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Abstract: We study the Quantum Focussing Conjecture (QFC) in curved spacetime.

Noting that quantum corrections from integrating out massive fields generally induce

a Gauss-Bonnet term, we study Einstein-Hilbert-Gauss-Bonnet gravity and show for

d ≥ 5 spacetime dimensions that weakly-curved solutions can violate the associated

QFC for either sign of the Gauss-Bonnet coupling. The nature of the violation shows

that – so long as the Gauss-Bonnet coupling is non-zero – it will continue to arise for

local effective actions containing arbitrary further higher curvature terms, and when

gravity is coupled to generic d ≥ 5 theories of massive quantum fields. The argument

also implies violations of a recently-conjectured form of the generalized covariant en-

tropy bound. The possible validity of the QFC and covariant entropy bound in d ≤ 4

spacetime dimensions remains open.
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1 Introduction

The gravitational focussing theorem plays a key role in the modern understanding

of General Relativity. This key results states (see e.g. [1]) that the expansion of

null congruences cannot increase toward the future in any solution to Einstein-Hilbert

gravity sourced by matter satisfying the Null Energy Condition (NEC). It leads to the

second law of black hole thermodynamics [2], singularity theorems [3, 4], the chronology

protection theorem [5], topological censorship [6], and other fundamental results. It also

guarantees essential properties of holographic entanglement entropy [7, 8] in the context

of gauge/gravity duality.

However, the null energy condition is known to be violated by quantum effects [9].

This then raises the question of whether quantum corrections might enable fundamen-

tally new and perhaps pathological gravitational phenomena. Indeed, it was recently

established that traversable wormholes can be constructed in this way [10]. On the

other hand, the conjectured Generalized Second Law of thermodynamics (GSL) would

both limit the utility of traversable wormholes and prohibit even more troubling exotic

physics [11].

Motivated in part by the GSL, and also in part by the covariant entropy conjecture

[12], it was suggested in [13] that a generalization of the focussing theorem might

continue to hold at the quantum level. Known as the Quantum Focussing Conjecture

(QFC), it would imply both the GSL (for any causal horizon) and a form [13] of the

covariant entropy bound of [12] related to the version discussed by Strominger and

Thompson [14].

The QFC is formulated by noting that the expansion θ of any null congruence can

be expressed as a first functional derivative of the area of cuts of the congruence, and
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that Einstein-Hilbert gravity associates a Bekenstein-Hawking entropy SBH = A/4G

with many surfaces of area A. In particular, given a region R with boundary Σ = ∂R
in some Cauchy surface, and also given a null congruence N orthogonal to Σ, we have

θ[Σ, y] =
4G√
h̃

δSBH

δΣ(y)
, (1.1)

where y labels the space of null generators, δΣ(y) is an infinitesimal displacement of

the surface along the null generator y, and h̃ denotes the determinant of the transverse

metric in the y-coordinate system on the null congruence N . For semi-classical gravity

(and in particular where the metric itself may be treated classically), ref. [13] then

defines the generalized expansion Θ[σ, y] by replacing SBH = A/4G in (1.1) with the

generalized entropy functional

Sgen = Sgrav + Sout. (1.2)

Here Sgrav is an appropriate gravitational entropy functional (say, from [15–18], which

coincides with that of [19] for the case studied here) and Sout is a von Neumann entropy

for quantum fields outside the null congruence.1 Finally, the statement of the QFC is

simply that Θ is semi-classically non-decreasing as we push the surface Σ toward the

future or, in other words, that a corresponding second derivative of Sgen is negative or

zero:
1√
h̃(y)

δ

δΣ (y2)
Θ [Σ; y1] ≤ 0. (1.3)

While (1.3) is divergent for y1 = y2, and in particular the contribution of the Einstein-

Hilbert term to (1.3) is θ̇δ(y1 − y2) where θ̇ = ka∇aθ, the quantity (1.3) remains

meaningful when treated as a distribution.

As evidence for the QFC, one may recall [13] that in Einstein-Hilbert gravity,

taking a weakly-gravitating (G → 0) limit implies quantum fields satisfy a so-called

Quantum Null Energy Condition (QNEC) generalizing the classical NEC, and that this

QNEC has now been established in a variety of contexts [26, 27]. In such cases, an

associated QFC follows immediately at first order in the coupling G of such theories to

Einstein-Hilbert gravity.

However, we argue here that for d ≥ 5 spacetime dimensions the QFC generally

fails. To do so, we recall that integrating out massive fields typically induces a Gauss-

Bonnet term in the gravitational effective action; see e.g. [28]. Classical Einstein-

Hilbert-Gauss-Bonnet gravity is analyzed in section 2, and is shown to violate the QFC

1Sout presumably includes an appropriate set of boundary terms for gauge fields as in e.g. [20–25].

– 2 –



at weak curvature for d ≥ 5.2 The form of this violation shows that similar issues

arise at the quantum level, and also in the presence of arbitrary higher derivative terms

controlled by a single length scale so long as the coefficient of the Gauss-Bonnet term

is non-zero. The QFC is thus violated in generic d ≥ 5 theories of semi-classical gravity

coupled to massive quantum fields, and presumably in the presence of massless quantum

fields as well. Our example also leads in section 3 to violations of the generalized

covariant entropy bound (also called the quantum Bousso bound) conjectured in [13].3

We close in section 4 with further discussion emphasizing future directions and the

possibility that a reformulated QFC and quantum Bousso bound may nevertheless

hold.

2 Violating the QFC in Gauss-Bonnet Gravity

Consider the the Einstein-Hilbert-Gauss-Bonnet action

I =
1

16πG

∫
ddx
√
−gR + γ

∫
ddx
√
−g
(
RabcdR

abcd − 4RabR
ab +R2

)
. (2.1)

As noted above, we will first treat this theory classically and identify violations of the

associated QFC (1.3). We will then note that explicit quantum corrections are sub-

leading in a long-wavelength expansion so our classical violation extends directly to the

quantum level.

We work in the weak curvature limit, taking the Weyl tensor to be first order in

some small quantity ε:

Cabcd = O (ε) . (2.2)

In this limit, iteratively solving the equation of motion yields

Rab =
16πGγ

d− 2
CcdefC

cdefgab − 32πGγCacdeC
cde
b +O

(
ε3
)
. (2.3)

Note that since the right-hand side is non-zero only due to contributions to the equa-

tions of motion from the variation of the Gauss-Bonnet term, the Gauss-Bonnet theo-

rem requires it to vanish for d = 4. It also vanishes for d < 4 where the Weyl tensor is

identically zero.

Now consider a null hypersurface N generated by a hypersurface-orthognal null

normal vector field ka. For simplicity, we choose both the expansion θ and the shear

2Causality violations implying pathologies for non-stringy theories with large Gauss-Bonnet cou-

plings were found in [29]. By contrast, we emphasize that the QFC violation found in this paper is

present for the less restrictive class of theories containing even a small effective field theory Gauss-

Bonnet term.
3This conjecture is closely related to the Strominger-Thompson proposal [14].
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σab of N to vanish at some point p, or equivalently that the extrinsic curvature along

k vanishes there for any cut Σ of N through p; i.e.,

K
(k)
ab |p := (h̃ c

a h̃
d
b ∇ckd)|p = 0, (2.4)

where h̃ c
a is the projector onto Σ. As in e.g. [30], we will use the notation K

(X)
ab :=

h̃ c
a h̃

d
b ∇cXd below for any vector field Xd orthogonal to Σ. Note that (2.4) does not

restrict the spacetime at p in any way; given any p in any spacetime, we may choose

Σ and then define the orthogonal null congruence N so that the above conditions are

satisfied. We use indices a, b, c, d, . . . to denote coordinates in spacetime and indices

α, β, γ, δ, . . . to denote coordinates on Σ.

It is convenient to also introduce an auxiliary null vector field la orthogonal to Σ

and satisfying gabk
alb = −1. The spacetime metric can then be written

gab = h̃ab − kalb − lakb, (2.5)

where the transverse part h̃ab = h̃ c
a gcb is the induced metric on Σ. We will reserve

k and l “indices” to denote contractions with ka and la, as in e.g. Akl := Aabk
alb.

Substituting (2.5) into equation (2.3) and noticing that Cklkα = −C β
kβα for all d, the

Raychaudhuri equation θ̇ = − θ2

d−2
− σabσab − Rabk

akb for hypersurface-orthogonal null

congruences satisfying equation (2.4) yields

θ̇|p = −Rabk
akb = 32πGγCacdeC

cde
b kakb +O

(
ε3
)

= 32πGγ
(
CkαβγC

αβγ
k − 2C β

kβα C
αγ

kγ − 4CkαkβC
α β
k l

)
+O

(
ε3
)
.

(2.6)

As noted above, (2.6) vanishes for d = 4. One may see this explicitly by using the

d = 4 identity CkαβγC
αβγ
k = 2C β

kβα C
αγ

kγ from [31] so that the first two terms cancel

in (2.6). To deal with the final term we again use the d = 4 results from [31] to write

Ckαlβ as Ckαlβ = −1
4
Ah̃αβ + 1

2
Bεαβ where εαβ is the area element of Σ and A and B

are independent scalars; in particular, there is no traceless symmetric term. The final

term in (2.6) then vanishes since C α
kαk = 0 = Ckαkβε

αβ identically for all d.

To study the QFC, recall [15, 32] that the entropy functional associated with the

Gauss-Bonnet term is

SGB = −8πγ

∫
Σ

dd−2y
√
h̃R̃, (2.7)

where R̃ is the scalar curvature of the induced metric h̃αβ. Let us introduce a defor-

mation vector field Xa = fka on N , where f is a scalar function of the null generators

y. Taking f = δ(y− yp), when Σ is is deformed along Xa the first derivative of entropy
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(2.7) is

δXSGB = −8πγ

∫
Σ

dd−2y
√
h̃

(
R̃ab − 1

2
R̃h̃ab

)
δX h̃ab

= −16πγ

∫
Σ

dd−2y
√
h̃

(
R̃ab − 1

2
R̃h̃ab

)
K

(X)
ab

= −16πγ
√
h̃

(
R̃ab − 1

2
R̃h̃ab

)
K

(k)
ab .

(2.8)

Here, to obtain the second line, we used δX h̃ab = 2K
(X)
ab (i.e. equation (3.10) of [30]).

We now introduce another vector field Z = δ(y − yZ)ka. Recalling that K
(k)
ab

vanishes at p, we find the second derivative

δZ

(
1√
h̃
δXSGB

)
= −16πγ

(
R̃ab − 1

2
R̃h̃ab

)
(δZK

(k)
ab )|p. (2.9)

Since K
(k)
ab |p = 0 and Za = δ(y − yZ)ka, the derivative of K

(k)
ab at p takes the simple

form [30]

(δZK
(k)
ab )|p = (−h̃ c

a h̃
d
b Z

ekfRecfd)|p (2.10)

and (2.9) becomes δZ

(
1√
h̃
δXSGB

)
= δ(yp − yZ)S ′′GB for

S ′′GB = 16πγ

(
R̃ab − 1

2
R̃h̃ab

)
Rkakb. (2.11)

Since we treat the theory classically, we save for the end of this section consideration

of any explicit Sout term in equation (1.2) associated with the entropy of gravitons and

thus find
δ

δΣ (yZ)
Θ [Σ; yp] =

√
h̃Qδ(yp − yZ) (2.12)

for

Q = θ̇ + 4GS ′′GB. (2.13)

Since K
(k)
ab |p = 0, the Gauss equation (i.e. equation (2.14) of [30]) at p is simply

(R̃abcd)|p = (h̃ e
a h̃

f
b h̃

g
c h̃

h
d Refgh)|p, (2.14)

and expression (2.11) becomes

S ′′GB = 16πγ

(
Rcedf h̃

cdh̃aeh̃bf − 1

2
Rcedf h̃

cdh̃ef h̃ab
)
Rkakb. (2.15)
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In the weak curvature limit, we may use (2.2) and (2.3) to further write

S ′′GB = 16πγ

(
Ccedf h̃

cdh̃aeh̃bf − 1

2
Ccedf h̃

cdh̃ef h̃ab
)
Ckakb +O

(
ε3
)

= 32πγCkαkβC
α β
k l +O

(
ε3
)
,

(2.16)

where in the last step we have used h̃abCkakb = Ckkkl + Cklkk which vanishes since the

Weyl tensor is anti-symmetric in pairs of indices (Cabcd = −Cbacd = −Cabdc). Combining

(2.6) and (2.16) with the definition (2.13) yields

Q = 32πGγ
(
CkαβγC

αβγ
k − 2C β

kβα C
αγ

kγ

)
+O

(
ε3
)
. (2.17)

As with (2.6), expression (2.17) vanishes for d = 4. To show that it generally

does not vanish for d = 5, we use further results from [31] to write it in terms of

independent components of the Weyl tensor; the Weyl tensor at a point is constrained

by its symmetries, tracelessness, and the algebraic Bianchi identity. The block Ckαβγ,

which has boost weight −1, can be written in terms of 8 independent components as

Ckαβγ = h̃αβvγ − h̃αγvβ + ε δ
βγ nδα, for d = 5, (2.18)

where εαβγ is the area element of Σ, vγ is a vector containing 3 independent components

and nδα is a traceless symmetric matrix containing 5 independent components. Thus,

Q = 64πGγ
(
nαβn

αβ − 2vγv
γ
)

+O
(
ε3
)

, for d = 5. (2.19)

Furthermore, for d > 5 we may again use [31] to take the block Ckαβγ to be of the form

(2.18), although (2.18) is no longer the most general form for Ckαβγ and of course the

number of components of each object above increases with the spacetime dimension d.

It is clear from (2.19) that (2.17) is generally non-zero for d ≥ 5. Furthermore,

while the QFC requires Q to be non-positive, for γ > 0 it can be made positive by

setting vγ = 0 and taking nαβ 6= 0, and for γ < 0 we can make Q positive by taking

nαβ = 0 with vγ 6= 0.

Violations of the QFC thus occur for either sign of the Gauss-Bonnet coupling γ

and the QFC generally fails for classical d ≥ 5 Einstein-Hilbert-Gauss-Bonnet gravity.

We may immediately extend this result to the quantum level by noting that graviton

contributions to the Sout term of equation (1.2) are of order G while our violation above

is of order Gγ. The key point here is that γ has dimensions (Length)−(d−4) so that the

Gγ term is more important at large length scales than the G term in Sout. In other

words, the classical contributions to (1.2) will dominate in the long-distance limit.

Let us now consider more general (perhaps, effective) theories of gravity with higher

derivative terms. First, it is trivial to add a cosmological constant Λ to the action (2.1).
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Noticing that C α
kαk = 0 identically for all d, one finds no change to equation (2.16).

Next, recall that at the four-derivative level, up to total derivatives there are only two

further independent terms that we may add to the action, and we may choose to write

both in terms of the square of the Ricci tensor (so that they do not depend on the

Weyl tensor). Thus Ricci-flat metrics continue to solve the theory with γ = 0, and

there continue to be solutions of the form (2.3) in the presence of such terms, and in

such cases we again find (2.17) (up to additional corrections that are also of order ε2

but involve additional derivatives and so remains smaller in the long-distance limit).

Finally, so long as they are controlled by a common length scale, in a long-distance

expansion any terms in the action with more than four derivatives can be ignored

relative to those already discussed so that (2.3) continues to hold in that regime.

The key point, however, is the associated implication for generic quantum theories

of massive fields when coupled to semi-classical gravity. Since integrating out massive

fields gives an effective action of the above type, so long as the resulting Gauss-Bonnet

coefficient4 is non-zero the theory will violate the associated QFC.

3 Violating the Generalized Covariant Entropy Bound

Bousso’s original covariant entropy bound [12] involved the concept of “entropy flux

through a non-expanding null surface” and conjectured this to be bounded by ( 1
4G

times) the area of the largest cut. There has been much discussion of how this concept

might be properly defined, with one seemingly-natural choice involving entropy defined

directly on the null surface. This version was proven for free and interacting theories

in the G → 0 limit from the monotonicity property of the relative entropy [33, 34].

Alternatively, Strominger and Thompson [14] suggested focussing on the case where

any cut of the null surface N is closed and bounds a spacelike surface. One may then

discuss the von Neumann entropy SvN of the region enclosed, and replace the “flux of

entropy across N” with the change in SvN between the initial and final surfaces.

As noted in [13], this choice gives rise to a putative (generalized) covariant entropy

bound which is intrinsically finite and does not require renormalization. The conjecture

of [13] states that if some set of null generators has non-positive quantum expansion

(Θ ≤ 0) on some cut Cinitial of N , then any cut Cfinal obtained by moving Cinitial to

the future along these generators will have smaller or equal generalized entropy Sgen so

4The final Gauss-Bonnet coefficient is of course formally the sum of the Gauss-Bonnet coefficient

in the gravitational action and the coefficient induced by integrating out the matter. For d ≥ 5 the

latter is generally divergent, so the former must be as well if the effective action is to be finite. In

this sense, as usual, there is generally no meaning to attempting to couple the massive field theory to

Einstein-Hilbert gravity alone.

– 7 –



long as no caustic lies between Cinitial and Cfinal. The non-increase of Sgen is equivalent

to the claim

∆S ≤ ∆A/4G, (3.1)

which is a generalized covariant entropy bound of the form first discussed in [35]. Note,

however, that the condition Θ|Cinitial
≤ 0 under which this was conjectured in [13] differs

from the assumption used in [12, 35] which requires the classical expansion θ to be non-

positive on all intermediate cuts. Furthermore, equation (3.1) follows directly from the

QFC in cases where the latter is valid [13].

However, it turns out the QFC violation constructed above is also a counterexam-

ple to the generalized covariant entropy bound (i.e. the quantum Bousso bound) of

[13]. The key point is that the Gauss-Bonnet contribution (2.8) to the the quantum

expansion vanishes at p since K
(X)
ab = 0. But since θ|p = 0 as well, the full quantum

expansion Θ also vanishes at p.

From here we need only note that we can then achieve Θ ≤ 0 near p on Cinitial by

taking the classical expansion θ sufficiently negative near p; i.e., by simply choosing

Cinitial to have large enough extrinsic curvature of the appropriate sign. We then find

that later cuts Cfinal differing from Cinitial only very near p and by small affine parameter

distance along the QFC-violating generators must have larger generalized entropy Sgen,

violating the conjecture of [13]. Indeed, in the appropriate limit the increase of Sgen is

determined by (£kΘ) |p > 0.

4 Discussion

Using an explicit calculation for classical Einstein-Hilbert-Gauss-Bonnet gravity, we

argued that the QFC of [13] is violated in generic d ≥ 5 theories of gravity coupled

to massive quantum fields. The key point is that integrating out the massive fields

generically induces a Gauss-Bonnet term which, at least for a certain class of solutions,

dominates in the long-distance limit. There we may use the explicit Einstein-Hilbert-

Gauss-Bonnet calculation of section 2. We expect similar violations to continue to arise

when massless quantum fields are included as well. Our construction also provides a

counterexample to the generalized covariant entropy bound (i.e. the quantum Bousso

bound) conjectured in [13]. It remains an open question whether the QFC and covariant

entropy bound could hold for d ≤ 4, and it would be interesting to investigate the affect

of Ricci-squared terms in this context. As mentioned in the introduction, the QFC is

closely related to the Quantum Null Energy Condition (QNEC). Indeed, when a matter

theory satisfying the Quantum Null Energy Condition is coupled to Einstein-Hilbert

gravity, the QFC will hold at least to first order in the gravitational coupling G. The
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reader may thus ask whether our results are in tension with the QNEC proofs in [26]

and [27]. The answer is no, as those results prove the QNEC only for congruences N

through p that form bifurcate Killing horizons at G = 0. And on a bifurcate Killing

horizon components of the Weyl tensor with non-zero boost weight must vanish. This

would then force Ckαβγ = 0 and thus Q = 0 in (2.17), reproducing the expected result

that the QFC hold at first order in Gγ for such cases.5

Conversely, taking the limit Gγ → 0 of our results shows that for d ≥ 5 the

renormalized QNEC must generally fail6 for surfaces Σ defining null congruences N

that are only locally stationary at p; i.e., which satisfy θ = σab = Rabk
akb = 0 in

the background spacetime. However, one may ask if the QNEC can hold at locally

stationary points of null congruences for d < 5 or where further conditions are satisfied.

The forthcoming work [38] will provide results of this kind, including a proof for d ≤ 3

holographic theories at locally stationary points.

It is natural to ask if our QFC violation also provides a perturbative counterexample

to the GSL. While Einstein-Hilbert-Gauss-Bonnet gravity is known to violate the GSL

at the non-perturbative level [19, 39, 40], these are of lesser interest as higher derivative

theories of gravity are expected [29] to approximate UV-complete theories only when

treated perturbatively as an effective field theory valid at lengths longer than some

cutoff scale `c. And indeed, as in section 3, one can certainly find cases where the

generalized entropy inside the horizon increases and thus that outside decreases. But

the GSL is naturally conjectured to hold at most for causal horizons (see e.g. [41], [42]),

and determining whether a given null N is a causal horizon requires understanding the

very far future. Analyzing the constraints on N , thus requires going well beyond the

local approximations used here, and thus beyond the scope of this work, though see

[18, 43, 44] for further work on the GSL for higher derivative gravity and more thorough

reviews.

Finally, one may ask if some version of the QFC or quantum Bousso bound might

yet be salvaged for general d ≥ 5 theories. In particular, we recall again that higher

derivative gravity should be treated as an effective field theory with a cutoff `c. But

the QFC, and in particular our construction of a counterexample, requires the choice

of a null congruence N that is taken to be arbitrarily well localized in the transverse

directions. Furthermore, since the Gauss-Bonnet term should be treated as perturba-

5Indeed, a result of [36] shows that the QFC holds for any Lovelock theory of gravity (a class which

includes the Einstein-Hilbert-Gauss-Bonnet gravity) when evaluated at first order in G about a Killing

horizon. This result was then generalized in [37] and extended to arbitrary higher-derivative theories

of gravity in [18].
6As will be discussed in more detail in [38], the QNEC may still hold in some sense for appropriate

bare quantities. But finite renormalized quantities cannot satisfy a QNEC-like bound.
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tively small, correspondingly small changes in N can make θ, σab non zero at p so that

θ̇ = − θ2

d−2
− σabσab − Rabk

akb becomes sufficiently negative at p that Q < 0 for the

new surface. In other words, perturbatively close to any compact QFC-violating null

congruence N lies a QFC-respecting null congruence N ′. If this can be interpreted as a

distinction finer than the cutoff scale `c, there is room for the formulation of an effective

QFC valid only at larger scales.7 But such an interpretation is not immediately clear

as the above mentioned deformation from N to N ′ involves adding extrinsic curvature

of a particular sign; it is not just a transverse smearing of the surface. And while

it is attractive from many perspectives to conjecture that a QFC-like inequality may

hold in an appropriately cutoff sense, both the form that this effective QFC might take

and how in practice it would be used to restrict possible pathologies of NEC-violating

spacetimes remain open questions for future investigation.

Note added in v2. After the appearance of our paper on the arXiv, it was pointed

out in [45] that the violation described above is removed by restricting the QFC to

apply only to variations of the entropy defined by surfaces that are smooth on the scale

set by Gγ, and which is presumably associated with the cut-off that defines the effective

theory. This emphasizes the importance of studying the effect of RabR
ab terms in the

action, which might contribute a different class of terms to the QFC.
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