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Abstract

Automated Domain Decomposition for Multi-GPU Monte Carlo Electron-Photon
Radiation Transport

by

Vanessa Goss

Doctor of Philosophy in Engineering - Nuclear Engineering

University of California, Berkeley

Professor Raluca Scarlat, Chair

A Convolutional Neural Net (CNN) was trained to determine the optimal decomposition of
a voxel domain for Monte Carlo electron-photon radiation transport. The training database
was developed by collecting photon flux and surface current tally data for a simple shielding
problem and a simplified human phantom brain model. The voxel matrix inputs were mapped
to the tally outputs by the CNN, allowing the CNN to accurately predict tally results from
material and source data. The predicted flux was then used to determine the shape and size
of the subdomains, and to calculate the size of the ghost zones. The intent for the CNN is to
reduce the amount of trial and error that is often necessary to decompose domains manually
by a user. Poor domain decomposition can lead to longer run times. Furthermore, this work
is meant to serve as a proof of concept for more complex geometry types and applications.
The CNN predicted decomposition performed at best 1.6x faster than other decomposition
schemes for the shielding problem and 1.3x faster for the human phantom problem. This
process was done to demonstrate the power of intelligently choosing subdomain boundaries
rather than using arbitrarily chosen boundaries.
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Chapter 1

Introduction

Predicting the effects of radiation as it moves through and interacts with matter is essential
to assess the safety and security of radioactive sources and experiments. Generating energy
deposition and dose data from these sources can be done with handheld survey meters
and other radiation detectors. However, this introduces unnecessary risk and is limited
by radiation safety and economic considerations. Computational methods serve as a safer,
more cost effective alternative. Deterministic, Monte Carlo, and hybrid, which combines
deterministic and Monte Carlo, are the categories of methods available to calculate solutions
to the Boltzmann transport equation, the equation that mathematically describes radiation
transport. Each method has different features and errors making them attractive for various
applications. The work presented in this dissertation is focused on Monte Carlo methods for
continuous-energy, coupled electron-photon transport.

Monte Carlo is a unique computational method that directly simulates individual electron
and photon lifetimes or histories. Each particle’s lifetime is tracked by a series of interactions
with the surrounding material, these interactions produce secondary particles and deposit
energy until the initial particle is absorbed or leaves the problem’s domain. With a large
enough number of histories, macroscopic behavior can be determined by averaging the in-
dividual interactions, called tallies. Monte Carlo is typically treated as the gold standard
of computational methods for regulatory purposes because it is continuous in energy, space,
and angle; additionally, MC can be used with general, more complex geometries. However,
Monte Carlo is computationally expensive because it converges sub-linearly and requires a
large amount of memory to store the nuclear data and domain necessary to perform the
simulation. Typically, Monte Carlo simulations need to be parallelized and run on super-
computers to produce results in a reasonable amount of time. Demand for larger, more
detailed problem is expected to increase as more computational power becomes available.

Recent supercomputing trends indicate that the future architectures will become increas-
ingly parallel and dependent on general purpose graphic processing units (GPUs). GPUs
have higher number of floating point operations per second (FLOPs), higher memory band-
width, and lower energy required per FLOP, compared to existing CPUs. GPUs are inher-
ently massively parallel and are capable of executing thousands of threads at once. These
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threads are also very lightweight, meaning that the cost of transferring memory between two
threads is less costly than a CPU data transfer. Current and planned supercomputers by the
Department of Energy (DOE) suggest that supercomputers will continue to be built wiht a
set of compute nodes connected by a high speed network, and that whose compute nodes
will increasingly rely on GPU technology. Monte Carlo software must either be ported to
the GPU or rewritten entirely to optimize performance. The code in this dissertation is a
new Monte Carlo code that seeks to mitigate the limitations of GPU processing.

Monte Carlo is embarrassingly parallel because each electron/photon history and interac-
tion is independent from one another, making parallelization trivial on a CPU. Monte Carlo
threads are task based; each thread can simulate a single particle’s history without interact-
ing with other threads. However, it is necessary that each thread can execute their own set
of instructions because not every particle lifetime experiences the same set of interactions
in the same order. GPU threads are required to execute the same instructions in the same
order, concurrently. If the GPU threads cannot execute the instructions concurrently, the
instructions will become serialized, creating slowdowns in runtime. Individual electron and
photon histories have the potential to diverge dramatically due to the differences in the fun-
damental physical processes that drive interactions. Traditionally, Monte Carlo codes use an
algorithm that follows a particle from birth to death and simulates each individual particle
interaction, this is called history-based Monte Carlo. Therefore to get optimal performance
on the GPU, electron-photon Monte Carlo must move away from traditional history-based al-
gorithms and instead write event-based algorithms which would group compute nodes based
on instruction performed. For event-based Monte Carlo, particles are transferred to the com-
pute node responsible for simulating the event that is experienced by the particle. However,
data transfers are also expensive; data transfer and thread divergence are two processes that
govern Monte Carlo runtime on modern computing architectures.

Another key difference between a GPU and CPU is memory; in general, the GPU has a
lower memory capacity and a higher memory bandwidth, but also higher latency than a CPU
due to lack of multiple levels of caches. GPU memory is stored either on or off-chip. The
location of the memory determines the capacity and latency, off-chip memory has a higher
latency and capacity and on-chip memory has a lower latency and capacity. Monte Carlo
is a memory intensive process. The nuclear data needed to simulate particle interactions
and the problems domain both require large amounts of memory. A solution to this is to
break up the domain into smaller, more homogeneous, subdomains that are then dispersed
across compute nodes. Decomposing the domain both reduces the memory burden, making
it possible to run larger problems.

Ideally, a domain decomposition scheme would break up the domain in a manner that
would minimize the number of data transfers necessary to complete a MC run, as particles
move from one domain to another. It should also minimize load imbalance by placing an
equal amount of work on each processor, but this can difficult to determine in advance as the
work per particle can very based on its trajectory. However, writing a function to perform
this task optimally on a general geometry is nearly impossible due to coupled electron-photon
physics. Existing domain decomposition techniques, in neutron Monte Carlo codes, use mean



CHAPTER 1. INTRODUCTION 3

free paths to determine the size and shape of subdomains. This approach cannot be used
for electron-photon Monte Carlo because the mean free path of electrons and photon can
differ by an order of magnitude. Another notable phenomena of electron-photon physics
is electron cascades. Electron cascades that occur near a subdomain boundary can cause
massive runtime slowdowns.

A potential solution to this dilemma is to use Machine Learning to predict locations of
minimal boundary crossing and parts of the domain where large amounts of computational
work is performed. This map of pertinent features can then be used to generate subdomains
that are not overburdened by data transfers. The results from these attempts will be explored
and analyzed in future chapters of this dissertation. Features, such as domain decomposition,
make the new continuous-energy electron-photon coupled Monte Carlo code competitive with
existing Monte Carlo codes.

1.1 Previous Work: Monte Carlo Methods and the

GPU

The basis for GPU Monte Carlo was research done by Martin and Brown in 1984 [10]. This
paper developed a method for mapping the traditional neutron Monte Carlo problem onto
SIMD vector computers. Vector computers share a similar processing model with GPUs.
Neutrons are banked into vectors based on the calculations required to simulate whatever
given interaction the neutron is undergoing. For example, if the particle is causing a fission
interaction, it is placed into the fission buffer. As the buffers fill, they are executed by the
vector computer. The buffers are then ”shuffled” to reflect the next interaction experienced
by each particle and the data is moved back into contiguous blocks based on the reaction.
The memory is grouped in such a way to optimize computational efficiency. This new method
was coined ”event-based” Monte Carlo, as opposed to ”history-based” Monte Carlo [10].

Various universities and national labs have begun the process of porting or rewriting
their existing Monte Carlo codes for the GPU. The WARP code was the first to explore
continuous energy neutron transport on GPUs [5]. WARP was developed at UC Berkeley by
Ryan Bergmann and had limited features due to its status as a research code. It had limited
cross sections, no variance reduction, and limited tally options. WARP also runs only on a
single GPU. Bergmann based their approach to event-based Monte Carlo on the work done
by Brown and Martin and Martin and Vujic [39].

SHIFT was the first production level continuous-energy neutron code to adapt CPU
transport routines for the GPU [19]. Their implementation includes most of the existing tally
features and all of the physics capabilities of the CPU version of SHIFT. They also developed
an event-based Monte Carlo algorithm and compared it to the history based approach. It
was tested on an idealized and simplified small modular reactor core. Additionally, it was
tested on the depleted core model. All testing was done on the Titan Cray XK7 and Summit,
two supercomputers located at Oak Ridge National Lab. They found a speed up of 10.7x
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on the V100, indicating that the floating point performance is better on the GPU. Domain
decomposition is implemented in the CPU and GPU version of SHIFT to mitigate memory
issues with large problems [19].

Lawrence Livermore National Laboratory has also been porting their production level
codes, Mercury and Imp, to the GPU and testing them on NVIDIA Tesla V100s for the Sierra
supercomputer [35]. Mercury is a Monte Carlo code that can simulate neutrons, gammas,
and light charged particles in a mesh or 3D combinatorial geometry. Imp is a newer implicit
Monte Carlo code that simulates thermal x-rays. They share similar infrastructure which
has made porting to the GPU easier. They implemented a version of event-based transport
that executes 9 separate kernels to calculate the distance to event and sample the events.
They have achieved a speedup of about 7.61x for neutrons and 5.81x for thermal photons in
GPU-to-CPU comparisons on ATS-Sierra, an existing supercomputer with NVIDIA GPUs.
They tested their methods on Godiva in water and Crooked Pipe, two standard benchmarks
problems in neutronics and thermal photonics. They are currently working on porting their
codes to El Capitan, a future supercomputer that uses AMD processors and GPUs [35].

Bleile ported a research code developed at Lawrence Livermore National Lab to the GPU
to compare the difference in performance of history-based and event-based Monte Carlo [6].
They found that the event-based methodology performs better on the GPU, concluding
that, in general, reducing kernel complexity has significant impact on final run time. They
also recommend implementing a tally server to handle tallies, which typically require larger
amounts of memory, a scarce resource on the GPU.

PRAGMA is a GPU-based continuous-energy neutronics Monte Carlo Code [12]. They
implemented an event-based tracking algorithm and compared it to the history based im-
plementation. Additionally, they explored GPU-specific techniques such as the use of built
in vector types and atomic operations. Using a combination of these techniques, they were
able to overcome the previous drop in performance in depleted fuel calculations. They con-
cluded that it is possible to improve the performance of the history-based approach with
minimal algorithmic modifications and performs better than event-based methods on fresh
fuel. History-based Monte Carlo overall performs better on the GPU than the CPU.

Currently, all of the attempts to rewrite Monte Carlo codes have been focused on neutrons
or thermal photons, except CHEETAH-MC [7], a production level code in early stages of
development at Sandia National Laboratories for coupled electron-photon transport. It is
being built from the ground up to provide similar capabilities to the Integrated Tiger Series
(ITS) [29]. The work presented in this dissertation was developed within the CHEETAH-MC
framework on a separate research fork.

Machine Learning applications to Monte Carlo are being explored by various research
groups. However, there are no current publications that apply Machine Learning to electron-
photon domain decomposition. Mote, from NC State, has some preliminary results for
applying Machine Learning to the domain decomposition scheme in SHIFT, specifically for
neutrons [30].
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Outline

• Chapter 2 will cover the Monte Carlo algorithm along with the statistics and sampling
necessary to gather tally data. Monte Carlo geometries and domain decomposition are
also discussed in this chapter. Finally, coupled electron-photon physics is described.

• Chapter 3 analyzes the GPU’s architecture and its limitations and strengths in com-
parison to a CPU. It will also review Machine Learning and describe the neural net
that was chosen for the work in this dissertation.

• Chapter 4 discusses the development of the domain decomposition methodology and
how each stage of the algorithm improvements was developed and implemented.

• Chapter 5 presents the results of the different domain decomposition techniques at-
tempted on different GPU architectures, highlighting the memory usage and time spent
transferring data between the nodes.

• Chapter 6 draws conclusions about the results from the previous chapters along with
recommendations for future studies.
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Chapter 2

Monte Carlo Transport

This chapter explains coupled electron-photon theory and statistics that is goes into Monte
Carlo methods for radiation transport. It covers the basic Monte Carlo algorithm, including
the underlying sampling schemes. Next, different Monte Carlo geometries are described along
with domain decomposition. Then, basic electron-photon interactions are diagrammed and
potential challenges that the physics introduces when implementing domain decomposition.

2.1 The Monte Carlo Method

There are two general approaches to solving the Boltzmann transport equation, determin-
istic methods and Monte Carlo. Deterministic methods solve the equation directly, by first
discretizing the problem’s time, space, angle, and energy. Then the electron or photon flux
is calculated at each point. The Monte Carlo method is distinct from the deterministic
approach because it simulates individual particle tracks. The algorithm uses experimental
cross sections to simulate particle interactions as individual source particles stream through
the problem space. The sum total of these interactions is called a particle history.

Each particle history is a fully independent random walk through the geometry and can
be mapped to a single computer thread. The thread, or particle history, uses a random
number generator to sample probability distributions to determine the particle interactions
that occur as well as the particle’s state following the interaction. A few assumptions must
be made in the Monte Carlo algorithm [36]. First, it is assumed that all particles travel in
straight lines between interactions. Second, all particles are treated as points, meaning they
do not occupy physical space within the geometry. Finally, all particle interactions occur
instantaneously in time and space. Time is not a factor in time-independent Monte Carlo
simulations.

Figure 2.1 illustrates a simple particle history in a 3-dimensional Cartesian space. The
X’s are particle interactions, some producing secondary particles, and the straight lines
between the interactions indicate the path the particle moves along. When a particle crosses
a material boundary or undergoes an interaction with a material, the distance to the next
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material boundary or particle interaction is sampled again. The details of the sampling
schemes are discussed in depth in the Statistics subsection.

The main advantages of using a Monte Carlo algorithm instead of a deterministic method
to predict electron-photon flux, dose, and energy deposition is that there very few assump-
tions that need to be made. Therefore, the problem’s geometry and particles energy can
be treated as fully continuous. This allows for a more accurate representation of the cross
sections of the materials. Additionally, because the geometries used in Monte Carlo meth-
ods are continuous, they are able to be more complex and reflective of experimental setups.
Monte Carlo geometries are discussed in greater detail in Section 2.2.

However, the drawbacks of the Monte Carlo algorithm cannot be ignored. Monte Carlo
methods converge sublinerarly, 1/

√
N , where N is the number of particle histories, can lead

to long computational runtimes. The convergence rate is discussed further in the Statis-
tics subsection. The long runtimes can be mitigated by high performance computing. As
mentioned earlier, particle histories are fully independent from one another. Particle-particle
interactions are so exceedingly rare, they can be ignored at most energy regimes. This makes
the algorithm embarrassingly parallel, meaning that parallelizing the algorithm is trivial on
the CPU. Each history is assigned to a computational thread and the number of threads
depends on the computer architecture available. This scaling can be used to reduce the
variance on a more acceptable timescale.

Another concern is that often times in Monte Carlo applications work, the region of
interest is small and particles can miss the region entirely if the number of histories is not
large enough to cover the entire space. This is very common in detector and shielding
applications. Radiation detectors can have a region of interest on the scale of millimeters
and can be used to survey entire buildings.

The Algorithm

History-based Monte Carlo requires tracking individual particles as they move and interact
with a predetermined geometry and materials. To simulate these interactions, first the
distance to interaction must be sampled using techniques described in Section 2.1. Then,
the distance to the nearest material boundary is calculated using the distance formula in the
appropriate coordinates. These two values are compared and the shortest distance is chosen,
the particle is then moved to that location and the reaction type and post interaction is state
is determined through additional statistical sampling [9]. This process is repeated N times,
whereN is established by the user at the beginning of the loop. Particle interactions may also
produce secondary particles, that must be stored and transported after the initial N source
particles. After all primary and secondary particles are transported, the results of interest
are combined using statistical methods explained in Statistics subsection. These results are
called tallies and are discussed in greater detail in the Tallies subsection. Algorithms 1
describes the lifetime of an individual particle in pseudo code and Algorithm 2 describes the
outer most transport loop that combines individual particle histories.
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Figure 2.1: Sample Monte Carlo history in 3D geometry.

The combination of the two algorithms demonstrates a basic history based approach to
Monte Carlo. The work presented in Section 4.2 explores different modifications made to
this algorithm to improve performance.

Sampling

To accurately predict particle interactions in a Monte Carlo simulations, probability distri-
bution functions (PDF) of the reactions must be sampled using experimentally determined
cross-section data. One method to sample PDFs is the direct inversion method. By defini-
tion, the PDF must be positive and normalized.

To use the direct inversion method, the PDF must be invertible and integrable to create
a cumulative distribution function (CDF). The resulting CDF must also be invertible. To
generate a CDF, the PDF must first be integrated:

CDF (x) =

∫ x

−∞
PDF (x′)dx′ (2.1)

The resulting CDF can be inverted and used to determine the probability that a random
number, ξ, following the PDF will be less than or equal to x. For example, to calculate the
distance to a collision in 1D is determined using this method. Starting with the probability
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Algorithm 1 An individual particle history

1: while particle is alive do
2: sample distance to collision (dtc)
3: calculate distance to boundary (dtb)
4: calculate distance to escape (dte)
5: if dtc < dtb then
6: determine reaction type
7: if reaction = absorption then
8: tally absorption
9: kill particle
10: end if
11: move particle to collision site
12: calculate post-collision energy and direction
13: tally collision
14: add secondary particles to particle bank
15: else if dtb < dte then
16: move particle to boundary
17: determine new material cross section data
18: else
19: tally escape
20: kill particle
21: end if
22: end while

Algorithm 2 Outer Transport Loop
1: input parsing
2: initialize source
3: initialize geometry
4: initialize materials
5: initialize tallies
6: while i < N and particle bank is not empty do
7: sample particle’s initial state
8: track particle ▷ Algorithm 1
9: end while
10: combine tallies
11: write to output
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that a collision occurs at some distance x:

P (x) = Σte
−Σtx (2.2)

Where Σt is the total macroscopic cross section. The probability must then be integrated:

CDF (x) =

∫ x

−∞
Σte

−Σtx′
dx′

= 1− e−Σtx

(2.3)

Then to determine the distance to the next interaction, the CDF is set equal to a random
variable ξ:

ξ = 1− e−Σtx (2.4)

solving for the distance, x

x =
ln(ξ)

Σt

(2.5)

After a particle interaction is determined, the type and material it interacts with must
be sampled as well. Each of these processes can be modeled using a discrete PDF. The PDF
for the isotope type is shown in Eq. 2.6. The distribution can be sampled by generating a
random number on [0, 1] and comparing it to a cumulative sum of the individual isotope’s
total macroscopic cross section [8]. When CDFisotope > ψ1, the particle interacts with isotope
i. Figure ?? shows this process graphically.

PDF =
Σt,i

Σt

(2.6)

CDFi =
1

Σt

∑
Σt,n (2.7)

The reaction type can be determined similarly, except the number density of the material
no longer needs to be carried.

PDF =
σk,i
σt

(2.8)

CDFi =
1

σk

∑
σk,n (2.9)

Statistics

Monte Carlo methods use a large number of individual particle histories to determine bulk
behavior, combining these histories in a statistically significant way requires an outline of
basic statistics of large numbers. For any given continuous random variable, x, the mean of
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that random variable can be calculated by taking the first moment of the PDF (x). PDFs
must always be positive and they must integrate to one over the space of the random variable.

To calculate a mean from a discrete set of N samples of quantity x, the simple arithmetic
mean must be taken. This value is called the sample mean X̄, rather than the true mean
of a continuous random variable. It is called the sample mean because it is computed by
sampling from the underlying PDF rather than calculating it directly.

The definitions of the two means are presented below:

µ =

∫ ∞

−∞
xP (x)dx (2.10)

Where µ is the true mean of the function.

X̄ =
1

N

N∑
i

xi (2.11)

According to the law of large numbers:

lim
N→∞

X̄ = µ (2.12)

In words, as the number of samples approaches infinity, the sample mean becomes the
true mean of the PDF being sampled [3].

To calculate the variance, σ of the true mean, the second moment of the equation can be
taken.

σ2 =

∫ ∞

−∞
x2P (x)dx− µ2 (2.13)

Eq. 2.14 shows how to calculate the sample variance of a discrete distribution.

V ar(X) =
1

N − 1

N∑
i

(xi − X̄)2

=
1

N − 1

N∑
i

(x2i )−NX̄2

(2.14)

The Central Limit Theorem states how the uncertainty scales with the number of samples
[16]. This relationship is shown in Eq 2.15

√
N((

1

N

N∑
i

xi)− µ) → N (0, σ2) (2.15)

The desired quantity is the variance of the mean. This can be estimated with a single
measurement of the mean. The variance of the sum of a uncorrelated random variables is
equal to the sum. of the variance of the variables, shown in Eq. 2.16.
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V ar(
N∑
i=0

xi) =
N∑
i=0

V ar(xi) (2.16)

V ar(X̄i = V ar(
1

N

N∑
i=0

xi) =
1

N2

N∑
i=0

V ar(xi) =
σ2
N

N
(2.17)

Because the central limit dictates that the sample mean is normally distributed, the
confidence intervals from the normal distribution can be applied. From these intervals, an
expression for the relative error can be written.

RelErr =
σ

X̄N

=
1

X̄N

√√√√ 1

N − 1
(
1

N

N∑
i

x2i − X̄2
N) (2.18)

Tallies

Tallies are a generic term used in Monte Carlo methods to describe some physical quantity
of interest that is derived by combining individual particle histories into meaningful bulk
behavior. To combine histories, each history is given a score using a statistical estimator
and the average and variance of the tally is calculated using techniques described in the
previous section. Photon and electron flux are the two most commonly used tallies in this
work.

Flux can be calculated indirectly from reaction rate. Reaction rate is determined by
counting the number of collisions that take place withing the Monte Carlo simulation. This
can be written as:

Rx =
1

W

N∑
i

wi (2.19)

Where Rx is the reaction rate for some reaction x, wi is the weight of an individual particle,
and W is the total weight of the initial source particles. To get flux from reaction rate:

ϕ =
Rx

Σx

(2.20)

Another way to calculate flux is to use a track-length estimator. To derive the track-
length tally, first the expression for the volume integrated flux must be introduced:

V ϕ =

∫
dr

∫
dE

∫
dΩ

∫
dtψ(r, Ω̂, E, t), (2.21)

where V is the volume, ψ is the angular flux, r is the position, Ω̂ is the direction of the
particle, and E is the energy of the particle, and t is time. Flux can also be written as:
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ψ(r, Ω̂, E, t) = vn(r, Ω̂, E, t) (2.22)

Where n is particle density and v is velocity. Combining Eq 2.21 and Eq 2.22:

V ϕ =

∫
dr

∫
dE

∫
vdt

∫
dΩn(r, Ω̂, E, t) (2.23)

Using the definition of particle density

N(r, E, t) =

∫
dΩn(r, Ω̂, E, t) (2.24)

and the definition of the differential track length

dl = vdt (2.25)

a new form of the volume integrated flux can be obtained:

V ϕ =

∫
dr

∫
dE

∫
dlN(r, E, t) (2.26)

This form of the equation reveals that the differential track length can be used to get an
estimate of the flux:

V ϕ =
1

W

∑
i∈T

wili (2.27)

Where li is the the length of a single trajectory within a volume, T is the set of all
particle tracks, wi is the weight if an individual particle, and W is the total weight of the
particles. Track-length tallies are more commonly used than reaction rate tallies because
they can be used in volumes with low probability of interactions. Track length tallies were
used to determine the flux for the work done in this dissertation.

2.2 Monte Carlo Geometry

Monte Carlo is a powerful computational tool. The ability to create complex, general ge-
ometries and transport individual particle histories continuously on those general geometries
make it a uniquely flexible method. There are a handful of different 3D geometry types
that can be represented with Monte Carlo methods including combinatorial geometry, voxel
geometry, and CAD geometry. Each of these geometry types have different benefits and
drawbacks. In general, the most lightweight, in terms of memory, is voxel geometry because
they are relatively simple to compress. CAD geometries are the most memory intensive due
to their complexity.
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Figure 2.2: Depictions of different boolean logic for combinatorial geometry [20].

Combinatorial Geometry

Combinatorial geometry (CG) is a geometry type that can represent a large complex models
using boolean operations of surfaces and basic three-dimensional shapes, called primitives.
CG geometry is well suited for for models with repeating patterns or symmetries, such as
nuclear reactors. Surfaces are the most fundamental building blocks that are combined to
form larger three dimensional shapes, called cells. To define a cell in Monte Carlo transport
codes, the region must be bound by a boolean combination of surfaces. These boolean
operations are unions, intersections, and difference operations. Figure 2.2 illustrates the
different operations that are used to create combinatorial Monte Carlo geometries. Each
defined cell is assigned a material.

Another unique feature of CG geometry is the ability to create a universe. A universe is
a group of cells that fully define a spatial domain. The universe can be repeated in a specific
pattern, called lattices. Both lattices and universes can be translated and transformed;
combining these two features make it easier to generate structured models, such as reactor
cores. The hierarchy of cells, universes, and lattices is shown in Figure 2.3. This technique
is commonly used in nuclear reactor codes because nuclear reactor cores have repeating
geometries and features. This feature is not implemented in ITS and CHEETAH-MC.

Voxel Geometry

Voxels are another Monte Carlo geometry type. Voxels are essentially three-dimensional
pixels; a voxel represents a value in a regular grid. In the context of Monte Carlo, the
value that is represented is a material. The material can be a complex composite material.
The material is linked to the cross section database. Voxels are regular in size and shape.
Voxels have the advantage of being lightweight and compressible. Voxel geometries are
initially defined as a 3D matrix, the 3D matrix can then be compressed similar to image
compression. Figure 2.4 illustrates an example of the voxel grid. Voxel geometry are most
commonly used for medical data.
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Figure 2.3: Combinatorial geometry universe hierarchy

Figure 2.4: An example of voxel geometry with randomly placed materials.
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Figure 2.5: An example of a CAD drawing. Recreating this object with CG geometry would
be difficult [29].

CAD

Computer Aided Drawing (CAD) is a term used to describe any mechanical or engineering
designs or drawings that use computers to help optimize them. They are typically 3D images
and are widely used in the field of engineering to generate high fidelity experimental designs.
There are several different types of software that can be used to generate CAD geometries.
Using CAD in Monte Carlo codes can greatly reduce the time it takes to generate the large,
time-consuming CG models, because CAD software is ubiquitous and most are user friendly.
The drawback of CAD geometries is that particle tracking directly on CAD geometries is
slow, likely because looking up CAD geometry references is not optimized for non-CAD
related computations. For example, DAG-MC is a geometry model that interfaces with
different Monte Carlo radiation transport codes developed by the University of Wisconsin
and they found that DAG-MC was slower than native geometries [40]. Although transport
on CAD geometries can be slow, it can also significantly reduce the time it takes to build
the geometric structure to use in the problem. An example of a CAD geometry that can be
simulated in the Integrated Tiger System (ITS) is shown in Figure 2.5 [29]. CAD geometries
can contain thousands detailed parts.
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Figure 2.6: An visualization of the boundary comparisons occurring in 3

2.3 Domain Decomposition

Monte Carlo algorithms can be parallelized in two distinct ways, at the individual particle
level and geometrically. Because each particle’s life is independent parallelizing them is
trivial, this is also referred to as embarrassingly parallel. Parallelizing the geometry, or
domain, can be done through replication or decomposition. Replication is the process of
duplicating the geometric information on each available processor. Decomposition splits the
geometry spatially and assigns each subdomain to a unique processor, as shown in Figure
2.7. As particles leave one subdomain and enter another particles are banked and then
transferred to the next subdomain. Additionally, the subdomains can and should overlap.
These areas of overlap are called ghost zones. The modified algorithm, Algorithm 3 and 4,
is presented below along with a visualization of the process.

Load balancing is often necessary when implementing domain decomposition. Often times
the work required by the processor is spatially dependent. Different materials have different
cross sections, leading to a concentration of reactions in certain parts of the geometry. To
ensure that a single processor does not perform the bulk of the computational work, the
geometry must be decomposed with an understanding of the underlying physics.

Memory transfer between the host and device is often the bottleneck in high performance
heterogeneous computing. For example on the NVIDIA Tesla the peak bandwidth is 144
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Algorithm 3 An individual particle history

1: while particle is alive do
2: sample distance to collision (dtc)
3: calculate distance to boundary (dtb)
4: calculate distance to subdomain boundary (dts)
5: if dtc < dtb then
6: determine reaction type
7: if reaction = absorption then
8: tally absorption
9: kill particle
10: end if
11: move particle to collision site
12: calculate post-collision energy and direction
13: tally collision
14: add secondary particles to particle bank
15: else
16: move particle to material boundary
17: calculate distance to escape (dte)
18: if escape then
19: calculate distance to subdomain boundary (dts)
20: if dts ¡ dte then
21: bank particle
22: end if
23: tally escape
24: end if
25: end if
26: end while

GB/s while the bandwidth between the device memory and the host memory is 8 GB/s.
This discrepancy in bandwidth can significantly impact the final runtime of the program.
Adding particles to the particle bank and moving the particle bank to the correct device
memory is the memory transfer that most greatly impacts the performance of the domain
decomposition modified algorithm. There are a few ways to impact the time it takes to trans-
fer the particles between device memory. The first way is to change the size of the particle
bank. Increasing the size of the bank requires a higher amount of memory to be transferred
which would take longer. However, a smaller bank would require the memory transfer to be
initiated more frequently. Additionally, the location of the subdomain boundaries impacts
the performance. If subdomain boundaries are placed in geometric areas with high amounts
of particle streaming, the number of particles that need to be transferred will increase. Addi-
tionally, electron cascades and scattering along subdomain boundaries increase the runtime.
Electrons tend to lose a small amount of energy in each scatter reaction and travel a short
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Algorithm 4 Outer Transport Loop
1: input parsing
2: initialize source
3: initialize geometry
4: initialize materials
5: initialize tallies
6: while i < N do
7: sample particle’s initial state
8: track particle ▷ Algorithm 3
9: end while
10: while particle bank != empty do
11: Sort particle bank
12: for size of particle bank do
13: track particles ▷ Algorithm 3
14: end for
15: end while
16: combine tallies
17: write to output

Figure 2.7: Graphic depiction of domain decomposition on advanced hybrid architectures
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distance between interactions.
Finding a balance between these load balancing and memory transfer is important to fully

implement domain decomposition. Other GPU radiation transport codes have implemented
domain decomposition using traditional methods. For example, SHIFT, a neutron Monte
Carlo radiation transport code, uses a method called Multiple Set, Overlapping Domain
(MSOD) [33]. This method overlays a Cartesian mesh on the problem geometry and each
mesh cell is assigned to a processor. The mesh cells do not need to be uniformly sized or
spaced. The processor domains are also allowed to overlap. SHIFT also combines domain
decomposition with domain replication, which allows for certain mesh cells to be replicated
on different processors. This cut downs on idle processor time so fewer processors have to
wait for high activity processors to transfer particles. Another key element to the MSOD
approach is that particles can only be transferred to a neighboring domain. Particles are
stored and communicated to neighboring domains at regular intervals. The GPU version of
this method uses both device-to-device communication and device-to-host communication to
transfer stored particles. The SHIFT team tested their method on Small Modular Reactor
Cores and saw a parallel efficiency of about 80% compared to full domain replication [19].

PRAGMA, a neutronics GPU code developed by Seoul National University, has imple-
mented a different domain decomposition method [11]. Instead of using a Cartesian mesh,
like SHIFT, they used wedges of a wheel. This method is better for load balancing for nuclear
reactors because they are radially symmetric. However, it does not scale well; as the number
of subdomains increase, the wedges become optically thinner in the center which degrades
the performance of the code. Domain replication is currently not supported by PRAGMA.

Domain decomposition has not been implemented in coupled electron-photon Monte
Carlo codes for the GPU.

2.4 Electron-Photon Physics

Electrons and photons are two fundamental particles of interest for nuclear security, medical
physics, and plasma physics applications. The two particles are coupled in the sense that
some photon interactions lead to the production or emission of electrons and vise versa.
Because Monte Carlo simulates individual particle interactions the following section will
discuss photon and electron interactions. The energy range of interest is eV < Ee−,γ < MeV .

Particle collisions can cause the incident particle to change its energy and direction.
They can also result in the excitation of the atom. As the atoms relax, or de-excite, the emit
electrons or photons. The primary and secondary particles continue to interact with matter
until they are fully absorbed into the medium or escape from the area of interest.

The probability that an interaction happens is called a cross section. Cross sections can
be quantified in two separate ways: macroscopic and microscopic [15]. Macroscopic cross
sections have units of inverse length and describe the probability of interaction per unit
distance traveled. It is denoted by the symbol: Σ. Microscopic cross sections have units of
area and are represented by the symbol: σ.
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Microscopic cross sections are analogous to geometric cross sections, they represent the
size of the target nucleus for a specific type of reaction. It is meant to represent the size of
the reaction space of an individual atom that the incident particle ”sees” as it travels through
a medium [24]. Microscopic cross section is sometimes expressed in a unique unit called a
barn. A barn is 10−24cm2. Despite having units of area, the value represents the likelihood
of a reaction occurring and not the physical cross section of the nuclei. Microscopic cross
sections can be determined experimentally or derived from first principles depending on the
interaction and incident particle.

Macroscopic cross sections are the probability of a reaction happening per unit distance
that is traveled by the incident particle. The macroscopic cross section can be for the total
interaction probability or for a specific type of interaction. It can be calculated from the
microscopic cross section directly based on material properties. Materials of interest are often
compositions. To calculate the macroscopic cross section of a composition, each individual
components cross section must be calculated and summed. The material properties that are
necessary to calculate the cross section are atomic fraction fi, number ni, density ρ, and
atomic mass of the composition Mavg.

Σcomposition =

Nisotopes∑
i=1

niσi = navg

Nisotopes∑
i=1

fiσi =
ρ

Mavg

Nisotopes∑
i=1

(2.28)

The mean free path is the inverse of the total macroscopic cross section of a material com-
position. It describes the average distance a particle travels before experiencing a collision.
It has units of distance.

λ =
1

Σt

(2.29)

Photons

The photon interactions that are typically modeled by a radiation transport Monte Carlo
code are pair production, Compton scattering, photoelectric effect, and Rayleigh scattering
[14]. The first three interactions result in the transfer of energy to electrons or positrons.
Rayleigh scattering is purely elastic meaning the photon changes direction with no energy
loss. The photoelectric effect dominates at lower energies, the Compton effect takes over in
the intermediate ranges, and pair production is most common at higher energies, as shown
in Figure 2.8.

The photoelectric effect, 2.9 is the dominant interaction at lower energies and the proba-
bility that this interaction occurs decreases dramatically at hν = 0.5MeV . When a photon
interacts with a tightly bound inner shell electron, the photon can lose all of its energy
and the inner shell electron is emitted [17]. The photon must have an initial energy that is
greater than the binding energy of the electron. The change in kinetic energy of the atom is
effectively zero. The photon vanishes and a conservation of momentum balance can be used
to calculate the exit angle of the atom and electron.
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Figure 2.8: Relative cross sections of the three major photon interactions [1].

Figure 2.9: Kinematics of the photoelectric effect [1].
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Figure 2.10: Kinematics of Compton Scattering [1].

Compton scattering is a scattering event where an incident photon of energy hν0 scatters
off an electron, of energy hν0, off an electron. The electron is assumed to be unbound and
stationary relative to the photon. These assumptions are not rigorous because electrons
typically occupy an electron shell of an atom and are in motion, but they allow us to derive
the Klein-Nishina cross section [22]. In this interaction, a photon is not absorbed but instead
scatters in a new direction, as shown in Figure 2.10.

Pair production is an absorption interaction where a photon is absorbed into a material
and two new particles, an electron and positron are emitted. Pair production can happen
inside a Coulomb field, typically near a nucleus. Triplet production can also occur in the
Coulomb field of an atomic electron, however this is more rare. When this interaction occurs
near an atomic electron it is called ”triplet production” because the host electron is also
emitted in the process. Pair production requires a minimum photon energy of 1.022 MeV
or the amount of energy of an electron-positron pair, 2mec

2. Triplet production requires a
initial photon energy of 2.044 MeV. The kinematics of pair production are shown in Figure
2.11.

Finally, Rayleigh scattering describes the process of an incident photon being scattered
by the combined action of the atom. The incident photon loses no energy in the collision,
however it does change directions. Therefore, Rayleigh scattering is a form of elastic scat-
tering. The incident photon changes directions by a small angle and the effect on the atom
is almost negligible, it moves just enough to conserve momentum. Rayleigh scattering has a
large effect on photons of lower energies because the scatter angle is inversely proportional
to incident energy.
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Figure 2.11: Kinematics of pair production [1].

Electrons

Charged particles lose energy in a way that is distinct from neutral particles, such as photons.
Photons can travel large distances without interacting with the medium, then lose all of its
energy and be absorbed after a single nuclear interaction. Charged particles interact via
the Coulomb field, so every electric field passed has an impact on the incident charged
particle. Most of these interactions have a small effect on the incident particle’s energy, so
it is often more useful to think of the particle as continuously slowing down as it moves
along a path. A single MeV electron can experience 105 interactions before depositing all of
its energy into the medium [1]. These individual scatter events can be difficult to simulate
and are computationally expensive. To combat this issue, Berger developed the condensed
history algorithm to combine scatter events based on the continuous slowing down method
[4]. The application of the condensed history algorithm to Monte Carlo transport, along
with a derivation of the method, was explored by Ed Larsen [25].

Other non-scatter events that electrons experience are Bremsstralung and atomic relax-
ation [23]. As electrons slow down in a high Z material, secondary photons are created, also
called Bremsstrahlung radiation. This happens as electrons pass through a strong Coulomb
field. Atomic relaxation also produces secondary particles. Atomic relaxation describes the
process where an electron is ejected from an atom and a vacancy is left in some inner shell.
Electrons from higher shells will fall and fill the vacancy, this process continues until each
inner shell is filled. As the electrons move from a higher shell to a lower shell, a photon is
emitted with an energy that matches the difference in the electron shells. Auger electrons
can also be emitted in a non-radiative transfer process. Atomic relaxation leads to a cascade
of electron and photon emissions.

Positrons are particles with the same mass as electrons and equal but opposite charge.
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Figure 2.12: Basic interactions of electrons and positrons [34].

Positrons can be emitted via radioactive decay or pair production. They can undergo anni-
hilation while in motion or at rest. Annihilation is when an electron-positron pair combine
and a form two photons, while maintaining total momentum and energy. A depictions of
the basic electron interactions are shown in Figure 2.12.
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Chapter 3

GPUs and Machine Learning

This chapter first covers GPU architecture, including memory spaces, thread hierarchy, and
CUDA best practices. Then it explains the basics of machine learning, including regression
and Neural Nets.

3.1 GPUs

The General Purpose Graphics Processing Unit (GPGPU), more commonly referred to as
GPUs, is massively parallel processors that can execute thousands of threads concurrently.
GPUs were initially developed to process graphics to be displayed on a monitor. Processing
graphics requires operations on two dimensional arrays of pixels and other similar operations
that can often be executed in parallel. To move and manipulate these images on a computer,
basic linear algebraic operations are needed. Operations on matrices and arrays of pixels
often have massive fine-grained parallelism which GPUs can take advantage of and run faster
than a CPU. Therefore, GPUs are optimized to compute matrix operations that are offloaded
by the CPU. GPUs were initially not programmable and the commands they executed were
largely invisible to the programmer. CPUs were used to process complex tasks and the GPU
quietly processed the simpler tasks, but today’s GPGPUS aer programmable and can be
used for a wide range of problems.

CUDA is a programming language released in 2006 that is used to program NVIDIA
GPUs. In the CUDA programming model, code is written for the host (CPU) and device
(GPU) separately. The host directs the device to execute code and memory storage. Data
must be allocated and transferred from the host to the devices explicitly. A more in-depth
description of the memory spaces and allocation is discussed in Section Memory. The opera-
tions performed on the GPU are called ’kernels’. Kernels are analogous to functions in C++,
except they execute N times across different CUDA threads rather than once. NVIDIA rec-
ommends that kernels should be lightweight and simple with minimal global memory access
to optimize runtime. The CUDA kernels must be fully independent of each other and are
independent of order. However, there can be barriers that allow threads to wait for each
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other to execute. These barriers or locks allow for thread synchronization to resolve race
conditions, but come at the cost of increased runtime.

Threads are organized into blocks and blocks are grouped into a grid. Threads within a
block must execute independently in an arbitrary order, either in parallel or serially. This
allows for easier scaling because blocks can be scheduled in any order across N cores. Inside
a block, threads share data through shared memory and their execution can be synchronized
to coordinate when memory is accessed. This execution scheme is called SIMD (single
instruction multiple data). The same series of instructions are carried out over different
data sets. On the GPU, the SIMD execution scheme is abstracted into single-instruction
multiple-thread. The key difference between these two concepts is that the SIMT model
allows for different threads to branch off and diverge from each other. Thread divergence
gives the programmer some flexibility; however the performance cost could be staggering.
Each divergent thread must be serialized.

Current NVIDIA GPU architectures have a maximum of 1024 threads per block and
all threads in a thread block reside on the same streaming multiprocessor. They also all
share the memory available on a given multiprocessor core. Thread blocks are grouped into
one-dimensional, two-dimensional, or three-dimensional grids. The size of the data being
processed determines the number of blocks in a grid. Figure 3.1 illustrates an example of
thread hierarchy on the GPU.

CUDA 9.0 introduced an additional, optional, level of thread hierarchy called thread block
clusters. Thread blocks inside a thread block cluster are guaranteed to be scheduled on a
streaming multiprocessor. Clusters are also organized into one-dimensional, two-dimensional,
and three-dimensional structures, similar to threads in a grid, as shown in Figure 3.2. The
threads in a cluster can access the distributed shared memory of the GPU. The size of the
distributed shared memory space is the number of thread blocks per cluster multiplied by
the size of shared memory per thread block. Therefore, using thread block clusters can
potentially increase the memory available. Memory is a significant limitation on the GPU.

Memory

When programming with CUDA, it is required that the programmer assumes that the host
and device operate separately with their own memory spaces. It is necessary to allocate
and deallocate device memory explicitly. Additionally, data must be transferred from the
host to the device and back again. Device memory can be allocated as CUDA arrays or as
linear memory. CUDA threads have access to multiple memory spaces during their lifetime,
these memory spaces are shown in Figure 3.4. All CUDA threads have access to the global
memory allocated on the GPU and thread blocks, or thread block clusters, can read, write,
and perform atomic operations in the shared memory space. Global memory is the largest
memory space on the GPU, this is the memory space that is quoted when discussing total
RAM on each GPU card.

Although global memory has the largest memory capacity, it is the slowest to access.
Shared memory is typically much faster than global memory, but is limited in size. Shared
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Figure 3.1: Memory hierarchy of an NVDIA GPU [31].
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Figure 3.2: Thread cluster structure of an NVIDIA GPU [31].

memory is on the multiprocessor chip and has low memory latency; which is the time it takes
for a processor to receive the information it requested. Technically, all three of these memory
spaces share the same physical location on the GPU, however the way the multiprocessors
accesses the memory is distinct. Constant and texture memory spaces are also accessible by
all threads, however, they are static and read-only. Constant memory is the most limited in
terms of size and it performs the best when all threads access the memory simultaneously.
Texture memory can be allocated for the entire global memory space. It performs the best
for linear interpolation for 2D arrays.

Local memory is thread-specific and is designed to hold data that cannot fit into register
memory. For example, if a large structure or array cannot fit in the register. The register
memory is responsible for doing real time arithmetic operations, so it typically only holds
the small amount of information required to execute basic functions. In Fermi and newer
NVIDIA architectures, the local memory is cached by the L1 cache on the GPU instead of
being stored in the global memory. Memory caches are small intermediate storage between
the register and global memory. They hold data store data that has been loaded previously to
avoid redundancies in global memory fetches. Typically, there are multiple levels to memory
caches, L1 loads the fastest and the time it takes to load the memory increases as the number
increases. Figure 3.4 is a comparison of the GPU and CPU memory spaces.

The GPU’s bandwidth describes the rate at which it transfers data to or from memory
(vRAM) to the processors. To maintain a high computational rate, a high bandwidth is
required. If the bandwidth is too low, thousands of GPU threads will idle until they receive
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Figure 3.3: A schematic of the different memory spaces on a GPU [31].
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Figure 3.4: A comparison of GPU and CPU memory spaces [31].

the requested data from memory. Ideally, the memory bandwidth would match the com-
putation rate. On the chip itself, the memory interface, which is the number of individual
links on the data bus between the cores and the vRAM, determines the bandwidth. Table
3.1 lists some current NVIDIA GPU capabilities.

NVIDIA GPU Model vRAM Memory Interface Width Memory Bandwidth

P4000 8GB 256-bit 243 GB/s

P5000 16GB 256-bit 288 GB/s

P6000 24GB 384-bit 432 GB/s

V100 32GB 4096-bit 900 GB/s

RTX4000 8GB 256-bit 416 GB/s

RTX5000 16GB 256-bit 448 GB/s

A4000 16GB 256-bit 448 GB/s

A5000 24GB 384-bit 768 GB/s

A6000 48GB 384-bit 768 GB/s

A100 40GB 5120-bit 1555 GB/s

Table 3.1: Memory properties of common NVDIA GPUs [31].
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Thread Divergence

CUDA parallelism follows the SIMT (Single Instruction Single Thread) model. CUDA ker-
nels describe the series of instructions to be executed on each thread. CUDA assumes that
each thread will be executed simultaneously in parallel. Threads diverge when there are
conditional statements in the GPU kernel and different threads take different branches of
the conditional.

Thread divergence occurs when a conditional set of instructions begins to execute within
the warp. Because warps must execute the same set of instructions, the GPU must execute
the code one set of conditionals at a time. This work around essentially serializes the
code because the threads that do not evaluate the initial set of conditionals are left idle.
Sections of threads will continue to execute on set of conditionals at a time until the flow
re-converges after each combination of conditionals are realized. This process greatly reduces
the performance of the GPU; idle threads are still assigned to register memory and execution
slots, meaning they cannot be used until the warp re-converges.

3.2 Machine Learning

Machine learning is a powerful tool that is used for many different purposes, including
classification, feature extraction from large data sets, and computing models that can be used
for inference. There are two major types of learning: supervised and unsupervised learning.
The primary difference between supervised and unsupervised learning is that supervised
learning involves a set of training data in which the answer is known. Unsupervised learning
is used to organize or cluster data but without training data mapped to answers provided
in advance. The work in this dissertation focuses on supervised learning.

Supervised learning requires all training data to be labeled with a numerical value, bi-
nary value, or group membership. The goal of a supervised learning model is to match an
independent variable input and predict the correct output or label. There are two major
types of supervised learning problems: regression and classification.

Regression describes the process of mapping numerical outputs to inputs. The training
data is also used to quantify the error of the model. Predicting the numerically dependent
values from the independent values requires a loss function. The loss function measures the
error and can include information about the complexity of the model. A commonly used
loss function is the squared-error loss function. Additional terms can be added to the loss
term to minimize the magnitude of the errors and add smoothness to the loss function. Loss
terms and regression will be discussed further in the next section of this report.

The two main challenges to machine learning are the data quality and data quantity.
Data quality refers to the data’s clarity. For example, bias can be introduced to the model
if the training data set is not representative of the problem that needs to be solved. The
training data may also be of low quality if it is full of noise, errors, and outliers. Data
quantity refers to the amount of data included in the training sets. Training data must be
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sufficiently large to cover the complexities and combinations of inputs and outputs. These
two major challenges can cause the model to be overfit, meaning it performs sufficiently
well on the training data but does not generalize well. They can also cause the model to
be underfit, meaning the model is too simplistic and returns poor results. The best way
to avoid these pitfalls is to generate sufficient data and split the data set into two separate
ones: the training set and the test set. This will allow for a better estimate of the error on
the model.

Regression

Regression is a from of supervised learning for dependent numerical variables that are in
some continuous range. Starting with collected data, J and K, where J is the independent
variables, x1, x2, ..., xJ , and K is the dependent variables, y1, y2, ... , yk, for I cases. Both
independent variables and dependent variables are collected and stored in a database. The
data sets can be written as matrices; X has a size of IxJ and Y has a size of IxK. To map
the dependent variables to the independent variables, supervised learning attempts to define

y = f(x) + ϵ(x, z) (3.1)

Where ϵ(x, z) is the error. Machine learning cannot find an equation that perfectly maps
the two variables which is why an error term must also be defined. The error function
describes the difference between the function produced by the ML model and the true value
of y. However, the error is also written a function of the dependent variable x and potential
unknown variables z to fully capture the complexity of the model. Not every database has
this type of data available because it relies on the ability to quantify the quality of the data.
This section will focus on defining the loss function, or the difference between f(x) and y
[27].

The loss function used in this work is the squared-error loss function:

Lse =
I∑

i=1

K∑
k=1

(yik − fk(xi))
2 (3.2)

The loss function must be smooth so it can be derived and set to zero to minimize the
overall error of the model. The derivative of the loss function is taken with respect to some
parameters wp.

δL

δwp

= 0, p = 1, 2, ...P (3.3)

The simplest version of regression is linear regression. The general linear model is

y =
J∑

j=1

= wjxj + b (3.4)

where b is the bias in the model. In matrix form is
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XTXw = XTy, (3.5)

where y contains the measurements that are to be mapped. The values of b and wj must
minimize the error loss function:

L =
I∑

i=1

(ŷ − yi)
2 (3.6)

where ŷ is the predicted value for any given case i. This basic model is called a least squares
model. This mapping of input to output can be visualized in Figure 3.5.

There are many ways to solve for the coefficient vector, the most used one in Machine
Learning codes is to decompose the matrix, using the Singular Value Decomposition, then
invert. However, the computational complexity of inverting a matrix is about O(n3). A
faster, better-suited approach is Gradient Descent.

Gradient Descent is an iterative method that calculates the gradient of the error function
to find the local minimum. By finding the local gradient, the method moves in the direction
of steepest descent until a minimum is found. Figure 3.6 shows a visual example of this
method. The step size of the descent is called the learning rate. A higher learning rate will
cause divergence because the algorithm will jump around the function, never finding the
minimum and a smaller learning rate will take a long time to converge, as shown in Figure
3.6.

Modifications to the step size may be made throughout the method to avoid local minima
and to find only the global minimal. The step size can be gradually decreased to skip over
local minima in earlier iterations of Gradient Descent.

Gradient Descent uses the whole training set to calculate the gradient at each iteration
which can be computationally expensive. To reduce the computational overhead of gradient
descent, a smaller subset of the data may be used rather than the entire dataset. Stochastic
Gradient Descent chooses a single random data point to calculate the gradient; however, it
can be significantly noisier and require more iterations to determine the minimum. Batch
Gradient Descent uses a subset of the larger data set to calculate the local gradient. This
method converges faster than Stochastic Gradient Descent but is computationally more
expensive. The step size and batch size dramatically impact the time the method takes to
converge.

Linear regression is the most basic form of regression. Other, more complicated non linear
models include, exponential models, power-law models, and logistic models. It is typical for
machine learning applications to use the most basic form of regression first before adding
complexity to the model.

Neural Nets

A neural network is a model that uses a nonlinear transformation on top of the linear combi-
nations introduced in the previous section. The nonlinear component, called the activation
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Figure 3.5: Schematic for basic linear regression.
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Figure 3.6: Gradient descent comparison between different step sizes [27].

function, generates intermediate variables called hidden layers. Common activation func-
tions are stepwise, log, arctangent, and hyperbolic tangents. The number of hidden layers in
a model can be changed, but most problems require a single hidden layer. The input data
is fed into the network and are multiplied by the weights and combined with the activation
function to form intermediate variables, called hidden units. The intermediate variables are
then combined with the bias to get the final value y. The simplest form of a neural network
is a feed-forward network; it has a single hidden layer. Feed-forward networks are flexible,
meaning they are well equipped to handle data with large amounts of noise; they are also
relatively easy to maintain.

Adding additional hidden layers is typically used for problems with an extremely large
dataset, such as speech recognition. The number of hidden layers used in a model is a type
of hyperparameter. Hyperparameters are parameters of the machine learning algorithm that
are set before training the model and they must remain constant throughout the training.
Hyperparameters must be tuned before training the model. Other hyperparameters include
the batch size and step size mentioned in the previous section. Adjusting hyperparameters
changes the convergence rate and accuracy of the neural net.

Input and output training data must be normalized when training a neural net because
nonlinear functions cause large variations in the model. Unnormalized data introduces large
variations into the gradient. Gradient Descent converges faster when the gradients are similar
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in magnitude and sign. The data is typically standardized by subtracting the mean of the
data and dividing by its standard deviation.

Convolutional Neural Nets (CNN) are neural nets that use convolutions as the hidden
layer, bookended by feed-forward layers. This is particularly powerful for image data, where
each individual pixel is considered an input and is mapped to some output value of interest.
Using a basic feed-forward network on a data set of that size would require a large amount
of weights and biasing parameters, resulting in a slow training time. By using convolutions,
each pixel is no longer required to be treated as an independent input, instead convolutions
can be used to create hidden layer variables and highlight specific structures in the image
data. Resulting in a smaller number of biasing parameters and a shorter training time. This
is possible by setting a subset of the biasing parameters to the same value and applying the
weights to make a pattern.

The definition of a convolution of two functions, f and g, is

(f ∗ g)(t) =
∫ ∞

−∞
f(τ)g(t− τ)dτ =

∫ ∞

−∞
f(t− τ)g(τ)dτ (3.7)

The convolutional operator, ∗, is commutative and linear. Convoluting the function, f
around t is meant to produce a smoothed version of the function f(t). The three most
commonly used functions for g(t) are the Heavyside function, the triangular function, and
the Gaussian function. Examples of these functions are shown in Figure 3.7. These functions
can be defined on a finite scale, so the convolutional operator can be rewritten as

(f ∗ g)(t) =
∫ a

−a

f(t− τ)g(τ)dτ (3.8)

However, image data is often not in continuous functional form. Image data is a 2D
matrix of color indexes, F , the convolution of image data can be written as:

(F ∗G)m,n =
∞∑

i=−∞

∞∑
j=−∞

Fi,jGm−i,n−jm,n = 0, ..., N − 1 (3.9)

In the case of discrete 2D matrices, the matrix G can be written as a 3x3 stencil to
average F :

Gaverage =
1

9

1 1 1
1 1 1
1 1 1

 (3.10)

Therefore, the convolution of F and G gives the average of nine values near some index
Fm,n

(F ∗G)m,n =
1

9

1∑
i=−1

1∑
j=−1

Fm−1,n−1 (3.11)
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Figure 3.7: Plot of different g functions, Gaussian, rectangle, and triangle.

The filter G can be any size and form. For example, G can also be the discrete Laplacian,
2.

GL =
1

h2

0 1 0
1 −4 1
0 1 0

 (3.12)

The Laplacian stencil is often used to find edges in an image. An example of this is in
Fig ??.

Pooling is another technique often used in Machine Learning to average part of a database
input. In 2D, this is often an image. A parameter called a ”stride” is the subsection of the
matrix that is being averaged. For example, a matrix of sizeMxN with a stride S will result
in a new size of M

S
xN

S
after pooling. The pooling operator is defined as:

AvePool(X)kl =
1

S2

kS∑
i=(k−1)S+1

∑
j=(l−1)S+1

Xi,j; k = 1, ...,
M

S
; l = 1, ...,

N

S
(3.13)

A Convolutional Neural Net combines pooling and convolutions to highlight specific fea-
tures in image data. One of the benefits of a CNN is that a neural net can be trained on data
with a large amount of inputs, because the pooling layers compress the data to a smaller
matrix. A typical CNN combines many convolution layers and pooling to decrease the size of
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Figure 3.8: An example of 2D convolutions on an image. The one to the right is a 2D
Laplacan convolution of the image of the left. [27]

Figure 3.9: A schematic of a Convolutional Neural Net. Each pooling layer shrinks the size
of the image and the convolution layers highlight specific features of the image.

the images. Each layer of convolutions and pooling is passed through an activation function.
The smaller image is then passed to a feed-forward layer. The feed-forward layers predict
the output images. Fig 3.9 shows an example of this process. The feed-forward layers can
be used to predict a classification problem or a regression problem. This method can also
be expanded to more dimensions for image prediction or 3D models. However, because this
type of learning is supervised, it is not as flexible as unsupervised learning.
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Chapter 4

Methodology and Implementation

The changes made to a research version of CHEETAH-MC can be broken up into two major
categories. The first is the pre-processing step that has been added to predict where the
optimal subdomain boundary placement occurs. This requires the CHEETAH-MC input file
to be fed into the CNN and the output of the CNN to be passed back to CHEETAH-MC.
The second is modifications made to the tracking algorithm itself, which includes the imple-
mentation of ghost zones and subdomain boundaries, a sorted particle bank, and swapping
the sorted particle banks. This methodology has been tested and developed for history-based
Monte Carlo transport through voxel geometry.

Training the CNN required a clearly defined test problem, which is described in Section
4.1. The CNN was first tested on a simple detector-shielding problem to develop a workflow
for the CNN and to determine if the CNN is properly suited for this application. Best
practices for neural nets is to start with the simplest neural net and hyper-parameters and
add complexity if necessary. Once the accuracy and validity of the CNN was deemed suitable,
the method was expanded to a voxelized human skull.

Modifications made to the algorithm are outlined in Section 4.2. These changes are
highlighted in the pseudo-code, and descriptions of each change are in the following subsec-
tions. All of the code development was done in CUDA and C++ to optimize performance
on the GPU. CUDA allows for more fine control over the data transfer process and memory
management.

The work in this section explores the tools and features implemented in CHEETAH-MC
that allow us to choose subdomain boundaries using Machine Learning.

4.1 Convolutional Neural Network Pre-processing

A CNN was developed to predict the flux tallies and internal surface particle count of two
test problems using both photon and neutron input data. This predicted data was then used
to provide CHEETAH-MC with subdomain boundaries that load balance the geometric do-
main while minimizing the amount of unnecessary data transfers. Decomposing a geometric
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domain requires that those two concepts be balanced. The predicted flux informs the load
balancing of the Monte Carlo simulation and the internal surface crossing informs the mem-
ory transfer requirements of the Monte Carlo simulation. In Monte Carlo, flux tells us where
the particles move and how they interact with the geometry, so it is an appropriate predic-
tor for computational work. Particle count tells us how many particles we have to transfer
between subdomains, or GPUs.

To avoid placing subdomain boundaries in trivial places, or places that make the sub-
domains trivially small, a constraint was added to the pre-processing step requiring each
subdomain to be at least 25% of the original volume. The boundaries are chosen by finding
the maximum predicted flux and minimum predicted internal surface crossing. Again, the
flux is used as a proxy for computational work so by doing a search for the minimum internal
surface crossing near the maximum flux, we can ensure that both the load balancing and
memory transfer frequency are taken into account. The ghost zones are chosen in a similar
way.

Similar to how the subdomains were chosen, we can also determine the ghost zones.
A ghost zone is the area of overlap between two or more subdomains, these parts of the
geometric domain are stored on multiple processors. The purpose of the ghost zone is to
prevent unnecessary data transfers. Particles, electrons especially, scatter more as they lose
energy. Particles can scatter isotropically, meaning it is equally likely to scatter backwards.
If this happens along a subdomain boundary, particles will be transferred between the same
two GPUs repeatedly. Moving a single particle back and forth, between two GPUs is costly.
The ghost zones are determined by taking the gradient of the flux and finding where the
gradient is minimized.

Shielding Problem

The first test problem that was explored was a simple source, shield, detector problem. This
was chosen as a proof of concept and shielding problem because the physics is intuitive and
simple to predict. It also provided enough flexibility to fill out a large enough database to
train a CNN. The location and random holes can be added to a shield to produce enough
reasonable randomness for a simplified shield-detector problem. This simple problem served
as a test bed to develop a workflow to train a CNN. To develop this data base, a base voxel
geometry was generated, shown in Figure 4.1. The base geometry is made up of two simple
materials, a highly scattering material and a highly absorbing material. The cross sections
for the materials are listed in Table 4.1. The voxel size was set to 1 cm and the total domain
size was set to be a 3-dimensional grid of (100,100,1) voxels. Then a highly absorbing slab
of material 2 was placed randomly within the geometry. Next, subtle variations were added
to the base geometry by making random voxels highly absorbing. A monoenergetic and
monodirectional photon source with an energy of 2.5 MeV and photon-only physics were
used for this simple proof of concept problem. Finally, tally data was collected for each
variation of the geometry. A total of 1000 datapoints were used in the training dataset, and
another 300 were used to validate the model. The CNN was trained to map the cross-section
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Figure 4.1: Sample voxel shield model used to train the CNN.

data inputs to the tally data that was produced by CHEETAH-MC. Essentially, the CNN
was trained to identify and avoid the areas of the geometry with high amounts of scattering
and secondary particle production.

Additionally, the CNN was used to determine the ghost-zone size used in the Monte Carlo
model. The CNN identified the ghost zone by using the gradient of the predicted tally data
to determine where the flux changes the least between some local minimum and maximum.
This gives an appropriate constraint to avoid frequent memory transfers.
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Material Number Absorption Cross Section (cm−1) Scatter Cross Section (cm−1)
1 0.005 0.01
2 0.2 0.05

Table 4.1: Training Data: Report of geometry parameters used in database.

Human Phantom

The second test problem that was developed was a voxelized human phantom. A human
phantom was chosen for a variety of reasons. First, it was already in the correct geometric
format. Voxels are not as commonly used as combinatorial geometry in Monte Carlo applica-
tions, but human phantoms are often represented by voxel geometry because it is lightweight
and compatible with medical physics data processing. However, despite being lightweight,
the medical physics community runs into memory capacity issues and the phantoms often
have to be domain decomposed [41]. The need for a higher memory capacity within the
medical physics community made the human phantom an attractive test problem. The hu-
man body also has natural variation that can be exploited to generate a large database for
the CNN. Additionally, simplifying human phantoms and approximating complex geometric
shapes within the human body is common in medical physics applications [2]. An example
of this simplification is shown in Figure 4.2. Taking these assumptions and factors into ac-
count allow us to develop a large enough database full of unique human phantom inputs and
outputs that are appropriately representative of the male human body.

To develop this database, a base voxel geometry was generated, shown in Figure 4.3.
The base geometry is made up of a simplified voxelized skull and brain. The voxel size was
arbitrarily set to 0.4 cm and the total domain size was set to be a three-dimensional grid
of (50,50,50) voxels. Next, subtle variations were added to the base geometry, motivated by
natural variations in the human anatomy. For example, the volume of a brain varies by 17%
amongst adult human males [18]. The shape and volume of the brain and skull were varied
within these parameters, forming a data base that is representative of a human male skull.
The material information for the composition of the brain, bone, and air is shown in Table
4.2. The material composition data is taken from the human phantom database developed
by ICRP [21]. The densities of the materials are available in Table 4.3.

A monoenergetic and monodirectional photon source with an energy of 4 MeV was used
for this problem, a beam energy typically used in medical physics applications [18]. Sec-
ondary particles and electrons were enabled to more accurately model medical physics prob-
lems. Finally, photon flux and internal surface crossing tally data was collected for each
variation of the geometry. A total of 1000 datapoints were used in the training dataset, and
another 300 were used to validate the model. The CNN was trained to map the cross-section
data inputs to the tally data that was produced by CHEETAH-MC. Like the simple shielding
problem, the CNN was trained to identify and avoid the areas of the geometry with high
amounts of scattering and secondary particle production. By placing subdomain boundaries
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Figure 4.2: An example of human phantoms and how they are simplified. Each version of
the human phantom is voxelized, but the geometry becomes simplified from left to right. [2]

Material Name H C N O Na Mg P S Cl K Ca
Brain Tissue 0.107 0.144 0.022 0.731 0.713 0.0 0.002 0.004 0.002 0.003 0.0

Bone 0.036 0.159 0.042 0.448 0.003 0.002 0.094 0.003 0.0 0.0 0.213
Air 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.2: Training Data: Report of material properties used in database [18].

Material Name Density ( g
cc
)

Brain Tissue 1.05
Bone 1.92
Air 0.001225

Table 4.3: Training Data: Report of material properties used in database [8].

in these areas, the number of times a particle is moved between two processors is minimized.

Validation Data and Accuracy

The CNN was trained and validated using a built-in Keras package [13]. Keras is a high-level
API that was developed for TensorFlow to simplify and make it easier for a user to produce
ML models. Keras specifically manages the layers, biasing, loss functions, and metrics dis-
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Figure 4.3: Sample simplified brain phantom used to train the CNN.
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cussed in Section 3.2. There are built in layers for 3D convolution and hyperparameter
tuners, which were both used a starting point for the model used to predict the flux and
internal surface crossing [32].

The accuracy reported from these models is calculated using Keras’s built in metric
functionality. Accuracy of a neural net describes the percentage of predicted values that
match the actual values. Therefore, if a predicted value matches the actual value in the
database, the value is considered ”correct”. To compare values a subsection of the training
database must be used as a validation set. Best practices for validation training sets is to
randomly choose values in the database that were not used to train the neural net. Final
reported accuracy is reported by dividing the number of ”correct” predictions by the total
number of values in the validation set. Typical values for acceptable levels of accuracy range
from 70% to 90% for neural nets [26].

4.2 Modified Transport Algorithm

This section describes the modifications made to the domain decomposition algorithm, specif-
ically how the particle bank is sorted and transferred using CUDA memory transfer.

Algorithm 5 Outer Transport Loop
1: input parsing
2: initialize source
3: initialize geometry
4: pass geometry to CNN
5: pass CNN subdomain boundaries to host CPU
6: initialize materials
7: initialize tallies
8: for the number of GPUs on compute node do
9: copy particle bank from CPU to GPU
10: while i < N and particle bank is not empty do
11: sample particle’s initial state
12: track particle ▷ Algorithm 1
13: end while
14: sort particle bank
15: end for
16: combine tallies
17: write to output
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Figure 4.4: An example of a domain containing a source, shield, and detector that has
been decomposed into two subdomains. Particles leave and reenter the subdomains as the
simulation executes.

Particle Bank

As particles move through the voxel geometry and cross from one subdomain to another, the
particles must be transferred from one GPU to another. The particles can be transferred one
at a time, but that is not the best use of computational resources. As discussed in Section
3.1, memory transfer and allocation is often the bottleneck of high performance computing.
Transferring particle by particle is inefficient, therefore a particle bank was implemented to
store particles temporarily before being transferred. The particles are stored in a simple
fixed-length array.

For the simplist case, a compute node with only two GPUs, the particle banks can be
swapped directly. CUDA allows for direct GPU-to-GPU communication, which is faster
than transferring the banks through the CPU and back to the GPUs. Figure 4.4 illustrates
the power of device-to-device memory transfer.

For more than two GPUs, direct GPU-to-GPU communication cannot be utilized. The
subdomains have more than one nearest neighbor, so the particles must be stored with
additional subdomain information. Each subdomain is labeled with a unique numerical ID
and this subdomain label is stored in the particle data. The subdomain label is updated
as the particles approach and cross the subdomain boundaries. Once the particle bank is
full, the bank must be transferred back to the CPU and sorted. The particles are then
redistributed to the GPUs, as shown in Figure 4.5.
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Figure 4.5: An example of a domain containing a source, shield, and detector that has
been decomposed into four subdomains. Particles leave and reenter the subdomains as the
simulation executes.

Sorting

As GPUs grow in popularity, sorting algorithms are being remapped to the GPU archi-
tecture. Specifically, algorithms that utilize the divide and conquer strategy. Divide and
conquer describes a class of sorting algorithms that break down an original problem into
smaller subproblems that mirror the original problem [28]. Each subproblem is then solved
recursively and the solutions are then combined for the original problem. However, true
recursion cannot be implemented on the GPU, therefore recursion is emulated by calling a
kernel on a segment of the original data. Because each subproblem is independent from one
another, they can be distributed across shared memory systems and distributed memory sys-
tems, making divide and conquer algorithms compatible with GPUs [37]. The subproblems
are assigned to a thread block on the GPU.

The sorting algorithm implemented in CHEETAH-MC was a simple count sort algorithm
[38]. The count sort algorithm is particularly powerful when the range of the input values
is small compared to the number of elements that need to be sorted, like in the case where
there are only 4 GPUs to sort. The count sort algorithm counts the frequency of each unique
element and then places the elements in the correct order.
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Chapter 5

Results

This chapter presents the results for the shielding problem, the human phantom problem with
a photon source, and the human phantom problem with an electron source. The shielding
problem was developed first as a proof of concept and testing ground for CNNs. Then a new
CNN was trained for the human phantom problem with a photon source. For each CNN
trained, the runtime and accuracy is reported in the relevant sections below. The runtimes
are then compared to arbitrarily chosen boundaries and uniform boundaries.

The accuracy of the model can be improved by tuning the hyperparameters of the CNN.
The subdomain boundaries are chosen by using the predicted flux and internal surface cross-
ing tallies to estimate where the internal surface crossings are minimized. The subdomains
were also limited in size to be at least 25% of the volume of the overall domain to avoid null
results, such as a subdomain that does a negligible amount of computational work.

The domain decomposition scheme was extended beyond two subdomains for the human
phantom model with a photon source. The results for the four subdomain problem, along
with a comparison to other decomposition schemes are presented in the final section.

5.1 Shielding Problem

The shielding problem was developed to test the capabilities of a CNN. It was determined
to be a relevant test because it has intuitive physics. This model was only tested on two
NVIDIA Volta GPUs. The CNN had a prediction accuracy of 78.65% with a training time
of 260 seconds, which is reasonable for a simple proof of concept neural net. The boundaries
chosen by the CNN were compared to arbitrarily chosen domain boundaries, Figure 5.2, and
uniform domain boundaries, Figure 5.3. The CNN prediction, Figure 5.1, ran 1.6x faster
than arbitrarily chosen boundaries and 1.1x faster than uniformly chosen boundaries, as
shown in Table 5.1.

Each figure in this section shows different domain decomposition schemes on the same
base geometry. Each subdomain and ghost zone is labeled and is filled in with a unique
color. The flux tally is also plotted in the same figures. The uniform boundary and the
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Figure 5.1: Photon flux in a CNN decomposed simple shield voxel geometry with ghost
zones.
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Figure 5.2: Photon flux in a arbitrarily decomposed simple shield voxel geometry with ghost
zones.

CCN chosen boundaries are not significantly different in this particular randomly generated
geometry because the uniform subdomain boundary is also placed after the shield. The shield
stops a majority of the incident particles and results in fewer memory transfers. However,
if the boundary is placed before the shield like in the arbitrarily chosen boundaries, the
runtime increases.
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Figure 5.3: Photon flux in a uniformly decomposed simple shield voxel geometry with ghost
zones.

Decomposition Scheme Time
Uniform 165.41 seconds
Arbitrary 246.2 seconds

CNN Prediction 150.12 seconds

Table 5.1: Run times for a shielding model using 2 NVIDIA Volta GPUs.
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Decomposition Scheme Time
Uniform 682.43 seconds
Arbitrary 829.32 seconds

CNN Predicted 628.28 seconds

Table 5.2: Run times for a human phantom model using a photon source using 2 NVIDIA
Volta GPUs.

5.2 Human Phantom

This section presents the results for the human phantom problem. The human phantom was
used to train a CNN using a photon source. The CNN chosen boundaries were compared to
other decomposition schemes, such as uniform and arbitrarily user-chosen boundaries. The
runtimes of each decomposition scheme are presented below along with a depiction of the
flux and subdomains. The human phantom problem was first tested on two GPUs then four.
Each figure is a 2D cross section of the human skull phantom.

Photon Flux Tally: 2 GPUs

The human phantom geometry with a photon source was developed to further test the
capabilities of the CNN. The model was initially tested on two NVIDIA Voltas then later
extended to four. The CNN had an accuracy of 82.71% with a training time of 831 seconds.
The CNN prediction ran 1.1x faster than arbitrarily chosen boundaries and 1.3x faster than
uniformly chosen boundaries, as shown in Table 5.2.

Figure 5.4 shows the different subdomain boundaries chosen by the CNN. Each subdo-
main is labeled and the colors represents each GPU where the geometry resides. The flux
is also plotted along the human phantom geometry. It is illustrated as a black and white
gradient. The uniformly chosen subdomain boundaries, Figure 5.5, are similar to the ones
chosen by the CNN so the total runtime is not significantly different. The arbitrarily chosen
boundaries, Figure 5.6, perform the worst.

Photon Flux Tally: 4 GPUs

The human phantom model was then extended to run on 4 NVIDIA Volta GPUs. The same
CNN from Section 5.2 was used to decompose this geometry. However, the constraints were
changed slightly to account for the additional subdomains. Instead of limiting subdomain
size to 25%, it was limited to 12.5%. The human phantom ran slower on 4 GPUs, this is likely
due to the sorting step that needs to take place between memory transfers. Additionally,
GPU to GPU communication was not utilized in the 4 GPU run. All particle banks were
sent to the host CPU, sorted, and redistributed to the GPUs. These additional memory
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Figure 5.4: Photon flux in CNN decomposed simple brain and skull human phantom voxel
geometry with ghost zones.
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Figure 5.5: Photon flux in uniformly decomposed simple brain and skull human phantom
voxel geometry with ghost zones.
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Figure 5.6: Photon flux in arbitrarily decomposed simple brain and skull human phantom
voxel geometry with ghost zones.
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Decomposition Scheme Time
Uniform 1281.14 seconds
Arbitrary 1651.87 seconds

CNN Predicted 1146.32 seconds

Table 5.3: Run time for a human phantom model using a photon source using 4 NVIDIA
Volta GPUs.

Problem Type Particle Type Time
Shield photon 41.7 CPU hours

Human Phantom (photon source) electron-photon 216.7 CPU hours

Table 5.4: CPU hours required to generate the databases required to train the CNN.

transfers added to the final runtime. The CNN prediction ran 1.1x faster than arbitrarily
chosen boundaries and 1.4x faster than uniformly chosen boundaries, as shown in Table 5.3.

Figure 5.7 shows the different subdomain boundaries chosen by the CNN. Each subdo-
main is labeled and the colors represents each GPU where the geometry resides, however the
ghost zones are not shown in these plots because the figures become too difficult to read.
The uniformly chosen subdomain boundaries, Figure 5.8, are split evenly along the origin.
The arbitrarily chosen boundaries, Figure 5.9, perform the worst but the difference is not as
stark as the other two results presented in this chapter. This is likely due to the additional
sorting step and more frequent memory transfers. Additional testing would need to be con-
ducted with larger, more complex geometries to fully understand the scaling of this method.
However, Monte Carlo performance is very problem dependent, so this would require further
study and research into large benchmark problems in the medical physics community.

5.3 Database Development Time

To train the CNN, a total of 1000 cases were needed for the shielding problem and human
voxel problem. The total time it took to generate the database is presented below in Table
5.4. The times presented are estimates and not fully accurate they are calculated based on
the time it took to run a single case. The amortized time is not reflected in the CNN training
time, presented earlier in this chapter.
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Figure 5.7: Photon flux in CNN decomposed simple brain and skull human phantom voxel
geometry with ghost zones.
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Figure 5.8: Photon flux in uniformly decomposed simple brain and skull human phantom
voxel geometry with ghost zones.
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Figure 5.9: Photon flux in arbitrarily decomposed simple brain and skull human phantom
voxel geometry with ghost zones.
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Chapter 6

Conclusions and Future Work

Using a Convolutional Neural Net to intelligently choose subdomain boundaries performs
the best from the other methods presented in this work, such as user-defined boundaries and
uniformly-defined boundaries. The CNN outperforms other methods for a voxelized human
skull and brain and a simple shielding problem. This methodology can be expanded to other
commonly simulated electron-photon problems. However, due to limitations on CHEETAH-
MC user-generated training data available, Neural Nets would benefit a code with a larger
user base and readily-available data.

The runtimes also do not fully reflect the amount of time it took to train the models and
generate the data. Taking this additional time into account makes it difficult to justify a full
database generation.

Conclusions

Domain decomposition is commonly used in production level Monte Carlo codes. The way
it is implemented varies from code to code, but most codes have the option for users to
directly define subdomain boundaries, which can lead to arbitrarily chosen boundaries. User
defined boundaries have the longest runtimes and present the worst case scenario for domain
decomposition. The CNN chosen boundaries perform 1.6x faster than the arbitrarily chosen
boundaries. The CNN outperformed arbitrarily chosen boundaries by 1.4x for the human
phantom problem. Users often do not have the physics knowledge to correctly identify the
optimal subdomain boundaries. These results demonstrate that at a very minimum, produc-
tion level codes should not recommend user-defined subdomain boundaries and implement
a version that removes that requirement from the user.

In the second case presented, the method that breaks up the domain into uniformly sized
subdomains. This method is available in some, but not all, production level Monte Carlo
codes. The CNN chosen boundaries ran 1.1x faster than uniformly chosen boundaries for the
shielding problem and 1.4x faster for the human phantom problem. This is not significant
enough to necessitate training and data base production for every potential Monte Carlo
model. However, it does provide a proof of concept for other applications of Neural Nets in
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Monte Carlo. This method would work better for a more standardized input model, like a
nuclear reactor core. Nuclear reactor cores all have the same basic structure and features,
so training a neural net to identify the features that significantly impact runtime when
decomposed.

Furthermore when extended to 4 GPUs, the human phantom problem performed worse,
likely due to the use of CPU-GPU communication rather than direct GPU-to-GPU com-
munication. Extending this problem to more than 4 GPUs would reveal how the human
phantom model continues to scale.

Future Work

Neural nets are powerful predictive algorithms that have many potential use cases in Monte
Carlo methods. The work presented in this dissertation offers one application. This work
can be expanded in a multitude of ways. Expanding, this methodology to combinatorial
geometry is the first and most obvious step. However, users typically expect to create a
large variety of CG models, ranging in size and complexity. Using supervised learning for
these cases is rather limiting, unless there is a larger database with a sample of different user
inputs and outputs. Storing data of that size would be difficult and cost prohibitive. An
alternative approach for future research is using reinforcement learning to optimize the load
balancing of the CG model. Reinforcement learning can be implemented to take in runtime
data and reshuffle the subdomain boundaries on the fly. Using Machine Learning in this
way removes any requirement to store user data long term. However, training a neural net
in real time also requires long runtimes, so it may be time prohibitive or only necessary for
Monte Carlo models that are slow to converge.

A potentially easier to implement use case for ML is to use a radically simpler classifi-
cation neural net to chose which types of variance reduction techniques to use for the user
developed Monte Carlo models. Variance reduction is a class of methods that are used to
reduce the convergence time, and consequently runtime, of Monte Carlo methods. However,
there are a variety of techniques available and each one has different benefits depending on
the Monte Carlo model. Using a classification neural net to choose the bet variance reduction
technique could prevent user pitfalls.
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