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Surrogate distributed radiological sources I:
point-source array design methods

Jayson R. Vavrek, Mark S. Bandstra, Daniel Hellfeld, Brian J. Quiter, and Tenzing H.Y. Joshi

Abstract—In this first part of a multi-paper series, we demon-
strate a method for using arrays of point sources to emulate
continuous distributed gamma-ray sources when measured from
a standoff of at least several meters. The method relies on the
Poisson deviance statistic to test whether the array source “looks
like” its continuous analogue when measured by a particular
gamma-ray detector moving through 3D space on a particular
trajectory. This point-source method offers significant advantages
over truly distributed sources such as powders, solutions, or
aerosols; notably, arrays of sealed point sources are safer to both
personnel and the environment, and are more easily deployed,
reconfigured, ground-truthed, and removed. We use this Pois-
son deviance metric to design eight different mock distributed
sources, ranging in complexity from a 36×36 m uniform square
grid of 5 mCi Cu-64 sources to a configuration where regions of
higher and zero activity are superimposed on a uniform baseline.
We then present several example calculations for various detector
systems, altitudes, array source spacings, and source patterns,
and examine under what parameters it is possible to design a
surrogate array source that is nearly indistinguishable from a
truly continuous distributed source. In Part II, we will detail
the design, manufacture, and testing of Cu-64 sealed sources
at the Washington State University research reactor, discuss
their deployment during the aerial measurement campaign, and
present results from several measurements.

Index Terms—gamma-ray imaging, distributed sources, air-
borne survey, Poisson deviance

I. INTRODUCTION

QUANTITATIVELY mapping continuous distributed ra-
diological sources is important for radiological emer-

gency response, whether the cause of the radioactive release
is accidental (e.g., contamination from a reactor accident),
or intentional (e.g., nuclear warfare). On short time scales,
quantitative radiation maps can for instance inform which
contaminated areas should be avoided by first responders
while completing search and rescue or other missions, while
on longer time scales, such maps can inform radiological
remediation efforts. Testing and validating mapping and imag-
ing algorithms for such distributed sources is challenging,
however, for three related reasons. First, it is difficult to
manufacture and deploy truly distributed radiation sources—
radioactive material would have to be powdered, aerosolized,
or dissolved, which can present a substantial human and
environmental safety hazard [1], especially if the radioactive
material were ingested or inhaled. For instance, measurements
of dispersed activated KBr [2] or La2O3 [3] powder in ∼1 Ci
(37 GBq) quantities require substantial personal protective
equipment (PPE) [4, Annex 3] and large standoff distances due
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to high concentrations of airborne and deposited radioactivity.
Second, powdered, aerosolized, or dissolved radionuclides
cannot be easily and safely reconfigured, making it difficult
to rapidly test multiple source configurations, to transfer the
source material back to a laboratory for later assay, or—if
the source half-life is long—to ensure that all radioactive
material is removed from the environment. Third, producing
truly continuous distributions of radioactive material with
known ground truth patterns is also difficult—the deposition
of powdered, aerosolized, or dissolved materials may deviate
from the intended pattern due to factors such as changing
winds or uneven mixing due to the mechanical variability
of the depositor in inclement weather [1]. Post-deposition
ground truth activity assays are possible using collimated high-
purity germanium (HPGe) [5] or cerium bromide (CeBr3) [6]
detectors, but these measurements require close proximity to
the source (increasing dose and often disturbing contaminated
soil) and are limited to small (≲1 m2) areas in a single
measurement, and thus are difficult to use for rapidly mapping
large distributed sources spanning hundreds or thousands of
square meters. While remotely- or autonomously-controlled
ground robots could be used to carry the detectors used for
the ground truth measurements and this would mitigate dose
concerns, their use would create additional complications such
as ensuring the robots did not disturb the source distributions
or become radiologically contaminated themselves.

Instead, in this series of papers, we present a method for
emulating truly continuous distributed radiological sources
with arrays of sealed point sources, which are easily ground-
truthable, re-configurable, and removable. The method is
founded on the Poisson deviance statistic, and uses it in a
hypothesis test to determine how much the array source “looks
like” its continuous source analogue, for a given detector and
trajectory. In presenting these calculations, we will rely on
the concept of “spoofing”, wherein a successful spoof is one
where the fake array of sources cannot be distinguished from
the continuous source analogue. Using this metric as a guide,
in this paper (henceforth Part I) we simulate unmanned aerial
system (UAS) borne gamma-ray measurements (using the NG-
LAMP [7] and MiniPRISM [8] detectors) of eight different
planar array source patterns of ∼500 mCi of Cu-64 each.
Then in Part II, we will detail the design and deployment
of 300 ∼7 mCi (∼259 MBq) Cu-64 sources in these eight
array source patterns during an August 2021 outdoor dis-
tributed sources measurement campaign at Washington State
University (WSU). Additionally we will discuss the measured
gamma-ray signatures and efforts to compare them against
ground truth expectations. These measurements will in turn
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form the basis of an upcoming study comparing quantitative
MAP-EM [9], [10] reconstructions of the source distributions
against known ground truth.

II. METHODS

A. Mathematical framework

The degree to which a detector can distinguish a continuous
source from an array depends on a number of factors, including
the detector trajectory, the detector response, and the source
itself. We consider a detector trajectory r⃗ ∈ RI×3 with
dwell times t ∈ RI

+, where I is the number of individual
time-binned measurements made over the course of the full
measurement. We note that we will use boldface italic to
denote arbitrary vectors v ∈ RN , vector arrow notation for a
single 3D vector v⃗ ∈ R3, and both to denote a collection of N
vectors in 3D, v⃗ ∈ RN×3. For simplicity we also consider
only a single detector, though this assumption can be readily
generalized to J detector elements. In addition to its position
vector, the detector also has a vector of orientations a, each
element of which can be described by a quaternion or rotation
matrix. Each pair of position and orientation, known as a
“pose”, in turn influences the detector response or “effective
area” η(a, r⃗ − r⃗ ′) to a point source of radiation located
at r⃗ ′. The effective area is defined as the rate of particles
detected per unit flux density at the detector, and is therefore
proportional to both the intrinsic and geometric efficiencies:
η = 4π|r⃗ − r⃗ ′|2ϵintϵgeo [11, footnote 1].

A truly continuous distributed source of radiation has a per-
volume intensity distribution w(r⃗ ′), ∀ r⃗ ′ ∈ R3. The expected
number of photopeak counts detected at each pose λ ∈ RI

+

involves integrating over the source distribution,

λ =

∫
R3

w(r⃗ ′)η(a, r⃗ − r⃗ ′)t

4π|r⃗ − r⃗ ′|2
e−µair|r⃗−r⃗ ′|d3r⃗ ′, (1)

where we have assumed that the only attenuation between
the source and detector is from air, with an attenuation
coefficient µair. Given that this work focuses on planar sources,
we note that for an isotropic detector at a constant height z = h
above the center of a uniform circular plane source of radius
R at z = 0 with an activity density w(r⃗ ′) = δ(z)w0,
0 ≤ |r⃗ ′| ≤ R and no air attenuation, we have the analytical
solution

λi =
w0ηiti

4
log

(
1 +R2/h2

)
, i = 1, 2, . . . , I. (2)

We note that Eq. 2 decreases more slowly with height h
compared to the familiar 1/h2 behavior that occurs for point
sources as well as when h≫ R.

For arbitrary distributions w(r⃗ ′), however, the integral in
Eq. 1 may be difficult or impossible to evaluate analyti-
cally (see, e.g., Refs. [12], [13, Appendix A], [14, Chapter 4]).
A more computationally-oriented approach suitable for arbi-
trary distributions involves discretizing the distribution w(r⃗ ′)
into K point sources, in which case the expected number of
counts is

λ =

K∑
k=1

wkη(a, r⃗ − r⃗ ′
k)t

4π|r⃗ − r⃗ ′
k|2

e−µair|r⃗−r⃗ ′
k|. (3)

Here the wk would typically be chosen by voxelizing (a
bounded subset of) R3, evaluating w(r⃗ ′) at each of the K
voxel centers, and multiplying by each voxel volume. As
K increases and the voxel size decreases (for a fixed total
volume), the fidelity to Eq. 1 increases, but so too do the
computational and storage costs. In either case, using Eq. 1
or Eq. 3, a specific realization of detected counts can then be
generated by Poisson sampling the mean count vector λ:

n ∼ Poisson(λ). (4)

Since Eq. 3 can also be used if the source is truly a
collection of K individual point sources w, it is our primary
tool for computing expected count rates for both the array
source w of K points and a computational approximation to
w(r⃗ ′) of K ′ ≫ K points. Throughout this paper, we will
therefore refer to both “continuous” and “array” sources as
collections of discrete source points—where it is understood
that the number of points K ′ in the former will be much
larger than the number of points K in the latter—and when
necessary will use the prefix “truly” if talking about the source
distributions w(r⃗ ′) in Eq. 1.

It is also useful to introduce the sensitivity map ς ∈ RK
+ ,

which is calculated for each potential source point as

ςk =

I∑
i=1

η(ai, r⃗i − r⃗ ′
k)ti

4π|r⃗i − r⃗ ′
k|2

e−µair|r⃗i−r⃗ ′
k|. (5)

The sensitivity has dimensions of time, and thus can be
interpreted as the expected number of counts per unit emission
rate at the source point r⃗ ′

k.
Finally, it is often useful to cast Eqs. 3 and 5 in matrix form

by extracting the terms

Vik ≡
η(ai, r⃗i − r⃗ ′

k)ti
4π|r⃗i − r⃗ ′

k|2
e−µair|r⃗i−r⃗ ′

k|. (6)

into the “system matrix” V ∈ RI×K
+ . Then the mean counts

array is λ = V w and the sensitivity map is ς = V ⊤1I , i.e.,
the sum of each column of V .

B. Continuous source emulation

Since our primary consideration in this study is designing
array sources that are relatively easy to deploy in the field, we
consider only 2D regular grids of potential source locations
(for both the array and continuous sources), with potentially
multiple sources (i.e., variable activity) per location. We note
however that non-planar fields and/or various support struc-
tures and fasteners could extend this method to 3D, and that
irregular grids such as general tetragonal or cylindrical grids
could be used (though may be more difficult to accurately de-
ploy in the field). In turn, rather than starting with an arbitrary
continuous source and seeking to create a representative array
source, we consider the reverse problem: given an easy-to-
deploy array source, what are the possible continuous sources
from which it could have originated? As we are essentially
up-sampling the spatial resolution of the source, there is no
unique solution to this problem.

A solution that minimizes the amount of added information
is to perform a nearest-neighbor interpolation from the array to
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the continuous source points—i.e., initialize each interpolated
continuous point activity to the activity at the nearest array
point activity—and then uniformly scale the activities at the
interpolated points so that their activity sum matches that
of the array source. We ensure that each array point has
an equal number of such interpolated points that are closest
to it to minimize boundary effects. As a result, we must
also extrapolate this “interpolation” beyond the array source
boundary, but only to half as many points. Boundary effects
could likely be further reduced by changing the density of
points or by using a linear activity interpolation (instead
of nearest-neighbor) near activity boundaries, but here we
restrict ourselves to the constant nearest-neighbor method for
simplicity.

The spacing of the interpolated continuous points is chosen
based on two criteria. First, two neighboring array points
must have an even number of interpolated continuous points
between them, so that there is no middle point that would
require activity fractionation when located at a non-uniform
position within the array. Second, the continuous spacing must
be much smaller than the array spacing. The interpolated
continuous spacing required will depend on the array source
spacing, as well as the detector altitude, trajectory, intrinsic
efficiency, and angular resolution. As discussed in Section III,
we designed raster pattern trajectories to cover both source and
background areas of the field, with raster speeds and spacings
determined by nominal UAS battery lifetimes. Flight altitudes
were limited to between 5 and 15 m above ground level (AGL)
due to ease of operation above 5 m and airspace restrictions
above 15 m. The lowest flight altitudes then provide constraints
on both the continuous and array source spacings. Using the
methods described in Section II-D, we empirically find that
an array spacing of 4 m and continuous spacings of ≲25 cm
are sufficient and computationally tractable forward models
across our parameter space, given detector angular resolutions
of ∼10◦ for 511 keV singles for MiniPRISM and coarser for
NG-LAMP. As shown in Fig. 1, using m = 8 interpolated
continuous points on either side of an array point gives a
continuous spacing of 4m/(2·8+1) = 0.235 m, which is used
throughout this work unless otherwise specified. The m = 8
continuous source is effectively a computationally feasible
approximation to an m → ∞ truly continuous distributed
source, while the m = 0 array source is an experimentally
feasible approximation to m = 8. The quality of these
approximations can be determined using the statistical tools
developed in Section II-D.

We note that in practice, setting the continuous point density
too high can be computationally demanding and can induce
roundoff error that appears to stem from summing large
numbers of small contributions from weak source points with
finite numerical precision. For the models in this paper, we find
that above m ∼ 50 continuous points per array half-spacing
(below a ∼4 cm continuous point spacing), the modeled count
rates from the continuous source become unstable. Values
of m ≃ 8–50 are stable and show minimal changes in
expected counts, but these values will likely differ between
scenarios. Using float64 instead of float32 precision
may help eliminate this roundoff error, but our GPU-based

models (described in Section II-C) are currently limited to the
latter.

Fig. 1. Array (4 m spacing) and interpolated continuous (4m/17 = 0.235 m
spacing) sources for the hot/coldspot pattern discussed in Section III. The
view is zoomed to more clearly show the design of the continuous source,
especially at activity boundaries. The full array source is shown in Fig. 3.

C. Forward projections and detectors

The forward projections of both the continuous and ar-
ray sources to each detector (accounting for their individual
position offsets) are computed at each pose of the trajec-
tory using Eq. 3. The forward projection is implemented in
the Python-based, GPU-accelerated mfdf (multi-modal free-
moving data fusion) library [15], which computes an array
of expected counts λ ∈ RI×J

+ , where I is the number of
individual measurements and J is the number of individual
detector elements. This work leverages the NG-LAMP [7]
and MiniPRISM [8] detection systems, with J = 4 CLLBC
crystals (of size 2× 2× 1 inch) and J = 58 CZT crystals (of
size 1× 1× 1 cm), respectively.

Detector response functions were taken from existing char-
acterizations of the NG-LAMP and MiniPRISM detectors,
which were computed ahead of time using the Geant4 frame-
work [16], [17], [18]. The detector systems (and Geant4
models thereof) include the Localization and Mapping Plat-
form (LAMP), which consists of a LiDAR and an inertial
measurement unit (IMU)—enabling LiDAR-based Simultane-
ous Localization and Mapping (SLAM) [19], [20], [21]—as
well as a video camera, single-board computer, and front-end
detector electronics—see Fig. 2. When coupled to a UAS,
the systems can also read out real-time kinematic (RTK)
and standard GPS positioning measured by the UAS as a
comparison for LiDAR SLAM-computed positions.

Responses were computed for both single- and double-
crystal (i.e., Compton) full-energy detection efficiency at
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LAMP

LiDAR
2×2 CLLBC

LAMP

LiDAR 58 CZT

Fig. 2. Left: The NG-LAMP detector system, comprising four CLLBC
crystals, a LiDAR unit, and a LAMP contextual sensor suite. Photo from
Ref. [22]. Right: The MiniPRISM detector system, comprising 58 CZT
crystals, a LiDAR unit, and a LAMP contextual sensor suite. Photo from
Ref. [23].

511 keV, though the forward projections in this work model
only the single-crystal signals. We additionally include a small
but non-zero background rate in the photopeak region. In the
simulation studies discussed in Section III we used 2 and
0.2 counts/s/detector for NG-LAMP and MiniPRISM, respec-
tively, which were order-of-magnitude values estimated from
previous indoor measurements. In the experimental analysis
of Part II, however, we use 0.5 and 0.034 counts/s/detector,
respectively, (i.e., 2 counts/s after summing over detectors)
as determined by dedicated handheld and aerial background
measurements at the WSU field.

D. Statistical tests

In evaluating the quality of an array source as a surrogate
for a given continuous source distribution (and detector and
detector trajectory), it is useful to distinguish whether one
is approaching the problem as an anomaly detection or an
anomaly identification problem.

In the case of anomaly detection, the question of whether
the data are consistent with the given continuous source model
naturally leads to the use of a goodness-of-fit statistic, which
for Poisson-distributed data is the deviance or log-likelihood
statistic [24]. For anomaly identification, the anomalous alter-
nate model (here, the array source) is fully specified, and one
would decide whether the array source or continuous source
is a better fit to the data. This approach leads to the use of
the likelihood ratio test (LRT) to determine which hypothesis
(i.e., null/continuous or alternate/array) is more consistent with
the data. The latter statistical test would in general be more
powerful than the former because the analyst has complete
information about the possible anomaly, and thus the required
similarity between the continuous and array sources would be
more stringent than in the anomaly detection case, which may
be desired in some applications.

In this work, we adopt the anomaly detection approach.
We are primarily interested in creating array sources that look
reasonably like continuous sources, such that a data analyst
would rarely reject the continuous source and could proceed
along in using the data for various continuous source imaging
applications without needing to know about the properties or
even existence of the array source.

The aforementioned deviance D(n|λ) is a scalar goodness-
of-fit metric for comparing a vector of observed counts n to a

model λ of Poisson mean counts [24], [25], [26], and is given
in “likelihood form” as

D(n|λ) = −2 logL(n|λ) + 2 logL(n|n), (7)

where L(n|λ) is the Poisson likelihood of observing the
data n given the model λ, and L(n|n) is the likelihood of
observing the data if the model perfectly matched the data.
Noting that L(ni|λi) = e−λiλi

ni/ni! for a single measure-
ment i and that likelihoods multiply since the measurements
are statistically independent, we have

D(n|λ) = 2

I∑
i=1

[ni log(ni)− ni log(λi) + λi − ni] . (8)

Defining

pi ≡
λi∑
i λi
≡ λi

N̄
(9)

qi ≡
ni∑
i ni
≡ ni

N
(10)

we can re-write the deviance in the “magnitude and shape
form” as

D(n|λ) = D(N |N̄) + 2NDKL(q ∥ p), (11)

where D(N |N̄) is the deviance between the observed sum of
counts N and the model sum of counts N̄ , and DKL(q ∥ p)
is the Kullback–Leibler divergence between the normalized
count vectors q and p. Note that in the case of multiple detec-
tor elements (J > 1), q and p are formed from concatenating
the q and p of each separate detector. In the discussion below,
we assume J = 1 for simplicity, but if J > 1 one can simply
replace I ← IJ .

For multiple Poisson noise realizations of the I measure-
ments, the distribution of the deviance statistic can be ap-
proximated by a shifted Gamma distribution whose first three
moments match the calculated moments of the deviance statis-
tic. The Gamma distribution is chosen to extend the moment-
matching technique from a symmetric Gaussian distribution to
one with a non-zero skew term. The parameters of this shifted
Gamma distribution are expensive to calculate as the number
of measurements I gets large, but two limiting cases exist
when the number of counts ni in most measurements is ≳30:

1) As the gross counts N become large, the deviance dis-
tribution can be well-approximated by a χ2 distribution
with I degrees of freedom.

2) As the number of measurements I becomes large, the χ2

distribution itself can be well-approximated by a normal
distribution with mean I and variance 2I .

These limits will often not apply due to the low counts per
measurement far from the source, so in general we will use the
Gamma distributions. As shown in the later Fig. 7, however,
the deviance distributions are often still well-described by
normal distributions, but with means and variances different
from I and 2I .

We can now define the model λ0 as the mean count vector
for our continuous source, and the model λ1 for our coarsely-
gridded array source. Measurements n0 and n1 of the contin-
uous and array sources will produce deviances of D(n0|λ0)
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and D(n1|λ1), respectively. (Note that in the aforementioned
large N and large I limits, both D(n0|λ0) and D(n1|λ1) will
converge to the same distribution.)

We now know in principle what the deviance distributions
will look like, given that we know which is the true model for a
particular measurement, λ0 or λ1. We denote their probability
density functions (pdfs) as P(D|λ0) and P(D|λ1) for true
models λ0 and λ1, respectively. If we do not know the true
model, however, we can ask what the deviance distribution
will look like when the model is mis-specified. In particular,
we can ask how the deviances D(n1|λ0) are distributed when
the data are generated from an array source (n1) but deviances
are calculated assuming a continuous source (λ0).

We can then compute the theoretical shifted Gamma dis-
tributions of the deviances assuming the data samples n0

and n1 are Poisson samples from λ0 and λ1. In particular
we compute four theoretical deviance distributions for each
parameter combination (see for instance the later Fig. 6):

1) D(n0|λ0): the deviance distribution when Poisson sam-
ples n0 are generated from the continuous source
model λ0

2) D(n1|λ1): the deviance distribution when Poisson sam-
ples n1 are generated from the array source model λ1

3) D(n1|λ0): the deviance distribution when Poisson sam-
ples n1 are generated from the array source model λ1 but
their deviances are calculated assuming the continuous
model λ0 is the correct model.

4) D(λ1|λ0): a constant cross term that originates from
assuming the incorrect model; this is not a true deviance
as it does not compare Poisson counts to a model, but it
does have the same functional form.

The shifted Gamma distribution of the “non-central” deviances
D(n1|λ0) is computed from the first three moments in essen-
tially the same fashion as the central deviances. Namely, since
each deviance statistic is the sum of statistically independent
terms, the mean, variance, and third central moment of the
deviance are simply the sums of those same moments for the
terms. Those three moments are numerically estimated using
the relevant Poisson distribution. For example, following Eq. 8,
the ith term (the “unit deviance”) of D(n1|λ0) is

2(ni log ni − ni log λ0i + λ0i − ni) (12)

and the mean, variance, and third central moment of this
term can be estimated assuming ni ∼ Poisson(λ1i). In the
aforementioned large-N and large-I limits, these calculations
also allow one to compute the theoretical parameters of the χ2

or Gaussian approximations for D(n1|λ0).
Equipped with this framework, we can now describe how

well the array source mimics the continuous source. Quan-
titatively, given the continuous and array models λ0 and λ1,
what is the probability that a sample n1 drawn from λ1 “looks
like” it was drawn from λ0? I.e., what is the false negative
probability PFN for incorrectly deciding that the most likely
model λ̂ is the continuous source λ0 when the true model
is the array source λ1? In the absence of prior information,

the decision rule for choosing the most likely model λ̂ for an
observed deviance D is simply

λ̂ =

{
λ0, D ≤ D⋆

λ1, D ≥ D⋆
(13)

where the decision threshold D⋆ is the value of D at which
both models are equally likely:

D⋆ = argwhere
D

P(D|λ0) = P(D|λ1). (14)

Then the false negative probability is

PFN = P(λ̂ = λ0|λ = λ1) (15)
= P(D < D⋆|λ = λ1) (16)
= CDFλ1

(D⋆), (17)

where CDFλ1 is the cumulative distribution function of D
given λ = λ1. As expected, the probability that a sample n1

drawn from the array source λ1 “looks like” it was drawn
from a continuous source λ0—and thus the degree to which
the array source can be used as a useful proxy of a continuous
source—depends on the overlap of the two deviance pdfs.
Intuitively, a perfect “spoof” should have PFN = 1/2—it is
indistinguishable from the continuous source via the deviance
metric. In this work, we relax this perfect spoof condition
and consider an array source to be a practical spoof of a
continuous source if it has 0.4 ≤ PFN ≤ 0.5, though we note
that this lower bound is somewhat arbitrary.

III. DEMONSTRATION DESIGN

Eight planar array sources consisting of up to 100 individual
5 mCi Cu-64 sources each were designed for use during the
measurement campaign of Part II. These configurations are,
as shown in Fig. 3:

1) a 10× 10 square;
2) a pair of 5×10 rectangles separated by two grid spacings

(8 m);
3) a pair of 5×10 rectangles separated by three grid spacings

(12 m);
4) a 3 × 16 line with a hot center, which has four sources

per point, referred to as the “hot line”; and
5) an L-shape with 12 (13) sources on its short (long)

dimension and a thickness of five sources;
6) a 9× 9 square with inset 3× 3 grids of four sources per

point and no sources, referred to as the “hot/coldspot”;
7) a 5 × 9 rectangle with a gradient in intensity that is

produced by three adjacent 5 × 3 rectangles containing
three, two and one source per point;

8) a “plume” consisting of a 7×7 outer checkerboard pattern
and a 5× 5 fully-occupied central region.

As shown in Fig. 3, with the exception of the plume source,
the source spacing in all source patterns is 4 m. The 4 m
separation was chosen to provide good PFN values while also
creating spatially large source distributions.

The sources share a common lower-left corner at (x, y) =
(65, 10) m, chosen to reduce dose rates to personnel at the
headquarters (HQ) and create large empty regions on the west
side of the field (see Fig. 4) to enhance contrast between source
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Fig. 3. All eight source configurations designed for the WSU measurement
campaign. The color bar denotes the number of nominal 5 mCi Cu-64 sources
at each point.

and background regions. Each array source pattern is rotated
10◦ about its lower-left corner to reduce the effect of aliasing
with the UAS raster pattern, which is aligned with the field
boundaries.

The above sources were designed for a variety of mea-
surement goals, the analysis for which will be covered in a
later work. The 10×10 square, being symmetric and uniform,
provides a simple baseline with which to test reconstruction
quality (via metrics such as the Structural Similarity Index
Metric (SSIM), root-mean-squared error (RMSE), total ac-
tivity, uniformity of activity, and edge sharpness) as well as

repeatability over multiple measurements. The L-shape was
similarly designed as a uniform source with an interior corner.
We note that a modified version of our L-shape could provide
an array source analogue to the truly continuous source in
Ref. [27]. The separated pairs of 5 × 10 rectangles were
designed as uniform sources with narrow corridors of zero
activity; such patterns can be analyzed for how well-separated
the two rectangles are after reconstruction as a function of
measurement parameters (e.g., altitude, detector, and the rect-
angle separation itself) and provides opportunities for study-
ing dose-minimizing or information-maximizing path-planning
algorithms. The linear gradient source was designed as a
simple non-uniform source with which to test the reconstructed
activity dropoff. Similarly, the hot/coldspot source provides
non-uniform activities as well as internal regions of zero
activity; this source will be used to again test the “sharpness”
of the reconstruction. The hot line source was designed as a
high-contrast source and also to test the resolution for narrow
shapes with a spatial gradient. Finally, the plume source was
also designed to test the activity change between the outer and
inner regions, while also testing denser source placements.

The false negative probability PFN is also influenced by
the detector trajectory, and thus the trajectories flown by the
UAS were also designed with a number of competing goals in
mind. First, a dense field-aligned raster pattern was chosen
to reduce the parameter space, avoid obstacles adjacent to
the field, generate an approximately uniform sensitivity in
the source region, and provide opportunities for studies of
sparser raster patterns (e.g., only every second raster line)
by cutting measurements in post-processing rather than by
retaking data. As discussed in Section II-B, flight altitudes
were limited to between 5 and 15 m. The UAS orientation
was course-aligned in order to improve the LiDAR coverage
vs. a fixed orientation. The raster spacing of 5.2 m, length
of 100 m, and speed of 2.6 m/s were chosen to both overfly
the source extent and collect data over zero-source regions for
improved background estimation while completing in ≲10 min
to make the most use of the battery life. Originally, the raster
was designed to traverse the entire long dimension of the
field (up to the 5 m buffer on each side), but was shortened
during the measurement campaign to approximately the 100 m
width shown in Fig. 4 to account for lower-than-expected
UAS battery performance. Similarly, most raster patterns were
started from the bottom left corner of the field so that the
passes over the source would be completed first in case of
an early landing. Moreover, it was found that that this tra-
jectory typically led to acceptable false negative probabilities
of 0.4 ≤ PFN ≤ 0.5, and to generally accurate MAP-EM
reconstructions of the simulated source shape and intensity
from the forward-projected λ. We hypothesize this agreement
between the simulated true and reconstructed sources is due in
large part to the relatively high and uniform sensitivity (Eq. 5)
over the true source extent afforded by this trajectory across
various altitudes, including the 6 m altitude (AGL) used for
most NG-LAMP flights—see again Fig. 4. In particular, using
an altitude larger than the pass spacing tends to smooth out
variations in the sensitivity due to the large constant z term in
the distance between the detector and a given source voxel.
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IV. RESULTS

Fig. 4 shows an example scenario consisting of a 10 × 10
square array source pattern (with 4 m source spacing) and
a 6 m (AGL) NG-LAMP raster trajectory—see Section III
for additional information on the design of the source and
raster patterns. Fig. 5 shows the expected counts measured
by the NG-LAMP detector with both the array (λ1) and
continuous (λ0) sources. Here there are I = 1043 time bins
of width ti = 0.5 s and J = 4 detectors for a total of
IJ = 4172 measurements. Only small deviations (<0.2σ
absolute) between the array and continuous source count vs.
time profiles are observed. As visible here and in the later
Fig. 10, slight edge effects are visible—the array source count
prediction switches rapidly from a slight underestimate to
a slight overestimate just outside vs just inside the source
boundary due to differences in the positions of the outermost
points in each source. In the deeper, more uniform parts of
the sources, these discrepancies are reduced.

Fig. 4. Layout of the synthetic 10× 10 square source (black points) and a
typical 100 m-wide synthetic UAS raster pattern (dotted white line) with 13
lines spaced at 5.2 m. The start and stop of the trajectory are indicated by
green and red circles, respectively. The green dashed rectangle denotes a 5 m
flight buffer from the field boundary. The approximate compass direction and
HQ location are also denoted. The sensitivity map ς at 6 m (AGL) is shown
beneath the source points and ranges from ∼0.5–4.5 × 10−5 counts·s over
the field extent. Over the source extent, the dense raster spacing maintains a
relatively uniform sensitivity of ∼3.5–4.5× 10−5 counts·s.

Fig. 6 shows the theoretical and empirical distributions
of deviance statistics computed from the two λ arrays (of
length IJ , i.e., not summed over detectors) after 5000 Monte
Carlo samples, and Fig. 7 shows the comparison of the
deviance distributions D(n0|λ0) and D(n1|λ0) used for com-
puting the false negative probability PFN. For this combination
of detector, trajectory, and source pattern, we find a false
negative probability of PFN = 0.489, almost indistinguishable
from chance, indicating that the surrogate array source is of
high fidelity.

The Poisson random samples of Fig. 6 also motivate the
Monte Carlo study of other non-Poisson noise sources that
may be present in real experiments but cannot easily be
incorporated into the analytical models of Section II-D. In

Fig. 5. Top: forward projections of the synthetic mean counts of the
continuous source (λ0) and the array source (λ1) for the scenario in Fig. 4.
The “continuous” curve in blue is almost completely obscured by the “array”
curve in orange. Bottom: comparison of the two λ, showing statistical
differences (in this case, generally below 0.2σ absolute value) in the array
source (and its Poisson error) compared to the continuous source. Counts
are binned to ti = 0.5 s and summed over the J = 4 NG-LAMP detector
elements.

Fig. 6. Deviance distributions for the 6 m (AGL) NG-LAMP raster pattern
over the 10× 10 square of 5 mCi sources shown in Fig. 4. The histograms
show the result of Poisson sampling λ 5000 times, while the solid and dashed
curves show the theoretical shifted Gamma distributions and Gaussian fits to
the histogram, respectively. In the top plot, the standard deviation σ is 0
since only the two mean count arrays are compared—since only Poisson
noise is present, the D(λ1|λ0) is constant. In the middle two plots, a
dashed vertical line is drawn at D = IJ , the number of measurements,
showing that distributions are approximately but not exactly centered at IJ .
Top: D(λ1|λ0) between the two models. Top middle: D(n0|λ0) for the
continuous source. Bottom middle: D(n1|λ1) for the array source. Bottom:
D(n1|λ0) for the array source compared to the continuous source.
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Fig. 7. Deviances from Fig. 6 used to determine the false negative probability
PFN = 0.489. ∆µ denotes the difference in means of the two distributions.

reality, a deployed array source will likely have some per-
point activity and position noise that will further increase its
deviance from the idealized continuous source. In Fig. 8, we
inject a per-point Gaussian activity noise of ±10% (standard
deviation) to the uniform square array source in the scenario
of Fig. 6, and generate 5000 independent noised array source
realizations. Because the λ1 are now no longer constant, the
D(λ1|λ0) cross term is also no longer constant, and in fact
contributes a substantial and non-Gaussian amount of deviance
to the final D(n1|λ0) distribution used to calculate PFN. Fig. 9
shows how this excess or model-mismatch deviance grows
with the magnitude of the activity noise. Conversely, we find
that injecting a per-point Gaussian position noise of ±0.05 m
(standard deviation) to the array source introduces little extra
deviance, merely broadening the D(λ1|λ0) by about 0.5 (stan-
dard deviation). In realistic measurement scenarios, reducing
source activity errors is therefore much more crucial than
achieving precise spatial alignment in the array source.

We note that Fig. 4 also serves to introduce the Cartesian
“field coordinate system” used throughout this work and
Paper II. The origin is placed at the southwest corner of the
field, and x and y are measured along the fence lines to the
southeast and northwest corners, respectively. The positive y
direction differs from north by roughly 30◦. The z direction
therefore defines elevation above the ground level, which is
assumed to be perfectly flat.

Fig. 10 shows a second example scenario in which the
same NG-LAMP detector system performs a 5 m (AGL) raster
pattern over the hot/coldspot source shown in Fig. 3. Instead
of showing differences between the array and continuous
source counts in terms of σ vs time as in Fig. 5, in the
top panel of Fig. 10 we plot the relative difference (summed
over detectors and normalized to the continuous counts) as
a function of xy position over the source. As expected, the
array counts λ1 are larger than the continuous counts λ0 over
the array source points and especially the hotspot, while the
reverse is true just outside the source boundary and over the
coldspot. The middle plot of Fig. 10 then shows the deviance
accumulate over the measurement duration, with the largest
increases occurring over the hotspot. The bottom plot shows
the resulting deviance distributions, indicating a false negative
probability of PFN = 0.452. The separation in means between
the two curves corresponds to the final accumulated deviance

Fig. 8. Deviance distributions for the scenario of Fig. 6 with an additional
±10% (standard deviation) per-point activity noise in the array source.
Note that while the D(n1|λ0) distribution (bottom) is no longer well-
described by a Gaussian profile, its empirical mean and standard deviation
are well-described by the linear and quadrature sums of the mean and
standard deviation of the D(λ1|λ0) (top) and D(ni|λi), i = 0, 1 (middle)
distributions.

Fig. 9. Empirical means (points) and standard deviations (error bars) of the
excess or model-mismatch deviance D(λ1|λ0) as a function of the Gaussian
activity noise magnitude for the 6 m (AGL) NG-LAMP raster over the 10×10
uniform square source. The point at 10% corresponds to Fig. 8.

in the middle plot, and the reduced PFN compared to Fig. 7 is
largely due to the 1 m reduction in altitude.

In Fig. 11, we show the variation of PFN with array source
spacings from 1–6 m at altitudes of 2–10 m (AGL) for the
NG-LAMP detector system and the hot/coldspot source of
Fig. 10 with baseline per-point activities of 5 and 1 mCi.
The analogous continuous source spacings were also varied,
holding constant the number of continuous points per array
point. In this case, we arbitrarily used m = 20 continuous
points in on each side of each array point instead of the
m = 8 shown in Fig. 1, but the difference from m = 8 is
minimal, once again indicating that m = 8 is an accurate and
more computationally feasible approximation. We note that
the bumps in the PFN appear to be due to aliasing between
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Fig. 10. Top: relative difference between the array and continuous source
counts (summed over detectors and normalized to the continuous counts) as a
function of detector position over the hot/coldspot source during a 5 m (AGL)
NG-LAMP raster. The source points are colorized by activity according to
the color scale in Fig. 3. Middle: accumulation of deviance vs measurement
number, with each point colorized according to its relative difference as in
the top plot. Bottom: resulting decision information plot, with a false negative
probability of PFN = 0.452. ∆µ denotes the difference in means of the two
distributions.

the trajectory pass spacing and the non-uniformity of the
hot/coldspot source, as they largely disappear when using a
uniform square source. Additionally, if the NG-LAMP detector
response is replaced with an isotropic response function with
the same mean effective area, the bumps in Fig. 11 change only
slightly in magnitude and do not disappear. This is consistent
with the expectation that the 1/r2 variation from the xy motion
in such a wide-area raster pattern has a larger influence on the
predicted counts λ than anisotropy in the response function.
At 5 mCi per point, the array source approximation typically
begins to fail (PFN ≲ 0.40) when the array source spacing
approaches or exceeds the detector altitude. At 1 mCi per
point, the PFN increase due to reduced count rates. Figures
such as Fig. 11 were used to choose the 4 m spacing used for
the source designs throughout this paper and the experiments
of Part II. A 4 m spacing (at 5 mCi) offers 0.4 < PFN < 0.5
for altitudes z > 5 m, and was deemed a reasonable tradeoff

between the accuracy of 3 m spacing and the spatial coverage
of 5 m spacing.

Fig. 11. Top: PFN vs array source spacing at various altitudes in the NG-
LAMP hot/coldspot example of Fig. 10, with a baseline activity of 5 mCi.
Bottom: as above, but with a baseline activity of 1 mCi.

In Table I we give the false negative probability PFN for
each detector system and source using the 4 m array source
spacing (except for 2 m in the plume source) and 5 m altitude
of Fig. 10. The PFN were computed via the full shifted Gamma
distributions discussed in Section II-D, both with and without
summing the λ arrays over the J detector crystals. We exclude
the un-summed MiniPRISM calculations, however, as in this
case many of the counts per time bin are ∼1, and the distribu-
tion of the deviance becomes difficult to estimate. The plume
source, which was designed to have regions of denser-than-
standard (2 m) spacing, is unsurprisingly the most difficult to
distinguish from its continuous source, with PFN ≥ 0.49. Of
the remaining seven source patterns with only the standard 4 m
spacing, the four sources with uniform activity per point—the
10×10 square, 8 and 12 m separations, and L-shape—have the
next-highest PFN of 0.47–0.48 for NG-LAMP (un-summed).
The linear gradient and hot/coldspot then have the next-highest
PFN ≃ 0.45, and the hot line has the lowest PFN = 0.420 (un-
summed). The hot line is the most distinguishable from its
continuous source likely due to the high number of passes
over the areas of greatest activity (even compared to the
hot/coldspot and linear gradient sources) and high count rates
are where the system will have the best statistics with which
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to distinguish small differences in activity concentrations.

TABLE I
FALSE NEGATIVE PROBABILITY BY SOURCE AT 5 M AGL, 4 M SPACING

NG-LAMP NG-LAMP (sum) MiniPRISM (sum)

plume 0.494 0.490 0.497
10× 10 square 0.480 0.466 0.483
8 m separation 0.476 0.461 0.479
L-shape 0.474 0.456 0.477
12 m separation 0.471 0.451 0.474
linear gradient 0.458 0.430 0.462
hot/coldspot 0.452 0.418 0.453
hot line 0.420 0.362 0.420

The summed NG-LAMP PFN values are systematically
lower than their un-summed counterparts, i.e., summing over
detectors results in higher sensitivity to array vs continuous
sources when using the deviance metric. This behavior can
be understood via Section II-D—we expect that the deviance
for data distributed in I bins is asymptotically distributed
as a χ2 with I degrees of freedom, and therefore summing
over detectors results in fewer bins, lower variance in the
deviance statistic, and thus higher statistical power. Finally,
we note that the summed NG-LAMP PFN are also systemati-
cally smaller, i.e., better at distinguishing array vs continuous
sources, compared to the summed MiniPRISM values, because
the NG-LAMP effective area to 511 keV photons is ∼2×
larger than that of MiniPRISM, and therefore NG-LAMP
has higher statistical power. We expect however that when
quantitative image reconstructions are performed in future
work, the improved angular resolution of MiniPRISM (with
un-summed data) will result in better reconstructions than NG-
LAMP.

V. DISCUSSION

We have demonstrated design principles for emulating
truly continuous distributed radiological sources with surro-
gates constructed of point source arrays. Although our point
source array technique is straightforward in principle—coarse-
graining or downsampling a continuous source at a fixed point
density—the Poisson deviance test provides a level of statis-
tical rigor to the question of whether the point source array is
dense enough to effectively mimic the continuous source. A
user can therefore construct a surrogate distributed source to
a desired fidelity and maintain the safety and reconfigurability
of using multiple sealed point sources.

Although the example calculations in Section IV show
high fidelity to the continuous sources—namely, typical false
negative probabilities of PFN > 0.45, almost indistinguishable
from chance—we emphasize that these results will only hold
for the particular detector, trajectory, and source pattern under
consideration. For smaller source-to-detector standoffs, e.g.,
in handheld or ground-vehicle-based rather than UAS-based
surveys, PFN will be generally much lower for the same
source spacing (see Fig. 11); put another way, handheld or
ground-vehicle-based surveys will require a much denser array
source to maintain a high PFN. We also note that our results
are limited to singles-mode events, and that analyses using

Compton-mode events may require still-denser array spacings
to compensate for the increased directional information avail-
able.

We have also shown via Fig. 8 that our method can be ex-
tended via Monte Carlo simulation to include experimentally-
relevant but non-Poisson sources of noise such as position
and activity errors in the deployed array source. Moreover,
the additional deviance introduced by even ±10% (standard
deviation) activity variation about the mean can induce sub-
stantial excess deviance and in some sense artificially decrease
the PFN. If such experimental errors cannot be adequately
controlled in the field (or carefully modelled in simulation),
then our deviance-based methods may be of only limited utility
for the “inverse problem” of determining whether a measured
dataset arose from a continuous or array source. Our methods
are still however useful for the “forward problem” of designing
surrogate array sources.

Finally, although we have focused on 2D planar arrays,
our technique is not in principle limited to flat planes. Fully
3D source grids could be constructed and tested, though the
additional numbers of sources and the requirement to place
sources at heights up to ∼100 m would present operational
challenges. More achievable are so-called “2.5D” scenarios,
which could be demonstrated by placing sources on hilly
terrain and/or on collections of surfaces such as vehicles and
buildings. Such 2.5D scenarios would be particularly interest-
ing for emergency-response-relevant tests and demonstrations.
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