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Abstract: Amino acid transporters play an important role in cell growth and metabolism. MeAIB,
a transporter-selective substrate, often represses the adaptive regulation of sodium-coupled neutral
amino acid transporter 2 (SNAT2), which may act as a receptor and regulate cellular amino acid
contents, therefore modulating cellular downstream signaling. The aim of this study was to
investigate the effects of MeAIB to SNAT2 on cell proliferation, protein turnover, and the mammalian
target of rapamycin (mTOR) signaling pathway in porcine enterocytes. Intestinal porcine epithelial
cells (IPEC)-J2 cells were cultured in a high-glucose Dulbecco’s modified Eagle’s (DMEM-H) medium
with 0 or 5 mmoL/L System A amino acid analogue (MeAIB) for 48 h. Cells were collected for
analysis of proliferation, cell cycle, protein synthesis and degradation, intracellular free amino acids,
and the expression of key genes involved in the mTOR signaling pathway. The results showed
that SNAT2 inhibition by MeAIB depleted intracellular concentrations of not only SNAT2 amino
acid substrates but also of indispensable amino acids (methionine and leucine), and suppressed cell
proliferation and impaired protein synthesis. MeAIB inhibited mTOR phosphorylation, which might
be involved in three translation regulators, EIF4EBP1, IGFBP3, and DDIT4 from PCR array analysis
of the 84 genes related to the mTOR signaling pathway. These results suggest that SNAT2 inhibition
treated with MeAIB plays an important role in regulating protein synthesis and mTOR signaling,
and provide some information to further clarify its roles in the absorption of amino acids and signal
transduction in the porcine small intestine.

Keywords: sodium-coupled neutral amino acid transporter 2; mTOR; protein turnover; porcine
enterocytes

1. Introduction

Amino acid transporters are membrane transport proteins; their major role is transporting amino
acids and modulating gene expression and the signal transduction pathway by sensing amino acid
levels [1]. The SLC38 family of transporters represents a main branch of solute carrier families in
mammals, and the transporters can be subdivided into two groups, namely system A and system
N [2,3]. Sodium-coupled neutral amino acid transporter 2 (SNAT2) has a very broad tissue distribution
profile and is characterized as a system A transporter, which plays various roles in different tissues
and has dual transport/receptor functions [4,5]. α-Methylaminoisobutyric acid (MeAIB), a system A
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substrate, suppresses the expression of SNAT2 in cells and has been used as a means of inhibiting the
uptake of natural system A substrates [2].

SNAT2 is well documented in human cancer cells and skeletal muscle myoblast cells. Currently it
has been demonstrated to sense intracellular anabolic amino acid levels and then regulate the amino
acid signaling pathways influencing protein turnover and cell growth [4–8]. Several studies showed
that SNAT2 has a low level of expression in complete media, but its activity could be enhanced
by withdrawing amino acids, which provide evidence of SNAT2’s ability to regulate amino acid
homeostasis as a transporter [9,10]. Potential regulatory mechanisms of SNAT2 in amino acid nutrition
has demonstrated it is involved in eukaryotic initiation factor 2 phosphorylation, increased gene
transcription, and internal ribosome entry site-mediated translation [9,10]. The intestinal porcine
epithelium comprises a large surface area lined by a single layer of columnar intestinal epithelial cells
with the expression of a variety of transporters in apical and basolateral membranes; these transporter
proteins play complex and interactive roles in controlling the absorption and metabolism of amino
acids [11,12]. We have previously cloned and described the SNAT2 gene in the small intestine of piglets,
which is highly evolutionarily conserved in humans [4]. This study was conducted to investigate the
role of the SNAT2 transporter after the addition of MeAIB in cell growth, protein turnover, and its
related mTOR signaling in the intestinal porcine epithelial IPEC-J2 cells.

2. Results

2.1. SNAT2 Inhibition Decreased Cell Growth and Intracellular cAMP Concentration in IPEC-J2 Cells

Immunoblotting of IPEC-J2 treated with MeAIB caused a significant decrease in SNAT2 expression
(p < 0.05). mTOR phosphorylation was more strongly inhibited compared with the control group
(p < 0.05) (Figure 1). There was no change in total mTOR abundance.
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Figure 1. MeAIB induces the inhibition of SNAT2 and mTOR phosphorylation in IPEC-J2 cells. Data
are expressed as mean ± Standard Deviation (SD), n = 4 independent experiments. * p < 0.05 versus
control treatment.

MeAIB significantly reduced IPEC-J2 cell growth, reaching statistical significance at two days
post-MeAIB addition (p < 0.05) (Figure 2A). IPEC-J2 cells were subjected to cell cycle analysis using
flow cytometry after treating with MeAIB for 48 h, and Figure 2B showed that the number of cells in
the G1 phases increased and the proportion of cells in the G2 and S phases substantially decreased
(p < 0.05).



Int. J. Mol. Sci. 2018, 19, 714 3 of 9

The intracellular cGMP level of IPEC-J2 treated with MeAIB did not show a significant effect
(p > 0.05); by contrast, the cells displayed a significantly lower concentration of cAMP when cultured
in the presence of MeAIB, compared with the control group (Figure 2C,D).

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  3 of 10 

 

The intracellular cGMP level of IPEC-J2 treated with MeAIB did not show a significant effect (p 
> 0.05); by contrast, the cells displayed a significantly lower concentration of cAMP when cultured in 
the presence of MeAIB, compared with the control group (Figure 2C,D). 

 

Figure 2. Effects of MeAIB on cell proliferation (A), cell cycle (B), intracellular cAMP (C), and cGMP 
(D) concentrations in IPEC-J2 cells. Cell proliferation was determined using the Cell Counting Kit-8 
(CCK-8, Dojindo Molecular Technologies, Inc., Rockville, MD, USA) at 450 nm. Cell cycles were 
analyzed using propidium iodide DNA staining and Flow Cytometry. Intracellular cAMP and cGMP 
were determined by immunoassay. Data are expressed as mean ± SD, n = 4 independent experiments. 
* p < 0.05 versus control treatment. 

2.2. MeAIB Affects Protein Synthesis, but Not Degradation in IPEC-J2 Cells 

Addition of MeAIB to the culture medium resulted in a decrease of (3H)-phenylalanine 
incorporation in proteins, which reduced the isotope uptake by approximately 30% (Figure 3A) (p < 
0.05) compared with the control group, while there was no significant effect on protein degradation 
(p > 0.05) (Figure 3B). 

2.3. Involvement of MeAIB in Decreasing Amino Acid Transport 

The inhibition of total expression of the SNAT2 protein (approximately 50%) by MeAIB led to a 
significant reduction of some intracellular amino acids, including L-Glu 5.7-fold, L-Pro 2.67-Fold, L-
Met 2.65-fold, L-Ser 2.31-fold, L-His 2.45-fold, L-Gly 2.30-fold, L-Asp 1.88-fold and L-Leu 1.22-fold (p 
< 0.05). There were no effects on other amino acids (Table 1). 

Figure 2. Effects of MeAIB on cell proliferation (A), cell cycle (B), intracellular cAMP (C), and cGMP (D)
concentrations in IPEC-J2 cells. Cell proliferation was determined using the Cell Counting Kit-8 (CCK-8,
Dojindo Molecular Technologies, Inc., Rockville, MD, USA) at 450 nm. Cell cycles were analyzed using
propidium iodide DNA staining and Flow Cytometry. Intracellular cAMP and cGMP were determined
by immunoassay. Data are expressed as mean ± SD, n = 4 independent experiments. * p < 0.05 versus
control treatment.

2.2. MeAIB Affects Protein Synthesis, but Not Degradation in IPEC-J2 Cells

Addition of MeAIB to the culture medium resulted in a decrease of (3H)-phenylalanine
incorporation in proteins, which reduced the isotope uptake by approximately 30% (Figure 3A)
(p < 0.05) compared with the control group, while there was no significant effect on protein degradation
(p > 0.05) (Figure 3B).

2.3. Involvement of MeAIB in Decreasing Amino Acid Transport

The inhibition of total expression of the SNAT2 protein (approximately 50%) by MeAIB led to
a significant reduction of some intracellular amino acids, including L-Glu 5.7-fold, L-Pro 2.67-Fold,
L-Met 2.65-fold, L-Ser 2.31-fold, L-His 2.45-fold, L-Gly 2.30-fold, L-Asp 1.88-fold and L-Leu 1.22-fold
(p < 0.05). There were no effects on other amino acids (Table 1).
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Figure 3. Effect of IPEC-J2 cells’ incubation with MeAIB on protein synthesis (A) and degradation (B).
Protein synthesis (nmol Phe/mg) and protein degradation (%) measured using (3H) labeled
phenylalanine. Data are expressed as mean ± S, n = 4 independent experiments. * p < 0.05 versus
control treatment.

Table 1. Intracellular free amino acid profile of IPEC-J2.

AA (µmol/mg Protein) Control MeAIB p-Value

Alanine 0.956 ± 0.011 0.932 ± 0.011 0.169
Arginine 1.139 ± 0.035 1.049 ± 0.035 0.121

Asparagine 0.064 ± 0.004 0.034 ± 0.005 0.003
Glutamine 0.599 ± 0.033 0.105 ± 0.002 <0.001
Glutamate 1.704 ± 0.033 1.785 ± 0.076 0.365

Glycine 3.621 ± 0.098 1.571 ± 0.057 <0.001
Histidine 0.302 ± 0.007 0.123 ± 0.011 <0.001
Isoleucine 0.131 ± 0.015 0.343 ± 0.017 0.221
Leucine 0.946 ± 0.050 0.774 ± 0.036 0.031
Lysine 1.616 ± 0.023 1.686 ± 0.047 0.235

Methionine 0.061 ± 0.001 0.023 ± 0.003 <0.001
Phenylalanine 0.262 ± 0.018 0.260 ± 0.014 0.108

Proline 0.679 ± 0.040 0.254 ± 0.020 <0.001
Serine 2.693 ± 0.045 1.162 ± 0.048 <0.001

Threonine 0.859 ± 0.013 0.905 ± 0.033 0.244
Tryptophan 0.071 ± 0.003 0.078 ± 0.004 0.215

Tyrosine 0.025 ± 0.002 0.026 ± 0.003 0.719
Valine 0.135 ± 0.010 0.130 ± 0.011 0.74

Taurine 0.293 ± 0.023 0.301 ± 0.004 0.758

2.4. Evaluation of Transcriptional Expression of Genes Related to mTOR Signaling Pathway in IPEC-J2 Cells

Among the 84 simultaneously detected genes related to the mTOR signaling pathway, 21 exhibited
significant changes in expression (Table 2). The level of expression of 11 genes, including AKT1,
RPS6KA4, DDIT4, EIF4EBP1, IGFBP3, INS, PIK3CG, PRKCB, RPS6KA1, RPTOR, and ULK1, was
upregulated, with most of them belonging to the mTOR upstream regulator and having the role of both
positive and negative regulation. In contrast, 10 genes, CAB39, DDIT4L, IRS1, KRAS, PIK3R2, RPS6KA5,
VEGFB, RRAGA, VEGFC, and YWHAQ, were significantly downregulated in IPEC-J2. Four of them
are not translation regulators for mTOR, and for the other six regulated genes (CAB39, IRS1, VEGFB,
RRAGA, VEGFC, and YWHAQ), three of them (IRS1, RRAGA, and YWHAQ) existed mTOR upstream
and three were located on the mTOR downstream.
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Table 2. Transcriptional expression profiles of mTOR signaling-related genes in IPEC-J2.

Genes Fold Change p-Value The Role of Regulation Description

RPS6KA4 1.651 0.042 mTOR Upstream Regulators for
mTORC1 Positive Regulation Ribosomal protein S6 kinase α-4-like

DDIT4 1.625 0.002 mTOR Upstream Regulators for
mTORC1 Negative Regulation DNA-damage-inducible transcript 4

EIF4EBP1 1.509 0.044 mTOR Downstream Effectors for
mTORC1 Negative Regulation

Eukaryotic translation initiation factor
4E binding protein 1

IGFBP3 1.968 0.014 mTOR Upstream Regulators for
mTORC1 Negative Regulation

Insulin-like growth factor binding
protein 3

INS 1.875 0.034 mTOR Upstream Regulators for
mTORC1 Positive Regulation Insulin

PIK3CG 2.194 0.062
mTOR Upstream Regulators for

mTORC1 and mTORC2
Positive Regulation

Phosphoinositide-3-kinase, catalytic,
gamma polypeptide

PRKCB 2.179 0.01 mTOR Downstream Effectors for
mTORC2 Positive Regulation Protein kinase C, β

RPS6KA1 2.915 0.012
mTOR Upstream Regulators for

mTORC1 and mTORC2
Positive Regulation

Ribosomal protein S6 kinase, 90 kDa,
polypeptide 1

RPTOR 1.533 0.001 mTORC1 Complex

ULK1 1.58 0.002 mTOR Downstream Effectors for
mTORC1 Negative Regulation Unc-51-like kinase 1 (C. elegans)

CAB39 −1.95 0.001 mTOR Upstream Regulators for
mTORC1 Negative Regulation Calcium binding protein 39

DDIT4L −1.905 0.02 mTOR Upstream DNA damage-inducible transcript
4-like protein-like

IRS1 −2.561 <0.001 mTOR Upstream Regulators for
mTORC1 Positive Regulation Insulin receptor substrate 1

KRAS −1.602 0.034 mTOR Upstream GTPase KRas-like

PIK3R2 −1.598 0.011 mTOR Upstream Phosphoinositide-3-kinase,
regulatory subunit 2 (β)

RPS6KA5 −2.129 0.001 mTOR Upstream Ribosomal protein S6 kinase, 90 kDa,
polypeptide 5

VEGFB −1.941 0.001 mTOR Downstream Effectors
formTORC1 Positive Regulation

Vascular endothelial growth
factor B-like

RRAGA −1.790 0.002 mTOR Upstream Effectors for
mTORC1 Positive Regulation Ras-related GTP binding A

VEGFC −1.628 0.012 mTOR Downstream Effectors for
mTORC1 Positive Regulation

Vascular endothelial growth factor
C-like

YWHAQ −1.77 0.003 mTOR Upstream Regulators for
mTORC1 Negative Regulation

Tyrosine
3-monooxygenase/tryptophan

5-monooxygenase activation protein,
theta polypeptide

3. Discussion

Amino acids not only serve as precursors for the synthesis of many biologically important
proteins, but have also been known to have powerful regulatory effects on cellular function [13,14],
while amino acid transporters are primarily responsible for the translocation of amino acids by sensing
the concentration of both extracellular and intracellular fluid. MeAIB has been used to elucidate the
function of SNAT2 in human cells and significantly inhibits SNAT2 expression in IPEC-J2 cells that
had 92% homology with human cells [4]. In the present study, we found that the addition of a 5 mM
dose of MeAIB could better inhibit the SNAT2 that has more than 50% inhibition efficiency, while it has
minimized the non-specificity that SNAT analogs and PAT1 show less than 20% inhibition efficiency
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compared with control group in this porcine cell line. The results suggest that suppression of SNAT2
in IPEC-J2 cells reduced cell proliferation, which was also supported by G1 arrest and the decrease in
protein synthesis. Furthermore, we demonstrated that the cyclic AMP [15], an intracellular secondary
messenger molecule involved in many signal transduction cascades, experienced a significant decrease
in IPEC-J2 treated with MeAIB. In order to further explore the underlying reason, competitive inhibition
of SNAT2 by MeAIB treatment led to a substantial reduction in the intracellular concentrations of
neutral amino acids including key intermediary metabolites (glutamine, serine, and proline) as well as
the indispensable amino acids methionine and leucine, which is consistent with previous reports that
SNAT2—and not just SNAT2 substrates—also exerts an indirect effect in humans [2]. For L-alanine,
the preferred naturally occurring substrate for SNAT2, there are no significant differences compared
with MeAIB group. The reason is probably due to the lack of L-Ala in the culture medium. On the
whole, the control group showing slightly higher levels might be due to the effect of 10% serum.
We concluded that SNAT2 inhibition by the addition of MeAIB strongly impaired intracellular amino
acid profiles and led to the inhibition of protein synthesis and cell growth.

The role of amino acid transporters in the regulation of the signaling pathway is now a
well-established model in mammalian cells. The data in Figure 1 suggest that the level of SNAT2
inhibition had significant effects on mTOR phosphorylation. Such situations are likely attributable to
the reduction of intracellular amino acids that could regulate the mTOR pathway by protein complexes
composed of Rags, Ragulator, v-ATPase, GATOR, and folliculin [16–18]. Analysis of the genes related
to the mTOR signaling pathway by an RT2 Profiler PCR Array system indicated that all 84 genes,
including 21 differential genes, experienced just a slight change, 2.9-fold maximum, in the mRNA
level. These results could suggest that total mRNA expression level may not play an important role
in mTOR regulation in amino acid transporters because mTOR coordinated eukaryotic cell growth
and metabolism with environmental inputs, including amino acid and growth factors, as primarily
reflected by the state of phosphorylation, such as RAG GTPases for amino acids [19] and Tuberous
Sclerosis Complex 1/2(TSC1/2) for growth factors [20]. When we further researched some of the
differential genes with transcription factor function, we found that three mTOR-related genes with a
negative effect, including EIF4EBP1 [21], a translation repression protein, IGFBP3 [22], which binds
insulin-like growth factors with high affinity, and DDIT4 [23], which is activated by certain stresses,
have been upregulated, consistent with the inhibition of mTOR phosphorylation and cell growth.

Although MeAIB was often used for a system A substrate to suppress the expression of SNAT2
in cells and study its function, there are some limitations on specificity, such as that MeAIB has
been reported to inhibit other SNAT analogs and PAT1 [24,25]. The real-time PCR analysis of other
transporters has provided a suitable concentration to research SNAT2, but it cannot totally clarify the
SNAT2 function. Currently, we are trying to establish the SNAT2 knockout cell line and hope it will
help us to further elucidate SNAT2 function.

4. Materials and Methods

4.1. Antibodies and Reagents

Methylaminoisobutyrate (MeAIB) was purchased from Sigma. (3H)-Phenylalanine was provided
by American Radiolabeled Chemical, Inc. (St. Louis, MO, USA); Rabbit anti-SNAT2, β-actin, p-mTOR,
and mTOR were obtained from Cell Signaling Technology (Danvers, MA, USA).

4.2. Cell Culture and Treatment

IPEC-J2 were grown in a high-glucose Dulbecco’s modified Eagle medium (DMEM) (Hyclone,
South Logan, UT, USA) containing 10% fetal bovine serum (Gibico, Gaithersburg, MD, USA) and 1%
antibiotic solution (P/S) Sigma-Aldrich(St Louis, MO, USA) at 37 ◦C in a 5% CO2 incubator. After an
overnight incubation, cells were incubated in a medium containing 0 or 5 mmoL/L System A amino
acid analogue (MeAIB) for 48 h.
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4.3. Cell Proliferation and Cycle Assays

Proliferation of IPEC-J2 was evaluated using a CCK-8 assay (Dojindo Laboratories, Kumamoto,
Japan), based on the cleavage of the tetrazolium salt WST-8 by chondrial dehydrogenase in viable cells.
After culture in 0 or 5 mmoL/L MeAIB medium for 2 h, 10 µL CCK-8 (5 mg/mL) was added to 96-well
plates. After 2 h incubation at 37 ◦C, the absorbance at 450 nm of each well was measured using a
Thermomax microplate reader.

For cycle assay, IPEC-J2 cells in a six-well plate were harvested after MeAIB treatment, washed
with cold PBS, and fixed with ice-cold 70% ethanol for least 24 h. The cells were washed twice with
PBS by centrifuging at 1500 rpm for 10 min, and then treated with 5 µg/mL RNase A (Sigma) for 1 h at
37 ◦C, stained with 25 µg/mL of propidium iodide (PI), and analyzed in a flow cytometer.

4.4. Determination of Protein Synthesis and Degradation

Protein synthesis was assayed by measuring the incorporation of (3H)-Phenylalanine into cell
proteins as described previously [12]. IPEC-J2 cells in 10-cm dishes were incubated for 45 h in DMEM
with MeAIB (0 or 5 mmoL/L), and then replaced with DMEM with (3H)-Phenylalanine (0.8 µCi per
well, sp. act. 120–190 Ci/mmoL) for 3 h. Cells were washed with PBS three times and proteins were
precipitated by the addition of ice-cold 2% (v/v) trichloroacetic acid for 10 min, followed by washing
and incubation with methanol for 10 min. The cellular material was then solubilized in 1 M NaOH
and incorporation of (3H)-Phenylalanine was quantified using liquid scintillation spectrometry.

For determining protein degradation, IPEC-J2 cells were cultured for 48 h in DMEM containing
0.1 mM L-phenylalanine plus (3H)-phenylalanine (0.8 µCi/well). After the 24-h culture to label cellular
proteins, cells were washed three times with DMEM containing 1 mM L-phenylalanine and to deplete
intracellular free (3H)-phenylalanine. The IPEC-J2 was then cultured for 3 h in 2 mL DMEM with
1 mM L-phenylalanine and MeAIB (0 or 5 mmoL/L). At the end of a 3-h culture period, both medium
and cells were collected and determined as performed above. The percentage of protein-bound
(3H)-phenylalanine released into culture medium ((3H)-phenylalanine in medium / (3H)-phenylalanine
in cell proteins × 100) was calculated to indicate protein degradation in IPEC-1 cells.

4.5. Analysis of Intracellular Free Amino Acids, cAMP, and cGMP

IPEC-J2 cells were cultured in DMEM with MeAIB (0 or 5 mmoL/L) in 6-well platesfor 48 h.
The cells were rapidly chilled on ice, rinsed three times with ice-cold 0.9% (w/v) NaCl, and
collected by scraping. Amino acids were determined on an Agilent 1100 high-performance liquid
chromatography system with Zorbax Eclipse AAA column (4.6 × 75 mm, 3.5 µm) at 40 ◦C with
o-phthalaldehyde/3-mercaptopropionate/9-fluorenylmethyl chloroformate precolumn derivatization
and ultraviolet and fluorimetric post column detection.

The Intracellular cAMP and cGMP were detected by immunoassay (Catalog #K371-100, Catalog
#K372-100, BioVision, Milpitas, CA, USA) in accordance with the instructions.

4.6. Protein Extraction, SDS-PAGE, and Immunoblotting

IPEC-J2 cells were treated with MeAIB in six-well plates for 48 h. All samples were lysed for
10 min in ice-cold lysis buffer with a complete protease inhibitor cocktail. Immunoblotting assays were
performed as described previously [26].

4.7. RT2 Profiler PCR Array Tests

A custom RT2 Profiler PCR Array (Qiagen, Hilden, Germany, Cat. no. 330231) was used to
simultaneously detect numerous genes related to the mTOR signaling pathway. Total RNA was
isolated from IPEC-J2 cells treated with MeAIB using TRIzol Reagent (Life Technologies, Carlsbad, CA,
USA) and quantified with Nanodrop 2000 (Thermo Fisher Scientific, Waltham, MA USA). Total RNA
(2 µg) was reverse-transcribed in a final volume of 20 µL with an RT2 First Strand Kit. The RT2 Profiler
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PCR Array tests were performed following the instructions of the manufacturer. The exported Ct
values were input to a template Excel file provided by SABiosciences (Qiagen) and uploaded for online
analysis. After data review, qualified data from 35 CMT and 5 NMGT samples were analyzed by
applying the 2 −∆∆Ct method.

4.8. Statistical Analysis

All data were expressed as mean ± standard deviation from at least three independent
experiments. A one-way ANOVA with Tukey’s post hoc test was performed for analysis of the
fold changes of genes in the RT2 Profiler PCR Array test results. A significant difference was expressed
as * p < 0.05, while a highly significant difference was expressed as ** p < 0.01.

5. Conclusions

The major function of small-intestinal epithelium acts as digestion and absorption of nutrients,
while amino acid transporters have a role in as sensors, as well as carriers, of tissue nutrient supplies.
Understanding the relationship between intestinal nutrient absorption and intestinal amino acid
transporters could help us to improve digestive systemfunction. Our work indicated that the role of
SNAT2 in porcine intestinal epithelial cells was in translocating amino acids and supporting efficient
proliferation and development in the mTOR pathway by regulating some transcription factors, which
provide insight to nutritional regulation and therapy.
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Abbreviations

SNAT2 Sodium-coupled neutral amino acid transporter 2
mTOR Mammalian target of rapamycin
IPEC Intestinal porcine epithelial cells
MeAIB System A amino acid analogue
DMEM-H High-glucose Dulbecco’s modified Eagle’s
cAMP Cyclic adenosine monophosphate
cGMP Cyclic guanosine monophosphate
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