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Abstract 

A growing body of research suggests that individuals with 
developmental dyslexia perform below typical readers on 
non-linguistic cognitive tasks involving the learning and 
encoding of statistical-sequential patterns. However, the 
neural mechanisms underlying such a deficit have not been 
well examined. The aim of the present study was to 
investigate the ERP correlates of sequence processing in a 
sample of children diagnosed with dyslexia using a 
probabilistic visual serial learning paradigm. The behavioral 
results revealed that whereas age-matched typically 
developing children (n=12) showed learning in the task as 
reflected by their response times, the children with dyslexia 
(n=8) likely showed difficulty in learning. In conjunction with 
these behavioral results, the ERPs of the typically developing 
children showed a P300-like response indicative of this 
paradigm (Jost et al., 2015); whereas, the children diagnosed 
with a reading disorder showed no such ERP effects. These 
findings are consistent with the idea that differences in 
statistical-sequential learning ability might underlie the 
reading deficits observed in developmental dyslexia. 

Keywords: Developmental dyslexia; statistical learning; 
sequential learning; implicit learning; ERPs. 

Introduction 
Statistical-sequential learning refers to the ability to learn 
statistically structured sequential patterns from the 
environment (Lashley, 1951; Saffran, Aslan, Newport, 1996). 
Statistical learning is thought to be important for the 
acquisition of language. For instance, in spoken language, 
linguistic units (e.g., phonemes, syllables, words) are 
organized in statistically structured sequences according to 
the specific language’s phonology, phonotactics, semantics, 
and syntax. A growing body of research suggests that 
variations in statistical learning ability are associated with 
spoken language ability, in adults (Conway, Bauernschmidt, 
Huang, & Pisoni, 2010; Misyak, Christiansen, & Tomblin, 
2010), children (Kidd, 2012), and infants (Shafto, Conway, 

Field, & Houston, 2012). Recent research also suggests that 
this same relationship between statistical learning and spoken 
language may hold true for statistical learning and written 
language. For instance, visual statistical learning was found 
to be related to reading ability in adults and children, even 
after controlling for age and attention (Arciuli & Simpson, 
2012). Similarly, performance on a variant of the serial 
response time (SRT) task has also been shown to predict 
reading ability in a sample that included both healthy controls 
and adults diagnosed with dyslexia (Bennet, Romano, 
Howard, & Howard, 2008).  

Developmental dyslexia (DD) is a learning disability that 
specifically impairs a person's ability to read despite 
having normal intelligence and ample opportunity for 
learning. Common characteristics among people with 
dyslexia are difficulty with phonological processing (the 
manipulation of sounds) (Bradley & Bryant, 1983; 
Snowling, 2000) and spelling (NINDS, 2011; Gabrieli 
2009). In the standard view of dyslexia, individuals present 
with difficulty in reading but appear to process other 
information in a typical manner. In recent decades, 
however, it has become apparent that developmental 
dyslexia may be associated with impairments to other 
cognitive abilities such as motor functioning (Orban, 
Lungu, & Doyon, 2008), implicit learning (Du & Kelly, 
2013), and cerebellar dysfunction (Nicolson, Fawcett, & 
Dean, 2001).  

Of the many studies suggesting that there may be 
broader cognitive impairments underlying developmental 
dyslexia, a single commonality underlies many: sequential 
learning ability. For instance, individuals with dyslexia 
have been shown to perform below typical reading peers in 
variations of the SRT and other related sequence learning 
paradigms (Du & Kelley, 2013; Howard, Howard, Japiske, 
& Eden, 2006; Jiminez-fernandez, 2011; Vicari, Marotta, 
Menghini, Molinari, & Petrosini, 2003). Thus, there is 
mounting behavioral evidence for dyslexia to be associated 
with impairments in implicit statistical-sequential learning 
mechanisms. However, the neural mechanisms associated 
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with this proposed learning deficit have not been well 
explored. Furthermore, many of the previously mentioned 
tasks involved a motor component to learning; as such it is 
important to determine whether impaired sequential 
learning is due solely to difficulties with motor learning or 
whether deficits are also found using tasks that are not as 
dependent upon motor responses.  

The Current Study 
The purpose of the current study was to examine the neural 
correlates of statistical learning in children who have been 
diagnosed with DD compared to age-matched, typically-
reading children. To this aim, we measured event-related 
potentials (ERPs) while children were engaged in a visual 
statistical learning paradigm previously used by Jost, 
Conway, Purdy, Walk, and Hendricks (2015). Eight 
children previously diagnosed with DD and twelve TD 
children participated. The learning task involved the 
presentation of a series of visual stimuli wherein target 
stimuli could be probabilistically predicted based on the 
preceding stimulus. ERPs to three different types of 
predictor stimuli reflecting high, low and zero probability 
of being followed by the target were compared across DD 
and TD groups. Based on the Jost, Conway, Purdy, Walk 
& Hendricks, (2015) study that demonstrated a P300-like 
ERP component that was associated with learning in the 
task, we investigated waveforms within the same 400-
700ms time-window as used by Jost et al., (2015). We also 
examined behavioral correlates of learning as measured by 
response times (RTs) to the target stimuli. We predicted 
that if developmental dyslexia is associated with a deficit 
to general-purpose statistical learning mechanisms, the 
children with DD would be poorer at learning the 
predictor-target statistical patterns, as reflected by both the 
behavioral and ERP data, compared to the TD children. 
Furthermore, because the ERP effects are time-locked to 
the presentation of the predictor stimuli before any motor 
responses are made, any observed differences in the 
waveforms would suggest that the locus of impairment is 
at a perceptual or cognitive level, rather than only at the 
motor response level of processing. 

Method 

Participants 
Twenty children (ages 8-12 years) were recruited from the 
greater Saint Louis region, eight of whom had a prior 
diagnosis of reading dyslexia (DD group) and the 
remaining had no prior diagnoses of cognitive, emotional,  
 
 
 
 

Table 1: Descriptives for the children with developmental 
dyslexia (DD) and age-matched typically developing (TD) 

children [see procedure below for explanation]. 

 N Gender Mean Age 
DD 8 5M, 3F 10.7 years 
TD 12 8M, 4F 9.4 years 

 

Table 2: Cognitive (raw) scores for both groups and 
Reading (raw) scores for the DD group  

 DD(N=8) TD(N=11) 
BD 33.50 26.27 
DS 15.38 13.91 
WR 22.25 - 
PD 11.00 - 

 
or learning disorders (TD group). The TD group was 
recruited through advertisements or by word of mouth and 
the DD group was recruited through a flier placed in the 
newsletter of a city school that specializes in teaching 
children with learning disorders. All participants’ families 
were compensated $30.00- $40.00 for a 2 hour testing 
session and travel, and each child was given a small toy 
($5.00-$10.00 in value). The resulting average age of the 
children across groups was similar, though the DD group 
[M=10.7] was slightly older than the TD [M=9.4] group on 
average. [t(18)=-1.707, p=.105] (and are still similar when 
one TD group participant was removed due to missing data 
on the cognitive tests1).  Table 1 shows the demographic 
characteristics for the two groups. 

Procedure  
In addition to the statistical learning task (described 
below), we administered 2 sub-tests from the Wechsler 
Intelligence Scale for Children IV (WISC) (Wechsler, 
Kaplan, Fein, Kramer, Morris, Delis, & Maelender, 2003). 
We assessed participants’ level of perceptual reasoning 
using the Block Design (BD) subtest. This test assesses 
visual-motor and visual-spatial skills by requiring children 
to recreate a 2-dimensional printed figure using 3-
dimensional blocks, within a specific time frame. We also 
used the Digit Span (DS) sub-test as an index of short-term 
memory capacity as it provides a measure of a child’s 
ability to retain new information, concentrate and 
manipulate input, thus demonstrating cognitive flexibility. 
The results of the BD and DS assessments are provided in 
Table 2. As one can see, the two groups of children 
obtained very similar scores, which were not statistically 
significant from one another for either subtest [BD: t(17)=-
1.288, p=.215 and DS: t(17)=-1.259, p=.225]. 

                                                
1 The resulting average age of the children across groups was 

similar, though the DD group [M=10.7] was slightly older than 
the TD [M=9.4] group on average. [t(17)=-1.678, p=.112] 
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The DD children were also administered the Pseudoword 
decoding and Word Reading sub-tests of the Wechsler 
Individual Achievement Test-II (WIAT) (Wechsler, 2005). 
The Word Reading (WR) sub-test assesses basic 
phonological skills and the Pseudoword Decoding (PD) 
sub-test assesses the child’s ability to use phonetic 
decoding skills while reading from a list of nonsense 
words. The results of these two subtests are shown in Table 
2. These scores indicate that the DD group performed at 
least two standard deviations below age matched peers on 
both WIAT sub-tests. 

Statistical Learning Task 

In the statistical learning task, children were presented with 
consecutive series of colored circles on a computer monitor 
one at a time (Figure 1). Stimuli were presented 
electronically using E-Prime 2.0.8.90 software 
(Psychology Software Tools, Pittsburgh, PA), on a Dell 
Optiplex 755 computer. Each visual stimulus was 
presented in the center of the screen on top of a dark 
background, displayed for 500ms Participants were 
instructed to press a button on a button box each time a 
target (T) color appeared. Every trial began with one to 
five occurrences of a standard (S) stimulus in the center of 
the screen. Following the presentation of these S stimuli, 
one of three possible predictor stimuli appeared, with each 
one predicting the target stimulus with varying levels of 
probability. When a high predictor (HP) color appeared, 
the target color followed 90% of the time; when a low 
predictor (LP) color appeared, the target color followed 
20% of the time. When T did not appear (10% of the time 
for HP; 80% of the time for LP) the S followed instead. A 
zero-predictor (ZP) color was never followed by T, but 
always followed by S. The end of one trial was  

Figure 2: 128 sensors  
EEG net with the highlighted nine regions of interest. 

immediately followed by the next trial. Each of the three 
predictor colors occurred with the same frequency and the 
assignment of colors (red, blue, green, brown, white) to the 
three predictors, Ss, and Ts, was determined randomly for 
each participant. Note that Figure 1 shows an example 
depiction of the task with the HP being assigned to the red 
stimulus, ZP to the blue stimulus, etc. 

Each predictor condition (HP, ZP and LP) was presented 
50 times. Within each block, the trials were presented 
randomly and the end of one trial segued seamlessly into 
the next trial, so that participants could not distinguish the  
onset or offset of one trial from another. There were 50 
trials of each predictor (for a total of 150 trials). Note that 
participants were given no instruction of the predictor-
target statistical contingencies. Instead, the participant was 
expected to implicitly learn the statistical relationships 
between each predictor and the target, with learning to be 
expected to be observed through both response times and 
ERPs (as per Jost et al., 2015). 

Electroencephalography Acquisition 
The electroencephalograph (EEG) was acquired from 128  
scalp sites using an Electrical Geodesic Inc. sensor net 
(Figure 2) and was pre-processed using Net Station 
Version 4.3.1 with subsequent processing using custom 
scripts written in Matlab (version R2012b 8.0.0783, The 
MathWorks) and the EEGLAB toolbox (version 
10.2.2.2.4a; Delorme & Makeig, 2004). Electrode 
impedances were kept below 50 kΩ. The EEG was 
acquired with a 0.1 to 100 Hz band-pass at 250 Hz and 
then low-pass filtered at 30 Hz. The continuous EEG was 
segmented into epochs -200ms to +1000ms with respect to 
the predictor onset. ERPs were baseline-corrected with the 
200ms prestimulus data and averaged-referenced. 
Individual ERPs were computed for each participant, 
probability condition, and electrode.  

FRz

RAnLAn

CNz
RCnLCn

POz
RPoLPo

High Probability Condition

Zero Probability Condition

Low Probability Condition

90%

10%

100%

20%

80%

33%

33%

33%

HP ZP LP T S

Figure 1. Diagram of the Statistical learning task 
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Statistical Analysis  
Statistical calculations were performed on the individual 
mean amplitude ERPs within 400-700ms (as used by Jost 
et al, 2015). To analyze the effect of cortical topography, 
nine regions of interest (ROIs, Figure 2) were defined: left 
(LAn), middle (FRz), and right anterior (RAn); left (LCn), 
middle (CNz), and right central (RCn); and left (LPo), 
middle (POz), and right posterior (RPo) regions.  

Behavioral analyses were conducted across DD and TD 
groups for response times. Pearson correlations were also 
performed on both groups with the WISC sub-tests as well 
as with the DD group and the WIAT sub-tests. 

 

Results 
RT data (Figure 3) was examined for only 10 TD children 
and on 6 of the DD children (due to missing data for 2 
children in both groups). A 2 X 2 ANOVA with 2 levels of 
predictor (HP/ LP) and 2 groups (TD/DD) with RT as 
dependent variable revealed a significant main effect for 
predictor only [F(1, 28) = 24.018. p < .001].  The effect for 

group [F(1, 28) = .086. p = .772] and the group x predictor 
interaction were non-significant [F(1, 28) = 1.03. p = .319]. 
Even though the predictor X group interaction was non-
significant (likely due to lack of statistical power), visually, 
it appears that RTs were quite different for the TD and DD 
groups, with the TD group showing the expected 
facilitation in RTs for the HP compared to the LP 
predictors, but the DD group not showing this same effect. 
This could indicate that for the DD children, the subtle 
differences between the HP/ LP were left undetected. 
However, a larger sample size is needed before making 
strong claims.  

Figure 4 (left panel) displays grand average ERPs for the 
DD participants, within the 400-700ms range. Visual 
inspection indicates that the waveforms for the HP and LP 
predictors have the same amplitude but are larger than the 
ZP predictor. Figure 4 (right panel) displays grand average 
ERPs for the TD participants for each predictor condition, 
within the 400-700ms (across all 9 ROIs). Visual 
inspection indicates that the waveform for the HP predictor 
has a larger amplitude compared to the ZP and LP 
predictor waveforms.  

Two one–way ANOVAs were performed separately for 
each group (DD, TD) within the 400-700ms window with 
EEG amplitude as the dependent variable and predictor 
conditions (HP, ZP and LP) as the independent variables. 
In the DD group, there were significant differences among 
predictor conditions [F(2, 1941) = 24.762, p<.001]. 
However, Tukey’s post hoc-tests indicated that there were 
no significant differences between the HP and LP groups 
(p=.865) but there were significant differences between HP 
and ZP (p<.001) and LP and ZP (p<.001). Analyses for the 
TD group revealed that there were significant differences 
between the predictor conditions [F(2, 2913) = 4.325, 
p=.02]. Tukey’s post hoc tests indicated significant 
differences between the HP and LP (p=.01), and HP and 
ZP (p<.05) but not between the ZP and LP groups 
(p=.918). 

Pearson correlation analyses for all but one child with 

Figure 4: Grand averages are in response to the high predictors (HP, red solid line), zero predictors (ZP, green dotted line) and 
low predictor (LP, blue dashed line) (vertical axis: electric potential in µV, positivity upward; horizontal axis: time in seconds). 

0

100

200

300

400

500

DD TD

HP LP

Figure 3:  Response times (RT) across the two groups for 
the high (red) and low probability condition (green) 
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missing data (N=19) indicated that scores on the Digit span 
(DS) sub-test were strongly correlated with scores on the 
Block design (BD) sub-test [r(17)=.543; p=.02]. Pearson 
correlation analyses for only the DD group (N=8) children 
showed that scores on the Pseudoword Decoding (PD) sub-
test were strongly correlated with scores on the Word 
Reading (WR) sub-test of the WIAT [r(6)=.967; p<.001]. 
Additionally, non-significant correlations were observed 
between: WR and statistical learning: [r(6)=.375, p = .360] 
and PD and statistical learning:  [r(6)=.520, p = .186]. The 
lack of significant correlations is largely due to a small 
sample size issue.  

Discussion 
In this study, we examined the neural correlates of visual 
statistical-sequential learning in children who have been 
diagnosed with a reading disorder. The results showed  
that: (1) Relative to the TD group, typical learning patterns 
in RT data from children diagnosed with DD seemed less 
apparent, indicating unlikely encoding of the predictor-
target relationships; and (2) the DD group showed atypical 
ERP waveforms within the 400-700ms time-window, 
compared to TD controls.  

In a previous study using this same visual paradigm with 
a group of TD children, Jost et al. (2015) observed a P300-
like component elicited by the HP but not the LP or ZP 
stimuli, similar to what we observed in the current sample 
of TD children. The P300 is regarded as an index of target 
detection and evaluation (van suijen et al., 2006) and has 
also been observed in other learning tasks (Baldwin & 
Kutas, 1997; Carrion & Bly, 2007; Russeler et al., 2003). 
Jost et al. (2015) suggested that the P300, typically 
observed during the occurrence of an infrequent target 
stimulus, “shifted” earlier in the input stream so that it now 
occurred in response to a stimulus that predicted the target 
with a high level of probability. That is, after sufficient 
exposure to the sequential statistics of the input array, the 
participants’ brains treated the high predictor stimulus as if 
it were the target itself, displaying the prototypical P300 
response. Regardless of the actual cognitive interpretation 
of the P300, it is clear that it reflects the participants 
treating the high predictor stimulus differently than both 
the low and zero predictor stimuli, presumably on the basis 
of having learned that this stimulus predicts the target with 
a high level of reliability. 

In contrast, the DD group showed both a lack of 
facilitation of reaction times and an atypical ERP 
waveform pattern. Rather than showing the P300 effect to 
the HP stimulus, the DD group showed it for both the HP 
and the LP stimuli. This suggests that these children were 
unlikely to have encoded the statistical probabilities 
between predictors and target. Rather than learning that the 
HP stimulus was “special” in terms of its predictive power, 
it appears that these children learned that both the HP and 
LP were predictive of the target. On this account, they have 

not learned the subtle distinction in terms of the predictor-
target probabilities that differentiate the HP from the LP 
stimulus (in terms of predicting the target with a 90% vs. 
20% probability). This pattern of performance is also 
reflected in their RTs, by not responding faster to targets 
following the HP stimulus. Thus, it would appear that the 
children with developmental dyslexia were unable to learn 
even the most basic of statistical-sequential dependencies 
contained within this visual input stream. 

How do the current findings relate to some of the 
prominent theories about the causes of developmental 
dyslexia, namely the phonological deficit and 
magnocellular deficit theories? The phonological deficit 
explanation is a prominent theory suggesting that dyslexia 
is a language-based disorder characterized by difficulties in 
single-word decoding (Orton, 1995) and phonological 
processing (Snowling, 2000). According to this theory, 
these individuals experience difficulties in perceiving and 
parsing phonemes, resulting in the inability to establish 
phoneme-grapheme connections. Although prominent, this 
theory does not explain other low-level visual, sensory, and 
motor coordination deficits that have also been associated 
with dyslexia. These shortcomings can instead be 
accounted for by the magnocellular deficit theory (Eden, 
Van- Meter, Rumsey, & Zeffiro, 1996). This theory 
postulates weaknesses in the perception of visual, rapid 
moving stimuli. Such degraded visual input is due to poor 
binocular fixation while reading. Its physiological 
manifestation is at the central nervous system level with 
impaired sensitivity of cells within the retinocortical 
magnocellular pathway (Stein, 2001). In the context of the 
present findings, the magnocellular theory would seem to 
be most relevant as it might help account for difficulties 
the DD children encountered while performing the visual 
statistical learning task. Future work will need to explore 
the specificity of this statistical learning deficit, that is, to 
what extent is it also apparent for other statistical learning 
tasks such as those incorporating auditory (non-linguistic) 
input streams or even visual-spatial patterns. 

In conclusion, our findings suggest that children with 
DD show difficulty in implicitly learning statistical-
sequential visual patterns. Because learning was indexed at 
the perceptual level by ERPs, and was not dependent upon 
a motor response, it appears that the learning deficit is not 
based on motor learning but reflects a more perceptual or 
cognitive learning problem. Additional research is required 
at both cognitive and neurophysiological levels in order to 
clarify the nature of this impairment and how it relates to 
or causes reading disability. 
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