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Abstract

Understanding the relationship between genetic variation and gene expression is a central question in genetics. With the
availability of data from high-throughput technologies such as ChIP-Chip, expression, and genotyping arrays, we can begin
to not only identify associations but to understand how genetic variations perturb the underlying transcription regulatory
networks to induce differential gene expression. In this study, we describe a simple model of transcription regulation where
the expression of a gene is completely characterized by two properties: the concentrations and promoter affinities of active
transcription factors. We devise a method that extends Network Component Analysis (NCA) to determine how genetic
variations in the form of single nucleotide polymorphisms (SNPs) perturb these two properties. Applying our method to a
segregating population of Saccharomyces cerevisiae, we found statistically significant examples of trans-acting SNPs located
in regulatory hotspots that perturb transcription factor concentrations and affinities for target promoters to cause global
differential expression and cis-acting genetic variations that perturb the promoter affinities of transcription factors on a
single gene to cause local differential expression. Although many genetic variations linked to gene expressions have been
identified, it is not clear how they perturb the underlying regulatory networks that govern gene expression. Our work
begins to fill this void by showing that many genetic variations affect the concentrations of active transcription factors in a
cell and their affinities for target promoters. Understanding the effects of these perturbations can help us to paint a more
complete picture of the complex landscape of transcription regulation. The software package implementing the algorithms
discussed in this work is available as a MATLAB package upon request.
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Introduction

With advances in whole genome high-throughput technologies

such as ChIP-Chip, expression, and genotyping arrays, it is now

possible to integrate data from these sources together to decipher

the complex regulatory networks that govern transcription. In

addition to serving as powerful models for how basic cellular

function is achieved, these regulatory networks can also help us

shed light on how certain disease phenotypes are manifested. At

the heart of these networks are a few regulator genes such as

transcription factors (TFs), miRNAs and histones whose activity

govern the behavior of many other genes. Among these regulators,

transcription factors that bind the promoter regions of genes are

by far the most well understood. The process of TFs activating or

repressing transcription at initiation is believed to be the primary

mechanism of gene regulation. A central question in genetics is

how genetic variations perturb this underlying regulatory mech-

anism to give rise to differential gene expression and ultimately

complex phenotypes.

The simplest analysis one can perform to address this question is

expression quantitative trait loci (eQTL) mapping, which identifies

genetic variations such as SNPs in the form of linkages and

associations that are correlated with gene expression. Such studies

have been carried out in a variety of organisms including yeast

[1,2] Arabidopsis [3], mouse [4,5] and human [6–8]. These

studies have identified many linkages between SNPs and genes in

close proximity suggesting potential local regulatory mechanisms

mediated by regulators such as transcription factors and miRNAs.

These studies have also identified a few SNPs linked to the

expressions of many genes suggesting a global regulatory

mechanism mediated by master regulators such as transcription

factors and histones. Unfortunately, beyond nominating candidate

genes either as targets or regulators, these studies give little insight

into how SNPs perturb the underlying transcription regulatory

networks that control gene expression.

To gain a better understanding of the mechanisms of

transcription regulation, several systems biology based methods

have been proposed including clustering of co-regulated genes [9],

multipoint linkage analysis [10,11], pathway enrichment analysis

[12–16], prediction of regulatory modules [17,18] and the

prediction of causal regulatory relationships [19–23]. Many of

these advanced methods aim to tease out both the nodes
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(regulators and targets) as well as the topology (mapping of edges)

in a transcription regulatory network from only considering gene

expression profiles. Although these methods have predicted some

interesting relationships, there are at least two aspects of

transcription regulation that go unaddressed when we use them

to study transcription factors and their targets. First, most previous

methods rely on probabilistic models that do not provide much

insight into the hidden dynamics between the activity of

transcription factors and the expression of their targets. Second,

the relationships inferred by these methods from the expression

profiles alone can be misleading because the in vivo activity of a

transcription factor does not always correlate with its expression

levels [24,25].

To overcome these problems, we adopt a framework from

network component analysis (NCA) [26] that considers a simple

bipartite network model of transcription regulation involving only

transcription factors and their targets. In this model, the

expression of a target gene is completely captured by two

properties of the network, the concentrations and promoter

affinities of transcription factors. In general, inferring these two

quantities from the expression profiles of the target genes alone is

difficult. But by leveraging protein-DNA binding data from ChIP-

Chip experiments [27,28], a partial topology of the network can be

constructed and one can make the inference given certain

constraints [26].

The NCA method as described by liao et al. has been

successfully applied to several gene expression datasets to

understand transcription regulation in a temporal setting [26]

and in the context of gene knockouts [29]. In this study, we

extended NCA to study transcription regulation over a population

gradient by modeling three mechanisms by which genetic

variations perturb the concentrations and promoter affinities of

active transcription factors to induce differential expression.

Figure 1 gives a simple example that illustrates the original NCA

model and our extensions. Imagine we have a small experiment

where we collected the gene expressions of four genes, the

genotypes of three markers over three individuals. Given the

topology of the bipartite network between transcription factors and

their targets (Figure 1B), the NCA algorithm allows us to infer the

active transcription factor concentrations (C) and the respective

promoter affinities (PA) from the given gene expressions (E) in a

log-linear fashion (Figure 1A, see Methods). In this example, SNP1

and SNP3 are linked to the expressions of G1 and G3 while SNP2

is linked to the expressions of G2 and G4. We propose three

possible mechanisms any one SNP can perturb the regulatory

network and show an instance of each using the given example.

N SNP perturbs the concentration of an active tran-
scription factor. SNP1 is linked to the concentration of TF1

and expressions of G1 and G3, both targets of TF1 (Figure 1C).

Biologically, SNP1 could be located in close or far proximity to

TF1 to change the concentration of TF1 in vivo through

transcriptional, translational or post translational regulation

causing differential expression of the target genes.

N SNP perturbs the promoter affinities of a transcrip-
tion factor globally. SNP2 is linked to the expressions of G2

and G4, both targets of TF2. Here, SNP2 is not linked to the

concentration of TF2 but can still mediate global differential

expression by altering the promoter affinities of TF2 on its

targets (Figure 1D). Biologically, SNP2 could be located either

in close or far proximity to TF2 and alters TF2’s affinities to

many promoter regions either through a rare non-synonymous

mutation or a change in binding affinity between transcription

factors in a complex, causing the global differential expression

of the target genes.

N SNP perturbs the promoter affinities of transcription
factors on a gene locally. SNP3 is linked to the expression

levels of G1 and G3 but is only cis to G3. It perturbs the local

promoter affinities of TF1 and TF2 on G3 causing differential

expression of G3 (Figure 1E). Biologically, SNP3 could be

located in G3’s promoter region altering the promoter affinities

of a transcription factor (i.e. TF1) or a complex of transcription

factors (i.e. TF1 and TF2), causing local differential expression

of the target gene between populations. This mechanism

differs from SNPs perturbing promoter affinities globally in

that differential expression for only one gene (local), versus

many genes (global) is induced.

Because the inclusion of genetic variation creates additional

parameters in each of our three models compared to the original

NCA model, we expected them to always fit the data better. To

effectively evaluate our models, we devised a likelihood ratio

statistic and a permutation scheme to assess the statistical

significance of our improvements. We then applied our method

to study an expression data collected over 112 segregants of

Saccharomyces cerevisiae yeast and two separate ChIP-Chip datasets

generated by Harbisonet al. and Lee et al..We identified several

interesting global regulatory networks perturbed by SNPs located

in regulatory hotspots. Some of these networks have one property

perturbed (transcription factor concentration or promoter affinity)

while others have both properties perturbed suggesting a complex

mechanism of global regulation. We also examined linkages

between SNPs and target genes located in close proximity. We

found that many of these cis linked SNPs perturb the promoter

affinities of transcription factors on a target gene locally

confirming previous hypotheses of cis regulation.

An interesting method proposed by Sun et al. also used the

NCA framework to infer the concentrations of active transcription

factors from gene expression data collected over the same yeast

strains. Their method was designed to detect linkages between the

inferred concentrations and genetic variations and used condi-

tional independence tests to find modules of genes controlled by

the same causal regulator. Compared to this method, we expect to

Author Summary

One of the fundamental challenges in biology in the post-
genomics era is understanding the complex regulatory
mechanisms that govern how genes are turned on and off.
In a single organism where the functions of individual
genes in a population do not differ much, many of the
differences between individuals including physical pheno-
types, susceptibility to disease, and response to drugs can
be attributed to how genes are regulated. Previous studies
have largely focused on identifying regulator and target
genes whose expressions are linked to genetic variations
in a population. We present work that focuses on
considering a specific set of regulators called transcription
factors whose targets can be verified from experiments
and whose interactions with those targets have been well
studied and modeled. In this setting, we can begin to
understand how genetic variations perturb the concentra-
tions and promoter affinities of active transcription factors
to induce differential expression of the targets. Under-
standing the effects of these perturbations is important to
understanding the fundamental biology of gene regula-
tion and can help us to design and assess therapeutics and
treatments for complex diseases.

Using NCA to Dissect Regulatory Networks in Yeast
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find similar networks of genes and transcription factors but our

method does not allow us to infer additional causal relationships

using statistical tests. Instead, we focus on identifying different

mechanisms by which genetic variations can perturb the

regulatory networks by directly modeling the effects of these

perturbations into the NCA framework. We do not attempt to

make rigorous causal claims but use the causal information

inherent in genotyping and ChIP-Chip experiments to suggest

possible mechanisms of transcription regulation.

Results

Inferring Concentrations and Promoter Affinities of
Active Transcription Factors over a Population Gradient

The NCA framework is a natural model for describing how

transcription factors regulate gene expression. At the heart of the

model is a log linear equation that relates the expression levels of

genes collected over a gradient (E) to the concentrations (C) and

promoter affinities (PA) of active transcription factors. Such a

model is well supported by known kinetic properties of protein-

DNA interactions [30]. In linear model terms, the transcription

factor concentrations are the regressors, the gene expression levels

are the response variables and the promoter affinities are the

coefficients that relate the two. Figure 2B shows the log-linear

equations describing the graph shown in Figure 1B. The goal of

NCA is to infer the matrices of concentrations C½ � and promoter

affinities PA½ � from the matrix of gene expressions E½ � under some

restrictions in the least squares sense.

Treating genetic differences between individuals as a gradient, we

applied this model to infer the matrices C½ � and PA½ � from gene

expressions collected from a population of yeast strains, E½ �. For the

inference to have been possible, we removed a number of

transcription factors and target genes to construct a network from

the original ChIP-Chip data that met certain constraints [26]. After

preprocessing the Lee et al. ChIP-Chip dataset, we were left with a

network with 100 transcription factors and 2,294 target genes.

Similarly, preprocessing the Harbison et al. ChIP-Chip dataset left

158 transcription factors and 2,779 target genes. Using a two step

optimization algorithm developed by Liao et al., we inferred the

concentration profile for each transcription factor over the genetic

gradient and compared it to the corresponding TF expression profile

by computing Pearson’s correlations (r). Figure S3 shows that these

Figure 1. Graphical illustration of NCA and extension of NCA to include genetic perturbations. (A) A small toy example of three
individuals with known genotyping and expression levels and inferred concentrations of active transcription factors. Each row corresponds to the
genotypes, gene expressions and inferred transcription factor concentrations collected in one individual. (B) NCA regulatory network model when the
network is unperturbed and the expression levels of G1, G2, G3 and G4 are determined by the concentrations of TF1, TF2 and the corresponding
promoter affinities. (C) Between individuals with the A allele (1) and C allele (2,3) at SNP1, the concentrations of TF1 is perturbed by SNP1 causing
differential expression of G1 and G3. (D) Between individuals with the G allele (1,2) and T allele (3) at SNP2, the promoter affinities of TF2 are
perturbed globally by SNP2 (i.e. edges from TF2 are perturbed) to cause differential expression in all of TF2’s targets G2, G3, and G4. (E) Between
individuals with the A allele (1) and T allele (2,3) at SNP3, the affinities of TF1 and TF2 for the G3 promoter is perturbed locally by SNP3 to cause
differential expression of G3.
doi:10.1371/journal.pcbi.1000311.g001

Using NCA to Dissect Regulatory Networks in Yeast
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quantities were not well correlated with average correlation

coefficients of r2~0:085 and r2~0:077 using the Lee et al. and

Harbison et al. datasets respectively. The stability of the inferred TF

concentrations were however robust when we compared results from

the two ChIP-Chip datasets with a correlation coefficient of

r2~0:472 (Figure S4). The robustness was also verified by

bootstrapping experiments [31] (Results not shown).

Identifying Regulatory Hotspots
We next applied our method to study the mechanisms by which

regulatory hotspots, genomic locations in yeast shown to be linked

to the expression of many genes, perturb the underlying

transcription regulatory networks. Although several transcription

factors have been known to act as master regulators in yeast, it has

been surprisingly shown in previous eQTL studies that only a few

regulatory hotspots are located close to transcription factors. We

hypothesized that although complex regulatory mechanisms

upstream of transcription regulation such as signaling pathways

exist, transcription factors ultimately mediate the global regulation

of gene expressions. Using our framework, we tested our

hypothesis by determining whether a regulatory hotspot is linked

to the concentrations or promoter affinities of active transcription

factors to achieving this regulation.

To identify the regulatory hotspots, we performed simple linkage

analysis on only a subset of genes that were NCA compliant (see

Methods). Similar to previous reports, only a few hotspots were

located cis to any known transcription factors [1,2]. For example, a

hotspot located on chromosome 12 spanning basepairs 600,000 to

680,000 was cis to HAP1 while another hotspot located on

chromosome 3 spanning basepairs 60,000 to 100,000 was cis to

LEU3. Several approaches [20,23] have identified additional

putative causal regulators, many of which are not transcription

factors, corresponding to these regulatory hotspots.

Regulatory Hotspots Perturbed the Concentration of
Active Transcription Factors To Cause Global Differential
Expression

We first considered SNPs located in regulatory hotspots that

perturbed the concentrations of active transcription factors to

cause global differential expression. Extending the NCA model to

incorporate SNPs as perturbations did not require changing the

optimization procedure. As shown in Figure 2C, we first

decomposed the inferred transcription factor concentration matrix

from applying the original NCA algorithm, C½ �, into two matrices

Cz½ � and C{½ � segregated by a SNP. Next, we identified those

transcription factors whose concentrations were linked to the SNP

using a simple t-test, an example is shown in bold in Figure 2C,

and assessed the significance of the linkage by a permutation

scheme (see Methods).

Figure 2. Matrix representation of NCA and extension of NCA to include genetic perturbations. (A) The same small toy example as
Figure 1A. Log-linear equation representations of (B) the unperturbed NCA regulatory network model, (C) SNP1 perturbing the concentration of TF1,
(D) SNP2 perturbing the promoter affinities of TF2 for its targets, (E) SNP3 perturbing the promoter affinities of TF1 and TF2 for G3.
doi:10.1371/journal.pcbi.1000311.g002

Using NCA to Dissect Regulatory Networks in Yeast
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Using both the Harbison et al. and Lee et al. ChIP-Chip

binding data, we found many transcription factors whose

concentrations were linked to at least one SNP. Table 1 lists

those linkages occurring at regulatory hotspots and the corre-

sponding transcription factors. In addition to having a strong

linkage, we also required the transcription factors in the table to

have at least 6 (Lee et al) or 7 (Harbison et al) downstream targets

whose expression levels were significantly linked to the regulatory

hotspot. A number of transcription factors known to act as global

regulators were identified. Of particular note, we found HAP1 to

be the mediator of hotspot 6 located on chromosome 12 spanning

basepairs 600,000 to 680,000 using the Harbison et al. dataset;

and YAP1 and LEU3 to be mediators of hotspot 3 located on

chromosome 3 spanning basepairs 60,000 to 100,000. GCN4 was

also identified as a mediator of this hotspot using the Lee et al.

dataset but it was only marginally significant using the Harbison et

al. dataset (Result not shown). These results are concordant with

previous findings [2,23]. In particular, LEU2 has been previously

implicated to be linked to hotspot 3 where an engineered deletion

of the gene occurs. Figure 4 are heatmaps showing the strong

correlations between concentration levels of transcription factors,

HAP1 and LEU3 respectively, and the expression levels of their

downstream targets linked to the respective regulatory hotspots.

We next examined hotspot 2, a hotspot that has been previously

identified by brem et al.to regulate budding and daughter cell

separation through the causal regulator AMN1 [9]. We identified

four transcription factors, ACE2, MBP1, SKN7 and SWI4, whose

active concentrations were significantly linked to hotspot 2 in both

datasets. Five other transcription factors responsible for cell cycle

transitions, ABF1, FKH1, OAF1, RAP1 and SWI5 were also found

to be significant in the Harbison et al. dataset. Some of these

transcription factors are known to interact with each other and

have similar profiles such as ACE2 and SWI5; and MBP1, SKN7

and RAP1. Figure 3A and Figure 3B are heatmaps showing the

strong correlation between the concentrations of transcription

factors (ACE2 and SWI4) and the expression levels of their direct

targets linked to the hotspot. Our results are consistent with

previous findings that suggest ACE2 as a causal transcription factor

mediating the global regulation of the mitotic-exit network (MEN)

by AMN1 [23] even though ACE2’s direct targets were not

overrepresented for any GO biological processes or functional

groups. This is probably because many downstream transcripts of

the MEN were not considered in this analysis because there’s no

direct ChIP-Chip evidence of binding between these transcripts

and ACE2.

Another interesting regulatory hotspot, occurring at chromo-

some 12 basepairs 1,040,000 to 1,060,000, was found by Brem et

al. to regulate subtelomerically encoded helicases through the

causal regulator SIR3. We found two transcription factors, GAT3

and YAP5, whose concentrations were linked to this hotspot using

the Harbison et al. data. YAP5 was also significant using the Lee et

al. data. Figure 3D and Figure 3C show the strong correlations

between GAT3 and YAP5 concentrations and the expression

profiles of their targets. Unlike the previous example, the targets of

YAP5 were enriched for helicases (pv4:009|10{11) and consisted

of many genes with unknown function as represented by a

significant enrichment for the GO annotation of ‘‘biological

process unknown’’ (pv4:121|10{7). These results suggest a

potential novel mechanism for the regulation of subtelomerically

encoded helicases mediated by YAP5 and GAT3.

Regulatory Hotspots Perturbed the Promoter Affinities of
Transcription Factors To Give Rise to Global Differential
Expression

We next considered SNPs located in regulatory hotspots that

perturbed the promoter affinities of transcription factors to cause

global differential expression. Modeling these perturbations

required an extension to the NCA model. As shown in

Figure 2D, in addition to decomposing the transcription factor

concentration and gene expression matrices, we also decomposed

the promoter affinities matrix, PA½ � into PAz½ � and PA{½ � where

the only difference between the two is the column corresponding

to the global promoter affinities of the transcription factor of

interest as shown in bold. We identified perturbed networks of

genes and transcription factors by deriving a likelihood ratio

statistic that compared the extended model to the original NCA

model. Since the extended model included additional parameters,

namely different promoter affinities between populations, we

expected it to always fit the data better. Thus to assess significance,

Table 1. Regulatory hotspots and the transcription factors whose active concentrations are perturbed to achieve global
regulation.

Hotspot Location # Linkages Significant TFs

Chr Begin End Lee Harbison Lee Harbison Shared

1 2 360000 380000 24 29 None None FHL1

2 2 480000 580000 103 142 None ABF1, FKH1, OAF1
RAP1, SWI5

ACE2, MBP1, SKN7
SWI4

3 3 60000 100000 89 113 GCN4, MCM1, MET4 MET32 LEU3, YAP1

4 5 340000 440000 34 48 None SUT1 None

5 8 80000 120000 36 51 None None DIG1

6 12 600000 680000 54 91 None HAP1 None

7 12 1040000 1060000 8 12 None GAT3 YAP5

8 13 40000 60000 20 27 None None BAS1

9 14 440000 500000 130 179 None None None

10 15 140000 200000 76 117 HAL9, RAP1, SWI5 FKH2, NDD1 None

11 15 560000 580000 21 26 None None HAP4

doi:10.1371/journal.pcbi.1000311.t001

Using NCA to Dissect Regulatory Networks in Yeast
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we used a permutation scheme that randomized the decomposi-

tion of individuals while preserved the topology of the bipartite

graph (see Methods).

We revisited the regulatory hotspots discussed in the previous

section. We speculated that transcription factors whose promoter

affinities were perturbed by a regulatory hotspot must interact with

other transcription factors whose concentrations were perturbed by

the same hotspot to induce global differential expression of the

targets. The intuition being if the in vivo concentrations of a

transcription factor is relatively stable, then it could still regulate

gene expression by differentially binding to other transcription

factors to form a complex. A transcription factor’s binding affinity

for promoters is then in part determined by the concentrations of its

partnering transcription factors. This is exactly what we observed in

Figure 3. Correlations between concentrations of transcription factors and the expressions of their targets. Heatmap showing the
correlations between concentrations of transcription factors and the expressions of their downstream targets linked to hotspot 2 on chromosome 2
((A) ACE2 and (B) SWI4) and hotspot 7 on chromosome 12 ((C) YAP5 and (D) GAT3). The bar above each heatmap designates the concentration profile
of each transcription factor.
doi:10.1371/journal.pcbi.1000311.g003

Using NCA to Dissect Regulatory Networks in Yeast
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our results. For example, we found that hotspot 6 which was shown

to be linked to the concentrations of HAP1 was also linked to the

promoter affinities of HAP4. HAP1 and HAP4 are known to interact

in a complex to regulate global respiratory gene expression.

Similarly, hotspot 8 was linked to the concentrations of DIG1 and

the promoter affinities of STE12. DIG1 has previously been shown

to code for an inhibitor of STE12, a transcription factor involved in

pheromone induction and invasive growth [32–34]

We next examined how two hotspots discussed in the previous

section also perturbed promoter affinities of transcription factors.

Figure 4 and Table 2 show that hotspot 2 was linked to the

promoter affinities of ACE2, SWI4 and UME6. Hotspot 2 was also

shown in the previous section to be linked to the concentrations of

ACE2 and SWI4 but not UME6, see Figure S2 for the expression

profiles of the downstream targets of UME6. Consistent with our

speculation, UME6 has been shown to interact with SWI4 and

SWI4 has been shown to interact with itself. Furthermore, we see

that AMN1 is a target of ACE2 suggesting that the regulation of the

mitotic-exit network might be feedback in nature.

Figure 4 also shows a similar network consisting of the two

transcription factors whose concentrations linked to hotspot 7,

GAT3 and YAP5. Notice that while YAP5’s promoter affinities were

linked to the hotspot also (thick edges), GAT3’s were not (thin

edges). Consistent with previous results, YAP5 has been shown to

interact with itself to modulate gene expression. These results

suggest that in some transcription factors, particularly those that

interact with themselves, both promoter affinities and concentra-

tions of the transcription factor could be perturbed by a regulatory

Figure 4. Networks perturbed by regulatory hotspots. Eleven hotspots and the networks of transcription factors and target genes perturbed.
Large circular nodes represent transcription factors and square nodes represent target genes. The thickness of an edge represents how much a
hotspot perturbs the promoter affinity. Red edges designate a change of a transcription factor from an activator to a repressor or vice versa. Notice
that some perturbed networks share transcription factors. We show two hotspots and the corresponding networks in detail. Hotspot 2 in addition to
affecting the promoter affinities of ACE2 and SWI4, also affects the promoter affinities of several other transcription factors, including UME6, which is
known to interact with ACE2. Hotspot 7 affects the promoter affinities of YAP5 (thick edges) but its affect on GAT3 promoter affinities is not
statistically significant (thin edges). Figure was generated using the Cytoscape software [42].
doi:10.1371/journal.pcbi.1000311.g004

Using NCA to Dissect Regulatory Networks in Yeast
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hotspot. On the other hand, some transcription factors might not

have their concentrations perturbed by a hotspot but because of

interactions with another transcription factor, has their promoter

affinities perturbed giving rise to global differential expression of

their targets.

Most cis SNPs Perturbed the Local Promoter Affinities of
Target Genes

Previous eQTL analyses have shown that the most significant

linkages occur cis to genes [1,2]and often located or in LD with

SNPs located in the promoter regions of genes harboring

transcription factor binding sites [35]. Our model allowed us to

determined if differences in expression of a single gene could be

attributed to cis genetic variations perturbing the local affinities of

transcription factors on the promoter.

There is a direct similarity between these perturbations and

those that affect global promoter affinities. As shown in Figure 2E,

SNP3 perturbs the local affinities of transcription factors for the

promoter of G3. We modeled this affect by decomposing the PA½ �
matrix into PAz½ � and PA{½ � where the only difference between

the decomposed matrices was the row corresponding to G3, as

shown in bold. We used a likelihood ratio statistic to choose

between two different models and assessed the significance based

on permuting the genotypes of the individuals.

Of the small subset of genes examined, 2294 from using the Lee

et al. dataset and 2779 from using the Harbison et al. dataset, we

found <45% of the transcripts (972/2294 Lee, 1315/2779

Harbison) linked to at least one SNP at a FDR of qv0:05 with

p0~1 using a standard t-test. Out of these linkages, <30% were cis

(257/972 Lee, 331/1315 Harbison). These proportions are

consistent with what has been reported [10].

We postulated that many cis linked loci found by previous

analyses and confirmed by our analysis are in LD with causal

SNPs located in promoter regions. We further postulated that such

a causal SNP corresponds to a variation in the primary sequence

of a transcription factor binding site that affects the promoter

affinity of a transcription factor or a complex of transcription

factors. This model is consistent with the idea that a genetic

variation at regulatory regions of the genome can give rise to

observed subtle differences in gene expression across populations.

We identified a total of 138 and 174 genes which have their local

promoter affinities affected by a SNP with a FDR of qv0:05.

Figure 5A shows that there is high concordance between those

genes with significant cis linkages and those whose promoter

affinities were perturbed. We did not expect all cis linkages to

perturb promoter affinities. There are potentially other regulatory

machinery that operate on intronic 39UTRs and 59UTRs. Next we

compared the perturbed genes found using the Lee et al. dataset

versus those found using the Harbison et al. dataset (Figure 5B). At a

FDR of qv0:05, 72 significant genes were shared between the

datasets and 168 genes were not. We suspected that the different

results obtained from these two datasets can be attributed to

differences in network topology. The two binding datasets often

reported genes with different sets of bound transcription factors and

transcription factors with different sets of targets making the

estimates of certain quantities inconsistent. Additional discrepancies

arose from different sets of genes having been eliminated from each

analysis due to the criteria placed on the network topology.

Discussion

Although there is a growing wealth of literature identifying

putative causal regulators in yeast and mouse using statistical

approaches, some of which integrate different sources of

information, it is not clear by what mechanism genetic variations

perturb the underlying regulatory networks to give rise to global

differential expression. We have presented an integrated frame-

work based on network component analysis that directly models

how genetic variations perturb the concentrations and promoter

affinities of transcription factors to cause the differential expression

of their targets. Such a model differs from current eQTL analyses

in that a direct, testable mechanism of transcription regulation is

specifically considered. Although these networks are limiting, both

in terms of the amount of biology they explain as well as the

dependence on experimental data for their inference, a substantial

set of genes (<1/3) was still considered. In our analysis, we show

that many genes with cis linkages are likely to be regulated by

transcription factors binding differentially to their promoter

regions. We also show two representative examples of the complex

mechanism of achieving global differential expression of a large

number of transcripts, where the regulation of transcription factors

involve two distinct processes and maybe feedback in nature.

Our approach specifically uses one variation of the NCA

algorithm to infer the concentrations and promoter affinities of

Table 2. Regulatory hotspots and the transcription factors whose promoter affinities are perturbed to achieve global regulation.

Hotspot Location # Linkages Significant Transcription Factors

Chr Begin End Lee Harbison Lee Harbison Shared

1 2 360000 380000 24 29 None None None

2 2 480000 580000 103 142 None SWI4, ACE2, UME6 None

3 3 60000 100000 89 113 MET31 ABF1 None

4 5 340000 440000 34 48 None None None

5 8 80000 120000 36 51 None STE12 None

6 12 600000 680000 54 91 None HAP4 None

7 12 1040000 1060000 8 12 MSN4 None YAP5

8 13 40000 60000 20 27 None None None

9 14 440000 500000 130 179 ABF1 None FKH1

10 15 140000 200000 76 117 RAP1 HAP1, SKN7 SWI4, CIN5

11 15 560000 580000 21 26 None None None

doi:10.1371/journal.pcbi.1000311.t002
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transcription factors. The key aspect of our approach is that we

treat genetic variations as perturbations to an underlying

regulatory network whose structure is already known. In theory,

any NCA like approach [36–38] where a network is inferred from

known data such as ChIP-Chip experiments, protein-protein

interaction experiments or literature can be extended to take into

account genetic variation.

There are also some natural extensions to the framework we

have presented. First, one is not limited to considering only genetic

variation as a perturbation. Other forms of perturbation such as

media condition and disease pathogenesis can as well be applied in

this approach to identify the corresponding effect on the networks.

Second, our method considers the perturbation of only one SNP.

Although several approaches have been proposed to investigate

the statistical interaction of multiple SNPs on a phenotype [11,39],

it would be interesting to study the mechanistic interactions of

multiple perturbations on a transcription regulatory network.

Methods

Strains, Expression Measurements, and Genotyping
We used the expression measurements (6,216 transcripts) and

genotyping data (2,956 SNPs) collected over 112 segregants of

yeast derived from two parental strains BY4716 and RM11-1a

originally described by Brem et al. The gene expression data is

available at GEO (http://www.ncbi.nlm.nih.gov/projects/geo/)

with the accession number GSE1990.

Constructing Transcription Regulatory Networks from
ChIP-Chip Data

ChIP-Chip data from two datasets [27,28] were used to generate

two different transcription regulatory networks at a p-value cutoff of

0.001. Consistency was checked in each case by comparing the

networks generated from using a p-value cutoff of 0.01 and 0.001.

We next checked for NCA compliance as outlined [31]. We

were left with a sub-network of 2,294 transcripts and 100

transcription factors after processing the Lee et al. dataset and

2,779 transcripts and 158 transcription factors after processing the

Harbison et al. dataset.

Computing Genetic Linkage and Identifying Regulatory
Hotspots

We first performed a standard t-test to compare the population

means between the segregated expression profiles of a single gene

by a given SNP. We assessed the significance of our linkages by

performing a permutation test as described [40].

We then identified regulatory hotspots by dividing the yeast

genome into 493 20 kb bins and counted the number of significant

trans linkages to unique gene expression levels each bin contained

from the standard t-test. We found a total of 430 significant trans

linkages using the Harbison et al. data and 290 using the Lee et al.

data. Assuming a Poisson process where the rare event of a trans

linkage occurs at a rate of 0.87 (430/493 Harbison) and 0.60 (290/

493 Lee), the probability of observing .7 linkages in the largest bin

using the harbison_transcriptional_2004 data is pv0:02 and the

probability of observing .6 linkages in the largest bin using the Lee et

al. data is pv0:02. Because of the differences in the set of genes used

in the different datasets, we constructed a set of 11 hotspots shared

between the two.

Application of NCA to Gene Expression Data Collected
over a Population

NCA was originally developed to analyze time series based gene

expression data but can be easily adapted to analyze whole

Figure 5. Concordances between applying different statistical tests and using different protein-DNA binding datasets. (A) Percent of
top genes with promoter affinities perturbed detected by likelihood ratio test concordant with those with cis linkages detected by t-test (red:
Harbison dataset, blue: Lee dataset, gray: random). (B) Percent of top genes concordant between Lee and Harbison datasets using different tests (red:
t-test for cis linkages, blue: likelihood ratio test for perturbed promoter affinities, gray: random).
doi:10.1371/journal.pcbi.1000311.g005
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genome expression data collected from different individuals in a

population. In both cases, the goal is to infer the concentrations of

active transcription factors and the promoter affinities from the

expression levels of the target genes. This inference is made

possible when the partial topology of the interaction network

between transcription factors and target genes is determined from

genome-wide location analysis that detects the binding of

transcription factors to DNA promoter regions (ChIP-Chip).

Figure 1B shows an example of a bipartite graph where the

expression levels of five genes are determined by the concentrations

and promoter affinities of the three transcription factors. Formally,

given a matrix E½ � of dimension N|M where we have collected the

expression levels of N genes from M individuals. Each column ej

represents a separate microarray experiment that measures the

expression levels of all genes in one individual. NCA approximates

the relationship between the concentrations of active transcription

factors and gene expression levels by a log-linear model of the type:

eij~ P
L

k~1
ckj

� �paik ð1Þ

where eij is the gene expression level for gene i in individual j, ckj is

the concentration of transcription factor k in individual j and paik is

the affinity of transcription factor k for the promoter of gene i. We

can take the log of Equation 1 and transform it into a matrix

representation:

E½ �~ PA½ � C½ �z C½ � ð2Þ

Here, C½ � is a matrix of dimension L|M representing the

concentrations of the L transcription factors in the M individuals

and PA½ � is a matrix of dimension N|L representing the affinities

of the L transcription factors for the promoters of the N genes and

C½ �*N 0,s2I
� �

is a matrix of dimension N|M representing the

residual. NCA analysis without incorporating genetic information

seeks to iteratively find PA½ � and C½ � that minimizes the quantity:

min E½ �{ PA½ � C½ �k k2 ð3Þ

Finding the least squares estimates of cPAPA
h i

and ĈC
h i

is equivalent to

finding the maximum likelihood estimates under the assumption

that the eis are independent identically-distributed (iid) vectors with

Gaussian noise.

Incorporating Genetic Variation into the NCA Model
In our model, a genetic variation induces global differential

expression either by perturbing the concentrations of a transcrip-

tion factor or the promoter affinities of a transcription factor on all

of its targets. Figure 1C shows the former case where the promoter

affinities of TF1 on all targets remain the same but the

concentration of TF1 is elevated in the group of individuals with

an A allele at SNP1 while it is attenuated in the group of

individuals with the C allele at SNP1. Figure 1D shows the latter

case where the affinities of TF2 for the promoter region of its

targets are different between two populations. Notice that in both

cases, we do not make any assumptions about where the genetic

variation occurs since several mechanisms can contribute to the

transcription factor having different in vivo concentrations and

promoter affinities. We can formally model perturbations to the

promoter affinities by constructing two matrices, PAz½ � and

PA{½ � that differ in the column corresponding to the transcription

factor of interest.

We can also model local changes to the promoter affinities of all

transcription factors on a single gene such as shown in Figure 1E

where one group of individuals has the A allele and another group

has the T allele (SNP3) in the binding site of the transcription

factor complex. To model this change in the promoter affinities on

one gene, we again construct two matrices PAz½ � and PA{½ � that

differ in the row corresponding to the gene of interest.

Extending the NCA model to incorporate genetic

perturbations. We can rewrite Equation 2 to incorporate

perturbations on the promoter affinities:

Ez E{
� �

~ PAzCz PA{C{
� �

z C½ � ð4Þ

where we have decomposed E½ � into Ez½ � and E{½ �, and C½ � into

Cz and C{½ � representing the expression levels and the inferred

concentrations of transcription factors in two different populations

segregated by a genetic variation. PAz½ � and PA{½ � are the

corresponding promoter affinity matrices of the two populations.

C½ � is again the residual.

Computing the linkage between transcription factor

concentrations and genetic variations. If a genetic

variation affects the concentrations of the transcription factors to

induce differential expression, we can model the effect by

decomposing the originally inferred C½ � matrix into Cz½ � and

C{½ � that differ in the row corresponding to the transcription of

interest. For each transcription factor, we can then apply a simple

t-test treating the concentration as a quantitative trait segregated

by the genetic variation. We assess the significance of the statistic

by shuffling the genotypes of the individuals 1000 times [40] and

computing the false discovery rate (FDR) [41].

Computing the linkage between promoter activities and

genetic variation using a likelihood ratio based

statistic. Notice that if a genetic variation perturbs the

promoter affinities either globally or locally, we can’t simply

compare the PAz½ � and PA{½ � matrices. Instead, we can use

model selection techniques to compare our more complex model

with the simpler NCA model. Specifically, we define the

optimization problem similar to Equation 3:

min Ez E{
� �

{ PAzCz PA{C{
� ��� ��2 ð5Þ

We can approximate the solution to Equation 5 by running the

original NCA algorithm and fixing the C½ � matrix and re-

estimating the PA½ � matrix.

To test the validity of our model, we define the null and

alternative hypotheses corresponding to the two models as:

Hypothesis H1: The expression levels E½ � can be decomposed

into Ez½ � and E{½ � for those individuals with the major and minor

alleles respectively; and approximated by a log-linear models

characterized by the parameters H:

PAz½ �: A N|L matrix representing the promoter affinities of

transcription factors in individuals with the major allele

PA{½ �: A N|L matrix representing the promoter affinities of

transcription factors in individuals with the minor allele

C½ �: A L|M matrix that can be decomposed into Cz½ � and

C{½ � representing the concentrations of active transcription factors

in the Mz individuals with the major allele and M{ individuals

with the minor allele respectively.

Hypothesis H0: The expression levels E½ � can be approximated

by a log-linear model characterized by the parameters H0:

PA½ �: A N|L matrix representing the promoter affinities of

transcription factors in all individuals (i.e. PAz½ �~ PA{½ �).
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C½ �: A L|M matrix representing the concentrations of

transcription factors in all individuals.

When a genetic variation perturbs the promoter affinities to one

gene locally, the difference in the number of parameters is equal to

the number of regulators of the target gene. If we are re-estimating

the promoter affinities globally for one transcription factor, the

difference in the number of parameters is equal to the number of

targets of the transcription factor. In both cases, we can compare

our alternative model against the null model using a likelihood

ratio statistic remembering that the eis are independent.

{2logL Eð Þ~

2 sup l PA,C,CjEð Þf g{sup l PAz,PA{,C0,C0
��E� �� �� � ð6Þ

&
RSS0{RSS1

ŝs2
ð7Þ

~log
X

i,j

ÊE0
2
ij{log

X
i,j

ÊE1
2
ij ð8Þ

where RSS0~
P

i,j ÊE0
2
i,j and RSS1~

P
i,j ÊE1

2
i,j are the residual

sum of squares from solving the least squares equations for H0 and

H1 respectively. We estimate the two error variances s2
0 and s2

1

from the residual sum of squares of the larger model:

ŝs2~
RSS1

n{df1
ð9Þ

where df1 is the degrees of freedom of the model.

The above statistic follows the x2 distribution asymptotically.

However, since we are not re-estimating the full model in our

extension, we perform permutations by rearranging the genotype

labels of the individuals [40] 1000 times. We further estimated the

significance of the permuted p-values by computing the false

discovery rate [41].

Supporting Information

Figure S1 Heatmaps showing correlations between concentra-

tions of known transcription factors and the expressions of their

targets. This figure shows heatmaps of the concentration levels of

(A) HAP1 and (B) LEU3, two transcription factors known to

mediate global regulation, correlated with the expression levels of

their downstream targets.

Found at: doi:10.1371/journal.pcbi.1000311.s001 (0.40 MB TIF)

Figure S2 Heatmap showing lack of correlation between UME6

concentrations and the expressions of its targets. This figure shows

that UME6’s concentrations are not perturbed by regulatory

hotspot 2 but the expression levels of its targets are.

Found at: doi:10.1371/journal.pcbi.1000311.s002 (0.58 MB TIF)

Figure S3 Heatmaps showing correlation between transcription

factor concentrations and expression levels. The heatmaps show

the correlation between expression levels and concentrations of

transcription factors for (A) 158 transcription factors in the

Harbison dataset and (B) 100 transcription factors in the Lee

dataset.

Found at: doi:10.1371/journal.pcbi.1000311.s003 (0.68 MB TIF)

Figure S4 Heatmaps showing correlation of transcription factor

concentrations between two datasets. A heatmap that shows the

correlation of inferred transcription factor concentrations between

the Harbison and Lee datasets.

Found at: doi:10.1371/journal.pcbi.1000311.s004 (0.68 MB TIF)
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