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Original Article

Predicting 15O-Water PET cerebral
blood flow maps from multi-contrast
MRI using a deep convolutional neural
network with evaluation of training
cohort bias

Jia Guo1,2 , Enhao Gong3,4, Audrey P Fan1, Maged Goubran1,
Mohammad M Khalighi1 and Greg Zaharchuk1

Abstract

To improve the quality of MRI-based cerebral blood flow (CBF) measurements, a deep convolutional neural network

(dCNN) was trained to combine single- and multi-delay arterial spin labeling (ASL) and structural images to predict gold-

standard 15O-water PET CBF images obtained on a simultaneous PET/MRI scanner. The dCNN was trained and tested

on 64 scans in 16 healthy controls (HC) and 16 cerebrovascular disease patients (PT) with 4-fold cross-validation.

Fidelity to the PET CBF images and the effects of bias due to training on different cohorts were examined. The dCNN

significantly improved CBF image quality compared with ASL alone (mean� standard deviation): structural similarity

index (0.854� 0.036 vs. 0.743� 0.045 [single-delay] and 0.732� 0.041 [multi-delay], P< 0.0001); normalized root mean

squared error (0.209� 0.039 vs. 0.326� 0.050 [single-delay] and 0.344� 0.055 [multi-delay], P< 0.0001). The dCNN

also yielded mean CBF with reduced estimation error in both HC and PT (P< 0.001), and demonstrated better cor-

relation with PET. The dCNN trained with the mixed HC and PT cohort performed the best. The results also suggested

that models should be trained on cases representative of the target population.
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Introduction

Cerebral blood flow (CBF) is the fundamental rate con-
stant of the brain, determining the delivery of oxygen
and other nutrients, the lysis of microclots, and the
removal of waste products. Adequate CBF is essential
for neurological health and is altered in many diseases,
including cerebrovascular diseases. In addition, evi-
dence suggests that CBF changes are important in
other disorders, such as neurodegenerative disease
and multiple sclerosis.1,2 Even though it is crucial to
monitor CBF changes, imaging methods to assess per-
fusion remain underdeveloped.3 Reference standard
methods such as 15O-water positron emission tomogra-
phy (15O-water PET) and Xenon-enhanced CT (XeCT)
are laborious to implement and are not FDA-
approved. Furthermore, they require radiation and
thus cannot be obtained in large cohorts. As such,

establishing a radiation- and contrast-free quantitative
CBF method that is robust and accurate even in severe,
large vessel arterial disease is a high priority.

Arterial spin labeling (ASL) is an MRI method
that enables CBF measurement without contrast.4,5
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Much progress has been made over the past decade,
culminating in consensus guidelines for clinical appli-
cation of ASL.6 However, the risk of underestimating
local CBF in cerebrovascular disease patients as well as
the underlying low signal-to-noise ratio (SNR) of the
technique call for new approaches.7 These include new
pulse sequences such as extremely long-label long-
delay,8 multi-delay,9–11 and velocity-selective label-
ing,12–14 which address the problem of imaging slow
flow. However, all of these methods still have limited
accuracy to measure CBF in cerebrovascular disease
patients with long transit delays. 15O-water PET is con-
sidered the “gold standard” for CBF quantification,
has high SNR, and is less sensitive to arrival times.
However, due to the requirements mentioned above,
PET is not feasible in most clinical settings.

Recently, deep convolutional neural networks
(dCNN) have shown superior performance to other
machine learning techniques on image recognition
tasks15 and more recently have been applied in medical
imaging,16–20 including image reconstruction, improv-
ing the quality of medical images, and synthesizing
image contrasts from a different imaging modality.
Although dCNNs have shown utility in ASL de-nois-
ing,21,22 the current methods have yet to address the
issue of regional CBF estimation bias and error due
to slow flow and/or pathology. In improving medical
image quality, a critical question is whether a dCNN
needs to train on examples of pathology to successfully
predict pathology when it is deployed on a separate
group of patients. In our task to predict CBF, it is
important to know whether a dCNN trained only on
healthy controls would generalize to a patient cohort
comprised of patients with cerebrovascular disease.
Any potential prediction bias when the training and
prediction were performed on cohorts with different
distribution characteristics should be carefully evaluat-
ed and has implications well beyond CBF prediction
for medical imaging.23

In this study, we propose a deep learning-based
method that takes multiple MRI scans, including
ASL, as inputs to predict a simultaneously obtained
15O-water PET CBF map. If such a method can be
validated, the parameters of the model can be used in
patients who receive only MRI to produce more accu-
rate CBF maps, allowing higher quality CBF imaging
in settings without the capability to perform 15O-water
PET scans.

Materials and methods

Image acquisition and data preprocessing

This is a retrospective study, approved by the
Institutional Review Board of the Stanford

University in accordance with the ethical standards of
the Helsinki declaration of 1975/1983, and HIPAA
compliant. All patients provided written consent prior

to the study. Some of the patients participated in a
previous study described in Fan et al.8 Thirty-two
subjects underwent simultaneous time-of-flight
enabled 3.0 T PET/MRI (SIGNA, GE Healthcare,
Milwaukee, WI, USA) with injection of 490–960
MBq 15O-water for the purposes of CBF imaging.
The group included 16 healthy controls (HC) and

16 cerebrovascular disease patients (PT, 13 with
Moyamoya disease and 3 with atherosclerotic steno-
occlusive disease of the carotid arteries). The demo-
graphics of the subjects are summarized in Table 1.
Each scan included one CBF measurement at baseline,
and one 20min after injection of a vasodilator (acet-

azolamide, 15mg/kg IV).
The PET images were reconstructed with a resolu-

tion of 1.56� 1.56� 2.78mm3 and were corrected for
15O-water tracer signal decay, attenuation, scatter,
random counts, and dead time. The quantitative PET
CBF maps were generated using an image-derived
input function (IDIF) method24 and Zhou’s one-
tissue compartment model25 using PMOD software:

PETðtÞ ¼ ð1� VBÞ � CtissueðtÞ þ VB � CaðtÞ
dCtissueðtÞ=dt ¼ K1 � CaðtÞ–k2 � CtissueðtÞ

where K1 is the perfusion rate constant, k2 is the clear-

ance rate constant, VB is the blood volume, Ctissue(t) is
the tissue time activity curve for each pixel and Ca(t)
is the arterial blood concentration over time estimated
by the IDIF method. For attenuation correction, we
used the manufacturer’s single-atlas-based method
based on 2-point Dixon images. The PETCBFmeasure-

ment in this study was not used in clinical reading.
The MRI scans included both ASL scans and struc-

tural imaging. ASL scans included single-delay pseudo-
continuous ASL26 with labeling duration (LD)¼ 1.45 s,

post-labeling delay (PLD)¼ 2.025 s, and acquisition
resolution¼ 3.64� 3.64� 4mm3; and a multi-delay
(5-delay) ASL with LD¼ 2 s, PLD¼ 0.7, 1.275, 1.85,
2.425 and 3 s, and acquisition resolution¼ 5.52�
5.52� 4mm3. Proton density (PD)-weighted reference
images were collected for CBF quantification.

Background suppression (BGS) was used in both
ASL sequences and the labeling efficiency loss due to
BGS (�25%) was corrected in the quantification of
CBF.27 The ASL images were reconstructed with an
interpolated resolution of 1.88� 1.88� 4mm3. For
single-delay ASL, the CBF maps were quantified
using the simplified equation from Alsop et al.6 with

T1 decay correction performed with assumed arterial
T1 of 1.65 s.6 For multi-delay ASL, arterial transit
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time (ATT) maps and ATT-corrected CBF maps were

generated from a kinetic ASL signal model9,28,29 with

T1 decay correction performed with assumed arterial

and tissue T1 of 1.65 s and 1.5 s,30 respectively

SASL;i ¼ 2 �Mt;0 � CBF � a � T1t � e�
ATT
T1a

� e
�maxðPLDi�ATT; 0Þ

T1t – e
�maxðPLDiþLDi�ATT;0Þ

T1t

� �
=k

where Mt,0 is fully relaxed brain tissue magnetization in

equilibrium, a is the labeling efficiency (0.85),26 T1t and

T1a are the T1 of tissue and arterial blood, respectively,

LDi is the i-th LD, and k is the tissue-to-blood partition

coefficient of water (0.9ml/g).31

T1-weighted (T1w) 3D structural and T2-weighted

(T2w) FLAIR images were acquired with a resolution

of 0.94� 0.94� 1mm3 (repetition time (TR)/echo time

(TE)/inversion time (TI)¼ 9.5/3.8/400ms) and 0.47�
0.47� 5mm3 (TR/TE/TI¼ 9500/141/2300ms).

All images were co-registered to the T1w structural

images using Statistical Parametric Mapping

software (SPM12), and then normalized to the

Montreal Neurological Institute (MNI) brain tem-

plate32 with 2mm isotropic resolution using

Advanced Normalization Tools (ANTs) software.33

The brain was extracted using FSL software.34 To

reduce computation requirements, all images were

resized to 96� 96.

Deep convolutional neural network

We developed a dCNN to synthesize high-quality, PET-
like CBF maps from only MRI inputs including ASL.
dCNN was chosen in this task because it is a powerful
tool to efficiently extract and integrate intrinsic features
in the input contrasts. The overall layout of the process-
ing pipeline is shown in Figure 1(a). The detailed archi-
tecture of the dCNN is shown in Figure 1(b).We created
a U-Net dCNN35 which includes three encoder layers
and three decoder layers. Each encoder layer consists of
three 2D convolutional layers with a 3� 3 kernel, a
batch normalization layer,36 a rectifier linear unit
(ReLU) activation layer,37 and a 2� 2 maximum pool-
ing (down-sampling) layer. A residual connection19 is
placed at the central layer. Each decoder layer consists
a 2� 2 up-sampling layer followed by three 2D convo-
lutional layers and ReLU activation layers. Bypassing
shortcuts connect corresponding encoder-decoder
layers to retain high-resolution information in the
images.38

The input to the dCNN included 16 individual
images: (1) ASL scans: quantitative CBF maps, mean
ASL difference signal, PDw reference images from both
single-delay and multi-delay ASL scans, ATT maps
and the raw ASL difference signal at each delay from
multi-delay ASL; (2) structural scans: T1w and T2w

FLAIR images; and (3) the pixel coordinate informa-
tion in template space. To emphasize the perfusion

Table 1. Demographics of the subjects included in this study.

Healthy controls

Number Sex Age

16 9 F/7 M 41.4� 12.0 (22–62)

Patients

PT # Sex Age Disease

1 M 74 ASD; right CCA stenosis, right VA occlusion.

2 F 25 MMD; bilateral MCA occlusion.

3 F 49 MMD; right M1 occlusion, left ICA stenosis.

4 F 38 MMD; left ICA stenosis, left A1 stenosis.

5 M 33 MMD; bilateral occlusion of supraclinoid ICA.

6 M 46 MMD; right ICA stenosis, right MCA occlusion.

7 F 46 MMD; stenosis of supraclinoid ICA, right M1, and right A1.

8 F 66 ASD; left ICA occlusion.

9 M 34 MMD; bilateral supraclinoid ICA occlusion.

10 M 34 MMD; bilateral occlusion of ICA, early termination of posterior artery.

11 F 35 MMD; bilateral ICA occlusion.

12 M 52 MMD; right ICA stenosis, occlusion of right M1 MCA.

13 F 34 MMD; right M1 occlusion, left M1 stenosis.

14 F 16 MMD; bilateral ICA stenosis, M1 occlusion.

15 F 26 MMD; bilateral stenosis of supraclinoid ICA.

16 M 73 ASD; proximal right ICA stenosis.

Summary 9 F/7 M 42.6� 16.9 (16–74)

ASD: atherosclerotic steno-occlusive disease; MMD: Moyamoya disease; CCA: common carotid artery; VA: vertebral artery; MCA: middle cerebral

artery; ICA: internal carotid artery.

2242 Journal of Cerebral Blood Flow & Metabolism 40(11)



information, the first three quantitative maps (CBF
and ATT maps) were filtered by an additional convo-
lution path (the path at the top in Figure 1(b)), and
then appended to the last up-sampling layer of the
U-Net before the final output. To improve conver-
gence, all input images were normalized so that they
had a mean intensity of 1 in the whole brain. The
output of the dCNN was synthesized CBF maps that
were normalized. During training, the synthesized CBF
maps were compared with the reference 15O-water CBF
images, using a cost function to minimize the mean
absolute error, i.e. L1-norm, and update the parame-
ters of the network. During testing, the input images
directly passed through the fixed dCNN model to gen-
erate synthesized CBF maps. The synthesized normal-
ized CBF maps were then scaled by the mean CBF
values from the multi-delay ASL scans, which are
more robust to transit delays than single-delay ASL,
to yield the final quantitative CBF maps.

Model training and testing

A total of 64 PET/MRI datasets were included in this

study, consisting of 62,720 images (excluding pixel

coordinate information) before data augmentation,

which was used to introduce controllable variations

into and enlarge the size of the dataset. The augmen-

tation included flipping along x and y directions, and a

transpose within each slice of the input channels, result-

ing in a three-fold increase of the dataset size. Four-

fold cross-validation was used in training and testing:

the datasets were randomly divided into 4 sub-groups,

each with 16 datasets from 4 HC and 4 PT. For each of

the four trained dCNN models, the datasets from three

sub-groups (48 datasets total) were used in training

with 10% of the images randomly selected from shuf-

fling for validation, and then the corresponding model

was tested on the unused sub-group for performance

evaluation. In addition, another set of training with the

Figure 1. (a) Conceptual framework of the deep convolutional neural network (dCNN) methodology that combines multi-contrast
MRI to improve cerebral blood flow (CBF) quantification; (b) the detailed network architecture of the dCNN, where the network
components are color-coded and labeled at the bottom, and the input and output image dimensions are labeled. The channel numbers
in each step are shown above the blocks. A detailed description of the network can be found in the text. CONV: convolutional layer;
BN: batch normalization layer; ReLU: rectifier linear unit.
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same cross-validation split was performed without the
structural inputs to examine the effects of the structural
input channels on the performance of the dCNN.

To examine the effect of potential training bias using
different cohorts on the dCNN’s performance, the net-
work was also trained on: (1) HC only, (2) PT only and
(3) a mix of HC and PT with matched dataset size.
Similar four-fold cross-validation aforementioned was
used. For each HC-only (or PT-only) model, 24 HC (or
PT) datasets in three sub-groups were used in training
and tested on the unused sub-group, which contained
both HC and PT datasets. For the mixed training data-
set models, 12 HC and 12 PT datasets were randomly
selected from three sub-groups, so a matched dataset
size was achieved, which was half of that in the original
mixed training. All training and testing were performed
on a Linux system with a GTX 1080 Ti GPU (Nvidia,
Santa Clara, CA). The training and validation losses
were monitored to confirm that overfitting did not
occur during training.

Image quality metrics, including structural similarity
index (SSIM)39 and normalized root mean square error
(NRMSE), were calculated by comparing the normal-
ized ASL CBF and the PET reference maps, i.e. the
CBF maps that have a mean intensity of 1 in the
whole brain as described in the previous section. For
accurate image quality assessment, five slices at the top
and the bottom of the brain were excluded due to small
numbers of brain voxels in these slices, leaving a total
of 60 slices in each dataset. The SSIM and NRMSE
were calculated in each slice, averaged across the whole
brain and then compared in all subjects.

For quantification accuracy evaluation, mean
regional cortical gray matter CBF values were calculat-
ed in 20 regions of interest (ROIs) derived from
the Alberta Stroke Programme Early Computed
Tomography Score (ASPECTS),40 corresponding to
one anterior, three middle, and one posterior vascular
territories per hemisphere, at each of the two slice loca-
tions,41 within gray matter masks generated with the
gray matter probability >0.8 in each voxel, and then
compared with the corresponding PET reference
values. The gray matter masks were applied on both
ASL and PET CBF maps. The analysis was performed
on both normalized (all subjects, normalization as
defined above) and quantitative (some subjects exclud-
ed, see below) CBF maps.

As the IDIF method for PET quantification has not
yet been extensively validated, to ensure a fair and
informative comparison, the datasets suspected with
PET quantification errors were identified and excluded
from the analysis on quantification accuracy. The
exclusion criteria included: (1) the datasets with error
scores more than 1.5� interquartile range above the
third quartile or below the first quartile (six subjects

excluded); to avoid bias for or against the dCNN
method, the error scores were an average of NRMSE
for single-delay ASL, multi-delay ASL and dCNN; and
(2) failure of PET to detect CBF augmentation between
pre- and post-acetazolamide injection in the cerebel-
lum, which should be present in both HC and PT pop-
ulations (three subjects excluded). Subjects with at least
one scan identified with quantification errors were
excluded (all cases shown in Supplementary Figure
S2), leaving 12 HC and 11 PT subjects for the quanti-
tative analysis.

Statistical analyses

Wilcoxon signed-rank tests were used to compare the
image quality metrics and ROI CBF values due to non-
normality detected in some of these values. Statistical
significance was defined as P< 0.05 with Bonferroni
correction applied on the critical P-value for multiple
comparisons, e.g. between ASL and dCNN (n¼ 3),
between dCNN trained with different cohorts (n¼ 6).
All P-values reported are raw numbers. The analyses
were performed in MATLAB R2015b (The
Mathworks, Natick, USA). Linear regression and
Bland–Altman plots were also constructed to examine
the correlation and the agreement between the MRI-
derived (single-delay ASL, multi-delay ASL, and
dCNN) CBF and that from the PET reference scan.
A mixed-effects generalized linear regression model
was used to further evaluate the relationship between
CBF quantification and the method (ASL and dCNN)
used, while controlling for acetazolamide administra-
tion and taking into account clustering within patients,
with the CBF quantified by PET as the reference. The
coefficients of each method estimated from the model
were then compared to show whether or not there was
any significant difference in CBF quantification.

Results

Image quality assessment

Quantitative CBF maps and corresponding absolute
error maps compared to PET from representative HC
and PT subjects are shown in Figure 2(a). Normalized
CBF for all subjects can be found in Supplementary
Figure S1, and quantitative CBF maps are shown in
Supplementary Figure S2. By visual inspection, the
dCNN-predicted CBF maps resembled the PET refer-
ence maps more closely and had lower error in both
HC and PT groups. Compared to PET, single- and
multi-delay ASL tended to produce lower CBF values
with underestimation in the basal ganglia, and the
dCNN mitigated the errors in these regions.
Quantitatively, the dCNN significantly improved

2244 Journal of Cerebral Blood Flow & Metabolism 40(11)



image quality with higher SSIM and reduced NRMSE

in HC, PT, and combined (HC and PT) groups com-

pared to ASL CBF images (Table 2 and Figure 2(b)

and (c)).

CBF quantification accuracy assessment

For the normalized CBF values in all testing subjects, the

dCNN showed improved correlation with PET measure-

ments (coefficient of determination, r2¼ 0.488

(P< 0.001), 0.602 (P< 0.014), and 0.575 (P< 0.001) in

HC, PT, and combined groups, respectively), compared

with single-delay ASL (r2¼ 0.151, 0.439, and 0.364 in

HC, PT, and combined groups, respectively) and multi-

delay ASL (r2¼ 0.161, 0.518, and 0.405 in HC, PT, and

combined groups, respectively), shown in Figure 3(a).
We attribute the higher correlations in the PT group to
the wider CBF dynamic range in this group.

For the quantitative CBF values, the dCNN also
showed improved correlation with PET measurements
in HC and combined groups (r2¼ 0.394 (P< 0.001) and
0.576 (P< 0.001), respectively), compared with single-
delay ASL (r2¼ 0.252 and 0.471 in and combined
groups, respectively) and multi-delay ASL (r2¼ 0.335
and 0.537 in HC and combined groups, respectively).
In the PT group, the dCNN improved correlation com-
pared with single-delay ASL (r2¼ 0.666 vs. 0.583,
P< 0.001), but not significantly so compared with
multi-delay ASL (r2¼ 0.666 vs. 0.646, P¼ 0.039)
(Figure 3(b)).

Figure 2. Examples of quantitative CBF maps and corresponding absolute error maps (magnified) (a) obtained using single-delay
(SD), multi-delay (MD) ASL, and the deep convolutional neural network (dCNN), in a healthy control (HC) (left) and a patient with
Moyamoya disease (right). Five slices across the brain are shown. Quality metrics (mean and standard deviation) of normalized CBF
maps were measured by structural similarity (SSIM) (b), normalized root-mean-square error (NRMSE) (c). In b and c, light colors
represent the test results in healthy controls (HC), the dark colors represent the test results in patients (PT), and the magenta
represents the test results in the combined group. The cross symbols represent the median values, where yellow cross symbols
indicate non-normal distribution. The dCNN showed significantly higher SSIM and lower NRMSE compared to either ASL method.
Significant differences are indicated by black lines and asterisks at the top (with Bonferroni correction for multiple comparison,
P< 0.0021).
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Averaging quantitative CBF values in the
ASPECTS ROIs, the mean reference PET CBF
(mean� standard deviation (median)) was 56.3� 13.3
(55.5) and 63.0� 19.2 (60.6) ml/100 g/min in HC and
PT groups, respectively. The dCNN model produced
less biased mean CBF values of 52.1� 13.0 (49.7) and
57.9� 18.1 (55.3) ml/100 g/min in HC and PT groups,
respectively, compared to single-delay ASL (50.6� 11.3
(48.8) and 54.7� 18.1 (51.9) ml/100 g/min with
P< 0.0001 in HC and PT groups, respectively) and
multi-delay ASL (50.8� 12.9 (48.4) and 56.9� 17.0
(54.4) ml/100 g/min with P< 0.002 in HC and PT
groups, respectively). The reduced estimation error of
the dCNN results is shown in the Bland–Altman plots
in Supplementary Figure S3.

Examining the contribution from structural MRI
input channels

The results obtained by the dCNN trained without the
structural MRI input channels can be found in
Supplementary Figures S4 and S5. Including the struc-
tural images as inputs to the dCNN resulted in better
anatomical details, e.g. gray matter/white matter delin-
eation, and improved regional CBF quantification
compared to that without structural information.
Using the anatomical channels improved SSIM and
NRMSE scores (P< 0.0001), as well as improved cor-
relation with measurements by PET in the HC group
(significant, P¼ 0.011), although the improvement in
the PT or combined groups was not significant
(P> 0.097).

Examining bias of models trained on different
cohorts

Examples of the CBF maps and corresponding error
maps for dCNN’s trained with different cohorts (i.e.
either HC, PT, or a mix of both HC and PT groups)
are shown in Figure 4(a) with the averaged SSIM and
NRMSE scores shown in Figure 4(b).

Comparing the dCNN’s trained with the HC-only or
PT-only group, the model trained on a specific subject
group yielded better image quality on the same subject
group (i.e. a model trained on HC performed best when
tested on an HC cohort) than on the other groups.

When the model was trained with the mixed cohort
of the same size (24 datasets), a higher SSIM
(P< 0.0001) and a similar NRMSE (P¼ 0.34) were
achieved in the HC testing datasets, compared to that
trained only on HC, suggesting that replacing some HC
datasets with PT datasets helped improve the dCNN’s
performance in the HC group. However, similar trend
was not observed when testing in PT, i.e. the model
trained on the mixed cohort did not yield improvedT
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SSIM (P¼ 0.90) or NRMSE (P¼ 0.020) compared

with that trained only on PT. Given the same training

data size, the model trained on the mixed cohort pro-

duced overall the best image quality.
Finally, training on a mixed cohort with a

doubled data size (the model trained originally

with 48 datasets) improved the dCNN’s performance

further on both the SSIM (P< 0.0001) and

NRMSE scores (P< 0.0001) in both HC and PT

groups. This demonstrated that the dCNN’s perfor-

mance improved upon increased training data size

with a mixed cohort. In addition, when compared

with the dCNNs trained on HC or PT groups only

(24 datasets each), adding (rather than substituting)

datasets from the other group improved the SSIM

and NRMSE scores in testing in HC or PT groups

(P< 0.0001, Figure 4(b)).

Results on the correlation of the mean normalized

CBF from PET and from dCNNs trained on different

cohorts are summarized in Table 3. Comparing the

dCNNs trained on different cohorts of the same size,

the dCNNs produced higher correlation in the corre-

sponding group that they were originally trained on

(P< 0.001). For instance, the dCNN trained on a

mixed cohort yielded moderate correlation coefficients

in HC- or PT-only cohorts, but gave highest correla-

tion coefficient in the mixed cohort (significantly

greater compared with PT-only, P< 0.001; but not sig-

nificantly when compared with HC-only, P¼ 0.022).

Training with the larger, full mixed datasets produced

the highest correlation coefficients in the HC (though

not significantly when compared with those trained

HC-only or smaller mixed groups, P> 0.445) and

mixed (significantly, P< 0.007) groups.

Figure 3. Linear regression plots of the normalized (a) and quantitative (b) mean CBF in regions of interests from single-delay (SD,
left) and multi-delay (MD, middle) ASL and that produced by the deep convolutional neural network (dCNN, right). The blue and red
square symbols represent the data in the healthy control (HC) and patient (PT) groups, respectively. The solid black lines and fitted
parameters in black show the regression results in the combined groups (HCþ PT), while the fitted parameters in the HC and PT
groups are shown in blue and red, respectively. Note that a few subjects were excluded from both groups in quantitative analysis
(b) due to images quality concerns (see text and Supplementary Figure S2). The dCNN showed improved correlation (in both
normalized and quantitative comparisons) with measurements by PET in the HC, PT, and combined groups.
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Discussion

We developed a dCNN-based model to integrate infor-

mation from multiple MRI contrasts, including two

ASL scans, to predict CBF maps with significantly

improved image quality and quantification accuracy

than either ASL measurement alone, using simulta-

neously acquired PET CBF measurements as the

reference. We also examined the bias effect of using
different training cohorts on the performance of the
dCNN, and showed that training on the complete data-
set including both HC and PT yielded overall the best
outcome in both groups.

Comparing the CBF maps from the original ASL
and PET scans, regional structural differences can be

Figure 4. (a) Examples of CBF maps and corresponding absolute error maps (magnified) obtained using deep convolutional neural
networks (dCNNs) trained on different datasets; (b) corresponding image quality metrics, structural similarity index (SSIM) and
normalized root-mean-square error (NRMSE), calculated from normalized cerebral blood flow (CBF) maps. Light colors represent the
test results in healthy controls (HC), and the dark colors represent the test results in patients (PT). The cross symbols indicate the
median values. For comparison, the results from the dCNN trained with a larger mixed dataset (from Figure 2) are also included,
shown in magenta. The non-significant comparison pairs are labeled with black lines and “NS”, while all other comparisons within the
same cohort were significant (P< 0.002). With a fixed training dataset size of 24 scans, the best SSIM and NRSME scores (or non-
significantly different from the best) for both test cohorts were achieved when the model was trained on a mixed cohort (red vs.
green and blue). Overall, the models trained on a larger mixed cohort (full set, 48 scans) performed the best in all settings (magenta
vs. all others).

Table 3. Fitting results of normalized cerebral blood flow values in the regions of interest using deep convolutional neural networks
trained on different cohorts.

Testing dataset

Healthy Controls Patients Combined

r2 b r2 b r2 b

Trained on HC (24) 0.451 0.618 0.540 0.465 0.485 0.499

Trained on PT (24) 0.306 0.663 0.661 0.700 0.540 0.698

Trained on mixed (24) 0.432 0.587 0.594 0.646 0.552 0.639

Trained on mixed (full set, 48) 0.488 0.638 0.602 0.645 0.575 0.646

HC: healthy controls; PT: patients; r2: coefficient of determination; b: slope of the fitted line; the numbers in the brackets are the training data size.
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observed. These are likely due to imaging modality
differences, spatial resolution differences, imperfections
in the image reconstruction and co-registration pro-
cesses, as well as regionally varying inaccuracies due
to arterial arrival time. These differences contribute
to the lower SSIM and higher NRMSE scores for the
original ASL measurements. One consistent finding
was that both ASL methods underestimated CBF in
the basal ganglia, likely due to early ATT and subse-
quent T1 decay within the tissue compartment; this
error was learned by the deep network and corrected
on the synthesized CBF maps. In addition, the contrast
around infarcts improved in general, while the residual
arterial artifacts presented in ASL were reduced
(Supplementary Figure S1). The dCNN was able to
match the structure of the PET images, with improved
SSIM and NRMSE metrics; more importantly, it
yielded more accurate CBF estimates, which is clinical-
ly relevant.

ASL scans with insufficiently long PLDs are likely to
underestimate perfusion if the flow is delayed due to
disease, as in the cerebrovascular patients. With a wider
PLD range to cover these prolonged ATTs, the perfu-
sion quantification accuracy can be improved, as
shown by the multi-delay ASL measurements. By inte-
grating information from multiple contrast sources,
including the CBF and the ATT maps from single-
delay and multi-delay ASL scans as well as structural
scans, the dCNN further improves the quantification
accuracy. Examples in Supplementary Figure S1 show
that some of the typical defects in the CBF distribution
in the ASL methods due to transit delay effects, e.g. the
frontal lobes and watershed areas, were compensated
for in both HC and PT cohorts. Another example is the
correction for the spurious defects in the left frontal
area in HC #1 that presented in multi-delay ASL but
not in single-delay ASL due to acquisition error.

We observed that some of the quantitative PET
CBF maps might have quantification errors when an
IDIF was not accurately generated, which were likely
to be globally scaled incorrectly. By using normalized
CBF maps, the dCNN models can learn the regional
flow information without being affected by potential
quantification errors introduced by global scaling in
the PET reference images. Consequently, including all
the subjects in the analysis on normalized, instead of
quantitative, CBF measurements should be more
appropriate. However, other factors that affect the
accuracy of the regional flow distribution in the PET
reference images, e.g. imperfect single-atlas based
attenuation correction, may still be presented and
affect the analysis. Recent development, such as
multi-atlas-based method,42 zero-TE imaging,43 etc.,
should be able to improve the attenuation correction

and provide a better reference. On the other hand, we
excluded subjects with likely PET quantification errors
to accurately analyze the quantitative CBF values. The
exclusions should not bias the final results between
single-delay, multi-delay ASL and dCNN, as the exclu-
sion criteria were based on the average of the three.

In this study, simple gray matter masks based on the
gray matter probability were applied in the ROI anal-
ysis. A relatively high threshold (0.8) was used to help
reduce the CBF estimation inaccuracy from white
matter which could come from two sources: (1) varying
white matter probability within the ROI; (2) the uncer-
tainty in white matter CBF quantification in ASL as
only gray matter T1 was used. The quantification accu-
racy could be improved by partial volume correction
methods, such as44 for ASL and45 for PET, which
should be included in the future work.

The improvement on the image quality and normal-
ized CBF prediction accuracy when structural channels
were included as inputs, demonstrated their important
contribution in the prediction task. In addition to the
structural information itself, e.g. shape, boundary, etc.,
the structural input channels may help provide infor-
mation on CBF quantification by serving some regu-
larization purpose, as the CBF values are tissue type
dependent. However, there may be potential risk of
mixing physiological and anatomical information in
an undesired way and result in compromised perfor-
mance, especially in patient populations where
mismatch between physiological and anatomical infor-
mation is more likely to occur. In this study, the addi-
tional convolution path introduced to the U-Net
structure was used to emphasize perfusion-related
information and reduce the afore-mentioned risk,
resulting in improved performance. In addition, train-
ing of a dCNN model using only the structural images
as input yielded poor results, especially those from the
regression analysis in the PT cohort, demonstrating the
essential importance of perfusion information in this
prediction task (please see Supplementary Figure S6).

Comparing the dCNNs trained with different
cohorts for model bias assessment, the overall best per-
formance was observed when the composition of the
training cohorts (HC-only, PT-only and mixed)
matched that in the testing. Adding/replacing some
PT datasets in the HC training datasets improved the
dCNN’s test performance in the HC group, demon-
strated by improved SSIM, NRMSE, and correlation
coefficients; however, adding/replacing some HC data-
sets in the PT datasets did not show such benefit. It is
likely that the higher regional CBF variation in PT
datasets due to the presence of disease, in addition to
“healthy regions”, made the dCNN model more robust
for predicting CBF in the HC group. This indicates the
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high value of training on PT data; however, these data-
sets are also relatively more difficult to acquire com-
pared to HC datasets. Generally, without a priori
knowledge on whether a subject has cerebrovascular
disease or not, a model trained with a mixed cohort
is recommended; in addition, it should be beneficial
to include as many subjects in the training cohort as
possible.

The total number of original input images (62,720)
was sufficiently large, despite the limited number of
subjects. Data augmentation further increased this by
three-fold. The data augmentation step in the training,
although very simple (i.e., only flipping and transpos-
ing), significantly improved the performance (please see
Supplementary Figure S7 for the comparison to the
dCNN trained without augmentation), demonstrating
its importance. Though data augmentation increases
the training time by a few folds (about 3 folds in this
study), the prediction (application of the models) time
remains the same once the model is trained. In each
cross-validation step, 75% of these images were used
in training. In all the studied scenarios, we relied on
cross-validation and monitoring of the training/valida-
tion loss during training for each training step to assess
whether the networks were over-fitting, and none was
observed. In addition, the good performance on the
test datasets in all the tested scenarios also suggested
that over-fitting did not occur in this study.

Despite the promising improvements using
the dCNN, there are still minor discrepancies between
the synthesized and reference PET CBF maps, e.g. the
overestimation of CBF in the infarct area in PT #4
(Supplementary Figure S1). The performance of the
dCNN should be further improved by including more
training data, especially those from the PT group, as
suggested by the trend shown in this study. In addition,
it should also be beneficial to include ASL scans that
are less sensitive to transit delay effects, e.g. ASL scans
with longer LD and PLD,8 or velocity-selective ASL.12–
14 Note that the SNR efficiency of the single-delay ASL
in the current study was suboptimal (91.1% of that if a
recommended LD of 1.8 s is used6) due to a short LD
of 1.45 s, and could be improved by using a longer LD.

Currently, the dCNN takes all the input contrasts,
which may contain redundant information, or may not
be readily generalizable due to images acquired with
specific scan parameters, e.g. the individual ASL
signal at five specified PLDs. An optimized combina-
tion of the input contrasts would be desired to simplify
and generalize the pipeline. This optimization may ben-
efit applications in datasets that include both single-
delay and multi-delay ASL measurements but were
acquired with different imaging parameters or on dif-
ferent scanners, e.g. the ADNI dataset. As part of the

optimization process, the dCNN trained with only
single- or multi-delay ASL (with structural images)
was also evaluated. The results (please see
Supplementary Figure S8 for details) showed that
while including both single- and multi-delay ASL in
the training gave the best results as expected, it is inter-
esting that the dCNNs performed reasonably well with
only single-delay or multi-delay ASL data, demonstrat-
ing significant improvement compared to the original
ASL scans. This is especially encouraging as the major-
ity of clinical sites will at most acquire one ASL scan,
which may benefit from the proposed dCNN method.
On the other hand, it may be also worth to optimize
imaging parameters and/or protocol to allow more
than one type of ASL scans in a scan session within
similar total scan time to obtain additional improve-
ment. A U-net structure with skip connection and
absolute error as the cost function was used in this
study. It is worth exploring other network structures
and/or cost functions for performance improvement,
e.g. recently proposed general adversarial networks
(GANs).46

This study focused on the Moyamoya disease
despite its relative rarity, as these patients often show
severely prolonged transit delays that pose large chal-
lenges in perfusion quantification with ASL. With
promising results in this patient population, we may
expect better performance in other vascular diseases
and dementia where similar but less severe vascular
alterations are present. Our results in the atherosclerot-
ic steno-occlusive disease patients included here sug-
gested a trend of better performance (data not
shown) though the number of patients was small.

The data in this study included the CBF maps
acquired before and after hemodynamic challenge, so
cerebral vascular reactivity maps can be calculated.
With improvement on the perfusion quantification in
both pre- and post-challenge conditions, one would
expect improvement on reactivity maps, especially
within the areas where the transit sensitivity of ASL
may exaggerate the reactivity response, though this
has to be studied to confirm. However, exploiting the
reactivity maps was not within the scope of the current
study and will be examined in future work.

This study had several limitations. First, to minimize
patient discomfort, arterial blood samples were not col-
lected, so the PET CBF maps were generated based on
an IDIF method,24 which is sensitive to errors from
PET image reconstruction and vessel segmentation
errors. To improve the quality of the reference “ground
truth”, arterial blood samples could be collected. An
alternative approach is to scale the whole brain CBF by
another measurement, e.g. the whole brain flow mea-
sured by phase-contrast imaging.47,48 However, scaling
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methods should be used cautiously, as systematic bias

has been shown between phase-contrast MRI and
15O-water PET with arterial sampling,43,49 especially
at lower spatial resolutions and for higher flow rates.

Furthermore, the validity of phase-contrast MRI in

patients with steno-occlusive disorders is less well

understood. In these patients, slower flow may lead
to reduced SNR and contributions from compensatory

collateral arteries (e.g. via the extracranial vessels) may

not be properly measured. Second, the final predicted

CBF maps were scaled by the mean CBF from the

multi-delay ASL, and could be affected by factors
such as labeling efficiency. To mitigate this, other

flow measurements, such as phase-contrast or pulsed

ASL, which has high and constant labeling efficiency,

can be included to help improve the quantification
accuracy of the dCNN model. Third, the number of

subjects was limited due to data availability, affecting

both the training process and the testing validation.

The dCNN is expected to have improved performance

with bigger datasets, though it performs well with the
limited number available for this study. In addition,

only limited cerebrovascular disease types were includ-

ed in this study, mainly Moyamoya disease and steno-

occlusive disease of the carotid arteries. Therefore,
whether the performance of the current dCNN model

can generalize in other cerebrovascular or neurodegen-

erative diseases remains to be evaluated. Furthermore,

due to the availability of such datasets, the perfor-
mance of the dCNN on ASL measurements across dif-

ferent scanners or vendors was not examined in the

current study. The current dCNN model is imple-

mented in 2D. A 3D implementation would be more

appropriate to integrate the information along the slice
direction, potentially improving its performance.

Lastly, relatively simplistic statistical methods were

used in comparing the performance of the dCNN

models and ASL measurements, and possible within-
subject correlations (e.g. correlation between adjacent

slices, between the two measurement runs) were not

examined and might affect the accuracy of the perfor-

mance comparisons.
To conclude, we demonstrated that the proposed

dCNN is capable of integrating multi-contrast infor-

mation from ASL and structural MRI to synthesize

CBF maps with significantly improved image quality
and quantification accuracy, in both healthy subjects

and cerebrovascular disease patients. We also showed

that training on patient data improves performance, as

it contains valuable information about both healthy
and diseased regions. Using a dCNN should allow

more accurate CBF measurements in patients who

receive only MRI and do not have access or capability

to undergo 15O-water PET CBF mapping.
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