
size t type.

The primitive types currently supported by HiRes include {UInt, SInt}× {8, 16, 32, 64},
as well as Bool, Int, Index, and single- and double-precision floating-point types. Meanwhile,
a split record denoted by ((Index) , (UInt8,UInt8)) contains, in this case, one column of Index-

9Assuming the OMP PROC BIND environment variable is appropriately set to associate each hardware
thread with a consistent loop index
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typed values, and another with pairs of 8-bit unsigned values. HiRes does not currently
support non-byte, non-power-of-two sized datatypes, and does not handle strings.

Typing Rules

HiRes is implicitly typed, meaning that the type of an operator is inferred by the compiler
without any explicit annotation by the programmer, aside from the initial marking of input
and output relation types; inside an operator, new record types are created by manipulation
with Zip, Project, and Let, while array and vector types are manipulated with nesting
and flattening operators, and implicitly by combination of types with differing depths. The
rules that govern these inferences assume each concrete operator included in the syntax of
Figure 3.2 has a type signature specifying its canonical function type in terms of the minimal
nesting depths expected of its inputs. When more complex (i.e. deeper) inputs are provided,
the rules of this section determine how to adapt those canonical rules.

Nesting and Flattening

Figure 3.12 explains the rules for nesting and flattening. The Split operators straightfor-
wardly add an array layer A [T ] to an input type T , where the latter is a type variable that
stands for any type, so long as it satisfies the rule’s premise (in this case, it must not be a
scalar); when followed by square brackets, T1[T2] indicates that T1 refers to some layers of
nesting on top of type T2. The Flat rule restricts the use of flattening operations to those
cases where no decorators are present at the level being flattened, as discarding them would
lead to the use of invalid elements.

Rules prefixed NV- govern the introduction and elimination of num-valid counters, which
are stored out-of-band with the array’s data proper. These counters are introduced by
Collect, which does not alter the size or position of any array, but does render the tail of
each vector invalid. Figure 3.10 also stipulates how the adjustments of nesting and flattening
changes propagate across subsequent operators that use them.

In the case of a single-input operator, the ArrUp rule simply indicates that a vector-
vector operation of signature V [S1]→ V [S2] becomes an array-array operation in which the
output takes on the same depth (and structure) as the input. Its first premise should be
read as “given an N -input operator o with type signature (V1, . . . ,Vn)...”. When its concrete
inputs o1, . . . , oN have different structures, however, the other two premises select a type TM
having the greatest depth of all, and yield a result type of equal depth. In these cases, the
substitution operator (forward slash) replaces the innermost vector type while keeping the
rest of the structure intact; similar rules (Subst and SubstIn) apply when the right hand
side is nested, replacing up to the nesting depth of that side.
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Depth Promotion & Broadcast

The auxiliary rules in Figure 3.10 serve two functions: they define the nesting depth equiva-
lence relation ≡, and ensure that chunk decorators occur at the same depth of each input in
a multi-input operator. The latter condition is necessary for correct loop-nest generation: if
it were not enforced, it would not be possible to add a single loop over all chunk lists, and,
more importantly, it would likely indicate that the inputs’ chunks were generated from dif-
ferent sources with different lengths, which would result in incorrect operation.10 The chunk
alignment condition is enforced by splitting the definition of depth equivalence between the
EqUp and EqUpChunk rules: an equivalent pair of nested types can be made from a pair
of equivalent base types only if either both sides add chunking, or both do not. The condition
TM ≥ Ti≤N in ArrUp ensures that the deepest input is equivalent to all other inputs up
to their depths, which guarantees in turn that any chunks present in one input are present
in all inputs at the same level. Note that the typing rules for chunk-producing operators
(HashTable) ensure that at most one layer of chunking exists for any result.

The type signature of HashJoin does not conform to ArrUp because of its second input’s
nested (array) type, so separate rules in Figure 3.11 extend its domain of well-typed inputs
to higher depths. The rules for HashJoin are even more complex than its signature implies,
since it actually only adds nesting when the first input has none. Despite its arbitrary
appearance, this rule is motivated by the desire to allow chained joins, as described in
Section 3.1: if the probe is a flat vector, then a length-one chunked array is added onto the
output to contain its unknown and arbitrary number of match elements, but if the probe
input is already nested, this depth is simply preserved in the output, which is now chunked
at the innermost array level, meaning that each array of the input produces its own run of
match elements in the output (see Section 3.1).

Disjoint Array Typing

The typing rules for disjoint arrays in Figure 3.13 ensure not only that non-contiguous
data cannot be “flattened”, but also that the specific structure of discontinuity expressed is
coherent. For example, an already-nested array subjected to a disjoint Split() must return
a result that is disjoint at all levels (Rule DisjA)–rather than just the innermost, newest
level–as the physical separation of innermost vectors necessarily implies that outer levels,
which group together multiple vectors each, are physically disjoint too. The property of
disjointedness thus differs from from chunkiness in that it can be marked on multiple levels,
though only so long as it extends to all outermost nesting depths beyond the first at which
it is marked.

Disjointedness does not alter nesting equivalence (rules EqUp and EqUpChunk), be-
cause multi-input operators can process sources with disjointedness on different levels without
any difficulty, as there is no chunk loop to coordinate. Most operators do not even need to

10The type system cannot fully guard against this possibility; instead, it can be checked during the
generation of intermediate data structures that represent the lengths of each array dimension explicitly
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T2 ≡ T3

T1[T2]/T3 = T1[T3]
Subst

T2 ≥ T3 ∧ ¬ (T2 ≡ T3)

T1[T2]/T3 = T1[T2/T3]
SubstIn

S1/S2 = S2 V1[T1]/T2 = V1[T1/T2] A1[T1]/T2 = A1[T1/T2]

Figure 3.9: Type Substitution Rules

S1 ≡ S2 ScalEq V1 ≡ V2 VectEq

T1 ≡ T2

AC̄ [T1] ≡ AC̄ [T2]
EqUp

T1 ≡ T2

AC [T1] ≡ AC [T2]
EqUpChunk

T1 ≡ T2

¬
(
AC [T1] ≡ AC̄ [T2]

) NonEq T1 ≡ T2

T1 ≥ T2

GtEq
T1 ≥ T2

A [T1] ≥ T2

GtEqUp

o : (V1, . . . ,VN)→ VR oi≤N : Ti TM ≥ Ti<N

o (o1, . . . , oN) : (T1, . . . , Tn)→ TM/VR
ArrUp

Figure 3.10: Array Broadcast (Depth Promotion) Rules

be aware of disjointedness, with the exception of Split() and Partition(), which generate
it, Offsets(), which must clear its counter accumulation at every discontinuity (so that
each separate partitioning instance starts at index zero relative to its disjoint buffer), and
ancillary-creating operators like Histogram().

The propagation of disjoint decorators upwards to all nesting levels (DisjA) clears any
chunk and num-valid decorators, since whatever information these might have carried is now
encoded in the innermost AD [T ] type. Under the hood, the concrete data structure generated
for the disjoint type will contain a set of num-valid counters, but this need not be reflected
in the type itself, as AD [T ] already implies that a compaction is necessary before flattening
is permissible. It is perfectly sensible to apply further, non-disjoint Split()s, resulting in
a mixed type such as AD [A [S1]]. This mixed nesting enables independent processing of
contiguous extents within arrays that are themselves disjoint, and it can easily be removed
with a simple Flatten().
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o1 : T1 o2 : T2 T1 ≡ T2 T3 ≥ AC [V [S3]]

HashJoin(o1, o2) : T3

Join

o1 : V1 o2 : A [V2] T3 ≥ AC [V3]

HashJoin(o1, o2) : AC [V3]
JoinUp

Figure 3.11: Hash Join Typing Rules

O : T1 T1 = T2[V3]

Split(O) : T2 [A [V3]]
Split

O : T1[(A) [V1]]

Flatten(O) : T1[V1]
Flat

O : T1[T P2 ]

Collect(O) : T̄1[T2]
NVIntro

O : T̄1[T P2 ]

Collect(O) : T̄1[T2]
NVProp

O1 : T1

[
Ā [V1]

]
O2 : T1[Hoff]

Compact(O1, hist=O2) : T1 [(A) [V1,Hend]]
NVDrop

Figure 3.12: Nesting-Flattening Rules

T1 = A [T1]

disj (T1) = AD [disj (T2)]
DisjA

T1 = V1

disj (T1) = T1

T1 = S1

disj (T1) = T1

O : T1 T1 = T2[V3]

Split(O, disjoint) : disj
(
T2

[
AD [V3]

]) SplitD

Figure 3.13: Disjoint Array Typing Rules

Γ ` o1 : T1 Γ, x1 : T1 ` o2 : T2

Γ ` Let([x1 = o1], in o2) : T2

LetBase

Γ ` x1 : T1 Γ, x1 : T1 ` Let([. . . , xn = on], in om) : Tm

Γ ` Let([x1 = o1, . . . , xn = on], in om) : Tm
LetProg

Figure 3.14: Let Typing Rules
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T = V [P]

groups (T ) = [(P)]

T = V [Rec [[f1, . . . , fn]]]

groups (T ) = [(f1, . . . , fn)]

T = V [Rec [[g1, . . . , gn]]]

groups (T ) = [g1, . . . , gn]

oi≤n : V [Pi]
T = V [Rec [(f1 : P1) , . . . , (fn : Pn)]]

O = Project(f1, . . . , fn)

Let([f1 = o1, . . . , fn = on], in O) : T
LetProjS

oi≤n : V [Si] fij = (groups (oi))j∀j≤|groups(oi)|∀i≤n = (fj : Pj)
T = V [Rec [f11, . . . , fnm]] O = Project(f1, . . . , fn)

Let([f1 = o1, . . . , fn = on], in O) : T
LetProj

oi≤n : V [Pi]
T = V [Rec [((f1 : P1)) , . . . , ((fn : Pn))]]

O = Zip(f1, . . . , fn)

Let([f1 = o1, . . . , fn = on], in O) : T
LetZipS

oi≤n : V [Si] gij = groups (Si)j
T = V [Rec [g11, . . . , gnm]] O = Zip(f1, . . . , fn)

Let([f1 = o1, . . . , fn = on], in O) : T
LetZip

Figure 3.15: Projection Typing Rules

o1 : T1 [V1] o2 : T2 [V [Index]]

Histogram(o1, o2) : T1/A
D [Hbuilt]

Hist

Figure 3.16: Histogram & Partitioning Typing Rules
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3.3 MetaOps: HiRes “Macros”

The primitive operators of HiRes are sufficiently low-level that most common relational
operators a hypothetical query planner might wish to instantiate will decompose to a com-
position of several of them. For this reason it is convenient to have pre-made assemblages of
them corresponding to tasks such as Filter, HashPartition, and EquiJoin, and a special
layer on top of HiRes provides meta-operators for precisely those. They can be thought of
as “macros” in the sense that they de-sugar to different HiRes-ASTs (depending on supplied
tuning parameters), but are not type-checked until such expansion has taken place. Unlike,
e.g., C macros or C++ templates, they are themselves designed to be pattern-matched, and
re-written like terms of a relational algebra in their own right.

Since some of the transformations in Chapter 2 Section 2.3 involve multiple HiRes prim-
itives, they can be made easier to implement by grouping those operators together before
the transformation is applied. For example, the Filter meta-operator takes a list of filter
predicates and can generate all the cracked and non-cracked variants of their conjunction,
as well as the different possible collection and compaction schemes such a filter might en-
able. A partition meta-operator, in addition to bundling the separate histogram-building
and reduction operations into a single unit, can generate different loop fusion choices across
the boundary introduced by the blocking Histogram() and Offsets() operators. As a
further example, the Rename meta-operator emits a HiRes Project() (or Zip()) primitive
to extract only those record fields used by a later consumer, which can substantially simplify
the expression of attribute packing.

The short table in Figure 3.17 summarizes the handful of existing meta-operators, which
are used in all subsequent examples for the sake of concision. Compositions of operators can
be built using the so-called “cake pattern” in Scala, in which each operator instance supplies
methods to generate another operator of any type using the original as an input, resulting
in multi-line chains such as that shown in the example of Listing 3.9. They also provide
methods beginning .withX(...) to adjust tuning parameters X, and these also participate
in cake pattern chains.

Meta-Operator Description

Concrete(Op) Contains an already-expanded HiRes operator
Connector(MetaOp, Op=>Op) Insert arbitrary HiRes operator into expansion

HashPartition(MetaOp, Id) Partitions with Id as key
EquiJoin(MetaOp, MetaOp, Id, Id) Joins meta-ops with given keys

Filter(MetaOp, Expr*) Filters input with list of predicates
Aggregate(...) Either Reduce() or HashTable() aggregation

Rename(MetaOp, (Id,Expr)*) Computes expressions with given field names

Figure 3.17: HiRes “Meta-Operator” Macros
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1 val q19meta: MetaOp = {

2 import TpchSchema.{DELIVER_IN_PERSON, AIR, AIR_REG, [...]}

3 val litem = Concrete(’lineitem_, [...]) // Input both relations as ‘MetaOp‘s

4 val part = Concrete(’part_, [...])

5 var table: MetaOp = part // Build a hash table from this

6 /* table = [...] */ // Partition or parallelize table

7 table = table.rename() // Prune unused fields

8 var join: MetaOp = litem // Build a join operator ‘MetaOp‘

9 /* join = [...] */ // Parallelize join

10 join = join // Pre-join filter

11 .filter(

12 (’l_shipinstruct === DELIVER_IN_PERSON),

13 (’l_shipmode === AIR

14 ’l_shipmode === AIR_REG))

15 /* join = [...] */ // Partition probe side

16 join = join

17 .equiJoin(table, ’l_partkey, ’p_partkey)

18 /* join = [...] */ // Customize join operator

19 val postCond: Expr = [...] // all post-join predicates

20 join = join // Post-join filter & aggregation

21 .filter(postCond)

22 .rename(’price -> // Convert to double for stability

23 Cast(’l_extendedprice, lo.LoDouble()) *

24 (DoubleConst(1.0) - ’l_discount))

25 .aggregate((’price, PlusOp))

26 .nestedSumDouble(’price)

27 /* join = [...] */ // Reduce parallel results

28 join.cast(UField(0), lo.LoFloat()) // Final result to return

29 }

Listing 3.9: A Plan Skeleton for TPC-H Q19

3.4 HiRes Case Studies

To demonstrate the utility of the HiRes language in expressing machine-level plans, this
chapter concludes with case studies encoding TPC-H Q19 and other examples.

TPC-H Query 19

Listing 3.9 is a kind of “baseline” machine-level plan for TPC-H Q19 expressed as a
HiRes meta-operator. It implements a serial variant of the plan depicted in Figure 2.11b,
which fully packs both side of the join11. To generate the other plan variants, additional
meta-operator code can be inserted at the positions marked by comments.

For example, the probe phase may be parallelized by inserting the following at Line 9:

11Although actually in this case the packing of lineitem occurs during the join, rather than before it
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1 join = join.splitPar(threads)

And then adding the following reduction at Line 27, to complete the merge portion of the
split-merge parallelism induced by .splitPar():

1 join = join.nestedSumDouble(UField(0))

To partition the probe (lineitem) side, the following can be added at Line 15:

1 .partition(’l_partkey, renamed = Some(_.rename()))

2 .withHash(partHash)

3 .withParallel(threads > 1 && !threadLocal)

4 .withBlock(blockProbe)

5 .withGather(!partAll)

This listing reveals other parameters that a plan generator might vary. First, withParallel
determines whether the output of partitioning merges input threads’ results, or whether each
thread performs an independent partitioning. Second, withHash chooses the hash function
to use for the partitioning and sets the number of radix bits. The withBlock modifier
generates a Cat()/Uncat() pair to block the value (as opposed to key) input from being
fused with the initial histogram build, in the case where this would result in sub-optimal
materialization. Finally, withGather chooses whether the partitioning is packed or not: if
not, then a subsequent Gather() will be inserted into consuming meta-ops to access fields
other than the key. Joins take similar modifiers.

Using these tuning knobs, a plan generator can make the above insertions conditional
up on variables set by an auto-tuner, in order to explore the performance characteristics
of the broader plan space, as presented in Chapter 6. Generators must take care to insert
artificial nesting (shells) on the build side prior to hash table construction when the probe
side becomes deeply nested, as otherwise the buckets of the built table might get aligned
with some level of nesting on the probe side, preventing each probe from selecting a bucket,
as the loop induction variable for that nesting level would choose which bucket gets probed,
rather than the key or hash function. This is fine in the case where both sides are partitioned
at that depth based on the join key, but not for other kinds of nesting.

TPC-H Q06

The relative simplicity of TPC-H Q06–and its associated plan space–makes it easier to write
a full plan generator as a Scala function returning different possible meta-operator config-
urations. Listing 3.10 shows the code for this in full, as it spans only a few lines! Its only
machine-level planning parameters are (1.) split-merge parallelization, (2.) whether to crack
the initial predicates, and (3.) whether to interleave collection of masked values.
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1 def generateQ06Meta(

2 threads: Int=1,

3 crack: Boolean=false,

4 collect: Boolean=false): MetaOp = {

5 val meta: MetaOp = Concrete(’lineitem_, [...])

6 meta

7 .splitPar(Const(threads))

8 .filter(

9 ’l_shipdate > minDate && ’l_shipdate < maxDate,

10 ’l_discount > minDiscount && ’l_discount < maxDiscount,

11 ’l_quantity < maxQuantity)

12 .withCracked(crack).withCollect(collect)

13 .rename(’revenue ->

14 Cast(’l_extendedprice, lo.LoDouble()) *

15 Cast(’l_discount, lo.LoDouble()))

16 .aggregate((’revenue, PlusOp))

17 .nestedSumDouble(’revenue, mute = threads < 2)

18 .cast(UField(0), lo.LoFloat())

19 }

Listing 3.10: A Plan Generator for TPC-H Q06
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Chapter 4

Operator Fusion: Constraints &
Algorithms

4.1 Introduction

A primary benefit of query compilation is its ability to fuse multiple relational operators
together, permitting the re-use of data while in registers or cache, and lessening the likelihood
of communication between units of parallel execution.

Fusion is both a challenge, because the choice of how to carve up an operator DAG
into fusible components is under-constrained by program semantics without being fully free
(See Figure 2.8 in Chapter 2), and an opportunity, because different fusion options require
varying amounts of data movement and present novel tradeoffs between computation and
communication that may affect code generation today as well as database hardware design
tomorrow. It is an aspect of machine-level query planing worthy of significant investigation,
and this chapter describes its expression and manipulation in the HiRes compiler stack.

These concerns are not, strictly speaking, novel. Loop fusion is a well-known compiler
optimization technique [15, 40] that, in the general case, identifies loop nests with con-
formable index variables that can be combined without violating data dependencies, and
which can contract array values to scalars, reducing their storage and communication re-
quirements. This study considers loop fusion in a slightly more specific context and with
somewhat different constraints.

In order to expose fusion choices as a dimension of machine-level query planing, HiRes needs
to supply a consistent mapping between HiRes code and its resulting sequence of loop nests,
effectively making loop fusion decisions part of the language’s semantics. Since another goal
of its design was to facilitate the investigation of query optimization using, at least initially,
handwritten plans, HiRes had to ensure that the final loop nest choice is intuitive from the
programmer’s perspective, and that it follows naturally from the structure of the code, even
if other, less straightforward possibilities might be more optimal. The following sections thus
do not seek to prescribe optimal decision strategies for fusion-conscious query planing, as
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this analysis is deferred to the communication-aware cost model discussion of Chapter 7.
The desire for an intuitive fusion algorithm also influenced the decision to perform fusion

analysis at an early stage in the compiler pipeline, prior to the point at which any concrete
loop nests have been issued or induction variables assigned. This, too, departs from prior
work, in which the input has generally been assumed to be a C-like program (or its control
flow graph) containing for-loops that the compiler is entrusted to recombine as part of a
back-end optimization process of which the programmer may remain largely unaware. The
approach of HiRes, by contrast, entails the inference of compatible loop nests based on the
structure of the input operator DAG, and does not attempt to reconstruct this relationship
from lower-level (LoRes) code that has already been generated.

The foregoing criteria made it difficult to reuse off-the-shelf algorithms, and motivated
the formulation of new fusion procedures. The rest of this chapter outlines principles of “in-
tuitive” fusion choices, and formalizes these requirements into a set of algorithms, concluding
with a brief discussion of issues arising particular operators’ semantics.

4.2 The Shared Clique Formation Algorithm

In HiRes, two separate kind of fusion take place, corresponding to the array and vector
levels of relation structure, respectively. Each is subject to different conditions governing
which nodes may start and end a clique to be fused. Array fusion–by which operations that
can share the same “thread ID” induction variable are merged–is performed independently
for each nesting depth in increasing order, and is interrupted by nodes that change depth
(or perform nested “array reductions”). Vector fusion–by which intermediate results can be
immaterialized to register-allocated scalars–is blocked by operations that must fully process
their input vectors before returning an output (such as hash table builds and aggregations),
or when an operation requires that one of its inputs be fully materialized prior to use (such
as a gather, or hash table probe). What both share is a common algorithm for dividing a
DAG into fusible cliques once such determinations have been made.

An Intuitive Overview

The clique formation algorithm (CFA) assumes as its input a DAG in which all nodes have
been marked according to whether they start or end a clique (or neither or both), and returns
a set of valid cliques that do not violate the starting and termination conditions and which
are acyclic. Unlike prior work, which proceeds by labeling DAG edges according to whether
they support or inhibit fusion, and then feeding the result into a black-box constraint solver,
the CFA attempts to capture the natural intuitions a human programmer might have upon
inspecting the operator DAG. In particular, it seeks to embody the following principles:

1. Start from the inputs: It is easier to understand fusion choices when they are made
(roughly) in program order. Also, good query plans tend to filter records out early, so
doing more before the first materialization will likely be better.



CHAPTER 4. OPERATOR FUSION: CONSTRAINTS & ALGORITHMS 64

6 7

5

1 4 8

9

2

0

3

6 7

5

1 4 8

9

2

0

3

6 7

5

1 4 8

9

2

0

3

6 7

5

1 4 8

9

2

0

3

6 7

5

1 4 8

9

2

0

3

A B C

D E

Blocker / Terminator

Starter

Fusion Clique

A B C D E
Stage Order

Figure 4.1: Execution of the Fusion Algorithm

2. Pack cliques greedily: Forming cliques one-at-a-time, and filling each maximally as
it is considered, makes reasoning about the algorithm much easier.

3. Process “leftmost” nodes first: In multi-input operators, it is usually the syntac-
tically first input whose structure determines the operator’s loop induction variables
(e.g. in a join, the left-hand side “probe” input causes probes to the hash table), so
cliques should be built from left to right.

4. Avoid forming cycles: All correct fusion algorithms must not form any cyclic de-
pendencies between fused cliques, but if cliques are formed one-at-a-time, then cycles
can either be split when formed accidentally, or avoided because the algorithm will
never result in them. Our solution is the latter, as Section 4.2 explains.

5. Manual edits yield all variations: Manual insertion of Cat(), and Block() nodes
should be able to generate the other possible clique sets not chosen by the greedy
algorithm.
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Figure 4.1 shows how such an algorithm might process an abstract DAG once starter
and terminator nodes have been marked (with circles and boxes, respectively). This could
represent either inner or outer loop fusion, but here the choice is irrelevant. What matters is
the sequence of steps from stage (A) to stage (E) in which three cliques are formed greedily.
Nodes 0 and 3 (numbered in depth-first, left-to-right, post-order traversal from the output)
are inputs to the HiRes program, and node 0 is the “leftmost” (first in program order), so
it is a natural starting place. Intuitively, step (A) reveals that fusion is blocked by a nearby
terminator (node 2), so in step (B), a clique is formed from the starter, the terminator, and
any nodes dominated by the starter but not the terminator (node 1). Note that a node n1 is
dominated by another node n2 (n1 < n2) if n2 is an input of n1, or is an input of any other
node that dominates n1.

Searching from successive starters to their closest terminators would seem the most nat-
ural procedure. However, as step (C) shows, the HiRes CFA makes a slight tweak: it is
actually the closest undominated terminator to the (leftmost) input that is considered to
form the next clique. Here, undominated means that no other terminator not yet added to
a clique is a dominator of the node in question. Thus, in step (C), the next undominated
terminator is node 6, and the only starter that dominates it is node 3. In step (D), node
3’s additional undominated terminators (7 and 8) are discovered iteratively, until a maximal
clique is formed. Finally, in step (E), only node 9 is left, and forms its own clique. In this
example, the greediness of clique packing results in node 1’s inclusion in the first clique,
though it would certainly be just as valid to include it in the second, larger one. To achieve
that result, the programmer would insert an explicit blocking node between 0 and 1.

The ever-so-slightly counterintuitive modification of choosing cliques by their terminators
still fulfills the start from the inputs principle, as undominated terminators are inherently
“closer to the input” than others, but it also helps enforce the avoid forming cycles condition
as well. To see why, consider the abstract DAG in Figure 4.2: there, a clique formed first
from node 2 would find node 0 as a closest terminator, and in the next iteration node 3 would
be selected as a dominator of node 0, at which point the clique would be deemed full, as node
4 cannot be added due to its domination of the previously-included node 0. However, such
a clique would inherently cause a cycle, since it both depends on and is dependent on node
4. Choosing cliques instead by terminator resolves any need to detect and split up such a
candidate with an irresolvable cycle, because another node or clique that might possibly form
a cycle with a newly-formed one would have a terminator that dominates it, and so would
have already been removed from consideration. Section 4.2 formalizes this explanation.

Formalizing the Algorithm

Algorithm 2 crystallizes the foregoing considerations into a concrete procedure. Specifically,
Cliques(S, T,X,DAG) accepts a DAG = (E, V ), a set of starter nodes S terminator nodes
T , and excluded nodes X which must never be part of a clique, and returns a set C of sets
of all nodes inside each generated clique.
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Preconditions

The first precondition of Algorithm 2 is that all excluded nodes must be terminators: X ⊆ T .
However, not all terminators must necessarily be excluded: aggregations, for example, may
be contained within their inner loop fusion clique, but no node that depends on them may be.
It it is necessary for all excluded nodes to be terminators, however, as they would terminate
any clique to which they were adjacent.

Another precondition the caller of Cliques (an inner or outer loop fusion routine) must
satisfy is that every node n which dominates a terminator t1 ∈ T must satisfy one of the
following conditions:

1. It is a starter n ∈ S

2. Some starter s1 ∈ S dominates it s1 = n and no terminator t2 ∈ T exists such that
s1 = t2 = t1

3. A terminator t2 ∈ T exists such that t2 = t1 and n = t2

In other words, these conditions require that every terminator actually ends some potential
clique, which is necessary to ensure forward progress, as explained below.

Otherwise, there are no restrictions on which nodes can appear in S, T , and X, aside
those which follow from the semantics of the operators and are encoded by the caller; a node
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can be both a starter and a terminator, and these can be either included in or excluded from
the cliques they form. Sections 4.3 and 4.3 explain how array- and vector-level fusion satisfy
this requirement, and preserve language semantics in their formation of starter, terminator,
and exclusion sets.

Postconditions

In return, Cliques(S, T,X,DAG) makes the following guarantees, which define correctness:

1. Termination: the algorithm will terminate, with runtime proportional to Ω(|T |).

2. Acyclicity: The resulting cliques will not contain any cycles

3. Disjointedness: Each node will be included in at most one clique

How it works

The CFA is stated in terms of dominator tables D[n] which list for each node n the set of
all nodes that are dominated by it, and inverse dominator tables D̄[n] that list all nodes
dominating n. These are computed by the procedure in Algorithm 1, run once prior to to
the main body of the CFA (Lines 3-4 of Algorithm 2).

Algorithm 1 Dominator Table

1: procedure DomSet(DAG) . For each node, all the nodes it dominates
2: D[n]← ∅ for n ∈ DAG . Nodes dominated by n
3: F ← {n : out(n) = ∅} . Frontier, starting at inputs
4: M ← ∅ . nodes that have been marked
5: while F 6= ∅ do
6: M ←M ∪ F . Mark the frontier
7: Fnext ← ∅
8: for n ∈ F do
9: for m ∈ in(n) do

10: D[m]← D[m] ∪D[n] ∪ {n}
11: if out(m) ⊆M then . If all m’s children are marked
12: Fnext ← Fnext ∪ {m}
13: F ← Fnext

14: return D

Algorithm 2 then iterates until it has considered and removed every terminator in the
set T , starting with the leftmost remaining, undominated terminator in each iteration. Once
the clique-defining terminator has been chosen, the largest possible clique is built around
it in an inner loop which gradually assembles clique starter and terminator sets, S ′ and T ′

respectively. The inner loop adds any starters that dominate the current terminators in T ′
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and aren’t dominated by them, but which may be dominated by or dominate other starters.
In the opposite direction, S ′ is expanded with any starters that dominate T ′, so long as they
are not themselves dominated by any it. This process is repeated until no new starters or
terminators are added.

At that point, a new clique has been found. Line 18 computes its interior as the set of all
nodes that are dominated by at least one starter in S ′, end not dominated by any terminator
in T ′. This formulation results in the maximal clique size; were the second condition instead
reversed to select all nodes that dominate at least one terminator in T ′, this could result in,
for example, node 1 of Figure 4.1 being excluded from the first clique and included in the
second. The clique interior I is further winnowed by the exclusion of any marked nodes M ,
which have already been included in another clique, and so must not be used, and by the
excluded nodes X on Line 19.

Nodes are marked whenever included in a clique, but starter and terminator nodes must
eventually be removed from consideration even if they can never be included in any clique.
Starters may begin multiple cliques, but cease to matter when all their outputs have been
marked, unless they are also terminators themselves (recall that some nodes can be both),
in which case a separate condition for terminator removal applies. Excluded terminators
should be marked only when all their inputs are either marked, or are excluded themselves.
The latter condition ensures proper handling of the degenerate case where starters are joined
directly to terminators, which otherwise would prevent termination of the algorithm. It is
important to note the asymmetry of starter- vs. terminator-removal conditions: starters are
not marked when their remaining outputs are all terminators, as they might themselves be
terminators, and could be needed to find additional cliques; terminators do not have this
constraint, as they are the ultimate delineators of new cliques.

Correctness Proof

The three correctness conditions in Section 4.2 may be proven separately, but first Lemma 1 sim-
plifies some of the arguments.

Lemma 1 (Terminator Dominator Inclusion). If a non-excluded (n 6∈ X) node n = t domi-
nates a terminator t of a clique C, and does not dominate any other terminator t′ = C that
dominates (any node in) the clique, then n is included in clique C.

Proof. Since n = t, then by Line 13, its closest dominating starter sn would eventually be
added to the clique if it was not initially. Moreover, there must be a dominating starter sn
because of the preconditions in Section 4.2, which require nodes n dominating a terminator
t with no intervening terminator n = t′ = t to have, or be, a starter that dominates t. There
could not be any terminator that precludes sn’s addition, since this would dominate n and,
transitively, t, and would therefore have been already eliminated in a previous iteration.
Then, since Line 18 includes all nodes dominated by at least one of the clique’s starters, n
will be included.
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Algorithm 2 Fusion Clique Formation Algorithm

1: procedure Cliques(S, T,X,DAG) . Global set of starters, terminators, excluded
2: C ← ∅ . Set of cliques built
3: D ← DomSet(DAG)
4: D̄ ←DomSet(inv(DAG)) . DomSet of the inverted DAG
5: M ← ∅ . Marked nodes removed from consideration
6: while T 6= ∅ do
7: T ′, S ′,← ∅ . Terminators & starters for next clique
8: t, s← ∅ . Next terms. & starters to add to clique
9: Tundom ← {n ∈ T : D̄[n] ∩ T = ∅} . Set of terminators not dominated in T

10: T ′, t← {leftmost element of Tundom} . Starting terminator
11: while t 6= s 6= ∅ do . Iterate until no new starters/terminators
12: s←

⋃
n∈T ′

(
D̄[n] ∩ S

)
\M . Consider new unmarked starters

13: s← {n ∈ s :6 ∃m∈T ′∪S′∪sn ∈ D[m]} . Only take if undominated
14: S ′ ← S ′ ∪ s
15: t←

⋃
n∈S′ (D[n] ∩ T ) \M . Unmarked terminators dominated by S ′

16: t← {n ∈ t : 6 ∃m∈t∪T ′n ∈ D[n]} . Only take if undominated
17: T ′ ← T ′ ∪ t . Add them to terminator set
18: I ←

(⋃
n∈S′ D[n]

)
\
(⋃

n∈T ′ D[n]
)

. Compute interior
19: I ← (I ∪ T ′) \M \X . Add terminators, but remove excluded
20: M ←M ∪ I . Mark all interior nodes
21: C ← C ∪ {I} . Add new clique to output set
22: Smark ← {n ∈ S : out(n) ⊆M} \X
23: M ←M ∪ Smark . Mark starters w/ all-marked outputs
24: Tmark ← {n ∈ T : in(n) ⊆ (M ∪X)}
25: M ←M ∪ Tmark . Mark terms. w/ all-marked inputs
26: T ← T \M
27: S ← S \M

return C

Essentially, Lemma 1 expands the scope of Line 18 to include in a clique not just nodes
dominated by one of its starters (as explicitly stated), but also those that dominate one of
of its terminators, which is implied by the inner loop above. This relies on the precondition
that terminators must have starters, which is necessary for semantic correctness as well.

Acyclicity

Theorem 1. Algorithm 2 will not produce any cliques that result in a cycle

Proof. Figures 4.3 and 4.4 show the two types of cycles that could potentially arise in clique
formation, and how a non-cycle-avoiding CFA would have to resolve them. In the first case, a
clique is formed that has an irresolvable self-dependency (Cycle Type I) through an external
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Figure 4.3: Cycle Type I: Unresolvable “Self-Dependency” Through Single Node

node (or nodes) that both depend on the clique and on which it is itself dependent. In the
second case, a potential clique would form a cycle with a previously-formed clique (Cycle
Type II), even if there is no reason why that candidate is inherently invalid due to a self-
dependency–i.e., splitting up the previous clique would resolve the incompatibility. These
two cases can be excluded separately, and for different reasons.

Lemma 2. Algorithm 2 will not form any cliques with an irresolvable cycle through an
exterior node or nodes (Cycle Type I).

Proof. The Cycle Type I case of Figure 4.3 has two variants of its own, as Figure 4.5 depicts.
In Figure 4.5a, a clique candidate on the left would have a cyclic dependency on node 1

(without loss of generality to examples containing multiple nodes in node 1’s place), but this
would never result from the execution of Algorithm 2. The reason for this is that node 1, in
forming a cycle with the clique, must necessarily dominate one of the clique’s terminators,
and since it was assumed not to be a terminator itself, by Lemma 1, node 1 would have been
included in the clique, preventing a cycle. Thus, forming the maximal greedy clique prevents
this kind of cycle.

The other Type-I case, shown in Figure 4.5b, is a cycle through a terminating node, which
cannot be included in the candidate clique. This type of cycle could only arise if the proposed
clique includes nodes dominated by the offending terminator in node 1, and therefore also
has at least one terminator of its own that node 1 dominates. However, this cannot occur
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under the above algorithm, as Line 10 always chooses an undominated terminator to start
the clique, and Line 16 only adds undominated additional terminators, so no clique inclusive
of nodes dominated by node 1 would be considered before node 1 has been marked. If node 1
has not yet been marked, then, assuming without loss of generality that node 1 is the closest
undominated terminator dominated by some nodes in the left-side candidate clique, those
nodes would be included in a clique terminated by node 1, based on the same reasoning as
applied in the case of a non-terminated Type-I cycle.

Lemma 3. Algorithm 2 will never generate a clique that forms a cycle with a previously-
formed clique (Cycle Type II).

Proof. Assume the opposite: there exists some clique C1 that would conflict with candidate
clique C2. Then there must be some node n2 ∈ C2 which dominates at least one node n1 ∈ C1.
However, this node n2 would have already been included in C1, because it dominates n2 and
therefore also some terminator t of C2, and would have been included in C2 according to
Lemma 1.

Thus, by Lemmas 2 and 3, the clique formation algorithm does not result in cycles.
QED



CHAPTER 4. OPERATOR FUSION: CONSTRAINTS & ALGORITHMS 72

2
1

0

… …

…
…

3 4

(a) Without Terminators

2
1

0

… …

…
…

3 4

…

(b) Through a Terminator
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Termination

Algorithm 2 can be shown to terminate after a number of iterations of the outermost while
loop that is asymptotically proportional to the number of edges, but note that its actual
runtime, as presently stated, will by quadratic in the number of nodes. Algorithm 4 remedies
this inefficiency.

Lemma 4. The leftmost undominated terminator tL is always marked (removed) in each
iteration of the clique formation algorithm.

Proof. If tL is not in the excluded set X, then it will be marked because it is included in the
generated clique by Line 19. On the other hand, if tL is excluded, it will also be marked,
because all of its inputs will have been marked or are starters: if not starters, these inputs
dominate tL and would be included by Lemma 1.

Theorem 2. Algorithm 2 terminates in at most |T | iterations.

Proof. Since by Lemma 4 the leftmost undominated terminator will always be marked in
each iteration of the CFA’s outer loop, it will run for at most |T | iterations.
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Finally, the number of iterations of the inner loop is at least loosely bounded by |T |+ |S|,
because each iteration either adds at least one new starter node or one new terminator, or
exits, so the algorithm is certain to terminate. However, the preceding formulation in terms
of dominator sets requires both their computation and use in the inner loop, which is of
quadratic complexity in the number of nodes. This deficiency can be remedied by replacing
the set-based operations of the inner loop with explicit breadth-first traversals, at which
point the runtime of the inner loop is also more readily analyzable.

Disjoint Cliques

Theorem 3. No node will ever be included in more than one clique.

Proof. If a node n ∈ X is marked as excluded, then it will not be included in any clique,
because Line 19 explicitly removes it. If on the other hand n 6∈ X, then it is either included
in no clique, or it is included in one, at which point it is marked. Line 19 prevents any
marked nodes from being included in a future clique.

An Improved CFA (O(|E|) Runtime)

The formulation of Algorithm 2 in terms of dominator sets makes it easier to state, but
unfortunately results in runtime that is quadratic in the number of DAG nodes. This can be
reduced to asymptotically linear time in the number of DAG edges the replacing the inner
loop with a sequence of breadth-first traversals that “discover” starters from terminators
and vice versa.

Algorithm 3 generalizes the starter- and terminator-delimited BFS procedure needed by
the revised CFA. It essentially “folds in” the BFS previously used to build the dominator
table into the inner loop, ending it as appropriate when a terminator is encountered.

Algorithm 3 Terminator-Delimited BFS

1: procedure TermBFS(F, T,DAG,M, inv) . All nodes between F and T
2: Fnext ← F
3: while Fnext 6= ∅ do
4: M ←M ∪ F . Mark the frontier
5: for n ∈ F do
6: for m ∈ out(n) do
7: if inv ∧m 6∈M then
8: Fnext ← Fnext ∪ {m}
9: if ¬inv ∧ in(m) ⊆ (M ∪ T ) ∧m 6∈M then

10: Fnext ← Fnext ∪ {m}
11: F ← Fnext

12: return M
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TermBFS(F, T,DAG) returns all the nodes between a frontier F and terminator set
T–that is, all the nodes whose inputs are completely dominated by F and not dominated by
T . This can be used to find new terminators from a set of starters, or, with the inverted DAG
inv(DAG) and the “invert” flag inv set, to find new undominated starters from a frontier
of terminators. In the latter case, however, the behavior is subtly different: the requirement
that all of a node’s inputs (in the reverse direction–i.e. outputs) be marked is dropped,
because this allows new interior or starter nodes to be found that may be connected outside
of the current terminator set.

However, correctness is still maintained, because no dominating terminator will be added
by mistake, as any terminator that dominates nodes being considered for a current clique
would have been marked already by a previous iteration of the outer CFA loop. In other
words, the inv flag’s special behavior reproduces the effect of Line 18 in the original CFA
of Algorithm 2, which includes all nodes that are dominated by a starter and not by a
terminator of the current clique (rather than just those that also dominate a terminator).
The “forward” direction of traversal from S ′ to T still requires that all a node’s inputs be
marked before the node itself may be, as this prevents a node from being included in the
clique until it is known for sure that it is not dominated by one of the clique’s terminators.

In a revised clique formation shown in Algorithm 4, all lines involving dominator tables
have been replaced by the two TermBFS calls in the inner loop that traverse the DAG in
opposite directions.

Runtime of Algorithm 4

It simply remains to be shown that this revised algorithm has O(|E|) runtime for a DAG with
|E| edges. Here, “visiting a node” means checking whether all of its incoming (or outgoing)
edges are marked so that it may be added to the next frontier.

Lemma 5. Algorithm 3 (TermBFS) visits each edge in the the unmarked DAG (DAG∩M)
exactly once.

Proof. In the inverse direction, each node is added to the marked set soon as it is seen, so
any edge that were visited twice would have to contain at least one node that was visited
twice, which is not possible. In the forward direction, a node will be visited at most as many
times as the number of edges flowing into it, or less if some of the edges come from unmarked
terminators that dominate it.

Theorem 4. The runtime of Algorithm 4 is O(|E|) for DAG = (V,E).

Proof. By Lemma 5, each call to TermBFS will visit each edge of the nodes in its result
set M once per call. These returned nodes are immediately added to the global marked set,
which will be passed to all subsequent calls, preventing them from being visited again. If in
the worst case each node is visited by its degree, then the total number of visits is bounded
by O(|E|).
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Algorithm 4 Revised Clique Formation Algorithm

1: procedure Cliques2(S, T,X,DAG) . Global set of starters, terminators, excluded
2: C ← ∅ . Set of cliques built
3: M ← ∅ . Marked nodes removed from consideration
4: while T 6= ∅ do
5: T ′, S ′,← ∅ . Terminators & starters for next clique
6: t, s← ∅ . Next terms. & starters to add to clique
7: Tundom ← {n ∈ T : D̄[n] ∩ T = ∅} . Set of terminators not dominated in T
8: T ′, t← {leftmost element of Tundom} . Starting terminator
9: I ← ∅ . Start with an empty interior

10: while t 6= s 6= ∅ do . Iterate until no new starters/terminators
11: i← TermBFS(F = T ′, T = T, inv(DAG),M = I, inv = true)
12: S ′ ← S ′ ∪ i ∩ S
13: i← TermBFS(F = S ′, T = ∅, DAG,M = I) . T is irrelevant
14: T ′ ← T ′ ∪ i ∩ T
15: I ← I ∪ i ∩X . Expand interior with any new non-excluded nodes

16: M ←M ∪ I . Mark all interior nodes
17: C ← C ∪ {I} . Add new clique to output set
18: Smark ← {n ∈ S : out(n) ⊆M} \X
19: M ←M ∪ Smark . Mark starters w/ all-marked outputs
20: Tmark ← {n ∈ T : in(n) ⊆ (M ∪X)}
21: M ←M ∪ Tmark . Mark terms. w/ all-marked inputs
22: T ← T \M
23: S ← S \M

return C

4.3 Inner and Outer Loop Fusion Particulars

While both inner loop (i.e. vector) and outer loop (i.e. array) fusion share the CFA of
Algorithm 41, they differ their selection of terminator and excluded nodes. This section
describes how each of the two fusion types performs this selection while conforming to the
CFA preconditions of and preserving semantic correctness, which means that fused nodes
really should share a common loop induction variable (cursor) at the level of fusion, and
that the terminator and excluded node choices obey the semantics of the particular operators
they encompass. One commonality, however, escapes the previous section: it turns out, as
shown below, that the very notion of starter nodes (S) is superfluous, and that, in fact, the
preconditions of Section 4.2 can only be satisfied if every node is a “starter”. Thus, each
fusion type must rely on the exclusion set X alone to achieve semantic correctness, and the
clique formation algorithm can be simplified once more.

1The current compiler prototype implements the slower set-based algorithm
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All Nodes Are Starters

The main reason for this is the requirement that every terminator must have a dominating
starter–the second precondition in Section 4.2. This was necessary for forward progress, as
its absence would void the result of Lemma 1, and prevent the incorporation of a maximum
number of nodes into each candidate clique.

Theorem 5. Every node n ∈ V of a DAG = (V,E) is a starter: S = V .

Proof. If there were nodes n 6∈ S in the DAG that are undominated by any n 6< s ∈ S, then
these could not dominate any terminator n = t ∈ T , or else they would not be able to satisfy
the above condition. This situation would easily arise when excluded nodes x ∈ X are used
by other excluded nodes x′ ∈ X, where the excluded set X is defined strictly by semantic
conditions such as materialization or reduction. Since in this case x = x′, and since X ⊆ T ,
this arrangement violates the starter domination criterion, as x dominates a terminator.

In addition to being necessary, the promotion of all nodes to starters actually simplifies
both kinds of fusion, which now merely need to distinguish between nodes that terminate,
but may be fused, those which must be excluded, and those with no constraints. It also
simplifies the algorithm once more, this time by eliminating the separate tracking of starters
outside of the inner loop; inside the inner loop, “starters” are simply those closest to the
inputs of an a clique candidate being formed.

Outer Loop (Array) Fusion

Of the two fusion types, outer loop fusion is the more complex, as it attempts to unify nodes
whose loop nests must have conformable induction variables at possibly multiple different
levels. Two cursors conform when they have the same upper bounds, and this quality can be
inferred implicitly from the structure of the DAG. In a one-dimensional DAG, where no node
has more than one input, cursor conformation is simply a matter of “parsing” the nesters
and flatteners that have been encountered in traversing the DAG from input to output: if
N nesters have been seen at node n1, and n1 does not change nesting, then its cursors at
array depths 1 . . . N must have the same bounds as those of subsequent node n2; if n3 is a
flattener, then n4 cannot conform to n1.

Multi-input nodes complicate this inference. When an operator accepts multiple nested
inputs, it is generally implied that each dimension (depth) of each input contains the same
number of elements as its corresponding depth in each other input (though this is not
presently enforced by the type checker, as Chapter 3 explains), which can only be true
if all inputs also have the same degree of nesting, although they may contain vector bases of
differing lengths, or a mixture of scalar and vector bases. Nodes with multiple inputs would
thus seem to require equal numbers of as-yet unflattened nesters along the path to each of
them, making the “parsing” problem inherently two-dimensional. This raises, in turn, two
questions: first, how can this 2-D analysis be performed, in particular when all nodes must
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be marked (implicitly) as starters, and second, must nodes with multiple inputs of differing
depths be excluded from fusion altogether?

Iterating Over Depths

The answer to the first question is that outer loop fusion is performed iteratively over each
possible nesting depth, starting from depth 1 onwards. At each depth, the DAG is first
analyzed to mark all nodes according to whether they have on their input paths a sufficient
degree of nesting to reach that depth, and all nodes that do not are marked in the exclusion
set (and thus also as terminators). Once clique formation decisions have been made for depth
N , the resulting cliques are then processed independently with a recursive application of the
outer loop fusion algorithm with the target depth set to N +1. Performing outer loop fusion
iteratively at increasing depths ensures that nodes will only fused at a given depth when
their cursors at all lower depths have been shown to be conformable by virtue of having been
fused. Furthermore, this makes outer loop fusion a prerequisite to inner loop fusion: if two
nodes cannot be part of the same outer loop, they clearly cannot be merged into the same
inner loop.

Depth Balancing

The answer to the second question is that nodes with inputs of initially differing depths can
form a clique together, as this is made possible by the same mechanism needed to implement
the broadcast semantics of Chapter 3, Section 3.2. When a node receives inputs of depth
N and N + 1 simultaneously, a special shell node is inserted between it and the depth-N
input. The shell node performs no operation but instead adds a degree of “fake” nesting
that simply broadcasts (repeats) the depth-N array across all elements of depth N + 1.
Afterwards, both inputs to the multi-input have the same depth, allowing it to fuse with the
pre-existing depth-(N + 1) input’s clique. In the more general case, as many shell nodes as
necessary are inserted to nest an node’s unequal inputs up to the depth of the maximum,
as indicated in Algorithm 5. Of course, there are exceptions for particular operators, whose
semantics require or respond to nesting depth mismatches. These are explained below.

Preserving Operator Semantics Under Outer Loop Fusion

Array fusion excludes nodes that lack sufficient nesting, but must also exclude, or handle
specially the following operator types:

• NestedReduce(): This operator terminates (but is not excluded from) array fusion
at its output depth (but not below), as it reduces across all array elements

• LastArray(): While not strictly necessary, this flattener is treated as a nested
reduction internally by the compiler, as one level of loop nesting must be skipped
when its code is generated.
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• Offsets(): Computing an offsets vector that merges N levels requires interrupting
the N innermost array levels, as each array’s offsets depend on all those that came
before it.

• HashJoin(): In its simplest form, the hash-join operator expects a nested array as
the hash table input, as the hash function selects the innermost array subscript as the
bucket number (see Chapter 3, Section 3.1), and adds a layer of nesting to the output
if the probe input is flat, making it a nester. However, if the probe input is already
nested, it merely maintains the existing depth, and does not impact array fusion.

• Cat() and Uncat(): Concatenation is provided as a mechanism to force alternative
clique formation decisions (see Chapter 3 Section 3.1), so it too blocks fusion at its
output depth.

Algorithm 5 Shell Node Insertion

1: procedure InsertShells(DAG)
2: F ← {n : in(n) = ∅} . Frontier, starting at inputs
3: M ← ∅ . Marked nodes
4: while F 6= ∅ do
5: Fnext ← ∅
6: M ←M ∪ F
7: for n ∈ F do
8: d← max {depth(m) : m ∈ out(n)}
9: for m ∈ out(n) do

10: k ← m
11: for i = depth(m) . . . d do
12: Insert new shell si between n and k
13: k ← si
14: if in(m) ⊆M then
15: Fnext ← Fnext ∪ {m}
16: F ← Fnext

Inner Loop (Vector) Fusion

Inner loop fusion must be performed last, after all outer loop fusion, and only those nodes
which have successfully been fused at all outer nesting levels may be considered for inner
loop fusion; otherwise, they would necessarily be in separate loop nests.

Some operators are blocking operators, as they must consume a whole vector of input ele-
ments before producing any output, and so interrupt inner loop fusion, while other operators
must produce complete outputs before their dependent nodes may make use of them:
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Algorithm 6 Array Fusion

1: procedure ArrayFuse(DAG, d) . Array fusion for starting depth d of a DAG
2: F ← {n : in(n) = ∅} . Frontier, starting at inputs
3: M ← ∅ . Marked nodes
4: X ← {Nodes excluded by operator semantics}
5: T ← {Nodes that must terminate fusion at this depth
6: while F 6= ∅ do . Build starter and terminator sets
7: M ←M ∪ F . Mark the frontier
8: Fnext ← ∅
9: for n ∈ F do

10: if depth(n) < d then
11: X ← X ∪ {n} . Exclude nodes with insufficient nesting

12: if in(n) ⊆M then
13: Fnext ← Fnext ∪ {n}
14: F ← Fnext

15: T ← T ∪X . All excluded nodes must terminate
16: C ← Cliques2(T = T,X = X,DAG)
17: for c ∈ C do
18: Actually do fusion for clique c
19: ArrayFuse(c, d+ 1) . Do fusion at next depth only for fused cliques

• Reduce(): The (scalar) result of a reduction is not valid until all its inputs have been
processed

• HashTable(): Hash tables are essentially reductions, and must be fully-built before
use

• Histogram(): Histogram-building is also a sum-based reduction

• HashJoin(): Joins do not require materialization, but the previous versions of the
compiler could not incorporate their additional probe loop into a fused inner loop, as
the probe loop needs to absorb all subsequent inner loops of nodes that depend on
it into its body. This has recently been fixed, but complicates the implementation of
fusion.

• Partition(): Partitioning is effectively a scatter operation, and so although each
output element is technically valid for use as soon as it is “moved”, it is simply im-
practical to make use of outputs by dependent operators in any loop nest presently
generated by the compiler.

• Collect() and Compact(): Collection changes the output cursor (position in the
output vector), re-aligning the index of output elements relative to their corresponding
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inputs. Similarly to HashJoin(), there is no inherent reason why this could not be
accommodated eventually, but at present all nodes in an inner loop fusion clique are
require to have a common inner loop cursor.

Finally, the Gather() operator has a special requirement that its second source–the buffer
from which indices are gathered–be material, so that arbitrary indices may be read from it
at random. This would not be possible if it existed only as a single element at a time, as it
would if it were produced within the same inner loop as the vector of indices to be collected.
However, this is generally unlikely to arise in practice, since the producer of a gathered vector
is unlikely to have an input cursor that is conformable to that of the index array, which often
will be of a different length or at least driven by a different scan.
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Chapter 5

Ressort Compiler Architecture &
Implementation

Ressort compiles HiRes into C++. This entails turning an implicitly typed, parallel data-flow
graph of operators into an explicitly typed sequence of imperative loop nests that use only the
set of basic operators defined by the C++ language. The compiler does so by progressively
refining HiRes through a series of increasingly low-level intermediate representations, upon
each of which different optimizations and transformations are performed.

A key choice underpinning the design of the Ressort compiler was to use C++ with paral-
lel loop annotations as a compilation target. This wasn’t strictly necessary, but neither was it
unusual for a research query compiler, as several concurrent works have demonstrated [9, 60,
68]. At one extreme, Ressort could have targeted machine language directly, but this would
have required an extraordinary amount of effort re-create the functionality of a standard
compiler backend, which is both out of scope and also unnecessary, given the availability
of existing, high-performance, open-source tool-chains. Many compilers for novel languages
(as well as query compilers [25]) have been built on top of the LLVM framework [31], which
supplies machinery for the lowest level of compilation tasks such as register allocation, code
generation and scheduling, low-level optimization, and everything else needed to produce an
executable.

This was also rejected, for two reasons. First, any translation from HiRes to LLVM-IR
would necessarily transition through a loop-nest-like format, as the foregoing presentation of
the language’s semantics would imply, and the discussion that follows hopefully will elucidate.
Lowering this to LLVM-IR, whose control flow graph (CFG) format comprises basic blocks
of assembly-like instructions, would take unnecessary effort. That, after all, is the job of
a C or C++ compiler’s front end, meaning that it is significantly easier simply to leverage
an existing tool for that purpose. Other query compilers have rejected this shortcut on the
grounds that it increased compilation time too much [25], but latency was not the primary
concern of this throughput-focused study.

Second, LLVM-IR lacks any explicit representation of fine-grained parallelism, meaning
that Ressort would also need to either replicate the work of an OpenMP compiler, which
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translates parallel loops into functions to which work is dispatched, or supply a new alter-
native runtime library to implement task queues and other work-sharing constructs, whose
utilization would still require lowering from loop-parallelism to some other form. It thus
seemed more sensible to forego these efforts and once again leverage well-known tool-chains
like GCC [14] or LLVM’s own CLang.

However, outsourcing low-level compilation and optimization work to external packages
is a double-edged sword. While reducing the compiler’s development effort substantially, it
also denies Ressort access to the results of common optimizations performed on IR codes
prior to instruction selection and assembly generation. Some of these, such as constant
propagation, common-subexpression elimination, and dead-code elimination, play a critical
role in the refinement of compiled HiRes into a form suitable for some kinds of analysis,
and debugging. Section 5.1 describes how the architecture of the HiRes compiler frontend
results in redundant and difficult-to-read code fragments that also obscure the true relation
between ostensibly different array subscripts and the real memory locations to which they
refer. This untidiness also can also degrade performance, since GCC and LLVM backends
generally cannot perform the relevant optimizations across parallel loop boundaries [58],
once these have been lowered into independent procedures.

To enhance the utility of this output, then, some of the traditional compiler passes
described above have been re-created within the Ressort framework. This is made possible
by Ressort’s own intermediate representation, called LoRes and described more fully in
Section 5.2. LoRes is a fully typed intermediate language with a syntax closely resembling
that of C, but which also preserves OpenMP-style parallel loop annotations and was designed
to facilitate code generation from HiRes. In fact, some of the transformations applied to
LoRes code are necessary parts of the HiRes compilation process, as they implement part of
the language’s semantics. Because these compiler passes now apply to typed, block-scoped
ASTs, rather than to an LLVM-like CFG, the standard algorithms implementing them must
be adjusted slightly, as this chapter explains.

The incorporation of LoRes as an IR makes Ressort a two-part compiler framework with a
structure depicted in Figure 5.1. The first part transforms HiRes into LoRes while the second
prepares LoRes for C++ generation, analysis, or user output. The remaining two sections
of this chapter describe both compilation processes, respectively, and their interactions.

5.1 HiRes Compilation Pipeline

A key principle of the HiRes compiler is to separate operator-specific code generation from
details of data layout and loop structure as much as possible. The implementation of Eval()
should not depend on whether its input is a deeply nested array, whether the position of its
next extent of records is computed by a simple offset or an indirect lookup, or whether those
records are arranged in row-major, column-major, or some order in between. Of course, it is
not possible to orthogonalize these concerns fully, as some operators like HashJoin() require
one input to be nested, and must choose which vector-valued array element to process dy-
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namically, or may require, like HashTable(), access to type-specific operations (“append”),
while others, like SplitPar() or Zip(), exist for the sole purpose of changing the shape
of their inputs. At the very least, then, each operator’s implementation should limit its
concern to those aspects of structure that it requires or imposes. This is made possible by
the sequence of intermediate abstractions through which HiRes is refined to LoRes along the
left half of Figure 5.1.

Allocation: Meta-Arrays & HiDags (Abstraction #1)

After a HiRes AST is type-checked, it is split up into a DAG of operators, and each node’s
output value is represented as meta-array that augments its original HiRes datatype with
other structural information such as the length of its underlying buffer(s), which it may or
may not re-use from its inputs (pass-by-reference). Sizes, slice counts, and other such data
may be supplied as constants, or may be known only dynamically, and so are encoded as
LoRes expressions, as shown in Figure 5.2.

A meta-array encapsulates all the details needed to derive a new meta-array for a node’s
output based on its inputs, and exports a clone() method as part of its API that an operator-
specific allocator can call to replicate its structure while adjusting only the attributes, such as
length or record type, that it might change. Notably, when shape-changing operators such as
SplitPar(..., disjoint=true) are applied, they do not always immediately result in the
allocation of new output buffers with the specified disjoint structure (Figure 3.8); instead,
the output meta-array is marked so that its clone() will produce a disjointed array only
when a subsequent operator eventually requests a new buffer allocation. For example, in
Figure 5.2, both the initial input, and the output of SplitPar() share the physical buffer
arr1, even though they have different meta-array structures on top of it.

As a reflection of this intent to expose only the relevant layer of array structure to the
allocator, meta-arrays are arranged in inverse order of their corresponding HiRes types: if
an operator’s output has type AC

[
Ā [V1]

]
, then its output meta-array structure would be:

SlicedArray(

base =

ChunkArray(

base = Buffer(...),

pointers = ..., ...),

slices = numSlices,

numValid = Some(...))

Only the outermost meta-array level, which divides each chunk into numSlices parts, is
of interest to subsequent operations, which may remove it, in the case of a flattening, or
add another layer, in the case of a nesting operator, without having to examine any interior
layers.

The HiDag intermediate format is a graph whose nodes consist of HiRes operators, their
allocated meta-arrays, and a set of cursors for each depth of array nesting present in an
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PVL1 := Length(arr1) / N;
REM1 := Length(arr1) % N;
PVL2 := Length(arr1) / N;
REM2 := Length(arr1) % N;
PVL3 := Length(arr2) / N;
REM3 := Length(arr2) % N;

ForPar(cur1 = 0 … N) {
    OFF1 := cur1 * PVL1;
    MAX0 := Mux(cur1==0, PVL1+REM2, PVL1);
    OFF2 := cur1 * PVL2;
    MAX2 := Mux(cur1==0, PVL2+REM2, PVL2);
    OFF3 := cur1 * PVL3;
    MAX3 := Mux(cur1==0, PVL3+REM3, PVL3);

    For(cur2 = 0 … MAX0) {
        rec t0 := arr1[OFF1 + cur2];
        int32 t1 := t0.field1 + Const(1);
        int32 t2 := t0.field2 * Const(2)
        arr2[OFF2 + cur2].field0 := t1;
        arr2[OFF2 + cur2].field1 := t2;
    }
}
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input or output. Each cursor is a loop induction variable. When operators are fused at a
particular nesting depth, their HiDag nodes are combined into a single container node, and
the cursors for that depth are all set to the same value in each fused node, ensuring that
eventual traversals of their meta-arrays will be synchronized at that depth. Additionally,
each HiDag node may own one or more cursors, meaning that it will generate the loop for
that depth; in a fused node, only the outer container node owns the cursor for the fused
depth.

Codegen: Array-Views & LoDags (Abstraction #2)

After shell node insertion (Section 4.3) and both types of fusion have been performed at the
HiDag level, the DAG is elaborated, first by operator-specific code generation and then by the
formation of loop nests around the result. Code generation begins with another lowering step
in which each node is assigned a set of views of the meta-arrays used as its inputs or output.
A view is a particular traversal of a data structure that might appear at multiple places
throughout the DAG, much like an iterator in other languages. For example, in Figure 5.2,
both Eval nodes have different views for the same meta-array produced by the split.

Each contains all the state needed to compute where the next extent of records from
its meta-array should be accessed in the innermost loop, and supplies a localState(cur)

method to generate LoRes code that updates that state when its level’s cursor is modified.
The dotted purple box in Figure 5.2 encloses state updates for the depth-1 level array views
of all three nodes inside the fused sub-DAG, for instance. They correspond to the simplest
nested view, the SlicedArrayView, which, like its originating SplitPar() operator, divides
its base array into N equal-sized vectors, with any elements in the remainder consigned to
the first iteration of its controlling loop. Like its homologues for more complex structures,
its state ensures that the next loop level can access the correct buffer region with merely an
array pointer, offset, and index. Since the remainder and slice lengths are constant across
all loop iterations, they are computed as globalState(), to be declared just prior to the
cursor-controlling loop.

More generally, each meta-array’s view type generates state update code that ensures no
calculations are needed inside the innermost (vector) loop other than the mere use of base and
bounds values, and these assignment statements are inserted into the LoRes output during
loop nest generation. Array views usually correspond directly to a particular layer of loop
nesting. When an array view is created for a HiDag node’s input or output, it is therefore
normally tied to the cursor assigned to that level’s depth in the node’s cursor set, and its
state updates are generated with respect to that cursor, but sometimes another input may
be used, such as when HashTable selects which bucket to probe based on a data-dependent
value.

Each view is granted a set of fresh LoRes variables to which it assigns state computed
independently of any other views that may be performing the same traversal, or computing
the same fractions and remainders of the same array lengths. This results in potentially a
great deal of redundancy, and significant bloat in the size of the resulting LoRes program:
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if a HiRes DAG has n nodes with average degree e and average nesting depth d, then
the number of array-view state declarations will be proportional to O(ned); when fusion is
applied, each fusion boundary introduces E new “virtual input” nodes inside the fused DAG,
where E is the number of edges crossing the input side of the fused node. This explosion
of state declarations is the primary motivation behind the LoRes-level common-subexpression
elimination (CSE) optimization of Section 5.2.

Dead code elimination also proves highly effective in the wake of array view-based code
generation, as views always declare the maximal amount of state that they could possibly use,
even if in a particular instance much is not needed (e.g. even non-padded views always declare
padding-related offset calculations). The following, more detailed descriptions of array view
mechanics provide more insight into how such cruft accumulates. While it would be tedious
to present in detail the operation of each type of view, two important and illustrative ones
are described below: sliced views, because they are the simplest, and chunk array views,
because they are the most complicated.

Sliced Array Views

Figure 5.2 sketches a sliced array’s state in its most minimal form: a physical vector length,
computed by dividing the logical vector length of its base array view by the total number of
slices. Every nested array view type exports (LoRes expression-valued) physical and logical
vector lengths–so called for the views they afford of an imaginary underlying HiRes vector–for
such use by any views that divide it further. The sliced array’s logical length then consists of
the physical length minus any padding that it imposes. Even though the sliced view assigns
equal numbers of elements to each slice (remainder notwithstanding), that value may vary
globally across the whole of a larger structure if, for instance, the view’s base exports different
logical vector lengths across the iterations of its own loop.

These variables are actually local state, and are computed inside each iteration of the
sliced view’s loop. Its global state, computed just above, includes the average physical length
of each slice, and the remainder of elements if the slice count does not evenly divide the
base’s logical length. Inside the loop, division and modulus are then unnecessary, as these
have been precomputed; the first loop iteration simply adds the remainder to the average.

Chunk Array Views

Figure 3.7 shows the structure of Ressort’s compact hash-table format, designed to minimize
the number of cache lines which must be accessed, in the average case, to probe a bucket.
This hash-table is realized concretely as a chunked meta-array type, which actually has two
view types: one whose elements are the hash-table’s buckets, and one whose elements are the
physically discontiguous “chunks”, arranged in linked lists, that form expandable storage of
each bucket. Traversing a chunked meta-array yields a double loop nest, of which the base
chunked view corresponds to the outer loop over buckets, and the view nested on top of it is
aligned with the inner loop over each chunk. Because the base view essentially equates to a
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sliced view of the pre-allocated, contiguous array of fixed-length buckets, it is fairly simple
in comparison to the outer view, to which most of the complexity of managing chunks is
delegated.

The outer view’s state makes use, potentially, of several ancillary structures, each of
which has a meta-array and views of its own: the pointers array holds pointers for each
bucket’s linked list of supplementary chunks, allocated on-demand after the bucket’s initial
reservation in the base array is exhausted, and the counters array, in which the current
number of elements in each bucket is stored. When a bucket is selected by the base view (in
the outer loop), the outer chunk view’s global state update examines the counter value to
determine how many iterations (chunks) the inner loop should run. A scalar-valued current
array pointer is declared here as well, and set initially to the contiguous base array, while the
offset is set just as it would be in a standard slice view. For all subsequent iterations of the
inner loop, the offset is set to zero, since each supplemental chunk is allocated its own buffer,
and the current array pointer is updated to target each successive chunk array. Because the
chunks are arranged in a linked list, the local state can only be incremented, rather than set
arbitrarily, as the current array pointer must advance over all chunks in sequence. When
the chunk state is incremented, the current physical vector length is conditionally chosen
to be either the chunk length, if more chunks remain to be traversed, or the remainder of
the counter modulo the chunk length. Meanwhile, a boolean “spilled?” variable is set every
time the local state is initialized to indicate whether the bucket in question has exceeded
its initial reservation, so that access to the ancillary pointer arrays can be avoided in the
common case.

As described above, however, every access to the chunk array–even those that do not
“spill” to secondary chunks–would require accessing the array of counters, which for large
chunk arrays would likely cause an extra, unnecessary cache miss. HiRes provides an option
to reduce this traffic cost by storing the counter values inline with record cells themselves. In
this configuration, an extra “dummy” record is prepended to each bucket’s initial reservation
in the contiguous base array, enabling the counter and first record(s) to be fetched from
memory in a single line if the record size (or its first field group’s) is sufficiently small.
Presently, only the first field of the array’s record type is used to hold the inline counter,
and the chunk size in such cases must not be larger than the number of records addressable
by an unsigned integer of the same bit width as that field1. To accommodate this feature,
the chunk array view first checks the inline counter, and only if it is larger than the chunk
size does it consult the ancillary counter array, which is guaranteed to have a counter large
enough to address the entire dynamically sized bucket.

One problem created by the inline counter format is that meta-arrays with ancillary
structures generally re-use (i.e. “copy” by reference) these in their clones: although a clone
derived from an initial array might have a new set of underlying record buffers with different
contents, the metadata surrounding it, such as histograms, num-valid counters, or masks,

1To fix this, it would be necessary to add support for union types to LoRes, which is possible in theory
but has not yet been attempted
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will remain the same, and so are referenced by a pointer inside the clone. This is trickier when
per-bucket counters are stored inline, because the counter array contains accurate values only
for those buckets that have spilled, and so cannot simply be passed. To handle this quirk,
the chunk array’s clone method marks derived arrays specially, and their resulting views
include a Mux() (ternary conditional) expression to arbitrate between the inline counters of
the original array from which they derive, and the counter array passed by reference. Thus,
the data buffers of chunk arrays may stay “live” longer than the operator DAG alone would
suggest.

Loop Generation & LoRes Output (Abstraction #3)

The final DAG form of representation between HiRes and LoRes code wraps each node’s
LoRes operator code in a concrete loop nest derived from the set of cursors that it owns.
This LoDag format also explicitly separates operator implementation code from code needed
to allocate the node’s buffers, which is necessary because these allocations are redistributed
between DAG nodes after the latter have themselves been scheduled in a fixed execution
order. This lowering comprises three steps: the emission and assembly of array view state
declarations at each added level of loop nesting, special management of the so-called “chunk
cursor” for chunked arrays, and finally the scheduling and allocation of nodes.

Cursor-based state update insertion

Before loop-nest generation proceeds, a cursor-based analysis pass examines the totality of
the LoDag and builds a mapping from each cursor to the set of array view levels tied to
it. Then, loop-nests are formed by re-examining each node individually, and choosing one
of its views to be the leader, and its layers determine the loop nest for the node. In most
cases, a node’s leftmost (in HiRes syntactic order) input view is elected as the leader, as by
convention in HiRes this is the input that gets scanned, and whose valid records drive access
to their counterparts in any other possible inputs (in a Gather(), for instance, the left input
is scanned, causing the indices it names to be accessed in the right input; a join, similarly,
probes the right-input hash-table with keys read sequentially from the left). However, if a
node lacks any inputs, because it refers to an external input to the HiRes program, or is
a “virtual input” referring to a value from outside of a fused node, the node’s output view
takes the lead instead.

Loop nest layers are then added to the node by examining each layer of the leader view,
starting from the outermost, which corresponds to the innermost loop. If the current view’s
cursor is owned by the node, then a new loop is wrapped around the current LoRes code for
that node, and its bounds are set by querying the maximum cursor attribute of the leading
view. On either side of the new loop, local and global state updates are inserted by querying
the global mapping, built in the previous step, of all views that depend on the current cursor.
This ensures that all views dependent on said cursor emit state updates, even if they are
not even necessarily part of the current node’s inputs and outputs (as would be the case for
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a fused DAG’s enclosing node, whose own cursor controls state for the fusion depth of all
interior nodes).

Managing the “Chunk Cursor”

Because the chunk meta-array splits into two nested views–and thus loops–the HiRes lowering
process must at some point decide when a node owns the chunk cursor, and so adds a loop
over chunks. Though it would seem obvious to assign the chunk cursor to whichever node
owns a cursor that controls an inner (bucket) chunk view, this is insufficient to achieve
desirable fusion behavior.

Consider the case of two chained, radix-partitioned hash joins. Here, the initial left-hand
(probe) input consists of an array of vectors, where the number of number of vectors is the
number of radix partitions, which is also the number of output “buckets” in the resulting
chunk arrays of both joins. The enclosing fusion node owns the cursor for this nesting depth,
but it must not own the chunk cursor; rather, each internal join node must control a separate
chunk cursor, because the number of chunks per bucket can change between them.

Instead, a node owns the chunk cursor if it also owns a cursor that controls:

• A level that subdivides the chunk array

• The vector cursor when the chunk array is the innermost division

• The chunk array and the vector cursor

The last condition catches cases where a node contains a chunked array and does not partici-
pate in fusion, while the first allows the chunk array’s buckets to be decoupled from the chunk
lists themselves; the second handles intermediate cases where no level further subdivides the
chunk array.

Allocation & Scheduling

The last refinement includes the insertion and placement of buffer allocations, and the ar-
rangement of all nodes in the two-dimensional DAG into a one-dimensional sequence of loops.
In the latter case, the order of execution is determined simply by post-order traversal the
DAG from the output in left-to-right order; if an alternative order of execution, then this
must be achieved by re-ordering the relevant statements in the HiRes input program.

Allocation is slightly more subtle. Many buffers have lengths known a priori as a function
of the program’s input sizes, and so they can be allocated at the start of the compiled
function. Ideally, all buffers would be pre-allocated in this way, so that their allocation does
not interfere with operator execution by e.g. causing context switches that evict cache and
TLB entries.

However, when the Compact() operator is used with a histogram computed by Offsets(),
the size of the resulting output buffer can only be known dynamically, and only after the exe-
cution of all operators on which it indirectly depends. Moreover, this dependence propagates
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upwards through all nodes after the compaction (and where no reduction intervenes), mean-
ing their buffers’ allocations cannot be inserted prior to this point either. For this reason, the
compiler performs a dependency analysis on the LoRes expression ASTs contained in both
the operator codegen result of each node, and its separate block of allocation statements.
The analyzer first examines the main body of code in each node of the scheduled DAG,
taking note of every LoRes identifier that appears in the root of an assigned l-value inside
that block, and marking these as produced by that node. Then, it examines the allocation
block separately, and notes each identifier that appears in any expression appearing in that
code as a dependency.

Because the nodes themselves have already been scheduled, the identifier whose producer
is latest in the schedule determines that earliest point at which that node’s allocation can be
inserted. When a compaction operator is elaborated, it emits a single variable declaration
which is assigned to contain the very last entry of the input histogram, and all subsequent
allocations are therefore seen as dependent on this symbol. Thus, subsequent nodes’ alloca-
tions will be hoisted precisely to the point at which compaction was added to the schedule.
This ensures that allocation is performed as soon as possible, and in as few places as possible,
while still allowing for dynamically sized non-chunked arrays.

5.2 LoRes Compilation Pipeline

The LoRes intermediate format was designed to support both HiRes operator elaboration
(codegen) and pre-C++ transformation passes2. Since C++ is its ultimate compilation
target, its syntax (Figure 5.3) closely resembles that of C, with some simplifications that
make it easier to manipulate. It is an imperative language with serial and parallel for-
loops, if-statements, functions, arrays, pointers, and bit-wise operations. Its type system
(Figure 5.4) is explicit and static, and includes the same set of primitives as HiRes, but adds
a non-primitive struct type whose fields can contain pointers and other structs, and through
which the meta-arrays and array views of HiRes are realized. Its array values track their
lengths implicitly, like C++ std::vector<T>s, which simplifies operator codegen somewhat.

The main value of LoRes is that it mainly exists as fully typed ASTs that support
type-sensitive transformations. A few additional features facilitate this even further. For
loops have fixed termination conditions, as their bounds and strides are computed once
per execution of the loop, rather than once per iteration, allowing them to be hoisted out.
Static single-assignment (SSA) “phi” expressions are baked into the language and can be
executed in its interpreter. LoRes ASTs can also replace regular string-valued identifiers
with a more efficient LoSym symbol that allows transformation passes to perform reference
equality comparisons, rather than using string or hash code equality, which is much faster.
The same construct also encodes SSA re-numbering, which can later be easily removed.

2It originated as the “IRep” intermediate format in our prior work [35]. This thesis, in addition to
changing its name, prunes some unnecessary constructs, expands the type system, and describes new trans-
formation passes.
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Without reviewing the full details of the LoRes language, the rest of this section presents
some of the transformation passes used for both optimization, and for realizing the semantics
of the HiRes constructs it was designed to represent.

AST-Based Static Single-Assignment Form

Static Single-Assignment (SSA) form is a well-known compiler transformation pass [2], dat-
ing back at least half a century [62], that vastly simplifies other transformation and analysis
routines by converting programs to a form of representation in which each variable is as-
signed to exactly once. The single-assignment property ensures that multiple uses of a
single identifier always refer to the same value, which greatly facilitates optimizations such
as common-subexpression elimination (Section 5.2), and enhances the effectiveness of dead-
code elimination, as updates to an original variable occurring after their last read point
become updates instead to new symbols whose values are never used.

For example, in the pseudocode (not LoRes) program above containing only assignment
statements, the left-hand side would be rewritten to the right. The SSA variant makes clear
that (1.) the assignments to y1 and x2 are never used, and so candidates for elimination,
and (2.) the expression x+ 1 carries the same meaning (x0 + 1) both times that it occurs in
the original code, and so is a real common-subexpression.

Handling Control Flow in AST-SSA

SSA conversion is less straightforward in the presence of statements that alter control flow,
and this is where the LoRes SSA format begins to differ from more conventional implemen-
tations. Normally, the SSA transformation is applied to a control flow graph (CFG) program
representation in which each node comprises a basic block of operations with one entry point
and one exit. In such cases, join nodes n3, reachable by two distinct paths from different
source nodes n1 and n2 in which a single original variable x is assigned, require the insertion
of phi nodes (x3 ← φ(x1, x2)) that rename x to indicate the two possible input values that
x may have at n3.

However, LoRes does not encode any explicit CFG, as it strictly a scoped AST represen-
tation. For example, consider the (pretty-printed) LoRes program in Listing 5.1. A mere
parse of its code yields the AST of Figure 5.7a. In contrast to the CFG of Figure 5.7b,
the AST’s edges alone do not supply sufficient information about the control relationships
in Listing 5.1: for example, For node (5) in Figure 5.7a does dominate the assignment in

node (9), but the semantics of the For construct clearly imply a path n5
+→ n9 in the CFG;

similarly, while node (5) appears on only two edges in the AST, it’s CFG homologue has two

incoming and two outgoing edges. In general, a CFG node ni from which a path ni
+→ nj

exists to another node nj is said to precede nj, which is its successor ; if every path to nj
includes ni, then ni dominates nj, according to common parlance [10].

Clearly, these differences between AST and CFG structure have implications for φ-node
insertion: any nodes with multiple inputs in the CFG might necessitate a φ, even if this
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stmt ::= Dec(id), DecAssign(id, expr) l-value statements
Assign(lval, expr)
Alloc(lval, [length]), Free(lval)
AssignReturn(lval, App(...))
PrefixSum(lval), RotRight(lval, n) “Vector” Operations

Block(stmt ∗ ) Control Flow
IfElse(expr, stmt, stmt)
Return(expr)
ForPar(index=, min=, max=, stride=, stmt)

FuncDec(id, (id, prim)∗, stmt, [prim]) Functions
App(id, [expr∗]) Call/“Apply”

Printf(fmt=str, [expr∗]) Misc. / Output
UseSym(sym, sym)

expr ::= lval
Plus(), Minus(), Mul(), Mod(), Div() Numerics (expr, expr)
Neg(), Pow(), Pow2(), Log2Up()

ShiftLeft(), ShiftRight(), BitAnd() Bitwise ops.
BitRange(expr, expr, expr)

Const(num), True, False, Null Constants
FloatConst(float), DoubleConst(double)

Mux(expr, expr, expr), Phi(expr, expr, expr) Booleans
And(), Or(), Not()

Greater(), GreaterEq(), Equal()

Less(), LessEq()

NumEntries(expr), Size(expr), Cast(expr, type) Misc.

lval ::= Id(str), LoSym(obj, [num]) Symbol-Like
Ref(lval), Deref(lval), Subsc(lval, expr) Pointers & Arrays
Field(lval, id), UField(lval, num) Structs

Figure 5.3: (Sugar-Free) Syntax of the LoRes Language (Summary)
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LoType

Data

Scalar

Complete

Primitive

NonRec Record

Ptr(LoType)

Struct(Id, (Id, Complete)*)

TypeRef(Id)

Arr(Data)

SplitRecord(
    (Group*),
    [Name])

FlatRecord(
    (Field*),
    [Name])

All other 
HiRes 

Primitive 
Types

…

Figure 5.4: The LoRes Type Hierarchy

x← 1
y ← x+ 1
y ← x− 1
y ← y + x+ 1
x← y
return y

(a) Original Program ⇒

x0 ← 1
y0 ← x0 + 1
y1 ← x0 − 1
y2 ← y1 + x0 + 1
x2 ← y1

return y2

(b) SSA Form

is not obvious from the AST. However, rather than building an explicit control flow graph,
the LoRes compiler walks the AST in depth-first, post-order traversal, and inserts φ’s by the
following rules at each node n:

1. If n has any children, replace them according to these rules

2. If n is an If with no else-clause, find all symbols x updated within n’s children, with
previous name xi−1 and new name xi, and whose original scope of declaration dominates
n. Rename them after node n with a phi: xi+1 ← φ(xi−1, xi)

3. If n is an IfElse, then apply the above rule but divide the updated symbols into
Xif , Xelse, and Xboth, according to which of the if-else bodies modify them. For each
xi ∈ Xif , append a phi-assignment xi+1 ← φ(xi−1, xi) selecting between its prior
value and the value in the if-clause; for xj ∈ Xelse, select xj+1 ← φ(xj−1, xj) again
between the pre-if value and its else-clause update. However, for xk ∈ Xboth, select
xk+1 ← φ(xif , xelse), where xif and xelse represent the most recent renames of x inside
the if- and else-clauses, respectively.
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1 var x: Index := 0

2
3
4
5
6
7
8
9

10
11
12
13 For(i = 0...100 by 1) {

14
15 x := x+i

16 x := x-1

17 For(z = 0...10 by 1) {

18
19 x := x+z

20 }

21
22 If (x>i) {

23 x := x+1

24 Nop

25 }

26
27
28 }

29
30
31
32 var y: Index := x*x

Listing (5.1) Ex. LoRes program

var x0: Index

var x1: Index

var x2: Index

var x3: Index

var x4: Index

var x5: Index

var x6: Index

var x7: Index

var x8: Index

var x9: Index

var x10: Index

x0 := 0

For(i = 0...100 by 1) {

x1 := Phi(i==0,FakeUse(x0),FakeUse(x8))

x2 := x1+i

x3 := x2-1

For(z = 0...10 by 1) {

x4 := Phi(z==0,FakeUse(x3),FakeUse(x5))

x5 := x4+z

}

x6 := Phi(10>0,FakeUse(x3),FakeUse(x5))

If (x6>i) {

x7 := x6+1

Nop

}

var cond: bool := x6>i

x8 := Phi(FakeUse(cond),x7,x6)

}

x9 := Phi(100>0,FakeUse(x0),FakeUse(x8))

var y0: Index

var y1: Index

y0 := x9*x9

Listing (5.2) SSA-Transform of Listing 5.1

4. If n is a for loop For(i=0...n) { }: find all symbols x modified by n and declared
outside its scope. Insert a phi-assignment xi+1 ← φ(xi−1, xi) inside the loop body at
its beginning, and replace all uses of xi−1 inside the loop body with xi+1. Append
phi-assignments xi+2 ← φ(xi−1, xi) just after the whole for loop n. 3

The above rules work because only loops and if-else statements can introduce additional
edges into the CFG beyond those implied between successive statements within a block.
More precisely, a loop node in the AST implies an extra control edge from its rightmost,

3Note that in LoRes the loop bound and stride expressions are calculated exactly once, so any symbol
that appears inside one will not see any updates made to it by statements inside the loop body. Supporting
while loops would require renaming symbols with φ-expressions inside the termination condition, which the
compiler presently does not.
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(b) CFG For AST in Figure 5.7a
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deepest child (e.g. node 8 for the for loop node 2 in Figure 5.7a) back to itself in the CFG,
while an if node in the AST implies an extra control edge from its rightmost child to the
if-statement’s successor (an if-else node adds an edge from the rightmost, deepest child of
the if body; the else body’s equivalent already has such an edge).

Thus, the only way a CFG node can acquire multiple incoming edges is if it is a loop
node, or is the immediate successor of an if node. In the loop node case, insertion rules
guarantee a φ-node gets added just after the loop node in the CFG and prior to its children,
thereby capturing for them the convergence of the loop’s two incoming control paths, while
the φ-node added after the loop in the AST captures the same convergence of paths for
non-child nodes to which a path from the loop exists in the CFG. Meanwhile, the insertion
of φ-nodes as immediate successors of if-statements in the AST guarantees that such nodes
cover the two converging paths to from the if node to its successors in the CFG. These φ-
nodes might not strictly dominate all AST-successors in the CFG, as a successor may have
other incoming edges, but by the foregoing logic, the successor must then itself be either a
loop node or the successor of another if-else, in which case the requisite φ-nodes would also
have been inserted.

Therefore, any node in the original, implicit CFG that joins multiple paths from distinct
sources assigning a symbol x will be strictly dominated by a φ-node for x in the CFG implied
by the post-SSA AST. This set of φ-nodes is sufficient, but possibly (much) more than
necessary, as shown by Cytron et al. [10]. Since performance of the SSA transformation and
its dependents has not yet proven to be a bottleneck, the pruning of superfluous φ-nodes
has not been attempted (and would likely entail constructing a representation of the implicit
CFG explicitly in order to make use of known algorithms).

LoRes L-Values & SSA

Assignment statements may contain l-values that are more complex than a simple variable
name. Whenever an array subscript, pointer dereference, or structure field is modified, the
symbol at the root of the assigned l-value is renamed to ensure that any subsequent uses
observe the result of the assignment, even if they access it by way of a different l-value
expression. This is a conservative analysis: if two array subscripts a[i] and a[i+1] differ,
they are treated as if they refer to the same memory, since it is impossible to determine
in the more general case whether a[i] and a[j] are aliases. Furthermore, whenever the a
pointer-typed value l1 is derived from some l-value l2, its own l-value’s root must be marked
as a possible alias for the root of l2, and vice versa. Whenever a symbol is renamed, so
too must be all symbols in its alias set. The example array code in Listing 5.3 and its
corresponding SSA form in Listing 5.4 show how the preceding rule applies.

LoRes AST Additions for SSA

The concrete SSA format of Listing 5.4 encodes several seemingly superfluous details. These
are mostly motivated by the desire to make the SSA-form AST executable in the LoRes interpreter–
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1 var a: ptr_array__Index

2
3
4
5
6
7
8
9 Alloc [ a, 10 ]

10
11
12 Deref(a)[0] := 1

13 For(i = 1...10 by 1) {

14
15
16
17 Deref(a)[i] := Deref(a)[i-1]

18
19
20 Deref(a)[5] := i

21
22
23 Deref(a)[i] := (Deref(a)[i])+1

24 }

Listing (5.3) A LoRes Array Loop

var a0: ptr_array__Index

var a1: ptr_array__Index

var a2: ptr_array__Index

var a3: ptr_array__Index

var a4: ptr_array__Index

var a5: ptr_array__Index

var a6: ptr_array__Index

var a7: ptr_array__Index

Alloc [ a0, 10 ]

a1 := a0

UseSym(a0,a1)

Deref(a1)[0] := 1

For(i = 1...10 by 1) {

a2 := Phi(i==1,a1,a5)

a3 := a2

UseSym(a2,a3)

Deref(a3)[i] := Deref(a2)[i-1]

a4 := a3

UseSym(a3,a4)

Deref(a4)[5] := i

a5 := a4

UseSym(a4,a5)

Deref(a5)[i] := (Deref(a4)[i])+1

}

a6 := Phi(10>1,a1,a5)

Listing (5.4) SSA-Transform of Listing 5.3

which has been of significant aid in debugging the compiler and the relevant transformation
passes–while others are the result of subtle interactions between said transformation passes.

The φ-node construct is realized in LoRes IR as the Phi(cond, e1, e2) expression, which
explicitly embeds a boolean-valued path condition as its first input, providing enough in-
formation for the runtime to decide which side of the Phi()’s two input values should be
chosen as the next value of the renamed variable. In general, such information would not be
needed, as φ-nodes exist only temporarily inside the compiler to track flows of information
between subsequent uses of a single identifier so that program semantics may be preserved
under various transformations. The LoRes compiler also removes all φ-nodes and collapses
subscripted variable names x0 . . . xn back to x after all passes that require SSA form have
been completed, but as these passes are often difficult to implement correctly, the ability to
execute their SSA-formatted outputs directly has proven highly useful.

When array pointers are renamed after l-value assignments in Listing 5.4, the new name
is assigned to the old with an explicit assignment statement, ensuring that the SSA version
remains executable. An additional UseSym(old, new) statement is also inserted to create a
backwards dataflow relationship, indicating that the old pointer “sees” the new one, and
thus also any updates to one of its derived l-values, so that this relationship is clear to any
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later dead-code elimination (DCE) passes4.

AST-Based Common Subexpression Elimination

A chief purpose of the foregoing SSA conversion algorithm is to enable common-subexpression
elimination (CSE), which identifies some cases in which two or more expressions are known
to compute the same value, and eliminates the redundant computation by assigning that
value once to a new temporary variable to be used multiple times. SSA format make CSE
possible by ensuring that a single identifier only ever refers to one particular value however
many times it is used inside the program, so any two occurrences of an expression such as
a1+b2+1 are guaranteed to have the same meaning. Otherwise, CSE would require almost
intractable safeguards to ensure that expression renaming is reset whenever a new value is
assigned to a variable, or when a given program location might be reachable via multiple
control paths that each update the same variable (the φ-node insertion condition). SSA
solves these problems. The utility of CSE in Ressort is not so much to reduce arithmetic
computation in HiRes operator implementations as it is to clean up the litter strewn by the
code generators that support the language’s underlying datatypes, and to facilitate analysis
passes that require identifying when two pairs of array bounds are identical, among other
things.

Section 5.1 describes the source of LoRes code bloat in terms of array view state gen-
eration. In order to keep the architecture of the HiRes compiler’s frontend as simple as
possible, it was decided that the internal API of each array view type should simply supply
methods to re-calculate whatever state is required and assign it to a new temporary variable.
Instead, each view simply supplies its own independent offset and bounds calculations, and
relies on the CSE and DCE passes in the backend to coalesce any resulting proliferation of
state updates into the minimal set of required declaration and assignment statements. This,
in turn, will make it much easier to identify when, for example, multiple access to a single
buffer necessarily refer to the same location in memory, as opposed to locations separated
by significant distance, thereby enhancing the efficacy of analyses like the communication
cost model of Chapter 7. Listing 5.5 shows how easily redundant size and offset calcula-
tions amass even even for simple HiRes programs like parallel scan operator introduced in
Listing 3.1 of Chapter 3, while 5.6 shows the effectiveness of CSE-based post-hoc tidying.

Challenges of AST-CSE

The benefit of a CSE pass is to remove the complexity of redundancy elimination from the
front end of the compiler, but it comes at the cost of a complex CSE pass implementation.

4The LoRes language specifies that pointers may not alias. Since the SSA format clearly violates this
requirement, the UseSym() was added as a way of marking aliasing explicitly. Such a relationship could
likely be inferred by the dataflow analysis pass if it made us of the type-checked AST to ascertain when
assignments were references, but it does not do so presently.
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1 var t_slen: ptr_array__Index

2 const narr0: const_Index := 16

3 var avg_len0: Index := 16/narr0

4 var rem0: Index := 16%narr0

5 var idx: Index := 0

6 // [...]

7 const narr3: const_Index := 16

8 var avg_len3: Index :=

9 (NumEntries(Deref(table->group_0)))/narr3

10 var rem3: Index :=

11 (NumEntries(Deref(table->group_0)))%narr3

12 const narr4: const_Index := 16

13 var avg_len4: Index := 16/narr4

14 var rem4: Index := 16%narr4

15 const narr5: const_Index := 16

16 // [...]

17 const narr15: const_Index := 16

18 ForPar(fcur0 = 0...narr15 by 1) {

19 const off0: const_Index := Mux(fcur0>0,

20 (avg_len3*fcur0)+rem3,avg_len3*fcur0)

21 const off1: const_Index := Mux(fcur0>0,

22 (avg_len4*fcur0)+rem4,avg_len4*fcur0)

23 const off2: const_Index := Mux(fcur0>0,

24 (avg_len1*fcur0)+rem1,avg_len1*fcur0)

25 var pvl: Index := Mux(fcur0>0,

26 avg_len5,avg_len5+rem5)

27 // [...]

Listing (5.5) Initial LoRes for Listing 3.1

var t1: Index

var t2: Index

var t3: Index

t1 [:=] NumEntries(

Deref(table->group_0))

t2 [:=] t1/16

t3 [:=] t1%16

var t_slen: ptr_array__Index

ForPar(fcur0 = 0...16 by 1) {

var t6: Index

var t7: bool

var t8: Index

var t10: Index

var t12: Index

var t13: Index

var t20: Index

var t21: Index

t6 [:=] fcur0

t7 [:=] t6>0

t8 [:=] t2*t6

t10 [:=] Mux(t7,t8+t3,t8)

t12 [:=] Mux(t7,t2,t2+t3)

t13 [:=] Safe(t6)

var ocur: Index

ocur := 0

// [...]

Listing (5.6) CSE-Transform of 5.6

CSE is challenging to implement in LoRes because it is performed on block-scoped ASTs,
rather than at the basic-block level of representation, as would normally be the case.

Ideally, CSE could be implemented with a simple algorithm: traverse the SSA-format
CFG (in any order), examine the expressions encountered in each basic block, and look each
one up in a hash-table, and replace it with its renamed temporary variable if it has been
seen before, or create a new one if it has not. Complex expression ASTs containing more
that a single two- or three-input operation should be broken down into their smallest atomic
units, starting from the leaves of the tree, each of which is renamed separately. Then, all
new temporary variables could be declared globally, and their values can be assigned at the
earliest point where both of their inputs have been assigned.

However, the block-scoped AST context thwarts this simple CSE algorithm in two ways.
First, any new temporaries cannot simply be introduced as global variables, and must have
a precisely defined scope to preserve the original semantics. One reason for this is parallel
loops: if an expression uses a variable with scope local to a parallel loop, then its renamed
temporary cannot be defined with scope higher than the parallel loop body, or else it would
not end up with thread-local storage. For example, in Listing 5.6, the variable t7–which has
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the value false for the 0th iteration and true for all others–must not be declared above
the loop. This would violate program semantics and would cause a data race as multiple
threads (iterations of the parallel loop) attempt to assign different values to a single memory
location. Temporaries must also not be declared at too “low” a scope, such as at the site of
their eventual assignment, as they must be visible to all AST locations from which all their
inputs are accessible. Thus, the declaration of a temporary variable should always occur
at precisely the point of declaration of the input whose scope is dominated by the scope of
every other input. Such an input must exist, as otherwise the original expression could not
have seen two inputs that have no domination relationship.

Secondly, care must be taken to ensure that expressions with side-effects, such as array
subscripts that may cause a memory protection fault if out of bounds, do not get hoisted
outside of enclosing if statements that control whether or not they should be evaluated. When
an expression containing an array subscript or pointer dereference is renamed, the resulting
temporary’s declaration scope is limited to the block in which the original expression was
used. Furthermore, expressions with a pointer or array type are never renamed, so CSE will
not create any new aliases.

A temporary’s assignment may occur far away from its point of declaration. This is
the case for instance when one of the temporary’s inputs is only assigned inside an if-else
statement, but is visible over a much wider scope. The LoRes CSE pass sets the value
of temporaries at the point of assignment of their last input dependence in program order
(i.e. depth-first AST traversal). If a temporary’s last dependency gets assigned inside of
an if statement, then the temporary will also be assigned there conditionally; if the last
dependency is originally (before SSA and CSE) assigned inside a for loop, then the SSA
conversion will have renamed that dependency and appended a φ-node after the loop on
which the temporary now depends instead, meaning that it will be assigned just after the
loop.

Passes to Support HiRes

Some LoRestransformation passes are necessary to implement the semantics of HiResopera-
tors fully, while others merely improve the resulting generated code. All rely heavily on the
full static typing of LoResASTs, which motivated its introduction as an IR in place of C or
C++.

Record Group Elimination

The record-group-elimination pass applies whenever a HiResrecord type is instantiated in
a LoResarray, and acts as an array-of-structs to struct-of-arrays transformation. Recall
that the split record type (Chapter 3, Section 3.2) requires each field group to be stored in a
separate LoRes/C++ array in order to implement the semantics of the Zip() and Project()

operators. Record-group elimination converts any split record types into a combination of
struct types for each field group, and updates all expressions derived split record-typed values
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accordingly. Afterwards, all other flat record types are converted to structs as well, so they
are suitable for direct mapping to C++.

Struct Scalarization

When temporary scalar values are declared for struct types derived from HiResrecords,
struct scalarization splits them up into separate temporary declarations for each primitive-
valued field. This enables DCE to prune unused fields and, consequently, accesses to their
originating arrays.

Unused Pointer Removal

Pointer-typed variables cannot participate in DCE prior to SSA collapse, due to conservative
alias analysis. Since chunk-arrays’ views generate potentially a large number of unnecessary
pointer state, a final “unused pointer removal” pass is applied after all SSA/CSE/DCE passes
and conversion back to non-SSA form, when UseSym() statements have been removed. This
pass simply discards pointer-typed variables that never appear in an RHS expression.

Common-Predicate Merge

Since execution masks can change at the boundary between any two operators, they are
implemented in the HiRescompiler by wrapping each operator-specific code generation in a
LoResif statement with whatever mask value is present in its leader input. This results in
a sequence of separate if statements even when operators are fused at the vector level. To
fix this, a LoRes-level predicate merge pass discovers adjacent if-blocks with syntactically
identical condition clauses. This is not correct in the general case, since an the body of such
a statement could mutate values used in the condition, but currently no HiRescode generator
does this.
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Chapter 6

Evaluation

Although the goal of Ressort was to enable communication-reducing query plan transforma-
tions that should shape the design of database-processing platforms that do not yet exist,
this chapter nonetheless presents preliminary empirical measurements from server-class pro-
cessors similar to those widely deployed in datacenters today. Machine-level plan decisions
do matter on existing hardware, and the observed variation between them indicates the dif-
ficulty of avoiding performance pitfalls, even if these do not always correspond directly to
differences in communication requirements, and instead result from other pathologies.

While the communication-based discussion of Chapter 2 and analysis of Chapter 7 can be
said to view the world in terms analogous to a physicist’s hypothetical frictionless surfaces
and perfectly elastic collisions, the measurements below confront the real bottlenecks of non-
ideal systems. Significant compiler development effort was required to support features that
resolve such quirks of general-purpose processors, whether or not they alter traffic.

6.1 Experimental Platform

Hardware

Results were measured on two Intel Xeon E5-2667 parts of different generations (launched
in 2013 and 2016), representing slightly different microarchitectures, as shown in Table 6.1.
Both systems are dual-socket and have two NUMA domains, with 8 cores (16 hyperthreads)
per socket.

Name Model Clock Sockets Cores Caches Mem. BW TLBs

Ivy Bridge E5-2667 v2 3.30GHz 2 16 32K, 256K, 25M 59.7GB/s 64, 512 ent.
Broadwell E5-2667 v4 3.20GHz 2 16 32K, 256K, 25M 76.8GB/s 64, 1536 ent.

Table 6.1: Intel Xeon Server Platform Specifications
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lineitem (SF * 6M records) part (SF * 200K records)
Field Type Field Type

l extendedprice LoFloat p partkey UInt32

l discount LoFloat p container UInt8

l tax LoFloat p brand UInt8

l partkey UInt32 p size UInt8

l quantity UInt32 p type UInt8

l shipmode UInt8 p retailprice LoFloat

l shipinstruct UInt8

l shipdate UInt16

l receiptdate UInt16

l commitdate UInt16

l returnflag UInt8

l linestatus UInt8

Table 6.2: Encoding of lineitem and part Relations

Software

For the purposes of evaluation, the Ressort compiler stack was used to generate C++ code
compiled with GCC [14] version 7.2 or higher using the -O3 level of optimization and with
OpenMP support enabled. The resulting binaries were executed on Ubuntu Linux version
16.04 with the OMP PROC BIND flag set.

6.2 “TPC-H”-Like Queries

All results were measured in a simulated column store environment, similar to that of Schuh
et al. [59], wherein custom C++ code generates columns of uniform random attributes as
part of a schema closely resembling that of the TPC-H benchmark [70], but which does not
conform to the TPC-H specification. In particular, all string-valued attributes are dictionary-
compressed to the smallest byte-aligned integer type large enough to contain their full do-
main, and any attributes that cannot be compressed this way (such as l comment) are
omitted, limiting the subset of queries that can presently be encoded. Table 6.2 shows the
encoding for each attribute exactly. The length of each relation is a multiple of the scaling
factor (SF), and shown in Table 6.2. It is furthermore assumed at the start of query execu-
tion that each attribute resides in a separate, contiguous column of memory (column-major
order).

Results are presented in terms of throughput, calculated as the number of records pro-
cessed divided by the runtime. The number of records is generally given by the size of the
lineitem table, which dwarfs the size of the part table by a factor of thirty. Only execution
time is counted as part of the runtime, and compilation time–in either the Ressort compiler
or in GCC–is excluded from consideration.

Furthermore, since Ressort currently lacks a proper DBMS front end, it cannot claim
to evaluate “TPC-H” queries since there is no way to input them in SQL form, and no
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Figure 6.1: Problem Scaling of TPC-H Q06 (SF=350)

automated query planning or optimization is performed. All measurements below rely on
manual implementation of HiRes plan generators in Scala, using the templates described in
Chapter 3 Section 3.3. Any logical query optimization, such as ordering the application of
selection predicates are applied, or the factoring out of sub-queries, is performed strictly by
hand.

Q06

Query 06 (whose SQL is shown in Listing 1.1) consists of selection based on three attributes,
followed by an aggregation (sum). The only machine-level plan choice of interest is whether
to use predicate cracking, and then whether to collect cracked results between predicates.
Figure 6.1 shows the performance of such plans for Q06 as the scaling factor (SF) is varied
from 10 to 350. The maximal throughput achieved is ≈5.5 billion records / second, corre-
sponding roughly to 70% of the Broadwell machine’s theoretical peak for the cracked plans.
The apparently un-cracked curve (“neither”) exhibits similar performance, even though this
should be slightly in excess of the theoretical peak. The reason for this, as revealed by
disassembly of the resulting object files, is that GCC’s optimization passes moved loads of
the l discount and l quantity attributes after conditional branches, effectively “cracking”
the plan under the hood. The proximity of these results to the bandwidth-bound peak is
unsurprising, given the simplicity of this query’s inner loop, and so they serve as a calibration
of the test platforms’ bandwidth.

Q19

Query 19 comprises a significantly richer space of machine-level planning choices than Q06,
as depicted by the plan generator template in Figure 3.9. Figure 6.2 shows the performance
of many plans for Q19 at different scale factors for both of the machines evaluated in this
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Figure 6.2: Performance Spectrum of Q19 Plans on Two Machines

study. These performance spectra depict each unique plan as a single point on the graph,
and plans are sorted from left to right in increasing order of their throughput. The x-axis
therefore represents the overall fraction of plans considered in each curve up to each point.

At scale factor SF=350 (the largest considered due to memory constraints), the perfor-
mance of plans varies by at least an order of magnitude, though the worst of these correspond
to degenerate settings of continuously-varying parameters, such as the number of radix bits
and size of hash-table buckets. On Broadwell–the more powerful of the two platforms–the
peak throughput attained for Q19 is approximately 1.8 billion records per second. Based on
a communication cost analysis (Chapter 7) a fully-packed, fully-partitioned plan at SF=350
should be able to run at a rate of 3.95 billion records per second, meaning that the best
plans reached 45% of peak performance.

To better understand the impact of planning choices, Figure 6.3 breaks down the SF=350
results into separate curves based on the partitioning strategy employed. At this scale,
all three broad classes–non-partitioned (“nopa”), partition-all-attributes (“part-all”), and
partition-single-attribute (“part-single”)–achieve performance within 33% of the best on each
machine, though on both platforms the winning plan uses full partitioning. On the Ivy
Bridge machine, the “nopa” curve is noticeably sparse in comparison to the others. This is
because many configurations of that strategy have degenerate performance (≈10M recs/sec
or worse) that would have taken too long to evaluate and contributed little insight. That
such an effect does not manifest on the Broadwell machine is likely due to the fact that the
latter has a significantly larger second-level TLB, and so does not thrash as easily when the
hash-table (and probe working set more generally) grows beyond its capacity. Otherwise, the
two machines’ respective plan spectra and peak throughputs tend to resemble each other,
as would be expected from two platforms that differ only slightly in terms of out-of-order
resources and memory bandwidth.

One structural parameter within the space of partitioned plans is the choice to per-
form “thread-local” partitioning: that is, instead of imposing a barrier after the histogram
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Figure 6.3: Performance Spectrum of Q19 Plans on Two Machines

build phase, and computing global offsets for each thread’s partitions into a shared output
buffer, each thread moves records to a local output buffer, from which it then performs the
probe phase of the join independently. This possibility is exploited more easily in full-query
compilation because, as in this case, the final aggregation means that the ordering of the
partitioned records does not matter, and no stability is required 1. Figure 6.4a shows that
the impact of local partitioning is only apparent in the “part-single” plans on Broadwell (a
similar effect was observed on the Ivy Bridge machine), in which case thread-local partition-
ing does markedly improve throughput, though the best of these plans still does not perform
as well as the best of the fully-partitioned ones.

In both cases, many choices beyond partition strategy contribute to significant perfor-
mance variation. The initial filter of Q19 has a selectivity of 0.08, which at first glance seems
small enough to reduce the amount of traffic consumed by scans of additional lineitem at-
tributes if cracking were employed, but Figure 6.4b shows that the impact of doing so is
negligible. Even if the compiler did not transparently eliminate the “un-cracked” version,
the results would still differ little, however. A simple calculation using Pirk’s [45] extension
to the communication model of Manegold [38] reveals why: if σ = 0.083 is the likelihood
a 4-byte element needs to be scanned, then the likelihood of accessing a particular 64-byte
cache line in the array containing it is:

1− (1− σ)(64/4) = 75%

Thus, the communication savings from cracking will be no more than about 25%, but at
such a high effective selectivity of cache lines, hardware prefetching is likely to mask any
theoretical savings.

In fact, it seems optimal to do just the opposite of cracking: the “collect” curve (green
boxes) contains all plans that eagerly load all required attributes (for either side of the join),

1In theory, this should result in less random cross-socket traffic, though in practice, the plans evaluated
did not use a disjointed split (Chapter 3 Section 3.2) operator, so the resulting output buffers may all have
been allocated in memory assigned to a single NUMA domain
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Figure 6.4: Impact of Plan Choices Aside from Pure Partitioning

and coalesce those surviving the initial filter predicates (using the HiRes Collect() opera-
tor, as supplied automatically by the Filter operator macro) into a (fully-packed) buffer of
valid tuples before using any of these in partitioning or otherwise2. Finally, the early materi-
alization option of Figures 6.4c and 6.4d indicates a marked improvement for non-partitioned
plans because the inclusion of post-join attributes into the hash-table eliminates unnecessary
cache misses, while for partitioned plans these are already eliminated by partitioning itself.

2This improved performance for partitioned plans because, in the experiments presented above, the
default fusion choice in partitioning cause a materialization of non-compacted, materialized tuples, as well
as a mask, which the foregoing selectivity calculation showed to be nearly an order of magnitude larger than
the compacted version.
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Chapter 7

Communication-Aware Query Cost
Models

Calculating the arithmetic intensity of TPC-H Q06 was straightforward in Chapter 1 be-
cause it consists merely of scanning a few arrays sequentially, making its communication
requirements easy to compute. It is also possible to adduce the traffic costs of more complex
operations, such as joins, and even whole queries that include them, but they require more
sophisticated techniques than back-of-the-envelope analysis. Seminal work by Manegold et
al. [38] provides a basis for doing so.

They encode common query operations in an algebra of memory access patterns whose
expressions can be evaluated, with respect to a particular memory hierarchy, to compute an
estimate of the number of required cache misses. We present a summary of their work, and
then extend it to more accurately model total memory traffic in modern systems with larger
caches, and when read-only operations can be distinguished from those which modify data.

7.1 Original Model of Manegold, Boncz, and Pirk

Nearly two decades ago, Manegold, Boncz, and Kersten [38] recognized that the majority
of database operations could be described in terms of a few simple memory access patterns,
such as sequential and random traversals of arrays, random accesses, strided accesses, and
so on. The resulting algebra of patterns and their corresponding cost functions formed a
Generic Cost Model for Hierarchical Memory Systems, designated hereafter as the Manegold
model. This section reviews their formulation briefly, with slight modifications of notation
to accommodate some of the extensions presented below. The extensions of Pirk [45] are
also assumed to model traversals with a conditional read probability, as occur in scan-filter
operations.
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Patterns and Regions

In the Manegold model, every relational table comprises one or more regions, each of which
has a particular geometry determined by its elements’ width and their overall number:

R1 = Region (b bytes×N elements)

A basic access pattern touches all or some elements of one region in some order:

P1 = S Tra (R1, u)

In the above example, P1 specifies a sequential traversal of region R1 that uses u bytes of
each element of size b ≥ u. Table 7.1 summarizes the set of basic patterns. Multiple basic
patterns can be executed either concurrently or sequentially, as denoted by the operators �
and ⊕, respectively:

P = P1 � P2 · · · � Pn = � (P1, P2, . . . , Pn)

Pattern Symbol

Sequential Traversal S Tra (R, [u])

Touches each element of R in sequence
Repeated Sequential Traversal RS Tra (R, N,dir, [u])

N repeated sequential traversals in same (dir = uni) or alternating bi directions

Random Traversal R Tra (R, [u])

Touches each element of R once, but in a random order.

Repeated Random Traversal RR Tra (R, N, [u])

Randomly traverse the elements of R repeated N times

Random Accesses R Acc (R, N, [u])

Makes N random accesses to the elements of R

Conditional Read Sequential S Tra CR (R, σ, [u])

Sequentially traverses the elements of R, but only accesses each element with probability σ ≤ 1.

Nested Cursor Pattern Nest (P ∈ B, N, rs)
Divides pattern P into N simultaneously-active sub-patterns on 1/Nth of P’s region R. If rs = rand then
sub-patterns are interleaved randomly; they are alternated in sequence if rs = seq.

Blocked Sequence Pattern ⊕
i≤N

[P]

Similar to Nest (), but with sub-patterns repeated N times sequentially.

Figure 7.1: Basic Patterns in the Manegold Model

Caches and Cache States

The cost of a pattern may depend on the cache hierarchy with which it is executed. A cache
of size C = linesize×# lines is assumed to operate with full associativity, while an initial
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cache state IC = {< Ri : l >} specifies the number of lines of each region that reside in
cache at the moment when execution begins.

A vector-valued miss function gives the number of cache misses induced by pattern P:

MC(I, P) = 〈sequential, random〉

The miss vector separates random misses from sequential ones, as a realistic memory technology–
or system–is likely to exhibit asymmetric performance in the two cases. At the same time,
a state update function S(P, IC) yields the resulting cache state.

As an example, a basic sequential traversal with an empty cache will result in:

MC

(
S Tra (R)

)
= 〈|R|C, 0〉 ; SC

(
S Tra (R)

)
= {〈R : |C|〉}

Here, |C| denotes the number of lines in cache C, while |R|C is the size of region R as a number
of cache lines of C. For detailed miss functions MC(P ∈ B) for other basic patterns, the reader
is referred to the original paper [38] of Manegold et al. In general, the state update of a
basic pattern P operating on region R is:

SC (P) = {〈R : min (FC(P), |C|)〉} (7.1)

The expression FC(P) denotes the footprint of pattern P, or the total number of cache lines
(w.r.t. C) touched by it, which in the case of a basic pattern may or may not comprise its
entire region.1

Costs of Compound Patterns

A sequence of two or more patterns uses the state update function S to set the new initial
state between each pair of sub-patterns:

MC (I,⊕ [P1, P2, . . . , Pn]) = MC (I, P1) + MC (SC(I, P1),⊕ [P2, . . . , Pn]) (7.2)

Its corresponding state update is given as

SC (I,⊕ [P1, P2, . . . , Pn]) = SC (SC (I,⊕ [P1, P2, . . . , Pn−1]) , Pn) (7.3)

In the case of a concurrent pattern, such as P = S Tra (R1) � R Tra (R2), the Manegold

model calculates the miss count for each sub-pattern as if it were executed by itself in a
cache with a fraction of the size of C. Each pattern is allotted a fraction of available cache
space based on its contribution to the overall working set, which is the total number of cache
lines in active use at any point during execution2.

1This is actually a departure from the Manegold formulation, which merely considers the entire region
to be mapped. For S Tra (R, u ≤ R.width), we use their formula for miss count to estimate the footprint, and

use the equivalent formula from Pirk [45] for S Tra CR (R, σ).
2In their terminology, this is a footprint, but we reserve that term for the total number of lines touched

over the entire course of execution.
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In a sequential traversal, only one line at a time is needed, while a random pattern might
reuse every line in its footprint, or total set of lines touched during execution. The above
pattern’s cost will thus be computed as:

WC (P) = WC

(
S Tra (R1)

)
+ WC

(
R Tra (R2)

)
= 1 + |R2|C

In general, a concurrent pattern’s cost is given by

MC (I,� [P1, P2, . . . , Pn]) =
∑
i≤n

MC/νi (I, Pi) (7.4)

νi =
∑
j≤n

WC(Pj)/WC(Pi) (7.5)

SC (I,� [P1, P2, . . . , Pn]) =
⋃
i≤n

SC/νi (I, Pi) (7.6)

Where C/νi represents a cache with size |C|/νi.
Together, we take the tupleM = 〈S,F,M〉 of operators to constitute the model, of which

each component may be replaced and refined independently. The next section describes our
own contributions to the model, which extend it by one component A, the allocator, and by
expanding the domain of patterns P expressible in the language.

7.2 Extensions for Communication Bounds

The goal of the foregoing model was to predict the number of cache misses on systems with
small caches relative to the size of the relations being processed, which was a good metric by
which to choose between different physical operator implementations in a query optimizer.
By contrast, our goal is to supply a lower bound on communication for hypothetical machines
of the future. As such, we have extended the Manegold model in several ways: we (1.)
differentiate between read and write traffic, (2.) assume caches may be arbitrarily large
and preserve data across ⊕ sequences, and (3.) also assume that cache space is optimally
managed. The rest of this section describes how our model extensions capture each of these
assumptions.

Extensions to Model Large, Optimal Caches

The Manegold model was designed under the assumption of caches with realistic modes of
operation and replacement policies, in which space is divided among patterns according to
their relative working set sizes, even though this behavior may be far from optimal. For
example, the histogram used in a scatter phase of partitioning might well be small relative
to the size of the relation being output, but by comparison would benefit enormously from
caching. Thus, a true lower bound on communication assumes optimal division of cache
resources between patterns according to their utility. We defer to later work a discussion of
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Figure 7.2: Memory Traffic Taxonomy: cache line transfers are either “explicit”, meaning
they correspond directly to a pattern’s per-element accesses, or “implicit”, meaning they are
implied by the eviction of dirty lines no longer needed.

whether such fine-grain control of memory is feasible in real hardware, but for now augment
the Manegold model with a cache allocation function, analogous to the cache state update
function, and make it a parameter of every cost function.

Cache allocations are similar to initial states, in that they assign to each region a number
of cache lines, and are passed as parameters to model operators of the form MC (I, A, P) or
SC (I, A, P). Thus, the original Manegold model’s allocator (a.k.a. the “working set allocator”
AW
C ) would simply treat a concurrent pattern P = � [P1 . . . , Pn] in the same manner as would

the state update function of Equation 7.6.
Optimal Allocation. To illustrate the complexity of the cache allocation problem, we

consider only polynomial patterns, or those consisting of a sequence P = P1 ⊕ P2 ⊕ · · · ⊕ Pn
of concurrent sub-patterns Pi = Pi1� Pi2� · · · � Pim of which each element Pij ∈ B is a basic
pattern operating on region Rij. Furthermore, suppose each term of polynomial P is called a
phase.

Allocation is thus an integer programming problem of the form:

Minimize MC (∅, A, P)

Subject to
∑
Pij∈Pi

Aij ≤ |C| for Pi ∈ P (7.7)

In this section, we demonstrate that optimal allocation for even a single phase is NP-hard,
only in the number of patterns. We present an allocation algorithm that is logarithmic in
the size of the cache. We then discuss the more general allocation problem, for which no
optimal solution is known, and compare several stopgap solutions.



CHAPTER 7. COMMUNICATION-AWARE QUERY COST MODELS 114

Single-Phase Allocation We first consider only the
single-phase allocation problem, in which allocations are produced for the monomial (con-
current) terms of P independently. Since a single phase consists of a concurrence Pi =
� [Pi1, . . . , Pim] of basic patterns, the objective function of (7.7) reduces to

For phase Pi: argmin
Ai1,...,Aim

∑
j≤m

MAij(Pij) (7.8)

It is subject to the same constraint. Here, each miss function corresponds to the cost of a ba-
sic pattern, each of which has one of three possible shapes. Random patterns have a convex
curve as shown in Figure 7.3c. Sequential traversals of a region accessed by a previous phase
have the discontinuous shape, depicted in Figure 7.3a, while repeated sequential traversals
(RS Tra) in the same direction have a continuous, but non-convex form shown in Figure 7.3b.
In all cases, the cost function will be a piecewise linear function, and so the overall optimiza-
tion problem corresponds to the single resource single dimension (SRSD) resource allocation
problem of Lee et al. [32]’s taxonomy. The same authors showed in Rajkumar et al. [54]
that this problem is NP-hard in the number of regions; Section 7.6 specifically reduces the
single-phase allocation problem to knapsack.

allocation
m

iss count
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m
iss count

Convex 
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m
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Figure 7.3: Single-Pattern Cost Function Shapes

Nonetheless, we provide a practical solution to these difficulties, which suffices for smaller
problems. First, we observe that if all basic pattern cost functions could be made convex,
then the polynomial time algorithm of Katoh, Ibaraki, and Mine [24], as cited by Stone
et al. [65], could find the optimal allocation for a single phase. Second, we note that the
source of non-convexity in each of the Manegold model’s patterns is an initial threshold
cache amount convC(P), prior to which no benefit is accrued; beyond that, however, the
cost function is either flat, or strictly convex. Moreover, this threshold is almost always
located at the pattern’s footprint F(P), as in the case of RS Tra (N, R,dir = uni), which has

a discontinuity there, benefiting only once the entire region fits in cache, or at one half the
footprint size, as in the case of RS Tra (N, ??dir = bi).
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If we were willing to accept an exponential cost in the number of patterns–in particular,
the number of non-convex patterns–which is likely to be small in any single phase, then
we could straightforwardly apply Katoh’s resource allocation procedure (RAP) algorithm,
AC(P) = RAP (C, P), in each convex sub-domain. Algorithm 7 does so by considering all
possible subsets of non-convex patterns in Pi ∈ P, and constraining their allocations to be at
least the threshold conv(Pi), while rejecting any infeasible allocations A > |C|. Since there
are at most 2|P| such patterns, the runtime of Algorithm 7 is O(2|P|(log |C|)2), remaining
polylogarithmic in the number of allocated cache lines, which is likely to be many orders of
magnitude larger than the number of patterns.

Algorithm 7 Pseudo-Convex Cache Allocation

1: function PC-RAP(C, P = P1 � P2 · · · � Pn)
2: BestAlloc← ∅
3: MinCost←MC(BestAlloc, P)
4: NonConv ← all non-convex basic patterns in P

5: Conv ← all convex basic sub-patterns of P
6: for all P ′ ∈ 2NonConv do
7: A← ∅ . Alloc. P ′ to threshold or more
8: for all patterns Pi ∈ P ′ do
9: Ai ← convC(Pi) . Set to convex threshold

10: if |A| > |C| then . Don’t alloc more than C
11: continue . Reject P ′

12: A← A
⋃

RAP(C, A, Conv)
13: Cost←MC(A, P)
14: if Cost < MinCost then
15: BestAlloc← A

16: MinCost← Cost
17: return BestAlloc

For excessively complex patterns with too many regions for brute-force search, the com-
plexity could be reduced to O(|P|2(log |C|)2) by replacing each cost function with its convex
hull, and skipping the PC − RAP (. . . ) step, which would induce an error of at most 50%
relative to the underlying cost function (as Section 7.7 shows), though this itself is already
a first-order approximation of what a real workload and cache would produce. 3

3It may in the end turn out worthwhile to abandon this constraint and use the convex hull for such
patterns after all: if a sufficiently “smart” caching policy were used, then some arbitrarily small number of
lines could be pinned in cache, and used whenever the part of traversal to which they correspond is reached.
This would result in a more continuous marginal utility function for those patterns, and thus eliminate the
headaches of non-convexity.
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Read-Write Traffic Model

The number of cache misses induced by a particular query plan is a good predictor of its
runtime on general-purpose processors, but it is an inadequate estimate of purely bandwidth-
bound performance on yet-to-be designed machines. We therefore extend the Manegold
model to track both read and write operations, and account for the added bandwidth cost
of writing back modified (dirty) cache lines. Although this may seem a strenuous effort to
correct what is at most an error of 2x, it is crucial for analyzing the benefits of new memory
technologies that may have divergent read and write costs. And, factors of two add up
quickly.

Discard, Read, Write, and Allocate Flags To separate both kinds of traffic, we
extend each basic pattern type from the Manegold model with read-write flags to indicate
whether it modifies data it touches. A separate allocate flag determines whether a pattern
should occupy space in the cache hierarchy, while a discard flag indicates whether data
modified by this pattern can simply be dropped afterwards, rather than written back to the
next level of memory. Thus, a sequential traversal may have the following form:

S Tra
DRAW

(R)

The read-allocate combination corresponds to the implicit assumptions of the Manegold
model. A write-only allocate pattern does not result in any misses until the cache is full,
while a read-write-allocate pattern exhibits read-only misses initially and then read-write
misses at capacity. In a non-allocate pattern, every access will result in a miss.

In general, patterns can have any combination of flags as long as either read or write
is set, but the P1 = Nest (P2) pattern requires special consideration. The flags of the outer

pattern P1 can differ from those of inner pattern P2 in that the outer nesting must read
data whenever the inner pattern writes, even if P2 is read-only. That particular combination
captures a common optimization used in partitioning, as described in Section 7.5.

As an extension of the discard flag, we also introduce a new pattern to mark regions’
cached, dirty state as no longer needed:

Discard {R1, R2, . . . , Rn}

Warmup vs. Steady-State Transfers
Handling read/write/allocate flags correctly requires further distinguishing warmup accesses–
which occur when a pattern has not yet populated its portion of the cache with data–from
steady-state accesses, which occur when a pattern is fully utilizing its cache allocation. Note
that this is not identical to the traditional compulsory-capacity distinction: in the latter,
the traffic from a sequential read of a yet uncached-region will consist entirely of compulsory
misses, while only the first several of those will be warm-ups.

Warmup accesses differ from their steady-state counterparts in that write-allocate pat-
terns do not generate write traffic during the warmup phase. Thus, a pattern whose footprint
fits within its cache allocation will will not generate write traffic until its dirty lines are evicted
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Pattern Warmup Steady
Rnd Sq Rnd Sq

S Tra
W

(...) W

S Tra
WA

(...) W W W

S Tra
RWA

(...) R,W W R,W

S Tra
RA

(...) R R

S Tra
R

(...) R

S Tra
RW

(...) R,W

Table 7.1: Read & Write Flags for Sequential Patterns

Pattern Warmup Steady Warmup Steady
R.u < B R.u = B

R S R S R S R S
R Tra

W
(...) R,W W

R Tra
WA

(...) R,W R,W W R,W

R Tra
RWA

(...) R,W R,W R,W R,W

R Tra
RA

(...) R R R R

R Tra
R

(...) R R

R Tra
RW

(...) R,W R,W

Table 7.2: Read & Write Flags for Random Patterns

in a phase transition. Tables 7.1 and 7.2 indicate which patterns generate read and write
traffic in the warmup and steady-state phases for sequential and random traffic, respectively.

A pattern P that causes state transition I→ S2 = SC(I, A, P) will therefore have at least
the number of warmup misses in Equation 7.9, where IUtil (. . . ) determines whether P can
benefit from initial state, and acc(P) is the number of accesses it generates:

warmC(I, A, P) =

{
acc(P) ¬alloc (P)

max (0,∆ (I, A, P)) alloc (P)
(7.9)

∆ (I, A, P) = min (A[R],FC(P))− (IUtil (I, A, P)) (I[R].l) (7.10)

All misses (random and sequential) beyond that number are classified as steady-state, and are
designated as read, write, or read-write according to the “steady” column of Tables 7.1 and 7.2.
In the special case where a pattern does not set the allocate flag, all misses are considered
warm-ups. Since some patterns, such as sequential traversals of regions larger than the cache,
are assumed not to benefit from initial state, we set the initial utility function as

IUtil (I, A, P ∈ B) =


1 rand(P)

1 I[R].l = |R|C
0 otherwise

(7.11)
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Steady-State Write-backs. The number of lines MSSW
C (I, A, P) transferred because

of steady-state write-backs is equal to the number of misses caused by patterns that write
data, minus the number of warmup misses given by Equation 7.9 above. The number of
steady-state write-backs for basic pattern P is thus given as:

MSSW
C (I, A, P) = max {0,MC(I, A, P) · write (P)− warmC(I, A, R)} (7.12)

For a sequence of two or more patterns, the number of explicit write-backs is defined as:

MSSW
C (I, A,⊕[P1, . . . , Pn]) =

MSSW
C (I, A1, P1) + MSSW

C (S(I, A, P1), A,⊕[P2, . . . , Pn])
(7.13)

The formula for concurrent write misses is analogous.

Implicit Traffic: Line Eviction Write-backs

Implicit traffic occurs when cached data has been modified with respect to the next level of
storage, and is evicted from cache because it is no longer being used. Implicit write-backs
differ from others in that they do not occur during the steady state. We classify such transfers
as transition misses, implied when fewer lines of a region are cached after a state transition,
and warmup misses, which occur when a single pattern cannot be assumed to make use of
lines from its own region that are already cached. We also assume that data read into the
cache sequentially can be written out sequentially. To track both of these distinctions, we
extend the cache state model with two new per-region attributes, and present formulas below
which use them.

Tracking Dirty State Counting transition misses requires an expansion of the cache
state model to indicate not only how much of each region is present, but also which fraction
of that is dirty, or modified with respect to the next level of memory. For a basic pattern
with region R, we modify the state update formula as follows, where I[R].l denotes the
number of lines of R in cache, while the subscript d denotes the number of lines that are
dirty:

SC(I, P(R) ∈ B) = {〈R : l = min(FC(P), |C|), d = D(I, P)〉}

D(I, P) =

{
min (F(P), |C|) P.write

min (I[R].l, |C|) otherwise

(7.14)

In a sequential pattern P1 ⊕ P2, the transition between states S1 → S2 generates traffic
equal to the net decrease in the number of cached, dirty lines:

MTWB
C (I, A, P1 ⊕ P2) =

∑
R∈S1

max (0, [S1[R].d]− [S2[R].d])

Warmup Write-backs In some cases, the initial cache state may contain some lines of
a basic pattern’s region, but it will not be possible to make use of those lines before they
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are evicted, as determined by IUtil (). If some of those lines are dirty, they will need to be
written back, as accounted for the by the warmup write-back function WWBR for a single
region:

WWBR(I, P ∈ B) = (1− IUtil (P, I))(I[R].d) (7.15)

In a concurrent pattern, the total warmup write-back traffic is given by summing over the
individual write-back traffic for each region:

MWWB
C (I, A,� [P1, P2, . . . , Pn, ]) =

∑
Ri∈P

[
max
Pj∈P

WWBRi(I, Pj)

]
(7.16)

Random vs. Sequential Write-backs Just as the read- and write-bandwidths of a
given memory technology may differ, so too may its performance for random and sequential
workloads. In order to maintain this distinction for write-back transfers, it is necessary to
mark each region in a cache state S with a random fraction S(R).r indicating which portion of
its dirty lines are to be counted as random write-backs, with all others resulting in sequential
writes. Thus, Equation (7.14) is augmented to stipulate that S(P) = {〈R, . . . , r = rand(P)〉}.

Block-wise Patterns

Partitioning is frequently employed to speed up sorting, joins, and other operations by
constraining the range over which random accesses are distributed, resulting in fewer cache
misses. The Nest (. . . ) pattern originally introduced in [38] captures the access pattern of

partitioning itself, but more effort is required to model subsequent operations that process
one partition or block at a time.

Manegold et al. represent block-wise operation notationally as⊕|mj=1(hash join(Vj, Uj,Wj)),
for example, in the case of a radix-m join. They do not specify how to compute its cost,
because in their framework it would only require multiplying the cost of a single block by the
number of blocks m (and replacing each subscripted region by one shrunk by the same fac-
tor). However, our proposed extensions necessitate greater subtlety to account for inter-block
and inter-phase write-backs.

We introduce new notation for block-wise execution:

Block
m,R

(P ∈ P)

The set R = {R1, R2, . . . } of regions is said to be blocked meaning that any basic patterns
accessing them will be assumed to operate on m sub-regions of size |Ri|/m; any pattern whose
region is not in R is assumed to be repeated m times. Additionally, the notation P/m stands
for replacement of any regions in P by equivalents with 1/mth the number of elements.

Blocked Basic Patterns The explicit communication cost of a basic pattern depends
on whether its region is in the blocked set R and whether it fits in cache. Indeed, unless the
whole unblocked region is already in cache, the blocked pattern is assumed not to benefit
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from any initially cached data. These distinctions are encoded in the single block cost and
blocked initial state functions, respectively:

m
R [MC] (I, A, P(R) ∈ B) =

{
MAR (IBlkAR(I, P), P/m) R ∈ R

MAR (I, P) R 6∈ R
(7.17)

IBlkC(I, P) =

{
∅ I[R].l < |R|C
〈{R : I[R]}〉 I[R].l = |R|C

(7.18)

The total cost of a basic pattern with m-way blocking is simply m times the single block
cost, as non-blocked patterns will be repeated m times too:

MC(I, A,Block
m,R

(P ∈ B)) = m · (mR [MC] (I, A, P)) (7.19)

Blocked Compound Patterns A concurrent pattern’s single-block cost is simply the
sum of the costs of its sub-patterns’ blocked variants :

m
R [MC] (I, A, P1 � . . . Pn) =

∑
i≤n

m
R [MC] (I, Ai, Pi) (7.20)

The cost of blocked sequences is computed similarly to normal sequence costs in (7.2),
but with recursive blocking of sub-patterns and initial states, and with a special provision
for supplying the resulting cache state of Pn as the initial state for m− 1 repetitions of P1:

MX
C (I, A, P1 ⊕ · · · ⊕ Pn) =(

n∑
i=2

m

R

[
MX
C
]

(Si−1, Ai, Pi)

)
·m+

(m
R

[
MX
C
]

(Sn, A1, P1)
)
· (m− 1) +

m

R

[
MX
C
]

(I, A1P1)

(7.21)

Here, the state sequence S0 . . . Sn is defined through the recurrence

S0 = I; Si = S (Si−1, Ai, Pi/m) (7.22)

Write Traffic in Blocked Patterns In (7.21), the miss function is superscripted with an
X to indicate that the same template also defines blocked versions of the warmup, transition,
and steady-state write-back cost models. Within the leaf expressions m

R [MC], any function
fC(I, A, P) applied to basic patterns, such as warmC(. . . ) (7.9), or WWBR(I, P) (7.15), are
blocked analogously to IBlkC(. . . ):

m
R [fC] (I, A, P(R)) =

{
fC (IBlkC(I, P), A, R/m) R ∈ R

fC (I, A, P) R 6∈ R
(7.23)
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7.3 A Manegold-Based Roofline Model

In addition to modeling raw traffic, the point of the foregoing should be to model limits
on performance. Chapter 1 highlights the Roofline Model as a characterization of machine
performance limits in terms of memory bandwidth and arithmetic bandwidth; it is therefore
natural to consider limits on the latter in tandem with any estimation of the former. This
gives rise to a wide spectrum of modeling granularities and accuracies that may be useful
in different contexts. We define four different levels of performance modeling, increasing in
fidelity from pure communication costs to full microarchitectural simulation, and consider
what each one can offer designers of hypothetical query-processing hardware.

1. Bandwidth-only (BWOnly): Performance is strictly determined by the amount of
data transferred between levels of the memory hierarchy. Computation is assumed to
be infinitely fast, and memory requests are generated at the maximum rate supported
by the memory controller.

2. Constant access rate (ConstRate): Computational power is no longer infinite, and
an abstract machine is assumed to be capable of generating a fixed number of memory
accesses per second. If the number of misses generated per access is low, the pattern
is considered to be compute-bound.

3. Approximate Arithmetic Intensity (ArInt): Each basic operation (e.g. com-
puting a record’s hash, incrementing a counter) is assigned an abstract number of
arithmetic/logic operations (AOps), and each phase of a query plan requires a certain
number AOps per access (instead of one per access, as in ConstRate).

The relevant notion of “operation” will depend on the kind of arithmetic units envi-
sioned by the designer.

4. Cycle-accurate Simulation (CycAcc): Performance is defined by the actual ex-
ecution of real code on a concrete hardware design. In a general-purpose processor
design, for example, overheads from inter-instruction dependencies, sub-optimal cache
replacement policies, inaccurate prefetching, and programmer error (e.g. failure to use
streaming stores), will all impact performance.

In Simulation Level 1 (BWOnly), the model described in the preceding section is sufficient
to state an absolute lower bound on runtime for a given plan and platform:

BWOnly

time C (P) =
MemBWC

MC(P) ·B
(7.24)

Here, MemBWC stands for the peak sustainable bandwidth between cache C and the next
layer of the memory hierarchy. In practice, the read, write, and read-write bandwidths can
differ widely, so it is necessary to separate the miss vector and machine bandwidth tuple into
their various components. Overall runtime is the maximum of any component of (7.24).



CHAPTER 7. COMMUNICATION-AWARE QUERY COST MODELS 122

At all higher-fidelity levels, it is also necessary to account for the rate at which memory
requests are generated, as not all available bandwidth may be used. In Level 2 (ConstRate),
a maximum access bandwidth AccBW of accesses per second imposes an additional limit
on performance. If P is a basic pattern, and acc(P) is the number of memory accesses it
generates, then:

ConstRate

time C (P ∈ B) = max

{
MemBWC

MC(P) ·B
,
AccBW

acc(P)

}
(7.25)

The access bandwidth is independent of cache level, as it is assumed to depend only on the
kind and number of processing elements.

When P is a compound pattern, however, the calculus is more complex, because a se-
quence of multiple patterns may contain some that are bandwidth-bound and some that are
compute-bound; since max is an inherently non-linear operator, it would be inappropriate to
apply Equation 7.25 across the average of these patterns. We therefore divide each complex
pattern into distinct phases, where the top-level sequence P = ⊕ [P1, . . . , Pn] defines phases
1 . . . n:

ConstRate

time C (⊕ [P1, . . . , Pn]) =
∑
i≤n

ConstRate

time C(Pi)

Note that we perform this separation only once, assuming that the pattern is a polynomial,
and that its top level is a sequence P1 ⊕ P2 . . . Pn. 4 Furthermore, the number of accesses
of any complex pattern acc(P) is simply the sum of the accesses of all its constituent basic
patterns.

Finally, the third simulation level ArInt trades the access bandwidth term of Equa-
tion 7.25 for one constrained by arithmetic operation bandwidth:

ArInt

timeC(P) = max

{
MemBW

MC(P) ·B
,
AOpBW

AOps(P)

}
(7.26)

7.4 Summary & Limitations

These extensions to the Manegold model attempt to adapt it for the context of contemporary
and emerging memory system architectures, which may include features such as HBM that
effectively act as multi-gigabyte caches, or which allow for greater control over allocation, and
data write-back. Through their use in the evaluation of broad spaces of query plans, designers
of future database machines should be able to analyze the marginal impacts of additional
resources such as on-chip storage on query performance limits, without necessarily executing
concrete software on a cycle-level simulation.

4We rely on the programmer/query compiler to make this segmentation appropriately. While it would
be possible to further sub-divide each concurrent pattern into phases based on any sequences it may itself
contain (and based on some notion of relative rates of completion of concurrent patterns), this is beyond the
scope of the Manegold model, and of unjustifiable fidelity, given that the latter assumes cache allocations
based on the maximum working set size of any element of a sequence contained within a concurrence.
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That said, it is hard to judge the adequacy of these proposals in the absence of empirical
validation or even detailed simulation results, and it is easy to identify some sources of
weakness. Even under the common but unrealistic assumption of uniformly distributed
accesses in any random (R ) pattern, the miss functions used to model them are gross
simplifications of a complex interaction (even more so in our own implementation, which
makes the combinatorially incorrect equation of hit rate with the ratio of a region’s size to
its allocation). Furthermore, complex queries are likely to present concurrent patterns that
access the same region (especially if those patterns are generated automatically), and the
model cannot distinguish between constructive and destructive interference (i.e. whether
such patterns compete for bandwidth and cache space or share data). The cache allocation
algorithm described above is only optimal within a particular stage of a polynomial pattern,
and only relative to the underlying miss functions–all of which are limitations that may
badly limit utility for real-world queries and datasets.

Nonetheless, these preliminary considerations constitute a step towards the establishment
of a more widespread convention of bandwidth-bound performance analysis in the realm
of analytics acceleration. We conclude with a brief presentation of how a space of fully-
compiled plans might be encoded in such a model. At present, this is done manually, but
one motivation for the development of Ressort was to automate this analysis in the future.

7.5 Case Study: TPC-H Query 19

To illustrate how this system models communication requirements for real queries, TPC-H
Q19 once again serves as an example. As the machine-level plan study in Chapter 2 Sec-
tion 2.4 shows, this query consists of (1.) a selection of the lineitem table based on three
attributes, (2.) a selection of records in the part table based on two attributes, (3.) a
foreign-key join of the lineitem table with the part table on the key partkey, and (4.) a
final filter based on several other attributes of both relations, followed by an aggregation to
a single scalar value. With this as the basic plan configuration, other machine-level plans–
each with different traffic requirements–are derived according to the processes described in
Section 2.2, and a handful of them are sampled from the space also described in that case
study. As in prior chapters, it is also assumed that all attributes are stored in column-major
order, and that discrete quantities such as p container are stored as dictionary-encoded
single-byte values. However, in this case, we do not consider parallelization, and focus only
on serial plans. For brevity, lineitem is abbreviated as L and part as P .

The lineitem table is first filtered based on on the predicates involving the Lpre =
{l shipmode, l shipinstruct} attributes (selectivity σL = 0.083 for this query) the results
of which are subsequently joined against the part table, followed by a final selection based
on the remaining attributes of both tables:

Lpost = {l quantity, l extendedprice, l discount}
P post = {p size, p container, p brand}
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At the highest level, the space of machine-level plans is divided along two dimensions:
(1.) partitioning (based on partkey) of zero, one, or all attributes, (2.) early vs. late
materialization of column-major data into multi-attribute output records.

Thus, each plan’s access pattern can be described as a combination of two halves (each
of which may constitute multiple “phases” in the sense of loops, or terms of a polynomial
pattern): a partition phase, and a join phase. The patterns of each phase can be described
separately.

Partitioning

Assume that partitioning entails division into 2m buckets based on the m most significant
bits (MSBs) of the value of the partkey attribute. In all cases, this entails a histogram data
structure of size:

HistX = Region

(
2m × 1

8
log2 |X|

)
(7.27)

Building that histogram requires the same access patterns for all plans:

PBuild(L) =

[
�

r∈Lpre
S Tra

R
(r)

]
� S Tra

WA
(BVec)

� S Tra CR
R

(Lkey, σL)

� R Acc
RW

(HistL, |L|σL)

PBuild(P ) = S Tra
R

(Pkey)� R Acc
RW

(HistP , |P |)

(7.28)

In the move phase, common optimization of write-combining buffers [59, 5, 37] is assumed
in the model, meaning an in-cache buffer is presumed to be allocated with one cache line per
output partition (in case the output record size is smaller than a cache line, which it is in
this case, and that the buffer would fit in cache), allowing that line to fill completely before
being evicted to to its proper place in the memory-resident output array:

PWbMv(X) = Nest
RWA

(
2m, S Tra

WA

(
X̂
)
, rand

)
(7.29)

Here, the outer nesting has both read and write flags set, while the inner sequential traversal
has only the write flag; as a consequence, read traffic is generated only for misses to the 2m

cache lines that constitute the working set of Nest
RWA

(. . . ), while S Tra
WA

(X) generates writes

only.
In a partition-all plan, the model assumes that it is possible to avoid re-scanning the

pre-join attributes Lpre each time a new attribute of L is partitioned, because a bit vector
BVec can be employed to indicate whether each element of L was selected during the initial
PBuild(L) scan (though other plans are possible). For each subsequent attribute, the keys
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of L are re-scanned as (for P , PScan(P ) = PBuild(P )):

BVec = Region (|L| × 1/8)

PScan(L) = S Tra
R

(BVec)� S Tra CR
R

(Lkey, σL)

� R Acc
RWA

(HistL, |L|σL)

(7.30)

The partitioning phase thus encompasses histogram build and record move sub-phases
for both relations:

Part = PBuild(P ) + PMove(P ) + PBuild(L) + PMove(L) (7.31)

Part-single-attr Partitioning on a single attribute entails a simple four-phase build-
move-build-move sequence. We denote by X̂ the partitioned version of region X.

X̂key = Region (|X|σX × [KeySize · PtrSize])
PMove(X) = PScan(X)� PWbMv(Xkey)

Part-all-late Partitioning all attributes introduces the option of materializing records
early, either during the partitioning itself, or while the hash table is built during the join.
We consider now the first two cases, leaving the latter until we consider the join phase itself.
When no materialization is performed, the partition-all pattern has the same build-phase
behavior as no-partition, but the move phase is given as:

L̂key = Region (|L|σL × [Lkey.width + PtrSize])

L̂i 6=key = Region (|L|σL × Li.width)

PMoveval(P, r) = PScan(P )� PWbMv(r)� S Tra
R

(r)

PMoveval(L, r) = PScan(L)� PWbMv(r)� S Tra CR
R

(r, σL)

PMovekey(X) = PScan(X)� PWbMv(Xkey)

PMove(X) = ⊕
r∈Xpost

[
PMoveval(X, r)

]
⊕ PMovekey(X)

Part-all-early Materializing attribute values from each relation during the move phase
of partitioning results in an access pattern similar to the above formula, but with concurrent
traversals of the inputs, and a single write to the output:

L̂all = Region

(
|L|σL ×

[∑
r∈L

r.width

])
PMove∗(X) = PScan(X)� PWbMv(Xall)

PMove(L) =

[
�

r∈Lpost
S Tra CR

R
(r, σL)

]
� PMove∗(L)

PMove(P ) =

[
�

r∈Ppost
S Tra

R
(r)

]
� PMove∗(P )



CHAPTER 7. COMMUNICATION-AWARE QUERY COST MODELS 126

Joining

Joining consists itself of three components: build, probe, and materialize. In the first, a
hash table Htbl of length |P |/2m is constructed whose elements consist either of p partkey

values and accompanying pointers, or materialized values of P ’s attributes, depending on
the materialization scheme. In each case:

Htbl = Region

(
|P |
2m
× EntrySize

)
Join = JBuild� (JProbe� JMat)

We consider each plan separately.
No-part When no partitioning is performed, the build and probe phases are:

JBuild = S Tra
R

(Pkey)� R Tra
WA

(Htbl)

JPre =

[
�

r∈Lpre
S Tra

R
(r)

]
� S Tra CR

R
(Lkey, σL)

JProbe = JPre� R Acc
R

(Htbl, |L|σL)

JMat(L) = �
r∈Lpost

[
S Tra CR

R
(r, σL)

]
JMat(P ) = �

r∈Ppost

[
R Acc

R
(r, |L|σL)

]
JMat = JMat(L)� JMat(P )� S Tra

WA
(Out)

No-part-mat Even without any partitioning, it is possible during the hash table build
phase to materialize the attributes of P so they are instantly available on probes.

JBuild =

[
�

r∈Ppost
S Tra

R
(r)

]
� S Tra

R
(Pkey)� R Tra

WA
(Htbl)

JProbe = JPre� R Acc
R

(Htbl, |L|σL)

JMat = �
r∈Lpost

[
S Tra CR

R
(r, σL)

]
� S Tra

WA
(Out)

Part-single-attr Partitioning on the single (partkey) attribute changes the above pat-
terns to reflect division of the hash table into 2m segments, and the materialization accesses
to non-partkey attributes to be random.

JBuild = ⊕
i<2m

[
S Tra

R

(
P̂keyi

)
� R Tra

WA
(Htbl)

]
JProbe = S Tra

R

(
L̂key

)
� R Acc

R
(Htbl, |L|σL)

JMat(X) = �
r∈Xpost

[
R Acc

R
(r, |L|σL)

]
JMat = JMat(P )� JMat(L)� S Tra

WA
(Out)
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Part-all-late When all attributes are partitioned along with partkey, random materi-
alization accesses become constrained to the span of a partition:

JBuild = ⊕
i<2m

[
S Tra

R

(
Pkeyi

)
� R Tra

WA
(Htbl)

]
JProbe = S Tra

R

(
L̂key

)
� R Acc

R
(Htbl, |L|σL)

JMat(P ) = �
r∈P̂post

[
R Acc

R
(r, |L|σL)

]
JMat(L) = �

r∈L̂post

[
S Tra

R
(r)
]

JMat = ⊕
i<2m

[
JMat(P̂i)� JMat(L̂i)� S Tra

WA
(Outi)

]
Part-all-early With early materialization, the build and probe phases once more resem-

ble those of the no-part strategy:

JBuild = ⊕
i<2m

[
S Tra

R

(
P̂i

)
� R Tra

WA
(Htbl)

]
JProbe = ⊕

i<2m

[
S Tra

R

(
L̂i

)
� R Acc

R
(Htbl, |L|σL)

]
JMat = S Tra

W
(Out)

7.6 Proof of NP-Hardness of Single-Phase Allocation

Theorem 6. Single-phase allocation is NP-hard in the number of regions.

Proof. To see this, it suffices to show that the allocation of space between multiple repeated,
unidirectional sequential traversals can effectively solve the knapsack problem. The latter
is, as formulated in Rajkumar [54], the set ai ∈ {0, 1} which maximizes:

Maximize: arg max
a1,...,an

n∑
i=1

aivi

Subject to:
n∑
i=1

aiRi ≤ R

(7.32)

Assume there are n resources, of which the ith costs Ri and contributes value vi, and that
at most R cost can be spent.

Now, consider n regions Ri, of size |Ri|, and n repetitive sequential traversals:

P = �
i≤n

RS Tra (Ni, Ri,dir = uni)
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Under the Manegold model, an optimal allocation of cache C is one that minimizes

Minimize:
∑
i≤n

|Ri|C +
∑
i≤n

(1− ai)(Ni − 1)|Ri|

ai =

{
0 Ai < |Ri|
1 Ai ≥ |Ri|

Subject to:
∑
i≤n

Ai =
∑
i≤n

ai|Ri| ≤ |C|

(7.33)

It is clear, however, that a solution a∗ = (a1, . . . , an) which minimizes the above objective
must also maximize ∑

i≤n

ai[(Ni − 1)|Ri|]

We can convert this into (7.32) by setting each repetition count to

Ni = 1 +
vi
|Ri|C

And so solve the 0-1 inexact knapsack problem.

7.7 2x Error Bound on Convex Hull Allocation

In order to attain polynomial-time single-phase allocation, the outer loop of Algorithm 7
may be skipped if each cost function is replaced by its convex hull, thereby permitting direct
application of Katoh et al.’s RAP algorithm [24].

As shown by Rajkumar et al. [54], the deviation from optimal cost that results from
the approximation is bounded by the maximum distance between any individual utility
function and its convex hull. For the cost functions composing the Manegold model and
our extensions, this is bounded by the parameters depicted in Figure 7.4. In each case, the
maximum traffic is bounded from below by the footprint FC(P), and from above number
of accesses it makes. Assuming the discontinuity removal optimization of Section 7.2, the
convex threshold point will occur at half the footprint size, which is half the relation size in
the example of Figure 7.4. That is also the point of maximum distance between hull and
the cost function, which can be expressed as

δ ≤ 1

2
(||R|| − FC(P)) ≤ 1

2
||R||

In other words, the error δ is at most half of the true value ||R|| at the convex threshold.
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M=N||R||

|R|

min=|R|

|R|/2

max 
err

convex hull

(N||R||-|R|)/2

conv(P)

P=RS_Tra(N, R, uni)

M(A, P)

A

M

Figure 7.4: Convex Hull of Non-Convex (Fig 7.3b) Cost Function
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Chapter 8

Conclusions & Future Work

8.1 Summary

This thesis makes the bet that the performance of database analytics workloads either is
or will soon be limited by the memory bandwidth bottleneck, and so future hardware to
accelerate them, if it is indeed worthwhile, should be designed to reduce communication re-
quirements, or eliminate computational bottlenecks that prevent communication-minimizing
plans from saturating existing bandwidth capacities. Put another way, it wagers that future
hardware should be designed in tandem with changes to query plans that account for the
scarcity of this resource (Chapter 1).

Accordingly, the concept of machine-level plans is introduced to encompass all the lowest-
level aspects of query optimization impacting the interaction of query execution with machine
microarchitecture, and which many prior researchers have considered extensively at the level
of individual relational operators, such as joins. The impacts of machine-level choices are
considered at the level of fully-compiled queries, rather than operators, and classified in a
taxonomy that describes their effects in terms of communication and other hardware-related
constraints of machines that exist today (Chapter 2). Since the space of machine-level plans
for individual queries is potentially large, and different choices can result in quite different
code structures (i.e. loop nests), a new abstraction in the form of the HiRes language is
presented to represent them concisely, and to facilitate the investigation of tradeoffs they
present.

Several challenges and opportunities arise in the process of compiling HiRes programs.
The semantics of relational operators in query plans more generally, and of low-level HiRes
primitives in particular, make loop fusion an under-constrained optimization problem to
which the space of possible solutions is difficult to express intuitively, but whose impact on
performance is potentially large (Chapter 4). Meanwhile, the process of refining HiRes to
C++ motivates the introduction of an intermediate representation, LoRes, on which type-
sensitive transformation passes can be perfomed to achieve high performance while also
simplifying the architecture of the HiRes compiler frontend (Chapter 5).
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8.2 Principal Findings & Recommendations

An initial evaluation of compiled HiRes query plans on contemporary server-grade, general-
purpose CPUs reveals that, with much effort and a broad search of machine-level plan spaces,
even complex queries can achieve close to 35-50% of the peak theoretical performance that
(essentially) any plan could attain on platforms with equivalent bandwidth, raising questions
about the degree to which future hardware might be able to accelerate them by more than
2-3x.

This suggests that if future performance advances do come from hardware improvements,
they will likely result from changes to support more advanced compression techniques, the
disaggregation of many-core CPUs into greater numbers of sockets, or on-die and on-package
memory technologies. In the case of the latter, though, it will need to be shown that sufficient
locality can be found to exploit them; none of the test queries examined in this study would
have benefited from HBM by more than 20%.

At the same time, the preponderance of plans running an order of magnitude slower
than the best found for a given query means that performance cliffs are abundant and often
difficult to avoid. A key challenge for query optimizers of the future will be to exploit the
opportunities of machine-level plan choices while avoiding their inherent pitfalls.

8.3 Limitations & Future Work

The above conclusions should be taken as extremely provisional, on account of the lim-
ited scope of study, and hardware-conscious optimizations that still cannot be expressed
in the HiRes language. It is quite possible that the expansion of coverage to ever more
complex queries and plans will reveal ample opportunity for acceleration. Regrettably, the
construction of plan generators for even simple queries has proven cumbersome, suggesting
inadequacies in the HiRes language’s design that could someday be improved.

This fragility means that the construction of good query optimizers for HiRes or similar
plan formats will pose challenges beyond those already considered difficult in the database
community. Indeed, the lack of a SQL front end and automated optimizer in Ressort is
a fundamental limitation of the foregoing results. The introduction of slightly higher-level
constructs in the form of operator macros (Chapter 3 Section 3.3) represents one small step
towards the construction of an algebrizer, but this remains an unfinished project.

In order to approach competitive performance on today’s general-purpose platforms, sev-
eral compiler and language features unrelated to pure communication costs were needed, and
still others could improve empirical results further. For example, SIMD or vector instruc-
tions are known to be necessary to reach peak throughput for some physical operators (such
as filtering) on machines like those used in this study [48]), but Ressort cannot yet generate
them. The NUMA-aware partitioning strategy of Schuh et al. [59]–which entails merging
per-thread partition buffers during the join phase–cannot be fully expressed due to the lack
of an appropriate merge operation. Software prefetching of randomly-accessed data could
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mitigate the pipeline stalls associated with the cache misses they engender, especially as part
of cracked attribute accesses, or during post-join attribute gathers. Additionally, support for
data-flow abstractions that enable the accumulation of fixed-size blocks of surviving tuples
across selective filters or joins before processing by a downstream operator could allow better
use of existing bandwidth capacity. At present, neither these strategies, nor even conditional
branch-avoidance techniques inside of the Collect() operator, can be expressed.

These caveats apply even before considering more specialized hardware platforms already
in wide use, such as GPUs, which did not enter into this study. Since the primary motivation
of Ressort was to enable both the design of and optimization of database software for future
hardware, the extension of code generation abilities to existing data-parallel programming
models is a natural next step, and it should be hoped that the same holds for whatever more
specialized hardware architectures ultimately emerge. If HiRes is truly to contribute to their
design, however, then the most immediate pursuit should be the automation of Manegold-
style [38] access pattern algebra (Chapter 7 ) generation and communication cost analysis
as part of the HiRes compilation process.

8.4 A Methodological Plea

Until the advent and widespread adoption of bandwidth-expanding technologies such as on-
chip silicon photonics, bandwidth to DRAM will continue to represent an absolute limit
on query processing performance, whether or not existing software and hardware systems
manage to exhaust it. Accordingly, it should be hoped that future research results in both the
hardware and software domains be judged relative to that limit. By framing results in terms
of this upper bound, researchers will be able to state more readily how much work remains
to be done, and how much (or little) performance remains to be had for these workloads.

Of course, such analysis will not always be straightforward. For complex queries, the
full space of possible machine-level plans (assuming an optimal logical plan choice, which
itself may be unrealistic) will have to be evaluated relative to a given memory hierarchy, and
the bandwidth limit will have to be established by considering the least costly of these in
communication terms. But HiRes contributes to the realization of that goal by providing a
higher level of abstraction for encoding the relevant plan choices and exploring the search
space, and we hope that future development of it, or similar query compilation frameworks,
will eventually permit researchers to build a shared understanding of communication bounds
for common benchmark queries.
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