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Clonal abundance patterns in
hematopoiesis: Mathematical
modeling and parameter
estimation

Yunbei Pan1,2, Maria R. D’Orsogna1,2, Min Tang3*, Thomas Stiehl4

and Tom Chou1,5*
1Department of Computational Medicine, UCLA, Los Angeles, CA, United States, 2Department of
Mathematics, California State University at Northridge, Los Angeles, CA, United States, 3Institute of Natural
Sciences, Shanghai Jiaotong University, Shanghai, China, 4Institute of Computational Biomedicine, RWTH
Aachen University, Aachen, Germany, 5Department of Mathematics, UCLA, Los Angeles, CA, United States

Hematopoiesis has been studied via stem cell labeling using barcodes, viral
integration sites (VISs), or in situ methods. Subsequent proliferation and
differentiation preserve the tag identity, thus defining a clone of mature cells
across multiple cell type or lineages. By tracking the population of clones,
measured within samples taken at discrete time points, we infer physiological
parameters associated with a hybrid stochastic-deterministic mathematical model
of hematopoiesis. We analyze clone population data from Koelle et al. (Koelle et al.,
2017) and compare the states of clones (mean and variance of their abundances) and
the state-space density of clones with the corresponding quantities predicted from
our model. Comparing our model to the tagged granulocyte populations, we find
parameters (stem cell carrying capacity, stem cell differentiation rates, and the
proliferative potential of progenitor cells, and sample sizes) that provide
reasonable fits in three out of four animals. Even though some observed features
cannot be quantitatively reproduced by our model, our analyses provides insight into
how model parameters influence the underlying mechanisms in hematopoiesis. We
discuss additional mechanisms not incorporated in our model.
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Introduction

Hematopoiesis, the process by which hematopoietic stem cells (HSCs) generate all mature
blood cells in an animal through proliferation and differentiation plays a crucial role in an
organism’s immune response and maintaining overall homeostasis. Estimates of the number of
actively cycling HSC range from 50000–200000 in humans (Lee-Six et al., 2018) and
approximately 5,000 in mice (Busch et al., 2015; Mayle et al., 2015). It is well-known that
these small numbers of hematopoietic stem cells can generate 1010–1012 cells of multiple cell
types daily, over an organism’s lifetime (Fliedner, 2002; Doulatov et al., 2012). Understanding
the mechanisms of hematopoiesis can help guide clinical treatment, especially those related to
bone marrow transplantation and in the context of blood cancers (Mendelson and Frenette,
2014; Busch et al., 2015; Goyal et al., 2015).

HSCs are often quiescent (Seita and Weissman, 2010), making them hard to track in vivo
and difficult to control in vitro. Thus, the HSC dynamics in vivo can only be straightforwardly
interrogated through analysis of populations of more downstream progenitors and
differentiated blood cells (Bystrykh et al., 2012). One way to quantitatively probe the
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hematopoiesis process is the labeling of multipotent HSCs by tagging
their genomes. The tags can take the form of viral integration sites or
barcodes (Grosselin et al., 2013; Kim et al., 2014; Wu et al., 2014;
Biasco et al., 2016; Koelle et al., 2017). In a typical in vivo experiment,
CD34+ stem cells are extracted, tagged, and then autologously
transplanted back into the animal, typically a mouse or a rhesus
macaque. CD34+ cells contain HSCs as well as early hematopoietic
stem and progenitor cells (HSPCs), with a wide range of estimated
relative proportions (Corso et al., 2005; Attar, 2014; Parmentier et al.,
2020). The downstream progenitor and mature cells that derive from
proliferation of HSCs of a particular tag will form a clone of cells that
share the same tag. Clonal tracking of cell tags is thus a powerful tool
for interrogating the differentiation process during hematopoiesis
(Lyne et al., 2018; Challen and Goodell, 2020; Cordes et al., 2021).
For example, the abundances of the different tags that appear in the
different types of mature cells can shed light on the branching
structure of differentiation and on proliferation dynamics,
particularly when coupled with mathematical models and/or
simulations (Stiehl and Marciniak-Czochra, 2011; Sun and
Komarova, 2012; Székely et al., 2014; Höfer and Rodewald, 2016;
Xu J. et al., 2018).

Clonal tracking in mice (Copley et al., 2012; Sun et al., 2014) has
revealed the timescales of repopulation dynamics under homeostasis
and after bone marrow transplantation (Muller-Sieburg et al., 2012;
Verovskaya et al., 2013; Busch et al., 2015), but typically involves very
few clones that cover only a small fraction of the HSC population. To
transplant many HSC clones in order to see patterns of how clones are
distributed during hematopoiesis requires experiments on animals
larger than mice.

Transplant experiments in rhesus macaque on the other hand
allow for hundreds or thousands of clones to be engrafted into an
organism that exhibits population levels and timescales closer to
those in humans. One experiment in rhesus macaque involved
tracking HSC clonal dynamics of lentivirus-tagged HSCs and
early progenitor cells (HSPCs), and following hematopoiesis over
a time period comparable to the animal’s life-span (Kim et al.,
2010, 2014). Here, CD34+ HSPCs from the bone marrow, which
include various progenitor cells, were marked via the integration
of a lentivirus vector with an accompanying green fluorescent
protein (GFP) tag at random viral integration sites (VISs). After
sublethal myeloablative irradiation to eliminate a substantial
number of cells in the bone marrow, the tagged HSPCs were
autologously transplanted. If these cells divide and differentiate
after transplantation, their progeny will inherit the unique VISs.
Sampling and sequencing of these mature cells indicates which
ones are descendants of a founder HSC. Data collected from four
macaques over 14 years were analyzed showing how bias towards
the lymphoid or myeloid differentiation branches changes over
time. More detailed analyses were also performed in order to
connect clonal patterns during hematopoiesis with a
mathematical model that describes how self-renewal,
differentiation, and subsampling of a multiclone population
affects clone abundances and their fluctuations across time
(Goyal et al., 2015; Xu S. et al., 2018). By fitting a simple
mechanistic model to abundances of hundreds to thousands of
clones, random initial differentiation events that each led to a
subsequent burst of mature cells was proposed as a mechanism to
explain observed population fluctuations. The number of
generations L that progenitor cells traverse along a

differentiation pathway (lineage) before terminal
differentiation was also estimated to be L ~ 24 for the
granulocyte lineage (Xu S. et al., 2018). To obtain this result, a
mean-field model for HSC self-renewal was developed and
applied to experimental data on granulocytes, using only the
mean and variance of clone populations in the data fitting.

In this paper, we improve on the model used in (Xu S. et al.,
2018) by developing a framework that can explain population
transients and that can predict the density of the number of
clones with respect to mean clone sizes. Instead of analyzing VIS
data from (Kim et al., 2010, 2014), we consider the barcode data
from (Wu et al., 2014; Koelle et al., 2017). In the latter
experimental studies, replication-incompetent HIV-derived
lentiviral barcoding vectors were used to tag HSCs that were
transplanted into four rhesus macaques. The barcode consists of a
six base-pair library identification and a 35 base pair high-
diversity cellular barcode. As with the VIS experiments,
barcoded cells were reinfused in the animals after
myeloablative total-body irradiation. Purified samples of blood
cells were then subject to low-cycle PCR amplification with the
two primers bracketing the barcode. This barcoding approach
provides more precise quantification relative to other clonal
tracking protocols such as VIS (Kim et al., 2014) and
transposon tagging (Sun et al., 2014) approaches. Thus, we
will analyze the barcoding data via a mathematical model with
the goal of more accurately estimating physiological parameters
such as HSC carrying capacity, progenitor cell division rates, and
progenitor cell proliferative potential for the granulocyte cell
lineage. Although clonal structure of mature cells of different
lineages, such as T, B, monocytes, and NK cells, were quantified in
(Wu et al., 2014; Koelle et al., 2017), lymphocyte maturation is
more complex, involving additional intermediate steps and
subsequent immune signaling and mature cell proliferation.
Thus, we focus on the simpler and abundant mature
granulocyte population (Bystrykh et al., 2012).

In the following Materials and Methods section, we briefly
describe the raw data and present the mathematical model. In the
Data Analysis and Results section, we describe how measured
clone data is compared to predicted clone abundances and show
that minimization of the difference leads to reasonable estimates
of parameter estimates. Finally, in the Discussion and
Conclusions, we provide qualitative insight into how model
parameters affect the predicted clonal patterns and discuss
further improvements and potential new modeling directions.

Materials and methods

In this section, we describe information extracted from the
granulocyte abundance data in (Koelle et al., 2017) and the
mathematical model used to describe this data. The experimental
parameters associated with the experiments are listed in Table 1, which
lists the number of cells (tagged and untagged) transplanted, the
barcode library size used, and the total number of different barcodes
observed across all samples of all lineages for each animal. These
values inform us on the typical magnitude of experimental parameters
to which our subsequent model must conform. In Table 2, we list
parameters used in ourmathematical model as determined either from
experimental data or through estimates.
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TABLE 1 Transplant parameters. The initial transplant populations for the four animals ZH33, ZG66, ZH19, and ZJ31. The total library size for the cell preparation was in
the range CL = 53319 − 109085. The total number of cells injected was H = 2.3 × 107 − 4.8 × 107, of which H* = 8.0 × 106 − 1.67 × 107 were barcoded (corresponding to
23%–35% GFP+ labeling). Across all peripheral blood samples and cell lineages, the total number of barcodes detected in each animal was in the range
Ĉs � 21450 − 62354, i.e., roughly half of injected HSC barcodes were detected in the peripheral blood samples. Among granulocytes, the total sampled richness (across
all time points) ranged from 2660 − 32363.

Variable
Animal

Library size CL Injected cells H Injected GFP+ H* Total Cs Cs (grans)

ZH33 63469 3.2 × 107 1.11 × 107 25325 9221

ZG66 53613 4.8 × 107 1.67 × 107 21450 2660

ZH19 53319 4.8 × 107 1.1 × 107 31929 10964

ZJ31 109085 2.3 × 107 8.0 × 106 62354 32363

TABLE 2 Overview of variables and parameters. Parameters and variables and their estimated values if known. Some values need to be calculated from our model and
are denoted “calc.,” while others need to be self-consistently estimated. For example, from GFP tagging, the fraction of tagged HSCs is approximately∑Ch

i�1hi(0)/∑Ch
i�0hi(0) ≈ 15 − 35% but can slowly vary in time. Values relating to sampled cell populations are derived from animal ZH33 in the experiment of (Koelle et al.,

2017). HSC proliferation and death rates have been estimated in (Shepherd et al., 2007) and (Catlin et al., 2011). Numbers specific to granulocytes are indicated as such.

Variables/Parameters Definition Value

tj, j = 1, . . ., J Sampling time points ~month

ŝi(tj), i � 1, . . . , Cs No. of cells with tag i in sample drawn at tj (data) ~ 0 − 104

ŝi � 1
J∑Cs

i�1 ŝi(tj) Mean no. of cells with tag i in sample (data) ~ 0 − 104

Ŝ(tj) � ∑i�1 ŝi(tj) Total no. of tagged granulocytes in each sample at tj (data) ~ 2 × 106

Ĉs(tj > 2 months) Total no. of clones (richness) in sample j ~ 1000 (grans)

Ĉ
>2
s

Total richness across all t > t2 2,335 (grans)

h0 Untagged HSCs in bone marrow (model) unknown, ~ 104

hi, i = 1, . . ., Ch HSCs with barcode i in BM (model) 1–1,000

n(ℓ)i (t) No. of ℓth-generation progenitor cells with tag/barcode i (model) calc

mi(t) No. mature cells with tag i (model) calc

si(t) No. of cells with tag i in sample (model) calc

K HSC niche carrying capacity (model) inferred, 104–105

Ch(t) Total no. of engrafted clones (model) unknown, ~ 104

Cs(t) Total no. of clones sampled at t (model) simulated

rh(0) Intrinsic HSC self-renewal rate ≫ 0.01/day

μh HSC death rate < 0.01/day

α HSC differentiation rate 10–3 − 0.02/day, inferred

rn Progenitor cell division rate 1–5/day

μn Progenitor cell death rate unknown, ~ 0/day

ω Progenitor cell terminal differentiation rate unknown, < rn

L Proliferative potential of progenitor cells inferred, L* = 22 (grans)

μm Mature cell death rate 0.185/day (grans)

η Average sample fraction ~ 10−5 − 10−4

η(tj) Fraction of sample j ~ 10−5 − 10−4
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Measured quantities

First, we consider the observed data associated with each animal
(Koelle et al., 2017), as shown in Figure 1. Granulocytes in blood
samples drawn from each animal at times points tj, j = 1, 2, . . ., J are
sequenced and clonal (barcode) abundances tabulated. The total
abundance (number of mature cells of a given cell type), Ŝ(tj), and
the richness Ĉs(tj) (the total number of different barcodes detected in
each sample) are also recorded and plotted in Figures 1A, B. In this study,
Ŝ(tj) denotes the total measured number of granulocytes (barcoded and
unbarcoded) in a sample taken at time tj. The fluctuations of Ŝ(tj) and
Ĉs(tj) across tj may arise from varying sampled sizes across time points
and/or fluctuations in the state of the animal.

An example of the abundances of each clone within the
granulocyte population from Koelle et al. (Koelle et al., 2017)
is shown in Figure 1C. In these experiments, tagged stem cells are
transplanted back into a rhesus macaque at t = 0 so that initially
each clone consists of a single cell. A series of 1 ≤ j ≤ J samples are
taken at time tj after implementation, yielding a set of mature
cells. We denote the abundance of clone i (among granulocyte
cells) in the sample taken at time tj after transplantation as ŝi(tj).
The J measurements allow each clone of a particular mature

cell type i to be characterized by a mean ŝi and variance σ̂2i
defined by

ŝi � 1
J
∑J
j�1

ŝi tj( )
σ̂2i �

1
J
∑J
j�1

ŝi tj( ) − ŝi( )2.
(1)

Note that the total measured population of any cell type
Ŝ(tj) � ∑Cs

i�1 ŝi(tj). A scatter plot of σ̂ i versus ŝi for all clones
detected in a sample of granulocytes is shown in Figure 1D.

For each clone at (ŝi, σ̂ i) we can evaluate the local density ρ̂, the
number of clones within some size window. This density can be
viewed as the concentration of data points shown in Figure 1D as a
function of mean clone size ŝ, and will be constructed using kernel
density estimation (Rosenblatt, 1956; Parzen, 1962) of the data points
in (ŝ, σ̂) space. The unknown density function ρ̂ is obtained by
concatenating isotropic Gaussian kernel functions about each point
and using an optimal, common bandwidth parameter, typically
chosen as the value that minimizes the mean integrated squared
error, or Kernel Density Estimation (KDE) (Silverman, 1986). The
reconstructed density function can be thought of as a probability that a

FIGURE 1
After transplantation, peripheral blood samples were taken across J time points tj, j = 1, . . ., (J). Typically, measurements were taken over 20–49 months
and J = 10 − 15. (A) The total population Ŝ(tj) of granulocytes sampled from animal ZH33 (Koelle et al., 2017) at times tj = (1, 2, 3, 4.5, 6.5, 9.5, 12, 14, 21, 28, 30,
38, 43, 46, 49) months. (B) The total richness in each sample, Ĉs(tj). The richness at the first two time samples are large (as we shall see, due to transplantation
of barcoded progenitor cells). After the first two time points, where the richness will arise from the richness of the transplanted HSCs, the typical richness
at each time point Ĉs(tj ≳ 2) ≈ 1000, while the richness across all J − 2 time points (for tj > 2 months) is Ĉ

>2
s � 2335. Across all J time points, 9,221 unique

granulocyte clones were detected (out of a total of 25325 across all cell types). The individual clone abundances in the sampled granulocyte population are
shown in (C) where the abundances of clone i in a sample taken at time tj are denoted by ŝi(tj). The mean and standard deviation σ̂ i of the abundances of all
clones across all sampling times are calculated using Eq. 1 and scatter-plotted in (D). Each point represents one of the 2,335 detected granulocyte clones.
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random clone arises in the volume (s, s + ds) × (σ, σ + dσ). For each
clone at (ŝi, σ̂ i) we can evaluate the local density ρ̂.

In the remainder of this paper we will develop a mathematical
model that we can simulate to generate total populations, clonal
populations, and their associated attributes (si, σi, ρi). Note that
while there are many existing mathematical models of
hematopoiesis (Colijn and Mackey, 2005; Peixoto et al., 2011; De
Souza and Humphries, 2019), they describe only time variations in
total populations, rather than that of lower-population, individual
clones. We will tune parameters of the model so that its predictions
provide a reasonable match to the aforementioned measurements,
paying particular attention to clone abundances and clone size
variability.

Mathematical modeling

Our mathematical model incorporates known and accepted
features of hematopoiesis. Three main cell compartments are
considered: hematopoietic stem cells (HSCs), transit amplifying
progenitor cells, and peripheral mature cells. Although the stem
cell population in bone marrow is large and can be described using
a deterministic model, the initial populations within each clone are
small and require a discrete stochastic description. We will then
assume that a small sample of mature cells is drawn from the
animals at times tj, j = 1, 2, . . ., J and sequenced.

We first describe the initial conditions including the number of
HSCs and HSPCs injected into each animal. As listed in Table 1, H is
the total number of HSCs injected into each animal, among which H0

are untagged andHi≪H0 contain barcode 1 ≤ i ≤ CH (and are GFP+).
The total tagged HSC population isH* ≡ ∑CH

i�1Hi so that H = H0 + H*.
The richness CH ≲ CL is the number of barcodes transferred into the
animal, which is comparable to the richness of the barcode library CL

used in each experiment. Since H0 ~ 107 ≫ Hi, we will consider the
probability distribution of only the tagged populations, which is
described by the multinomial

P H( ) � H*( )!∏CH

i�1

1
CH

( )Hi 1
Hi!

, (2)

where H ≡ (H1, H2, . . . , HCH) and H* is the total number of GFP+
(barcoded) cells. Specifically, for animal ZH33 studied in (Koelle et al.,
2017)) H ≈ 3 × 107, H*/H ≈ 0.35, ∑CH

i�1Hi ≈ 1.1 × 107, CH ≲ CL ≈ 6 ×
105. Thus, the typical Hi ≈ H*/CH ~ 180.

A certain fraction η0 of the H HSCs home into the bone
marrow, successfully engraft, and subsequently actively self-
renewal and/or differentiate. Engrafted HSC populations are
defined by h(0) � (h1(0), h2(0), . . . , hCh(0)(0)), where the richness
of engrafted HSCs in the bone marrow is Ch ≲ CH. Transplantation
efficiencies are typically single-digit percentages (Abbuehl et al.,
2017; Radtke et al., 2020) and transplanted CD34+ cells contain
significant numbers of progenitor cells. Thus, the fraction η0 ≪ 1; if
η0 is sufficiently small (approximately ≲ 1/180), then we can safely
assume that the initial clone populations in bone marrow are
represented by very few cells. For simplicity, we approximate
hi(0) ≈ 1. Even if η0F1/180, most barcodes will be represented
by very few cells. We have verified that an initial condition in our
model that allows for, say, some hi(0) = 2, 3 does not qualitatively
affect the mature cell populations.

The random selection of cells into the bone marrow can be
thought of as a sampling (without replacement) process. Including
the untagged population, the probability distribution of engrafted cells
resulting from the injected tagged cell population H �
(H1, H2, . . .HCH) is given by

P h 0( )|H( ) � 1
H*
h* 0( )( ) ∏CH

i�1

Hi

hi 0( )( ), (3)

where H* and h*(0) � ∑CH
i�1hi(0) are the total initial numbers of

barcoded injected cells and engrafted barcoded HSCs, summed
over all clones. Note that the number of untagged transplanted
cells h0(0) ≫ 1 is large so that we can approximate it by its
deterministic value h0(0) ≈ η0H0.

To extract the overall probability of initial condition h(0), we
average Eq. 3 over the prior P(H1, . . . , HCH) and find

P h 0( )( ) � ∑
H

P h 0( )|H( )P H( )

� h* 0( )!∏CH

i�1

1
CH

( )hi 0( )
1

hi 0( )!, h* 0( ) ≡ ∑CH

i�1
hi 0( ). (4)

Besides the initial condition hi(t = 0) = 1, the initial number of
untagged HSCs h0(t = 0) is related to the transplantation efficiency and
is generally unknown. Barcodes are associated with a GFP tag and the
initial fraction of sampled cells that are GFP+ is ~ 35%. Since we
assume a neutral model, it is reasonable to assume that the fraction of
injected tagged cellsH*/H is equivalent to the fraction of tagged cells in
the engrafted population ∑Ch(0)

i�1 hi(0)/∑Ch(0)
i�0 hi(0) ≈ 0.35 (although

this ratio slowly decreases via extinction). The precise richness of
HSC population in stem cell niche, Ch(t) < CH is also unknown, but
except for fluctuations, has a lower bound of Ĉs, the total number of
unique clones detected across all samples across all cell types. Thus, we
take h(0) � ∑Ch(0)

i�0 hi(0) � h0(0) + Ch(0) ≈ Ch(0)/0.35.
Self-renewal, death, and differentiation into progenitor cells all

contribute to the stochastic dynamics of hi. Although the total HSC
population in the niche h(t) ≈ ∑Ch(t)

i�0 hi(t) is large and can be
approximated deterministically, the HSC population of each clone
hi(t) may be small and must be treated stochastically. Under our
neutral assumption, the intrinsic self-renewal rate rh of HSCs does not
depend on the barcode identity i. Since HSCs reside in niches in the
bone marrow that place limits on growth, we assume the HSC
proliferation rate follows a linearly decreasing form defined by a
carrying capacity and the engrafted HSC population h(t)

rh h t( )( ) � rh 0( ) 1 − h t( )
K

( ) ,

h t( ) ≡ ∑Ch

i�0
hi t( ), (5)

where rh(0) is the intrinsic proliferation rate of a single, isolated HSC.
Note that the untagged HSCs are included through h0. Finally, we
assume that HSCs die at rate μh and differentiate at rate α and that
these rates, like the growth rate in Eq. 5, do not depend on barcode
identity.

As shown in the Supplementary Material, the richness Ch(t) may
progressively decrease from random HSC death and extinction and
can be estimated by solving for the stochastic birth-death process
(neglecting outflux from differentiation) and using generating
functions to find
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E Ch t( )[ ] ≈ Ch 0( )
ψ t( ) + ϕ t( ), (6)

where

ψ t( ) ≡ e
−∫t

0
rh t′( )−μh[ ]dt′, ϕ t( ) ≡ ∫t

0
rh t′( )ψ t′( )dt′. (7)

In this expression, rh(t) is approximated by rh(�h0(t) + �h*(t)),
where �h0 + �h*(t) is given by the explicit solution to the deterministic
birth-death process with carrying capacity K. Thus, given Ch(0), rh(0),
K, and μh determine how the expected richness decreases. Henceforth
we treat Ch(t) in our model as the expected value E[Ch(t)] derived

from our stochastic birth-death model, i.e., we use Ch(0)/(ψ(t) + ϕ(t))
as the model for Ch(t).

We will also simulate the stochastic birth-death process for HSCs
(see Supplementary Material for details), with the differentiation rate α
that allows HSCs to differentiate into the progenitor/transit amplifying
cell compartment (see Figure 2). Progenitor cells are further
distinguished by their generation ℓ. Thus, ℓ not only measures
generation number but also an effective differentiation state. Each
HSC differentiation event leads to an ℓ = 0 progenitor cell. Since the
number of HSCs of any one clone is small, the initial differentiation
events from clone i follow a Poisson process with rate αhi. The

FIGURE 2
Schematic of the hybrid stochastic-deterministic model. Tagged (barcoded) stem cells are transplanted into an animal initially with one cell (hi(t = 0) ≈ 1)
per clone. These cells, together with the untagged ones (h0(t=0)≫ 1) then undergo self-renewal and death, at rates rh(h(t) � ∑i�0hi(t)) and μh, respectively, in
the bone marrow. HSCs in all clones are also assumed to undergo asymmetric differentiation with rate α, forming a zeroth-generation progenitor cells. The
population of ℓth-generation (or stage) progenitor cells, denoted n(ℓ)

i , further symmetrically differentiate with each division, up to a maximum of ℓ = L
generations. The final-generation cell in clone iwith population n(L)

i can then undergo terminal differentiation at rate ω to formmature, circulating peripheral
blood cells. Mature cells at populationmi are then randomly sampled (with sampling fraction η and generating a sample population si) and sequenced.Wewish
to infer some of the parameters of the model by comparing the predicted means, standard deviations, and clone number densities with those from data
(Figure 1). Lineage differentiation is schematically shown as a splitting of the grey clone between generations ℓ = 1 and ℓ = 2, where a new cell type (squares)
branches off. The division and death rates of progenitor cells in this new lineage, rn′ and μn′, may be different, as may the maximum number of generations L′.
The mature cells turn over with rate a μm that may depend on lineage (but not clone identity within each lineage). In this paper, we assume that the lineages
diverge at the zeroth-generation progenitor cell and analyze the model after the first differentiation step (rate α) independently for different cell types (in this
paper, granulocytes).

FIGURE 3
(A) The populationmi(t) of mature cells resulting from a single HSC differentiation event as obtained from Eq. 12. (B)Multiple concatenated bursts from a
low-population HSC clone showing well-separated intermittent pulses obtained via Eq. 13. (C) When the HSC population of a clone is large, the resulting
mature cell population bursts merge together and exhibit lower relative variability.
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populations of the subsequent generations of progenitor cells in clone i
are denoted by n(ℓ)i . Once the ℓ = 0 generation cells are generated, the
number of progenitor cells quickly expand, so their dynamics will be
described by a deterministic model as developed in (Xu et al., 2018)

dn ℓ( )
i t( )
dt

�
Poisson αhi t( )( ) − r 0( )

n + μ 0( )
n( )n 0( )

i t( ) ℓ � 0,

2r ℓ−1( )
n n ℓ−1( )

i t( ) − r ℓ( )
n + μ ℓ( )

n( )n ℓ( )
i t( ) 1≤ ℓ ≤L − 1,

2r L−1( )
n n L−1( )

i t( ) − ω + μ L( )
n( )n L( )

i t( ) ℓ � L,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(8)

where Poisson(αhi(t)) is the time-inhomogeneous point Poisson
process describing HSC differentiation events. In other words, after
a differentiation event at time t1, the probability density of the time
Δt to the next differentiation event is given by
αhi(t1 + Δt) exp[−α∫Δt

0
hi(t1 + s)ds]. We will use the values of

hi(t) from our stochastic simulations and sample from this
inter-event time density to simulate realizations of
differentiation events.

In Eq. 8, r(ℓ)n and μ(ℓ)n represent the proliferation and death rates of
generation-ℓ progenitor cells, respectively, and ω is the terminal
differentiation rate into mature blood. Each division can also be
thought of symmetric differentiation producing successively more
differentiated progenitor cells. To model the finite proliferative
potential of progenitor cells, we set the maximum number of
generations to ℓ = L, after which the Lth generation cell can only
terminally differentiate to mature blood.

Consider a single isolated differentiation event of an HSC at t = 0
belonging to a particular clone. The resulting progenitor cell
population after this event is described by Eq. 8 without the
Poisson(αhi(t)) term but with an initial condition corresponding to
a single ℓ = 0 cell:

n ℓ( )
i 0( ) � 1 ℓ � 0,

0 otherwise.
{ (9)

The subsequent populations at time t form a temporal “burst” of
cells that are described by n(ℓ)i (t)which is the solution of Eq. 8 without
the Poisson(αhi(t)) term but using the initial condition in Eq. 9. If we
assume that all progenitor generations carry the same division and
death rates, r(ℓ)n � rn for 0 ≤ ℓ ≤ L − 1 and μ(ℓ)n � μn for 0 ≤ ℓ ≤ L, we
can find an analytical solution associated with a single isolated burst as

n L( )
i t( ) � e− ω+μn( )t

L − 1( )!
2rn

rn − ω
( )L∫ rn−ω( )t

0
zL−1e−zdz. (10)

We can evaluate all populations n(ℓ)i (t) for ℓ < L by solving Eq. 8 and
using Eq. 10, as detailed in the Supplementary Material.

If we assume that mature cells do not appreciably proliferate1, the
mature cell population in clone i obeys

dmi t( )
dt

� ωn L( )
i t( ) − μmmi t( ), (11)

where μm is the lineage-dependent turnover rate of mature cells. Using
the solution to n(L)i (t), we solve Eq. 11 to find (see Supplementary
Material)

mi t( ) � ω∫t

0
n L( )
i t′( )e−μm t−t′( )dt′. (12)

The mature cell population burst (of a specific clone) arising
from a single, isolated differentiation event is plotted in
Figure 3A. Note that the expression for a mature cell burst
given in Eq. 12 is derived from the specific initial condition
Eq. 9; however, some low-ℓ progenitors are also initially
transplanted (see below). Thus, mi(t) will in general depend on
the initial numbers of n(ℓ>0)(0).

Since Eq. 8 are linear, populations arising from a sequence of
Poisson-distributed differentiation events can be constructed by
adding those derived from single events occurring at times Tk. In
this case, the resulting mature cell population at time t is given by

mi t( ) � ∑kmax

k�1
mi t − Tk( ), Tkmax+1> t>Tkmax, (13)

where mi(t − Tk) is the solution given in Eq. 12 (for the specific initial
condition in Eq. 9). Two different sequences of bursts are shown in
Figures 3B, C. In Figure 3B, we consider a clone with few HSCs such
that αhi(t) ≪ μm. This limit gives rise to differentiation events that
occur rarely over the lifespan of mature cells, as depicted Figure 3B. In
Figure 3C, we plot a sequence of more frequent mature cell population
bursts that arise for more frequent differentiation events αhi(t) ≫ μm
from HSCs that are in higher population clones.

Recall that the calculations involving Eqs 8–12 are performed for
each clone i, resulting in a series of time-dependent expressions for
mi(t) as per Eq. 12. These single event responses are then summed
according to Eq. 13 to arrive at the total, time-dependent population of
mature cells of a specific type and carrying the same barcode. These
predicted whole-organism populations depend on the model
parameters Ch(0), α, K, rn, μh, μn, μm, L,ω{ }. Since growth of transit
amplifying progenitor cells is fast, we will henceforth assume rn≫ μn ≈
0. All other rates are given in units of per day.

Since the clone abundances are derived from sequencing cells in a
small fraction η (for rhesus macaque, η ~ 10–5 − 10–4) of the animal’s
blood taken at times tj, we also need expressions for mature cell
populations within a sample. Given the small sample sizes η, low
population clones in the mature cell pool can easily be missed. For a
given population mi in the whole animal, the probability that si cells
are captured in the sample is given by (Chao and Lin, 2012; Xu et al.,
2020)

P si{ }| mi{ }, S,M( ) � 1
M

S
( ) ∏Ch

i�0

mi

si
( )

≈ ∏
i�0

mi

si
( )ηsi 1 − η( )mi−si ,

(14)

where, for a given cell type (for example granulocytes), S(t) = ∑i=0si(t)
is the total number of sampled cells (including untagged ones),M(t) =∑i=0mi(t) is the total number of circulating mature cells (including
untagged ones), and the sampling fraction is η = S/M (which we first
assume is the same at each tj).

After computing mi at time tj using Eq. 12, we take the nearest
integer value and use it for mi in Eq. 14. We then draw a single value
si(tj) from the binomial distribution, assuming η is given. Finally, we
simulate ourmodel to generate trajectories ofM(t) and then determine
the tagged sampled fraction

1 Certain lineages such as T cells can intermittently proliferate, e.g., upon
antigen activation, but we neglect this and use small effective death rates μm

for such cell types.
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S t( ) ≈ H*
H

ηM t( ). (15)

Equations 5–15 represent a hybrid stochastic-deterministic model
since the self-renewal process of a small number of HSCs in each clone
and the final sampling step (Eq. 14) are modeled as discrete stochastic
processes, while proliferation and differentiation of higher population
progenitor and mature cells are treated deterministically via Eqs 8–12.
The values si(tj) obtained from the model in Eqs 8–14 are used to
generate the predicted clone population mean and standard
deviations, si and σi, according to Eq. 1. Both si, σi are then used to
determine the density of points ρi. These three values for each clone are
then compared to their corresponding values constructed from data
ŝi(tj), as we detail in the next section. These predictions, along with
the predicted richness Cs(t) and total sampled granulocyte population
S(t) provide the basis for comparing with measured data and
parameter inference.

Data analysis and results

Data presentation

The published experimental data in (Koelle et al., 2017) provide
data for four rhesus macaques ZH33, ZG66, ZH19, and ZJ31 over a
period of 49, 42, 36 and 20 months, respectively. Samples were taken
after autologous transplantation with myeloablative conditioning at
times tj, 1 ≤ j ≤ J. Possible sampled cells are of five types: T cells,
B cells, monocytes, granulocytes and NK cells. Barcoded myeloid
(granulocytes and monocytes) and B-cells reach a noisy equilibrium
after approximately 1 month, whereas for T-cells the time frame is
longer, between 5 to 17 months. Furthermore, since granulocytes
comprise a majority of white blood cells, we apply our mathematical
and statistical model to the granulocyte lineage. At each sampling
time tj, the experimental data from (Koelle et al., 2017) reveals how
many cells are sampled from each clone and what type each cell is.
Across sampling time points, these sampled populations contain
information on the overall abundance, how these abundances
fluctuate in time, and the density of the number of clones
detected as a function of abundance and abundance variability.
Since ZH33 has the longest follow-up period, we use data from
this macaque to compare experimental data with our mathematical
predictions.

Matching model to data

Validation of our model will rely on matching predictions with
available data in the form of Ĉs(tj), Ŝ(tj), and (ŝi, σ̂ i, ρ̂(s, σ)). Since the
model contains many parameters and the data is noisy and “sparse,”
the model will likely overfit. Therefore, we carry out the parameter
estimation by hand in stages, imposing limit on parameter values that
are physiologically feasible.

First, we compare Ch(t) (Eq. 6) with the richness Ĉs(tj) shown in
Figure 1A to provide a constraint among μh, K, Ch(0), and rh(0). We
assume that the Ch(0) associated with granulocytes is slightly greater
than the total richness across all samples after the first two,
Ch(0)≳ Ĉ>2

s . This is equivalent to assuming that granulocyte
richness after about 2 months arises solely from barcoded HSCs.

The cumulative post-two-month richnesses Ĉ
>2
s for animals ZH33,

ZG66, ZH19, and ZJ31 are 2,335, 2007, 4,007, and 30732, respectively.
Although the sample specific Ĉs(tj) quickly decreases for t > t1, our
model prediction for Ch(t) follows Eq. 6 and decays more slowly. By
estimating Ch(0) and using Eq. 6, we generate the predicted Cs(t) and
S(t) by simulating our full model and comparing them to Ĉs(tj) and
Ŝ(tj). This allows us to further constrain the parameters Ch(0), rh(0),
K, and μh. Note that no analytic formula exists for Cs(t).

We first set K ≈ 100Ch(0) as the niche carrying capacity since
smaller or larger values of K cannot provide the correct average clone
sizes or approximately matching values of Cs. This comparison
allowed us to obtain rough constraints and approximations to
some parameters, particularly μh, rh(0), and Ch(0). Discrete sets of
values that are consistent with Ĉs(tj)were selected and further pruned
by using the remaining data.

The sampled richness Ĉs(tj) in ZH33 exhibits a sharp decrease
after the first sample time, without a corresponding collapse in the
sampled abundances of granulocytes Ŝ(tj). Our model explains this
phenomenon by the initial condition; namely, the initially
transplanted population of CD34+ cells contains some partially
differentiated HSPCs. Progenitor cells of barcode i (described in
our model by the populations n(ℓ)i ) are initially transplanted so that
some n(ℓ)i (t � 0)> 0 particularly for small ℓ (cells with a low degree of
differentiation).

As shown in Figure 4, a fraction of the initial clones are HSPCs.
Once these HSPC clones generate a burst of mature cells, they
disappear from the animal without being renewed since there are
no corresponding HSCs carrying the same barcode. Thus, the HSPC
contribution to the overall sampled richness Ĉs(tj) largely disappears
after about 2 months. However, the total mature granulocyte
population Ŝ(tj) does not suffer a decline since HSPCs lost due to
terminal differentiation are replaced by HSC differentiation. The
subsequently sampled mature cell richness then reflects the
richness Ch(0) of the initially transplanted HSCs. We propose this
partial HSPC transplantation as a mechanism for the observed rapid
decrease in Ĉs observed in some animals. The shape of ρ̂(s) (see
Figure 7D) can inform our estimate of the initial progenitor
population n(ℓ)(t = 0). Maxima in ρ̂(s) can be accounted for by
offspring of initially transplanted progenitor cells of different stages
ℓ, with n(ℓ)(0) generating smaller clones for larger ℓ (fewer remaining
generations to expand).

Next, we consider the small clones, predominantly arising at short
times, and find their average value at the first sample taken at t1. These
small clones also yield the highest density values ρ̂(s), but mostly
disappear at longer times. Therefore, we assume they predominantly
arise from initial progenitor cells. We can then generate the prediction
m(t = t1) from our model assuming an initial condition nℓ(0) (and
assuming no HSC contribution by setting α = 0). This approximation
provides a constraint on the deterministic progenitor cell parameters
rn, L, ω, η. In these experiments, the typical η ~ 10–5, so we find that L =
22, and collect a set of feasible values for rn, ω, and η that provide a
good starting point for estimating the other parameters in the model.
Note that rn, L, ω, η can largely compensate each other at this level of
comparison. In other words, sets of different ranges of values of one
parameter will fit equally well provided some other parameters are also
correspondingly adjusted.

Next, we least-squares minimize Ŝ(tj) − S(tj), where the model
prediction S(t) is given by Eq. 15. This further helps fix α. Once a set of
parameters that allow for a reasonable match of Cs(tj) and S(tj) have
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been defined, as shown in Figures 5A, B, we then refine the fitting to
the mean−standard deviation (ŝi, σ̂ i) scatter plot shown in Figure 1D.

To compare our modeling results to the remaining experimental
data (ŝi, σ̂ i, and ρ̂i) and to fine-tune the estimates of the other
parameters, the most natural intuition would be to compute the
Euclidean distance (or any other relevant distance metric) between
model predictions and experimental datasets and tune parameters so
as to minimize this distance. However, since a number of clones go
extinct in our model, the data size (for ŝi, σ̂ i, and ρ̂i) varies in time.

Thus, before comparing predicted clone size distributions to
measured results, we first cluster the data according to the values
of ŝi and σ̂ i. Recall that ρ̂(s, σ) ≈ ρ̂(s) (since σ is highly correlated with
s) is still determined from KDE using the raw, unclustered data (ŝi, σ̂ i).
Clustering is performed using k-means to partition the data into
multiple regions (in ŝ- and σ̂-space) such that the Euclidean distance
between a point and the center of its cluster is smaller than its distance
to all other cluster centers. The goal is not to cluster the (ŝi, σ̂ i) points

according to any real feature, but to simply reduce the dimensionality
of the problem and to control the number of effective data points
before applying least squares comparisons. Although there are no
obvious features in the (ŝi, σ̂ i) data, k-means clustering of the
distribution of points does yield an optimal number of clusters k*
via the “elbow” method where the curvature of the sum of square
errors (distortion score) is maximal (Yuan and Yang, 2019). After
implementing k-means clustering using the Python yellowbrick
package, we find that the optimal number of clusters is typically k*
≈ 50 ± 3 depending on the initial randomization and partitioning
process. Subsequent results, however, are insensitive to the precise
numbers of clusters used as long as k* ≈ 50.

Figure 6A compares (ŝi, σ̂ i) from experiments and from our
hybrid multicompartment model. Figure 6B shows the distortion
score (blue) and the convergence time (green) as a function of the
number of clusters. The optimal number of clusters k* = 48 arises at
the elbow of the distortion score curve. Figure 6C shows the clustered

FIGURE 4
Schematic of a mixed HSC/HSPC initial condition. The transplanted CD34+ cells contain HSCs and some progenitor cells (HSPCs), which are exhausted
after about 2 months. The remaining richness arises mainly from that of the long termHSCsCh(0) which then slowly decreases as certain HSC clones become
extinct.

FIGURE 5
For animal ZH33, coarse fitting to the total population of tagged granulocytes S(tj) (A), and the total number of clones at each time point Cs(tj) (B). This
initial rough matching was achieved using parameter values L = 22, rn ≈ 2, ω ≈ 0.2, and sampling size η = 10–5.
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FIGURE 6
A total of 48 clusters are identified via k-means clustering of the data from animal ZH33. (A) The unclustered (ŝi, σ̂ i) data and model predictions for an
arbitrary set of parameters. (B) The squared errors in k-means clustering or distortion score (blue) and convergence time (green) as a function of the number of
clusters. The optimal value from the elbow signalling diminishing returns was found in this case to be k* = 48. (C) The location of the cluster centers plotted on
the (ŝ, σ̂) plane. The radius of each circle indicates the fraction of all clones wk that are associated with cluster k and is set to 2000wk.

FIGURE 7
Fitting of tagged granulocyte populations for animal ZH33 after time-dependent adjustment of sampling size η(tj). For this animal tj = [1, 2, 3, 4.5, 6.5, 9.5,
12, 14, 21, 28, 30, 38, 43, 46, 49] months. (A) By initially best-matching S(tj), we find η(tj) = [1, 2.03, 1.07, 0.94, 0.68, 1.25, 0.61, 0.83, 1.29, 1.29, 1.01, 1.01, 0.99,
1.14, 0.83]×10–5. (B–D) By searching parameter space to find a goodmatch to Ĉs(tj), ŝi, σ̂ i , and ρ̂ (which is shownwith its maximumnnormalized to one), which
is plotted with its maximum normalized to unity. We find parameters [in units of/day] that fit the data are μh = 0.02, rh(0) = 0.08,Ch(0) = 2500,Cn(ℓ = 0) =
800, Cn(ℓ = 1) = 1600, Cn(ℓ = 2) = 3200, K = 2.5×105, α = 0.016, rn = 2, L = 22, μn = 0, μm = 0.185 and ω = 0.2.
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data (for animal ZH33) against the clustered model predictions. The
radius of each circle, wk, k = 1, . . ., 53 denotes the fraction of data
points (fraction of the total number of observed clones) assigned to
cluster k and is thus a coarse-grained representation of the local data
density.

Thus, we have clustered measured data according to
P � {p1, . . . , pk*} ≡ {(ŝ1, σ̂1, ŵ1), . . . , (ŝk*, σ̂k*, ŵk*)}, where (ŝk, σ̂k)
denotes the center values of cluster k and ŵk is the area of the kth

cluster. For a fixed set of all model parameters, we generate predictions
Q � {q1, . . . , qg*} ≡ {(s1, σ1, w1), . . . , (sℓ*, σℓ*, wℓ*)} (in this expression
and in the following, ℓ, ℓ* denote matrix indices and not progenitor
cell generations). The optimal number of clusters derived from our
hybrid stochastic-deterministic model, ℓ* will in general be different
from the number of clusters k* derived from data, but is typically also
about ℓ* ≈ 50.

In order to compare the clustered data P to the model prediction
Q, which are matrices with different numbers of rows, we use the
Wasserstein metric, or Earth mover’s distance (EMD) (Villani, 2009;
Kolouri et al., 2017) to define a distance between them. Let dk,ℓ denote
the distance between cluster pk and cluster qℓ so that the matrix a d =
{dk,ℓ} catalogues all possible cluster-cluster distances. We aim to
compute a flow map f = {fk,ℓ} that yields the minimal distance
between clusters p = {pk} and clusters q = {qℓ} by finding

minf ∑k*
k�1

∑ℓ*
ℓ�1

fk,ℓdk,ℓ (16)

Subject to the constraints

fk,ℓ ≥ 0, ∑k*
ℓ�1

fk,ℓ ≤wk, ∑ℓ*
k�1

fk,ℓ ≤wℓ , (17)

For all 1 ≤ k ≤ k* and 1 ≤ ℓ ≤ ℓ* and

∑k*
k�1

∑ℓ*
ℓ�1

fk,ℓ � ∑k*
k�1

wk � ∑ℓ*
ℓ�1

wℓ . (18)

After finding the optimal flow f, we evaluate the EMD as

EMD P,Q( ) � ∑k*
k�1∑ℓ

ℓ�1fk,ℓdk,ℓ

∑k*
k′�1∑ℓ*

ℓ′�1fk′,ℓ′
. (19)

Model parameters are varied until our model-derived predictions best
match the clustered data by minimizing the EMD. In this paper, we
consider only the granulocyte lineage since it is the most abundant and
reliably measured with minimal complex dynamics and regulation.

Finally, note the fluctuations in S(tj) which are too large to be captured
by the intrinsic stochasticity in our model, as indicated in Figure 5B. These
“unknown” fluctuations can arise from a number of processes, including
variable sampling fractions η(tj) at each time point tj and fluctuating animal
state due to infections, stress, inflammation, etc. These may influence total
mature cell populations month to month. Some of these effects can be
effectively accounted for by adjusting the mean sample fraction η = 10–5 by
an amount Δη(tj) at each time point. Using these values of Δη(tj) to match
the data S(tj), and then readjusting the parameters, we find good
comparison between the experimental measurements and our model, as
shown in Figures 7A–C.

To further show consistency, we then plotted the predicted density and
compare it with the data-derived (using KDE) density ρ̂ in Figure 7D. A few
large, highly variable clones remain not well reproduced by our model and
are discussed in the next section. The parameter estimation procedure was

applied to the three other animals in (Koelle et al., 2017), showing
reasonable, consistent matching (see Supplementary Material).

Discussion and conclusion

In this paper, we analyzed data from stem cell transplantation
experiments in rhesus macaque (Koelle et al., 2017) in which
barcoded stem and progenitor cells (HSPCs) were autologously
transplanted after myeloablative conditioning. Typically, of the
~ 30 million cells transplanted only ~ 15–35% are tagged and
then only a fraction homes to functional bone marrow niches.
Nonetheless, typically hundreds or thousands of barcodes are
detected in peripheral blood samples. The counts of circulating
mature cells derived from each clone fluctuate from sample to
sample; these fluctuations are significantly larger than those
expected from random small samples (Xu et al., 2018) and thus
arise from intrinsic stochasticity (Abkowitz et al., 1996) during
hematopoiesis and/or physiological changes in the animals over
the months that samples were being drawn.

In order to explain clone size variability, we extend a mathematical
model first presented in (Xu et al., 2018). Our hybrid stochastic-
deterministic model delineates all the clone populations and assumes
regulation of the stem cell proliferation rate through a carrying capacity
K, a finite differentiation potential of progenitor cells, terminal
differentiation after a fixed number of divisions, and a final sampling
step. Since the numbers of HSCs within each clone are typically small, we
treated the self-renewal of HSCs within its niche stochastically by a coupled
(through the carrying capacity) discrete birth-death process for each clone.
In (Xu et al., 2018), the coupling in the stochastic HSC birth-death process
was treated using a mean field approximation, which leads to a smaller
clone size variability, everything else equal. Random times of asymmetric
differentiation of eachHSC into thefirst-stage progenitor cell is described by
a rate α. After L differentiation steps, the Lth-stage progenitor cell terminally
differentiates into a mature, circulating blood cell. The progenitor and
mature cell pools are treated deterministically. We performed stochastic
simulations using the Gillespie algorithm (Bortz et al., 1975; Gillespie, 2007)
of the entire HSC pool and solve for the progenitor and mature cell
populations numerically. Additional feedback mechanisms between the
HSC and progenitor pools can be implemented (Klose et al., 2019), but in
our case would require a more complex model incorporating two-way
coupling between stochastic and deterministic dynamics.

Our model suggests that the sampled clone abundance variation arises
primarily from random differentiation events by HSC clones that occur at
rate α. Each differentiation event leads to a temporal burst of mature cells of
the same clone. We hypothesize that these bursts of mature cell production
lead to the variability in sampled clone populations. Other physiological
factors related to animal state may still also play a role, but are not
considered in our model. Another feature captured by our current
model is the transient richness immediately after transplantation. This
behavior is explained by our initial condition that contains short-term
HSPCs that are within the initial CD34+ pool. These HSPCs quickly
differentiate but are not replenished at long times. This distributed
initial condition may depend on the experimental protocol and may be
indicative of the efficiency, and especially, the composition of the transplant.

Our model also allows us to explore how clone abundance predictions
change with parameters. For example, we find that the range of larger clone
sizes increase with increases in L, K, and α, in this order. All parameters
affect the density of predicted data and cluster sizes. Mature cell death rates,
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which vary across different cell types, also affect the predicted abundance
variations, especially for larger values of μm.

We also note that while percentage of GFP+ cells within each mature
cell type (lineage) fluctuated from sample to sample, they generally increased
with animal age (after transplant) for all animals. T cells had the largest
increase in their barcoded populations during the handful of months after
transplantation. Since this timescale is much longer than the progenitor cell
transients, this slow increase in tagged cell populations suggests that,
assuming a neutral model (barcodes and barcode integration sites do
not affect cell proliferation and death rates), (i) that a certain fraction of
HSCs remained in situ after radiative ablation, and (ii) the CD34+ barcoded
and transplanted HSC population with an enriched GFP+ fraction were
slowly activated. Scenario (i)means that someHSCs remained in their niche
and continuously generated blood. The transplanted cells with barcoded
HSCs (GFP+) can increase in importance if they slowly become more
proliferative as they settle into the animal. Thus, the slow increase in GFP+
fraction in all five measured lineages suggest that transplanted cells may
recover slowly from the transplantation procedure and increase their
contribution to mature blood cell formation.

Finally, we note that there appears to be additional fluctuation
mechanisms that are not accounted for in our model. In all animals,
there appears to be a few very large clones with very high variability σ̂ i.
Within a stochastic HSC population, adjusting birth-death parameters
that allow for larger clones and larger variances would suppress the
richness to below what is observed. We have extensively explored feasible
regimes of all parameters and conclude that allowing large clones that
vary in abundance precludes agreement with other basic observables such
as Ŝ(tj) and Ĉs(tj). Nonetheless, such unexplained features can be
mechanistically informative and we discuss a number of reasonable
factors that may account for them. First, the fluctuations in the
measured total abundances of the different mature cell lineages did
not correlate, implying that the specific set of sampling sizes η(tj) used
to explain granulocyte population variations (as shown in Figure 7)
cannot be used to analyze those of other mature cell lineages. The
seemingly uncorrelated cross-lineage populations imply that time
variations in animal state arise further downstream, affecting the
development of individual lineages. If fluctuations occurred in stem or
multipotent progenitor cells, they would affect multiple cell lineages in
similar ways and lead to inter-lineage population correlations.

Animal ZJ31 (see Supplementary Material) appears to be uniquely
different from the others in that it exhibited a much larger richness
Ĉs(tj) as well as a much smaller maximum clone size (which non-
etheless had high variance σ̂ i). For example, Cs at tj = 5 months dips to
a very low value, while the abundance Ŝ(tj) seems to be at a local
maximum. Thus, a small number of granulocyte clones expanded
dramatically, potentially squeezing out the many smaller clones below
sampling. At month seven, Ŝ is extremely low but Ĉs has recovered to
its long term value, indicating that the previously large granulocyte
clones were quickly cleared out. The results for ZJ31 may indicate a
lower level of competitive exclusion, but also some other mechanism
contributing to high variability. Therefore, the overall observation of
high variability and the magnitudes of Ĉs indicates that other model
features should be considered.

One assumption of our model that is likely an oversimplification
is the neutrality of barcodes. Although different barcodes themselves
may not influence cells, different VISs may. For example, aberrant
self-renewal arises when using lentiviral vectors (Espinoza et al.,
2019) and different VISs of HIV have been shown to affect cellular
proliferation rates (e.g., if the VIS is near an oncogene) Yeh et al.

(2021). Besides the non-neutrality, we have also neglected stochastic
or variable proliferative potential L and the time course of the HSC
homing and engraftment into the bone marrow. A random but
distributed L would allow a few randomly selected clones to expand
further. We also expect that HSC migration and successful
settlement into the bone marrow niche is a time-continuous
process that provide a proliferation head start for a few early
arriving clones. This would ultimately result in fewer clones Cs

with some of them at higher populations si(t). An instantaneous
(more abrupt) HSC engraftment and a larger spread in L would be
more consistent with animal ZJ31 than with the others.

Additional information canbe extracted from the clone abundance data
to further identify and interrogate such “opposing” behaviors. For example,
we have only considered the average autocorrelation of the clone
abundances (the variance) and have not constructed cross-correlations
between cell types/lineages or correlations across time. Except for the initial
period after transplantation, we have assumed a time-inhomogeneous
process and have not considered explicit time-dependence such as aging
(Muller-Sieburg et al., 2012; de Haan and Lazare, 2018). Physiological aging
can be straightforwardly incorporated by e.g., allowing for slow degradation
of HSCs, changes in progenitor proliferative potential (Marciniak-Czochra
et al., 2009), or changes inHSC niche carrying capacityK(t).Mutations that
arise with age may also increase HSC self-renewal (Challen and Goodell,
2020) which could be modeled by a rh(0) that increases with time. Thymic
interruptions or involution with age (Lewkiewicz et al., 2019a,b) could also
be modeled by assuming a decreasing maturation rate ω(t) when
considering the T cell lineage.

While our current model contains a large number of parameters, it
seems that a number of them are compensatory and control specific
properties of the model predictions. For example, we found that α, L, ω,
and η can compensate for each other and form an unknown effective
parameter function f(α, L, ω, η). This feature effectively reduces overfitting
and might be better analyzed using machine learning methods.
Incorporating the more realistic mechanisms discussed above would
yield additional effective parameters allowing the model to more
accurately reproduce the measured quantities; nonetheless, intermittent
differentiation of HSCs remains the key proposed mechanism for
understanding intersample clone abundance variations.
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