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Introduction 

Most of the equilibrium traffic assignment models used nowadays, 

are based on aggregate link performance functions. These flow-delay 

functions represent a crude abstraction of real dependence of 

travel time on actual traffic volumes and physical conditions of 

the transportation network elements. These link performance 

functions reflect the travel impedance associated with the links 

and intersections. In many applications, especial those which are 

concerned with detailed microscopic traffic analysis, the perfor

mance of these simplified flow-delay relationship might be too 

crude and thus unsatisfactory. When such analysis is desired, 

detailed flow-delay models, or simulation models, have to be used. 

Furthermore in many investigations different levels of detail are 

necessary for various components of the network. The flow-delay 

characteristics of some network elements can be represented by 

crude aggregate relations while other elements need to be repre

sented in great detail and accuracy. When some, or all, of the 

network elements are not represented by mathematically defined 

flow-delay function it becomes very difficult to solve for user 

equilibrium in a transportation network. Similar difficulties might 

arise in the investigation of system optimum of transportation, 

communication or other networks. 

In the framework of this work, a traffic assignment model is 

developed that can be based on functions, whose exact mathematical 

form is not known. The proposed solution method applies to steady 

state network flow problems. This solution will be valid as long as 

the flow-delay curve is non deceasing when traffic flow increases. 

The flow-delay function can be numeric pointwise function or a set 

of simulation-generated values. The empirical analysis and 

derivation of the proposed solution methods follows the user 

equilibrium, traffic assignment model, developed by Leblanc [7]. 
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Link Performance Functions 

When solving for equilibrium assignment, one has to pay attention 

to how the travel time is related to traffic volume and to other 

characteristic. Most of these flow-delay models are based on crude 

and aggregate relationships, and represent, therefore, only in an 

approximate and coarse manner real traffic flow conditions. 

The equilibrium assignment model requires that these flow-delay 

curves satisfy a number of properties: 

* The function should be monotone and non-decreasing. 

* The function should be continuous and differentiable. 

* The function must be defined for oversaturated regions 

(during the assignment process, some links will be loaded with 

more traffic than its capacity). 

The last property is necessary when solving transportation 

networks, because inherently non steady state problems are solved 

as if steady state conditions prevail. Thus, temporal delays on 

network elements, which experience demand higher than capacity, are 

implicitly accounted for by the oversaturated region of the flow

delay function. A number of authors have suggested functional forms 

for flow-delay relationships. Ortuzar [ 8] review some of these 

flow-delay curves: 

1. The Detroit Study: 

(1) 

where t is the travel time, t 0 is the free flow travel 

time, X is the flow, and C is the link's capacity. 

2. The Bureau of Public Roads in the USA proposed the most 

common function: 
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(2) 

where a and Bare parameters for calibration 

3. A function that is asymptotic to a capacity flow was 

proposed by Davidson [5] based on queuing theory consid

erations: 

t= t 0[1 +J ~] c-x 

where J is a parameter of the model. 

(3) 

4. When dealing with signalized networks other functions 

have to be employed. Almost any model that relates delay 

caused to the traffic flow, to traffic signal parameters 

(cycle length, effective green time, saturation flow) can 

be employed. One of the most frequently used delay models 

is due to Webster [13]: 

d= c(l-l)2 + y2 -0.6s(xc2)1/3y2+s.\ 
2 (1-ly) 2x(l-y) 

(4) 

where d average delay per vehicle 

C cycle time 

l proportion of the cycle which is effec-

tively green (g/c) 

X traffic flow 

s saturation flow 

y the degree of saturation. 

Webster's model does not apply in oversaturated condi

tions when y=>l. 

5. Akcelik [ 2 J developed an improved traffic delay model for 

signalized intersections. This model is valid for 

udersaturated as well as oversaturated conditions: 

where notation is as above with the following additions: 
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d= O.Sc(l-A)2 +900fyJ(y+l)+ I (y-1)2+m(y-yo) l 
1-Ay '1 ~ QT 

(5) 

T flow period in hours 

Q capacity in vehicles per hour 

m, n calibration parameters 

Yo the degree of saturation below which the 

second term in equation ( 5) is zero. 

Some of the models shown above are not defined when flow exceeds 

capacity. Davidson's model and Webster's (Equations (3) and (4)) do 

not work in the oversaturation region. These two models are 

asymptotic functions, meaning that they generate infinite travel 

time, when flow is equal or greater than capacity. 

It should also be noted that all of the above models include only 

a limited number of variables and are therefore not realistic 

enough for congested urban areas. In order to obtain more realistic 

assignments, the delay models involved must be improved, and 

expanded to handle many network elements such as nonsignalized 

intersections, weaving and merging sections on freeways etc. In 

order to overcome the disadvantage of using an incomplete set of 

empiric and aggregate delay functions, some assignment models use 

fine scale simulation of the delays. These delays are then used by 

the assignment model. At present, a common characteristic of such 

models is an iterative loop between a curve fitting phase of flow

delay functions based on simulation results and a traditional 

assignment phase. The curve fitting phase is quite complex, 

requiring a lot of computer time, memory and storage space, to 

generate the estimated flow-delay curves. Those curves are used in 

a complete traffic assignment procedure. Based on the assignment 

results a new iteration of the curve fitting procedure is performed 

and so on until the process hopefully converges. The problem with 

this process is that in many cases we have no a priori information 
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about the shape of the flow-delay curve, and have no assurance that 

the chosen form represents actual behavior, and will converge to 

the correct solution. 

The present paper presents a new assignment methodology which 

integrates simulation with conventional equilibrium assignment. 

This method overcomes some of the drawbacks of the existing 

methods. It does not assume any functional form of the flow-delay 

relations, and uses efficiently memory and storage resources. The 

proposed method iterates between simulation and assignment steps 

however, convergence of the assignment procedure is reached only 

once in the proposed process. 

Simulation and Assignment 

A number of assignment models that are based on flow-delay values 

obtained from simulation programs have been developed. Their common 

characteristic is an iterative loop between the simulation and 

curve fitting phase on one hand and a whole converged assignment 

phase on the other. This iterative process is repeated until some 

convergence criterion is satisfied. It is worth noting that no 

convergence can be warranted by means of such an algorithm. An 

other disadvantage of these algorithms is that they repeatedly 

perform to completion a number of equilibrium assignment proce

dures. A brief description of two of such models will be presented 

in the following paragraphs. 

The SATURN Model 

SATURN [ 6] ( Simulation and Assignment of Traffic to Urban Road 

Networks) is a computer model developed at the Institute for Tran

sport Studies, University of Leeds, for the analysis and evaluation 

of traffic management schemes. 
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SATURN uses two sub-models in order to achieve "realistic" 

assignments [12]. The first one is a TRANSYT type simulation model 

based on the use of cyclic flow profiles to represent the movements 

of platoons of vehicles over a network. It needs information about 

the flow on each link of the network to estimate capacity, queues 

and delays. Therefore, an assignment model is required to load a 

trip matrix onto the network and obtain an estimate of these flows. 

This is achieved through an separate assignment model. The link 

between these two models is through the flow delay curves as shown 

in Figure 1. 

Network Data--a;..~ Simulation 

l I 

New Link Flows Flow-Delay Curves 

, 

Assignment ..... ..:;1---- Trip Matrix 

Figure 1: The Simulation and Assignment Phases of SATURN 

The objective of the simulation phase is to generate flow-delay re

lationships from a given pattern of traffic flows in a network. 

These flow-delay curves are obtained by calculating the delays for 

each movement at zero flow, current flow (results of the last 

assignment procedure) and capacity with all other flows (i.e. 

opposing traffic) fixed. With these three points a flow-delay 

curve, that take the form of a polynomial, is fitted: 
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{ 

d
0
+axn 

d(x} = T(x-C} 
d ( C} + -'--2-C----'-

x<C 

Otherwise 
(6) 

where: d(x) average intersection delay experienced by traffic 

flow x 

C turn capacity 

d0 delay at o flow 

a, n parameters 

T duration of the simulation period 

The iterative process continues until the turning movements reach 

reasonable stable values (i.e. the flow patterns are similar in two 

consecutive iterations) • It must be noted that ultimate convergence 

to stable values is difficult [6]. 

Other Models 

Stephanedes [11] developed a simulation-assignment model based on 

an iterative feedback loop between an assignment and a simulation 

phase. The assignment phase distributes trips to the network and 

the simulation phase provides detailed information about the 

network performance given its geometric and operational character

istics. Like in the SATURN model, the loop terminates when the 

travel times of the links between two successive iterations reach 

reasonably stable values. 

The objective of the simulation phase is to provide detailed 

information about link travel times resulting from a given traffic

flow pattern. This information includes a significant number of 

<flow>, <delay> points used in a statistical estimation of volume

delay curves. These fitted delay curves are used then in the 

assignment phase to distribute flow over the network. 
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Exact Problem Formulation 

For sake of completeness of the presentation we start with a 

concise derivation of the steady state user equilibrium traffic 

assignment problem following Leblanc's [7] work. Next the method 

of successive averages - MSA suggested by Sheffi [ 10] for the 

solution of stochastic assignment is presented. Finally a new 

linearization method is presented and compared to the MSA method. 

Current Equilibrium Assignment Practice 

Beckman et al. formulated the user equilibrium problem (UE) as a 

convex (nonlinear) objective function and a set of linear con

straints. LeBlanc [7] proposed an algorithm to solve this problem 

when the flow-delay functions are fully specified based on the 

Frank-Wolfe method (see Avriel [3]). The steady state UE problem is 

formulated as follows: 

X 

min f(x) =~ J t (w) dw 
1.J 0 

(7) 

st: D(j, s) + L xii=L xjt 
i k -v- i, s 

(8) 

Where t(w) is a flow-delay function, Xijs is the flow on link {ij} 

to destination - s, and D ( j, s) is flow originating at node j 

destined to s. Given x 1 a feasible flow vector ( a flow vector that 

satisfies the conservation of flow equation and the nonnegativity 

of flow constraints), then a first order expansion off(~) around 

x 1 can be written as: 
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foro<0<1 (9) 

A linear approximation to f(y) is to let 0 equal O (this yields a 

linear function in y). Further manipulation of equation (9) and 

removal of all constant terms yields the following objective 

function: 

(LP:) min Vf(x1 )y (10) 

Solving the above LP problem under a set of conservation flow 

constrains, equation (7), yields a solution vector y 1 which is also 

a feasible solution to the original non linear problem equations 

(7) & (8). The direction g=y1-~1 is a good direction to seek a 

decreased value off (see Zangwill [15]). 

Since the feasible region ( determined by the flow conservation 

equations) is convex, each point on the line between ~ 1 and y 1 is 

also feasible. So, to minimize fin the direction g 1 a one dimen

sional problem, 

st: 
(11) 

has to be solved. The optimal step size, a, can be obtained from 

any interval reduction method. Further investigation of the LP 

objective function, equation (10), reveals that: 

So that 

(12) 

Defining cij as t(~ x=xi>, the linear program (LP) can be written 

as: 
min ~ ~ C · ·Y ·8 • LJ LJ l.J l.J 

s ij 

9 
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This program can be minimized by finding the shortest path connect

ing each OD pair and assigning all the flow to it [7,10]. 

The algorithm can be summarized as follows: 

1. Initialization 

Perform All Or Nothing assignment based on tij=tij(0) • This 

yields to flow vector x 1 • Set the iteration counter n to 1. 

2. Update Travel Times 

Update the link travel times ( t .. n=t .. ( x . . n) l.J l.J l.J \;/ a) 

3. Direction Finding 

Perform an All or Nothing assignment with tijn• This yields 

the auxiliary flow vector Yijn 

4. Line Search 

Find a that solves the linear program (see Equation (11)). 

5. Move 

Set X• ,n+l=x, ,n + a (Y· .n-x, ,n) 
l.J l.J n l.J l.J 

6. Convergence Test 

If the convergence criterion is met stop; otherwise go to step 

2. 

Formulation of the Assignment Problem with Pointwise Flow-Delay 

Relationships 

As mentioned earlier, the objective of this work is to develop an 

assignment methodology not based on aggregate and simplified flow 

delay relationships. Let FDM be the delay vector produced by a flow 

delay model with unknown mathematical characteristics or by a 

simulation model: 
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Flow 
Vector 

Flow Delay 
Model 

FDM 

Delay 
Vector-

Figure 2: Example of a Pointwise Flow Delay Model 

When dealing with such a function, it is impossible to evaluate the 

objective function of the following equilibrium assignment problem: 

X 

min f(x) ="£.f FDM(w) dw 
J.J 0 

(14) 

One possibility to overcome this problem is to estimate a new flow 

delay relationship based on the results of the simulation values. 

This approach was adopted by the developers of several solution 

algorithms SATURN [12] being one of them. 

When applying Leblanc's [7] algorithm directly to solve the problem 

of Equation (7) there are two steps of the algorithm which may be 

problematic to solve, (a) the solution of the linear program, 

Equation (10) and (b) the one-dimensional search, Equation (11). 

Assuming that the FDM function represents an underlying continuous 

and nonotonic non decreasing function the LP part of the original 

Leblanc's algorithm can be easily applied. It can easily be shown 

that no problem arises by the use of FDM in the LP problem since 

the term: 

min E (15) 
ijk 

reduces to the following one: 
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minE FDM(xii) Yii 
ijk 

(16) 

The line search step for the optimal move size (Equation (11)) can 

not be solved easily using FDM model. The Line Search step of 

Leblanc's algorithm requires a continuous evaluation of the 

objective function (equation (14)) in order to find its minimum. 

This can not be done since the functions are unknown analytically 

and thus the function's integral is not known. 

Solution Algorithms 

As shown in the previous section the line search step can not be 

implemented directly. At each iteration of the assignment algo

rithm, the new solution xn+l, lies between xn (the old solution) and 

y11. The new point can be calculated as: 

(17) 

Which is equivalent to 

(18) 

of this research the optimum value of a (optimal move size) can 

not be determined using the method proposed by Leblanc, thus 

another linear combination method and has to be applied. Before the 

proposed method is presented, a solution method of successive 

averages - MSA, suggested first by Sheffi [10] is discussed. 

Successive Averages Method 

The method of successive averages (MSA) is based on stochastic 

approximation methods. Stochastic approximation is concerned with 
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the convergence of problems which are stochastic in nature usually 

based on observations which involve errors. Search techniques which 

successfully reach an optimum in spite of the noise have been named 

"stochastic approximation methods" by Robbins and Monroe in 1954 

[ 14] . The term approximation refers, in this context, to the 

continual use of past measurements to estimate the approximate 

position of the "goal", while the term stochastic suggest the 

random character of the function being evaluated. 

The Robbins Monroe procedure places solution point n+l according to 

the solution of point n 

(19) 

where z(x) is a "noisy" function. The method is based on predeter

mined move sizes, a, that has to satisfy the following two 

conditions: 

Lex n .... 00 

n=l (20) 

One of the simplest step-size sequences, that satisfy both 

conditions is the sequence: 

1 a; =
n n 

In general, any sequence such that: 

Kl 
a;=-

n K. +n 
2 

13 

(21) 
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where K 1 is a positive constant and K 2 is a nonnegative constant 

can be used. 

Sheffi [ 10] applied this methodology to solve a probabilistic 

assignment problem. This approach can also be applied to the 

solution of deterministic equilibrium assignment. The whole 

algorithm can be summarized as: 

1 Initialization 

(1) Run the simulation program with an initial flow vector and 

(2) perform an All or Nothing assignment. This yields to flow 

vector x 1 

2 Update Travel Times 

Perform a simulation run with flow vector xn, this yields tijn 

3 Direction Finding 

Perform an All or Nothing assignment with tijn• This yields 
n 

Yij 

4 Next Point 

Find a point xn+l between xn and yn. 

(23) 

Increase iteration counter n. 

5 Convergence Test 

If the convergence criterion is met stop; otherwise go to step 

2. 

The drawbacks of the algorithm with predetermined step sizes is 

that its convergence is very slow, and it is difficult to design 

appropriate convergence criteria [9]. 

The slow convergence of this methodology is not the only problem of 

the Moving Averages Method. The MSA algorithm was applied to solve 

the assignment problem of a network consisting of three links and 

one OD pair ( see Sheffi [ 10] page 114). Figure 3 shows the 
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Figure 3: Convergence Pattern for the Three Link Network 

objective function, z(x), as function of the iteration number. It 

can be seen, that if the assignment procedure is ended after a 

predetermined number of iterations, a solution with bad convergence 

characteristics may be chosen. This occurs due to the fact that the 

convergence of the MSA method is not asymptotic, but it oscillates 

around the approximate solution. Furthermore the MSA method is 

suppose theoretically to converge under certain regularity 

conditions ( Powell & Sheffi [ 9]). However numerical computer 

roundoff errors might be quite significant when the number of 

iterations is high. This errors and the small difference in links 

loads from one iteration to the other when n is high might prevent 

this algorithm to converge to the correct solution. 

Linearization Method 

Due to the drawbacks of the MSA method. A new methodology by means 

of which any FDM function can be used to solve the equilibrium 

traffic assignment was searched. As mentioned in previous sections, 

a number of methodologies exist which take the delay values from 

simulation models. A simulation model can be considered a FDM 

function. We can obtain the delay of traffic on any link or turn 
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movement on the network for a given traffic flow pattern. But it is 

impossible to do further mathematical manipulations on the relation 

between flow and delay. 

The proposed method is based on a linear approximation of the real 

flow-delay function. At each iteration of Frank-Wolfe's algorithm 

we generate a new flow-delay pair for each network element and 

calculate a straight line which paths through the previous flow

delay pair and the present one. For errorless FDM function this 

straight line will always be a non decreasing function with volume. 

the succession of this straight lines and Frank-Wolf iterations are 

the basic iterations of the proposed algorithm. Theoretically it is 

possible to fit a curve based on all the flow-delay pairs obtained 

during the assignment process. This is, however, a cumbersome work 

which requires large storage space and its advantage is not clear 

when the actual shape of the FDM function is not known. Therefore 

we chose the simplest of all approximations, the linear one. At 

each iteration of Frank-Wolfe's algorithm, only two 

(<flow>, <delay>) pairs are considered. At iteration n of the 

algorithm the straight line defining the present flow-delay 

relationships is based on the :xn-1 and :xI2 values. the practical 

implication of this approach is that at any point in the algorithm 

only one set of <flow>, <delay> points needs to be stored. An 

example of linear relationship at each iteration are presented in 

Figure Figure 4. 

Mathematically the linear flow-delay relations can be expressed as 

follows: 

(24) 

Obviously, if this is the relationship between the flow and the 

delay there are no problem in the implementation of Frank-Wolfe's 

algorithm. 
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Figure 4: Linearized Flow Delay Relationship 

The temporal (for the current iteration) objective function is: 

X 

min z(x) =~f y(w) dw 
l.J 0 

(25) 

And can be expressed as: 

(26) 

The step that could not be solved when using pointwise flow-delay 

functions (FDM), can now be easily implemented. Moreover, when 

using a linear functions the optimal move size can be calculated in 

an exact manner and no line search method is required. This 

improves computer running time of each iteration of the algorithm. 

Given two feasible flow vectors,~ and y, the line search step 

determines the minimum of the original function along the line 

between the two flow vectors. In the case of a linearized function, 

the objective function is convex with respect to xij' meaning that 

there exist unique minimum in the interval between~ and y. 

The step size can be calculated according to the following 

expression: 
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min z [x.t1+a(y.t1-x.t1)] 

st: o~a~l 

Defining gn as the direction between xn and yn (gn = yn - xn) 

equation(27) can be expressed as: 

(27) 

The optimal step size, a, can be analytically determined according 

to the following expression: 

L (0 iJdiJ+p iJxiJdiJ) 
a=--1~·J _______ _ 

~ A . -d~-
~ I-' 1] 1] 

(29) 

ij 

Using the linearized function, z(.), and the step size, a, Frank

Wolfe's algorithm can be implemented to solve assignment problems 

using pointwise flow-delay relationships. At each iteration of the 

algorithm a better approximation of the original function can be 

achieved. 

The proposed algorithm can be summarized as follows: 

1. Initialization 

(1) Calculate an initial delay vector based on FDM. 

(2) Perform an All or Nothing assignment. This yields to flow 

vector x1 . 

2. Update Travel Times 

Calculate the delay vector with flow vector xn. 
FDM(Xn) = ~n. 

3. Linearization 

Calculate the linearized function z(x) based on vectors xn-l 
and xn. 

18 



4. Direction Finding 

Perform an All or Nothing assignment with ~n. This yields the 

vector yn. 

5. Next Point 

(1) Calculate the step size according to Equation (29). 

(2) Set ~n+l = ~n + a (yn - ~n). 

(3) Increase iteration counter n. 

6. Convergence Test 

If the convergence criterion is met stop; otherwise go to step 

2. 

Examples and Results 

To determine the ability of the proposed algori thrn to provide 

accurate estimates of the traffic flow vector, the method was 

tested . with three different networks. For each network different 

flow-delay relationships were assumed. These flow-delay relation

ships were based on the BPR functions [ 1] , equation ( 1) with 

different a and B values. 

The proposed assignment methodology was compared to two existing 

assignment methodologies: Leblanc's implementation of Frank-Wolfe's 

decomposition algorithm and Sheffi's method of successive averages 

(MSA). The proposed methodology was implemented using a BPR 

function to calculate delays, but it was assumed that the delay 

values are the result of a pointwise FDM model. The BPR function 

was evaluated at discrete points, as if it is not possible to 

calculate the original objective function integral - l t(w)dw. 

The proposed method was applied initially to the three links 

network given by Sheffi. Figure 5 shows the convergence pattern for 

the three methods, when applied to the three link network given by 

Sheffi [10]. It can be seen that the proposed method converges 

asymptotic to the exact solution. For this small example, the 

performance of the proposed methodology is better than that of the 
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MSA method in two aspects. First it steadily converges to the exact 

solution and second, the number of iterations necessary to achieve 

acceptable solution is significantly smaller. 
220~~~-------------------, 

215 

210 

,_205 
~ -N 200 

195 

190 

1B5+--------~---~---~----< 
D 

I Sbeffi.Ntw, Sheffi.Dmd 

10 
Iteration 

20 

1--- FW --El- MSA _._ LAM 

Figure 5: Convergence Pattern for the Three Link Network 

The method was also applied to a 

nine link and a 16 link grid net

work. The results obtained by the 

proposed method were always better 

than those obtained by the method 

of successive averages. 

Finally the method was applied to 

the "classic" Sioux Falls network, 

presented in the original work by 

Leblanc [10] (see figure 6). This is 

Figure 6: Sioux Falls Network 
(Leblanc [7]) 

a 24 nodes, 76 links network. 

Several assignment runs with different BPR volume-delay curves with 

where performed. The different a and B values of the delay curves 

where changed to examine the behavior of the assignment algorithms 

under various congestion conditions. Twenty five iterations of the 

proposed algorithm and the MSA method were performed for each 

20 



1.20 ~-~---------------, 

1.15 +-----11--------------------1 

1.10 +-------1'<,-----------------------1 

,_ 1.05 +l------'.-1--------------------1 
I'll 

,___ § 1.00 ++---------------------1 
:;.< .... .._......, 
N :;: 0.95 +-+---------------------1 

:::s 
.._ 0.90 +--tl---~=.....s:----------------1 

0.85 +--=-----==.ill~~i--.a:::-.----------i 

0.80 +---~~---...;;:~~~~~ 
0.75 -+----~------~---------, 

0 5 10 15 20 25 

I Sioux Falls Network 
Iterations 

a.=4.5; b=4.00 

---- FW ----+- MSA -----.I.- LAM 

Figure 7: Convergence Pattern for the Sioux Falls Network 

volume delay curve. As expected the proposed method gave better 

results than the MSA method. After 25 iterations of the algorithm, 

the proposed method was always closer to the exact solution ob

tained by means of Leblanc's algorithm. Table I shows the results 

for various combinations of the BPR model parameters. It can be 

seen that, no matter what kind of flow-delay model is used, the 

proposed model's results were closer to the exact solution than 

those of the MSA method. Further more the convergence characteris

tics of the proposed method don't deteriorate when sensitivity, of 

the network elements, to congestion increase. Observe in table I 

that this doesn't seem to be the case for the MSA assignment 

procedure. 

Conclusions 

The proposed linearization assignment methods seems to work very 

well. When a errorless deterministic FDM exists the proposed method 

is clearly superior to the MSA method. One of the big advantages of 

the proposed method is that it provides an elegant simple and 
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computer storage efficient iterative procedure to perform traffic 

assignment when the volume-delay curves are not explicitly 

specified. It can easily be adopted to situation where part of the 

network elements are represented by volume-delay curves while the 

behavior of others is determined by FDM functions. Furthermore this 

method seems well suited to be applied as a second refined 

assignment stage using as a staring points the solution vector 

generated based on aggregate crude volume-delay functions. 

Procedures which perform stochastic assignment are of great 

interest lately. The ability of the proposed procedure to perform 

stochastic assignment was not fully investigated. One of the 

problems which might arise when applying the proposed method to 

stochastic assignment is that the slope of the straight line 

generated at some iteration of the algorithm might be negative. 

This will indicate a decrease of travel time with volume and might 

al though not necessarily will imperil the convergence of the 

procedure. A way to over come this problem can be simply assigning 

a zero slope or using the previously calculated slope when such a 

problem occurs. The convergence characteristics of the proposed 

method when performing stochastic assignment need further investi

gation. 
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