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ABSTRACT

We examined potential large-scale controls over the

distribution of arbuscular mycorrhizal (AM) fungi

and their host plants. Specifically, we tested the

hypothesis that AM fungi should be more prevalent

in biomes where nutrients are primarily present in

mineral, and not organic, forms. Values of percent-

age root length colonized (%RLC) by AM fungi, AM

abundance, and host plant availability were com-

piled or calculated from published studies to deter-

mine biome-level means. Altogether, 151

geographic locations and nine biomes were repre-

sented. Percent RLC differed marginally significantly

among biomes and was greatest in savannas. AM

abundance (defined as total standing root length

colonized by AM fungi) varied 63-fold, with lowest

values in boreal forests and highest values in tem-

perate grasslands. Biomes did not differ significantly

in the percentage of plant species that host AM fungi,

averaging 75%. Contrary to the hypothesis, %RLC,

AM abundance, and host plant availability were not

related to the size, influx, or turnover rate of soil

organic matter pools. Instead, AM abundance was

positively correlated with standing stocks of fine

roots. The global pool of AM biomass within roots

might approach 1.4 Pg dry weight. We note that

regions harboring the largest stocks of AM fungi are

also particularly vulnerable to anthropogenic

nitrogen deposition, which could potentially alter

global distributions of AM fungi in the near future.

Key words: arbscular mycorrhizal fungi; below-

ground net primary productivity; fungal biomass;

biome; colonization; fine root length; root C:N

ratio; soil organic matter; survey.

INTRODUCTION

Arbuscular mycorrhizal (AM) fungi are recognized

as an important, widespread component of most

terrestrial ecosystems. They receive 3–20% of

photosynthate from their host plants (Kucey and

Paul 1982; Harris and others 1985; Harris and Paul

1987; Jakobsen and Rosendahl 1990; Finlay and

Soderstrom 1992; Johnson and others 2002a, b) in

exchange for the transfer of soil-derived nutrients

to roots, and in this way influence carbon (C)

fluxes and nutrient dynamics among plants, soils,

and the atmosphere. Moreover, AM fungi are

sensitive to various aspects of global change. They

often proliferate under elevated atmospheric CO2

and can also decline under anthropogenic nitrogen

(N) deposition (Jansen and Dighton 1990; Diaz

1996; Hodge 1996; Staddon and Fitter 1998; Rillig

and others 2002a; Treseder 2004). As such, AM

fungi may play a key role in regulating ecosystem

responses to environmental change at local to glo-

bal scales. However, most global change studies of

AM fungi are conducted at the ecosystem scale or

smaller (Rillig and others 2002a).

To interpret local dynamics of AM fungi within

larger scales, we must understand which environ-

mental factors are most important in influencing

the global distribution of AM fungi (Allen and

others 1995a). Read (1984, 1991a) hypothesized
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that the community composition of mycorrhizal

fungi would vary as a function of the accumulation

of organic matter in the soil. Specifically, AM plants

should be more abundant in ecosystems with

smaller pools of organic nutrients in the soil, since

this group possesses limited ability to degrade or-

ganic matter. In contrast, ectomycorrhizal fungi

can decompose labile organic nutrients, and their

plant hosts should proliferate in areas with mod-

erate organic accumulation. Finally, ericoid

mycorrhizal fungi can break down more re-

calcitrant compounds and should be cultivated in

ecosystems with large standing stocks of humified

material. In turn, the global distribution of these

three mycorrhizal groups could have implications

for large-scale fluxes of CO2 between the soil and

the atmosphere (Treseder and Allen 2000). The

decomposer activity of ectomycorrhizal fungi and

ericoid mycorrhizal fungi should generate a net

CO2 flux from the soil. In contrast, AM fungi can

contribute to soil C sequestration by producing

glomalin, a recalcitrant and abundant soil glyco-

protein (Wright and Upadhyaya 1996; Rillig and

others 2001).

What factors other than soil organic nutrients

could influence large-scale distributions of AM

fungi? Isotope tracers in laboratory and field studies

indicate that AM fungi consistently receive

37–47% of C delivered belowground by host plants

(Harris and others 1985; Harris and Paul 1987; Ja-

kobsen and Rosendahl 1990; Johnson and others

2002a). Accordingly, AM fungal abundance may

simply vary in proportion to belowground net pri-

mary productivity (BNPP) of AM plants (Harley

1971). Another possibility is that because fine roots

provide a substrate for colonization by AM fungi,

fine root length could determine AM biomass.

Finally, mycorrhizal groups may differ in their

contributions toward N versus phosphorus (P) up-

take by plants. Arbuscular mycorrhizal fungi are

thought to play a particularly important role in P

acquisition; ectomycorrhizal and ericoid mycor-

rhizal fungi may be more effective for N (Mosse

1973; Smith and Read 1997). If so, AM abundance

may be greater where plants are more limited by P,

as indicated by high N:P ratios of plant tissue.

We tested the relative importance of each of

these potential regulating factors by compiling

published measurements of the percentage of root

length colonized (%RLC) by AM fungi and the

proportion of plant species that harbor AM fungi in

ecosystems representing nine biomes (Appendix,

http://www.springerlink.com). In addition, the to-

tal length of roots colonized by AM fungi per biome

was calculated based on %RLC and others’

estimates of fine root stocks (Jackson and others

1997). We quantified differences among biomes in

these three parameters, and checked for correla-

tions with pool sizes of soil organic matter (SOM),

rates at which organic material is introduced to the

soil, and the residence time of SOM. Negative

correlations of AM fungi or AM host plants with

any of these SOM characteristics would support

Read’s hypothesis. Positive correlations with either

BNPP, fine root length, or plant N:P would indicate

that other mechanisms could control AM distribu-

tion across biomes.

METHODS

For each biome, we estimated three parameters

related to AM distributions: %RLC by AM fungi,

total standing root length colonized by AM fungi,

and the proportion of plant species that host AM

fungi. Each index conveys distinct information. In

addition, each could potentially—but not neces-

sarily—be controlled by different environmental

conditions.

Percentage root length colonized by AM fungi is

determined by staining fine roots with dyes tar-

geting AM structures (Koske and Gemma 1989),

and then examining stained roots under high

(200·) magnification. Generally, 100 or more

intersects along the root length are examined for

the presence or absence of AM structures (McG-

onigle and others 1990). The percentage of these

intersects that contain AM structures indicates the

%RLC by AM fungi. The construction and main-

tenance of AM structures within the root requires

an investment of carbohydrates by the host plant.

These resources could otherwise be allocated to

root biomass or other plant tissues. It follows that

plants with greater %RLC by AM fungi will have

allocated a greater portion of their carbohydrates to

AM fungi instead of roots (Allen 2001). Percentage

root length colonized by AM fungi can therefore be

viewed as an indication of the relative investment

by plants in AM fungi. This index tends to increase

under P limitation of plant growth (Treseder 2004),

which is consistent with the notion that plants

control allocation of resources to AM fungi based

on cost–benefit ratios (Read 1991b; Treseder and

Vitousek 2001).

In contrast, the total standing root length colo-

nized by AM fungi should be related to the total

biomass of AM fungi in an ecosystem (at least,

within plant roots). For example, if two ecosystems

display similar levels of %RLC, but different

standing stocks of roots, the ecosystem with greater

standing root length should have a higher
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abundance of AM biomass. The total standing root

length colonized by AM fungi is obtained by taking

the product of the total standing length of fine roots

within each biome, and the average %RLC within

each biome. Hereafter, we will refer to total

standing root length colonized by AM fungi as ‘‘AM

abundance’’.

The third parameter that we examined is the

proportion of plant species within an ecosystem

that can serve as hosts for AM fungi. Most plant

species are compatible with AM fungi, with a few

notable exceptions (Newman and Reddell 1987).

For example, many conifers form relationships

with ectomycorrhizal fungi instead of AM fungi. In

addition, some grasses are non-mycorrhizal. In

ecosystems that are dominated by the latter two

groups, the capacity for AM fungi to proliferate

may be curtailed owing to lack of potential hosts.

The percentage plant species within an ecosystem

that can host AM fungi will hereafter be referred to

as ‘‘host plant availability’’.

We assembled data on %RLC and host plant

availability from published field studies repre-

senting each biome. We only used data collected

from naturally established plants in unmanipu-

lated habitats (for example, no fertilization,

planting, weeding, or clearing), although we

made exceptions in the case of agricultural sys-

tems, where planting, clearing, or weeding were

acceptable. No data from fertilized areas were

included in the database, even for agricultural

studies, because N or P fertilization often influ-

ences %RLC (Treseder 2004). Where results were

presented in graphs, we estimated values by

using digitizing software (Preble 1998). We

averaged all data points and sampling times from

unmanipulated areas within each location of each

study. Locations were assigned to biomes

according to geographical setting and the authors’

descriptions of study sites.

Altogether, locations ranged from 42�S to 69�N,

covering nine biomes in 151 geographical locations

(Appendix, http://www.springerlink.com). All

continents except Antarctica were represented, al-

though the majority of studies were clustered in

North America. The least-represented biomes were

desert, savanna, tundra/alpine, and boreal forest,

and the most common were temperate grasslands

and tropical forests.

Percentage Root Length Colonized

By far, the most common unit of measurement of

AM fungal abundance per unit plant biomass is

%RLC. Because this technique is used in the

majority of field-based AM studies, we were able to

assemble directly comparable data from numerous

investigators and ecosystems. We classified mea-

surements of %RLC according to sampling ap-

proach. In a subset of studies, investigators

collected roots from random locations within the

ecosystem. We considered the resulting coloniza-

tion levels to represent the plant community as a

whole (that is, ‘‘community-level’’). In contrast,

the majority of studies focused on particular plant

species which were often considered a priori as

likely to form relationships with AM fungi (that is,

‘‘species-specific’’). We analyzed this group of

studies separately, because the %RLC of likely host

plants may not necessarily have represented that of

the community as a whole.

The calculation of community-level %RLC for

cultivated ecosystems was less straightforward than

for those of natural ecosystems, because measure-

ments of %RLC in non-AM agricultural systems

were very rare. In fact, all the agricultural studies

that we compiled were focused on monocultures of

AM crop plants. Values of %RLC were therefore

assigned to the ‘‘species-specific’’ category as well

as the ‘‘community-level’’ category, because the

plant community within a given agricultural eco-

system usually consists of one species. However, we

stress that the biome-scale average of community-

level %RLC for agricultural areas must be consid-

ered an upper bound only. We were not able to

incorporate %RLC from non-AM crops, and these

would likely reduce our biome-level estimates. As

such, we did not include in our statistical analyses

the community-level %RLC and AM abundance

for this biome.

AM Abundance

By taking the product of root length and mean

community-level %RLC for each biome, we ac-

quired an estimate of standing root length colo-

nized by AM fungi. This index is analogous to

AM abundance. In most studies in the database,

measurements of %RLC were restricted to a

subset of roots; typically these were live, fine

roots (<2 mm diameter) in the upper 10 cm of

soil. Therefore, we estimated root length colo-

nized for only live, fine roots in the top 10 cm of

soil. Fine root pools at this depth were derived

from Jackson and others (1997, Table 1). Our

calculations did not consider AM fungi at lower

depths, but %RLC often peaks within the top 15

cm of soil then declines (Figure 1). As such, we

expected that our analyses included the majority

of AM colonized roots.

Global Distributions of Arbuscular Mycorrhizae 307



T
a
b

le
1
.

A
rb

u
sc

u
la

r
M

y
co

rr
h

iz
a
l

P
a
ra

m
e
te

rs
a
n

d
B

io
m

e
-l

e
v
e
l

C
h

a
ra

ct
e
ri

st
ic

s

B
io

m
e

P
e
rc

e
n

t
R

L
C

,

C
o
m

m
u

n
it

y
-l

e
v
e
la

P
e
rc

e
n

t
R

L
C

,

S
p

e
ci

e
s-

sp
e
ci

fi
ca

A
M

A
b

u
n

d
a
n

ce

(k
m

co
lo

n
iz

e
d

ro
o
t

m
)

2
)b

H
o
st

P
la

n
t

A
v
a
il

a
b

il
it

y

(%
p

la
n

t
sp

e
ci

e
s)

a
S

O
M

(k
g

C
m

)
2
)c

S
O

M

In
p

u
ts

(k
g

C
m

)
2

y
)

1
)c

R
e
si

d
e
n

ce

T
im

e

o
f

S
O

M
(y

)c

B
N

P
P

(k
g

C
m

)
2

y
)

1
)d

L
iv

e
F

in
e

R
o
o
t

le
n

g
th

(k
m

m
)

2
)e

R
o
o
t

N
:P

f
A

re
a

(1
0

1
3

m
2
)g

B
o
re

a
l

F
o
re

st
2
4
.5

±
8
.2

(2
)

3
6
.3

±
2
6
.0

(3
)

0
.2

8
6
4
.0

±
3
1
.6

(3
)

1
9
.3

0
.6

8
2
8

0
.1

1
1
.1

5
1
6
.5

1
.8

7

C
u

lt
iv

a
te

d
3
6
.3

±
1
9
.6

(2
4
)h

3
6
.3

±
1
9
.6

(2
4
)

1
.5

0
h

n
.d

.
0
.0

5
4
.1

2
2
.4

8

D
e
se

rt
3
4
.4

(1
)

3
3
.2

±
1
4
.0

(5
)

0
.3

6
8
4
.6

±
2
2
.6

(5
)

1
.4

0
.0

4
3
3

0
.0

1
1
.0

5
1
.6

9

S
a
v
a
n

n
a

6
3
.3

±
0

(2
)

4
3
.3

±
1
1
.5

(5
)

9
.4

9
8
5
.5

±
2
4
.0

(4
)

5
.4

0
.4

8
1
1

0
.3

7
1
5
.0

0
3
6
.3

2
.1

7

T
e
m

p
e
ra

te
F
o
re

st
2
2
.6

±
3
.5

(4
)

4
0
.0

±
3
1
.8

(1
1
)

0
.3

1
5
6

(1
)

1
2
.7

0
.9

1
1
4

0
.2

1
1
.3

8
1
0
.5

0
.9

9

T
e
m

p
e
ra

te
G

ra
ss

la
n

d
3
5
.6

±
1
8
.2

(9
)

3
6
.2

±
2
1
.4

(2
6
)

1
7
.7

4
8
0
.3

±
2
9
.2

(8
)

1
3
.3

0
.3

0
4
4

0
.1

8
4
9
.8

2
7
.4

0
.9

0

T
ro

p
ic

a
l

F
o
re

st
3
5
.8

±
9
.9

(6
)

3
6
.0

±
2
6
.5

(6
)

0
.3

1
7
0
.5

±
2
7
.8

(1
4
)

1
9
.1

3
.7

3
5

0
.4

8
0
.8

7
4
1
.0

1
.3

5

T
u

n
d
ra

/A
lp

in
e

4
2
.3

(1
)

3
4
.4

±
2
3
.6

(7
)

1
.9

2
6
9
.4

±
3
9
.3

(5
)

2
1
.8

0
.1

0
2
1
3

0
.0

6
4
.5

3
1
1
.0

0
.7

1

W
o
o
d
la

n
d
/S

h
ru

b
la

n
d

3
4
.8

±
9
.7

(3
)

3
1
.8

±
2
9
.0

(1
3
)

1
.6

3
7
3
.7

±
1
5
.4

(1
2
)

7
.6

0
.4

6
1
6

0
.0

4
4
.6

7
1
.1

0

P
er

ce
n

t
R

L
C

,
p
er

ce
n

ta
ge

ro
ot

le
n

gt
h

co
lo

n
iz

ed
b
y

a
rb

u
sc

u
la

r
m

yc
or

rh
iz

a
l

fu
n

gi
;

A
M

,
a
rb

u
sc

u
la

r
m

yc
or

rh
iz

a
l;

S
O

M
,

so
il

or
ga

n
ic

m
a
tt

er
;

B
N

P
P

,
b
el

ow
gr

ou
n

d
n

et
p
ri

m
a
ry

p
ro

d
u

ct
iv

it
y;

n
.d

.,
n

ot
d
et

er
m

in
ed

.
a
M

ea
n

±
1

S
D

(n
).

b
P

ro
d
u

ct
of

m
ea

n
co

m
m

u
n

it
y-

le
ve

l
%

ro
ot

co
lo

n
iz

a
ti

on
b
y

A
M

fu
n

gi
a
n

d
li

ve
fi

n
e

ro
ot

le
n

gt
h

p
er

b
io

m
e.

c D
a
ta

fr
om

A
m

u
n

d
so

n
(2

0
0
1
).

d
In

cl
u

d
es

b
ot

h
A

M
a
n

d
n

on
-A

M
p
la

n
ts

.
D

er
iv

ed
fr

om
th

e
C

A
S
A

m
od

el
(R

a
n

d
er

so
n

a
n

d
ot

h
er

s
1
9
9
7
)

a
n

d
co

m
p
il

a
ti

on
s

of
b
el

ow
gr

ou
n

d
a
ll

oc
a
ti

on
(S

a
u

gi
er

a
n

d
ot

h
er

s
2
0
0
1
).

e T
op

1
0

cm
of

so
il

on
ly

,
in

cl
u

d
in

g
b
ot

h
A

M
a
n

d
n

on
-A

M
p
la

n
ts

;
ca

lc
u

la
te

d
fr

om
Ja

ck
so

n
a
n

d
ot

h
er

s
(1

9
9
7
).

f F
ro

m
G

or
d
on

a
n

d
Ja

ck
so

n
(2

0
0
3
).

g
B

a
se

d
on

cl
a
ss

if
ic

a
ti

on
sc

h
em

es
d
ev

el
op

ed
b
y

B
el

w
a
rd

a
n

d
ot

h
er

s
(1

9
9
9
).

h
U

p
p
er

-b
ou

n
d

of
es

ti
m

a
te

,
d
ep

en
d
in

g
on

th
e

p
ro

p
or

ti
on

of
a
gr

ic
u

lt
u

ra
l

sy
st

em
s

p
la

n
te

d
w

it
h

A
M

h
os

t
p
la

n
ts

.

308 K. K. Treseder and A. Cross



Host Plant Availability

We determined the relative abundance of AM

versus non-AM plants in each biome by compiling

data from field or nursery studies that had surveyed

five or more local plant species for AM colonization

(Appendix, http://www.springerlink.com). The

percentage of plant species in which AM structures

were observed was then averaged across surveys

within each biome. All biomes were represented

except for agricultural systems. The mycorrhizal

status of most crop plants is well established, so

surveys of cultivated areas were uncommon. Sur-

veys were likewise rare in temperate forests and

boreal forests. Although percent cover, stem den-

sity, BNPP, or an analogous measure of relative

abundance of AM plants would have been more

appropriate for our analyses, these data were not

reported often enough to allow for biome-level

estimates.

Biome Characteristics

We used data compiled by others to assign values of

SOM content, BNPP, live fine root length, and

plant nutrients to biomes (Table 1). Pools of SOM

(Amundson 2001) signified the amount of nutri-

ents stored in organic form in biomes; SOM inputs

(Amundson 2001) indicated the rate at which or-

ganic nutrients are made available to mycorrhizal

fungi and plants. Residence times of SOM

(Amundson 2001) served as an index of recalci-

trance of organic nutrients. Live fine root length

was calculated for the top 10 cm of soil from

Jackson and others (1997). We included root N:P

ratios as an indication of the P status of plants rel-

ative to N (Gordon and Jackson 2003). Specifically,

plants whose growth is limited by P should have

higher N:P ratios than would plants limited by N

(Koerselman and Meuleman 1996; Aerts and

Chapin 2000).

Regional values of NPP were provided by the

CASA model (Randerson and others 1997), which

uses satellite data of the normalized difference

vegetation index (NDVI) and solar insolation to

estimate light interception by plant canopies. Net

primary productivity was directed belowground

according to a biome-level compilation of alloca-

tion observations (Saugier and others 2001). Spe-

cifically, the percentage of NPP allocated

belowground in each biome was: cultivated, 13%;

temperate forest, boreal forest, 39%; desert, 40%;

tropical forest, 44%; savannas, woodland/shrub-

land, 50%; tundra/alpine, 57%; and temperate

grasslands, 67%. Land regions were assigned to

biomes according to the International Geosphere–

Biosphere Programme DISCover class scheme,

which is based on NDVI (Belward and others

1999).

Statistics

We applied analyses of variance (ANOVA) to test

for differences among biomes in AM parameters

(SPSS 2000). For species-specific %RLC, AM

abundance, and host plant availability, we were

unable to transform the data to meet assumptions

of the ANOVA. In these cases, ranked data were

used. Pearson tests were employed to assess corre-

lations between AM parameters and relevant

biome characteristics (SPSS 2000). We considered

test results to be significant when P was less than

0.05, and marginally significant when P was less

than 0.10.

RESULTS

Percentage Root Length Colonized

Mean %RLC at the community level ranged from

22.6% in temperate forests to 66.3% in savannas

%RLC

0 20 40 60 80 100

S
oi

l d
ep

th
 (

cm
)

0

20

40

60

80

100

120

0

20

40

60

80

100

120

Nebraska
Saskatchewan
Australia
Quebec

A

B

Shrubland
Salt marsh, California

Salt marsh, Connecticut
Tropical forest

Boreal forest
Desert

Figure 1. Percent RLC as a function of soil depth, in

agricultural (A) and natural (B) ecosystems. Data are

from published field studies (Ellis and others 1992; Cooke

and others 1993; Brown and Bledsoe 1996; Germida and

Walley 1996; Ingleby and others 1997; Kabir and others

1998; Moyersoen and others 1998; Nehl and others 1999;

He and others 2002; Neville and others 2002).
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(Table 1), with marginally significant variation

among biomes (ANOVA, F7,20 = 2.076, P = 0.095).

In contrast, species-specific %RLC did not differ

among biomes (ANOVA, F8,91 = 0.120, P = 0.998)

and averaged 37.0% overall (Table 1).

AM Abundance

AM fungi were most abundant in temperate

grasslands and savannas (Table 1), as a result of

high levels of fine root biomass coupled with high

%RLC. This value varied widely—63-fold—among

biomes. We did not perform statistical tests for

differences across biomes, because root length col-

onized was derived from biome-level means of

%RLC and live fine root length.

Host Plant Availability

Generally, 75% of plant species surveyed harbored

AM fungi (Table 1), with no significant differences

among biomes (ANOVA, F7,44 = 0.733, P = 0.645).

Correlations Between AM Parameters
and Biome Characteristics

Soil organic matter pools, inputs, and residence

times were often negatively related to %RLC, AM

abundance, and host plant availability, but only

weakly and non-significantly in most cases

(Table 2). The exception was a marginally signifi-

cant negative correlation between host plant

availability and SOM pool size (Table 2). Of the

other biome characteristics examined, live fine root

length and AM abundance were highly correlated

(Figure 2). Marginally significant correlations were

observed between BNPP and species-specific

%RLC, and between community-level %RLC and

host plant availability (Table 2).

DISCUSSION

We found little evidence in support of Read’s

hypothesis (1984, 1991a) that AM fungi should be

less common in ecosystems with greater availability

of organic nutrients. Plant allocation to AM fungi

(that is, %RLC), AM abundance, and host plant

availability did not vary significantly with SOM

contents, inputs, or residence times (Table 2), ex-

cept for a marginally significant negative relation-

ship between host plant availability and SOM

content. The extent to which soil nutrients are

bound in organic forms did not appear to influence

strongly the large-scale distribution of AM fungi.

The best predictor of AM abundance was stand-

ing fine root length (Table 2, Figure 2). As such, T
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AM abundance tended to be much greater in

grasslands than in other biomes (Table 1). This re-

sult may be expected given that fine root lengths

were used to calculate AM abundance. However,

%RLC was also included in estimates of root length

colonized for each biome, yet %RLC was not sig-

nificantly correlated with root length colonized

(Table 2). Apparently, because standing fine root

length varied much more widely among biomes

than did %RLC (Table 1), standing fine root length

wielded stronger influence over AM abundance.

Given that species-specific %RLC did not differ

among biomes (Table 1), it appears that AM host

plants allocated a fairly consistent proportion of

resources to AM fungi (vs. roots) across a broad

range of environmental conditions. Likewise, host

plant availability did not vary widely (Table 1).

Instead, the combination of these two parameters

might have elicited differences among biomes in

community-level %RLC. Specifically, the product

of species-specific %RLC and the proportion of

plant species that can host AM fungi should pro-

vide a weighted index of allocation to AM fungi on

a community basis. This value was significantly

correlated with community-level %RLC across

biomes (r = 0.849, P < 0.008). In comparison,

species-specific %RLC was not correlated with

community-level %RLC when considered inde-

pendently, and host plant availability was only

marginally significantly correlated with commu-

nity-level %RLC (Table 2). It seems that differences

in allocation to AM fungi by plant communities as a

whole (that is, community-level %RLC) may have

been influenced by the interaction of subtle varia-

tions in the host status of plant communities and

the degree to which AM fungi are supported by

individual host plants. In turn, host plant avail-

ability may have been somewhat inhibited by SOM

content, and species-specific %RLC may have

tended to increase under higher rates of BNPP

(Table 2). However, statistical support for these

latter two relationships was not strong.

Our results are derived from a compilation of

data from diverse studies, each conducted at dif-

ferent dates, with different sampling regimes, and

with potentially different protocols. For instance,

even though the staining of fine roots for AM col-

onization is a widespread approach, investigators

vary in their choice of stains (that is, Trypan Blue

vs. Chlorazol Black E), clearing times, and degree of

root bleaching (Koske and Gemma 1989). The

quantification of %RLC under magnification is also

somewhat subjective, because the investigator

must often distinguish between AM and non-AM

fungi based on morphological differences. These

inconsistencies may have contributed to variation

in results among studies, which would limit our

statistical power.

How much AM biomass is represented by our

estimates of AM abundance? We can roughly

approximate intraradical fungal biomass by using

the formula B = p Æ r2 Æ L Æ K Æ D, where B is dry

biomass; r is root radius, L is root length colonized,

K is the fraction of colonized root volume that is

fungal, and D is fungal density (Toth and others

1991). The radius of fine roots averages 0.11 mm

for grasses, 0.22 mm for shrubs, and 0.58 mm for

trees (Jackson and others 1997). Toth and others

(1991) have proposed a K value of 0.06, and Van

Veen and Paul (1979) estimate fungal density as

1.1 g dry weight cm)3. Accordingly, pools of AM

biomass within plant roots could range from 4 g

m)2 in deserts to 44 g m)2 in grasslands. Global

totals might approach 1.4 Pg dry weight. This value

includes neither extraradical AM hyphae nor in-

traradical AM structures below 10 cm soil depth. It

also does not account for agricultural systems,

which likely total 0.05 Pg or less. The accuracy of

this estimate is also limited by the accuracy of the

value of K, which has only been assessed in a

couple of systems (Toth and others 1991). In

comparison, direct measurements indicate that to-

tal microbial C in soils (including fungi, bacteria,

archaea, and protists) reaches 13.9 Pg worldwide

(Wardle 1992). Assuming that AM tissues contain

approximately 41% C (Paul and Clark 1996), in-
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Figure 2. Correlation between AM abundance and fine

root length. Each symbol represents one biome. BF,

boreal forest, D, desert, S, savanna, TEF, temperate forest,

TG, temperate grassland, TRF, tropical forest, TU, tundra/

alpine, and WS, woodland/shrubland. Live fine root

length is calculated for the top 10 cm of soil, from Jack-

son and others (1997).
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traradical AM fungi could constitute about 4% of

the global microbial C pool.

Biomes vary in their susceptibility to global

change, with potential consequences for large-

scale distributions of AM fungi. Nitrogen addi-

tions decrease investment in AM fungi by plants

(assessed primarily as %RLC) by an average of

24% in field studies (Treseder 2004). Temperate

grasslands of North America and Asia are often

exposed to anthropogenic N deposition from

neighboring agricultural areas (Galloway and

Cowling 2002). These regions harbor relatively

large standing stocks of AM fungi (Table 1), so

any inhibition of AM growth by N there may

become relevant on a global scale. Alternately, if

plants in this biome use AM fungi primarily to

acquire P, then N effects may be less apparent. To

date, AM responses have been determined in

only a few N fertilization studies in temperate

grasslands, with mixed results (Anderson and Li-

berta 1992; Bentivenga and Hetrick 1992; Grogan

and Chapin 2000; Johnson and others 2003;

Treseder 2004). Another consideration is that a

doubling of atmospheric CO2 concentrations

consistently produces an increase in AM invest-

ment (primarily as %RLC), by an average of 84%

(Treseder 2004). This effect could be more wide-

spread, because CO2 enrichment is a global phe-

nomenon. Finally, production rates of glomalin

can be positively related to AM biomass (Wright

and Upadhyaya 1996), so that temperate grass-

lands and savannas may be important targets for

assessments of potential C sequestration in glo-

malin stocks under global change. Our hope is

that the information presented here proves useful

in examining these and other potential large-scale

consequences of environmental change in rela-

tion to AM fungi.
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