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ABSTRACT OF THE DISSERTATION

Evasion Attacks on Network Intrusion Detection: Investigation, Automation, and
Mitigation

by

Zhongjie Wang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2021

Professor Zhiyun Qian, Co-Chairperson
Professor Srikanth V. Krishnamurthy, Co-Chairperson

Stateful network protocols, such as the Transmission Control Protocol (TCP),

play a significant role in the modern Internet, taking part in almost every network appli-

cation running on billions of user devices, including computers, smartphones, IoT devices,

vehicles, etc. However, due to inevitable ambiguities in network protocol specifications,

discrepancies are prevalent among different network protocol implementations and even dif-

ferent versions of the same implementation. As a result, discrepancies could lead to severe

security vulnerabilities. One kind of such vulnerabilities is caused by discrepancies between

the network stack of a network intrusion detection system (NIDS) and those of the endhosts.

A deliberate attacker could leverage the discrepancies to craft network traffic that will be

interpreted differently by the NIDS and the endhosts, and then mount an attack that can

bypass the NIDS. Furthermore, due to the statefulness of the network protocol, the attacker

can manipulate the state on the NIDS to permanently disable the NIDS on any connection.

Our research focuses on the study of discrepancies among TCP implementations of

vii



NIDSes and endhosts, towards understanding the exploitation of and defense against vulner-

abilities caused by discrepancies. We start first by manually investigating the discrepancies

and then move on to automated techniques. More specifically, 1) we first investigate the

most powerful censorship firewall on the Internet and discover the discrepancies between its

implementation and that of a Linux server, which allows an adversary to evade the firewall;

2) in order to automatically discover such implementation-level discrepancies, we develop

a general approach which employs automated testing and symbolic execution techniques

to automatically explore the program space of the Linux TCP stack and thereby discover

network packets that can evade deep packet inspection used by modern stateful firewalls

and intrusion detection systems; 3) we develop a systematic approach to extract compre-

hensive and high-fidelity models from various versions of the Linux TCP implementation

and exhaustively discover all discrepancies between them; we then build a NIDS that incor-

porates the discovered discrepancies and is immune to all evasion attacks. Ultimately, we

seek to develop widely used tools that employ automated testing techniques to significantly

improve the effectiveness and efficiency in discovering discrepancies among stateful network

protocol implementations and prevent attacks that exploit such discrepancies.
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Chapter 1

Introduction

The Internet has become an essential part of people’s everyday life. Along with

the digital transformation, more and more devices are connected to the ubiquitous Internet,

including computers, smartphones, IoT devices, vehicles, etc. Prosperity in the information

age also brings new threats that could subvert network systems in a flash. One source of the

threats lies in discrepancies between network protocol implementations. The reasons are

multifold. First, protocol specifications are defined in natural languages, ambiguities are

inevitable. This gives software developers the freedom to implement their own implementa-

tions differently in certain details, and still conform with the specification. Second, protocol

specifications may evolve over time, new features added and old features deprecated. This

will lead to discrepancies between older and newer versions.

These discrepancies are usually tolerated and ignored. However, they could lead

to severe security vulnerabilities. For example, an attacker can leverage the discrepancies

between the network stacks of a network intrusion detection system (NIDS) and an endhost
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to send crafted network traffic that will be interpreted differently by the NIDS and the end-

host, and then mount an attack that can bypass the NIDS. And it is extremely challenging

for the NIDS to be fully immune to such kind of attacks due to its lack of ground truth of

the implementation running on the endhosts.

Discrepancies are commonplace in network protocol implementations, and are es-

pecially worth noticing in those of stateful network protocols, such as the Transmission

Control Protocol (TCP). Stateful network protocols are more complex by design, and it’s

likely there are more ambiguities lie in the state machines of the protocols. A subtle dis-

crepancy can be leveraged by a deliberate attacker to launch an attack against the NIDS

to de-synchronize it from the connections it protects. Such discrepancies are usually tricky

to find and exploit.

In order to understand the threats caused by discrepancies in stateful network pro-

tocol implementations and build defenses against them, my Ph.D. research focuses on ana-

lyzing the TCP stacks of Linux and network intrusion detection systems, using automated

testing techniques for blackbox and whitebox systems, and formal verification techniques

such as symbolic execution to discover discrepancies between various TCP implmeneta-

tions. In Chapter 2, we model the most powerful censorship system, which operates using

the same technology as NIDS, deployed on today’s Internet, to discover the discrepancies

between its implementation and those of servers, and then study its evadability based on

those discrepancies; In Chapter 3, we aim at automatically finding discrepancies between

network protocol implementations of NIDSs and endhosts; we use the Linux TCP stack as

a reference model, employ automated testing and symbolic execution techniques to explore
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its program space, and then use differential testing to discover discrepancies between it

and the TCP stacks of state-of-the-arts NIDSs; In Chapter 4, we seek to address the root

causes of the evasion attacks, which stem from the diversity of endhost implementations;

we use exhaustive symbolic execution to extract high-fidelity models from various TCP im-

plementations, systematically discover discrepancies among them, and then integrate the

discrepancies into the NIDS to build a robust and ambiguity-aware NIDS that is immune

to discrepancy-based evasion attacks.

1.1 A Closer Look at Evading Stateful Internet Censorship

There has been recent interest in understanding the behaviors of, and evading

state-level, stateful Internet scale censorship systems such as the Great Firewall (GFW) of

China. We undertake, arguably, the most extensive measurement study to date on TCP-

level censorship evasion on GFW, with several vantage points within and outside China,

and with clients subscribed to multiple ISPs. Interestingly, we find that the state-of-the

art evasion techniques are no longer very effective on the GFW. We perform a series of

measurements and reverse engineering to reveal the failure reasons of previously successful

censorship evasion techniques — primarily because the GFW has evolved over time. In

addition, other factors such as the presence of middleboxes on the route from the client to

the server, result in previously unexpected behaviors. Our measurement study leads us to

propose new techniques of evasion based on a new understanding of the GFW. We also build

an easy to use, flexible measurement-driven tool, INTANG, that iteratively determines the

best evasion strategy for a given client server pair, and allows us to perform extensive eval-

3



uations of our new methods. Our results show that our new techniques provide extremely

high success rates (unlike the prior schemes) of close to 100 %, thus, validating our new

understanding of the GFW’s Internet scale censorship. We show that these TCP-level eva-

sion techniques can help evading not only HTTP censorship but also DNS (over TCP) and

Tor/VPN.

1.2 SymTCP: Eluding Stateful Deep Packet Inspection with

Automated Discrepancy Discovery

A key characteristic of commonly deployed deep packet inspection (DPI) systems

is that they implement a simplified state machine of the network stack that often differs from

that of endhosts. The discrepancies between the two state machines have been exploited

to bypass such DPI based middleboxes. However, most prior approaches to do so rely on

manually crafted adversarial packets, which not only are labor-intensive but may not work

well across a plurality of DPI-based middleboxes. Our goal in this work is to develop an

automated way to craft candidate adversarial packets, targeting TCP implementations in

particular. Our approach to achieving this goal hinges on the key insight that while the

TCP state machines of DPI implementations are obscure, those of the endhosts are well

established. Thus, in our system SymTCP, using symbolic execution, we systematically

explore the TCP implementation of an endhost, identifying candidate packets that can reach

critical points in the code (e.g., which causes the packets to be accepted or dropped/ignored);

such automatically identified packets are then fed through the DPI middlebox to determine

if a discrepancy is induced and the middlebox can be eluded. We find that our approach

4



is extremely effective. It can generate tens of thousands of candidate adversarial packets in

less than an hour. When evaluating against multiple state-of-the-art DPI systems such as

Zeek and Snort, as well as a state-level censorship system, viz. the Great Firewall of China,

we identify not only previously known evasion strategies, but also novel ones that were

never previously reported (e.g., involving the urgent pointer). The system can be extended

easily towards other combinations of operating systems and DPI middleboxes, and serves

as a valuable tool for testing future DPIs’ robustness against evasion attempts.

1.3 Themis: Ambiguity-Aware Network Intrusion Detection

based on Symbolic Model Comparison

It is known that network intrusion detection systems (NIDS) can be evaded by

carefully crafted packets that exploit implementation-level discrepancies between how they

are processed on the NIDS and at the endhosts. Recently, new evasion strategies have

emerged due to improvements in methods that can uncover them. These discrepancies arise

because of the plethora of endhost implementations and evolutions thereof. It is prohibitive

to proactively employ a large set of implementations at the NIDS and check incoming pack-

ets against all of those. As a result, NIDS typically choose simplified implementations that

attempt to approximate and generalize across the different endhost implementations. Unfor-

tunately, this solution is fundamentally flawed since such approximations are bound to have

discrepancies with some endhost implementations. In this paper, we develop a lightweight

system Themis, which empowers the NIDS in identifying these discrepancies and reactively

forking its connection states when any packets with “ambiguities” are encountered. Specifi-

5



cally, Themis incorporates an offline phase in which it extracts models from various popular

implementations using symbolic execution. During runtime, it maintains a nondetermin-

istic finite automaton to keep track of the states for each possible implementation. Our

extensive evaluations show that Themis is extremely effective and can detect all evasion

attacks known to date, while consuming extremely low overhead. En route, we also dis-

covered multiple previously unknown discrepancies that can be exploited to bypass current

NIDS.
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Chapter 2

A Closer Look at Evading Stateful

Internet Censorship

2.1 Introduction

Internet censorship and surveillance are prevalent nowadays. State-level censor-

ship systems such as NSA’s PRISM and the Great Firewall (GFW) of China, have the

capability of analyzing terabyte-level traffic across the country in realtime. Protocols with

plaintext (e.g., HTTP, DNS, IMAP), are directly subject to surveillance and manipulation

by the governors [3, 4, 86, 7, 56, 121], while protocols with encryption (e.g., SSH, TLS/SSL,

PPTP/MPPE) and Tor, can be identified via traffic fingerprinting, leading to subsequent

blocking at the IP-level [49, 130].

The key technology behind these censorship systems is Deep Packet Inspection

(DPI) [117], which also powers Network Intrusion Detection Systems (NIDS). As previously
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reported, most censorship NIDS are deployed “on-path” in the backbone and at border

routers [117, 121, 134].

In order to examine application-level payloads, DPI techniques have to correctly

implement the underlying protocols like TCP, which is the cornerstone of today’s Internet.

Ptacek et al. [92] have shown that any NIDS is inherently incapable of always reconstructing

a TCP stream the same way as its endpoints. The root cause for this is the presence of

discrepancies between the implementations of the TCP (and possibly other) protocol at the

end-host and at the NIDS. Even if the NIDS perfectly mirrors the implementation of one

specific TCP implementation, it may still have problems processing a stream of packets

generated by another TCP implementation.

Because of this ambiguity in packet processing, it is possible for a sender to send

carefully crafted packets to desynchronize the TCP Control Block (TCB) maintained by

the NIDS from the TCB on the receiver side. In some cases, the NIDS can even be tricked

to completely deactivate the TCB (e.g., after receiving a spurious RST packet), effectively

allowing an adversary to “manipulate” the TCB on the NIDS. Censorship monitors suffer

from the same fundamental flaw—a client can evade censorship if the TCB on the censor-

ship monitor can be successfully desynchronized with the one on the server. Different from

other censorship evasion technologies such as VPN, Tor, and Telex [132], that rely on ad-

ditional network infrastructure (e.g., proxy node) [117], TCB-manipulation-based evasion

techniques only require crafting/manipulating packets on the client-side and can potentially

help all TCP-based application-layer protocols “stay under the radar.” Based on this idea,

Khattak et al. [68] explored several practical evasion techniques against the GFW, by study-
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ing its behaviors at the TCP and HTTP layers. The West Chamber Project [101] provides

a practical tool that implemented a few of the evasion strategies but has ceased develop-

ment since 2011; unfortunately none of the strategies were found to be effective during our

measurement study. Besides these attempts, there is no recent data point, showing how

these evasion techniques work in the wild.

In this work, we extensively evaluate TCP-layer censorship evasion techniques

against the GFW. By testing from 11 vantage points inside China spread across 9 cities

(and 3 ISPs), we are able to cover a variety of network paths that potentially include different

types of GFW devices and middleboxes (see subsection 2.3.3 for details). We measure how

TCB manipulation can help HTTP, DNS, and Tor evade the GFW.

First, we measure how existing censorship evasion strategies work in practice.

Interestingly, we find that most of them no longer work well due to unexpected network

conditions, interference from the network middleboxes, or more importantly, new updates

to the GFW (different from the model considered previously). These initial measurement

results motivate us to construct probing tests to infer the “new” updated GFW model.

Finally, based on the new GFW model and lessons learned with regards to other practical

challenges in deploying TCP-layer censorship evasion, we develop a set of new evasion

strategies. Our measurement results show that the new strategies have a 90% or higher,

evasion success rate. We also evaluate how these new strategies can help HTTP, DNS, Tor,

and VPN evade the GFW.

In addition, during the course of our measurement study, we design and implement

a censorship evasion tool, INTANG, integrating all of the censorship evasion strategies
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considered in this work; INTANG is easily extensible to incorporate additional strategies.

It requires zero configuration and runs in the background to help normal traffic evade

censorship. We plan to open source the tool to support future research in this direction.

We summarize our contributions as the follows:

• We perform the largest measurement study to date, of the GFW’s behaviors with

TCP-layer censorship evasion techniques.

• We demonstrate that existing strategies are either not working or are limited in prac-

tice.

• We develop an updated and more comprehensive model of the GFW based on the

measurement results.

• We propose new, measurement-driven strategies that can bypass the new model.

• We measure the success rates of our improved strategies with regards to censorship

evasion for HTTP, DNS, VPN, and Tor. The results show very high success rates (>

90 %).

• We develop an open-source tool to automatically measure the GFW’s responsiveness,

and for censorship circumvention. The tool is extensible as a framework for the

integration of additional evasion strategies that may emerge from future research.

2.2 Background

In this section, we provide the background on DPI-based censorship techniques

employed by the GFW and discuss previously proposed evasion strategies.
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2.2.1 On-path Censorship Systems

An “on-path” censorship system wiretaps routers of the ISPs controlled by the

censor, makes copies of the packets on the fly and performs analysis in parallel with ongoing

traffic. In contrast, an “in-path” censorship system places devices as part of a route, analyzes

the traffic and then passes the same to the next hop. The capabilities of an “on-path”

system include reading packets and injecting new packets, while an “in-path” system can

also discard and/or modify packets. For an “on-path” system, processing time is not critical

and thus, it can do more sophisticated analysis; for an “in-path” system, it is critical not to

perform heavy analysis that will introduce packet delays. Large-scale censorship systems like

the GFW usually deploy the “on-path” design in order to ensure extremely high throughput.

To examine the application-layer content with DPI, a censorship system like the

GFW needs to first reassemble TCP streams from the packets. As reported [68], the GFW

has a simplified TCP implementation to reconstruct the TCP data flow and pass it to the

upper layer for further analysis. The GFW is able to analyze a wide range of application

protocols (e.g., HTTP, DNS, IMAP), and can apply its rule-based detection engine to detect

sensitive application content.

TCP connection reset is a versatile censorship technique. Due to the “on-path” na-

ture of the GFW, it cannot discard the undesired packets between a pair of end-hosts.

Instead it can inject packets to force the connection to shut down, or disrupt connection

establishment. Once any sensitive content is detected, the GFW injects RST (type-1) and

RST/ACK (type-2) packets to both the corresponding client and the server to disrupt the

ongoing connection and sustains the disruption for a certain period (90 seconds as per our
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measurements). During this period, any SYN packet between the two end-hosts will trigger

a forged SYN/ACK packet with a wrong sequence number from the GFW, which will ob-

struct the legitimate handshake; any other packets will trigger forged RST and RST/ACK

packets, which will tear down the connection.

According to previous work [5, 101] and our measurements, RST (type-1) and

RST/ACK (type-2) are likely from two types of GFW instances that usually exist together.

We have encountered some occurrences where a type-1 or a type-2 reset occurs individually;

thus, we are able to measure their features separately. Type-1 reset has only the RST flag

set, and random TTL value and window sizes, while type-2 reset has the RST and ACK

flags set, and cyclically increasing TTL value and window sizes.

Once a sensitive keyword detected, the GFW sends one type-1 RST and three

type-2 RST/ACK with sequence numbers X, X+1460 and X+4380 (X is the current server-

side sequence number). 1 Note that only type-2 resets entail forged SYN/ACK packets

during the 90-second subsequent blocking period; furthermore, only type-2 resets are seen

when we split a HTTP request into two TCP packets. From all of the above, we speculate

that the type-2 resets are from more advanced GFW instances or devices.

Numerous studies have focused on the TCP connection reset of the GFW. Xu et

al. [134] perform measurements to determine the locations of the censor devices injecting

RST packets. Crandall et al. [41] employ latent semantic analysis to automatically gener-

ate an up-to-date list of censored keywords. Park et al. [86] measure the effectiveness of

RST packet injection for keyword filtering on HTTP requests and responses, and provide

1The common size of a full TCP packet is 1460 bytes. Sometimes injected packets can fall behind a
server’s response and thus, become obsolete and discarded. Sending packets with future sequence numbers
can offset this effect to a large extent.
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insights on why filtering based on HTTP responses has been discontinued. Performing TCP

connection reset does come with shortcomings. For instance, it is costly to track the TCP

state of each and every connection and match keywords against a massive number of TCP

packets. It is also not completely resistant to evasion.

DNS poisoning is another common technique used by the GFW [6, 7, 76]. The GFW

censors the DNS requests over both UDP and TCP. For a UDP DNS request with a black-

listed domain, it simply injects a fake DNS response; for a TCP DNS request, it turns to

the connection reset mechanism. Our measurements also cover DNS over TCP.

2.2.2 Evasion of NIDS and Censorship Systems

Ptacek et al. [92] have systematically studied the vulnerabilities of NIDS in the

way that NIDS construct and maintain TCP state. In particular, NIDS maintain a TCP

Control Block (TCB) for each live connection to track its state information (e.g., TCP

state, sequence number, acknowledgment number, etc.). The goal is to replicate the same

exact connection information that exists at both endpoints. However, in practice this is

very challenging due to the following factors:

• Diversity in host information. Due to ambiguity and updates in TCP specifications,

different OS implementations may have very different behaviors in handling TCP

packets. For instance, when unexpected TCP flag combinations are encountered,

different OSes can behave differently (as how to handle these remains unspecified in

the standard). Another example is that RST packet handling has drastically changed

over different TCP standards (RFC 793 to RFC 5961).
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• Diversity in network information. A NIDS usually cannot learn the network topology

with respect to the endpoints it is protecting, since the topology itself may change

over time. For a LAN, a NIDS can probe and maintain the topology. However, for

a censorship system, monitoring the massive scale of the entire Internet is extremely

challenging if at all possible. Further, such a system will be unaware of network

failures or packet losses. Thus, it cannot judge accurately whether or not a packet

has arrived at its destination.

• Presence of middleboxes. NIDS usually are not aware of other middleboxes that may

be encountered between any pair of communicating endpoints. These middleboxes

may drop or even alter packets after the NIDS process them, which makes it even

more difficult to reason about how a receiver will behave.

This observation has motivated work on TCP reset attack evasion. For example,

Khattak et al. [68] manually crafted a fairly comprehensive set of the evasion strategies at

the TCP and HTTP layers against the GFW and verified them successfully in a limited

setting with a fixed client and server. Unfortunately, there are a large number of factors

that were not taken into account (e.g., different types of GFW devices may be encountered

on different network paths, various middleboxes may interfere with the evasion strategies

by dropping crafted packets).

2.3 Measurement of Existing Evasion Strategies

Based on the fundamental limitations of NIDS outlined by Ptacek et al. [92], the

GFW’s modeling by the Khattak et al. [68], and the implementation of the West Cham-

14



Figure 2.1: Threat Model of INTANG

ber Project [101], we divide censorship evasion strategies based on TCB-manipulations into

three high-level categories, viz., (1) TCB creation, (2) data reassembly, and (3)TCB tear-

down. In this section, we perform in-depth measurements to evaluate the effectiveness of

existing evasion strategies, developed based on the currently known model of the GFW in

these categories.

2.3.1 Threat Model

The threat model is depicted in Figure 2.1. The client initiates a TCP connection

with the server. The GFW establishes a shadow connection by creating a TCB and can

read from and inject packets to the original connection. Meanwhile, there could be network

middleboxes on the path. We refer to the middleboxes between the client and the GFW as

client-side middleboxes and the middleboxes between the GFW and the server as server-side

middleboxes.

2.3.2 Existing Evasion Strategies

The goal of current evasion strategies (listed below) is to cause the GFW and the

server to enter different states (i.e., become desynchronized) by sending specially crafted

packets, especially “insertion” packets. These insertion packets are crafted such that they
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are ignored by the intended server (or never reach the server) but are accepted and processed

by the GFW.

TCB Creation. As per previous work [68], the GFW creates a TCB upon seeing

a SYN packet. Thus the client can send a SYN insertion packet with a fake/wrong sequence

number to create a false TCB on the GFW, and then build the real connection. The GFW

will ignore the real connection because of its “unexpected” sequence number. The TTL

(time to live) or checksum in the insertion packet, is manipulated to prevent the acceptance

of the first injected SYN by the server—a packet with a lower TTL value would never reach

the intended server and a packet with wrong checksum would be discarded by the server.

Data Reassembly. The data reassembly strategy has two cases:

1. Out-of-order data overlapping. Different TCP implementations treat overlap-

ping out-of-order data fragments in different ways. Previous work [68] has shown that if the

GFW encounters two out-of-order IP fragments with the same offset and length, it prefers

(records) the former and discards the latter. However, with regards to out-of-order TCP

segments with the same sequence number and length, it prefers the latter (details in [68]).

This characteristic with regards to IP fragmentation can be exploited as follows. First, a

gap is intentionally left in the payload and a fragment with offset X and length Y , con-

taining random garbage data is sent. Subsequently, the real data with offset X and length

Y , containing the sensitive keyword, is sent to evade the GFW (since the GFW is expected

to choose the former packet). Finally the gap is filled by sending the real data with offset

0 and length X. To exploit the GFW’s handling of TCP segments, we simply switch the

order of the garbage data and the real data.
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2. In-order data overlapping. When two in-order data packets carrying IP or

TCP fragments arrive, both the GFW and the server will accept the first in-order packet

that carries a specific fragment (specified by offset/sequence number). One can then craft

insertion packets that contain junk data to fill the GFW’s receive buffer, while making them

to be ignored by the server. For example, one can craft an insertion data packet with a

small TTL or a wrong checksum; such packets either never reach or are dropped by the

server but are accepted and processed by the GFW.

TCB Teardown. As per the known model, the GFW is expected to tear down

the TCB that it maintains when it sees a RST, RST/ACK, or a FIN packet. One can craft

such packets to cause the TCB teardown, while manipulating fields such as the TTL or the

checksum to ensure that the connection on the server is alive.

2.3.3 Experimental Setup

We employ 11 vantage points in China, in 9 different cities (Beijing, Shanghai,

Guangzhou, Shenzhen, Hangzhou, Tianjin, Qingdao, Zhangjiakou, Shijiazhuang) and span-

ning 3 ISPs. 9 of these use the cloud service providers (Ailyun and Qcloud) and the other

two use home networks (China Unicom). The servers are chosen from Alexa’s top websites

worldwide. We first filter out the websites that are affected by IP blocking, DNS poisoning,

or are located inside China. We exclude the websites that use HTTPS by default, for two

reasons. First, HTTPS traffic is not currently censored by the GFW; thus, we can already

access them freely without using any anti-censorship technique. Second, if we access these

HTTPS websites using HTTP, they send HTTP 301 responses to redirect us to HTTPS,

and the sensitive keyword is copied to the Location header field of the response. We find
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Table 2.1: Probing the GFW from 11 vantage points with 77 websites

Strategy Discrepancy
w/ sensitive keyword w/o sensitive keyword

Success Failure 1 Failure 2 Success Failure 1

No Strategy N/A 2.8% 0.4% 96.8% 98.9% 1.1%

TCB creation (SYN)
TTL 6.9% 4.2% 88.9% 95.3% 4.7%

Bad shecksum 6.2% 5.1% 88.7% 93.5% 6.5%

Out-of-order reassembly
IP fragments 1.6% 54.8% 43.6% 45.1% 54.9%

TCP segments 30.8% 6.5% 62.6% 92.8% 7.2%

In-order reassembly

TTL 90.6% 5.7% 3.7% 95.1% 4.9%
Bad ACK num 83.1% 7.5% 9.5% 93.5% 6.5%
Bad checksum 87.2% 1.9% 10.8% 98.4% 1.6%
No TCP flag 48.3% 3.3% 48.4% 97.1% 2.9%

TCB teardown (RST)
TTL 73.2% 3.2% 23.6% 94.7% 5.3%

Bad checksum 63.1% 7.6% 29.3% 89.5% 10.5%

TCB teardown (RST/ACK)
TTL 73.1% 3.2% 23.7% 97.1% 2.9%

Bad checksum 68.9% 1.9% 29.2% 98.2% 1.8%

TCB teardown (FIN)
TTL 11.1% 1.0% 87.9% 99.4% 0.6%

Bad checksum 8.4% 0.8% 90.7% 99.0% 1.0%

that the GFW devices on some paths can in fact detect this in the response packets. This

is similar to the HTML response censorship measured in [86]. Furthermore, assuming that

GFW devices deployed in a particular autonomous systems (AS) usually are of the same

type and version, and configured with the same policy, we choose only one IP from each AS,

in order to diversify our experiments by spanning a large set of ASes. By applying filters

based on the above rules, and removing a few slow or unresponsive websites, we finally

obtain a dataset of 77 websites (from the considered 77 ASes) with Alexa ranks between

41 and 2091. We manually verify that these websites are accessible (outside of China) and

are affected by GFW’s TCP connection reset upon containing a sensitive keyword, i.e.,

ultrasurf, in the HTTP request. For each strategy and website, we repeat the test 50 times

and find the average. Since the GFW will blacklist a pair of hosts for 90 seconds upon the

detection of any sensitive keyword, we add intervals between tests when necessary.
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2.3.4 Results

We measure the effectiveness of existing strategies in evading the GFW during

April and May in 2017. The results are summarized in Table 2.1.

Notation: We use the following notation in Table 2.1: Success means that we

receive the HTTP response from the server and receive no reset packets from the GFW.

Failure 1 means that we receive no HTTP response from the server nor do we receive any

resets from the GFW. Failure 2 means that we receive reset packets from the GFW, i.e.,

either RST (type-1) or RST/ACK (type-2).

Results. Our findings are summarized below.

• We find that, possibly because of overloading of the GFW, even if we do not use any

evasion strategy, there is a still a 2.8% success rate with regards to retrieving sensitive

content. Interestingly this behavior was first documented in 2007 [41] and persists

until now.

• We see that TCB creation with SYN does not generally work and has a high “Failure

2” rate (around 89%).

• With regards to data reassembly, we find that (a) out of order data reassembly strate-

gies have both high “Failure 1” and high “Failure 2” rates but (b) sending in-order

data to prefill the GFW’s buffer results in a much higher success rate (typically >

80%).

• TCB teardown with FIN experiences high “Failure 2” rates while TCB teardown with

RST or RST/ACK experience around a 70% success rate, but with a 25% chance
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trigger reset packets from the GFW.

Evolution of the GFW. We believe that the primary reason for the high failure

rates with many existing strategies is because the model of GFW assumed in previous

work [68] is no longer valid. While we defer a detailed discussion of how the model has

evolved to the next section, we point out here that the “checksum” field is still not validated

by the GFW, i.e., a packet with a wrong checksum is still a good insertion packet (the GFW

considers it to update its TCB but the server discards it) if there’s no interference from

network middleboxes. We break down the results with regards to the other reasons why

these strategies fail, and analyze them below.

Interference from client-side middleboxes. Client-side middleboxes may

drop our insertion packets. Since we manipulate packet fields (e.g., wrong checksum, no

TCP flag, etc.) to cause the server or server-side middleboxes to discard insertion packets,

client-side middleboxes could also discard them. Thus the strategies are voided, and will

result in “Failures 2.”

On the other hand, some NAT or state/sequence checking firewalls deployed on

the client-side of the network might intercept and accept the insertion packets and change

their maintained connection state. In such cases, later packets will not go through these

middleboxes, resulting in “Failures 1.” For example, if a RST packet tears down the con-

nection on a client-side middlebox which it traverses, the middlebox blocks later packets on

that connection.

Some client-side middleboxes may discard IP fragments (wrt data reassembly

strategies) and cause “Failures 1.” Others buffer and reassemble them into a whole IP
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Table 2.2: Client-side middlebox behaviors
Packet Type Aliyun QCloud China Unicom SJZ China Unicom TJ

IP fragments Discarded Reassembled Reassembled Reassembled
Bad TCP checksum Pass Pass Pass Dropped

No TCP flag Pass Pass Pass Dropped
RST packets Pass Sometimes dropped Pass Pass
FIN packets Sometimes dropped Pass Dropped Dropped

packet and this might cause “Failures 2” depending on the implementation of the middle-

box.

We probed for client-side middleboxes from all our 11 vantage points trying to

connect with our own servers. As shown in Table 2.2, we found that our 6 clients using

Aliyun were unable to send out IP fragments. One can conclude within reason that Aliyun

has configured its middleboxes to discard certain kinds of IP fragments. We found that

connections from the other 5 nodes encounter client-side middleboxes, which reassemble

the IP fragments into a full IP packet containing the original HTTP request; thus these

packets were deterministically captured by the GFW. Since we found that most of the

routers and/or middleboxes interfere with IP-layer manipulations, we argue that this is not

as generally applicable as TCP-layer manipulations for evasion.

The vantage point in Tianjin China Unicom has client-side middleboxes that drop

packets with wrong TCP checksums or containing no TCP flag; thus these two strategies

did not work at that point. Finally, we found Aliyun sometimes drops FIN insertion packets

and QCloud sometimes drops RST insertion packets. Both the clients in Shijiazhuang and

Tianjin (China Unicom) have client-side middleboxes that drop FIN insertion packets.

Interference from server-side middleboxes. Server-side middleboxes only

affect the server but not the GFW. Our insertion packet may terminate the connection
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or change the connection state on the server-side middleboxes causing later packets to be

blocked by the middleboxes. This will cause “Failures 1.” To verify interference from server-

side middleboxes, we need to either control the server or set up our own server on the same

path behind those middleboxes, which are infeasible in practice for all our targets, i.e., the

Alexa’s top websites.

Other reasons for failures. There could be a few other reasons for observing

failures of the two types. Network or server failures although rare could occur. We per-

formed microscopic studies of our failure cases and list the cases that we observed below.

Variations in server implementations. We find that with some server implemen-

tations (e.g., Linux versions prior to 3.8), a data packet under “in-order data overlapping

strategy” carrying no TCP flag can sometimes be accepted by the server and thus causes

“Failures 1.” With the “out-of-order data overlapping strategy,” a server might accept the

junk data (just like the GFW) and discard the correct packet.

Network dynamics. Since routes are dynamic and could change unexpectedly, the

TTL values used in the insertion packets to prevent them reaching the server could be

incorrect. As a result, they may reach the server and disrupt the connection (Failures 1).

In other cases, the insertion packets might not reach the GFW and lead to “Failures 2.” We

also found that packet losses on the network could affect the insertion packets and cause

“Failures 2.” We cope with such dynamics by repeating the sending of the insertion packets

thrice with 20ms intervals.

Summary. Our measurement uses real web servers instead of controlled servers

in order to represent cases of daily web browsing. The results demonstrate the complexity
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induced by many factors (e.g., middlebox interference, server diversity, network diversity,

etc.). We showcase the overall success rates with existing evasion strategies and enumerate

possible reasons for the failure cases. To fully untangle the factors causing failures and

to quantify the impact of each, more in-depth analysis and controlled experiements are

required (e.g., using controlled replay server as in [74]), which we leave for future work.

2.4 Evolved GFW Behaviors

As alluded to in section 2.3, high failure rates were experienced even if we elim-

inated the effects from middleboxes, server implementations, and network dynamics. To

understand the root cause, we take a closer look and argue that this is due to evolved GFW

behaviors that break many prior assumptions. Based on our measurements, we hypothesize

these new behaviors as follows. To verify these hypotheses, in section 4.5 we design and

extensively evaluate new evasion strategies.

Prior Assumption 1: The GFW creates a TCB only upon seeing a SYN packet.

To test this assumption, we used pairs of clients and servers under our control, and

executed partial TCP 3-way handshakes (e.g., intentionally omitting the SYN, SYN/ACK

and/or ACK) followed by a HTTP request with a sensitive keyword. If a correct TCB

was created on the GFW, the HTTP request would trigger TCP reset packets from it.

First, our results confirmed that the GFW still creates a TCB upon seeing a SYN packet

as described in [68]. Second and more interestingly, we found that the GFW also creates

a TCB upon seeing a SYN/ACK packet without the SYN packet. We speculate that the

GFW has evolved to incorporate this feature to counter SYN packet losses. Given these,
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we hypothesize that the GFW exhibits the following new behavior.

Hypothesized New Behavior 1: The GFW creates a TCB not only upon re-

ceiving SYN packets, but also SYN/ACK packets.

Prior Assumption 2: The GFW uses the sequence number in the first SYN

packet to create a TCB, and ignores later SYN packets during the lifetime of the TCB.

This assumption is based on the rationale that the GFW mimics a normal TCP

implementation. Our closer look revealed that it does not. From the results in section 2.3,

we see that the TCB creation with a SYN insertion packet failed in most cases. This

leads us to re-examine this case. We send multiple SYN packets among which only one

has the “true” sequence number, and then send a sensitive HTTP request. However, no

matter where we put the “true” SYN packet, the GFW can always detect the later sensitive

keyword. We hypothesize that this could be because of any of three possible reasons:

• (1) the GFW establishes multiple TCBs, one for each SYN packet;

• (2) the GFW enters a “stateless mode”, in which it checks every individual packet

instead of re-assembling the data first (and check for a sensitive keyword);

• (3) the GFW uses the sequence number in the HTTP request to re-synchronize its

TCB.

To check (1), we set the sequence number in the HTTP request to be a “out-of-window”

value with respect to the sequence numbers in the SYN packets; however, we find that the

GFW can still detect the keyword. To examine (2), we split the sensitive keyword into

halves, each of which by itself is not a sensitive keyword; however, we find that the GFW

can still detect it. For (3), before sending the HTTP request, we send some random data
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with a “false” sequence number, and then we send the HTTP request with “true” sequence

number; the GFW cannot detect it in this case. This suggests that the GFW re-synchonrizes

its TCB with the sequence number in the random data, and thus, ignores the later HTTP

request because of its out-of-window sequence number. This validates hypothesis (3) that

the GFW enters a “re-synchronization state” upon seeing multiple SYN packets. We further

validate this extensively in section 4.5.

Besides multiple SYN packets, we found that multiple SYN/ACK packets or a

SYN/ACK packet with an incorrect acknowledgment number can also cause the GFW to

enter the re-synchronization state.

Next, we try to find out “which packet the GFW uses to re-synchronize its TCB

once in re-synchronization state.” From the previous experiement, we learn that the GFW

re-synchronizes using data packets from the client to the server. Thus, instead, we try to

use data packets from the server to the client; in addition, we try pure ACK packets without

data in both directions. We find none of these packets affect the GFW. However, we do find

that a SYN/ACK packet from the server to the client can cause re-synchronization. We

admit that the cases we found may not be complete but it is hard to enumerate an exhaustive

set of these cases. However, our measurements lead us to a better understanding of the

GFW behavior than what exists today and leads us to the following new hypothesis.

Hypothesized New Behavior 2: The GFW enters what we call the “re-synchron-

ization state”, where it re-synchronizes its TCB using the information in the next SYN/ACK

packet from server to client or data packet from client to server upon experiencing any of

the following three cases: (a) it sees multiple SYN packets from client-side, (b) it sees
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multiple SYN/ACK packets from server-side, or (c) it sees a SYN/ACK packet with an

acknowledgment number different from the sequence number in the SYN packet.

Prior Assumption 3: The GFW tears down a TCB when it sees a RST,

RST/ACK or FIN packet.

The results in section 2.3 suggest that the evolved GFW generally does not tear

down a TCB merely upon seeing FIN packets. At the same time, we also observed high

failure rates of above 20% with our RST and RST/ACK insertion packets. A closer look

suggests that this probably is due to “Hypothesized New Behavior 2.” More specifically,

we found that when the GFW is in the newly discovered “re-synchronization state”, its

TCB sometimes cannot be torn down with RST or RST/ACK packets. To verify this, we

force the GFW to enter the re-synchronization state using one of the techniques above,

and then immediately send a RST packet and a HTTP request with sensitive keyword.

However, the GFW sometimes can still detect it. We repeated the experiement at different

times with multiple pairs of clients and servers, and found inconsistency between different

measurements across pairs at different times. The overall success rate is roughly 80%,

and for a specific client-server pair, the GFW’s behavior is usually consistent during a

certain period (although not always across periods). We are unable to unearth the explicit

reason behind at this time; we conjecture that it is due to dynamics with regards to the

heterogeneity in the types of GFW encountered and the complexity of interactions among

different GFW instances and middleboxes. We discuss this further in section 2.8.

In addition, we performed extensive measurements wherein we sent a RST packet

between the SYN/ACK and the ACK packet of the 3-way handshake, and also after the
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3-way handshake. We found that in both cases the TCB sometimes is not torn down but

the RST packet caused the GFW to enter the re-synchronization state; further, we find that

this happens way more frequently for the former case (the exact reason for the discrepancy

remains unknown). These observations lead to the following new hypothesis.

Hypothesized New Behavior 3: Upon receiving a RST or RST/ACK packet,

the GFW may enter the re-synchronization state instead of tearing down the TCB.

2.5 New Ways to Evade the GFW

In this section, we discuss new opportunities for evasion from two perspectives.

First, based on the new hypothesized behaviors of the GFW, we propose new evasion

strategies. Second, we attempt to systematically discover new insertion packets (besides

wrong checksum or small TTL).

2.5.1 Desynchronize the GFW

First of all, we describe a building block to counter the re-synchronization state in

the GFW. It is helpful in supporting our new evasion strategies, which are discussed next.

Specifically, when we expect that the GFW is in the re-synchronization state (this can be

forced), we send a insertion data packet with a sequence number that is out of window.

Once the GFW synchronizes with the sequence number in this insertion packet, subsequent

legitimate packets of the connection will be perceived to have sequence numbers that are out

of window, and thus be ignored by the GFW. We say that now the GFW is desynchronized

from the connection. Note that the insertion data packet is ignored by the server since it
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contains an out-of-window sequence number.

Desynchronizing the GFW drastically helps improve the “TCB Teardown” and

the “In-order Data Overlapping” strategy that still work relatively well but occasionally

experience undesired high “Failure 1” and “Failure 2” rates.

2.5.2 New Evasion Strategies

Our evasion strategies are primarily based on exploiting the newly discovered state

of the GFW. We propose two new evasion strategies along with improvements to two existing

strategies.2 We evaluate these extensively in section 4.5. The two new strategies are as

follows:

Resync + Desync. To coerce the GFW into entering the re-synchronization

state, the client sends a SYN insertion packet after the 3-way handshake. Subsequently,

the client sends a 1-byte data packet containing an out-of-window sequence number to

desynchronize the GFW. This is then followed by the real request. Note that the SYN

insertion packet cannot be sent prior to receiving the SYN/ACK packet, as the GFW

will eventually resynchronize the expected client-side sequence number based on the ACK

number of the SYN/ACK. In addition, the SYN insertion packet should take a sequence

number outside of the expected receive window of the server (as in older Linux this can

cause the connection to reset). Newer versions of Linux will never accept such a SYN packet

regardless of its sequence number and will simply respond with a challenge ACK [28]. In

addition, we can craft the insertion SYN packets with small TTL in case the server or

2For brevity we only describe the new strategies in this section and leave the detailed discussion of
improved strategies to section 4.5.
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middleboxes interfere.

TCB Reversal. As discussed, the GFW currently only censors traffic from the

client to the server (e.g., HTTP/DNS requests), and the censorship of HTTP response has

been discontinued except in a few rare cases [86]. When the GFW first sees a SYN/ACK,

it assumes that the source is the server and the destination is the client. It creates a

TCB to reflect that this is the case. It will now monitor data packets from the server to

the client (mistakenly thinking that it is monitoring data packets from the client to the

server). To exploit this property, the client will first send a SYN/ACK insertion packet.

It later performs the TCP three way handshake in a normal way. The GFW will ignore

these handshake packets since there already exists a TCB for this connection. Note that

the SYN/ACK insertion packet has to be crafted with care. In normal cases, the server

responds with a RST which causes a teardown of the original TCB at GFW. To address

this, one of the discrepancies (e.g., lower TTL) will need to be used in the insertion packet.

In addition, we point out that here the SYN/ACK and subsequent SYN packet from the

client do not trigger the GFW to enter the resynchronization state.

2.5.3 New Insertion Packets

All GFW evasion strategies require injecting additional packets or modifying ex-

isting packets to disrupt the TCP state maintained on GFW [92, 68]. Insertion packets are

especially handy as they are the most suitable for supporting evasion strategies against the

GFW.

As alluded to in section 2.3, insertion packets can be tricky to craft. They may fail

because of many reasons such as network dynamics, routing asymmetry, obscure network
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Table 2.3: Discrepancies between GFW and server on ignoring packets (candidate
insertion packets)

TCP State GFW State TCP Flags Condition

Any Any Any IP total length > actual length
Any Any Any TCP Header Length < 20
Any Any Any TCP checksum incorrect
SR EST/RESYNC RST+ACK Wrong acknowledgement number
SR/EST EST/RESYNC ACK Wrong acknowledgement number
SR/EST EST/RESYNC Any Has unsolicited MD5 Optional Header
SR/EST EST/RESYNC No flag TCP packet with no flag
SR/EST EST/RESYNC FIN TCP packet with only FIN flag
SR/EST EST/RESYNC ACK Timestamps too old

* SR - SYN RECV; EST - ESTABLISHED; RESYNC - Re-synchronization.

middleboxes, and variations in server TCP stacks. Our observation is that none of the

insertion packets are universally good. This motivates us to discover additional insertion

packets that may be viable and complementary to existing insertion packets.

The ideal solution to discovering insertion packets is to obtain a precise TCP model

for the GFW, the server, and network middleboxes that can be fed into an automated

reasoning engine (to see what kinds of packets can qualify as insertion packets). However,

since the GFW is a blackbox with only one observable feedback attribute (viz., the RST

injection), it is quite hard to infer its internal state accurately and completely. The evolved

GFW model that we infer in section 2.4 is also unlikely to be complete. Therefore, even if

one were to leave network middleboxes aside, the problem is very challenging.

Our solution is as follows: instead of attempting to model the GFW accurately,

we first model the servers (e.g., popular Linux and FreeBSD TCP stacks) using “ignore”

paths analysis. By this we mean that we want to identify and reason about points in a

server’s TCP implementation which cause it to ignore received packets. Specifically, for an

incoming packet, we analyze all possible program paths that lead to the packet being either
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discarded completely, or “ignored” possibly with an ACK sent in response. An example

of the first case is a packet with an incorrect checksum; the second case can be a data

packet with an out-of-window sequence number, which triggers a duplicate ACK [90]. In

both cases, the TCP state (e.g., the next expected sequence number) of the host (server)

remains unchanged. After we derive this server model, we use it to develop probing tests

against the GFW.

For open source operating systems such as Linux, this can be achieved through

static analysis similar to what is done in PacketGuardian [35]. The challenge is to man-

ually identify all program points where “ignore” events occur. Once the ignore paths are

identified, the constraints that lead to each path need to be computed, and used to guide

test packets against the GFW. Once we identify cases where the packets are “accepted” by

the GFW, i.e., the GFW updates its TCB according to the information in the packet, we

can conclude that such packets are effective insertion packets (note that we have not yet

considered interference from network middleboxes).

During the analysis, we only need to consider the TCP states that still have the

potential to receive data, i.e., TCP LISTEN, TCP SYN RECV, TCP ESTABLISHED. For

instance, we omit the TIME WAIT state because the server can no longer receive data in

this state and it is fruitless to understand its ignore paths. After we generate the ignore

paths of the server for each TCP state, we first generate a sequence of packets that lead to

the specific TCP state; then for the set of constraints generated for each ignore path, we

generate one or more test packets (as candidate insertion packets). Note that each ignore

path will lead to a unique reason for why the packet will be ignored by the server (e.g.,
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either wrong checksum or invalid ACK, but never both). Ptacek et al. [92] used a similar

approach to study the FreeBSD TCP stack, which is unfortunately too old to be applicable.

In contrast, we study the latest Linux TCP stack, which has many new behaviors. Further,

we improve the methodology by pruning a number of “ignore” paths in irrelevant TCP states

such as TIME WAIT, as well as correlating the “ignore” cases with middlebox behaviors.

As a demonstration, we conduct such an analysis of Linux kernel version 4.4. In

Table 2.3, we list the confirmed cases in which Linux ignores a packet but the GFW does

not. We also try to compare the server state with the GFW state to make the discrepancies

more clear. Note that this is a more complete list than what was previously reported [68, 92],

demonstrating the advantage of our systematic analysis. For instance, the finding includes

two new insertion packets:

1) RST/ACK packets with incorrect ACK number are ignored by the server in

TCP RECV state but GFW will accept such a packet and change its state to either

TCP LISTEN (previous state terminated) or TCP RESYNC, depending on the GFW

model.

2) Packets with unsolicited MD5 headers are ignored by the server (if no prior

negotiation of optional MD5 authentication has been done) while GFW will process the

packet as normal.

The MD5 header [63] discrepancy can be exploited in an insertion packet with any

TCP flag. For example, this can be used in a RST packet to tear down the TCB on the

GFW, or in a data packet to fool the GFW into changing its maintained client sequence

number.
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Note that we intentionally omit the analysis of data overlapping (for processing

out-of-order and overlapping data packets) discrepancies as it has been understood that

different OSes may employ different strategies [92] and thus it may not lead to a safe

insertion packet.

Cross-validation with network middleboxes. Even though the insertion packets

generated from the analysis work well according to our experiments, they may not play well

with middleboxes. Note that IP layer discrepancies such as wrong IP checksum, IP optional

header, and IP header length can be used under all TCP states for all TCP flags, but packets

with such properties are often dropped by routers or middleboxes. The only feature that we

find useful is the one where the “IP total length” is larger than the “actual packet length”

(listed in Table 2.3); however, packets with this feature may still be checked and dropped

by some middleboxes. Even insertion packets that leverage TCP layer discrepancies (such

as those relating to improper TCP header lengths or the wrong TCP checksum) may still

be dropped by middleboxes, especially in cases where the perturbation applies to all TCP

states and flags. The only exceptions are insertion packets leveraging the unsolicited MD5

header; these are never dropped by the middleboxes we encounter during our experiments

(presumably because it requires a stateful firewall middlebox to understand when such

packets should be dropped).

The remainder of the insertion packets can be useful only for data packets. Ef-

fective control packets cannot be crafted with these; for instance, when the server is in the

ESTABLISHED state, even if the RST/ACK has a wrong ACK number or old timestamp,

it will still be able to reset the connection successfully. According to our experiments, we
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have not encountered middleboxes that drop packets with unexpected MD5 options, old

timestamps, or incorrect ACK numbers.

Cross-validation with other TCP stacks. It is difficult, if not impossible, to exhaus-

tively test the ignore paths of all deployed TCP stacks. We cross-validate the ignore paths

of Linux kernel 4.4 with several other popular Linux versions, including 4.0, 3.14, 2.6.34,

and 2.4.37. We summarize the results here:

• In Linux 3.14, when a connection is in the ESTABLISHED state, an incoming packet

with a SYN flag will be ignored, while the new GFW model will accept it.

• In Linux 2.6.34 and 2.4.37, when a connection is in ESTABLISHED state, an incoming

packet without a set ACK flag will not be ignored. Instead, a data packet without

the ACK flag will in fact be accepted. This indicates that such an insertion packet

will not work against older Linux versions.

• In Linux 2.4.37, an incoming packet with an unsolicited MD5 header will not be

ignored. This is due to the fact that older Linux versions have not implemented

the feature proposed in RFC 2385 [63]. Upon closer inspection, the MD5 option

check on the server can be turned off via kernel compilation options and therefore the

corresponding insertion packet in fact may not always work.

This shows most insertion packets are applicable to a wide range of Linux operating

systems, with some minor exceptions (if the encountered Linux version is too old). As Linux

is dominant in the server market [102], we envision that evasion strategies built on top of

these insertion packets will work well. Indeed, as we show in section 4.5, our GFW evasion
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success rate is extremely high if we are to leverage these insertion packets properly. To

discover additional discrepancies and perform automatic “ignore path” analysis, we plan to

use selective symbolic execution in the future (e.g., S2E [37]). We leave a more rigorous

analysis of TCP stacks of other Linux versions and operating systems, including closed-

source OS like Windows Server, to our future work.

2.6 INTANG

All the strategies described in section 2.3 and section 2.4, are together integrated

in a unified measurement driven censorship evasion tool we call INTANG. 3 The implemen-

tation contains roughly 3.3K lines of C code and some analysis scripts written in Python.

INTANG is designed as an extensible framework that supports add-on strategies. The

components of INTANG are depicted in Figure 2.2.

Overview. INTANG’s functionalities are divided into three threads, viz., the main thread,

the caching thread, and the DNS thread. The main thread is time-sensitive, and all time-

consuming operations are pushed to the other two threads. The main thread runs a packet

processing loop which intercepts certain packets using the netfilter queue [12] and injects

insertion packets using raw sockets. While the packets are being processed, they are held

in the queue i.e., are not sent out until the processing is complete.

When a new connection is initiated, INTANG chooses the most promising strategy

based on historical measurement results (with the help of caching), to a particular server IP

address. Upon the completion of a successful trial, it caches the strategy ID along with the

3INTANG source code is publicly available at https://github.com/seclab-ucr/INTANG.
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Figure 2.2: INTANG and its components

four-tuple of the connection in memory. When it later receives further packets associated

with the four-tuple, it will invoke the callback functions of the strategy to process the

incoming and outgoing packets. Usually, only a small set of specific packets (e.g. SYN/ACK

packet, HTTP request) are relevant to each strategy and need monitoring (as discussed

earlier).

DNS forwarder. The DNS thread is a specialized thread that aims at converting DNS

requests over UDP to DNS requests over TCP. As mentioned in subsection 2.2.1, TCP-

layer evasion not only helps with evading censorship on HTTP connections, but can also

support the evasion of DNS poisoning by GFW. For this purpose, a simple DNS forwarder

is integrated within INTANG. It converts each DNS over UDP request to a DNS TCP

request and sends it to an unpolluted, public DNS resolver (likely outside of China). We
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Figure 2.3: Combined Strategy: TCB Cre-
ation + Resync/Desync

Figure 2.4: Combined Strategy: TCB Tear-
down + TCB Reversal

apply the same set of strategies for the TCP connection that carries DNS requests and

responses, to prevent the GFW from resetting the connection upon detecting a censored

domain in the request. The main thread intercepts outgoing DNS UDP requests, which may

contain sensitive domain names and redirects such requests to the DNS thread that does

the forwarding. When a DNS TCP response is received, it will be converted back to a DNS

UDP response and processed normally by the application. So it is completely transparent

to applications. We have probed GFW with Alexa’s top 1 million domain names to generate

a list of poisoned domain names using the same method as in [48].

Strategies. Each evasion strategy dictates specific interception points (i.e., the types

of packets to intercept) and the corresponding actions to take at each point (e.g., inject

an insertion packet). A new strategy can be derived from our suite of basic strategies

by implementing new logic in the callback functions registered as interception points. A

strategy can decide on whether to accept or to drop an intercepted packet, and can also

modify the packet. It can craft and inject new packets as well.
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Caches. INTANG employs Redis [95] as an in-memory key-value store. Redis provides

desirable features like data persistency, event-driven programming, key expiration, etc. We

also maintain in the main thread, a transient Least Recently Used (LRU) cache implemented

using linked lists and hash tables (to reduce Redis store access latency that typically involves

inter-thread or inter-process communications). Caching allows us to understand the effec-

tiveness of the strategies against different websites and converge on the best one quickly. Of

course, to counter changes in the network or the server, the cached record is retained only

for a certain period of time before expiration. We omit the details of cache management in

the interest of space.

2.7 Evaluation

We now extensively evaluate the hypothesized new behaviors of the GFW discussed

in section 2.4 using the new strategies described in section 2.5 and our tool INTANG. We use

the same 11 vantage points and 77 web servers as discussed in section 2.3; unless otherwise

specified, all other measurement settings remain the same to ensure the consistency of the

results. The experiments were conducted during April and May, 2017. In addition, since

the GFW not only censors outbound traffic but also inbound traffic (both are client-to-

server traffic),4 we conduct measurements from 4 vantage points outside China, viz, in US,

UK, Germany, and Japan, using instances on Amazon EC2, to targets inside China. This

dataset includes top 33 Chinese websites chosen from the same Alexa’s top 10,000 websites

using the same method as in subsection 2.3.3 except they are inside China. By doing the

4A possible reason for doing this could be achieving bi-directional information barriers such as censoring
what outsiders can see or restricting certain services, e.g., VPN.
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Table 2.4: Success rate of new strategies

Strategy (Outbound)
Success Failure 1 Failure 2

Min Max Avg. Min Max Avg. Min Max Avg.

Improved TCB Teardown 89.2% 98.2% 95.8% 1.7% 6.7% 3.1% 0.0% 5.4% 1.1%
Improved In-order Data Overlapping 86.7% 97.1% 94.5% 2.9% 8.9% 4.4% 0.0% 5.2% 1.1%
TCB Creation + Resync/Desync 88.5% 98.1% 95.6% 1.9% 7.0% 3.3% 0.0% 5.5% 1.1%
TCB Teardown + TCB Reversal 90.2% 98.2% 96.2% 1.7% 5.6% 2.6% 0.0% 5.7% 1.1%
INTANG Performance 93.7% 100.0% 98.3% 0.0% 3.0% 0.9% 0.0% 3.5% 0.6%

Strategy (Inbound)
Success Failure 1 Failure 2

Min Max Avg. Min Max Avg. Min Max Avg.

Improved TCB Teardown 85.6% 92.9% 89.8% 4.6% 7.6% 6.8% 0.3% 6.8% 3.5%
Improved In-order Data Overlapping 89.4% 96.0% 92.7% 1.3% 6.2% 3.6% 0.6% 7.0% 3.7%
TCB Creation + Resync/Desync 78.1% 95.6% 84.6% 2.4% 18.6% 12.9% 0.9% 4.0% 2.6%
TCB Teardown + TCB Reversal 84.6% 93.1% 89.5% 5.5% 8.7% 7.1% 0.1% 7.9% 3.3%

bi-directional evaluation, we are in hope to examine if our new hypotheses/strategies work

well for both directions and the implementations/policies of the GFW in both directions

are the same.

2.7.1 Evading HTTP Censorship

There are 4 basic strategies that we evaluate in this subsection. These include two

improved strategies based on previous strategies. These still worked but had high “Failure

1” and “Failure 2” rates. Specifically, they are TCB Teardown with RST and In-order Data

Overlapping. The other two are new strategies viz., Resync-Desync and TCB Reversal.

Note that these latter strategies explicitly leverage the new features that only exist in the

evolved GFW model. We combine them with the aforementioned existing strategies that

work for the old GFW model, in order to defeat both GFW models (i.e., the objective

is to defeat the GFW regardless of whether an old GFW model or an evolved model is

encountered, or both).

Making old strategies robust. We make the TCB Teardown with RST strategy

more robust by integrating within it, the sending of a “desynchronization packet” mentioned
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in Table 2.4. We send this desynchronization packet right after the RST packet(s) and

before the legitimate HTTP request, to address the case wherein the GFW enters the

“resynchronization state” due to the RST packets. We improve the reliability of the In-

order Data Overlapping strategy by using more carefully chosen insertion packets to reduce

potential interference from middleboxes, or because of hitting the server.

Accounting for both old and new GFW models. We combine the Resync-

Desync strategy with the TCB Creation with SYN strategy. The latter can evade the old

GFW model by causing the creation of a false TCB, while the former can desynchronize

the evolved GFW model by forcing them into the resynchronization state first. Specifically,

as illustrated in Figure 2.3, we will send two SYN insertion packets (both with wrong se-

quence numbers), one before the legitimate 3-way handshake and one after, and followed by

a desynchronization packet and then the HTTP request. Note that the first SYN insertion

packet followed by the legitimate SYN does also cause an evolved GFW to enter the resyn-

chronization state; however, it is later resynchronized with SYN/ACK packet. We therefore

need another SYN insertion packet after the handshake to cause the evolved GFW devices

to “re-transition” into the resynchronization state.

We combine the TCB Reversal strategy with the TCB Teardown with RST strat-

egy. Specifically, as shown in Figure 2.4, we first send a fake SYN/ACK packet from the

client to the server to create a false TCB on the evolved GFW device. Next, we establish

the legitimate 3-way handshake, which invalid with respect to the evolved GFW due to the

existing TCB. Then we send a RST insertion packet to teardown the TCB on the old GFW

model, followed by the HTTP request.
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Avoiding interference from middleboxes or server. When crafting “inser-

tion” packet, we choose the insertion packets wisely so as to not experience interference from

the middleboxes, and not result in side-effects on the server. We primarily use TTL-based

insertion packets since it is generally applicable. The key challenge here is to choose an

accurate TTL value to hit the GFW, while not hitting server-side middleboxes or servers.

We do that by first measuring the hop count from the client to the server using a way

similar as tcptraceroute. Then, we subtract a small δ from the measured hop count, to try

and prevent the insertion packet from reaching (hitting) the server-side middleboxes or the

server. In our evaluation, we heuristically choose δ = 2, but INTANG can iteratively change

this to converge to a good value.

In addition, we exploit the new MD5 and old timestamp insertion packets, which

allow the bypassing of the GFW without interfering with middelboxes or the server. Ta-

ble 2.5 summarizes how we choose insertion packets for each type of TCP packet.

Table 2.5: Preferred construction of insertion packets

Packet Type TTL MD5 Bad ACK Timestamp

SYN �
RST � �
Data � � � �

Results. We first analyze the results for individual evasion strategies. As seen

from Table 2.4, the overall “Failure 2” rate is as low as 1% for all the strategies, which (a)

show that our new strategies have a high success rate on the GFW which suggests that (b)

our hypotheses with regards to the GFW evolution seem accurate.

We find that both the Failures 1 and Failures 2 always happen with regards to a

few specific websites/IPs. One can presume that this is caused by some unknown GFW
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behavior or middlebox interference. However, since these cases are not sustained (are very

rare), we argue that this is more likely to be due to middlebox interference.

Overall, we find that high Failure 1 rates is the major reason for overall low success

rates. An introspective look suggests that because some servers/middleboxes accept packets

regardless of the (wrong) ACK number or the presence of the MD5 option header, Failures

1 happen. Further, the TTL chosen is sometimes inaccurate due to (a) network dynamics

or (b) hitting server-side middleboxes; this results in undesired side-effects that increase

“Failures 1”.

In addition, we find that for vantage points outside China, the TTL discrepancy

unfortunately has a significant drawback. When accessing the servers in China, the GFW

devices and the desired servers are usually within a few hops of each other (sometimes co-

located). As a result it is extremely hard to converge to a TTL value for the insertion packet,

that satisfies the requirement of hitting the GFW but not the server. As a consequence,

in these scenarios, use of this discrepancy can cause either type of failures. We see from

Table 2.4 that both the Failure 1 and Failure 2 rates are on average a bit higher than for

the vantage points inside China.

Finally, because INTANG can choose the best strategy and insertion packets for

each server IP based on historic results, we also evaluated INTANG performance in an

additional row in Table 2.4 for vantage points inside China. It shows an average success

rate of 98.3% which represents the performance with the optimal strategy specific to each

website and network path. This is without further optimizing our implementation (e.g.,

measuring packet losses and adjusting the level of redundancy for insertion packets).

42



Take away: While we do magnify the causes for failures, the biggest take away

from this section is that our new hypothesized behaviors of the GFW seem to be fairly

accurate, and that the new strategies are seemingly very effective in realizing the goal of

evading the GFW, especially when the best strategies are chosen according to websites and

network paths.

2.7.2 Evading TCP DNS Censorship

Table 2.6: Success rate of TCP DNS censorship evasion

DNS resolver IP except Tianjin All

Dyn 1 216.146.35.35 98.6% 92.7%
Dyn 2 216.146.36.36 99.6% 93.1%

The GFW censors UDP DNS requests with DNS poisoning. It censors TCP DNS

requests by injecting RST packets just like how it censors HTTP connections. Thus, our

evasion strategies can also be used to help evade TCP DNS censorship. As discussed

in section 2.6, INTANG converts UDP DNS requests into TCP DNS requests. To evaluate

the effectiveness of our strategies on evading TCP DNS censorship, we use 2 public DNS

resolvers from Dyn, and the same 11 vantage points in China. Google’s DNS resolvers 8.8.8.8

and 8.8.4.4 have been IP hijacked by the GFW and thus cannot be used. By repeatedly

requesting a censored domain, (e.g., www.dropbox.com) 100 times, using the “improved

TCB Teardown with RST strategy,” we get the results shown in Table 2.6. The vantage

points in Tianjin have low success rates of 38% and 24%. However, the others jointly yield

success rates of over 99.5 %. Interestingly, we accidentally discover that if we use the TCP

DNS through the two OpenDNS’s DNS resolvers 208.67.222.222 and 208.67.220.220, even
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without applying INTANG we do not experience any censorship from any of our vantage

points.

2.7.3 Tor and VPN

Tor is famous for supporting anonymous communications [91], and poses a serious

threat to censorship. It is not surprising that it is reported that the GFW has been block-

ing Tor Bridge nodes through passive traffic analysis and active probing for more than 7

years [118]. Next, we examine if INTANG can help cover up Tor connections.

In our experiments, we first verify whether and how Tor nodes are blocked by the

GFW. Subsequently, we test if INTANG can help clients from China evade Tor censorship.

We try to access hidden Tor bridge nodes setup on Amazon EC2 in the US from

the same 11 vantage points (over 9 cities) (See section 2.3) inside China acting as Tor clients.

Surprisingly, we find that there are four vantage points (in three cities Beijing, Zhangjiakou,

and Qingdao) from which Tor connections to the hidden Tor bridge can operate without

issues (as is) for over 2 days with periodic, manually generated traffic. Meanwhile, any

hidden bridge nodes requested by the remaining 7 vantage points triggers active probing [49,

130] and are immediately blocked by the GFW, i.e., any node in China can no longer connect

to this IP via any port. This is very different from what was previously reported i.e., the

GFW only blocks the Tor port on that hidden bridge [130], and could cause collateral

damage as the Amazon EC2 IPs are recycled. We test 5 different hidden bridge IPs and

find no exceptions so far. The common characteristic of the first four locations is that

they are all in Northern China. Thus, we speculate that Tor-filtering GFW nodes are most

probably not encountered on the paths from this region.
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Now, for the remaining vantage points where the Tor connections do trigger cen-

sorship blocking, we apply INTANG with the “improved TCB teardown strategy,” five

times each, and the success rate for the Tor connections is 100 %. We periodically repeat

these experiments over a 9-hour period, and are able to keep using the Tor bridge node.

This shows that: (a) our hypothesis that some of the GFW devices have evolved to a new

model holds; and (b) INTANG is extremely effective in crafting the right measurement-

driven strategy towards evading the GFW. We envision that Tor clients can even integrate

INTANG in the future to improve its censorship evasion chances.

Similar to Tor, virtual private networks (VPN), which help users evade censorship,

are also popular targets of the GFW. It is shown that there are multiple approaches used by

the GFW to disconnect VPNs [133, 123]. They include DPI, IP address blocking, bandwidth

throttling, etc. In November 2016, we set up an openvpn server in China, and used one

node in America as a client. As per our experimental results, a preliminary version of

INTANG helped openvpn over TCP evade censorship, while openvpn without INTANG was

disconnected due to the client receiving a reset packet from the GFW during the handshake

phase (the GFW seemingly used DPI). Unfortunately, we could not replay such experiments

recently via either the PPTP protocol or with the openvpn protocol. Both protocols did not

experience disconnections because of the GFW, nor did they suffer from rate limits imposed

by the GFW. Unfortunately, we do not yet know what caused this change in behavior and

we plan to continue monitoring the potential opportunity of applying INTANG to improve

VPN stability.
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2.8 Discussion

GFW Countermeasures. Our work is based on the latest developments of the GFW. It

is certainly possible that GFW may undergo additional improvements to defeat our evasion

strategies, and we acknowledge that it is an arms race. For instance, we demonstrate that

GFW is more liberal in accepting RST packets than normal servers. It is possible that

the censor may perform additional checks on the RST packets (e.g., checksum and MD5

option fields) as a defense. But that may open up a new evasion attack on the GFW (e.g.,

when the server does not check MD5 option fields). One can also leverage GFW’s agnostic

nature to network topology. For example, we can measure the exact TTL value to bypass

the GFW while not to reach the server (although it is also a challenge to achieve accuracy

and efficiency simultaneously).

Another potential improvement the GFW can make is to trust the data packet

sent by the client only after seeing the server’s ACK packet acknowledging the appropriate

sequence number. However, this will greatly complicates the GFW’s design and implemen-

tation.

In summary, we believe this is an arms race. As GFW evolves, so can the evasion

strategies. We believe that the cost of rolling out new GFW models is quite high and such

evolution will happen at the timescale of months (if not years), which leaves enough time

for evasion strategy development (especially when tools like INTANG are leveraged). For

instance, as soon as the GFW evolves, a new GFW model will be derived and subjected to

the “ignore path” analysis, which can lead to the generation of new evasion strategies.

Complexity and (sometimes) inconsistency of the GFW. During our long-term
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study of the GFW since 2015, we have observed that type-1 and type-2 resets sometimes

occur individually. For example, on certain days, from a vantage point in CERNET Beijing

we could observe only type-1 resets, while on other days, both types were seen. Our ob-

servations indicate that the two types of GFW devices are usually deployed together, and

sometimes one is down. Also, we found there were some rather intricate effects when the

two types were working together. During a measurement in May 2016, we found the type-1

GFW devices also have a subsequent 90-second blocking period (which it normally does

not) as the type-2 devices does, after we using our new strategy to evade type-2 devices.

And when we used no strategies, only the type-2 reset can be observed (i.e., type-1 devices

are not enforcing the 90-second blocking period). It looked like the type-2 reset suppressed

type-1 reset. This rare behavior is not observed during other measurements. Furthermore,

in May 2016 and May 2017, we have observed that RST packets sometimes were unable to

tear down the TCB on the GFW, with different pairs of controlled clients and servers. This

inconsistent behavior could be due to load balancing among different versions of the GFW,

or some intricate effects caused by several GFW devices deployed together. However, we

have no way to obtain the ground truth. We acknowledge our measurements are largely

limited by being agnostic to the interference among different versions of GFW devices (or

even middleboxes) and to the way how they are deployed, in addition to the blackbox na-

ture of the GFW device itself. We are interested in further exploring this complexity and

inconsistency in our future work.

Combination of Strategies. The GFW is heterogeneous with different co-existing

versions. As a result, as we did in this work, it is necessary to combine strategies that are
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effective against different versions of the GFW. This is normally not an issue as long as the

strategies are not in conflict with each other. However, it is likely that the “Failure 1” rate

will increase when a plurality of strategies are employed. This is because of the increase in

insertion packets, which increases the likelihood of middlebox interference or side-effects on

the server.

Ethical Considerations. All our experiments are carefully designed so as to not cause

disruption to normal network operations. All connections are established from machines

that we rent or control directly. The additional insertion packets are simply regular TCP

packets (sometimes with incorrect field values) and may simply be discarded by the server.

We control the traffic to each website to be low to avoid any unintended denial-of-service.

Note that INTANG doesn’t guarentee unobservability for all its strategies. It is the

user’s discretion as to whether to use INTANG within the censor’s jurisdiction. However,

in China, due to heavy censorship [66], “crossing the wall” and accessing websites such as

Google, Facebook, etc. has become a prevalent need. The censor usually punishes those

who provide censorship circumvention services to the masses (e.g., proxy/VPN providers)

instead of punishing the users of the service. A client-side only tool like INTANG will be

harder for the censor to trace and thwart.

2.9 Related Work

We have already alluded to various related efforts throughout the chapter (es-

pecially in section 2.2). They all focus on evaluating the censorship techniques or anti-

censorship techniques aided by additional facilities, like VPN.
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Clayton et al., propose to ignore the RST packets sent by the GFW [40]. This

requires cooperation from the server-side, and is thus impractical (all servers will need to

install a patch to do that). It does not prevent the censor from monitoring user traffic.

Thus, we do not explicitly consider this in our work. As discussed earlier, Ptacek et al. [92],

develop a deep understanding of the vulnerabilities of current NIDS, which has largely

influenced later efforts (including ours) on TCP reset attack evasion. The West Chamber

Project [101] is a censorship-circumvention tool that implemented the Ptacek et al.’s theory.

However, it just uses two kinds of crafted packets to teardown the TCB on the GFW from

both directions, and has now become ineffective.

Khattak et al.’s research [68] is the most relevant work to ours. Their strate-

gies, and the problems thereof were already discussed in section 2.3. In addition, our

measurement utilizes multiple vantage points instead of one vantage point as in [68]. Our

measurement study leads to the discovery of the differences in deployment and features

of the GFW from what was presented in that work. Li et al. [74] tested known TCP/IP

insertion packets against censorship firewalls and DPI boxes in three countries and evalu-

ated their effectiveness. In contrast, our work focuses on understanding and uncovering the

latest development (new state machine) of the largest and most complex censorship system,

which allows us to devise new evasion strategies.

2.10 Conclusion

In this chapter we undertake, arguably, the most in depth measurement study of

stateful (TCP-level) Internet censorship evasion on the GFW of China. Our work is divided
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into multiple stages. First, we perform extensive measurements of prior approaches and find

that they are no longer effective. We attribute the reasons for this to two primary causes: (a)

the GFW has evolved to imbibe new behaviors and, (b) the presence of middleboxes on the

path between the client and the server that can interfere with the evasion strategies. Second,

based on the knowledge gained, we hypothesize about new GFW behaviors and design new

strategies that can possibly evade GFW today. We also build a novel, measurement driven

tool INTANG that can converge on the right evasion strategy for a given client server pair.

In the final stage, we perform extensive measurements of our new strategies and INTANG,

and demonstrate that they provide near-to-perfect evasion rates when combined, thereby

validating our new understanding of the GFW’s stateful censorship model of today.

50



Chapter 3

SymTCP: Eluding Stateful Deep

Packet Inspection with Automated

Discrepancy Discovery

3.1 Introduction

Deep packet inspection (DPI) has become a technology commonly deployed in

modern network security infrastructures. By assembling and checking application layer

content, DPI enables powerful functionalities that are not present in traditional firewalls.

These include malware detection [22], remote exploit prevention [106], phishing attack detec-

tion [36], data leakage prevention [116], government network surveillance [16, 15], targeted

advertising [72, 11], and traffic differentiation for tiered services [137, 81, 51].

Unfortunately, to assemble application layer content from stateful protocols like
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TCP, DPI needs to engineer the corresponding state machine of the protocol. This intro-

duces a fundamental limitation of DPI, which is a susceptibility to protocol ambiguities. In

brief, most network protocol specifications (e.g., RFCs for TCP [90]) are written in a natural

language (English), which makes them inherently ambiguous. To make things worse, some

parts of the specifications are deliberately left unspecified, which in turn leads to vendor-

specific implementations. Consequently, different network stack implementations (e.g., Win-

dows and Linux) typically have inherent discrepancies in their state machines [107, 29, 93].

In fact, even different versions of the same network stack implementation, can have dis-

crepancies. To ensure low overheads and compatibility with most implementations, DPI

middleboxes usually implement their own simplified state machines, which are bound to

differ from the ones on endhosts.

As pointed out by previous works [92, 125, 74], such discrepancies lead to certain

network packets being accepted/dropped by either a “DPI middlebox” or the endhost.

Exploiting this property, one can use insertion packets (i.e., a packet which is accepted and

acted upon by the DPI middlebox to change its state, whereas the remote host drops/ignores

it) and evasion packets (i.e., a packet which is ignored by the DPI middlebox but the

remote host accepts and acts on it) [92] to mislead the DPI’s protocol state machine.

Specifically, such packets cause the DPI to enter a different state than the one on the

endhost. Consequently, the DPI can no longer faithfully assemble the same application

layer content as the endhost, failing to catch any malicious or sensitive payload.

To date, research on insertion and evasion packets are based on manually crafting

such packets targeting specific DPI middleboxes [92, 125, 74]. Unfortunately, it is a labor-
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intensive task to analyze each and every middlebox implementation and come up with

the corresponding strategies for such adversarial packet generation. One can potentially

automate the process by searching through all possible sequences of packets to identify

insertion and evasion packets. Unfortunately, the search space is exponentially large, i.e.,

there are 2160 possibilities to cover a 20-byte TCP header of even a single packet, let alone

testing a sequence of packets.

“Can we develop automated ways to construct packets that can successfully de-

synchronize the state of a DPI middlebox from that of a (end) server?” This question

is at the crux of the work we target in this chapter, answering which not only can help

test future generations of DPIs but also help stay on top of the arms race against future

censorship technologies. Our focus here is on TCP, since it is the cornerstone upon which

most popular application-layer protocols are built. We develop an approach that is driven

by the insight that even though the TCP state machines of DPI middleboxes are obscure,

the implementations of TCP on the endhosts are well established (e.g., a very large fraction

of the servers run Linux operating systems). Given this, we explore the TCP state machine

of endhosts (using symbolic execution) and generate groups of candidate packets based

on what critical points and states they can reach, i.e., states where packets are either

accepted or dropped/ignored due to various reasons. Next, we perform differential testing

by feeding such packets through the DPI middlebox and observe whether they induce any

discrepancies, i.e., whether the DPI middlebox can still perform its intended function of

identifying connections that contain malicious/sensitive payloads.

The major contributions of the work are the following:
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• We formulate the problem of automatically identifying insertion and evasion packets by

focusing on exploring the TCP state machine on endhosts, and conducting differential

testing against blackbox DPIs.

• We develop SymTCP, a complete end-to-end approach to automatically discover discrep-

ancies between any TCP implementation (currently Linux) and a blackbox DPI. We have

released the source code of SymTCP and datasets at https://github.com/seclab-ucr/

sym-tcp.

• We evaluate our approach against three DPI middleboxes, Zeek, Snort, and Great Firewall

of China (GFW), and automatically find numerous evasion opportunities (several are

never reported in the literature). The system can extend to other DPIs easily and serves

as a useful testing tool against future implementations of DPIs.

3.2 Background

In this section, we first provide a brief background on why eluding attacks are

possible against DPI. Subsequently, we provide some background on symbolic execution

and associated techniques since these are integral to building SymTCP.

3.2.1 Eluding Attacks against Deep Packet Inspection

DPI is specially designed to examine content related to higher-layers, such as the

application layer (e.g., HTTP, IMAP). To examine application-layer payloads, DPI first

reconstructs data streams from network packets (TCP packets) captured from an inter-

face. Then it automatically assigns an appropriate protocol parser to parse the raw data
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stream [47]. Finally, it performs “pattern matching” on the parsed output. To illustrate as

an example, consider the common case of keyword-based filtering of HTTP requests (e.g.,

deployed on censorship firewalls). When the DPI module (referred to as simply DPI for

ease of exposition) detects a specific keyword in the HTTP URI, it may take follow-up

actions (e.g., blocking the connection or silently recording the behavior). Sometimes the

pattern matching signatures can be more complex, wherein the DPI examines a combina-

tion of fields from multiple layers and data from both directions (to and from a server) in a

sequence [110]. For example, one endhost first sends a “HELLO” message to port 443, and

then the other party responds with an “OLLEH” message.

However, DPI suffers from the inherent vulnerability of evasion because of dis-

crepancies between its TCP implementation and that of the endhost (e.g., a server) arising

because of protocol ambiguities [92, 61]. An example is that Snort [109] accepts a TCP

RST packet as long as its sequence number is within the receive window (which is too

lenient), while the latest Linux implementation will make sure that the sequence number

of the RST packet matches the next expected number (rcv next) exactly. This allows an

attacker to send an insertion RST packet with an intentionally marked “bad” in-window

sequence number, which terminates the connection on Snort, whereas the remote host will

actually drop/ignore such a packet. Such discrepancies open up a gap for attackers to elude

the DPI by sending carefully crafted packets.

Besides discrepancies due to protocol implementations, lack of knowledge of the

network topology could also introduce additional ambiguities. For example, it is hard for

a DPI to infer whether a packet will reach the destination. Thus, the attacker can send a
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packet with a smaller TTL to cause it not to reach the remote host, however, such a packet

has an influence on the DPI.

Previous research works [125, 74] have exploited the network ambiguities and pro-

tocol implementation discrepancies to design evasion strategies against real-world DPI sys-

tems, such as the national censorship systems in China and Iran, and ISPs’ traffic differen-

tiation systems for tiered services. Those evasion strategies are shown to have high success

rates in rendering the DPI ineffective. However, most of the common discrepancies can be

patched by the DPI devices, leading to an arms race. In contrast, our system presents a

major step towards automating the evasion strategies, which not only can serve as a valu-

able testing tool against future generations of DPIs but also keep pace in the escalating

arms race in the context of DPI evasion.

3.2.2 Symbolic Execution vs. Concolic Execution vs. Selective Symbolic

Execution

Symbolic execution [70] is a powerful and precise software analysis/testing

technique that is widely employed for its ability to break through complex and tight branch

conditions and reach deeper along execution paths, which is a distinct advantage compared

to other less precise techniques such as fuzzing. In symbolic execution, instead of using

concrete values, variables are assigned symbolic values to explore the execution space of

a target program. The symbolic execution engine simulates the program execution by

interpreting each instruction (either at an intermediate representation level like LLVM-

IR [26] or VEX [105], or at the binary level [135]), and maintain symbolic expressions

for each program variable. En route, the engine collects path constraints in the form of
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symbolic expressions. Whenever a branch with a symbolic predicate is encountered, the

engine checks whether the corresponding true/false path is satisfiable (with the help of an

SMT solver); if so, it forks the execution path into two and adds a new path constraint

according to the branch condition (true or false). The disadvantage of symbolic execution,

however, is in its efficiency or scalability. Both simulated execution and constraint solving

can be extremely slow even with optimizations such as caching and incremental solving [26].

Moreover, the total number of feasible execution paths in a common size modern software

can be huge, leading to the notorious path explosion problem.

Concolic execution [27] is a practical testing technique that enhances symbolic

execution with concrete execution. The basic idea is to bind a concrete value to each

symbolic expression, and so, it can switch modes between symbolic execution and concrete

execution at any time. When a branch with symbolic predicate is encountered, the concolic

execution engine first uses the concrete value to decide which path to go; subsequently, it

also tries to generate a new concrete value for the opposite branch. When a particular part

of the code or a function may cause path explosion or if the constraint solver is unable

to or inefficient in solving, it can switch to concrete execution which prevents forking and

constraint solving, and switch back at a later time. However, this may cause a loss in

terms of both completeness and soundness as a trade-off [13]. Most of the state-of-the-art

symbolic execution engines like Angr [105] and S2E [37] support concolic execution.

Selective symbolic execution [37] further extends the idea of concolic execution

and makes it more flexible and practical for testing large and complex software (like an

operating system kernel). In particular, a selective symbolic execution engine allows the
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testing of only a sub-system of a program (e.g., the TCP implementation). This is achieved

by transitioning between the concrete mode (where most symbolic variables already have

concrete values) and the symbolic mode as follows:

• Transition from concrete to symbolic: the engine symbolizes the inputs of the scope (data

coming into the scope), such as function parameters, to offer the possibility of exploring all

execution paths within the scope at the cost of under-constraining, i.e., losing additional

constraints imposed over the inputs from external components.

• Transition from symbolic to concrete: the engine concretizes symbolic variables, which

can cause over-constraining as we are arbitrarily choosing one of the possible values to

assign to any symbolic variable and this can harm completeness.

S2E [37] is a representative system that combines selective symbolic execution with whole-

system emulation to test the Linux kernel. Its performance of symbolic execution is con-

trolled by selectively running part of the code of interest (e.g., specific functions) in symbolic

mode while keeping most other parts and the external system running in the concrete mode.

S2E provides different levels of execution consistencies that allow trade-offs between perfor-

mance, completeness, and soundness of analyses.

In our solution, to address the complexity of real-world TCP implementations,

we employ the selective symbolic execution feature in S2E to effectively explore the TCP

implementation in the Linux kernel.
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User DPI device Server

Figure 3.1: Threat Model of SymTCP

3.3 Threat Model and Problem Definition

In this section, we first describe our threat model. Subsequently, we formalize the

problem that we set out to solve when we design SymTCP.

3.3.1 Threat Model

The threat model that we consider is depicted as in Figure 3.1. We assume that a

DPI engine is located in between the client and the server, and is capable of reading all the

packets exchanged between the client and the server. We only focus on the TCP protocol

in this work since it is arguably the most popular transport layer protocol. By eluding DPI

from the TCP-layer, we can disrupt TCP packet reassembly of the DPI, and therefore can

allow upper-layer protocols to elude DPI (e.g., HTTP, HTTPS).

We assume that the DPI engine has its own TCP implementation that can re-

assemble and cast the captured IP packets into TCP data streams. It then performs checks

on the reassembled data streams for whatever is needed based on the function of the middle-

box (e.g., censorship, network intrusion detection, etc.), and its behavior is deterministic.

We also assume that the inspections will lead to observable effects, e.g., blocking or reset-

ting of a connection, if an alarm is triggered; otherwise we cannot tell whether an eluding

attack is successful or not.

The goal of a host (e.g., client) is to elude inspection of the DPI engine, by sending
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carefully crafted packets that exploit discrepancies between the TCP implementation of a

DPI and that of the host on the other end (e.g., server), prior to sending the sensitive

content. For ease of discussion, throughout the rest of the chapter, we consider the client

to be the one attempting to elude the inspection unless otherwise explicitly stated. We

consider the DPI’s TCP implementation to be a blackbox, and thus, the client can send

only probe packets. The responses (or lack thereof) to the probe packets allows the client

to infer the state of DPI’s TCP state machine. We assume that the server uses a publicly

available TCP stack implementation (e.g., Linux), and thus, the client can perform analysis

as a whitebox. These assumptions also imply that the server is not colluding with the client

by using a specialized or custom TCP stack as otherwise arbitrary covert channels can be

established [82].

3.3.2 Problem Definition

Conceptually, an evasion packet is a TCP packet that is accepted by the server

but dropped/ignored by the DPI engine. Similarly, an insertion packet is a TCP packet

that is dropped by the server but accepted by the DPI engine. However, such a definition

is imprecise. In this section, we aim to provide a more precise definition of the concepts

we use in this work, as well as the problem that SymTCP solves. First, we define what are

accept and drop attributes associated with a packet.

TCP State Machine. Conceptually, each TCP implementation can be modeled as a

deterministic Mealy machine, M = (Q, q0,Σ,Λ, T,G) where

• Q is the set of states,
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• q0 ∈ Q is the initial state,

• Σ is the input alphabet, i.e., a TCP packet,

• Λ is the output alphabet, i.e., the TCP data payload,

• T : Q× Σ→ Q is the state transition function, and

• G : Q× Σ→ Λ is the output function.

Compared with a traditional deterministic finite state machine, the output of the Mealy

machine is determined by both its current state and the current inputs. Note that in

this work, we define the output of a TCP state machine M as the output to the buffer

that stores data which will be used by the application layer (i.e., payload), instead of the

response packet. The reasons are that (1) DPI’s detection of sensitive keywords is strictly

on the application layer payload, and (2) the TCP layer of the DPI engine will not generate

any TCP level output like ACK packets. This model allows us to unify the definition of

state machines for both the DPI and an endhost. We also simplify the output behavior

as follows: as long as the data payload will be output to the application layer, even in a

delayed manner, we consider that the packet generates a non-empty output.

Definition 1: Drop. Given a TCP state machine M , a packet P ∈ Σ is dropped if

it neither causes a state change nor generates any output. Here the state can be either

the high-level TCP states (e.g., LISTEN, ESTABLISHED), or low-level/implementation-level

states (e.g., the number of challenge ACKs that have been sent [29]).

T (q, P ) = q ∧G(q, P ) = ε (3.1)
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Correspondingly, we define drop paths as the program paths of a TCP implementation

that free an incoming TCP packet without changing the current state of a TCP session or

producing any output. To identify drop paths in practice, we also define drop points as the

program points or statements where any path that traverses it would become a drop path.

In the Linux kernel we analyzed, we manually labeled 38 unique drop points in total (more

details in section 3.8). Note that a single drop point may correspond to many different

packet instances. For example, a packet with “bad checksum” can have arbitrary SEQ or

ACK numbers, as well as arbitrary TCP headers.

Definition 2: Accept. Given a TCP state machine M , a packet P ∈ Σ is accepted if

it causes a state change (including both a high-level, TCP state change and a low-level,

implementation-specific state change) or the output is not empty:

T (q, P ) 6= q ∨G(q, P ) 6= ε (3.2)

Correspondingly, we define accept paths as the program paths of a TCP implementation

that change the current state of a TCP session or append the payload of a TCP packet

to the receive buffer. Technically, all paths that are not drop paths are considered accept

paths; equivalently, any path that does not traverse any drop point is considered an accept

path, and can be therefore be identified automatically.

Next, we note that any evasion or insertion packet needs to be sent along with

other packets in a sequence (e.g., the TCP handshake, a data packet that contains sensitive

keyword), in order to discover discrepancies. For ease of exposition, we first define two

shortcut functions for handling a sequence of packets.
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Let Ms be the TCP state machine of the server and Md be the TCP state machine

of the DPI engine. For simplicity, we assume Ms and Md have the same input and output

alphabet. Although the set of states of Ms and Md are different, we assume that their initial

states (q0) are the same, i.e., the LISTEN state. Given a state q of a TCP state machine M

and a sequence of packets P1...n ∈ Σ∗, we denote TM (q, P1...n) as the state transition from q

after handling P1...n, and GM (q, P1...n) as the generated TCP data stream to the application

layer.

Because the goal of the DPI’s TCP layer is to extract the data stream from the

monitored TCP session between the client and the server, we define the concept of “syn-

chronized” for the ease of discussion.

Definition 3: Synchronized. Given a sequence of packets P1...n ∈ Σ∗, we say that the

DPI engine’s TCP state machine Md is synchronized with the server’s state machine Ms if

and only if the generated (application) data streams from the initial LISTEN state are the

same for both i.e.,

GMs(q0, P1...n) = GMd
(q0, P1...n) (3.3)

At a high-level, what insertion and evasion packets aim to achieve is to “de-

synchronize” the TCP state machine of the server (Ms) from that of the DPI engine (Md),
1

so that the payload with sensitive information will not be output to the application layer

filters for inspection. However, because the DPI engine is a black box in our threat model,

whether the two state machines have been de-synchronized can only be inferred from the

behavior of application layer filters (e.g., the decision to block or reset a connection after

1It is also possible that a packet can be accepted differently, exerting different effects on the server and
DPI; we do find such cases in practice.
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sending a probe packet). To model such behaviors, we define an abstracted filter function.

Definition 4: Bad Keywords and Alarm. For simplicity, we use bad keywords to

represent any content that can trigger an alarm, and we assume that the entire content

fits into a single TCP packet for the ease of discussion (but we can also support keywords

which are split into multiple packets). Given a packet P containing a bad keyword, a filter

function F : Λ→ {0, 1} performs arbitrary checks over its data payload.

F (G(q, P )) =


1 if G(q,P) contains any bad keyword

0 otherwise

(3.4)

The function applies to both DPIs and servers.

Definition 5: Evasion Packet. Given a sequence of packets P1...n ∈ Σ∗, we say that

the last packet Pn is an evasion packet if the following three requirements are satisfied. 1

The server will accept every packet P1...n (Equation 3.2). 2 When handling P1...n−1, the

state machine of the server and the DPI engine are synchronized (Equation 3.3). 3 Once

Pn is sent, the two state machines would be “de-synchronized” as the DPI engine will drop

Pn (Equation 3.1) and thus fail to output the payload of Pn or its follow-up packets (as

Pn itself may not be a data packet). Let Pn+r be the data packet that contains the bad

keywords (r = 0, 1, ...), we have:

GMs(TMs(q0, P1...n+r−1), Pn+r) 6= ε ∧

GMd
(TMd

(q0, P1...n+r−1), Pn+r) = ε

Unfortunately, as mentioned above, we can only indirectly infer whether the GMd
output is
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empty by means of the filtering function F . Given this, we use Pn+r as the probe packet

with bad keywords in the payload, and change the requirement 3 to:

F (GMs(TMs(q0, P1...n+r−1), Pn+r)) = 1 ∧

F (GMd
(TMd

(q0, P1...n+r−1), Pn+r)) = 0 (3.5)

Note that our definition of evasion is purely based on the outputs to the application layer

and thus, is more strict. Specifically, P1...n−1 may already have triggered discrepancies be-

tween Ms and Md (they are accepted and processed differently on the DPI and server);

however, without triggering observable behavioral changes at the application layer, we can-

not ascertain that such packet(s) are evasion packet(s). Note that the requirement 2 and 3

together explicitly exclude the cases that P1...n−1 already ends with an evasion or insertion

packet.

Definition 6: Insertion Packet. Given a sequence of packets P1...n ∈ Σ∗, we say that the

last packet Pn is an insertion packet if the following three requirements are satisfied. 1 The

server will accept every packet P1...n−1 but will drop Pn (Equation 3.1). 2 When handling

P1...n−1, the state machine of the server and the DPI engine are synchronized (Equation 3.3).

3 Pn will “de-synchronize” the two state machines as the DPI will accept Pn (Equation 3.2),

which has to be inferred through some follow-up probe packets Pn+1...n+r where the last

packet Pn+r contains bad keywords (r = 1, 2, ...) (same as Equation 5). Pn+1...n+r−1 are

needed for the purpose of reaching the ESTABLISHED state.

Goal. Given the above definitions, the goal of SymTCP is to automatically find packet

sequences P1...n where the last packet Pn is an evasion/insertion packet.
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Figure 3.2: Overview of SymTCP’s Workflow

3.4 Workflow of SymTCP

An overview of SymTCP’s workflow is depicted in Figure 3.2. The workflow is

divided into an offline selective concolic execution phase and an online testing phase. The

inputs of the offline phase include a set of initial seed TCP packets (e.g., initial SYN) that

can drive the concolic execution engine, and a manually curated list of accept and drop

points of a Linux TCP implementation (as defined earlier).

During the offline phase, by running concolic execution on the server’s TCP im-

plementation, we attempt to gather all execution paths (if possible) that reach an accept

or a drop point (as defined in subsection 3.3.2) at different TCP states and collect the

corresponding path constraints. Each path corresponds to a packet sequence P1...n and the

collected path constraints are later used to generate concrete test packets for differential

testing, i.e., serving as candidate insertion/evasion packets.

Figure 3.3 illustrates some example packets that reach drop points (Equation 3.1:

the packets do not have any effect and are simply discarded and optionally ACKed) and

some example packets that reach accept points (Equation 3.2: advancing the TCP state

machine or causing data to be accepted). Note that our analysis will always start from the
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TCP LISTEN state and end with the TCP ESTABLISHED state as it represents the complete

window of opportunity to inject insertion/evasion packets. For instance, it has been reported

in [125] that if a client sends a SYN-ACK to a server in the LISTEN state, the server will drop

the packet (and send a RST) whereas the Great Firewall of China (GFW) will be confused

into thinking that the client is the server. Such a SYN-ACK packet is effectively an insertion

packet that allows the client to then move on with the normal three-way handshake and

start sending data unchecked (Definition 6). Another example is a SYN packet containing a

data payload, which is allowed by the TCP standard (the payload will be buffered until the

completion of the three-way handshake), but a DPI may incorrectly ignore it [92], making

this packet an evasion packet (Equation 3.5). We do not wish to advance the server’s state

beyond ESTABLISHED (e.g., TIME WAIT) because we can then no longer deliver data.

Offline phase: In brief, the offline concolic execution engine first boots a run-

ning Linux kernel with a TCP socket in the LISTEN state. Then we feed it with multiple

symbolized packets to explore the server’s TCP state machine as exhaustively as possible.

The primary output of this phase is the sequence of candidate insertion/evasion packets

in the form of symbolic formulas and symbolic constraints that describe what possible

values the TCP header fields should take (including the constraints that describe the inter-

relationships between packets). Note that each packet sequence will contain at most one

packet that reaches a drop point. This is because each such a “drop packet” by itself does

not impact the TCP state machine whatsoever; thus, a sequence with two (successive) “drop

packets” is equivalent to two sequences each with a single “drop packet” (i.e., splitting the

original sequence). The shorter sequences are discovered first with the symbolic execution

67



SYN	packet	w/o	data
SYN	packet	w/	data

...

LISTEN

ACK	packet	w/	exact	SEQ	and	ACK
ACK	packet	w/	SEQ-in-window	data

...

SYN_RECV

Data	packet	w/	exact	SEQ	and	ACK	
Data	packet	w/	in-window	SEQ	and	ACK

Data	packet	w/	FIN	flag
Partial	in-window	data	packet

...

ESTABLISHED

ESTABLISHED/
Data	Recved

SYN packet w/ bad checksum
SYN packet w/ unsolicited MD5 option

SYN/FIN packet
SYN/RST packet

...

SYN packet
ACK packet w/ bad ACK number
ACK packet w/ bad SEQ number

ACK packet w/ bad timestamp
ACK/RST packet

...

Data packet w/ bad SEQ number
Data packet w/ bad ACK number

Data packet w/ bad timestamp
RST packet w/ bad SEQ number

RST packet w/ unsolicited MD5 option
...

Examples: { Pic(SYN/bad checksum) }
                  { Pec(SYN/data), Pic(ACK/bad ACK number) }
                  { Pec(SYN/no data), Pec(ACK/SEQ-in-window data), Pic(Data/unsolicited MD5 option) }

Legend
Accept packet
Drop packet

Pic denotes candidate insertion packet, Pec denotes candidate evasion packet

Figure 3.3: Candidate packet generation with symbolic execution

engine—we use a strategy similar to breadth-first search to discover sequences of packets

and limit the total number of symbolic packets to be practical (more details in section 3.5);

thus, the longer sequence containing multiple drop packets is unnecessary and redundant.

In contrast, different paths reaching the same accept/drop point are not redundant and can

represent distinct events. For instance, as shown in Figure 3.3, if the current TCP state is

SYN RECV, one can send two types of ACK packets to advance the TCP state to ESTABLISHED

(both lead to the same accept point): (1) an ACK packet with a 0-byte of payload (where
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the SEQ and ACK number match exactly what are expected), or (2) an ACK packet with

an in-window payload (as long as the END SEQ is greater than the expected SEQ number).

They correspond to two different accept paths that represent two distinct ways of moving

the TCP state forward. Discovering these different paths is critical as not all paths are

handled equivalently by the DPI (thus leading to possible evasion opportunities).

An additional output of the offline symbolic execution engine (as shown in Fig-

ure 3.2) is that for each sequence of candidate packets, there is a corresponding TCP

connection state that the server will end up in after the sequence of packets is consumed.

Recording this information facilitates the generation of follow-up probe packets. For exam-

ple, if the sequence of candidate packets is a single TCP SYN with a bad checksum, then we

know that the server will stay in the LISTEN state; therefore a proper three-way handshake

is needed before we can send a data packet to check if the DPI was confused by the initial

candidate insertion packet.

Online phase: During the online phase, we attempt to concretize these candidate

insertion/evasion packets by adding additional constraints (more details to follow in sec-

tion 3.6). One such constraint is the server’s initial sequence number (which is randomly

generated every time we probe the server). Once the constraint solver generates the se-

quence of concrete candidate insertion/evasion packets, they are fed to the DPI prober

(together with the follow-up packets).

We illustrate the process in Figure 3.4. For each sequence of packets, we start

from the first packet and perform probes according to the current packet. If the current

packet reaches a drop point, we will treat it as a candidate insertion packet and probe the
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e.g. ACK packet
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Figure 3.4: Evaluation of insertion/evasion packet candidates

DPI to see whether it causes the DPI to later ignore the data packet with a known bad

payload (Definition 6). For example, a SYN packet with bad checksum will be considered

a candidate insertion packet (while the server is in the LISTEN state). If the current packet

is one that reaches an accept point such as a SYN packet with data (as in the example

mentioned earlier), we will feed it to the DPI and observe whether it qualifies as an evasion

packet (Equation 3.5). If the DPI accepts the packet just as the server (which is the common

case as a DPI typically is lenient in accepting packets [92]), we will move on to the next

packet and repeat the process. Note that for different sequences of packets that share the
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common prefix packets, we only need to evaluate the common packets once (as candidate

insertion or evasion packets).

3.5 The Offline Phase: Practical Concolic Execution on the

TCP implementation

Our solution is built on top of the popular concolic execution engine S2E [37] that

is capable of analyzing OS kernels. The challenge is that a full-size TCP implementation

has a rather complicated finite state machine (especially with the low-level states). Thus,

applying concolic execution on the same is extremely challenging. We describe how we

tackle the more detailed challenges in this section. Specifically, in subsection 3.5.1, we

describe how we employ selective concolic execution to bound the symbolic execution space.

In subsection 3.5.2, we describe how we symbolize the input, i.e., the fields in the TCP

header and options. In subsection 3.5.3, we discuss how we abstract checksum functions in

TCP. Finally, in subsection 3.5.4, we discuss how to deal with server-side inputs (specifically,

the sequence number used by the server) that are not known a priori.

3.5.1 Selective Concolic Execution Favoring Completeness

Because it is heavyweight, we want to run symbolic execution only on the TCP

code base; for the rest of the system, we seek to use concrete execution to reduce complexity.

To realize this vision, we need to define the boundary between where symbolic execution

and concrete execution are applied. One way to achieve this is to perform a fine-grained,

function-level analysis to identify those functions that are related to the TCP logic, but
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this will require a prohibitively expensive manual effort. To solve this problem, we use a

more conservative, coarse-grained boundary, which is the entire net/ipv4 compilation unit

(object file) in Linux. When we are inside the address space of the net/ipv4 compilation

unit, we run the code with symbolic execution and enable forking. When we are outside this

address space, we run the code concretely with forking disabled, but still keep the original

constraints (as is supported by S2E). The benefit of this is that we do not lose the symbolic

expressions when switching back from the concrete mode to the symbolic mode. S2E also

maintains a concrete value for each symbolic variable and these will be used during concrete

execution. The concrete values are generated by constraint solving at the first time they

are accessed in the concrete execution. We emphasize that this is different from applying

pure concrete execution from the beginning; switching from the symbolic to the concrete

mode still retains the symbolic variables and propagates them during concrete execution.

By default, even when running in the concrete mode, S2E collects path constraints

as the concrete branches are taken (standard in concolic execution [13]). The reason for

doing so is that during concrete execution, only one branch is taken, and the result is bound

to that branch. However, this will result in the previously discussed “over-constraining”

problem (in §4.2), i.e., forcing certain branches to be taken (because of the concretization

when switching to concrete execution). More importantly, our focus is on the TCP code

base only, and the executions outside of our scope are irrelevant (regardless of which paths

were taken). We therefore discard any constraints collected during the concrete execution

mode. For example, the netfilter module outside the TCP code base will read the symbolic

TCP header fields and introduce constraints. However, the execution results of netfilter do
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not affect the main TCP logic at all, and therefore we can safely ignore those constraints.

Specifically, the netfilter ConnTrack module tracks the TCP connections passively and

maintains connection states separately from the main TCP logic. Therefore, its execution

is insignificant — even if we ignore its constraints and force a different execution path, it

would have no consequence on the main TCP states we are interested in exploring.

3.5.2 Symbolizing the TCP Header and Options
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Data
Offset

C
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Figure 3.5: Symbolized TCP header and options.

Since we limit our scope to TCP-level insertion and evasion packets, we only sym-

bolize the TCP header of a packet (not the IP header or the application payload) (see

Figure 3.5). We symbolize all TCP header fields except the source and destination port

numbers. The symbolized fields include the sequence number, acknowledgment number,

data offset, flags, window size, checksum, and urgent pointer. In addition, we want to sym-

bolize TCP options, which refers to the last part of the TCP header and has an associated

variable length.
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Symbolizing the TCP options field is intrinsically hard because it consists of a

list of nested TLV (Type-Value-Length) structures. Currently there are 35 existing TCP

option related numbers assigned by IANA [65], including those that are standard and others

that are obsolete, and the number is growing. Some options have associated fixed lengths,

and some are of variable length (e.g., SACK). Some options have associated subtypes (e.g.,

MPTCP). Although the maximum length of the TCP option field is 40 bytes, the number

of combinations of all top-level option types is still huge. The problem worsens if we also

include illegal cases (e.g., an option appears multiple times) or also want to consider the

ordering of the options.

Linux only implements 10 TCP options using a parsing loop, which can still easily

cause the path explosion problem. Theoretically there are at least 210 = 1024 execution

paths even if we just execute the loop once. In practice, when it is compiled into a binary

form, additional branches are introduced; hence, the number of possible paths is much

larger. The problem is exacerbated exponentially given the already large number of paths

that exist in the TCP logic. Because of these reasons, we need to bound the search space

by limiting the number of possible combinations of TCP options.

While we attempted to bound the loop execution times and the number of oc-

currences of each TCP option, we found that the number of paths was still prohibitively

large even if we executed the loop just once and allowed each option to occur at most once.

Hence, as a practical means to mitigate this problem, in addition to bounding the execution

times, we also feed a specific combination of TCP options as a seed (from traffic observed

on the Internet) to our concolic execution engine; the execution explores our seed value first
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and then other values.

3.5.3 Abstracting the Checksum Function

The TCP checksum is calculated based on a pseudo-header that includes the IP

addresses, the entire TCP header and the payload. As mentioned earlier, we do not want to

symbolize the IP header or the payload since this is likely to harm the symbolic execution

performance. Thus, instead, we abstract the checksum validation function as follows:

f(pkt) =


true if header.checksum == 1

false if header.checksum == 0

where f denotes the checksum validation function and pkt is the network packet under

consideration. If the checksum field in the TCP header is equal to 1, then it is considered to

be a valid checksum; if it is equal to 0, then it is an invalid checksum. The constraint solver

thus generates a checksum of 1 for a valid checksum case, and 0 for an invalid checksum case.

When we probe the DPI (discussed later), we fill the checksum field with either the proper

valid or an invalid checksum, correspondingly. By abstracting the checksum function, we

avoid solving complex constraints on the TCP header fields and thus improve performance.

3.5.4 Symbolizing the Server’s Initial Sequence Number

During TCP’s 3-way handshake, the server’s initial sequence number (ISN) is a

random number generated and sent in the SYN/ACK packet to the client. When the

client receives the SYN/ACK packet, it needs to echo the server’s ISN by sending an ACK

packet with an acknowledgment number that is equal to the server’s ISN plus 1. Because
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the server’s ISN is randomly generated for each TCP connection, we need to symbolize

the server’s ISN in the offline symbolic execution phase and collect the path constraint

that expresses the relationship between the server’s ISN and the client’s acknowledgment

number. Then in the online probing phase (section 3.6), we constrain the server’s ISN using

the concrete value obtained from the SYN/ACK packet, and generate concrete values for

the client’s packets on the fly.

3.5.5 Multi-round Symbolic Execution

As mentioned earlier in section 3.4, we start our symbolic execution from the

LISTEN state. We symbolize multiple packets in order to explore the state machine in more

depth (up to the ESTABLISHED state). Specifically, we choose to symbolize 3 packets in

total for several reasons. First, 3 packets should offer a reasonable coverage of the TCP

state machine because only 2 packets are needed to advance the TCP state from LISTEN to

ESTABLISHED (the SYN and ACK in a three-way handshake); the third packet can further

explore other minor states in ESTABLISHED. Second, we prefer shorter sequences of insertion

and evasion packets as longer sequences can be unreliable in practice (e.g., due to packet

losses).

To explore different sequences of packets, we develop a custom path searcher/sched-

uler to guide S2E to explore packet sequences of 1 and 2 first (up to certain threshold), and

then allow the third packet to arrive.

As discussed later in section 3.8, even though there are not many accept and

drop points in TCP, the number of possible accept and drop paths is exponential and

impossible to exhaust in our experiments, which motivated our search strategy to balance
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the exploration of sequences of different lengths.

3.6 Generating Online Evasion Attacks

By means of the offline concolic execution phase described in section 3.5, SymTCP

obtains path constraints that can be used to generate insertion/evasion packet candidates.

In this section, we describe SymTCP’s differential testing phase to probe the DPI to identify

behavioral discrepancies between the DPI’s TCP implementation and that of the server.

3.6.1 Constructing insertion/evasion packet candidates

Armed with the constraints relating to each execution path collected during the

symbolic execution, as described in section 3.5, together with some additional constraints,

we can then feed these to a constraint solver to generate concrete values of TCP header

fields. Using those values, SymTCP constructs a sequence of packets, P1...n(n ≤ 3), to

probe the DPI.

There are two additional constraints. The first is the server’s initial sequence num-

ber (ISN) as mentioned in subsection 3.5.4. The second includes additional constraints on

TCP flags, SEQ and ACK numbers. These are especially necessary for candidate insertion

packets when a packet hits a drop point early (and practically most fields are unconstrained).

For example, if a packet is dropped because of an unsolicited MD5 TCP option, then it

has no constraint on TCP flags, SEQ or ACK number. Since the hope is that the error

is ignored by the DPI (not checking the MD5 TCP option), these other fields will have a

direct effect on how the DPI processes the packet. Our solution in such cases is to generate
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these constraints to make the packet as legitimate as possible (i.e., with the correct SEQ

and ACK number). For TCP flags, we just enumerate the most common ones, which are

more likely to be accepted by the DPI (SYN, SYN/ACK, ACK, RST, RST/ACK, FIN,

FIN/ACK). For example, we may generate a RST packet with an unsolicited MD5 option

(with the additional constraint of the SEQ number to match the next expected one). The

server of course will reject the packet but the DPI will accept it and terminate the con-

nection incorrectly, allowing subsequent data to pass through unchecked. For candidate

evasion packets, we do the opposite by generating random values of various fields and hope

that it will be ignored by the DPI. Note that since an evasion packet is to be accepted by

the server, most of the fields are already constrained and so we do not have much room to

select the values of different fields.

3.6.2 Constructing follow-up probe packets

As mentioned in subsection 3.3.2, after sending a candidate evasion or insertion

packet, we may still need to craft additional follow-up packets that contain bad keywords

targeted by the DPI, in order to infer if there is any state discrepancy between the DPI and

server (otherwise there is no observable feedback).

To construct follow-up packets, we need to know the current state of the TCP con-

nection. If the current TCP state is not in the ESTABLISHED state, we need to send packets

that cause it to transition into it. If the current TCP state is already the ESTABLISHED state,

then we can directly send the data packet with the correct sequence and acknowledgment

number. Due to this reason, we log the current TCP state after processing each packet

during symbolic execution. Based on this, we use a simplified version of the TCP state
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machine to generate the follow-up packets for transitioning the connection from the specific

TCP state to the ESTABLISHED state if need be. Subsequently, we send a data packet with

the sensitive payload, and observe if it triggers any alarm on the DPI.

3.7 Implementation

Our system is built upon S2E 2.0 [37], which uses KLEE as its symbolic execution

engine. We implement SymTCP as a set of S2E plugins written with around 2.5K lines

of C++, and the probing and peripheral scripts were written with around 6.5K lines of

Python.

3.7.1 Selective Concolic Execution

We start the selective concolic execution whenever tcp v4 rcv() is entered, where

the TCP header fields are symbolized. When the current program counter is outside the

TCP scope, i.e., it leaves the tcp v4 rcv function or it wades into some other territory

(e.g., netfilter), we disable forking to let S2E run in a way similar to concrete execution,

except that it still maintains and propagates symbolic variables. In this way, we can switch

from symbolic execution to concrete execution and later switch back to symbolic execution

again. In addition, we modify KLEE to prevent it from adding branch conditions to the

path constraints when forking is disabled; thus, it does not over-constrain the symbolic

variables.

S2E only instruments basic blocks and instructions but not the edges connecting

basic blocks. However, in Linux TCP implementations, often it is the edge that determines
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the reason for acceptance or rejection; for example, an if and goto statement can enter the

same exact basic block, but representing different reasons (acceptance or rejection). Thus,

we also instrument the edges and implement an event. Finally, we bound the number of

loops that can be traversed and the number of occurrences of TCP options, by limiting

the number of executions of related edges of interest — we allow at most 5 TCP options

in a packet, and each TCP option only occurs once, except the NOP option. We do not

encounter any other loops where the number of iterations is symbolic.

3.7.2 Online Constraint Solving

We use the state-of-the-art Z3 [136] theorem prover as our online constraint solver

to generate concrete values of TCP header fields. As mentioned previously, if we receive a

SYN/ACK packet from the server, we then add its initial sequence number to the constraint

and consult Z3 again to generate new concrete values for the following probing packets. This

is because the following packets will need to acknowledge that number. Note that when

we consult the constraint solver multiple times (to generate subsequent packets), we need

to carry over the concrete values generated for the previous packets in order to maintain

consistency. For example, the first packet has a payload of 4 bytes, and the second packet’s

sequence number needs to advance by 4.

3.8 Evaluation

Our evaluations of SymTCP are run on an server with 72 cores Intel(R) Xeon(R)

CPU E5-2695 v4 @ 2.10GHz, and 256GB memory. The host OS is Ubuntu 16.04 64-bit, and
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the guest OS is Debian 9.2.1 64-bit. We evaluate our system with Linux kernel version 4.9.3.

We run S2E in parallel mode with 48 cores, which is the maximum number of processes

S2E currently supports.

3.8.1 Experiment Setup

Table 3.1: A summary of labeled drop points

Reason Count

TCP checksum error 5
TCP header length too small 1
TCP header length too large 4
MD5 option error 2
TCP flags invalid 7
SEQ number invalid 10
ACK number invalid 3
Challenge ACK 6
Receive window closed 2
Empty data packet 1
Data overlap in OFO queue 1
PAWS check failed 2
Embryonic reset 1
TCP DEFER ACCEPT drop bare ACK 1
TCP Fastopen check request failed 1
Total number 47

Before evaluating the system, we first manually label all the drop points reachable

from tcp v4 rcv() which is the TCP-level entry function for processing incoming packets.

Specifically, in the Linux kernel, since an incoming packet will eventually be freed after

being processed via kfree skb(), we inspect all invocations of it in the TCP implementation

(both direct and indirect through wrapper functions kfree skb and tcp drop), and identify

the program points or the branch statements (transitions between basic blocks such as if)

that satisfy the definition of a drop point (see subsection 3.3.2).
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We only consider drop points in the TCP LISTEN, SYN RECV, and ESTABLISHED

states. Because we assume the server doesn’t initiate a connection, we know that it will

not go into the SYN SENT state. In other TCP states such as TCP CLOSE, the server will

not accept any further data packets. We also excluded some cases that are not practical

for insertion packets: 1) a packet dropped due to memory allocation failures because it is

rare to encounter memory pressure on the server; 2) a packet dropped due to listen queue

overflow, which is not a common case; 3) a packet dropped due to SELinux check failed;

4) a packet dropped due to Xfrm check failed; 5) a packet dropped due to socket filter; 6)

a packet dropped due to route error or no route; 7) a few other minor cases, e.g., unusual

server configurations.

As a result, we eventually labeled 38 places in the source code where a packet gets

dropped without changing states. Because S2E works on the binary level, we map the source

code lines to binary addresses, and they are mapped to 47 binary level drop points (as one

source-level conditional statement can be translated into multiple basic blocks in binary)

as summarized in Table 3.1. A detailed list of all drop points can be found in Table 3.2.

Currently, we use two seed packets as inputs to the symbolic execution: 1. a SYN

packet with all 0s in its TCP option fields; 2. a SYN packet with a TCP Timestamp option

turned on. In practice, with 1, we can cover most drop points and accept points but can

rarely cover the 2 drop points related to the TCP Timestamp option. With 2 as another

seed packet, we are able to cover all drop points and accept points easily. We believe that

the complete coverage of all accept and drop points is a good indication of our results.

We employ an HTTP request with bad keyword “ultrasurf” in our experiment:
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Table 3.2: All drop points labeled in Linux kernel v4.9.3
Source file Line number TCP State Major Reason Total Covered

tcp ipv4.c 1404 Non-ESTABLISHED TCP checksum error 1 1
1607 Any TCP header length <20 1 1
1609 Any TCP header length >TCP packet size 2 1
1617 Any TCP checksum error 2 1
1655 SYN RECV TCP MD5 option check failed 1 1
1672 SYN RECV ACK number != server ISN + 1 1 1
1690 Non-SYN RECV TCP MD5 option check failed 1 1

tcp input.c 3616 Non-LISTEN Challenge ACK (the ACK case) 1 1
3736 Non-LISTEN ACK number >server send next 1 1
3750 Non-LISTEN ACK number older than previous acks but still in window 1 1
4503 ESTABLISHED OFO packet overlap 1 1
4641 ESTABLISHED Empty data packet 1 1
4657 ESTABLISHED Receive window is zero 1 0
4716 ESTABLISHED End SEQ number <= rcv nxt (Retrans) 1 1
4729 ESTABLISHED SEQ >= rcv nxt + window (out of window) 1 1
4745 ESTABLISHED Receive window is zero 1 0
5195 ESTABLISHED SEQ number <copied seq (SEQ num too old) 1 1
5270 Non-LISTEN PAWS check failed (Timestamp) 1 1
5284 Non-LISTEN Challenge ACK (SYN) (out-of-window) 1 1
5291 Non-LISTEN SEQ out of window 4 3
5325 Non-LISTEN Challenge ACK (RST) 3 3
5333 Non-LISTEN Challenge ACK (SYN) 1 1
5453 ESTABLISHED Packet length <TCP header length 1 0
5487 ESTABLISHED TCP checksum error 1 1
5531 ESTABLISHED Packet size <TCP header length —— TCP checksum error 2 1
5534 ESTABLISHED No RST and no SYN and no ACK flag 1 1
5911 LISTEN ACK flag set 1 1
5914 LISTEN RST flag set 1 1
5918 LISTEN SYN and FIN flags set 1 1
5925 LISTEN No RST and no SYN and no ACK flag 1 1
5947 Non-LISTEN Fastopen tcp check req failed 1 0
5951 Non-LISTEN No RST and no SYN and no ACK flag 1 1
6141 Non-LISTEN SEQ ≥ rcv nxt 1 1

tcp minisocks.c 634 SYN RECV Retransmitted SYN 1 1
716 SYN RECV PAWS check failed —— SEQ out of window 2 2
735 SYN RECV SYN or RST flag set 1 1
745 SYN RECV No ACK flag 1 1
758 SYN RECV TCP DEFER ACCEPT drop bare ACK 1 1

Overall 47 39

GET /AA...A#ultrasurf#<test case id># HTTP/1.1\r\nHost: local test

host\r\n\r\n

“A” is used to pad the HTTP request so that the first n packets before the follow-

up packet will not contain the bad keyword (by definitions in §3.3.2 the first n packets

may be accepted by the DPI). It is the follow-up packet that will carry the bad keyword

“ultrasurf” and the remaining part of the request.
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Table 3.3: Performance of offline symbolic execution

# of
pkts

20-byte TCP pkts 40-byte TCP pkts 60-byte TCP pkts
Time

to cover
Covered

drop points
Time

to cover
Covered

drop points
Time

to cover
Covered

drop points

1 5s 8 5s 9 10s 8
2 20s 16 20m 19 18m 18
3 50s 31 1h2m 39 40m 38

Time cost could vary due to randomness in path selection of symbolic execution.

3.8.2 Symbolic Execution Results

In our experiments, we send symbolic packets with 20, 40, and 60 bytes in total,

including the TCP header and the payload. As discussed in subsection 3.5.2, since we

symbolize the TCP data offset header field, the length of the TCP header is variable. For

example, if we send a TCP packet of 60 bytes, it always has a 20-byte TCP basic header,

and the length of the TCP option can vary between 0 and 40-byte. As a result, the rest will

be the TCP payload (from 0 to 40 bytes as well). We choose not to symbolize the length of

the entire packet or the payload because more or fewer bytes in the payload does not really

affect how TCP accepts or drops a packet.

As shown in Table 3.3, when we send 1 symbolic packet, we can cover only 8/9/8

drop points with a TCP packet of 20/40/60 bytes. By comparing the drop points covered,

we found that the 40-byte case can cover one more drop point than the 20-byte case, which

checks the TCP MD5 option. The 60-byte case covers one less drop point than the 40-byte

case because it misses a drop point when the TCP data offset is larger than the actual TCP

packet size. Because the TCP data offset is by design no more than 60, if we pick the actual

size of a TCP packet to be 60, the condition can never be satisfied. Finally, by sending 1

symbolic packet, we can only cover drop points in TCP LISTEN state.
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When we send 2 symbolic packets, we can cover 16/19/18 drop points with 20/40/60

bytes of TCP options and payload. The increased coverage of drop points is because we can

now cover drop points in TCP SYN RECV and part of them in ESTABLISHED. In addition, the

40-byte case covers 3 more drop points related to TCP options, i.e., MD5 and Timestamp.

The 60-byte case still covers one less drop point related to TCP data offset.

When we send 3 symbolic packets, we can cover 31/39/38 drop points with 20/40/60

bytes of TCP options and payload. The increased coverage of drop points are because of

more drop points in ESTABLISHED state covered, and also cases like data overlapping. The

20-byte case covers much less since it doesn’t send packets with a payload.

We take a further look at the 8 drop points not covered by any of our experiments.

2 of them requires the TCP receive window size becomes 0. That means the server’s receive

buffer has to be full. This is very hard to achieve in reality and we don’t want to flood the

server. 1 drop point requires TCP Fast Open to be enabled on the server. The other 5 drop

points are also infeasible due to various reasons. Overall, all 8 uncovered drop points are

either not of interest or cannot be reached in reality. Furthermore, we found that 2 of the

covered drop points are reached when the TCP state is in CLOSE WAIT, which we ignore.

Because the 40-byte experiment can already cover all of the drop points covered

by the 20-byte and 60-byte experiments, we use the dataset generated from the 40-byte

experiment to probe the DPI. This dataset includes 56,787 test cases generated in around

one hour which covers 37 drop points in binary (after filtering infeasible drop points).

Since the original dataset is too large, we cull out 10,000 test cases by sampling the

dataset, and then use the sampled dataset to probe the DPI. The original dataset is highly
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Table 3.4: Important accept points in Linux kernel v4.9.3

Source file Line # TCP State Major Reason

tcp input.c 4461 Non-LISTEN OFO: Initial out of order segment
4477 Non-LISTEN OFO: Coalesce
4533 Non-LISTEN OFO: Insert segment into RB tree
4684 Non-LISTEN In sequence. In window.
6408 LISTEN Enter SYN RECV

tcp minisocks.c 773 SYN RECV Enter ESTABLISHED

imbalanced, ranging from 2 to 9,790 test cases for different drop points. To make it more

balanced, we undersample the majorities while keeping the minorities intact. We order the

drop points by the number of their corresponding test cases, and use the 50th percentile as

a threshold. For the drop points whose corresponding numbers of test cases are below the

threshold, we keep them intact; for the ones above the threshold, we proportionally sample

the test cases corresponding to the overly represented drop points.

Finally, since we consider every path not reaching a drop point as an accept path,

the accept paths can be diverse and overwhelming in number. To sample them, we explicitly

label some important accept points, as listed in Table 3.4, which indicates TCP state changes

and data entering receive buffer. During sampling, we group the test cases by the sets of

labeled accept/drop points they reached.

3.8.3 Evaluation against DPI

We evaluated our sampled test set of 10,000 candidate insertion/evasion packets

against 3 DPI systems, 2 open-source NIDSes, Zeek (formerly known as Bro), Snort, and a

nation-wide censorship system, the Great Firewall of China (GFW).

We downloaded the latest version of Zeek (2.6) and Snort (2.9.13) at the time of
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writing, and conducted the experiment against the GFW on August 18, 2019.

Out of 10,000 test cases, we found 6,082 test cases can evade Zeek, including 5,771

cases caused by insertion packets and 311 cases caused by evasion packets; 652 test cases

can evade Snort, including 432 cases caused by insertion packets, and 220 cases caused

by evasion packets; 4,587 test cases can evade the GFW, including 1,435 cases caused

by insertion packets and 3,152 cases caused by evasion packets. For GFW, most of the

successful test cases caused by evasion packets are due to the “SEQ ≤ ISN” strategy

listed in Table 3.7, as a common condition shared by many test cases. For Zeek, though it

has a similar “SEQ < ISN” strategy, most of such test cases are successful for different

reasons, i.e., due to some preceding packets turning into insertion packets (as Zeek has a

very loose check on incoming packets). For example, the third packet has a SEQ number

less than ISN, which is an evasion packet, but the second packet is an insertion packet so

the test case works because of the insertion packet.

To reason about the successful test cases and abstract them into high-level evasion

strategies, we conducted postmortem analysis and evasion strategies summarization. For

Zeek and Snort, even though we treat them as blackboxes when generating candidate inser-

tion/evasion packets, they are actually both open-sourced, which allows us to pinpoint the

underlying cause of evasion. In order to expedite this process, we replay the successful cases

and record the binary execution trace of the DPI for each case. Then, we group the cases

by the execution trace of the data packet containing the sensitive keyword which evaded

the detection of the DPI (the trace therefore explains why this occurred), For Snort, we

additionally record the trace caused by processing the server’s ACK packet as some checks
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performed on Snort are delayed until the ACK packet is seen. In the end, we still manually

verify the cases within the same group in case they actually belong to different reasons for

evasion.

For GFW, since it is really a blackbox, we have to make hypotheses about the

success reasons from prior knowledge [125] and then validate them. Specifically, we first

replay the captured packet traces and verify if the result is stable; this eliminates the noisy

results caused by random events such as packet loss or GFW overload. Then we slightly

tweak the TCP header fields of the insertion/evasion packet and then replay the modified

packet trace. If it cannot work, then it’s likely the discrepancy is caused by that field.

We summarize a few featured evasion strategy (not a complete list) for each DPI

in the next few sections. Overall, we not only rediscovered already known strategies but

also found 14 novel strategies comparing with previous works using manually crafted inser-

tion/evasion packets.

3.8.4 Zeek

Table 3.5: Successful strategies on Zeek v2.6

Strategy SYN with data

TCP state LISTEN/SYN RECV/ESTABLISHED

Description (Insertion) SYN packet with data

Linux Ignore data

Zeek Accept data

Strategy Multiple SYN

TCP state SYN RECV/ESTABLISHED

Description (Insertion) SYN packet with out-of-window SEQ num

Linux Discard and send ACK

Zeek Reset TCB
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Strategy Pure FIN

TCP state ESTABLISHED

Description (Insertion) Pure FIN packet without ACK flag

Linux Discard (may send ACK)

Zeek Flush and reset receive buffer

Strategy Bad RST/FIN

TCP state SYN RECV/ESTABLISHED

Description (Insertion) RST or FIN packet with out-of-window
SEQ num

Linux Discard (may send ACK)

Zeek Flush and reset receive buffer

Strategy Data overlapping

TCP state SYN RECV/ESTABLISHED

Description (Insertion) Out-of-order data packet, then overlapping
in-order data packet

Linux Accept in-order data

Zeek Accept first data

Strategy Data without ACK

TCP state SYN RECV/ESTABLISHED

Description (Insertion) Data packet without ACK flag

Linux Discard

Zeek Accept

Strategy Data bad ACK

TCP state ESTABLISHED

Description (Insertion) Data packet with ACK > snd nxt or <
snd una - window size

Linux Discard

Zeek Accept

Strategy Big gap (New)

TCP state SYN RECV/ESTABLISHED

Description (Insertion) Data packet with SEQ > rcv nxt +
max gap size (16384)

Linux Accept

Zeek Ignore later data

Strategy SEQ < ISN (New)

TCP state SYN RECV/ESTABLISHED

Description (Evasion) Data packet with SEQ num < client ISN and
in-window data

Linux Accept in-window data

Zeek Ignore
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Zeek (formerly known as Bro) [87] is very liberal in accepting incoming packets.2

It is therefore relatively easy to bypass using insertion packets. We list some strategies in

Table 3.5. In most cases, it only looks at the TCP flags of a packet but does not check

SEQ or ACK number for TCP control packets, e.g., SYN, RST, FIN. This makes many

strategies that were previously reported feasible [92, 68, 125]. For example, whenever Zeek

receives a SYN packet in an existing connection, it simply tears down the TCB and creates

a new one. But Linux doesn’t accept out-of-window SYN packets in SYN RECV state or any

SYN packets in ESTABLISHED state. As a result, an attacker can easily inject a SYN packet

(as insertion packet) to tear down the TCB and recreate a TCB with a different ISN that

Zeek will keep track of, thus allowing later packets to evade detection.

Another interesting strategy which we have not seen applied (only hypothesized in

[92]) in any prior work: TCP RFC 793 allows data in SYN packet to be buffered and deliv-

ered to the user only when the connection is fully established, but Linux doesn’t buffer data

in SYN packet unless in the TCP Fastopen cases. In this case, Zeek correctly implements

the RFC and accepts data in SYN packets. However, this allows an attacker to attach junk

payload in a SYN packet as “cover” for the actual data sent in later packets.

In addition, we also found a novel evasion strategy that was not mentioned in any

prior work: if we send a data packet with SEQ number less than the client ISN but has

partial data in server’s receive window, the data will be ignored by Zeek, but Linux will

accept the data in window (an evasion packet).

2Zeek does log weird packets to a weird.log for offline analysis.
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3.8.5 Snort

Table 3.6: Successful strategies on Snort v2.9.13

Strategy Multiple SYN

TCP state ESTABLISHED

Description (Insertion) SYN packet with in-window SEQ num

Linux Discard and send ACK

Snort Teardown TCB

Strategy In-window FIN

TCP state ESTABLISHED

Description (Insertion) FIN packet with SEQ num in window but
6= rcv nxt

Linux Ignore FIN (may accept data)

Snort Cut off later data

Strategy FIN/ACK bad ACK

TCP state ESTABLISHED

Description (Insertion) FIN/ACK packet with ACK num> snd nxt
or < snd una - window size

Linux Discard (may send ACK)

Snort Cut off later data

Strategy FIN/ACK MD5

TCP state SYN RECV/ESTABLISHED

Description (Insertion) FIN/ACK packet with TCP MD5 option

Linux Discard

Snort Cut off later data

Strategy In-window RST

TCP state ESTABLISHED

Description (Insertion) RST packet with SEQ num 6= rcv nxt but
still in window

Linux Discard and send ACK

Snort Teardown TCB

Strategy RST bad timestamp

TCP state SYN RECV

Description (Insertion) RST packet with bad timestamp

Linux Discard

Snort Teardown TCB
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Strategy RST MD5

TCP state SYN RECV/ESTABLISHED

Description (Insertion) RST packet with TCP MD5 option

Linux Discard

Snort Teardown TCB

Strategy RST/ACK bad ACK num

TCP state SYN RECV

Description (Insertion) RST/ACK packet with ACK num 6= server
ISN + 1

Linux Discard

Snort Teardown TCB

Strategy Partial in-window RST (New)

TCP state ESTABLISHED

Description (Insertion) RST packet with SEQ num < rcv nxt but
partial data in window

Linux Discard

Snort Teardown TCB

Strategy Urgent data (New)

TCP state SYN RECV/ESTABLISHED

Description (Evasion) Data packet with URG flag and urgent
pointer set

Linux Consume 1 byte urgent data

Snort Ignore all data

Strategy Time gap (New)

TCP state SYN RECV/ESTABLISHED

Description (Evasion) Data packet timestamp = last timestamp +
0x7fffffff/0x80000000

Linux Accept

Snort Ignore

Snort implements OS-specific TCP state machines, including Windows, Linux, and

Mac OS; its TCP implementation is the most rigorous among the three DPIs. However,

from our results, even its Linux version still has discrepancies from the Linux kernel we

analyzed. The strategies we found are listed in Table 3.6. In general, Snort checks the SEQ

number for control packets but doesn’t check ACK number. Also, it doesn’t check TCP
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MD5 option and accepts in-window SYN, FIN, and RST packets too liberally. Whenever

it receives an in-window SYN or RST packet, it will tear down the TCB (matching the

behavior of older versions of Linux); and whenever it receives an in-window FIN packet,

it will mark the connection as CLOSED and discard data which SEQ number larger than

the end SEQ number of the FIN packet. On the contrary, the latest Linux doesn’t accept

any SYN packet in ESTABLISHED state, and requires SEQ number of FIN or RST packet

to be equal to rcv nxt. In addition, Snort also accepts FIN or RST packet with out-of-

window ACK number or TCP MD5 option, which will be discarded by Linux. Most of these

strategies have also been mentioned in [92] (though not all of them are tested in practice),

and the usage of TCP MD5 option was done in [125].

Now we discover two novel strategies unique to the Snort implementation. The

first strategy is related to how Snort implements TCP Timestamp option validation (it is

the only DPI we are aware of that attempts to perform timestamp checks). Interestingly,

we found its implementation to be slightly different from Linux in 2 ways: 1) Snort doesn’t

check timestamp for RST packets in SYN RECV state (as mandated by RFC 7323) while Linux

does. 2) In PAWS checking, if the TSval in the current packet is older than that in the last

packet, it will reject the current packet. However, due to slightly different implementations

of the check of Snort and Linux, the acceptable TSval ranges are “off by two”. As a result,

say if the first packet has a TSval of 0x80000000 and the second packet has a TSval of

0 or 0xffffffff, then Linux will accept the second packet, but Snort will reject it. The

pseudo-code of their implementations can be found in Listing 3.1 and Listing 3.2.
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1 i f ( ( s i gned i n t ) ( l a s t p a c k e t −>t s v a l − cur rent packet −>t s v a l ) <= 1) {

2 // PAWS check succeeded

3 }

Listing 3.1: Pseudo-code of Linux PAWS (timestamp) check

1 i f ( ( s i gned i n t ) ( ( cur rent packet −>t s v a l − l a s t p a c k e t −>t s v a l ) + 1) < 0) {

2 // PAWS check f a i l e d

3 }

Listing 3.2: Pseudo-code of Snort PAWS (timestamp) check

The second novel strategy is related to the urgent pointer processing logic, which is

notoriously ambiguous [90] and often implemented incorrectly, even in major OSes such as

Linux [60]. Simply put, an urgent pointer is supposed to allow TCP to specify some range of

data in the payload to be marked as urgent, which will be treated differently when a receiver

sees it (e.g., immediately pushed to the application layer using a separate interface [60]). In

Snort, it interprets the urgent pointer as the offset to the last byte of the urgent data and

simply discards all of the bytes before this offset. In Linux though, it consumes 1 byte of

urgent data (right before the urgent pointer offset) which is stored in a separate place, and

leaves the remaining payload intact. Our system initially discovered an evasion packet with

urgent flag and urgent pointer set to a random location in a packet (which happens to point

to an insignificant padding byte), and therefore preserving the semantic and the keyword

in the HTTP request. However, Snort discards all the data before the urgent pointer offset

and fails to reconstruct the HTTP request.
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3.8.6 Great Firewall of China

Table 3.7: Successful strategies on the GFW

Strategy Bad RST

TCP state SYN RECV/ESTABLISHED

Description (Insertion) RST packet with bad checksum or TCP
MD5 option

Linux Discard

GFW Teardown TCB

Strategy Bad data

TCP state SYN RECV/ESTABLISHED

Description (Insertion) Data packet with bad checksum or TCP
MD5 option or bad timestamp

Linux Discard

GFW Accept

Strategy Data without ACK

TCP state SYN RECV/ESTABLISHED

Description (Insertion) Data packet without ACK flag

Linux Discard

GFW Accept

Strategy SEQ ≤ ISN (New)

TCP state SYN RECV/ESTABLISHED

Description (Evasion) Data packet with SEQ num ≤ client ISN and
in-window data

Linux Accept in-window data

GFW Ignore

Strategy Small segments (New)

TCP state SYN RECV

Description (Evasion) Data packet with payload size ≤ 8 bytes

Linux Accept

GFW Ignore

Strategy FIN with data (New)

TCP state SYN RECV/ESTABLISHED

Description (Insertion) FIN packet with data and without ACK flag

Linux Discard

GFW Teardown TCB
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Strategy Bad FIN/ACK data (New)

TCP state ESTABLISHED

Description (Insertion) FIN/ACK packet with data and bad check-
sum or TCP MD5 option or bad timestamp

Linux Discard

GFW Teardown TCB

Strategy FIN/ACK data bad ACK (New)

TCP state ESTABLISHED

Description (Insertion) FIN/ACK packet with data and ACK num
> snd nxt or ACK num < snd una - window size

Linux Discard

GFW Teardown TCB

Strategy Out-of-window SYN data (New)

TCP state SYN RECV

Description (Insertion) SYN packet with SEQ num out of window
and data

Linux Discard and send ACK

GFW Desynchronized

Strategy Retransmitted SYN data (New)

TCP state SYN RECV

Description (Insertion) SYN packet with SEQ num = client ISN
and data

Linux Discard

GFW Desynchronized

Strategy RST bad timestamp (New)

TCP state SYN RECV

Description (Insertion) RST packet with bad timestamp

Linux Discard

GFW Teardown TCB

Strategy RST/ACK bad ACK num (New)

TCP state SYN RECV

Description (Insertion) RST/ACK packet with SEQ num 6= server
ISN + 1

Linux Discard

GFW Teardown TCB

The GFW conducts a wide range of censorship on different network protocols,

such as HTTP/HTTPS, DNS, Tor, etc. Although it has a relatively lenient checking on
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individual packets, it’s known to have some sophisticated and robust mechanism to thwart

desynchronization attacks according to recent research [125]. In addition to the strategies

that were previously known, we also identify several novel strategies which we will describe

below.

Interestingly, we found that the GFW ignores data packet with a start SEQ number

less than or equal to the initial sequence number (ISN) but has in-window data, whereas

Linux accepts the in-window data. Therefore the strategy discovered by our system is to

send such an evasion packet with a sensitive keyword as in-window data (and with padding

automatically prepended to cover the bytes that are out-of-window).

Another interesting and surprising finding is that the GFW ignores data segments

whose sizes are less than or equal to 8 bytes. This is discovered through a small first data

packet (remember each of our packets has a maximum payload length of 20), which is simply

ignored by the GFW. Missing the first data packet will cause the GFW to miss the fact that

it is an HTTP request and subsequently ignore the sensitive keyword. However, we found

this strategy works perfectly in SYN RECV state only but not ESTABLISHED. To understand

the reason, we conducted further investigation. It turns out that in ESTABLISHED state,

this strategy can only evade one type of GFW devices that inject RST/ACK packets, but

not the ones injecting RST packets [125]. The GFW devices injecting RST packets will

establish a TCB and start monitoring payload (including packets of 8 bytes or fewer) only

after the 3-way handshake. This explains why this strategy works perfectly in SYN RECV

state only.

The last set of novel strategies are related to tearing down the state on GFW.
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First, we found FIN packets or malformed FIN/ACK packets with data can cause the

GFW to tear down its TCB, but without data it does not work. More interestingly, if we

first send some in-order or out-of-order data packets and then send the FIN or malformed

FIN/ACK packet, the FIN or FIN/ACK packet does not have to have data. This seems

to indicate that GFW will agree to accept FIN packets only after some data have been

transmitted (otherwise the FIN is suspicious and will not be accepted). Similarly, we found

an out-of-window SYN packet with data or a retransmitted SYN packet with data can

also desynchronize the GFW (causing it to synchronize its expected sequence number to

the one in the SYN packet) but they don’t work without data. For RST packet with a

bad timestamp, it only works in SYN RECV state since Linux only validates timestamp on

RST packet in SYN RECV state but not in ESTABLISHED state. None of the strategies were

reported in the latest study of GFW [125].

Comparing our strategies with previous works on GFW with manually crafted

packets [125, 74], we have rediscovered all the TCP-layer strategies used in [74] (except

the IP and HTTP layer strategies which are beyond our scope). In addition, we have

rediscovered all the primitive strategies used in [125], except that they also discovered

compound strategies that can evade multiple types of GFW devices, based on their manually

inferred GFW model. Specifically, Bad RST, Bad Data, and Data without ACK are old

strategies, and the other strategies are all new. Strategies SEQ ≤ ISN and Small segments

are completely new, while the other new strategies are subtle variations of known strategies

that no longer work. This demonstrates the power of an automated tool that is capable of

discovering such subtle variations.
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3.9 Discussion and limitations

Path Explosion. In our evaluation, we show that processing only three symbolic packets

can already lead to path explosion — tens of thousands of paths (the result of handling

three packets) generated in an hour. This is because there can be multiple different paths

reaching the same drop/accept point. Each of these paths corresponds to a unique sequence

of packets (determined by the path constraints), which may potentially lead to various

evasion and insertion strategies.

In order to tackle with path explosion, besides restricting symbolic execution

within the scope of TCP code, we have also made some pruning decisions based on our

domain knowledge. We summarize them in one place as follows (details discussed in sec-

tion 3.4 and section 3.5): 1) bound occurrences of TCP option fields by allowing each TCP

option to occur only once, since redundant options are not useful in triggering any new

code; also we only allow at most 5 TCP options in a packet, since most of the options are

independent of each other thus complex combinations of options are unlikely useful; 2) ter-

minate an execution path once reaching a drop point, because packets reaching drop points

don’t cause any state changes; 3) terminate an execution path once the connection is in a

state that cannot further deliver data, e.g., CLOSE WAIT; 4) carefully label accept and drop

points, we are aiming at covering all accept and drop points but not all execution paths,

therefore reduce the search space.

At the moment, we randomly sample from these paths with equal probability and

do not differentiate or prioritize them. However, a better solution is to understand the

relationships among these paths and avoid visiting paths that are unlikely to lead to any
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fruitful results. One example is that for different paths reaching the same accept point, we

know that they correspond to packets accepted by the server, but we hope that they are

ignored by the DPI. In such cases we should theoretically prefer longer paths, because they

go through more corner cases (e.g., more checks or different conditions of acceptance) and

the DPI is less likely to handle them perfectly. Another example is that, in our evaluation,

we find that there are many packet sequences sharing the same prefix of two accept packets,

and the second packet happens to be a valid evasion packet; this means that regardless of

what the third packet is in a sequence, it will always succeed in eluding the DPI for the

same reason (Figure 3.4). Unfortunately, during the offline path exploration phase, we are

unable to tell if the second packet will be a successful evasion packet and terminate any

further exploration. We plan to use the result we obtain from online testing to prune the

offline analysis in the future.

Handling Overlapping Data as Evasion Strategies. Our model currently does not

handle overlapping data well and cannot generate all data overlapping strategies as done

manually in prior work. This is because it is necessary to model how the TCP implementa-

tion evicts data in the buffer. For example, in certain operating systems, if data overlapping

is detected, they prefer to discard the old copy and accept the new one. More generally, we

need to model how a packet may retroactively change the effect of a previous packet, and

at the moment our model assumes the effect of each packet is independently exerted and

cannot be revoked. We plan to handle this corner case by extending our model as future

work.

Extending SymTCP to Other TCP Implementations / DPIs / Network Proto-
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cols / Server-side. Although we pick a specific version of Linux kernel to evaluate our

system, our system is not restricted to any specific version and can be easily applied to

other versions as well. The minimal requirement is to label all drop points, and optionally,

some critical accept points (to group accept paths), as shown in section 3.8. Since the TCP

implementations doesn’t change much across kernel version, it should take less efforts for

someone with experience to label another version. It took us less than an hour to do the

labeling on the most up-to-date Linux kernel version (v5.4.5). In order to apply our method

to another OS or TCP implementation much different from the current one, we may need to

do more path pruning depending on the coverage, i.e., if symbolic execution cannot cover all

desired accept and drop points, manual analysis is required to improve coverage. Extending

SymTCP to other DPIs is easy. With results from symbolic execution, we can immediately

probe the new DPI with the generated candidate packets; however, needed is the manual

analysis of the results. Extending SymTCP to another protocol is in principle possible (we

believe the insertion and evasion definitions are general). However, it can be tricky due

to protocol-specific adaptations. For example, our pruning decisions and abstractions are

specific to TCP. Furthermore, if the protocol uses crypto functions, they must be explicitly

handled, since SMT solver is unable to solve complex constraints accumulated in crypto

functions [14, 79]. Besides, we need to label drop and accept points. These aspects will

require additional research.

In our demonstration, we use SymTCP to help the client side to elude DPI. Our

approach can be applied to the server side as well. In that case, we will need to model

the client-side TCP implementation, i.e., run symbolic execution on the client’s TCP im-
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plementation. For example, if the client is using Linux, the process should be similar to

what we do to model the server-side TCP implementation. Note that, since the client is

the initiator of a TCP connection, we will need to consider TCP states corresponding to

the initiator, e.g., exploring execution paths related to the SYN SENT state.

Defenses: Traffic Normalization and Per-Host Packets Reassembly. To mitigate

DPI elusion attacks, solutions have been proposed to normalize the traffic [61, 45, 124],

where packets are actively manipulated and sometimes additional packets are injected to

confirm the result of the previous packet. These normalization strategies are deemed to

prevent many evasion strategies. However, they are based on a large number of hand-crafted

rules (38 rules for TCP in [61] without formal guarantees. We believe our automated system

can in fact be a great test against these defenses. Unfortunately we are not aware of any

real-world implementations. Another strategy is proposed in [103], where the authors argue

that the DPI’s behaviors should be tailored to each host that it is responsible for protecting

(e.g., those in intranet). In theory, this strategy is sound, but in practice it comes with

high cost, as the behavior of the DPI needs to be customized for different operating systems

(and even across many versions). Snort is the closest to this line of thinking; unfortunately

its Linux version of TCP state machine is shown to be clearly vulnerable. Furthermore, in

certain contexts, e.g., state-level censorship, it is simply infeasible to build per-host profiles

of the majority of machines on the Internet.
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3.10 Related Works

Evading Deep Packet Inspection. A major line of research on evading deep packet

inspection is unilateral traffic manipulation, by injecting crafted network packets to desyn-

chronize the DPI system from one endhost. This attack is practical since it needs to

be deployed on only a local host, and doesn’t require any cooperation from the remote

host. The underlying idea dates back to 1998 in a report by Ptacek et al. [92]. They

proposed the idea of insertion and evasion attacks on NIDS and enumerated a variety of

implementation-level discrepancies in TCP and IP protocols. The discovered strategies are

based on analyzing out-of-date DPIs and operating systems (FreeBSD 2.2), and many of

the strategies no longer apply. Khattak et al. [68] and Wang et al. [125] followed the same

principle to study evasions against the Great Firewall of China and demonstrated their

effectiveness in practice. Li et al. [74] conduct a comprehensive measurement that leverages

similar TCP and IP level discrepancies to evade a wide range of middleboxes such as traffic

classification systems in multiple ISPs and the censorship systems in China and Iran. All

of the above research rely on manual analysis of the TCP implementations in operating

systems and reverse engineering of DPIs. In this work, we propose to make an important

step towards automating the evasion tests of DPI systems. A concurrent work by Bock et

al. [20] automates censorship evasion strategy discovery by mutating existing packet traces.

In contrast, we propose a more principled approach to search for the evasion strategies,

by targeting the corner cases in packet processing logic on Linux, which may be handled

differently on DPIs.

Symbolic execution of network protocol implementations. In the past decade, sym-
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bolic execution has emerged as a powerful formal verification technique and been widely

applied in the analysis and verification of network protocol and network function imple-

mentations. For example, in [32, 33], the authors employ symbolic execution to extract the

accept and reject paths in essential components of the TLS protocol, i.e., X.509 certificate

validation and PKCS#1 signature verification, to find semantic bugs by cross-validating

different implementations. Kothari et al. [71] use symbolic execution to find protocol ma-

nipulation attacks where a malicious endhost can induce a remote peer to send more packets

more aggressive than it should. Song et al. [111] explore the possibility of sending multiple

packets in symbolic execution, and they aim at finding low-level and semantic bugs given

rule-based specifications extracted from protocol specifications.

DPI model inference. Ideally, if we can infer the DPI model (i.e., state machine) au-

tomatically and completely, then it is much easier to identify the discrepancies with the

endhost’s state machine. Argyros et al. [9, 8] proposed the first algorithm that learns

symbolic finite automata with enough queries and observations of a target system. The

algorithm is applied to regular expression filters, TCP implementations and Web Applica-

tion Firewalls (WAFs), to do fingerprinting and discover evasion attacks. Similarly, Moon

et al. [80] synthesize high-fidelity symbolic models of stateful network functions (including

TCP state machines of DPI middleboxes), by generating queries and probes offline (albeit

it requires the availability of the network function’s binary). Unfortunately, the complete-

ness and accuracy of the inferred model is inherently dependent on the queries. Therefore,

we choose to consider the DPI a complete blackbox and do not attempt to learn its state

machine explicitly. To some extent, though, we indeed attempt to “learn its model” by
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generating proper queries to it (with the guidance of a Linux TCP state machine).

Grammar-based fuzzing and exhaustive testing. Generating meaningful inputs guided

by a grammar that describes their formats can be beneficial to fuzzing [17, 58, 89]. However,

fuzzing tends to generate overly many inputs and in our case will be inefficient in testing all

the candidate packets. Furthermore, defining a grammar or model at the implementation-

level requires a thorough analysis of all the subtleties of TCP. Therefore, models extracted

from the specification are not sufficiently detailed to capture the intricacies of the proto-

col. In contrast, our work can be viewed as attempts to “extract” the implementation-level

model.

3.11 Conclusion

In this chapter, we explore the use of symbolic execution to guide the generation

of insertion and evasion packets at the TCP level for automated testing against DPI mid-

dleboxes. We developed a system from end to end following this idea and demonstrated its

effectiveness with both known and novel strategies against three popular DPIs: Zeek (Bro),

Snort, and GFW. The system can be easily extended to other DPIs. We believe our work

is an important step towards automating the testing of DPI middleboxes in terms of their

robustness against evasion.
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Chapter 4

Themis: Ambiguity-Aware

Network Intrusion Detection based

on Symbolic Model Comparison

4.1 Introduction

Network Intrusion Detecion Systems (NIDS) are inherently vulnerable to evasion

attacks that exploit implementation-level discrepancies stemming from ambiguities in net-

work protocol specifications. NIDS will need to interpret network traffic in the same way as

endhosts, to derive accurate information. However, different endhosts may run slightly dif-

ferent implementations of the same protocol, while traditional NIDS only incorporate one

specific implementation. To be compatible with various endhost implementations, NIDS

typically opt for a simplified implementation that over-approximates the behaviors on the
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endhosts. This in turn, is the underlying cause of the aforementioned discrepancies.

Numerous studies [92, 61, 68, 125, 74, 20, 126] have shown that an attacker can

unilaterally manipulate his packets to trick the NIDS into losing track of its connections,

and thereby successfully achieve evasion. In particular, when stateful protocols such as

TCP are used, attackers can inject as few as a single packet to desynchronize the NIDS

with respect to the current connection state permanently. Recently, crafting techniques for

evasion have matured from manual to automatic strategy generation [20, 126, 19, 18, 96],

which enables the easy generation of a large number of successful evasion strategies in a

short time. Therefore, the threats faced by NIDSs are increasingly severe.

As defenders, we seek to regain the advantage and proactively prevent such poten-

tial attacks from happening, instead of reactively patching NIDSs. In this work, we propose

a novel framework, Themis, to defend against evasion attacks. As running all possible net-

work protocol implementations on a NIDS can be prohibitively expensive, prior work has

proposed to choose a specific implementation for each endhost that it aims to protect [104].

However, due to the diversity of endhost implementations and the challenge in tracking the

software versions on all the protected endhosts, such an approach has not been adopted

in practice. In this work, we show that it is not necessary to choose between the various

implementations. Rather, one can learn the discrepancies among different implementations

ahead of time, and fork the connection states on the NIDS when ambiguous packets are

received. The NIDS will then analyze the plurality of forked states in parallel, ensuring

that one of the connection states will be synchronized with that of the endhost.

In this work, we focus on TCP, because it is the underlying protocol of most
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application-layer protocols, and widely targeted in evasion attacks due to its stateful-

ness [20, 126, 19]. To learn the discrepancies between various implementations (especially

for TCP with a long history), Themis leverages symbolic execution to automatically extract

high-fidelity models from common endhost network protocol implementations. Compared

to manually reconstructed models, our models are faithful representations of the actual

software running on the endhosts, and are guaranteed to have exactly the same behaviors.

Moreover, the extracted models are in the form of high-level SMT (satisfiability modulo

theories) formulas; thus, it is easy to use SMT solvers to automatically compare two mod-

els to find discrepancies. Upon finding a comprehensive set of discrepancies, we can then

build an ambiguity-aware NIDS based on nondeterministic finite automata (NFA) that can

effectively and simultaneously support multiple different implementations. This approach

has several benefits. First, since we go straight to the endhost implementations, we can

abandon the existing over-simplified and over-approximated NIDS implementations that

have potentially many more discrepancies. Second, with the distilled discrepancies, we no

longer need to blindly run many different implementations (some of them may not exhibit

any discrepancy) at the same time. In fact, our Themis-enabled NIDS forks its connection

states only when ambiguities are encountered and thus, is cost-effective.

The biggest challenge in applying symbolic execution in practice is its scalability,

especially when the goal is to achieve a complete analysis on complex modern software [27],

as in our case with the TCP implementation. This is largely due to the nature of the heavy-

weight analysis of symbolic execution and well-known problems such as path explosion. In

our work, we employ several techniques to improve the performance of symbolic execution,
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without degrading the fidelity of the results. Specifically, we leverage state merging [73]

to drastically reduce the cost of symbolic execution and constraint solving (from days to

minutes) with domain knowledge of TCP.

In summary, our main contributions in designing and implementing Themis are

the following:

• We use symbolic execution to extract high-fidelity models from TCP implementations.

We solve the scalability challenge in symbolic execution leveraging state merging without

degrading the fidelity of the results. To the best of our knowledge, we are the first

to successfully conduct an exhaustive symbolic execution on full-fledged modern TCP

implementations.

• We use constraint solving to automatically compare the symbolic models extracted from

different versions of Linux kernels, and then summarize the discrepancies between them.

We are able to reproduce all discrepancies that were previously reported between modern

Linux kernel versions in the past decade, from 3.0 to 5.10. We even discover a few

previously unknown subtle discrepancies.

• We design a novel NFA-based NIDS model that accounts for ambiguities and identify

them during runtime. This model enables the NIDS to fork its connection states upon

encountering a potential ambiguity associated with an incoming packet, to explore all

possible ways that an endhost might handle the packet. We demonstrate that with

Themis, a NIDS can successfully capture all existing evasion strategies and the new ones

presented in this work, with negligible additional overhead.
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4.2 Background

4.2.1 NIDS Evasion Based on Traffic Manipulation

NIDSs are known to be inherently vulnerable to evasion attacks [92], which typ-

ically exploit discrepancies between network protocol implementations of the NIDS (e.g.,

at the IP, TCP and HTTP levels) and those of the endhosts. Stateful protocols like TCP

with complex implementations, are likely to manifest a larger set of discrepancies. An at-

tacker can send a sequence of specially crafted network packets with a malicious payload,

to make the NIDS and the remote host reassemble them into different data streams. The

NIDS will see the reassembled data stream without the malicious payload while the remote

host will see the reassembled data stream with the malicious payload, and thus, will be

subject to attack. Such discrepancies arise largely due to ambiguities in network protocol

specifications, as well as evolution of such specifications (e.g., new features added over the

years). For example, in TCP implementations based on RFC 5961 [94], RST packets with

sequence numbers in the receive window but not equal to the next expected sequence num-

ber are no longer accepted; however, older implementations still accept such RST packets.

Different operating systems (OSes) and different versions thereof, all differ in their imple-

mentations. Even subtle discrepancies have been shown to lead to an evasion attack against

the NIDS [126]. Importantly, our observation is that NIDSs usually use much simpler net-

work protocol implementations as compared to endhosts to reduce their overhead, which

widen the gap between their implementations and those of the endhosts.

Researchers have leveraged these discrepancies to design numerous evasion strate-

gies that can bypass state-of-the-art NIDSs [125, 74, 126, 20]. For example, if a RST packet
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is accepted by the NIDS but not by the endhosts, the NIDS will consider the connection

to be terminated and lose track of the connection. On the other hand, if a RST packet is

accepted by the endhosts but not the NIDS, the NIDS will keep track of this terminated

connection and if a later connection reuses the same 4-tuple, the NIDS will fail to track

the new connection. Similar strategies have been crafted by manipulating control packets

such as SYN or FIN packets, as well as data packets. On the defense side, mitigations such

as traffic normalization [61] and Active Mapping [104] have been proposed. However, they

either cannot eliminate all ambiguities or require additional information from endhosts and

thus, still leave opportunities for attackers.

The root cause of the problem is that a traditional NIDS applies a specific network

protocol implementation, but there are many different implementations running on the

endhosts, all compliant with the same protocol specification. Thus, the NIDS cannot always

recover the same information from the network traffic as that by an endhost. Blindly running

all different implementations on the NIDS can be prohibitive in terms of overhead. In order

to solve this problem, we propose an NFA-based NIDS that forks the connection state

only when ambiguities are encountered. Our approach enables the NIDS to explore the

appropriate possibilities, while introducing relatively low overhead. However, this requires

prior knowledge of existing implementations running on the endhosts. To enable this,

we employ symbolic execution to extract high-fidelity models from implementations, and

empower the NIDS with these models.
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4.2.2 Selective Symbolic Execution and State Merging

Symbolic execution is a formal program verfication technique to systematically

find bugs or verify properties in software programs [69, 23]. With promising breakthroughs

in automatic reasoning via SAT and SMT solvers, researchers are now widely adopting

symbolic execution. Due to its heavyweight analysis, symbolic execution can still only be

applied to a small scope of the program, and has to be carefully tuned to avoid uncon-

trollable path explosions. In addition, practical programs may contain external code not

traceable by the symbolic executor, or complex constraints involving non-linear arithmetic

or transcendental functions [13]. To make symbolic execution more practical, researchers

have proposed “concolic” execution [77], a mixture of concrete execution and symbolic exe-

cution, which allows concrete execution to kick in when symbolic execution is incapable or

inefficient in dealing with certain parts of the program.

Selective symbolic execution [37] is an innovative form of “concolic” execution that

allows switching between symbolic execution and concrete execution at code boundaries.

This will restrict symbolic execution only within the scope of interest, while running other

parts of the code (e.g., libraries and system calls) with the much faster concrete execution.

Defining the boundary between symbolic execution and concrete execution is usually tricky.

Exhaustive symbolic execution is theoretically both sound and complete. Here soundness

means all inputs derived are guaranteed to yield expected outcomes, i.e., no false positives;

completeness means all inputs are covered, i.e., no false negatives. Selective symbolic execu-

tion may have impacts on both soundness and completeness while improving performance,

because it doesn’t completely model all possible outcomes of the code being executed con-
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cretely. Therefore, we need to carefully define the scope of symbolic execution to make sure

no side effects that may impact the main logic will be introduced by the code out of scope.

If any side effects were introduced, we may miss them and be subject to loss of soundness

and completeness (by introducing false positives and false negatives). In the Linux kernel,

we only run symbolic execution on the TCP core logic, while leaving other parts of the

kernel as out of scope.

Numerous works [25, 32, 126] have used symbolic execution to verify properties

or discover bugs in software programs. However, they randomly explore only parts of

the program, and get partial coverage. These approaches aim at opportunistically finding

bugs rather than achieving complete coverage. This causes loss of both completeness and

soundness, and leads to false negatives and false positives. Differently, our goal is to extract

a complete model of the target code we are interested in, so that we can retain completeness

and soundness, which means no false negatives or false positives. As discussed, scalability

is known to be the biggest challenge in symbolic execution. The problem worsens when

running symbolic execution on binaries rather than on source codes, since more branches

could be introduced into the low-level assembly code after compilation.

To achieve scalability, researchers have proposed state merging [62], which can

reduce the number of execution paths in symbolic execution, but at the cost of introducing

harder-to-solve constraints for the constraint solver. We use an example in Figure 4.1 to

illustrate the rationale of state merging. A symbolic execution state is defined as a 3-tuple

(`, σ, π). ` denotes the current program location; σ denotes the symbolic store that stores

all symbolic and concrete values associated with the current state; π denotes the path
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constraints associated with the current state. In Figure 4.2 and Figure 4.3, we demonstrate

the process of symbolic execution without and with state merging respectively; here, each

block represents a state. Without state merging, a state forks when a conditional branch is

encountered and both branches are feasible. The number of states doubles each time and

so, there will be 4 states after two branches. With state merging, two states at the same

` can be merged by: 1) combining their paths constraints π with a logical OR; 2) merging

their symbolic stores σ with if-then-else (ITE) expressions. For example, when two states

(` : 8, σ : a = 5, π : x > 10) and (` : 8, σ : a = −5, π : x ≤ 10) meet at ` 8, their paths

constraints are merged into x > 10∨ x ≤ 10, which can be simplified to true, and the value

of variable a becomes ite(x > 10, 5,−5).

1   i nt  f oo( i nt  x ,  i nt  y)  {
2       i nt  a = 0;
3       i f  ( x > 10)  {
4           a = 5;
5       }  el se {
6           a = - 5; 
7       }    
8       i f  ( y == 1)  {
9           ++a;
10      }  el se {
11          - - a;
12      }    
13      r et ur n a;
14  }

Figure 4.1: Sample code snippet for state merging

After two rounds of state merging, we have only one state. By comparing the re-

sults with and without state merging, we find that in the latter case, there are an exponential

number of states, concrete values for variable a, and complex path constraints. In contrast,

with state merging, there are much fewer states, much simpler path constraints, but com-
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a = 0 (true)

3. if ( x > 10 )

a = 0 (x > 10)

4. a = 5;

a = 0 (x ? 10)

6. a = -5;

a = 5 (x > 10)

8. if ( y == 1 )

a = 5 (x > 10 ?  y = 1)

9. ++a;

y = 1

x > 10 x ? 10

a = 5 (x > 10 ?  y ? 1)

11. --a;

y ? 1

a = -5 (x ? 10)

8. if ( y == 1 )

a = -5 (x ? 10 ?  y = 1)

9. ++a;

a = -5 (x ? 10 ?  y ? 1)

11. --a;

y = 1 y ? 1

a = 6 (x > 10 ?  y = 1)

13. return a;

a = 4 (x > 10 ?  y ? 1)

13. return a;

a = -4 (x ? 10 ?  y = 1)

13. return a;

a = -6 (x ? 10 ?  y ? 1)

13. return a;

Figure 4.2: Symbolic execution without state merging for the example in Figure 4.1

plex expressions for symbolic variables. Because ITE expressions introduce more complex

expressions that are translated into disjunctions, they can cause significant overhead in

constraint solving, and eventually negate the benefits from state merging [62]. Essentially,

we are shifting the burden from the symbolic executor to the constraint solver, and thereby

need a good balance. Kuznetsov et al. [73] provide insights into the problem and show that

two states should be merged if the variables they differ in, are less frequently used in later

queries to the constraint solver.

115



a = 0 (true)

3. if ( x > 10 )

a = 0 (x > 10)

4. a = 5;

a = 0 (x ? 10)

6. a = -5;

a = ite(x > 10, 5, -5) (true)

8. if ( y == 1 )

a = ite(x > 10, 5, -5) (y = 1)

9. ++a;

a = ite(x > 10, 5, -5) (y ? 1)

11. --a;

a = ite(y = 1, ite(x > 10, 5, -5) + 1, ite(x > 10, 5, -5) - 1) }  (true)

13. return a;

y = 1 y ? 1

x > 10 x ? 10

Figure 4.3: Symbolic execution with state merging for the example in Figure 4.1
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Figure 4.4: System Overview of Themis

4.3 Offline Phase: Discovering TCP Implementation Dis-

crepancies

The offline phase of Themis that finds discrepancies between any two TCP im-

plementations has three key components, as shown in Figure 4.4. The first component

is “Symbolic Model Extraction”, which runs symbolic execution exhaustively on different

versions of TCP implementations and extracts high-fidelity models to accurately reflect de-
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tailed behaviors of each implementation. The second is called “Model Comparison,” which

compares two symbolic models and automatically generates concrete examples that will

trigger the discrepancies between them. The last is “Discrepancy Analysis,” which empiri-

cally analyzes the execution traces corresponding to the concrete examples and determines

the root cause of a discrepancy in the behaviors between the two implementations. The

process is iterative in that we feed the discrepancies summarized from “Discrepancy Ana-

lyis” back to the “Model Comparison” to exclude them from the models in the next round

of concrete example generation, until there are no discrepancies between the two models.

These discrepancies will also be integrated into the NIDS to enable online operations of

Themis as discussed in §4.4.

4.3.1 Symbolic Model Extraction

Finding low-level discrepancies between two TCP implementations is a daunting

task, because of the huge number of possible states in the program. Such discrepancies could

be buried deep, in some rarely visited states. To formalize, discrepancies occur when two

implementations generate different outputs given the same input. With respect to the NIDS

evasion attacks, a discrepancy occurs when two TCP implementations produce different

reassembled data streams, when they receive the same sequence of TCP packets. To aid

the discovery of discrepancies, we first define a set of critical states S as intermediate states

that precede our target output (which is the reassembled data in the TCP receive buffer).

A critical state s consists of a set of state variables and specific values. s = {si = di}. We

consider two types of critical states as follows: (a) TCP states, e.g., LISTEN, SYN RECV,

ESTABLISHED, CLOSE, and (b) receive buffer events, e.g., whether a packet enters the
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TCP in-order queue or out-of-order queue. Intuitively, if the same sequence of input packets

drives two TCP implementations into two different TCP states or into accepting different

payloads in the TCP receive buffers, such discrepancies are bound to be exploitable.

As shown in Figure 4.5, via exhaustive symbolic execution, we extract a mapping

M between the path constraints Π and the critical states S, denoted as M : Π → S.

Since path constraints are constraints on the inputs, this translates to summarizing the

relationships between inputs and critical states. By combining all the path constraints

that lead to a critical state with disjunction, we can automatically obtain the weakest

precondition [46] of the critical state. The weakest precondition, denoted as wp(S,R), is

the condition that characterizes all possible initial states making a system S terminate in a

final state that establishes the truth of an assertion (post-condition) R. The term “weak”

or “strong” allude to how general or specific a condition is. The weakest precondition is

basically the most general constraints that should be satisfied in order to satisfy a given

postcondition. Weakest precondition is commonly used in the generation of verification

conditions [46]. In our setting, the postconditions are the critical states that we label.
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Therefore, we have the following equation, in which I denotes the TCP implementation:

wp(I, s) =
∨

M(πi)=s

πi (4.1)

To provide a concrete example of a discrepancy leading to differing path constraints

in different versions of the TCP implementation, we show in Listing 4.1 and Listing 4.2 how

Linux validates incoming RST packets in different versions. In Linux kernel versions before

3.6, when in the ESTABLISHED state, it accepts a RST packet as long as its sequence

number is within the current receive window (Line 6); it then resets the connection and

enters the CLOSE state (Line 13). In versions after 3.6, Linux developers implemented

the defense mechnism from RFC 5961 [94], which performs a much stricter check on RST

packets. These versions only accept a RST packet if its sequence number exactly matches the

next expected sequence number rcv nxt (Line 19). In this case, the two implementations

differ in the path constraints relating to the CLOSE state. In the earlier versions, the

differing path constraints include rcv nxt < seq num < rcv nxt + window size; in the

latter versions, the differing path constraints include seq num = rcv nxt.
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1 s t a t i c i n t t c p v a l i d a t e i n c o m i n g ( s t r u c t sock ∗ sk , s t r u c t s k b u f f ∗skb ,

2 s t r u c t tcphdr ∗th , i n t s y n i n e r r )

3 {

4 . . .

5 /∗ Step 1 : check sequence number ∗/

6 i f ( ! t cp sequence ( tp , TCP SKB CB( skb )−>seq , TCP SKB CB( skb )−>end seq ) ) {

7 . . .

8 goto d i s ca rd ;

9 }

10

11 /∗ Step 2 : check RST b i t ∗/

12 i f ( th−>r s t ) {

13 t c p r e s e t ( sk ) ;

14 goto d i s ca rd ;

15 }

16 . . .

17 }

Listing 4.1: Validation of RST packets in Linux kernel versions before 3.6
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1 s t a t i c bool t c p v a l i d a t e i n c o m i n g ( s t r u c t sock ∗ sk , s t r u c t s k b u f f ∗skb ,

2 const s t r u c t tcphdr ∗th , i n t s y n i n e r r )

3 {

4 . . .

5 /∗ Step 1 : check sequence number ∗/

6 i f ( ! t cp sequence ( tp , TCP SKB CB( skb )−>seq , TCP SKB CB( skb )−>end seq ) ) {

7 . . .

8 goto d i s ca rd ;

9 }

10

11 /∗ Step 2 : check RST b i t ∗/

12 i f ( th−>r s t ) {

13 /∗ RFC 5961 3 .2 :

14 ∗ I f sequence number exac t l y matches RCV.NXT, then

15 ∗ RESET the connect ion

16 ∗ e l s e

17 ∗ Send a c h a l l e n g e ACK

18 ∗/

19 i f (TCP SKB CB( skb )−>seq == tp−>r cv nxt )

20 t c p r e s e t ( sk ) ;

21 e l s e

22 t c p s e n d c h a l l e n g e a c k ( sk , skb ) ;

23 goto d i s ca rd ;

24 }

25 . . .

26 }

Listing 4.2: Validation of RST packets in Linux kernel versions after 3.6
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4.3.1.1 Eliminating Non-determinism in TCP Processing

To extract a deterministic model from a TCP implementation, we need to first

eliminate any non-determinism in TCP. Non-determinism can cause symbolic execution to

explore different parts of the code in different runs, and thus causes false positives, i.e.,

“discrepancies” found between non-deterministic models may not exist between the ac-

tual implementations. Note that non-determinism is always introduced by concrete inputs,

because symbolic inputs will enable forking in symbolic execution and exploration of all

feasible paths. One example of such concrete inputs is a random number generated during

execution, e.g., the initial sequence number in TCP. Since we model the server-side logic

of a TCP implementation, we assume the client-side sequence number is controllable by

the attacker and thus symbolize it. Meanwhile, we hook the random number generator for

the server-side initial sequence number and coerce it to always return a fixed number to

eliminate non-determinism.

Other non-determinism may be introduced due to variations in the execution times

of symbolic execution; this would influence factors such as (but not limited to): 1) Time-

outs (e.g., TCP connection timeout, packet transmission timeout); 2) Congestion control

window size computations; 3) Round-trip time (RTT) calculations; 4) Receive buffer size

computations; 5) Delayed ACK computations; 6) MTU probing; 7) Rate-limits (e.g., out-

of-window ACKs, challenge ACKs); 8) Socket locking by the user thread (affected by the

timing of kernel and user thread switching). To eliminate the non-determinism introduced

by the variation of execution time, we hook the TCP access to the system clock and always
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return deterministic values. This could potentially lead to reduced code coverage (e.g., no

timeouts). We argue that this is a reasonable decision because even if a discrepancy exists

in such timing-related code blocks, it can be unreliable to use such a discrepancy to perform

an evasion attack. In fact, we have not seen any report of such discrepancies leveraged to

that effect. In our experiments, we freeze the clock by always returning the same exact

value. Interestingly, we also tried using monotonically increasing values for the clock, but

it resulted in even lower code coverage.

4.3.1.2 State Merging to Achieve Scalability

To handle path explosion in symbolic execution, we adopt the idea of state merging

from [73]. There is a gamut of state merging options on a program, from complete separation

of individual execution traces (no merging) to aggressively merging two states whenever

their execution traces join; the latter is also called static state merging. As discussed in §4.2,

state merging reduces repetitive work (of executing the same code blocks) in symbolic

execution at the cost of introducing harder-to-solve symbolic formulas in constraint solving.

Aggressive state merging may even harm performance rather than improve it [62]. Hence,

we employ state merging following the general suggestions from [73] as well as the domain

knowledge of TCP.

Specifically, we first collect a list of fork points during symbolic execution with

an initial run. Then we mark merge range candidates with the fork points as the starting

points and their immediate post-dominators as the ending points. The start and end points

form candidate merge ranges. After that, we manually inspect each candidate and the

variables being modified within it, and decide whether to merge based on the following
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heuristics: 1) the critical state variables should not be modified within the merge range;

otherwise, the critical states may become symbolic after merging and thus, it becomes

complicated to group execution traces by critical states in the later phase; 2) no new packets

should be generated/sent, and no dynamic memory allocation or deallocation should occur

within the candidate range; otherwise, additional symbolic memory will be created inducing

extra overheads subsequently; 3) no excessive number of variables modified within the

candidate range (especially if there are TCP-related state variables that will be used heavily

subsequently); otherwise, extra complexity will be introduced in constraint solving later.

Note that these heuristics can be potentially automatically applied with the help of static

analysis. Nevertheless, we consider it an orthogonal component which can be improved

upon separately. We leave the automation of the merge range determination as a future

work.

Finally, during the actual symbolic execution, the labelled merge ranges will be

applied accordingly. Note that the merge ranges can be nested. We will always merge the

innermost ranges and then the outer ones.

4.3.2 Model Comparison

The symbolic model extracted in the previous step is in the form of a mapping

from path constraints on inputs, to critical states, as shown in Figure 4.5. Here the critical

states can be considered as the intermediate states that are directly related to the output

state, which is the reassembled data stream that will be passed to the application layer.

Instead of finding the differences in critical states given the same input, we try to find the
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Figure 4.6: Symbolic Model Comparison

differences in inputs given the same critical state. Specifically, we group the exectuion traces

by critcal states, and then combine their path constraints with disjunction. The combined

path constraints reflect all possible inputs that will drive the TCP implementation into the

critical state, which is also equivalent to the weakest precondition of the critical state. Then

we compare the combined path constraints from the two different TCP implementations,

for each of the critical states, as shown in Figure 4.6. Note that the path constraints

are represented in a format (SMT-LIB [108]) that can be directly processed by constraint

solvers; thus, we can easily test if two path constraints are equivalent using state-of-the-art

constraint solvers such as Z3 [136]. The constraint solver will either prove that the two path

constraints are equivalent or generate a concrete counterexample that is accepted by one of

the path constraints but not the other.

4.3.3 Discrepancy Analysis

From the counterexample generated from the last step, we can craft TCP packets

that will trigger the discrepancy between the two TCP implementations. However, our
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goal is to learn a class of packets that belong to a specific discrepancy (e.g., RST packets

with in-window sequence number) and then, summarize the discrepancy in general. To this

end, we first feed the TCP packets generated from a counterexample, to both TCP imple-

mentations and record the execution traces, respectively. Then, we manually reason about

the root cause of the difference between the two execution traces, to determine the critical

conditions that trigger the difference. Since the execution traces are from two different

implementations, we cannot directly compare them to find the discrepancy. Further, they

are at the binary level and little information is provided. To ease the analysis, we trans-

late the binary-level execution traces to source-code-level execution traces. From there, we

can focus on the symbolic branch traces and easily identify the differences and the critical

branches. Subsequently, we summarize the difference in a symbolic formula, which can be

used to identify the discrepancy. The symbolic formula is fed back to the model comparison

phase, to exclude the discrepancies that have already been found; the process continues

to generate new counterexamples to discover new discrepancies until none exist. The al-

gorithm is shown in Algorithm 1. For example, with regard to the discrepancy discussed

in §4.3.1, the symbolic formula is a constraint that matches all packets with the RST flag

set and the sequence number in window but does not match the exact rcv nxt in the ES-

TABLISHED state. We exclude this constraint from all execution traces starting with the

ESTABLISHED state by performing a conjunction with the negation of the constraint on

the original path constraints. This fulfills the goal of exclusion of the discrepancy.

An alternative workflow is to find a counterexample, exclude the path constraints

corresponding to that counterexample from both symbolic models, and then find the next

126



Algorithm 1 Finding discrepancies between two implementations
1: function FindAllDiscrepancies(I1, I2)
2: AllDiscrepancies← ∅
3: M1 ← ExtractSymbolicModel(I1)
4: M2 ← ExtractSymbolicModel(I2)
5: for s ∈ all critical states in M1 or M2 do
6: Discrepancies← CompareSymbolicModels(M1,M2, s)
7: AllDiscrepancies = AllDiscrepancies ∪Discrepancies
8: end for
9: return AllDiscrepancies

10: end function
11: function CompareSymbolicModels(I1, I2,M1,M2, s)
12: Discrepancies← ∅
13: Π1 ←

∨
M1[π]=s

π

14: Π2 ←
∨
M2[π]=s

π

15: Result, CounterExample← SolveConstraints(Π1 = Π2)
16: while Result = unsat do
17: Discrepancy ← DiscrepancyAnalysis(I1, I2, CounterExample)
18: Discrepancies.insert(Discrepancy)
19: Π1 ← Π1\Discrepancy.constraints
20: Π2 ← Π2\Discrepancy.constraints
21: Result, CounterExample← SolveConstraints(Π1 = Π2)
22: end while
23: return Discrepancies
24: end function
25: function DiscrepancyAnalysis(I1, I2, CounterExample)
26: ExecTrace1 ← TraceExecution(I1, CounterExample)
27: ExecTrace2 ← TraceExecution(I2, CounterExample)
28: Discrepancy ← RootCauseAnalysis(ExecTrace1, ExecTrace2)
29: return Discrepancy
30: end function

counterexample. This would decouple the Symbolic Model Comparison from the Discrep-

ancy Analysis, and make the former fully automated. However, there could be a large

number of execution traces corresponding a single discrepancy, and so it could take much

longer to exclude a discrepancy than using the feedback from the Discrepancy Analysis

directly (our initial studies indicate this is the case). Besides, an execution trace may cover

more than one discrepancy and thus the exclusion of an entire trace may remove more than

the current discrepancy. Thus, we did not pursue this second approach in our work.
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Figure 4.7: Merging DFAs into NFA

4.4 Online Phase: Ambiguity-Aware NIDS

4.4.1 NFA-Based Model for NIDS

Stateful network protocols are usually modeled as Deterministic Finite Automata

(DFA) to make sure that different parties associated have deterministic behaviors and are

well-synchronized. NIDSs also use DFA-based network protocol implementations (as do the

endhosts). However, this makes them conform to a specific version of a protocol implemen-

tation, and have discrepancies with other versions. This leaves opportunities for attackers to

evade them. In order to ensure compatibility with different versions of the network protocol

implementation, we propose a novel, NFA-based model for the NIDS. In Nondeterministic

Finite Automata (NFA), upon receiving an input, the state could transition into any of

multiple different new states non-deterministically. If there are any possibilities that the

state transitions into an accepting state, the input is accepted. In practice, an NFA ”clones”

its state when there are multiple possible next states. Thus, it enables the NIDS to handle

packets with ambiguities i.e., compatible with different packet handling logics of different

versions.
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Discrepancies across TCP implementations project ambiguities to the NIDS when

handling packets. We define an ambiguity as a 3-tuple, (ϕ, λ1, λ2), derived from the discrep-

ancies found by Themis as discussed in §4.3. ϕ denotes the symbolic formula characterizing

all possible inputs that trigger the behavioral differences between the two implementations.

λ1 and λ2 denote the differing behaviors of the two respective implementations. We inte-

grate the ambiguities into the existing DFA of the NIDS and turn it into an NFA. ϕ is the

guard or predicate of the transition. There are two output states, and λ1 and λ2 are the

corresponding transition functions. In this way, we are merging multiple DFAs into an NFA

while reusing the common parts in the DFAs to the maximum extent possible. An example

is shown in Figure 4.7. When processing a RST packet with a TCP MD5 option, an earlier

version of Linux accepts it while a later version discards it. After merging the two DFAs,

the NFA will explore both possibilities in parallel. Rather than running two DFAs side by

side, Themis allows maximized reusability of the code and expedites packet processing.

When processing a packet that causes an ambiguity, the NFA-based NIDS will fork

its currently maintained state for the TCP connection and process it with behavior λ1 and

behavior λ2, respectively. Note that for each connection and ambiguity, we only fork once

and remember the behavior associated with the copy of the connection state. Assuming

there are k ambiguities, then the upper bound of the number of forked connection states is

2k. If the attacker is also aware of the ambiguities, then he can maliciously inject them into

the traffic and cause an exponential growth in the number of connection states on the NIDS,

as a resource exhaustion attack. As a further optimization, we take version coherence of

the behaviors into account and reduce the growth rate to a linear rate.
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4.4.2 Version Coherence

In this work, we focus on the Linux TCP stack and try to find discrepancies

between TCP stacks of different versions of the Linux kernel. We choose n Linux kernel

versions to analyze and sort them by version numbers, denoted as vi, i ∈ [1, n]. Then we

compare each pair of adjacent Linux kernel versions using the approach described in §4.3,

and summarize the discrepancies into ambiguities. For a specific ambiguity (ϕ, λ1, λ2), we

associate λ1 with the earlier version of the Linux kernel, e.g., v1, and λ2 with the later

version, e.g., v2. Then, we know that the changes made to the TCP stack causing the

ambiguity was introduced between v1 and v2. An important insight here is that all versions

before the ambiguity was introduced, should all conform with the old behavior,

and all versions after the ambiguity was introduced, should all conform with

the new behavior. Thus, all versions before v1 must conform to λ1, and all versions after

v2 must conform to λ2.

Ambiguities divide the version space into version ranges. All kernels in the same

version range behave the same with respect to all ambiguities. We sort the ambiguities

by the versions wherein they are introduced, and denote them as aj , j ∈ [1,m]. Note that

we do not know the exact version in which an ambiguity was introduced; we can only

approximate, using the versions we have analyzed. We analyzed every pair of adjacent
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kernel versions, and for each pair we list the ambiguities found between the two versions.

The ambiguities found between the same pair have the same order. The ambiguities found

between different pairs are sorted by the version pairs. For example, let us say a1 is found

between v1 and v2, a2, a3 are found between v2 and v3, and a4 is found between v3 and v4.

Then their relationship would be v1 < a1 < v2 < a2 = a3 < v3 < a4 < v4. We use Ri to

denote the version range defined by two adjacent ambiguities, viz., ai and ai+1. R0 is the

version range before a1 and Rm is the version range after am. For example, in Figure 4.8,

there are 4 ambiguities, a1 < a2 = a3 < a4, dividing the version space into 4 version

ranges. Version range R0 should conform to the old behaviors for all ambiguities, denoted

as (λ1,1, λ2,1, λ3,1, λ4,1). Version range R2 should have the old behavior for ambiguity 4 and

new behaviors for ambiguities 1, 2, and 3, denoted as (λ1,2, λ2,2, λ3,2, λ4,1). k ambiguities

can define at most k+1 version ranges. Note that we only need to maintain one connection

state copy for each version range, as the versions in the same version range all behave

the same regarding all ambiguities. Thus, we have at most k + 1 forked states for each

connection.

In Algorithm 2, we show the algorithm used in Themis for handling packets with

ambiguities in the NIDS.

4.5 Evaluation

In this section, we first evaluate Themis’s symbolic-execution-based discrepancy

discovery, and list the discrepancies found between different versions of the Linux kernel.

Next, we evaluate Themis augmented NIDS by integrating all the discrepancies discovered,
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Algorithm 2 Handling packets with ambiguities in NIDS
1: procedure OnPacketReceived(Packet)
2: NewConnStates← ∅
3: for ConnState ∈ AllConnStates do
4: ConnState.Ambiguities← CheckAmbiguities(Packet, ConnState)
5: for AmbiguityID ∈ ConnState.Ambiguities do
6: if ConnState.Behaviors[AmbiguityID] = Undefined then
7: NewConnState← Fork(ConnState)
8: for i ∈ [AmbiguityID,MaxAmbiguityID) do
9: NewConnState.Behaviors[i]← Old

10: end for
11: for i ∈ [0, AmbiguityID) do
12: ConnState.Behaviors[i]← New
13: end for
14: NewConnStates.insert(NewConnState)
15: end if
16: end for
17: end for
18: AllConnStates← AllConnStates ∪NewConnStates
19: for ConnState ∈ AllConnStates do
20: HandlePacketWithAmbiguities(Packet, ConnState)
21: end for
22: end procedure
23: procedure HandlePacketWithAmbiguities(Packet, ConnState)
24: for AmbiguityID ∈ ConnState.Ambiguities do
25: if ConnState.Behaviors[AmbiguityID] = Old then
26: Implementation of the old behavior
27: else if ConnState.Behaviors[AmbiguityID] = New then
28: Implementation of the new behavior
29: end if
30: end for
31: Processing packets without ambiguities
32: end procedure

and demonstrate its (1) effectiveness in defending against all existing and newly discovered

evasion attacks and (2) performance overhead at runtime.

4.5.1 Symbolic-execution-based Discrepancy Discovery

Themis’s offline component described in §4.3, is built upon S2E [37] and Z3 [136].

We implemented our TCP symbolic execution as S2E plugins, and implemented model

comparison and deviation analysis with Python scripts using Z3 as the underlying constraint

solver. We run Themis on a machine with an AMD EPYC 7542 32-core 64-thread CPU,
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and run symbolic execution with 64 processes in parallel.

4.5.1.1 Performance of Symbolic Execution and Model Comparison.

In our exhaustive symbolic execution, we bound the input to 3 symbolic TCP

packets with payloads and run until all execution paths finish. We symbolize the TCP

header fields except the TCP checksum. This can cover all passive TCP states, including

LISTEN, SYN RECV, NEW SYN RECV, ESTABLISHED, CLOSE WAIT, CLOSE, and

critical states related to receive buffer (e.g., receipt of in-order data or out-of-order data).

Other TCP states require the endhost to actively initiate or close a connection. Since we

are modeling the servers’ behaviors, we leave the exploration of these other TCP states to

future work.

In our initial attempt of exhaustive symbolic execution without state merging on

the Linux TCP stack (on version 4.4), we send 3 symbolic packets without any TCP options;

it took 13.5 hours on average to finish. The total number of execution paths is 1,219,938.

After enabling state merging, it takes less than 4 minutes to finish, and the total number

of execution paths decreases to 1386. Using the heuristics provided in §4.3, we labeled 24

merge ranges. They are mainly related to ECN (Explicit Congestion Notification), window

size, MSS (Maximum Segment Size), and urgent pointer. It takes approximately two days

on average, for a domain expert to do the manual labeling for a Linux kernel version. In

addition, without state merging, it takes more than a week to compare the rather huge

models (with more than one million paths) extracted from Linux kernel versions 4.4 and

5.4. Instead, it takes only 15 seconds to compare two models (with about 1000∼2000 paths)

after enabling state merging.
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Table 4.1: Number of execution paths grouped by critical
states in different versions of Linux kernel

Version All SR EST CW CL IO OOO

3.0 2966 2841 919 588 84 372 1454
3.10 2344 2128 574 350 40 284 796
4.4 1386 1170 302 181 20 149 410
5.4 2214 1998 729 650 49 428 1140
5.10 2314 2250 863 678 51 440 1322

* SR - SYN RECV/NEW SYN RECV; EST - ESTAB-
LISHED; CW - CLOSE WAIT; CL - CLOSE; IO - In-order
data; OOO - Out-of-order data.
* The results are accquired with state merging enabled.

4.5.1.2 Themis’s Discrepancy Discovery

We analyzed 5 major LTS versions of the Linux kernel from 3.0 to 5.10, viz., 3.0,

3.10, 4.4, 5.4, and 5.10. For each version, we run exhaustive symbolic execution with state

merging and send 3 symbolic packets, without and with TCP options. Since TCP options

are usually not correlated with each other, we try each TCP option individually instead of

combining them. We also symbolize the values in each TCP option. For the experimental

results without TCP options, the numbers of execution paths relating to each critical state

are shown in Table 4.1. Note that, these numbers are based on merged execution paths,

and are affected by the labeled merge ranges.

We list all the discrepancies found by Themis in Table 4.2. We also validate our

findings with the commit history of the Linux kernel, and note the date and version when

a discrepancy was first introduced. As one can see, most of the discrepancies were intro-

duced around 2012, while some newer ones were introduced around 2017. A major reason

contributing to these discrepancies, is the change proposed in RFC 5961 [94], a mitigation

against blind in-window attacks. The RFC introduces stricter checks on the sequence and
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acknowledgment numbers in SYN, RST and data packets. This leads to the Discrepancies

2, 3, and 4. A second reason is buggy implementations when validating a TCP packet.

Discrepancy 1 is caused by the older versions not doing a propoer validation on TCP flags

in the LISTEN state, and accepting invalid TCP flag combinations, i.e., SYN+FIN. Dis-

crepancy 5 is due to older versions not checking ACK flags when processing data packets.

Discrepancy 9 is due to older versions mistakenly bypassing the acknowledgment number

checking in certain states, e.g., CLOSE WAIT, CLOSING, LAST ACK. There are also

other reasons stemming from performance improvements and compatibility with other op-

erating systems. Discrepancy 6 was introduced by a fix to the implementation of the Fast

Retransmit/Fast Recovery algorithm. Discrepancy 7 was introduced for performance op-

timization when SACK is enabled and packet loss happens frequently. Discrepancy 8 was

introduced to handle an idiosyncrasy associated with Mac OSX clients, which may leave a

connection that is supposed to be closed, in a lingering state.

Table 4.2: Discrepancies found between different versions of Linux kernels
(from v3.0 to v5.10)

Discrepancy No. 1

Condition In LISTEN state, received a SYN+FIN packet

Old Behavior Initiate a connection

New Behavior Discard

Date 12/3/2011

Version 3.3

Commit https://github.com/torvalds/linux/commit/

fdf5af0daf8019cec2396cdef8fb042d80fe71fa
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Discrepancy No. 2

Condition In ESTABLISHED state, received a SYN packet with
in-window SEQ number

Old Behavior Reset the connection

New Behavior Discard and send a challenge ACK

Date 7/17/2012

Version 3.6

Commit https://github.com/torvalds/linux/commit/

0c24604b68fc7810d429d6c3657b6f148270e528

Discrepancy No. 3

Condition In ESTABLISHED state, received a RST packet with
in-window SEQ number but doesn’t match the exact
next expected SEQ number (rcv nxt)

Old Behavior Reset the connection

New Behavior Discard and send a challenge ACK

Date 7/17/2012

Version 3.6

Commit https://github.com/torvalds/linux/commit/

282f23c6ee343126156dd41218b22ece96d747e3

Discrepancy No. 4

Condition In ESTABLISHED state, received a packet with ACK
number < prior snd una - max window

Old Behavior Accept the packet

New Behavior Discard and send a challenge ACK

Date 12/22/2012

Version 3.8

Commit https://github.com/torvalds/linux/commit/

354e4aa391ed50a4d827ff6fc11e0667d0859b25

Discrepancy No. 5

Condition Data packets without ACK flag

Old Behavior Accept the payload

New Behavior Reject the payload

Date 12/26/2012

Version 3.8

Commit https://github.com/torvalds/linux/commit/

c3ae62af8e755ea68380fb5ce682e60079a4c388
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Discrepancy No. 6 (New)

Condition In LISTEN state, received a SYN packet and created
a new child socket

Old Behavior The initial receive window size is 14600

New Behavior The initial receive window size is 29200

Date 6/13/2013

Version 3.11

Commit https://github.com/torvalds/linux/commit/

85f16525a2eb66e6092cbd8dcf42371df8334ed0

Discrepancy No. 7 (New)

Condition When SACK is enabled, received a RST packet with
SEQ number = end of previously received rightmost
SACK block

Old Behavior Discard and send a challenge ACK

New Behavior Reset the connection

Date 6/8/2016

Version 4.8

Commit https://github.com/torvalds/linux/commit/

e00431bc93bb48c650273be4a00007b2a392d32a

Discrepancy No. 8 (New)

Condition In one of the closing states
(CLOSE WAIT/CLOSING/LAST ACK), received a
RST packet with SEQ number = rcv nxt - 1

Old Behavior Discard

New Behavior Enter CLOSE state

Date 1/17/2017

Version 4.11

Commit https://github.com/torvalds/linux/commit/

0e40f4c9593ba2c7c30150ed669da97bd581c0cd

Discrepancy No. 9 (New)

Condition In one of the closing states
(CLOSE WAIT/CLOSING/LAST ACK), received a
data packet with SEQ number < rcv nxt and ACK
number < prior snd una, but with partial in-window
payload

Old Behavior Discard

New Behavior Enter CLOSE state

Date 5/25/2017

Version 4.13

Commit https://github.com/torvalds/linux/commit/

d0e1a1b5a833b625c93d3d49847609350ebd79db
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We have manually inspected changes to the TCP stack in the Linux kernel from

version 3.0 to 5.10, and confirmed that the discrepancies listed in Table 4.2 are true, and did

not find any new discrepancies. In addition, we measured these discrepancies on Alexa’s

top 1 million websites from the client side, by sending probe packets to the servers and

collecting responses. Although Linux-based servers have the largest market share, there are

still other operating systems and variations. We take them as equivalent if they have the

same behavior as a specific Linux version. We find that both older and newer behaviors

are observed for all discrepancies, which means today’s NIDSs can only either incorporate

the older or the newer version but not both. This leaves the remaining servers vulnerable

to attacks.

In addition to implementation-level discrepancies, we also found some discrepan-

cies in default configurations. Although the TCP MD5 option was introduced in version

2.6.20 in 2006, it was an experimental feature and by default disabled until version 3.9 in

2013. The initial window sizes are different between versions 4.4 and 5.4; this is caused by

different configuration values of the TCP receive buffer size, i.e., net.ipv4.tcp rmem. The

default values for minimum, default, and maximum size of the TCP receive buffer are (4096,

87380, 1887552) in version 4.4, but are (4096, 131072, 1772832) in version 5.4, as a result

of an increasing demand in throughput.

4.5.1.3 Case Studies

In this section, we choose three of the newly discovered discrepancies from our

analysis, and describe how to exploit them in today’s NIDSs. Different from evasion attacks

in previous works, we creatively re-use the four-tuple of a connection to exploit some of these
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discrepancies.

RST rightmost SACK (leading to Discrepancy 7) was introduceds in 2016 [99], as

a performance optimization that allows a connection to be closed by a RST promptly, when

packet losses or out-of-order packets are experienced. When packet losses or out-of-order

packets occur, the rcv nxt stays at the end of the previously received in-order data. After

RFC 5961, TCP only accepts a RST packet if its sequence number is equal to rcv nxt. So

in this case, if an RST is sent after some lost or re-ordered segment, the server’s rcv nxt

doesn’t match the sequence number in the RST and the server will respond with a challenge

ACK. In a lossy situation, the challenge ACK may be lost as well, and the connection will

stay alive for a while. Therefore, the newer versions accept a RST packet as long as its

sequence number matches the right edge of the right-most SACK block previously received.

One can exploit this discrepancy via two possibilities: 1) if the server accepts such RST

packets and the NIDS rejects them, then we can send such a RST packet to tear down the

connection on the server, and then re-use the four-tuple to build a new connection with a

different initial sequence number (ISN), which will not be tracked by the NIDS; 2) if the

NIDS accepts such RST packets and the server rejects them, then we can simply craft such

a RST packet to tear down the connection on the NIDS.

RST after FIN (leading to Discrepancy 8) is an optimization to handle compat-

ibility issues with Mac OSX [98]. In Mac OSX, when some applications are abruptly ter-

minated, a RST packet is sent after a FIN packet with the same sequence number as the

FIN packet. When a Linux server receives the FIN packet, it advances the rcv nxt by one;

this causes the following RST packet to be rejected because of an out-of-window sequence
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number, and a challenge ACK to be sent. The MAC OSX client may not reply with any

further RST packets, and the connection on the Linux server will be left in a closing state

(e.g., CLOSE WAIT). To prevent connections from staying in closing states in such cases,

the newer versions of the Linux kernel also accepts RST packets with a sequence number

equal to rcv nxt - 1, when in a closing state. One can exploit this discrepancy via two

possibilities: 1) if the server accepts such RST packets and the NIDS does not, then we can

send such a RST to tear down the connection on the server, and then re-use the four-tuple

to build a new connection; because the NIDS has not torn down the old connection, it will

not be able to track the new connection; 2) if the NIDS accepts such RST packets and the

server does not, then we can send such a RST to tear down the connection on the NIDS, and

then re-use the four-tuple to send a SYN packet which will create a half-open connection

on the NIDS; after that, we send a legitimate RST packet to tear down the connection on

the server, and then re-use the four-tuple to create a new connection with a different ISN;

because the NIDS already has a half-open connection, it will miss the new connection.

Data in closing states (leading to Discrepancy 9) will reset the connection in older

versions of the Linux kernel because of a buggy implementation [43]. In older versions, when

in one of the closing states (e.g., CLOSE WAIT, CLOSING, LAST ACK), a data packet

with stale sequence and acknowledgment numbers but partial-in-window data will cause the

connection to be reset. Although the acknowledgment number is checked, the result is not

used, and the packet is not discarded immediately but processed further. In new versions,

this bug was fixed, and such data packets will be discarded and trigger a challenge ACK

or duplicate ACK. In order to exploit this discrepancy, there are two possibilities: 1) if the
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server accepts such data packets and the NIDS does not, then we can send such a data

packet to reset the connection on the server, and then re-use the four-tuple to build a new

connection; assuming the NIDS has not torn down the old connection, the new connection

will not be tracked by the NIDS; 2) if the NIDS accepts such data packets and the server

does not, then we can send such a data packet to reset the connection on the NIDS, and

then send a SYN packet with the same four-tuple to create a new half-open connection on

the NIDS; after that, we send a legitimate RST packet to tear down the connection on the

server, and then re-use the four-tuple to create a new connection with a different ISN; the

new connection will not be tracked by the NIDS.

4.5.2 Themis Online Evaluations

In order to understand the effectiveness and efficiency of a NIDS empowered with

Themis, we conduct two evaluations. Specifically we assess its robustness against evasion

strategies and overhead performance in runtime, and compare our results with a state-of-

the-art defense (very recent) [138] against such attacks; this recent approach is based on

Deep Learning (DL) models and has disclosed its pipeline implementation and dataset [57].

4.5.2.1 NIDS Implementation

As mentioned previously, our NIDS should behave according to real TCP imple-

mentations in Linux instead of over-simplified implementations as found in today’s NIDSs.

However, for ease of implementation, we chose to develop our NIDS on top of Zeek (for-

merly Bro) [87], one of the most popular open-source general-purpose NIDSs in the market.

First, we have to realign its behaviors to the common behaviors of the Linux versions we
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support; Second, we implement the different behaviors regarding each of the discrepancies

we discovered; Third, we implement the logics of connection state forking and ambiguity

detection.

Overall, we extend Zeek version 4.0.0 with only 1970 lines of C++ code to handle

8 of the discovered discrepancies listed in Table 4.2 1. Note that realigning Zeek to a Linux

implementation is relatively straightforward and introduces negligible overhead.Hereon, we

refer to the realigned version of Zeek as ambiguity-agonistic which is the baseline in our

overhead evaluation, to be distinguished from Themis which is ambiguity-aware. We will

open source our implementation and associated datasets for reproducibility and future ex-

tensions, at the time of publication.

4.5.2.2 Effectiveness

First, we evalute the effectiveness of Themis in defending against evasion attacks.

Over the past years, there are a number of evasion strategies proposed in [92, 68, 125, 74,

126, 20]. In order to maximize the coverage of our evaluation, we thoroughly analyze all

attacks presented in these works and picked strategies that are related to ambiguities in

TCP. We summarize and implement 34 different strategies after merging redundant ones,

including strategies that leverage the new discrepancies discovered by Themis. A detailed

list of all implemented strategies can be found in the Appendix. We even design composite

strategies that leverage multiple discrepancies in a single connection. Note these strategies

fully cover the evaluated attacks in [138], and thus, we are able to conduct an apples-to-

apples comparison. Our robust NIDS can detect these attacks with a success rate of 100%

1Discrepancy #6 is excluded because the ambiguity can be easily eliminated by looking at the advertised
window size in the server’s response packet.
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Table 4.3: Breakdown of ambiguities present in the 8-day MAWI dataset used in evaluations

Ambiguity No.
(from Table 4.2)

Connections Ratio
Ambiguity No.
(from Table 4.2)

Connections Ratio

1 5 0.000007% 5 3 0.000004%
2 0 0% 7 20 0.00002%
3 31,149 0.043% 8 34,343 0.00047%
4 4,723 0.0065% 9 0 0%

No Ambiguity 72,383,094 99.903% Total 72,453,189 100%

Discrepancy #6 is excluded as discussed in §4.5.2.1

(i.e., malicious payloads that are veiled by evasion attacks, can elude the ambiguity-agnostic

Zeek but not our robust version). In comparison, [138] reports an Area Under the Receiver

Operating Characteristic Curve (AUC-ROC) of 0.963 in detecting state-of-the-art NIDS

evasion attacks, meaning it still produces a considerably large number of false positives as

well as negatives.

4.5.2.3 Operational Runtime Overhead

In addition, we evaluate the overheads incurred due to Themis at runtime, com-

pared to the ambiguity-agnostic Zeek when no malicious evasion attacks are present. Note

that even without malicious evasion attacks, there can be a number of ambiguous pack-

ets observable in natural network traffic. This is because in a wild Internet environment,

various implementations may exist and the packets exchanged across them may satisfy the

conditions associated with ambiguities. In such cases, these ambiguities are not actively

exploited for malicious purposes, but can still cause overhead since Themis would still fork

states on such bases. We refer to this overhead as operational runtime overhead associated

with Themis when it is deployed in real network environments.

The key to accurately estimating the operational overhead is finding representative
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network traffic captures to evaluate Themis. For this, we use the MAWI Traffic Archive [54]

as the base dataset. It provides PCAP dumps from a backbone network located in Japan,

and is thus, considered sufficiently large and representative. We pick 7-day recent traces

captured from April 25 to May 1, 2021, in additon to the trace on April 7, 2020 (i.e.,

the dataset used in [138]), and filter out any non-TCP connections to forge a test set of

72,453,189 TCP connections. Table 4.3 shows the statistics of different ambiguities present

in the trace. Overall, only a very small fraction of natural/benign traffic contain pack-

ets that cause ambiguities. Specifically, there are only 69,994 (0.097% of the connections)

connections with exactly 1 ambiguity, 131 with 2 different ambiguities, 1 with 3 different

ambiguities, and no connections with more than 3 ambiguities. As for the resulting op-

erational overhead, we find that compared to ambiguity-agnostic Zeek, our robust version

incurs only about 1.07% additional processing time, indicating only negligible levels of op-

erational cost. The average processing time is 69400.5 packets per second. In comparison,

the state-of-the-art defense from [138], can only process less than 2200 packets per second

(due to the computational cost of the deep learning model), which is more than 30 times

slower than Themis.

4.5.2.4 Overhead Growth with Multiple Ambiguities

In addition to the operational overhead incurred on benign traffic traces, we are

also interested in evaluating the runtime overhead that Themis imposes in the presence

of multiple different ambiguities in a single connection. Although, natural traffic rarely

includes more than one ambiguity in the same connection (only ∼0.0002% in our 8-day

MAWI dataset), we are interested in knowing how would the overhead of Themis grow with
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repsect to the number of ambiguities, for understanding how vunlunerable Themis is agaisnt

Denial-of-Service attacks (i.e., deliberately injected multiple ambiguities for slowing down

NIDS processing). To maliciously induce extremely high overhead, an attacker could aim to

trigger as many state forkings as possible for each connection. Because each packet will be

processed by all forked states, the overhead is proportional to the number of forked states.

Furthermore, the attacker may want to use long-lived connections, because after reaching the

maximum number of forked states, every packet sent by the attacker will cause significant

extra overhead on the NIDS. Based on this reasoning, we manually inject ambiguities into

normal connections, and measure the processing time growth of Themis along with number

of ambiguities. The results are shown in Figure 4.9, and suggest that the overhead growth

is in principle linearly proportional to the number of ambiguities. Note that the overhead

stops growing after 6 ambiguities. This is because some ambiguities, specifically 7, 8, and

9, cannot coexist in the same connection due to version coherence and connection being

reset. For example, versions before ambiguity 7 all conform with the old behavior for

ambiguity 7, 8 and 9, and for versions after ambiguity 7, the connection will be reset after

seeing ambiguity 7. In addition, based on the results in §4.5.2.3, it’s rare to encounter a

connection with more than 3 ambiguities, therefore, we could safely mark a connection as

suspicious if it has more than 3 ambiguities.

4.6 Discussion and Limitations

Completeness and Soundness of Symbolic Modeling. By performing ex-

haustive symbolic execution, we achieve a complete coverage of feasible execution paths by

145



Number of ambiguities in a connection

P
ro

ce
ss

in
g 

tim
e 

(r
at

io
)

0

1

2

3

4

5

1 2 3 4 5 6 7 8

Traditional Zeek Themis

Figure 4.9: Overhead growth in a connection by number of ambiguities

finishing all execution states. However, there still could be potential cases missing. First,

we use a specific configuration of Linux (e.g, kernel compilation configuration, Linux sysctl

settings), and thus, cannot guarantee all TCP logic are covered (e.g, some features may

not be enabled). Second, we eliminate some non-determinism in TCP (e.g., we freeze the

CPU clock), and this could also cause incomplete coverage because we only explore one

possibility instead of all. Further, some TCP logics need to be triggered by user space

applications, which can set TCP socket options, or call certain system calls like connect(),

send(), recv(), etc. We only use a simple server-side application with default options,

passively listening on a socket and receiving packets.

In addition, we note that there is a well-known data overlapping evasion strat-

egy which is missed by Themis. Basically, an attacker can craft two data packets with

overlapping sequence numbers and result in ambiguities regarding which of the two copies

of the overlapped portion will be accepted. Most of the OSes, such as Linux, favor the

last segment upon receiving the overlapped data, while Windows favors the first segment.
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Since Themis currently analyzes only Linux implementations, it cannot discover this par-

ticular discrepancy. Nevertheless, this discrepancy can still be easily incorporated into the

ambiguity-aware NIDS.

Extending to Other Operating Systems. Although Linux enjoys a major

market share among the server OSes, there are also other OSes such as Windows and

FreeBSD. Themis uses S2E [37] as the symbolic execution engine to extract the TCP

model from an OS. S2E works on the binary level and runs the entire OS in QEMU, and

does not require source code. So in principle, we could extend Themis to all other OSes,

including those that are closed-source (e.g., Windows). However, we will need to label the

critical states and merge ranges to scale up symbolic execution. Without access to source

code, this process can be more time-consuming.

Extensions to Model Client Behaviors. In this work, we focus on modeling

servers’ behaviors. Although the TCP stack of the client and the server are the same, we

do not explore TCP states exclusively related to the client, e.g., TCP SYN SENT. Our

motivation stems from the fact that NIDS are typically deployed as safeguards against

servers in corporations as opposed to individual clients which could be anywhere in the

world. In order to model the clients’ behaviors, we need to run a client application and

actively initiate connections and send packets. Conceivably, Themis can protect a client

from being exploited by malicious content sent from a server. However, we leave this

possibility to future work.

Ethical Considerations. We acknowledge that improving the robustness of

NIDS has an unintended consequence of improving the robustness of censorship firewalls too,
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as they both need to keep track of TCP connection states and reassemble TCP data packets.

Similar to other technologies such as encryption that can be used for both good (e.g.,

protecting our privacy) and bad purposes (e.g., plotting a terrorist attack), we believe the

value in preventing malicious attacks generally outweighs the collateral damage of disrupting

censorship circumvention.

4.7 Related Work

Finding Discrepancies between Implementations. Discrepancies between

implementations are usually good indicators of implementation bugs. They can also be

used to fingerprint implementations or evade detection (as considered here) leveraging

semantic gaps [67, 126]. There is work aiming at finding discrepancies between differ-

ent implementations of the same target; examples include network protocols [25, 34, 126],

parsers [88, 67, 30], libraries [120, 112], etc. A common way to find discrepancies is dif-

ferential testing combined with random input generation or fuzzing. Brubaker et al.[24],

generate synthetic X.509 certificates by randomly mutating fields in a real certification, and

then feed them to different certificate validation programs in order to find bugs from dis-

crepancies. Jana et al. [67] also employ differential fuzzing but against malware detectors.

They discover novel attacks that exploit the discrepancies between parsers of the malware

detectors and actual applications, and can evade the detection. This approach treats the

target as a black-box and does not require any internal information, and is therefore easy

to apply. However, the coverage is usually low because it can only explore the search space

near the seed input.
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Some other works use static analysis to extract semantic information from binary

or source code. Min et al. [78], target the Linux file systems and extract high-level semantic

information from the source code; they then do a statistical comparison to discover deviant

behaviors. Srivastava et al. [112] conduct flow- and context-sensitive interprocedual static

analysis on Java API implementations, and produce context-sensitive security policies for

every API entry point, and then compare the policies to find discrepancies. Static analysis

can leverage semantic information and is scalable, but also suffers from false positives.

Symbolic execution is also used to extract a more accurate semantic representation

from the source code or binary. Brumley et al. [25], extract symbolic formulas by replaying

captured network traces against different implementations, and then compare the symbolic

formulas with a constraint solver. But due to limited coverage, they suffer from false

positives. Similarly, Chau et al [33] feed symbolic X.509 certificates to certificate validation

implementations, and extract constraints relating to certificate “accept” and “reject” paths.

They then use a constraint solver to find discrepancies. Wang et al. [126] combine symbolic

execution with black-box differential testing, and use symbolic execution as a guide to

group equivalence inputs by execution paths and therefore, largely reduce the search space.

However, all these works only achieve partial coverage and compare indiviual execution

paths to discover discrepancies opportunistically. Our approach aims to systematically

discover all discrepancies between two implementations, as it relates to NIDS evasion. To

achieve this goal, we need to run symbolic execution exhaustively to traverse all feasible

execution paths in each of our target implementations, and then calculate the weakest

preconditions based on the entire program.
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Defenses against NIDS Evasion Attacks. Zhu et al.[138] present a deep

learning based solution for detecting and localizing DPI evasion attacks by learning the

so-called packet context (i.e., inter-relationships of header fields within and across packets)

from benign traffic traces. It then uses the learnt model on unseen network connections to

spot anomalies in terms of deviations from the benign context distribution. As discussed

in §4.5, compared to Themis, [138] falls behind in terms of both the detection accuracy

(0.963 vs. 1.00 in AUC-ROC) and runtime overhead (2162.2 vs. 69400.5 packets processed

per second under the same single-core CPU setup). This is because any DL-based defense,

unlike Themis, always will generate some incorrect classifications and require relatively

heavy computations in their inference phase.

Traffic normalization [61] takes a different approach in defending NIDS against

evasion attacks. A normalizer sits in the path and patches up the packets passing through

to eliminate potential ambiguities, before they are seen by the NIDS. It relies on a manually

curated list of potential ambiguities in basic network protocols such as TCP, UDP, IP,

and ICMP. However, unfortunately, it cannot safely remove all possible ambiguities in the

absence of detailed knowledge about the various implementations on the endhosts, and

could even disrupt the communications since it alters the traffic.

Active Mapping [104] builds a profile for each endhost and actively maintains a

profile database. This is apt for a small network with relatively stable members, and not

for a large scale network with dynamic members. Usually, it takes time to build profiles,

and they need to be updated often. Moreover, the NIDS needs to be agnostic to the details

and configurations of software on the endhosts.
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Paxson [87] proposes to use bifurcating analysis to explore all different possibili-

ties of packet reassembly. However, without the knowledge of ambiguities, it will lead to

exponential growth in state forking overhead in practice.

4.8 Conclusions

In this chapter, we aim to defend against attacks that seek to evade network in-

trusion detection systems, by exploiting the discrepancies between its TCP implementation

and that at a targeted end server. These discrepancies are commonplace, and, thus these

threats are very real. We design a novel lightweight system Themis which is extremely ef-

fective in defending against such attacks. It contains an offline phase, where it identifies and

models discrepancies in TCP implementations across OS versions using symbolic execution.

The models are then employed at runtime, and by applying a non-deterministic automaton

the proper implementation versions are forked to handle packets correctly and block evasion

attempts. Themis is extremely effective and is able to block all known evasion attempts to

date with negligible additional overhead on a NIDS. In developing Themis we also discover

multiple brand new discrepancies, that are exploitable as it relates to current NIDS.
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Chapter 5

Conclusions

My work focuses on understanding the potential threats caused by discrepancies in

implementations of stateful network protocols, such as the Transmission Control Protocol

(TCP), developing systematic and automated approaches to discover discrepancies, and

proposing defenses that mitigate these threats. First, we conduct a comprehensive study

of the evadability of the largest censorship/network intrusion detection system on today’s

Internet, viz., the Great Firewall of China (GFW). Our evasion strategies are based on

TCP-layer discrepancies between the target and the servers on the Internet. We treat the

target as a blackbox and infer its TCP model by sending probe packets. Our inferred model

leads us to the discovery of novel evasion strategies designed based on unique behaviors of

the target. We also build an extensible measurement tool INTANG that incorporates all

existing and newly discovered evasion strategies. Our results show that our discrepancy-

based evasion strategies can achieve extremely high success rates of close to 100%, thus,

validating our understanding of TCP-layer discrepancies in the context of NIDS evasion.
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Subsequently, we seek an automated approach to boost the efficiency of discovery

of TCP-layer discrepancies. We develop SymTCP, an automated tool that employs the

symbolic execution technique to analyze the Linux TCP stack and generate candidate in-

sertion and evasion packets that may trigger discrepancies, and then use differential testing

to validate those candidates to find real discrepancies between the TCP stacks of NIDSs and

of Linux servers. SymTCP is demonstrated to be capable of finding highly effective evasion

strategies, against three state-of-the-art NIDS systems, Zeek, Snort, and the GFW, in a

short time, significantly outperforming previous works based on manual approaches. Our

methodology developed can be easily adapted and extended to other TCP implementations

and other network protocols.

Finally, we aim at defending the network intrusion detection systems against

discrepancy-based evasion attacks, by incorporating the knowledge of discrepancies into

the design of NIDS. We design Themis, a system composed of an offline phase and an on-

line phase. In the offline phase, we employ exhaustive symbolic execution to systematically

discover discrepancies between various versions of the Linux TCP stack, and generate a com-

prehensive list of discrepancies, including previously unknown ones. In the online phase,

we propose a novel design of NIDS based on nondeterministic finite automata (NFA), and

empower it with the knowledge summarized from discovered discrepancies. Our NIDS is

robust and immune to discrepancy-based evasion attacks. We demonstrate that Themis is

highly effective in detecting all known evasion attacks to date, while introducing negligible

overhead comparing to a traditional DFA-based NIDS.

153



Bibliography

[1] DNSCrypt. https://dnscrypt.org/.

[2] libev. http://software.schmorp.de/pkg/libev.html.
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[39] Chia Yuan Cho, Domagoj Babić, Pongsin Poosankam, Kevin Zhijie Chen, Ed-
ward XueJun Wu, and Dawn Song. Mace: Model-inference-assisted concolic explo-
ration for protocol and vulnerability discovery. In Proceedings of the 20th USENIX
Conference on Security, SEC’11, pages 10–10, Berkeley, CA, USA, 2011. USENIX
Association.

[40] Richard Clayton, Steven J. Murdoch, and Robert N. M. Watson. Ignoring the great
firewall of china. In Proceedings of the 6th International Conference on Privacy
Enhancing Technologies, PET ’06, pages 20–35, Berlin, Heidelberg, 2006. Springer-
Verlag.

[41] Jedidiah R. Crandall, Daniel Zinn, Michael Byrd, Earl Barr, and Rich East. Concept-
doppler: A weather tracker for internet censorship. In Proceedings of the 14th ACM
Conference on Computer and Communications Security, CCS ’07, pages 352–365,
New York, NY, USA, 2007. ACM.

[42] Exploiting dpi surveillance for advertising will track if you surf for work or fun. https:
//www.csoonline.com/article/2227882/.

157

https://www.csoonline.com/article/2227882/
https://www.csoonline.com/article/2227882/


[43] tcp: better validation of received ack sequences.

[44] Joeri de Ruiter and Erik Poll. Protocol state fuzzing of TLS implementations. In 24th
USENIX Security Symposium (USENIX Security 15), pages 193–206, Washington,
D.C., August 2015. USENIX Association.

[45] Sarang Dharmapurikar and Vern Paxson. Robust tcp stream reassembly in the pres-
ence of adversaries. In Proceedings of the 14th Conference on USENIX Security Sym-
posium - Volume 14, SSYM’05, pages 5–5, Berkeley, CA, USA, 2005. USENIX Asso-
ciation.

[46] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[47] Holger Dreger, Anja Feldmann, Michael Mai, Vern Paxson, and Robin Sommer. Dy-
namic application-layer protocol analysis for network intrusion detection. In Proceed-
ings of the 15th Conference on USENIX Security Symposium - Volume 15, USENIX-
SS’06, Berkeley, CA, USA, 2006. USENIX Association.

[48] Haixin Duan, Nicholas Weaver, Zongxu Zhao, Meng Hu, Jinjin Liang, Jian Jiang,
Kang Li, and Vern Paxson. Hold-on: Protecting against on-path dns poisoning. In
Workshop on Securing and Trusting Internet Names (SATIN), 2012.

[49] Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver, and Vern
Paxson. Examining how the great firewall discovers hidden circumvention servers. In
Proceedings of the 2015 Internet Measurement Conference, IMC ’15, pages 445–458,
New York, NY, USA, 2015. ACM.

[50] Roya Ensafi, Jong Chun Park, Deepak Kapur, and Jedidiah R. Crandall. Idle port
scanning and non-interference analysis of network protocol stacks using model check-
ing. In Proceedings of the 19th USENIX Conference on Security, USENIX Security’10,
pages 17–17, Berkeley, CA, USA, 2010. USENIX Association.

[51] Graham Finnie. Isp traffic management technologies: The state of the art. Heavy
Reading. Report for the CRTC, 2009.
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Appendix A

List of Implemented Evasion

Strategies for Themis Evaluation

We have implemented all the TCP-related evasion strategies presented in previous

works [92, 68, 125, 74, 126, 20], after merging redundant strategies. There are in total 34

evasion stategies as listed in Table A.1. We apply those stategies to a HTTP connection,

in which the client sends a malicious request with a bad keyword. Themis can successfully

detect the bad keyword in all the attacks.
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Table A.1: List of implemented evasion strategies (strategies in bold are new)

No. Strategy Description

1 Bad checksum data In ESTABLISHED state, send junk data with bad checksum,

and then send the request

2 Bad checksum RST In ESTABLISHED state, send partial request, then send a

RST packet with bad checksum, and then send the remaining

request

3 No ACK flag data In ESTABLISHED state, send junk data without ACK flag,

and then send the request

4 No ACK flag FIN In ESTABLISHED state, send partial request, then send a

FIN packet without ACK flag, and then send the remaining

request

5 SYN with data In LISTEN state, send a SYN packet with payload, then send

the request

6 Bad ACK number data In ESTABLISHED state, send junk data with out-of-window

ACK number, and then send the request

7 Bad ACK number RST/ACK In ESTABLISHED state, send partial request, then send a

RST/ACK packet with out-of-window ACK number, and

then send the remaining request

8 Small data offset header In ESTABLISHED state, send junk data with TCP data

offset <5, and then send the request

9 Large data offset header In ESTABLISHED state, send junk data with TCP data

offset >actual packet size / 4, and then send the request

10 Bad MD5 data In ESTABLISHED state, send junk data with TCP MD5

option, and then send the request
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No. Strategy Description

11 Bad MD5 RST In ESTABLISHED state, send partial request, then send a

RST packet with TCP MD5 option, and then send the re-

maining request

12 Bad TCP timestamp data In ESTABLISHED state, send junk data with bad TCP

timestamp, and then send the request

13 Bad TCP timestamp RST In ESTABLISHED state, send partial request, then send a

RST packet with bad TCP timestamp, and then send the

remaining request

14 Bad SEQ number data In ESTABLISHED state, send junk data with out-of-window

SEQ number, and then send the request

15 Bad SEQ number FIN In ESTABLISHED state, send partial request, then send a

FIN packet with out-of-window SEQ number, and then send

the remaining request

16 Bad SEQ number RST In ESTABLISHED state, send partial request, then send a

RST packet with out-of-window SEQ number, and then send

the remaining request

17 Invalid TCP flags In ESTABLISHED state, send junk data with flags FRAPUN

set, and then send the request

18 Multiple SYNs In SYN RECV or ESTABLISHED state, send a SYN packet

with out-of-window SEQ num, and then send the request

19 Big gap in data In ESTABLISHED state, send junk data with SEQ = rcv nxt

+ max gap size (16384), and then send the request

20 SEQ number before ISN In ESTABLISHED state, send the request with SEQ <ISN

(initial sequence number) but partial-in-window data
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No. Strategy Description

21 In-window SYN In ESTABLISHED state, send partial request, then send a

SYN packet with SEQ >rcv nxt but in window, and then

send the remaining request

22 In-window FIN In ESTABLISHED state, send partial request, then send a

FIN packet with SEQ >rcv nxt but in window, and then

send the remaining request

23 In-window RST In ESTABLISHED state, send partial request, then send a

RST packet with SEQ >rcv nxt but in window, and then

send the remaining request

24 Partial in-window RST In ESTABLISHED state, send partial request, then send a

RST packet with SEQ <rcv nxt but partial data in window,

and then send the remaining request

25 Urgent data In ESTABLISHED state, send the request with urgent

pointer and URG flag set, also need to insert one byte urgent

data into the payload

26 Time gap In ESTABLISHED state, send partial request with times-

tamp, and then send the remaining request with timestamp

= last timestamp + 0x80000000

27 Small segments In ESTABLISHED state, send the request in small segments

(size = 4)

28 TCB Turnaround In LISTEN state, send a SYN/ACK packet before sending

the SYN packet, then establish the connection and send the

request

29 Muti-segmentation In ESTABLISHED state, send the request in segments, 1st

segment size 8, 2nd segment size 4, and then send the re-

maining request
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No. Strategy Description

30 Simple TCB Desynchronization In SYN RECV state, send a SYN packet with junk payload,

and then send the request

31 SYN+FIN In LISTEN state, send a SYN+FIN packet, then establish

the connection with a different ISN and send the request

32 RST rightmost SACK SAckOK option in SYN packet. In ESTABLISHED state,

send partial request with a SEQ gap, then send a RST packet

with SEQ = SEQ end of last packet, and then send the re-

maining request

33 RST after FIN In ESTABLISHED state, send a FIN/ACK packet, then send

a RST packet with SEQ = SEQ of the FIN packet, and then

reuse the 4-tuple to established a new connection and send

the request

34 Data in closing states In ESTABLISHED state, send a FIN/ACK packet, then send

junk data with SEQ <rcv nxt but in-window data and ACK

<previous ACK, and then reuse the 4-tuple to establish a

new connection and send the request
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