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Abstract

Information exchange (or signaling) between plants following herbivore damage has recently been shown to affect plant
responses to herbivory in relatively simple natural systems. In a large, manipulative field study using three annual plant
species (Achyrachaena mollis, Lupinus nanus, and Sinapis arvensis), we tested whether experimental damage to a
neighboring conspecific affected a plant’s lifetime fitness and interactions with herbivores. By manipulating relatedness
between plants, we assessed whether genetic relatedness of neighboring individuals influenced the outcome of having a
damaged neighbor. Additionally, in laboratory feeding assays, we assessed whether damage to a neighboring plant
specifically affected palatability to a generalist herbivore and, for S. arvensis, a specialist herbivore. Our study suggested a
high level of contingency in the outcomes of plant signaling. For example, in the field, damaging a neighbor resulted in
greater herbivory to A. mollis, but only when the damaged neighbor was a close relative. Similarly, in laboratory trials, the
palatability of S. arvensis to a generalist herbivore increased after the plant was exposed to a damaged neighbor, while
palatability to a specialist herbivore decreased. Across all species, damage to a neighbor resulted in decreased lifetime
fitness, but only if neighbors were closely related. These results suggest that the outcomes of plant signaling within multi-
species neighborhoods may be far more context-specific than has been previously shown. In particular, our study shows
that herbivore interactions and signaling between plants are contingent on the genetic relationship between neighboring
plants. Many factors affect the outcomes of plant signaling, and studies that clarify these factors will be necessary in order to
assess the role of plant information exchange about herbivory in natural systems.
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Introduction

Plants alter their phenotypes in response to cues that provide

information about their neighbors [1,2]. One example of plant-

plant interactions is plant responses to cues released by neighbors

that are attacked by herbivores, and we now have at least ten well-

accepted examples of plants that adjust their phenotypes in

response to cues released by damaged neighbors (reviewed

recently by [3]). In most of these cases, plants sense a volatile

cue from a damaged neighbor and induce defensive metabolites,

sensitivity to future damage, or anatomical structures in order to

defend themselves from their herbivores [4,5,6,7,8]. The defensive

response may be adaptive if damage to the neighbor forecasts an

increase in herbivore pressure to the plant receiving the cue.

There is good reason to suspect that relationships among cue-

emitting and cue-receiving plants may alter a plant’s response to a

damaged neighbor. An individual may be more likely to respond

to the cues released by a close relative for at least three reasons: 1)

kin selection may favor honest signals between related neighbors,

2) the emitter and receiver may share traits that shape resistance or

susceptibility to particular herbivores, and 3) the cue may be more

easily recognized, especially if cues and receptors are variable

among individuals [9,10,11,12]. Although plant biologists have

only recently considered whether individuals perceive and respond

differently to cues based on relatedness, several empirical examples

involving plant competition suggest that this property may be

important. Roots of different individuals of Ambrosia dumosa that

came into contact inhibited each other to a much greater extent

than roots connected to the same individual [13,14,15], and a

similar trend has been found in the roots of several other species

[16,17,18]. Root growth has also been found to differ in

interactions between kin and unrelated conspecifics of Cakile

edentula [19], and plant relatedness influences other growth

parameters in Impatiens pallida [20]. Despite the potential

importance of neighbor relatedness for the evolution and ecology

of plant-to-plant information exchange, there is little known about

whether plants respond differently to cues emitted by relatives

compared to those from strangers. Two plants, Phaseolus lunatus and

Artemesia tridentata, respond more to damage-induced volatile cues

from the same individual or genet than from other genotypes

[8,21]. Responses of spotted knapweed individuals induced by

adding jasmonic acid were different if neighbors were conspecifics

versus heterospecifics [22].
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We have little information on the fitness consequences of cues

between neighboring plants in natural plant communities and

even less information about how plant relatedness affects this

interaction. Most examples of plant responses to volatile cues have

documented short-term changes in growth or herbivory in long-

lived woody plants, vines or agricultural crops (but see work on

wild tobacco [23]). Accordingly, the lifetime fitness consequences

for individuals either emitting cues or responding to them are

poorly known [3,8,23,24]. Furthermore, information exchange has

been assessed in relatively few plant species, and since negative

results are rarely reported, we have little sense about how

widespread or species-specific induced responses to cues released

by damaged neighbors might be (similar to the problem reported

in [25]). Likewise, the consequences of damage-induced cues have

never been tested in different contexts of plant relatedness, despite

genetic relationships being important for other species interac-

tions. Together, these limitations mean that we do not know

whether the patterns emerging from experimental studies so far

are representative of how information exchange between plants

operates in complex natural communities.

In this study, we worked with three common annual plant

species in a low-elevation California grassland to address several

outstanding questions involving wounding-induced plant to plant

cues. In a factorial experiment, we manipulated wounding to a

neighbor (an ‘‘emitter’’ plant) as well as the relatedness between

the emitter and two ‘‘receiver’’ plants for each of the three plant

species. On the first receiver plant, which was planted in the field

next to the emitter plant, we assessed the accumulation of natural

herbivore damage, plant growth parameters, and lifetime plant

fitness. The second receiver plant was planted in a pot, placed

adjacent to the emitter plant, and used for a laboratory palatability

assay with either a generalist or specialist herbivore. With this

design, we were able to assess 1) the impacts of wounding-induced

plant cues on subsequent herbivore damage and lifetime plant

fitness, 2) the interplay between plant relatedness and wounding-

induced cues, 3) the species-specificity of wounding-induced cues,

and 4) the consistency between palatability bioassays and field

herbivory as responses to wounding-induced cues.

Methods

Study system and species
We performed our field work from February to May 2011 in the

Ecology Lab grassland site on the University of California, Davis

campus (+38u31947.240, 2121u46953.580). The site experiences a

Mediterranean climate, with rainy winter months and a long

summer drought. As is typical of low-elevation California annual

grassland habitat, vegetation at the site is comprised mostly of non-

native species of Mediterranean origin, though some native

annuals are present.

To test for the generality of plant signaling across different plant

taxa, we performed our experiment on three species which had not

been previously studied in this context and which were from

different plant families. We selected three species for our trials:

Lupinus nanus (Fabaceae), Achyrachaena mollis (Asteraceae), and

Sinapis arvensis (Brassicaceae). Seeds of all three species were

collected within the past ten years as maternal seed families from

field sites within 100 km of our study site. A. mollis grows naturally

and in abundance at our field site. Both L. nanus and S. arvensis are

common annuals in Californian grasslands in the area, but are not

currently present at the site. L. nanus and A. mollis are both

California natives, and S. arvensis is a naturalized, weedy plant of

European origin [26].

For laboratory bioassays of plant palatability, we used lepidop-

teran neonates. We procured Spodoptera exigua (a generalist feeder)

from Marrone Bio Innovations (Davis, CA) and Pieris rapae (a

specialist on Brassicaceae) from Carolina Biological Supply

Company (Burlington, NC).

Experimental set-up and design
At the study site, we laid out 180 plots in a regular 12615 plot

grid. Plots measured ,60660 cm and were separated by 2 m

center-to-center. We removed all above-ground vegetation from

each plot during initial set-up and continued to remove weeds as

they emerged until our experimental wounding treatments began.

Each plot was covered with black Dewitt Weed Barrier Pro into

which we cut 3 circular holes. The three holes were spaced 7.5 cm

apart. We planted a designated ‘emitter’ in the central hole and a

‘field receiver’ in the northern hole. The third (southern) hole was

assigned to potted ‘bioassay receivers’ to be used in palatability

assays. As emitters and field receivers grew in the field for the

duration of the experiment, their canopies and probably their

rooting zones began to overlap. Bioassay receivers were grown

under greenhouse conditions, briefly placed in the field within

their pots and then returned to the laboratory for palatability

testing, preventing root interactions between the potted bioassay

receivers and emitters. The small space between neighboring

plants allowed leaves to overlap and maximized the potential

interaction of airborne cues between plants.

The 180 field plots were randomly assigned to different

experimental treatment combinations. Treatments comprised a

26263 factorial design in which we varied neighbor relatedness

(emitter and receiver were either ‘‘related’’ or ‘‘unrelated’’) and

emitter-wounding (‘‘wounded’’ or ‘‘unwounded’’) for each of the

three plant species. In the related-neighbor treatment, neighbors

were from the same field-collected maternal family, whereas in the

unrelated treatment, receivers were from a known maternal family

and emitters were grown from bulk-collected seeds of unknown

maternity. In plots assigned to the wounded-neighbor treatment,

the emitter was mechanically damaged during an experimental

test period. No plants were experimentally damaged in unwound-

ed-neighbor plots. We aimed to have 15 replicates (one per

maternal plant family) of each species*relatedness*wounding

treatment combination. Fatalities and incomplete seedling emer-

gence led to uneven replication across treatments and families.

Seedling preparation and planting
To generate experimental emitters and field receivers, we

planted seeds into plug flats roughly 2–3 weeks before transplant-

ing seedlings into the field site. Germination occurred on a

greenhouse mist bench, and then flats of seedlings were placed into

a lath-house to harden for several days before planting into the

experimental plots. Four weeks later, we planted bioassay receivers

as single seeds into 66 mL ‘‘Conetainer’’ elongated pots (Steuwe

and Sons; Tangent, OR). These pots exclude root contact between

bioassay receivers and other plants. All seeds were planted in

modified UC Mix planting medium (UC Davis, Davis, CA).

Before planting, L. nanus seed coats were scarified with a razor

blade and A. mollis pappi were removed. We maintained flats

under natural day-length conditions on a mist bench in UC

Davis’s Orchard Park Greenhouse during germination and early

growth.

We planted S. arvensis and L. nanus seedlings into the field on 7

March, then planted the slower-growing A. mollis seedlings on 14

March. Transplant fatalities were replaced within 10 days of initial

planting; subsequent fatalities were not replaced. After planting,

we watered each seedling with approximately 250 mL of water 2–

Herbivory and Interplant Cues
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3 times a week except during substantial rain. We applied fertilizer

(Miracle Grow: Nursery Select Professional Formula - All purpose

Plant Food; concentration of 0.5 g/L) approximately every two

weeks throughout the establishment phase of the experiment.

From planting (7 March) until two weeks prior to the initiation of

wounding treatments (11 April), we applied approximately 0.4 oz

of molluscicide around or within each plot about every two weeks

(Ortho: Bug-Geta - Snail and Slug Killer; Active ingredient 3.25%

Metaldehyde).

Experimental wounding and data collection
Experimental wounding treatments were imposed on 25 April

and 2 May 2011. On 25 April, we mechanically damaged 50% of

each emitter’s leaf area in plots assigned to the ‘wounded-

neighbor’ treatment using a florist’s pin ‘‘frog’’ for S. arvensis or

pliers for A. mollis and L. nanus. On 2 May, the remaining leaf area

on each emitter was damaged. Before initiating leaf damage on

each wounding date, we placed one bioassay receiver seedling into

each plot, sinking the pot into a previously prepared hole until the

soil in the pot was at ground level. On 25 April we performed a

baseline assessment of each plant (emitter, field receiver and

bioassay receiver) within each plot. To obtain an approximate

measure of plant size, we measured the number of leaves and the

length (mm) of the longest leaf of all plants. We then visually

assessed two types of herbivore damage – leaf removal and other

kinds of damage (e.g. spotting, desiccation) – using a scale of 0–100

percent of total leaf area. Additionally, we recorded aphid and

mirid abundance on all plants. On 2 May we assessed herbivore

damage and plant stage for field receivers and repeated our

palatability bioassay with a new group of bioassay receivers in each

plot. On 9 May and 16 May we assessed herbivore damage and

plant phenological stage for all field receivers.

Two days after each wounding treatment, we transferred

bioassay receivers to the lab for a palatability trial with a generalist

herbivore. Immediately after transferring bioassay receivers to the

lab, we performed ‘pre-trial’ damage assessments and placed one

freshly-hatched Spodoptera exigua neonate on the largest lower leaf of

each plant. To discourage Spodoptera from leaving their host plants,

we enclosed each pot in a fluon-lined paper drinking cup.

Fourteen days later, we measured the percent of leaf area eaten on

each bioassay receiver. We also observed the presence of frass

from Spodoptera caterpillars as evidence of the initiation of Spodoptera

feeding.

To contrast the palatability of bioassay receivers to generalist

versus specialist herbivores, we also initiated a feeding trial with

Pieris rapae, a specialized herbivore of S. arvensis. Pieris neonates

were placed on S. arvensis plants on 4 May and were allowed to

feed for 7 days. At the end of the trial, we recorded percent leaf

removal by Pieris and caterpillar mass.

Statistical analyses
To investigate the impacts of neighbor-wounding and related-

ness on herbivore damage to field receivers we used linear mixed

models with maximum likelihood estimation and Satterthwaite’s

approximation for degrees of freedom. We included species,

wounding treatment, relatedness treatment, survey date (2 May, 9

May or 16 May) and all possible interactions as fixed effects. We

treated survey date as a nominal factor to account for the

possibility that damage might vary non-linearly with date. The

receiver plant’s maternal family was included as a random effect.

We addressed the non-independence of repeated surveys by

Table 1. Mixed model results for effects of a neighbor damage treatment, plant species and neighbor relatedness treatments on
leaf damage to ‘‘receivers’’ in the field.

Effect num DF den DF F Value Pr.F estimate std err

species 2 145 12.23 ,.0001

wounded 1 140 4.02 0.05

species*wounded 2 140 1.60 0.21

neighbor relatedness 1 140 0.05 0.82

species*neighbor relatedness 2 141 4.28 0.02

wounded*neighbor relatedness 1 141 0.10 0.76

species*wounded*neighbor relatedness 2 141 2.13 0.12

date 2 142 22.16 ,.0001

species*date 4 142 9.26 ,.0001

wounded*date 2 142 1.35 0.26

species*wounded*date 4 142 1.88 0.12

neighbor relatedness*date 2 142 0.36 0.70

species*neighbor relatedness*date 4 142 0.37 0.83

wounded*neighbor relatedness*date 2 142 4.27 0.02

species*wounded*neighbor relatedness*date 4 142 0.21 0.94

pre-treatment leaf damage (receiver) 1 143 35.51 ,.0001 0.025 0.004

leaf count (receiver) 1 149 9.32 0.00 20.008 0.003

leaf length (receiver) (emitter) 1 143 7.72 0.01 0.005 0.002

pretreatment mirid abundance (receiver) 1 142 9.89 0.00 0.298 0.095

pretreatment aphid abundance (emitter) 1 142 4.54 0.03 20.285 0.134

Models account for sampling date and covariate factors relating to plant size and pre-treatment damage levels. Emphasis indicates significance at the P = 0.05 level.
doi:10.1371/journal.pone.0038105.t001
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treating consecutive surveys within the same plot as repeated

measures (including observations on bioassay plants that were

introduced and assayed at different time points). All data were log-

transformed to meet ANOVA assumptions.

To assess treatment effects on end-of-season biomass and fruit

and seed production, we ran mixed models with species, neighbor-

wounding treatment, relatedness treatment and all possible

interactions as fixed effects. In each model, the receiver plant’s

maternal family was included as a random effect.

For all four response variables, possible covariates included

various measures of natural herbivore damage and herbivore

counts made prior to the initiation of the experimental damage

treatment, as well as plant size and plant phenological stage for

both the emitter and receiver on 25 April, the date of the first

experimental wounding. We selected among possible covariates by

initially including all covariates in the model and then sequentially

removing covariates using a backwards stepwise method with a p-

value cutoff of 0.05.

To detect possible effects of neighbor damage and relatedness

on the phenology of field receivers, we created a generalized linear

model with receiver plant stage on 9 May as a binomial response

variable. This model included the length of the longest leaf at the

onset of the emitter damage treatments to account for pre-

treatment differences in plant development. Although we recorded

three categories of plant stage (rosette, bolting, flowering), it was

possible to analyze as a binomial variable, because each species

exhibited no more than 2 stages on 9 May. S. arvensis was excluded

from the phenology analysis, as it exhibited no variation in plant

stage on 9 May.

If any interactions involving species were marginally significant

(P,0.1) in the final model, we investigated simple effects by re-

running the model (with the same covariates) separately for each

species. Similarly, we investigated simple effects if we detected

significant interactions between relatedness and wounding treat-

ments.

To investigate impacts of relatedness and wounding treatments

on the palatability of bioassay receiver plants, we used linear

mixed models as described above with log-transformed percent

leaf removal (on bioassay receivers) as the response variable. We

ran one model for the Spodoptera assay (which was performed twice

on A. mollis and L. nanus and once on S. arvensis) and one model for

the Pieris assay (performed once on S. arvensis). For the Spodoptera

assay we included species, emitter wounding treatment, neighbor

relatedness and all possible interactions as fixed effects, and

maternal family as a random factor. We also included treatment

date (damage on either 25 April or 2 May) as a random factor, and

we treated consecutive bioassay receiver measurements from the

same field plot as repeated measures. For the Pieris assay we

included emitter wounding treatment, neighbor relatedness and

their interaction as fixed effects, and maternal family as a random

factor. For both assays, covariate selection and treatment of

interactions followed procedures for the field experiment.

The initiation of Spodoptera or Pieris feeding behavior was

identified by the presence of frass on the bioassay receiver. To

assess effects of neighbor treatments on feeding behavior, we

constructed a generalized linear model with Pieris or Spodoptera

feeding as a binomial response variable. None of the covariates

reached significance in the full model, and so all were removed. As

the second Spodoptera feeding trial contained few individuals from

each treatment, convergence in binomial repeated-measures

models was never reached, so only the first feeding trial was

analyzed for all binomial responses.

All analyses on continuous response variables were conducted in

SAS 9.2 (SAS Institute Inc., Cary, North Carolina USA) using the

MIXED procedure. Analyses on nominal response variables

(phenology and frass presence) were conducted in R [27] using

package car [28]. Data from this study are made available at Dryad

(doi:10.5061/dryad.f1c5j).

Results

Field receivers—treatment effects on damage, fitness
and phenology

Across the whole experiment, field receivers growing next to

experimentally wounded neighbors received significantly more

damage than those with unwounded neighbors, but this overall

effect depended on relatedness and was largely due to the

responses of A. mollis (Table 1). When A. mollis emitters and

receivers were related, experimentally wounding the emitters

increased average leaf removal on field receivers by 55%, and this

increase was significant on some survey dates but not others

(Fig. 1a, Table S1, simple effect of wounding*date: df = 2,35;

Figure 1. The effect of neighbor wounding and relatedness
(maternal siblings or unrelated) on subsequent herbivore
damage (log-transformed percent leaf damage) to conspecific
neighbors of three experimental plant species in the field. Least
Square Mean +/2 SE.
doi:10.1371/journal.pone.0038105.g001
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F = 5.01, P = 0.01). However, experimental wounding did not

substantially increase leaf removal when neighbors were unrelated

(Fig. 1a, Table S1, simple effect P-values.0.2). In contrast,

damage to the emitter had no significant effect on the damage

experienced by L. nanus (Fig. 1b) or S. arvensis (Fig. 1c) receivers,

regardless of whether they were related to their neighboring

emitter (Table S1). For these latter two species, we detected main

effects of neighbor relatedness on damage to field receivers that

were largely independent of the emitter damage treatments. In L.

nanus, related receivers experienced 47% less leaf removal than

unrelated receivers (Fig. 1b, Table S1). S. arvensis receivers

displayed a trend opposite to that of L. nanus; related receivers

experienced 12% more leaf removal than unrelated receivers

overall, and this trend was most pronounced after the second

application of neighbor wounding (Fig. 1c, Table S1, simple effect

of neighbor relatedness for second survey date: df = 1,57; F = 5.38,

P = 0.02).

Across all three species, the effect of neighbor wounding on

receiver fitness indicators depended significantly upon whether or

not the neighbors were related (Tables S2, S3, S4). For related

receivers, neighbor wounding had a marginally significant effect

on plant fitness, reducing seed production and fruit production by

an average of 30% and 31% respectively (Figs. 2 and S2, Table S3,

Table S4, simple effect of wounding for seeds: df = 1,60; F = 3.2;

P = 0.08; pods: df = 1,60; F = 2.68; P = 0.11). For unrelated

receivers, neighbor wounding had no significant effect on fruit

or seed production (Figs. 2 and S2, Table S3, simple effect P-

values.0.2). Similarly, neighbor wounding marginally reduced

final receiver biomass by 20% for related receivers (simple effect

df = 1,50; F = 2.9; P = 0.09, Fig. S1), while for unrelated receivers,

neighbor wounding actually increased final receiver biomass by

16% (simple effect df = 1,87; F = 4.81; P = 0.03, Fig. S1).

Wounding of neighbors affected the phenology of field receivers

in some plant species but not others (Table S5). Specifically, A.

mollis individuals experienced a delayed developmental phenology

when their neighbors were wounded (Fig. 3, Table S6). Wounding

of neighbors did not affect the development of L. nanus (Fig. 3), and

S. arvensis individuals exhibited no variation in developmental stage

during the observation period.

Figure 2. The effect of neighbor wounding and relatedness
(maternal siblings or unrelated) on lifetime seed production
(log-transformed) of three experimental plant species in the
field. Least Square Mean +/2 SE.
doi:10.1371/journal.pone.0038105.g002

Figure 3. The effect of neighbor wounding and relatedness
(maternal siblings or unrelated) on developmental phenology
of conspecific neighbors of three experimental plant species in
the field. Filled bars are the number of bolting plants, and empty bars
are the number of flowering plants in each treatment two weeks after
the wounding of neighboring plants (May 9, 2011). The total number of
plants in each treatment is shown on each bar.
doi:10.1371/journal.pone.0038105.g003

Herbivory and Interplant Cues
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Palatability bioassays with bioassay receivers
Impacts of experimental neighbor-wounding on generalist

herbivore damage to bioassay receiver plants appeared to vary

among species (Table S7). In A. mollis and L. nanus, wounding and

relatedness had no significant impacts on the amount of leaf

material eaten by generalist Spodoptera larvae (Fig. 4, Table S8). In

S. arvensis, however, emitter wounding increased leaf removal on

receivers by 141% (Fig. 4, Table S8). Likewise, 8 times more

Spodoptera individuals initiated feeding on S. arvensis plants with

wounded neighbors than fed on plants with unwounded neigh-

bors, but the wounding of a L. nanus or A. mollis neighbor had no

effect on Spodoptera feeding initiation (Fig. S3, Table S9, S10).

Palatability of bioassay receivers to generalist Spodoptera caterpillars

was not influenced by neighbor relatedness in any of the three

species.

Specialist Pieris caterpillars responded very differently to

experimental treatments on S. arvensis than did generalist Spodoptera.

When S. arvensis emitters and receivers were related, wounding the

emitter reduced Pieris damage to the bioassay receiver (Fig. 5a,

Table S11; simple effect df = 1,14; F = 18.15; P = 0.0008). For

unrelated neighbors, neighbor-wounding increased Pieris damage

(Fig. 5a, Table S11; simple effect df = 1,17; F = 11.9; P = 0.003).

Pieris caterpillars gained significantly more weight when receivers

were unrelated to neighboring emitters, regardless of wounding

treatment (Fig. 5b, Table S12).

Figure 4. The effect of neighbor wounding and relatedness
(maternal siblings or unrelated) on the percent leaf area (log-
transformed) of conspecific neighbors of three potted exper-
imental plant species consumed by generalist Spodoptera
caterpillars (as an indicator of leaf palatability to generalists).
The potted plant was exposed to a damaged or undamaged neighbor
in the field for 2 days. At this point the plant was moved indoors, and a
feeding trial with a neonate Spodoptera caterpillar was initiated. Least
Square Mean +/2 SE.
doi:10.1371/journal.pone.0038105.g004

Figure 5. For the crucifer Sinapis arvensis, the effect of
neighbor-wounding and relatedness (maternal siblings or
unrelated) on various measures of leaf palatability to a
specialist herbivore (Pieris). The potted plant was exposed to a
damaged or undamaged neighbor in the field for 2 days. At this point
the plant was moved indoors, and a no-choice feeding trial with a
neonate Pieris caterpillar was initiated. Graphs show a) the percent leaf
area removed by Pieris (log-transformed), and b) Pieris caterpillar mass
(log-transformed) at the end of the feeding trial. Bars indicate least
square mean +/2 SE.
doi:10.1371/journal.pone.0038105.g005
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Discussion

Our study was designed to assess the consequences of plant-to-

plant information exchange for herbivory rates and plant fitness in

a realistic plant community. The results from our field study

contrast sharply with previous experiments in which damage to

neighboring plants consistently led to reduced susceptibility to

herbivores [3,6,24] and greater plant fitness [8,23]. Instead, we

found that the effects of damage to a neighbor in the field

depended on the plant species and the relatedness of the neighbor.

In striking contrast to previous studies, damage to neighbors

(emitter plants) decreased various measures of receiver fitness

(Fig. 2) in all three plant species in the field, and in A. mollis,

receivers experienced more damage (Fig. 1) and delayed phenol-

ogy (Fig. 4) when neighbors were experimentally damaged.

When significant treatment effects were observed in laboratory

feeding trials with a generalist herbivore, they tended to parallel

patterns observed in the field. The similarity between the

palatability assays and the field damage observations persisted

despite differences in root contact and duration of exposure to

emitter volatiles between field receiver plants versus bioassay

receiver plants. For example, in S. arvensis, damage to the emitter

plant increased the leaf tissue that Spodoptera caterpillars consumed

on bioassay receivers that were placed in the field for only two days

(Fig. 4) and increased the likelihood that Spodoptera caterpillars

would initiate feeding (Figure S3). The only case in which damage

to an emitter plant resulted in evidence for induced resistance in a

receiver plant was in laboratory feeding trials in which S. arvensis

receivers were challenged by a specialist herbivore. In this case,

damage to a related emitter plant decreased the leaf tissue that

Pieris caterpillars consumed, but had no effect on Pieris weight gain

(Fig. 5).

The effects of damage-induced plant cues on neighboring plants

were often highly dependent on whether the emitter and receiver

plants were genetically related to one another (Fig. 6). For

example, damage to a neighbor resulted in higher natural levels of

herbivory to A. mollis, but this trend was only apparent when

neighboring plants were close relatives (Fig. 1). Likewise, in all

three plant species, damage to a neighbor reduced the receiver’s

lifetime seed production (and other fitness measures) only when

that neighbor was a close relative (Figs. 2, S1, S2). Finally, in lab

feeding trials with the specialist herbivore Pieris, damage to a

neighboring plant decreased Pieris feeding only when the neighbor

was related to the focal plant (Fig. 5). As these examples suggest,

we found that the consequences of having a wounded neighbor

were generally stronger when the neighboring plant was a close

relative (Fig. 6). Our results strongly suggest that the genetic

relationships among neighbors within a plant population are an

important component of plant-herbivore interactions [29,30], and

Figure 6. A summary of experimental results. For each response variable, the bar represents the log response ratio where the conspecific
neighbor (emitter) was experimentally wounded (W) versus unwounded (UW). A positive bar indicates that the response variable of the receiver plant
was greater when the emitting plant was wounded than when it was unwounded; a negative bar indicates the converse. The effect of neighbor
wounding is shown both related and unrelated pairs of each of the three plant species in this study. For example, in related pairs of A. mollis,
wounding to a neighbor increased the leaf removal that a focal plant suffered compared to focal plants with unwounded neighbors. Palatability to a
specialist herbivore (Pieris) could only be assessed for one plant species (S. arvensis) and was not tested (NT) for other plant species.
doi:10.1371/journal.pone.0038105.g006
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that genetic relatedness influences the transfer of information

between plants [19,21].

The complex, often indirect ecological interactions that occur in

natural settings may explain why the effects of neighbor-wounding

we observed did not conform to simpler expectations (Fig. 7). The

emerging pattern from previous studies is that herbivore damage

to an emitter plant elicits a physiological change in a receiver plant

that conveys herbivore resistance and ultimately increases plant

fitness in the presence of herbivores (Fig. 7a) & [3]. However, there

are many additional indirect pathways by which damage to a

neighbor might affect herbivory and plant fitness (Fig. 7b). For

example, plant cues are information available to any organism that

can access them [31] and may either directly attract or repel

herbivores (Fig. 7b). In this case, the signal from a damaged

‘‘emitter’’ may attract herbivores under field conditions, which

may in turn increase herbivory to a neighbor without any direct

information exchange between the plants (Fig. 7b). This hypothesis

is consistent with our observation that damage to a neighbor

sometimes increased herbivory experienced by receivers in the

field (Fig. 1), but it cannot account for cases in which neighbor-

Figure 7. A conceptual diagram of potential ecological interactions. a) Interactions predicted by plant signaling theory, and b) a more
generalized scheme showing possible outcomes of damage to neighboring plants in a complex community setting.
doi:10.1371/journal.pone.0038105.g007

Herbivory and Interplant Cues

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e38105



damage increased feeding by an herbivore in no-choice laboratory

palatability trials (Fig. 4). As another possibility, the herbivore

community in natural settings is often diverse, and many plant

defenses are specific to particular groups of herbivores [32]. In this

context, specific defenses elicited by damage to a neighbor may

have no effect on some herbivores, and may even attract others.

Consistent with this possibility is the fact that, in feeding assays

using Sinapis arvensis, exposure to a damaged neighbor increased

palatability to a generalist herbivore (Spodoptera), but decreased

palatability to a specialist herbivore (Pieris) (Figs. 4, 5). In this

situation, the net effect of damage to a neighbor will depend on the

types of defensive responses and the relative abundances of

alternative herbivore types in the field. Alternatively, many plants

have unique responses to different herbivores based on herbivore-

specific cues, and the use of mechanical damage in this study to

elicit damage-induced cues may prompt a different cue than real

herbivore damage.

In summary, the cues released from damaged plants have highly

context-specific effects on the palatability, actual herbivore

damage, phenology, and fitness of their neighbors. In a realistic

multi-species field setting, we found that the consequences of

receiving a signal from a damaged neighbor may be either positive

(i.e. resulting in decreased palatibility) or negative (i.e. resulting in

increased herbivory). Moreover, regardless of the fitness impacts,

we have shown that the consequences of receiving a signal from a

damaged neighbor are typically greater when the neighbor is a

close relative. Overall, our study paints a more complex picture of

plant information exchange than has been revealed in previous

studies that find a consistent benefit of interplant cues (e.g.

[5,8,21]). One possibility for this difference is that plant signals

may operate differently in annual grasslands than in many of the

systems explored previously. Past studies have most convincingly

demonstrated effects of plant signals on herbivory in woody plants

and vines that may coordinate their own defensive response via

volatile cues [3,8,21], but see studies that show responses of

tobacco to wounded sagebrush [7,23] and physiological responses

of Arabidopsis to volatile cues [33]. Field studies that assess the

efficacy and consequences of plant signals in a variety of habitats

and plant-life history types will be needed to understand the

contexts in which plant signaling is a major component of plant-

herbivore interactions. Accurate reporting of the effects of

information transfer between plants that do not conform to our

current paradigms for understanding plant signals are necessary in

order to identify the contexts in which information transfer

between plants is important.

Supporting Information

Figure S1 The effect of neighbor wounding and relatedness

(maternal siblings or unrelated) on plant biomass (grams, log-

transformed) of three experimental plant species in the field. Least

Square Mean +/2 SE.

(TIF)

Figure S2 The effect of neighbor wounding and relatedness

(maternal siblings or unrelated) on lifetime fruit production (log-

transformed) of three experimental plant species in the field. Least

Square Mean +/2 SE.

(TIF)

Figure S3 The effect of neighbor wounding and relatedness

(maternal siblings or unrelated) on the likelihood of feeding by

generalist Spodoptera caterpillars in a laboratory feeding trial (as an

indicator of leaf palatability to generalists). The potted plant was

exposed to a damaged or undamaged neighbor in the field for 2

days. At this point the plant was moved indoors, and a feeding trial

with a neonate Spodoptera caterpillar was initiated.

(TIF)

Table S1 Mixed model results for leaf removal on field receivers

by species. When no variation was detected in a covariate for a

particular species, this is noted with n/a.

(DOC)

Table S2 Mixed model results for biomass of field receivers.

(DOC)

Table S3 Mixed model results for fruit production of field

receivers.

(DOC)

Table S4 Mixed model results for seed production of field

receivers.

(DOC)

Table S5 Binomial model results for phenology of field receivers.

(DOC)

Table S6 Binomial model results for phenology of field receivers

by species.

(DOC)

Table S7 Mixed model results for Spodoptera leaf removal on

bioassay receivers.

(DOC)

Table S8 Mixed model results for Spodoptera leaf removal on

bioassay receivers, by species.

(DOC)

Table S9 Binomial model results for initiation of Spodoptera

feeding bioassay receivers.

(DOC)

Table S10 Binomial model results for initiation of Spodoptera

feeding on bioassay receivers by species.

(DOC)

Table S11 Mixed model results for Pieris leaf removal on

bioassay receivers.

(DOC)

Table S12 Mixed model results for Pieris caterpillar weight gain

on bioassay receivers.

(DOC)
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