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Running head: FINGERPRINT EXAMINERS’ STATISTICAL LEARNING 1 

Abstract 

Forensic feature-comparison examiners compare – or ‘match’ – evidence samples (e.g., 

fingerprints) to provide judgements about the source of the evidence. Research demonstrates that 

examiners in select disciplines possess expertise in this task by outperforming novices – yet the 

psychological mechanisms underpinning this expertise are unclear. This paper investigates one 

implicated mechanism: statistical learning, the ability to learn how often things occur in the 

environment. This ability is likely important in forensic decision-making as samples sharing 

rarer statistical information are more likely to come from the same source than those sharing 

more common information. We investigated the statistical learning and application of this 

knowledge of 46 fingerprint examiners and 52 novices. Participants completed four measures of 

their statistical learning about fingerprint categories (frequency discrimination judgements, 

bounded and unbounded frequency estimates, and same-source-likelihood judgements) before 

and after familiarisation to the ‘ground-truth’ category frequencies. Fingerprint examiners had 

superior domain-specific statistical learning across all measures and better applied this 

knowledge to identify fingerprint pairs that were more likely to have come from the same source 

than other fingerprints than novices. This suggests that fingerprint expertise facilitates domain-

specific statistical learning. This has important theoretical and applied implications for the 

development of training programs and selection tools in forensic science. 

 

Keywords: expertise, forensic science, forensics, statistical learning, distributional learning, 

fingerprint 
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Introduction 

Forensic feature-comparison examiners (e.g., fingerprint examiners) perform an integral task in 

the justice system where they compare – or ‘match’ – evidence samples (e.g., fingerprints) in 

visual comparison tasks to provide judgements about the source of the evidence (Towler et al., 

2018). Contrary to popular belief, this task is largely undertaken by human decision-makers – not 

computers or algorithms (Growns & Martire, 2020b; Thompson et al., 2013). Research 

investigating the performance of these decision-makers is therefore critical (President’s Council 

of Advisors on Science and Technology, 2016). Evidence suggests that – although performance is 

not perfect – practitioners in some disciplines show expertise by outperforming novices in this 

task (Bird et al., 2010; Busey & Vanderkolk, 2005; Ericsson et al., 2018; Thompson et al., 2013; 

White et al., 2015). Yet much remains unknown about how practitioners outperform novices – or 

the psychological processes that underpin this expertise. 

 Emerging research has begun to identify the wide array of psychological processes that 

underpin forensic feature-comparison expertise (see Growns & Martire, 2020 for review). When 

completing domain-specific visual comparisons, compared to novices, face and fingerprint 

examiners show evidence of both analytical, deliberate and featural processing (Thompson & 

Tangen, 2014; Towler et al., 2017, 2017; White et al., 2015), and non-analytical, automatic and 

holistic processing (Busey & Vanderkolk, 2005; Searston & Tangen, 2017; Thompson & Tangen, 

2014; Vogelsang et al., 2017; White et al., 2015). Compared to novices, fingerprint examiners 

also show evidence of greater memory retention for fingerprints (Busey & Vanderkolk, 2005; 

Thompson & Tangen, 2014), perform better in domain-specific visual search tasks (Robson et 

al., 2021; Searston & Tangen, 2017), and show different eye movement patterns when viewing 

fingerprints (Busey et al., 2011, 2013). In this paper, we investigate another mechanism 
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implicated in proficient visual comparison performance by prominent mathematical theories: 

statistical learning. 

 Statistical learning is the mechanism by which individuals readily and automatically learn 

statistical information from their environment (Aslin, 2017; Frost et al., 2019). Studies show that 

statistical learning occurs quickly and easily – even after only brief exposure (< 10 minutes of 

familiarisation; Fiser & Aslin, 2001, 2002; Turk-Browne et al., 2005). People can learn a wide 

variety of statistical information – from conditional relationships between stimuli (e.g., Y co-

occurs with Z in time or space, or conditional statistical learning; Fiser & Aslin, 2001; Turk-

Browne et al., 2005) to the frequency and variability of distributions in the environment (e.g., W 

occurs more often than X; or distributional statistical learning; Thiessen & Erickson, 2013; 

Zacks & Hasher, 2002). These two processes are interrelated with substantial individual 

differences in both processes (Growns et al., 2020). 

Critically, distributional statistical learning could be one cognitive mechanism that 

contributes to performance in forensic ‘matching’ tasks. Information theory suggests that 

statistical information provides important diagnostic cues in matching tasks (Bruce & Tsotsos, 

2009; Busey et al., 2016; Shannon, 1948). For example, two fingerprints sharing a rare feature 

(e.g., a ‘lake’) are more likely to have a common source – or ‘match’ – than two fingerprints 

sharing a common feature (e.g., a ‘bifurcation’), as the former is shared between fewer people in 

the general population. Forensic examiners may implicitly acquire and use domain-specific 

statistical knowledge via statistical learning in their casework – potentially enabling them to 

outperform novices presumably lacking this knowledge. This suggests that statistical learning 

could join other cognitive and perceptual processes in underpinning forensic science decision-

making. It could also have important applied implications as forensic examiners are increasingly 
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being asked to provide these decisions via numerical estimates or likelihood ratios (Aitken et al., 

2011; Aitken & Taroni, 2004) – which can be problematic given the lack of reliable statistical 

databases in most forensic disciplines for examiners to rely on (even in well-established 

disciplines like fingerprint analysis; Mnookin, 2008). 

Yet there is mixed evidence about whether examiners acquire domain-specific statistical 

knowledge via statistical learning in their casework. Forensic document examiners make better 

bounded frequency estimates (from 0-100%) of handwriting features than novices (Martire et al., 

2018). Fingerprint examiners are also better able to rank the frequency of fingerprint categories 

than novices – however, do not make better unbounded frequency estimates (i.e., estimate x 

occurrence out of y occurrences) of those same categories (Mattijssen et al., 2020). This 

discrepancy may be due to the different forensic disciplines or the nature of statistical learning – 

a multi-faceted mechanism that encapsulates several interdependent skills including 

discriminating/ranking relative statistical frequencies and precisely estimating exact frequencies 

(Growns et al., 2020; Growns & Mattijssen, 2020; Hasher & Zacks, 1984). These abilities are 

interrelated and are typically correlated (Growns & Mattijssen, 2020). Forensic examiners may 

be able to express their statistical knowledge in some ways but not others – supported by 

examiners better ranking fingerprint categories but not better estimating their relative frequencies 

(Mattijssen et al., 2020). Yet no study has comprehensively investigated forensic examiners’ 

acquired statistical knowledge using more than one or two statistical learning measures. Doing so 

is critical to better understand how examiners’ statistical knowledge is best expressed to 

understand its role in their decision-making. 

There is also limited evidence about whether forensic examiners use acquired statistical 

knowledge in matching tasks. Growns and Martire (2020a) investigated this by asking forensic 
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examiners and novices to complete a matching task with novel stimuli designed to measure the 

use of statistical knowledge in match judgements. Importantly, examiners learned and used 

statistical knowledge to facilitate performance in this task. However, they were outperformed by 

a group of novices who were also trained in the application of statistical information in match 

judgements. Trained novices who were better statistical ‘learners’ were also better ‘matchers’ 

than poorer learners – a relationship not seen in examiners who did not receive this training. 

These trained novices likely outperformed examiners due to the novel stimuli used in this study. 

Expertise is typically domain-specific, narrow and rarely generalises beyond someone’s area of 

experience (Bedard & Chi, 1992; Chase & Simon, 1973). It is currently unknown whether 

forensic examiners can apply statistical knowledge in matching tasks within their domain of 

expertise. 

This study is an exploration of forensic examiners’ statistical learning and its use in a 

visual comparison task within the domain of fingerprint analysis. We explore fingerprint 

examiners’ and novices’ domain-specific (i.e., fingerprint) statistical knowledge across three 

measures drawn from previous research (frequency discrimination judgements, and bounded and 

unbounded frequency estimates; Growns & Martire, 2020a; Growns & Mattijssen, 2020; 

Mattijssen et al., 2020) and their use of this knowledge in a same-source-likelihood judgement 

task (i.e., which of two fingerprint category pairs would provide more support for the hypothesis 

that both fingerprints were from the same person; see Method). We sought to examine two main 

research questions: 1) whether fingerprint examiners generally have better statistical learning and 

make more accurate same-source-likelihood judgements than a control group of novices; and 2) 

whether familiarisation to ‘ground-truth’ statistical frequencies – as in a typical statistical 

learning study (Fiser & Aslin, 2001, 2002) – improves either examiners’ or novices’ statistical 
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learning. To do so, we measured both examiners’ and novices’ a priori statistical learning and 

same-source-likelihood judgements, then asked all participants to complete a ‘familiarisation’ 

task to learn the fingerprint statistical frequencies, after which we again measured statistical 

learning and same-source-likelihood judgements. 

 We expected that examiners would discriminate relative fingerprint frequencies and 

estimate these frequencies with given bounds better than novices in the pre-familiarisation phase 

(Growns & Martire, 2020a; Martire et al., 2018), but would not necessarily be better at 

estimating frequencies without bounds (Mattijssen et al., 2020). We also expected examiners to 

make more accurate same-source-likelihood judgements than novices at pre-familiarisation. We 

pre-registered that we had no a priori expectations about whether examiners would outperform 

novices on any measure post-familiarisation. Yet critically, if the direct acquisition of statistical 

knowledge alone improves the ability to use it when making same-source-likelihood judgements, 

we would expect to see novices’ same-source-likelihood judgement accuracy increase from pre- 

to post-familiarisation. We also expected to find a relationship where better statistical ‘learners’ 

were also better able to use this information (i.e., same-source-likelihood judgements) post-

familiarisation (after novices were given the opportunity to develop statistical knowledge; 

Growns & Martire, 2020a). 

Method 

Design 

This study examined forensic examiners’ statistical learning and same-source-likelihood 

judgements in a 2 (between-subjects; group: fingerprint examiners or a control group of novices) 

x 2 (within-subjects; familiarisation to statistical frequencies: pre-familiarisation or post-

familiarisation) design (see Figure 1). The study pre-registration, de-identified data and analysis 
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scripts are available at [links to be replaced upon acceptance: pre-registration: 

https://osf.io/mxe3q/?view_only=74351f651e734049aa1ea30dd9156de5; and data and analysis: 

https://osf.io/z3rce/?view_only=e586d680ef87480b9a5f37259ead0536].  

Participants 

Participants were 86 individuals (n = 58 fingerprint examiners, n = 28 other forensic 

practitioners) recruited through a snowball-sample method via emails sent to forensic 

organisations and mailing lists, and 58 novices recruited via Prolific Academia. Novices were 

paid $6.50 for participation in the 60-minute study, examiners were not paid for their 

involvement. To motivate performance, all participants were also offered the chance to win a 

prize for the best performance in the pre-familiarisation ($250) and post-familiarisation ($350) 

phases of the experiment. The second prize was larger than the first to encourage all participants 

to complete the entire study (Wray & Gates, 1996) – although it was not considered sufficiently 

large to incentivize participants to complete the study against their own best interests.  

We used our pre-registered exclusion criteria to exclude participants who failed one or 

more (out of three) attention-check questions (n = 7 examiners, n = 3 novices). Based on our pre-

registered criteria and to ensure sample homogeneity, all participants recruited via the snowball-

sampling method who did not report that they were a fingerprint examiner were also excluded (n 

= 28). We also excluded participants who reported that they were aware of the paper we used to 

obtain the ‘ground-truth’ fingerprint category frequencies (n = 5 examiners, n = 2 novices).1 

The final sample comprised 52 novices and 46 fingerprint examiners (45 from our 

snowball-sample method and one from Prolific; henceforth examiners). Novices were 32.6 years 

 

 

1 Note this exclusion criterion was not pre-registered as this specific question was added after pre-

registration.  

https://osf.io/mxe3q/?view_only=74351f651e734049aa1ea30dd9156de5
https://osf.io/z3rce/?view_only=e586d680ef87480b9a5f37259ead0536
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of age on average (SD = 11.8, range = 18-67), and the majority self-identified as female (53.8%) 

and reported English was their first language (92.3%). All novices reported living in the United 

States. Examiners were 37.2 years of age on average (SD = 7.99, range = 23-60), and the 

majority also identified as female (68.9%) and reported English was their first language (67.4%). 

The majority of examiners also reported currently residing in the United States (74.5%; 10.2% 

Australia, 6.12% Romania, 3.06% Brazil, 2.04% Canada, 2.04% India, 1.02% Switzerland, 

1.02% Hungary). Examiners reported having 11.01 years of experience on average in fingerprint 

examination (SD = 7.88, range = 1-30), and the majority reported working in a police forensic 

laboratory (56.5%; 28.2% government forensic institution; 2.2% self-employed; 13.04% 

preferred not to specify). 

We determined our sample size by the number of fingerprint examiners that were able to 

be recruited during our pre-registered time period for data acquisition, as well as the subsequent 

sample-size matched group of novices. We elected this method to determine our sample size 

rather than an a priori power analysis due to the difficulty of recruiting expert populations (e.g., 

Wray & Gates, 1996). However, it is important to note that the sample size recruited in this study 

(n = 46) was within the same range or exceeded that of other studies that also recruited forensic 

examiners (e.g., n = 11–26, Busey & Vanderkolk, 2005; Growns & Martire, 2020a). 

Materials and Dependent Measures 

Participants completed three phases during the experiment (see Figure 1): two test phases 

where they completed the four different tasks described below; and a stimulus familiarisation 

phase where they viewed fingerprint category images that appeared with their ground-truth 

statistical frequencies. Participants completed one test phase prior to the stimulus familiarisation 
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phase, and one test phase after the stimulus familiarisation phase. 

 

Fingerprint Stimuli 

All tasks were completed using fingerprint stimuli sourced and used with permission 

from de Jongh et al. (2019). The fingerprint stimuli were thirty-five representative exemplars 

from a fingerprint categorisation system developed and used by expert fingerprint examiners (de 

Jongh et al., 2019; Galton, 1892; Henry, 1913). Each fingerprint image was created by the same 

expert fingerprint examiners to be an ecologically valid example of a fingerprint category that an 

examiner would see in casework. The statistical frequencies for each fingerprint category (see 

Table 1) were calculated by two expert examiners independently classifying 10,000 fingerprint 

images from 2,452 randomly selected individuals from a criminal database according to the 

categorisation system, and a forensic trainee trained by the original experts classifying an 

additional 14,000 images. Each fingerprint category exemplar appears with a different statistical 

frequency in the general population (see Table 1). 

Figure 1. Procedure of experiment and examples of the fingerprint images participants viewed 

(middle panel; see de Jongh et al. (2019) for all images used) 

Pre-Familiarisation 

Test Phase 

Statistical Learning 

Measures 

↓ 

Same-Source-Likelihood 

Judgement Task 

Familiarisation Phase 

 

Post-Familiarisation 

Test Phase 

Statistical Learning 

Measures 

↓ 

Same-Source-Likelihood 

Judgement Task 
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Tasks 

Participants completed four measures of their statistical learning as described below. In 

the pre-familiarisation test phase, participants were instructed to ‘please base your answers on 

any previous experience that you have with fingerprints.’ This was done to measure examiners’ a 

priori knowledge of the fingerprint categories before any experimental familiarisation designed 

to induce statistical learning (with novices’ responses as a baseline). In the post-familiarisation 

test phase, participants were instructed to ‘Please base your answers on your previous experience 

with fingerprints and your experience with the images you just viewed’ (i.e., the images viewed 

during stimulus familiarisation). This was done to measure both whether familiarisation could 

improve examiners’ statistical learning and whether it could induce novices’ statistical learning 

of the complex statistical frequencies. 

Participants were instructed to base their answers in each task on any prior experience 

they had with fingerprints pre-familiarisation, and to base their answers post-familiarisation on 

any prior experience and the images they viewed during stimulus familiarisation. 

Frequency discrimination judgements. Participants completed 47 frequency 

discrimination judgement trials pre-familiarisation and 47 frequency discrimination judgements 

trials post-familiarisation (94 total trials; see Figure 2). Participants viewed two, three or four 

fingerprint exemplars per trial and were asked to discriminate between their relative frequencies 

by selecting the most familiar exemplar. They were asked ‘which of these fingerprint types is 

more familiar to you?’ and selected the image by clicking on it (see Figure 2).  

This measure was designed to be a complex and multi-alternate measure to best measure 

individual differences in statistical learning (see Siegelman et al., 2017 for discussion). Correct 

answers were based on the true frequencies from the familiarisation phase. Accuracy was the 
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total correct trials and group-level chance performance was 39.4% accuracy or 18.5 trials in each 

task (i.e., pre-familiarisation and post-familiarisation).  

Bounded frequency estimates. Participants were shown 18 fingerprint exemplars pre-

familiarisation (out of the total of 35 fingerprint categories), and then the remaining 17 

fingerprint categories post-familiarisation to ensure they viewed different images in each phase 

(see Figure 2). Participants viewed individual fingerprint categories and were asked ‘What 

percentage of the time have you seen this fingerprint type?’ They provided their estimates in a 

textbox restricted to numbers between 0 and 100 with a limit of 3 decimal places. 

Estimation accuracy was measured by computing the absolute error for each participant 

by calculating the absolute difference between the true frequency and the estimated frequency for 

each category, then averaging across the absolute error of all individual estimates. Lower 

absolute error values indicate better bounded estimation accuracy. Note that estimation accuracy 

was calculated based on the presented frequencies from the familiarisation phase (see Table 1).  

Unbounded frequency estimates. Participants were shown the 17 fingerprint exemplars 

they did not provide bounded estimates for during pre-familiarisation (out of the total of 35 

fingerprint categories), and then the remaining 18 fingerprint categories post-familiarisation (see 

Figure 2). Participants viewed individual fingerprints and were asked to provide two numbers: 

one to indicate how often ‘this fingerprint occurs,’ and the other indicating ‘out of this many 

fingerprints.’ Participants provided their estimates in two textboxes restricted so that the number 

in the second textbox had to be equal to or greater than the number in the first textbox. No other 
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Figure 2. Example trials in all tasks: frequency discrimination judgements (top panel), bounded 

frequency estimates (second top panel), unbounded frequency estimates (second bottom panel), and 

same-source-likelihood judgements (bottom panel). Note the blue boxes in the top and bottom 

panels are an example of a participant highlighting their chosen option.  

Which of these fingerprint types is more familiar to you? 

I believe this fingerprint type occurs: Out of this many fingerprints: 

What percentage of the time have you seen this fingerprint type? 

Which pair would provide more support for the hypothesis that both 

fingerprints were from the same person? 
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bounds were used to restrict participants’ estimates. 

Estimation accuracy was calculated by taking the absolute error for each participant by 

dividing the first estimate by the second estimate, multiplying that ratio by 100, subtracting the 

true ratio from the estimated ratio, and then averaging across the absolute error of all individual 

estimates. Lower absolute error values indicate better unbounded estimation accuracy. 

Same-source-likelihood judgements. Participants completed 32 same-source-likelihood 

judgements pre-familiarisation and 32 judgements post-familiarisation (total 64; see Figure 2). 

Participants viewed two pairs of fingerprints and were asked ‘which pair would provide more 

support for the hypothesis that both fingerprints were from the same person?’ (see Figure 2). 

Each fingerprint pair always comprised two images of the exact same fingerprint category image. 

Participants were instructed that they would be asked to judge which pair provided stronger 

support for two fingerprints originating from the same source and were told to make their 

decisions based on the fingerprint category, rather than any other information that may usually be 

used in fingerprint comparisons (e.g., minutiae). 

Correct answers were based on the true frequencies from the familiarisation phase where 

the pair of rarer fingerprint categories was the correct answer. Accuracy was the total correct 

trials and group-level chance performance was 50% accuracy or 16 trials both in each task (i.e., 

pre-familiarisation and post-familiarisation). 

Procedure 

Participants completed the experiment on an online survey platform (Qualtrics) and 

completed a CAPTCHA before beginning the experiment (Von Ahn et al., 2008). Participants 

first provided demographic and professional practice information. They were then given brief 

instructions and an opportunity to view all of the fingerprint images used in the study 
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simultaneously to allow them to understand the categorisation system used. Participants were 

also instructed to adjust their browser zoom so images could be fully seen and to only take 

breaks at appropriate points when prompted. Participants were not restricted to a certain device 

to participate, and a mobile-friendly version was available via Qualtrics for those who did not 

complete the task on a desktop computer. 

Participants then first completed the pre-familiarisation test phase where they completed 

all four tasks described above in a set order: frequency discrimination judgements, bounded 

frequency estimates, unbounded frequency estimates, and then same-source-likelihood 

judgements. They then completed the stimulus familiarisation phase where they viewed a stream 

of 430 fingerprint images in a randomised order for 12.5 minutes. These images appeared in 

proportion to their ‘ground-truth’ category frequencies ranging from 0.002 – 0.305 (as in de 

Jongh et al., 2019; see Table 1). Participants viewed each image for 1.5-sec with an interstimulus 

interval (ISI) of .25-sec (as in Growns & Mattijssen, 2020). After the stimulus familiarisation 

phase, participants completed the post-familiarisation test phase where they completed the same 

four tasks with different stimuli. To prevent statistical learning occurring in the test phases 

(particularly pre-familiarisation), each fingerprint exemplar appeared the exact same number of 

times across all tasks in each test phase. Upon completion of the experiment, participants viewed 

a debrief screen thanking them for their participation and informing them about the aims of the 

study. 

Participants completed tasks in a set order as above and trials within each task in a 

pseudo-randomised order where one random trial order was generated when coding the 

experiment and all participants completed trials in that order. This was done to minimise error 

variance by limiting the extent to which completing tasks/trials in different or counterbalanced 
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orders could lead to spurious individual differences produced by different experimental 

experiences (Mollon et al., 2017). We pre-registered this design to ensure we could best capture 

individual differences in our data to investigate the relationship between statistical learning and 

applied use of this knowledge (i.e., same-source-likelihood judgements). 

Table 1. Fingerprint frequencies and n adapted from de Jongh et al. (2019)  

Fingerprint Category n Frequency 

Tented arch 1 0.002 

Tannenbaum 1 0.002 

Left roofed arch 1 0.002 

Right roofed arch 1 0.002 

Left pseudoloop 1 0.002 

Right pseudoloop 1 0.002 

Composite arch 1 0.002 

Left inverted loop 1 0.002 

Right inverted loop 1 0.002 

Plain whorl with centre dot 1 0.002 

Plain whorl with a horseshoe 1 0.002 

Plain whorl with a meat hook 1 0.002 

Clockwise e-spiral 1 0.002 

Counterclockwise e-spiral 1 0.002 

Tulip 1 0.002 

Double-loop with two left loops 1 0.002 

Double-loop with two right loops 1 0.002 

Composite whorl 1 0.002 

Mushroom 1 0.002 

Right pinched loop 5 0.012 

Left pinched loop 6 0.014 

Shared double loop with a left standing loop 6 0.014 

Shared double loop with a right standing loop 6 0.014 

Left central pocket loop 7 0.016 

Right central pocket loop 7 0.016 

Almond 8 0.019 

Clockwise spiral 12 0.028 

Counterclockwise spiral 12 0.028 

Double-loop with a right standing loop 12 0.028 

Plain arch 13 0.03 

Plain whorl 13 0.03 

Double-loop with a left standing loop 18 0.042 

Plain whorl with a centre stick 33 0.077 

Right plain loop 122 0.284 

Left plain loop 131 0.305 

Total 430 1 
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Fingerprint Category n Frequency 

Note: as in Growns & Mattijssen (2020), we rounded up eight frequencies to the nearest trial (n 

= 1 or 0.002) to balance familiarisation length feasibility and ecological validity. As some 

‘ground-truth’ frequencies were 1/≥1000, a familiarisation phase with these frequencies would 

have lasted over 25 minutes which we deemed unfeasible. We also dropped one fingerprint 

category from the original paper that comprised patterns that the authors were unable to assign 

to a specific category and thus has no exemplar image available. 

Results 

Descriptive Statistics and Psychometric Properties 

One-sample t-tests revealed that frequency discrimination judgements were significantly 

better than chance in both groups pre- and post-familiarisation, but only the examiners’ same-

source-likelihood judgements were significantly above chance both pre- and post-familiarisation 

(see Table 2). Bounded and unbounded estimation accuracy was low and comparable to previous 

experiments in both groups pre- and post-familiarisation (e.g., Growns & Mattijssen, 2020). 

Psychometric properties measuring the internal reliability of each measure were close to or 

above recommended values for standardised psychometric measures (> .8; Streiner, 2003; see 

Table 3).  

 

 

 

 

 

 

 

Table 2. One-sample t-test results between groups for frequency discrimination judgements and 

sensitivity 

 Mean (SD) df t p 95% CI 

Frequency discrimination Judgements 

Novices: Pre-Familiarisation 22.4 (6.56) 51 4.31 < .001 [20.6, 24.3] 

Novices: Post-Familiarisation 25.9 (7.65) 51 6.96 < .001 [23.8, 28.0] 

Examiners: Pre-Familiarisation 32.2 (7.34) 45 12.65 < .001 [30.2, 34.4] 

Examiners: Post-Familiarisation 34.7 (6.66) 45 16.54 < .001 [32.8, 36.7] 

      

 Same-source-likelihood Judgements 

Novices: Pre-Familiarisation 14.4 (6.07) 51 1.90 .063 [12.7, 16.1] 

Novices: Post-Familiarisation 14.0 (7.46) 51 1.90  .064 [12.0, 16.1] 

Examiners: Pre-Familiarisation 22.8 (8.89) 45 5.22 < .001 [20.2, 25.5] 

Examiners: Post-Familiarisation 24.7 (6.81) 45 8.62 < .001 [22.6, 26.7] 
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Table 3. Psychometrics properties of all measures (Cronbach’s alpha and split-half reliability r in 

brackets) between groups pre-familiarisation and post-familiarisation. 

 Novices Examiners 

 Pre-

Familiarisation 

Post-

Familiarisation 

Pre-

Familiarisation 

Post-

Familiarisation 

Discrimination 

Judgements 

.79 (.69) .84 (.74) .87 (.78) .86 (.78) 

Bounded Estimates .95 (.91) .96 (.93) .92 (.88) .94 (.91) 

Unbounded 

Estimates 

.97 (.95) .97 (.95) .92 (.88) .93 (.91) 

Same-source-

likelihood 

Judgements 

.81 (.72) .89 (.82) .95 (.92) .92 (.88) 

 

Group Differences Between Examiners and Novices 

To explore if statistical learning differed between groups or pre-familiarisation and post-

familiarisation test phases, we used the lmer (v. 1.1-25; Bates et al., 2014) package in R to create 

mixed-effects regression models to predict each measure at the trial level from the interaction 

between group (fingerprint examiner or novice) and time (pre-familiarisation or post-

familiarisation; see Figures 3 and 4). Confidence intervals (95%) and p values were calculated in 

each analysis using the lmerTest (v 3.1-3; Kuznetsova et al., 2017) package. Each analysis 

contained a random effect for participant ID which allowed intercepts to vary between 

participants.2 

Frequency discrimination judgement accuracy. We conducted a mixed-effects logistic 

regression to predict frequency discrimination judgement accuracy at the trial level from the 

 

 

2 We also conducted exploratory analyses of all pre-registered results with examiners’ years of experience 

taken into account (see Supplementary Analyses on OSF for details). The pattern of results was largely 

consistent, except that the main effect of group was significant in the unbounded estimation accuracy 

group analysis such that examiners were more accurate than novices (and the interaction was no longer 

significant). 
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interaction between group and time. Examiners (M = 33.5, SD = 7.0) were 2.54 times more 

likely to make a correct frequency discrimination judgement than novices (M = 24.2, SD = 7.1; b 

= .93, 95% CI [.68, 1.19], z = 7.23, p < .001; see Figure 3), and all participants were also 1.37 

times more likely to make a correct judgement in the post-familiarisation test phase (M = 30.0, 

SD = 8.41) than the pre-familiarisation phase (M = 27.0, SD = 8.47; b = .31, 95% CI [.20, .43], z 

= 5.30, p < .001). The interaction between group and phase was not significant (b = -.03, 95% CI 

[-.21, .15], z = .32, p = .751). 

Bounded estimation accuracy. We conducted a mixed-effects linear regression to predict 

bounded estimation accuracy at the trial level from the interaction between group and time. 

Examiners’ bounded estimation accuracy (M = 15.1, SD = 16.8) was 7.67% better (i.e., lower 

absolute error) than novices’ (M = 22.4, SD = 23.2; b = -7.67, 95% CI [-13.22, -2.11], t(104.85) = 

2.73, p = .008; see top panel of Figure 4), but all participants’ accuracy did not significantly 

differ between the pre-familiarisation and post-familiarisation test phases (b = 1.26, 95% CI [-

2.67, .16], t(3332) = 1.74, p = .082). The interaction between group and phase was not significant 

(b = .75, 95% CI [-1.32, 2.81], t(3332) = .71, p = .480). Note that lower absolute error indicates 
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better estimation accuracy, so a decrease in score indicates better performance. 

 

Unbounded estimation accuracy. We conducted a mixed-effects linear regression to 

predict unbounded estimation accuracy at the trial level from the interaction between group and 

time. Unbounded estimation accuracy did not significantly differ between groups (b = -5.70, 

95% CI [-11.67, .26], t(103.39) = 1.89, p = .061; see bottom panel of Figure 4) or between the pre-

familiarisation and post-familiarisation test phases (b = .41, 95% CI [-.88, 1.69], t(3332) = .62, p 

= .536). However, there was a significant interaction between group and phase (b = -.2.10, 95% 

CI [-3.97, -.23], t(3332) = 2.20, p = .028). Follow-up comparisons revealed that examiners’ 

unbounded estimation accuracy was 1.70% better post- (M = 11.1, SD = 14.9) than pre-

familiarisation (M = 12.8, SD = 15.4; b = 1.70, 95% CI [.33, 3.06]), whereas novices’ accuracy 

didn’t significantly differ pre- (M = 18.5, SD = 22.8) to post-familiarisation (M = 18.9, SD = 

22.4; b = -.41, 95% CI [-1.69, .88]). Note that lower absolute error indicates better estimation 

Figure 3. Average discrimination judgement accuracy by experience and familiarisation phase. 

Raincloud plots depict (left-to-right) the jittered participants’ averaged data points, box-and-

whisker plots, means (represented by diamonds) with error bars representing ± 1 SE, and 

frequency distributions. 
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accuracy, so a decrease in score indicates better performance. 

 

Same-source-likelihood judgement accuracy. We conducted a mixed-effects logistic 

regression to predict same-source-likelihood judgement accuracy at the trial level from the 

interaction between group and time (see Figure 5). Examiners (M = 23.8, SD = 12.3) were 3.79 

times more likely to make accurate same-source-likelihood judgements than novices (M = 14.2, 

SD = 6.8; b = 1.33, 95% CI [.89, 1.78], z = 5.94, p < .001; see Figure 5), but all participants’ 

Figure 4. Average bounded (top panel) and unbounded (bottom panel) estimation accuracy by 

expertise and familiarisation phase. Raincloud plots depict (left-to-right) the jittered 

participants’ averaged data points, box-and-whisker plots, means (represented by diamonds) 

with error bars representing ± 1 SE, and frequency distributions. Note that lower absolute error 

indicates better estimation accuracy, so a decrease in score indicates better performance. 
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accuracy did not significantly differ between the pre-familiarisation and post-familiarisation test 

phases (b = -.05, 95% CI [-.20, .09], z = .72, p = .473). However, there was a significant 

interaction between group and phase (b = .44, 95% CI [.20, .68], z = 3.59, p < .001). Follow-up 

comparisons revealed that examiners were 1.47 times more likely to make an accurate same-

source-likelihood judgement pre- (M = 22.8, SD = 8.89) than post-familiarisation (M = 24.7, SD 

= 6.81; b = -.40, 95% CI [-.66, -.14]), compared to the differences between novices’ accuracy 

pre- (M = 14.4, SD = 6.07) and post-familiarisation (M = 14.0, SD = 7.46; b = .06, 95% CI [-

1.8, .30]). 

 

Individual Differences in Statistical Learning and Same-Source-Likelihood Judgement 

Accuracy 

To explore the relationship between individual differences in statistical learning and 

same-source-likelihood judgements, we conducted linear regression models to predict same-

source-likelihood judgement accuracy from the interaction between group and each statistical 

Figure 5. Average same-source-likelihood judgement accuracy by expertise and familiarisation phase. 

Raincloud plots depict (left-to-right) the jittered participants’ averaged data points, box-and-whisker 

plots, means (represented by diamonds) with error bars representing ± 1 SE, and frequency distributions. 
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learning measure at the trial level. We investigated these relationships post-familiarisation only 

after novices had been given the opportunity to develop statistical knowledge.  

Frequency discrimination judgement accuracy. Same-source-likelihood judgement 

accuracy was significantly predicted by group (b = 9.44, 95% CI [8.72, 10.16], t(4602) = 25.75, p 

< .001; see top panel of Figure 6), but was not significantly predicted by frequency 

discrimination judgement accuracy (b = -.03, 95% CI [-.87, .26], t(4602) = 1.05, p = .294). The 

interaction between group and frequency discrimination judgement accuracy was significant (b = 

1.67, 95% CI [.78, 2.55]), t(4602) = 3.70, p < .001). Examiners’ same-source-likelihood judgement 

accuracy increased with their frequency discrimination judgement accuracy (b = 1.36, 95% CI  

[.68, 2.04]), whereas no reliable relationship between frequency discrimination and same-source-

likelihood judgement accuracy was seen in novices (b = -.30, 95% CI [-.87, .26]). 

Bounded estimation accuracy. Same-source-likelihood judgement accuracy was 

significantly predicted by group (b = 10.83, 95% CI [9.93, 11.74], t(1662) = 23.45, p < .001; see 

middle panel of Figure 6), and was also significantly predicted by bounded estimation accuracy 

such that same-source-likelihood judgement accuracy increased as absolute error decreased (b = 

-.04, 95% CI [-.06, -.02], t(1662) = 4.01, p < .001). This suggests that same-source-likelihood 

judgement accuracy increases with bounded estimation accuracy, as lower absolute error 

indicates higher estimation accuracy. The interaction between group and bounded estimation 

accuracy was not significant (b = -.03, 95% CI [-.07, <.01], t(1662) = 1.94, p = .052). This suggests 

the relationship between the two measures did not significantly differ between groups. 

 Unbounded estimation accuracy. Same-source-likelihood judgement accuracy was 

significantly predicted by group (b = 11.68, 95% CI [10.86, 12.50], t(1760) = 28.02, p < .001; see 

bottom panel of Figure 6), and was also significantly predicted by unbounded estimation 
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accuracy such that same-source-likelihood judgement accuracy increased as absolute error 

decreased (b = -.02, 95% CI [-.04, <-.01], t(1760) = 2.24, p = .026). This suggests that same-

Figure 6. Average same-source-likelihood judgement accuracy and average discrimination judgement 

accuracy (top panel), average bounded estimation accuracy (middle panel) and average unbounded 

estimation accuracy (bottom panel) between groups. Regression lines are displayed with 95% confidence 

interval bands. 
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source-likelihood judgement accuracy increases with unbounded estimation accuracy, as lower 

absolute error indicates higher estimation accuracy. The interaction between group and bounded 

estimation accuracy was also significant (b = -.11, 95% CI [-.15, -.07], t(1760) = 5.91, p < .001). 

Examiners’ same-source-likelihood judgement accuracy increased more strongly as absolute 

error decreased (b = -.13, 95% CI [-.16, -.10]), whereas the same relationship in novices 

increased less strongly (b = -.02, 95% CI [-.04, <-.01]).  

Discussion 

This study was an empirical investigation of fingerprint examiners’ acquired domain-

specific statistical learning and use of statistical knowledge in a same-source-likelihood task. 

Fingerprint examiners had better acquired statistical knowledge than novices, even pre-

familiarisation: they better discriminated between rare and common fingerprint categories, and 

better estimated category frequencies with given bounds (i.e., 0-100%). Just as individuals can 

extract and encode statistical information from their environment via statistical learning (Fiser & 

Aslin, 2001; Siegelman et al., 2017a), fingerprint examiners also appear to learn the frequency of 

fingerprint categories in their work. This suggests that statistical learning joins other cognitive 

mechanisms as a process that underlies their expertise – something that is also consistent with 

research linking statistical learning and other forms of expertise (Daikoku & Yumoto, 2020; 

Francois & Schön, 2011; Mandikal Vasuki et al., 2016, 2017). 

Yet consistent with previous research (Mattijssen et al., 2020), examiners weren’t better 

able to estimate the same frequencies without given bounds than novices (i.e., estimate x 

occurrence out of y occurrences). They did however provide better estimates without bounds 

after familiarisation – an effect not seen for the novices. This discrepancy between bounded and 

unbounded estimates may be due to the difficulty of estimating explicit frequencies without 
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boundaries – specific bounds may make it easier to conceptualise frequencies. Yet it is important 

to note that their unbounded estimation accuracy did improve post-familiarisation. These results 

further emphasise the multi-faceted nature of statistical learning (Growns et al., 2020; Hasher & 

Zacks, 1984), but also have important implications for how examiners should express their 

statistical knowledge. Nevertheless, fingerprint examiners appear to have domain-specific 

statistical knowledge above and beyond novices’ – likely acquired via statistical learning during 

their increased familiarisation to fingerprints in their casework. 

Importantly, this study demonstrated that fingerprint examiners can also use their 

acquired statistical knowledge better in a same-source-likelihood task than novices. Fingerprint 

examiners more accurately judged which fingerprint categories provided stronger evidence of 

fingerprints originating from the same source than novices – accuracy even improved from pre-

to-post familiarisation suggesting that frequency familiarisation better calibrated their 

judgements. However, novices’ same-source-likelihood accuracy did not improve post-

familiarisation even though their ability to discriminate rare and common fingerprints did 

improve. This suggests that the development of statistical knowledge alone isn’t sufficient to use 

this knowledge to determine the likelihood of two fingerprints coming from the same source – 

possessing and utilising statistical knowledge appear to be separate skills. Fingerprint examiners’ 

advantage may arise via their experience or training – similar to how novices can be trained to 

use statistical knowledge to improve matching accuracy (e.g., Growns & Martire, 2020a). 

Importantly, their accuracy improved post-familiarisation and future work could thus focus on 

targeted training to improve examiners’ utilization of acquired statistical knowledge in decision-

making. 
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We also observed a relationship between statistical learning and same-source-likelihood 

judgements where better statistical ‘learners’ were also better ‘matchers’ than poorer learners.3 

Participants with higher estimation accuracy (bounded or unbounded) were more accurate in the 

same-source-likelihood task than those with lower accuracy – this relationship was even stronger 

for examiners’ unbounded estimates. Examiners who better discriminated rare and common 

fingerprints categories were also better able to apply their knowledge than poorer discriminators 

(although this relationship was not seen in novices). This suggests that there appears to be an 

underlying relationship between statistical learning and its explicit use – examiners that are 

better statistical ‘learners’ may be more accurate using their statistical knowledge in their work 

than poorer ‘learners.’ However, this relationship may be differentially impacted by experience 

across different statistical learning measures. 

Practical Implications 

Forensic examiners assert that they can explicitly estimate relevant statistical frequencies 

in their work (Biedermann et al., 2013; Daeid et al., 2020; Nordgaard et al., 2012; Willis et al., 

2015) and are increasingly being asked to provide their decisions via numerical estimates 

(Aitken et al., 2011; Aitken & Taroni, 2004). Our results demonstrated that whilst fingerprint 

examiners can provide better bounded estimates than novices, their performance was not perfect 

– bounded estimates were off by 15.1% on average. This is consistent with previous research in 

other forensic disciplines – frequency estimates made by forensic document examiners are off by 

approximately 20% on average (Martire et al., 2018). It is also consistent with broader cognitive 

science research demonstrating that individuals are typically poor at providing exact frequency 

 

 

3 Note we only measured this relationship post-familiarisation when novices had been given the 

opportunity to acquire statistical knowledge. 
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estimates and judging the base-rate of events (Bar-Hillel, 1980; Brenner et al., 1996; Lee & 

Danileiko, 2014). There are many decision-making biases that can impact how people encode 

and recall frequency information (e.g., the base-rate fallacies where individuals tend to 

underweight prior information; Kahneman & Tversky, 1973; Welsh & Navarro, 2012). 

Nevertheless – whilst our results suggest that these explicit estimates would not rely on ‘numbers 

from nowhere’ (Bali et al., 2019; Risinger, 2013), they do indicate they would include some error 

if based solely on examiners’ personal experience. This has the potential to mislead fact-finders 

in court. 

These results highlight the importance of developing reliable statistical databases in all 

forensic disciplines – such as those that exist in nuclear DNA analysis – to ensure that only 

reliable and valid forensic evidence is presented in court. Such databases do not exist in many 

forensic disciplines, even in fingerprint comparison (Mnookin, 2008) – emerging databases are 

often only restricted to specific geographical regions (e.g., Gutierrez-Redomero et al., 2011; 

Gutiérrez-Redomero et al., 2012; Johnson et al., 2017). Examiners thus likely rely on their own 

implicit statistical knowledge developed over the course of their work in decision-making and 

when making explicit evidential strength judgements. Whilst our results suggest they likely do 

this better than novices, their performance will be imperfect. Without the existence of reliable 

and generalisable statistical databases, examiners can only rely on their implicit knowledge. This 

emphasises the importance of funding the development of such statistical databases in many 

forensic feature-comparison disciplines.  

Limitations and Future Directions 

It is important to note that we were unable to measure perceptual sensitivity or response 

bias in the same-source-likelihood task in this study – as matching performance is typically 



FINGERPRINT EXAMINERS’ STATISTICAL LEARNING 28 

assessed in a signal detection framework (Phillips et al., 2001). We were unable to measure 

sensitivity or bias as we could not create the ‘match’ and ‘non-match’ trials necessary to calculate 

these measures due to stimuli restrictions (i.e., there was only one image of each category). This 

means that we can only draw conclusions about how examiners use rare or common statistical 

information in making applied statistical decisions – not whether they can use this knowledge to 

facilitate better sensitivity to the presence of ‘target’ stimuli (i.e., diagnostic cues signifying 

samples ‘match’) amongst noise (Phillips et al., 2001). It will be important for future research to 

assess the use of statistical knowledge in matching tasks using signal detection measures. 

Nevertheless, our results do highlight that fingerprint examiners can use rare and common 

information better when making same-source-likelihood decisions than novices. 

It is also important to note that statistical learning is not the only cognitive mechanism 

that underpins forensic science expertise, nor is distributional learning of fingerprint categories – 

as investigated in this paper – the only statistical information that examiners may rely on. 

Fingerprint examiners likely also rely on more complex statistical knowledge in their work – 

such as fingerprint minutiae that can co-occur in unique spatial relationships (Phillips et al., 

2001) or in different areas of a fingerprint (Busey & Parada, 2010). Individuals are also able to 

extract and encode spatial co-occurrences in the visual environment – a process that is inter-

related to learning distributions and variations in the environment (Growns et al., 2020; Thiessen 

et al., 2013; Thiessen & Erickson, 2013). It will therefore be important for future research to 

further investigate the many facets of statistical learning that may be implicated in fingerprint 

expertise. 

It is also important to note that fingerprint examiners in all jurisdictions do not 

necessarily use the categorisation system used in this study (de Jongh et al., 2019; Mattijssen et 
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al., 2020). Whilst most fingerprint examiners are aware of the broader ‘arch’, ‘loop’ and ‘whorl’ 

categorisation system (Galton, 1892; Henry, 1913; Mattijssen et al., 2020), this study used a 

different categorisation system that was developed to better assess the diagnostic value of each 

category (de Jongh et al., 2019). Although we allowed all participants to view the categorisation 

system used upon commencing the study, examiners’ performance could have been impaired if 

they were not familiar with the system. It is also important to note that examiners often do not 

use higher-level categorical information to make decisions in their casework (de Jongh et al., 

2019; Mattijssen et al., 2020) – instead relying on lower-level featural information like 

fingerprint minutiae (Busey & Parada, 2010; Phillips et al., 2001) or handwriting features 

(Johnson et al., 2017; Martire et al., 2018). Future research should further explore forensic 

examiners’ statistical learning of lower-level featural information. 

Conclusion 

This study examined a psychological process theorised to be important in forensic 

feature-comparison expertise (statistical learning) in the domain of fingerprint examination. 

Fingerprint examiners demonstrated better statistical knowledge of fingerprint categories and 

used this knowledge in a same-source-likelihood task better than novices – better ‘learners’ also 

better applied this knowledge. Examiners’ outperformance of novices demonstrates that 

statistical learning is another characteristic of fingerprint expertise. However, examiner 

performance was not perfect and these results emphasise the importance of developing reliable 

statistical databases in many forensic feature-comparison disciplines. 
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