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Abstract 

 

Avian Responses to Mechanical Stress:  

Morphology and Bone Structure During Hovering, Migration, and Egg-Laying 

 

by 

 

Leeann D. Louis 

 

Doctor of Philosophy in Integrative Biology 

 

University of California, Berkeley 

 

Professor Robert Dudley, Chair 

 

All organisms experience mechanical forces which shape their body size and 

morphology. However, mechanical forces vary between species within a given lineage, between 

populations of a given species, between different sexes, and even within an individual organism 

over time. Here, I explore how variable mechanical forces influence bird morphology across 

these different scales. First, I explore how the presence or absence of hovering behavior alters 

bone morphology across a lineage of birds. Second, I look at how remaining sedentary or 

migrating influences morphology within a single species. Third, I study how egg-laying behavior 

alters female bone morphology over time. By studying how mechanical forces influence 

morphology we can gain an understanding of the mechanisms that control organism shape. 

 

Chapter 1: Morphological Adaptations to Hovering in a Remarkable Radiation of Old 

World Nectar-Eating Birds: the Sunbirds (Nectariniidae) 

Hovering is a unique form of locomotion that allows an animal to remain stationary in the 

air. While hummingbirds hover almost exclusively to obtain nectar from flowers, other nectar-

eating birds vary in whether and how often they hover. This tendency may be constrained by 

morphology. Hummingbirds have several morphological adaptations to hovering, including long 

wings, short tarsi, and shortened proximal wing bones.  

I hypothesized that the morphology of hovering birds converges on hummingbird 

morphology. Specifically, I predicted that hovering birds would be lower in mass and have 

longer wings, reduced tarsi, and longer tails. I also predicted that hovering birds would not vary 

in mass across elevations, but that higher elevation species would have relatively long wings. To 

test these predictions, I measured mass, elevation, wing length, tail length, and tarsus length in a 

group of birds that includes species that hover and species that do not hover: the sunbirds 

(Nectariniidae).  

In contrast to my predictions, hovering sunbird species were heavier than those that did 

not hover. Female hovering sunbirds did have relatively long wings, but males did not. Hovering 

sunbirds did not have relatively short tarsi or long tails. However, male sunbirds in general did 

have relatively short tarsi and long tails. Hovering species did not vary in mass across elevation, 

Females but not males had longer wings with increasing elevation.  
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These results suggest that nectar-eating behavior, not hovering behavior, may select for 

hummingbird-like morphologies such as long wings and short tarsi. Additionally, hovering 

behavior seems to apply weaker selective forces on the morphology of most birds than it does in 

hummingbirds. A deeper understanding of the morphological requirements for hovering will aid 

in our understanding of the evolution of nectar-eating and its association with hovering behavior. 

 

Chapter 2: Influence of Migratory Behavior on Bone Morphology in the Dark-Eyed Junco 

(Junco hyemalis) 

Migratory behavior requires birds to expend increased energy as they spend a greater 

proportion of the day flying. To prepare, birds increase body mass by 20% or more, increase the 

masses of muscles associated with flight, and shrink organs that are not used during migration 

such as the stomach. This simultaneous increase in body mass, muscle mass, and the number of 

loads applied to the body each day has been associated with increased microcrack formation and 

risk of fatigue fracture in humans. Is migratory behavior in birds associated with any adaptations 

in bone structure?  

To answer this question, I compared bone morphology of resident (J. h. carolinensis, J. h. 

pontilis) and migrant (J. h. hyemalis, J. h. montanus, J. h. aikeni) subspecies of the Dark-Eyed 

Junco (Junco hyemalis). Specifically, I looked at trabecular and cortical bone morphology in the 

humerus and femur using micro-computed tomography and linear mixed effects models. 

I found that migratory birds had humeri that were thinner and wider, but these changes 

were not associated with a difference in geometric stiffness. In contrast, migratory femora were 

thinner, resulting in reduced geometric resistance to bending. Therefore, migrant femurs are less 

stiff under loading, but migrant and resident humeri have similar whole bone stiffness properties. 

Taken together, these results suggest that residents and migrants have similar demands on 

the humerus, but that migrants have reduced demands in the femur. This may be due to 

resorption of muscle mass during migration, relatively increased evolutionary pressures to reduce 

body mass in migrants, or other differences in selection between residents and migrants. Further 

research should be performed to explore what mechanisms drive differences between resident 

and migrant birds. 

 

Chapter 3: Microstructure and Mechanical Properties of Bird Bone During Egg-Laying 

In the week prior to laying an egg, a female bird creates a unique calcified tissue inside 

her long bones: medullary bone. Medullary bone is primarily thought to function in calcium 

storage, as females draw heavily from it when producing an eggshell. However, it also increases 

overall bone mass and alters whole bone mechanical properties, and thus may influence avian 

energetics and behavior. What is the structural contribution of medullary bone to resisting forces 

during bending, and how might it influence behavior?  

To answer this question, I gave male zebra finches (Taeniopygia guttata) an estrogen-

eluting implant in order to generate a predictable model of medullary bone. Using micro-

computed tomography scans of the humerus and femur, I created models with and without 

medullary bone, and used finite element analyses to apply bending forces (resulting in 1% axial 

displacement) and measure the load held in each bone.  

I found that the addition of medullary bone resulted in a 36 – 41% increase in bone mass 

but an increase in whole bone stiffness of only 24 – 30%. It also had minimal influences on the 

load held in the cortex. I confirmed these results in similar models of female birds during egg-

laying.  
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My results align with those of previous studies, which showed that medullary bone 

increases whole bone strength, but that increases are not concomitant with its increase in volume. 

Medullary bone therefore represents an ideal compromise between the need to store calcium for 

use during egg-laying while maintaining bone loading and bone mechanical integrity. 

 

Conclusion 

In summary, variations in mechanical forces influence morphology across varying scales. 

Specifically, the high forces experienced during hovering may select for longer wings, while the 

large energy expenditures during migration may select for reduced femur mass. In addition, these 

studies demonstrate that birds can be a useful system in which to understand how mechanical 

forces influence morphology. Future work should explore the nuances and potential mechanisms 

by which mechanical forces shape morphology. 
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Chapter 1. Morphological Adaptations to Hovering in a Remarkable 

Radiation of Old World Nectar-Eating Birds: the Sunbirds 

(Nectariniidae) 
 

Introduction 

Hovering flight is ubiquitous in hummingbirds but is also common in many small birds. These 

include a third of sunbirds (Nectariniidae) (Cheke and Mann, 2001), some flowerpeckers 

(Dicaeidae) (Cheke and Mann, 2001; Cheke and Mann, 2008a), some honeyeaters 

(Meliphagidae) (Higgins et al., 2008), a sugarbird (Promeropidae) (Cheke and Mann, 2001), and 

evidence in some sparrows, finches, white-eyes, and others (Brown, 1963; Wester, 2013a). 

Despite its prevalence, hovering is an energetically expensive form of flight. It requires birds to 

produce a sufficient downward momentum of air to offset their weight without the advantage of 

air accelerating over the wing during forward flight (Norberg, 1990), and requires a high mass-

specific rate of oxygen consumption (Suarez et al., 1991). There are two general methods that 

birds use to hover: symmetric hovering, which is primarily used in hummingbirds; and 

asymmetric hovering, which is used by most other birds (Norberg, 1990). In contrast to the 

symmetric hovering of hummingbirds and despite the prevalence of asymmetric hovering across 

birds, little is known about asymmetric hovering and any morphological adaptations birds 

require to perform the behavior. 

 

Symmetric and asymmetric hovering require very different wing kinematics and aerodynamics. 

In symmetric hovering, hummingbirds move their wings through a primarily horizontal stroke 

plane, thus producing aerodynamic force during both downstroke and upstroke (Ingersoll et al., 

2018). In contrast, when birds other than hummingbirds perform slow-flying or hovering flight, 

they do not produce significant aerodynamic lift during upstroke (Chang et al., 2011; Chang et 

al., 2013; Muijres et al., 2012). These aerodynamic differences presumably select for different 

morphological adaptations to optimize their aerodynamic efficiency.  

 

In addition, whereas hummingbirds hover almost exculsively, asymmetrically hovering species 

vary widely in the frequency with which they employ hovering flight. Wester (2013a) reviewed 

evidence of hovering behavior across passerine birds and categorized the frequency with which 

species were found to hover, including descriptions such as often, exclusively, sometimes, and 

rarely. They also note that hovering frequency varies within species based on the type of flower 

visited. Here, I was broadly interested in whether morphology varies with hovering ability. 

Therefore, I treated hovering as a binary trait, and separated species into those that are known to 

hover and those that re not known to hover (e.g. hovering presence and hovering absence, 

respectively).  

 

Hummingbirds have many morphological adaptations associated with hovering: drastically 

shortened proximal wing bones to increase wingtip speed (Zusi 2013), wings that scale in length 

with their body mass faster (α mass2/3) than what is seen in other birds (α mass1/3) (Greenewalt, 

1962; Skandalis et al., 2017), aerodynamic constraints on upper body mass (Hainsworth and 

Wolf, 1972), and reduced tarsus length (Collins and Paton, 1989). We also know that 

hummingbirds do not vary in mass across elevation (Skandalis et al., 2017), but that individuals 



 

2 

  

living at higher elevations have larger wings for their mass than birds at lower elevations 

(Altshuler and Dudley, 2002; Skandalis et al., 2017). This trend of increased wing length with 

elevation is not unique to hummingbirds (Hamilton, 1961; Traylor, 1950), but hummingbirds are 

among the species that demonstrate it. Regarding tail length, Clark and Dudley (2009) found that 

removing or extending the tail of Anna’s hummingbirds (Calypte anna) does not influence the 

metabolic costs of hovering flight. However, hummingbird tail length does scale with positive 

allometry (α mass1/2), similar to wing length (Clark, 2010), and a long tail has been found to 

assist in pitch stability in hovering hummingbirds (Altshuler et al., 2009), suggesting that a long 

tail may be beneficial in slow and hovering flight (Thomas and Balmford, 1995). Given our 

knowledge of the morphological adaptations of symmetrically hovering hummingbirds to their 

flight behavior, it is surprising how little we know about any morphological adaptations that 

might exist for asymmetric hovering.  

 

Therefore, I asked the question: does asymmetric hovering select for specific morphological 

adaptations? To address this question, I look at a group of birds in which asymmetric hovering 

behavior is known (the sunbirds, Nectariniidae) and demonstrate using ancestral reconstruction 

that hovering behavior has appeared numerous times. To derive predictions about what 

morphological trends I expect to see with asymmetric hovering behavior, I make the broad 

hypothesis that that hovering sunbird species converge morphologically on features seen in 

hummingbirds. Given this hypothesis, and the observation about morphological trends in 

hummingbirds discussed above, I can make 5 predictions: (1) hovering sunbirds will tend to be 

slightly lower in mass than non-hovering sunbirds; (2) hovering sunbirds will demonstrate wing 

length hyper-allometry, that is, wing length will that scale at an exponent larger than 1/3 for 

hovering sunbirds; (3) hovering sunbirds will have reduced tarsal length compared to non-

hovering sunbirds; (4) sunbirds will not differ in mass across elevation; and (5) wing length will 

increase with elevation  in hovering sunbirds are longer at higher elevations than in non-hovering 

sunbirds. Additionally, given that a long tail seems to benefit hovering hummingbirds, and given 

that it aids in pitch stability in Japanese White-Eyes (Zosterops japonicus) (Su et al., 2011; Su et 

al., 2012), I predict that (6) tail length will scale with positive allometry in hovering sunbirds. 

 

Methods 

Literature survey 

An exhaustive search of the literature was performed to collect all available data on sunbird 

hovering behavior, elevational range, and morphology.  

 

Hovering behavior was treated as a binary variable for each species. The general literature on 

sunbird behavior was combed for any mention of hovering behavior (Cheke and Mann, 2001; 

Cheke and Mann, 2008b; Wester, 2013b). Mention of hovering behavior was coded as presence 

and lack of mention was coded as absence. Two authors (Louis and Torres) independently 

scanned the literature to ensure that coding was accurate.  

 

Data on minimum, maximum, and midpoint elevation (halfway between minimum and 

maximum), were taken from Cheke and Mann (2001) and from the Handbook of Birds of the 

World (Cheke and Mann, 2008b). Where data on multiple subspecies existed, the overall range 

for all subspecies was used. In the few cases where data from the two sources differed, the data 
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from the Handbook was used. Two authors (Louis and Torres) independently scanned the 

literature to ensure that coding was accurate.  

 

Mass data were obtained from the CRC Handbook of Avian Body Masses (Dunning, 2008) and 

supplemented with data from Cheke and Mann (2001) on the few occasions where the CRC 

Handbook did not have data. Lengths of the wing, tail, and tarsus were obtained from the 

literature (Cheke and Mann, 2001). Where data for multiple subspecies existed the subspecies for 

which there was also mass data was used. If there was no mass data, the subspecies with the 

largest sample size was used. For all data, male and female values were recorded separately, and 

species averages represent the average of the male and female average. Data were log10 

transformed prior to allometric analyses.  

 

Morphological measurements 

In order to validate morphological data compiled from the literature, direct measurements were 

taken from 2388 specimens representing 113 species housed in 11 different museums: American 

Museum of Natural History, New York; British Museum of Natural History, London; Carnegie 

Museum of Natural History, Pittsburgh; Delaware Museum of Natural History, Wilmington; 

Field Museum of Natural History; Muséum National d’Histoire Naturelle, Paris; Royal Museum 

for Central Africa, Tervuren, Belgium; National Museums of Kenya, Nairobi; Swedish Museum 

of Natural History, Stockholm; National Museum of Natural History, Smithsonian Institution, 

Washington, D.C.; and Zoological Museum, University of Copenhagen, Denmark. 

Measurements were performed by one person (R. C. K. B.) as detailed elsewhere (Bowie et al., 

2004; Bowie et al., 2016). Briefly, the following morphological measurements were taken of 

each specimen: wing length (with the wing flattened and measured from the carpal joint to the tip 

of the longest primary feather), length of the shortest tail feather (measured from the base of the 

pygostyle to the tip of the central or outer rectrix), and tarsus length. Wing length was measured 

to the nearest 0.5 mm with a wing rule, all other measurements were taken using Vernier calipers 

to the nearest 0.1 mm. Data on the elevation at which the specimen was collected and the mass at 

collection were also included where available.  

 

Phylogenetic analyses 

Both ancestral state reconstructions and phylogenetic comparative analyses were performed in R 

version 3.5.1 (R Core Team, 2018) using a time-calibrated phylogeny of sunbirds provided by R. 

C. K. Bowie (pers. comm.). Prior to analyses, the tree was converted to an ultrametric format 

using the chronopl function in ape (Paradis et al., 2004) and a smoothing parameter (lambda) of 

1. To determine the ancestral state of hovering behavior, trait evolution was modeled using a 

continuous time Markov model implemented via implementation of the ace function in ape. Four 

evolutionary models were tested: 1) an equal rates model, where it is equally likely to transition 

from non-hovering to hovering as the reverse, 2) a different rates model, where the rates of 

transition from non-hovering to hovering are different from the reverse, a 3) an irreversible 

model where only transitions from non-hovering to hovering are allowed, and 4) an irreversible 

model where only transitions from hovering to non-hovering are allowed. The best model was 

identified using the second order Akaike Information Criterion (ΔAICc) to take sample size into 

account (Burnham and Anderson, 2002; Posada, 1998; Posada and Buckley, 2004). This model 

was then simulated 1,000 times using the make.simmap function in phytools (Bollback, 2006; 

Revell, 2012; Revell, 2013). The summary of this simulation was then used to determine the 
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state of the base of the tree and to find the rate of transitions between behavior types. Then the 

probability of the hovering state at each ancestral node of the tree was mapped using the 

make.simmap and plotSimmap functions, also in phytools (Revell, 2012; Revell, 2013).  

 

Morphological analyses 

Comparative analyses were performed on data from the literature and on the data collected by R. 

C. K. B. using phylogenetic generalized least squares (PGLS). Prior to these analyses, species 

without data were pruned from the phylogeny using ape (Paradis et al., 2004). This resulted in 

varying sample sizes for each analysis, which are noted in the results. When data collected by R. 

C. K. B. was used, data were weighed by the sample number and standard  

error-1/2 for the predictor using the varFixed function. Additionally, when an analysis modeled a 

morphological variable (wing length, tail length, tarsus length) against mass, both variables were 

log-transformed prior to analyses. 

 

Testing model fit. PGLS runs an ordinary least squares regression but varies the covariance 

matrix such that it is modified based on the phylogeny (Martins and Hansen, 1997; Symonds and 

Blomberg, 2014). However, the way in which the phylogeny is modified depends on the 

evolutionary model that is assumed. As such, three different evolutionary models were tested for 

each morphological outcome variable: (1) Brownian motion, the simplest model, which assumes 

that a trait varies randomly over time; (2) Pagel’s λ, which uses Brownian motion but adds a 

branch length scaling factor λ, which can vary between 0 (phylogeny does not influence the data) 

and 1 (data follows true Brownian motion across the phylogeny) (Freckleton et al., 2002; Pagel, 

1999); and (3) Ornstein-Uhlenbeck, a Brownian-like model that models stabilizing selection by 

using an additional parameter that measures movement towards an optimum value (Hansen, 

2006). These models were tested using, respectively, the corBrownian, corPagel, and corMartins 

functions all implemented via the ape software package (Paradis et al., 2004). In addition to 

testing three evolutionary models, several dependent variables were included in each model to 

determine whether they contributed to the variance of a given morphological outcome. 

Specifically, models were tested that (1) modeled the morphological outcome as a constant, e.g. 

assumed that no variables contributed significantly to its variance; (2) only included mass; (3) 

only included hovering behavior; and (4) only included elevation. Additionally, additive and 

interaction models were tested that included mass and hovering behavior (5 & 6); mass and 

elevation (7 & 8); and mass, hovering behavior, and elevation (9 & 10). For all models, ΔAICc 

was calculated and compared to determine model fit using the AICc function in the AICcmodavg 

package. 

 

Species dimorphism. To determine the relationship between morphology and mass, analyses of 

mass dimorphism were performed. For both the literature dataset and the dataset collected by R. 

C. K. B., the difference in mass between males and females was compared with the hypothesis 

that it is 0 using PGLS. Then, PGLS was performed using the log-transformed data, and the 

slope of each resulting relationship was compared with the slope predicted under geometric 

similarity (e.g. length α mass1/3) using a Student’s t-test. To determine if significant dimorphism 

existed between males and females, PGLS was first performed separately on each sex. Then, a t-

test was performed to determine if the slope and intercept differed from each other.  
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Morphology, hovering behavior, and elevation. To determine if hovering or elevation explained 

any of the variation in morphology, two approaches were used: first, PGLS analyses were re-run 

including additive and interaction terms for hovering or elevation as a covariate. The slope of 

each resulting relationship was compared with the slope predicted under geometric similarity 

(e.g. length α mass1/3) using a Student’s t-test. Second, size-corrected residuals were used. 

Specifically, the log-transformed residuals of wing length, tail length, and tarsus length against 

body mass were found using the function phyl.resid in phytools (Revell, 2009). Then residuals 

were regressed against the hovering trait or against elevation as predictions required.  

 

Results 

The literature included data on 124 species, of which 102 were contained in the phylogeny. The 

data collected by R. C. K. B. included 101 species, of which 85 were contained in the phylogeny.  

 

Phylogenetic analyses 

Three of the four ancestral state reconstruction models were close fits for the evolution of 

hovering behavior: the equal rates model (ΔAICc = 0.00), the different rates model (ΔAICc = 

0.54), and the irreversible model in which only transitions from hovering to non-hovering were 

allowed (ΔAICc = 1.12). The irreversible model in which only transitions from non-hovering to 

hovering was a much poorer fit (ΔAICc = 9.25). Using the equal rates model, stochastic 

character mapping of the hovering behavior showed that that transitions between hovering 

behavior types are common (Error! Reference source not found.). Trees had an average of 

43.65 changes between states; 24.74 from non-hovering to hovering and 18.92 from hovering to 

non-hovering. Based on stochastic character mapping, the ancestral state of the base of the 

sunbird tree was likely a non-hoverer (non-hoverer: 0.982, hoverer: 0.018). 

 

Morphological analyses 

Testing model fit. Wing length, tail length, and tarsus length were modeled for males and 

females using three evolutionary models (Brownian motion, Pagel’s λ, and Ornstein-Uhlenbeck) 

and 10 combinations of explanatory variables (including mass, hovering behavior, and elevation) 

(Tables 

 

). Four of 6 morphology-sex outcomes (female wing length, female tail length, and male and 

female tarsus length) were best fit by a model including mass only. Male wing length was best fit 

by an additive model including mass and elevation. Male tail length was best fit by a constant. 

Brownian motion was the best evolutionary model for 3 of the 6 morphology-sex outcomes 

(female wing length, male and female tarsus length), Pagel’s λ was the best fit for 2 of the 

outcomes (male wing length and female tail length), and Ornstein-Uhlenbeck best fit male tail 

length only. However, all three models of evolution produced competitive models for all 

morphology-sex outcomes. Given that all models of evolution were competitive, and given that 

morphology may be undergoing some directional selection, I used the Ornstein-Uhlenbeck 

correlation method for all of the following models. However, it should be noted that Brownian 

and Pagel’s λ methods were also tested and produced similar results to those discussed below.  
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Species dimorphism. Based on the literature data, males are significantly heavier than females (n 

= 49, males: 10.69 g, females: 9.43 g, p = 0.023). Results from the data collected by R. C. K. B. 

also showed that males were heavier, but the difference was not significant (n = 10, males: 9.37 

g, females: 8.19 g, p = 0.192). Wing length, tail length, and tarsus length for both males and 

females were significantly correlated with mass when both literature data and data collected by 

R. C. K. B. were used with three exceptions: the literature data for tail length in males, and the R. 

C. K. B. data for tail length and tarsus length in females (Error! Reference source not found.). 

The latter two trends could be explained by small sample size: there were only 6 and 4 species 

available for female tail length and tarsus length, respectively. The lack of correlation between 

tail length in males and mass may be because literature data only included the long tails present 

under sexual selection. For the morphological outcomes that did correlate with mass, the 

estimated slope did not differ from what is predicted under geometric similarity except for in the 

literature data for tarsus length in males, which showed a significantly smaller slope than 

predicted (0.165 ± 0.066 mm, p = 0.017). Males and females did not differ in significantly in 

intercept or slope for any relationship.  

 

Morphology and hovering behavior. Hovering species tended to be heavier in both males (non-

hovering: 9.96 g, hovering: 11.29 g) and females (non-hovering: 8.82 g, hovering: 9.93 g) in the 

literature data, but PGLS indicated that the differences were not significant (pmales = 0.243, 

pfemales = 0.234). The data collected by R. C. K. B. showed similar results: hoverers were heavier 

in both males (non-hovering: 8.33 g, hovering: 9.43 g) and females (non-hovering: 7.79 g, 

hovering: 9.24 g), but the differences were not significant (pmales = 0.373, pfemales = 0.536). 

Hovering did not contribute significantly to wing, tail, or tarsus length morphology in males or 

females (Error! Reference source not found., Error! Reference source not found.). The only 

exception was for the literature data for female wing length, where hovering behavior decreased 

the intercept (-0.261 ± 0.122 mm, p = 0.038) and increased the slope (0.115 ± 0.05 mm, p = 

0.043).  

 

Morphology and elevation. Sunbirds species (n=98) live at an average midpoint elevation of 

1143 m, an average maximum elevation of 1964 m, and an average elevational range of 1644 m 

(Error! Reference source not found.). Hovering sunbird species tend to live at higher midpoint 

elevations (n = 47, 1173 m) than non-hovering species (n = 37, 1140 m), but the difference is not 

significant (p = 0.316). However, hovering species do live at significantly higher maximum 

elevations (non-hovering: 1901 m, hovering: 2094 m, p = 0.011), and over larger elevational 

ranges (non-hovering: 1523 m, hovering: 1842 m, p < 0.001). Mass did not correlate with 

midpoint elevation, maximum elevation, or elevational range for males or females. Elevation did 

not contribute significantly to wing, tail, or tarsus length morphology in males or females 

(Error! Reference source not found.). The only exception was for the literature data for female 

wing length, where elevation increased the intercept (0.198 ± 0.093 mm length / km elevation, p 

= 0.040). 

 

Discussion 

To determine whether the morphology of asymmetrically hovering birds is similar to the 

morphology of symmetrically hovering hummingbirds, I analyzed trends in wing, tail, and tarsus 

length with mass, hovering behavior, and elevation in a diverse group of variably asymmetric 

hovering birds: the sunbirds. I hypothesized that hovering sunbird species converge 
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morphologically on features seen in hummingbirds. Below, I review the predictions I made as a 

result of this hypothesis, discuss whether my data support these predictions, and interpret my 

findings in the context of sunbird ecology.  

 

Hovering sunbirds are not lighter 

Since hummingbirds tend to be aerodynamically restricted in mass (Hainsworth and Wolf, 1972), 

I predicted that (1) hovering sunbirds would be lower in mass than sunbirds that do not hover. In 

contrast, hovering sunbirds tended to be heavier (reject prediction 1). The heaviest sunbird used 

in this analysis was 16.7 g, which is less than the mass of the heaviest known hummingbird 

(Patagona gigas, 20.2 g (Dunning, 2008)). Thus, the sunbirds used in this analysis are within the 

aerodynamic constraints on mass created by hovering. This may remove the need for hovering 

species to be lower in mass and allow mass to be selected by other features of ecology, such as 

elevation or interspecies dominance (Collins and Paton, 1989).  

 

Female hovering sunbirds have longer wings 

Additionally, I predicted that like hummingbirds (Greenewalt, 1962; Skandalis et al., 2017), (2) 

hovering sunbirds would have long wings for their mass in order to accommodate the large 

induced power requirements of hovering flight. I found support for this prediction in females, as 

hovering behavior increased the slope of the relationship between log-transformed wing length 

and log-transformed mass (partially accept prediction 2). This suggests that hovering behavior 

may indeed require an increase in wing length. However, given the lack of nuance used to define 

hovering behavior in this study, further study should be performed to confirm this relationship. 

Across sunbirds in general, both male and female sunbird wing lengths scaled with body mass1/3.  

This matches what we see in most bird species, and contrasts with the relationship of wing length 

α body mass2/3, which we see in hummingbirds (Greenewalt, 1962). These findings indicate that 

asymmetric hovering behavior may select for longer wings in sunbirds, but that nectar-eating in 

general does not require the exceptionally long wings that we see in hummingbirds. However, 

this study did not include information about wing area. Work by Greenewalt (1975) showed that 

wing area α body mass1.000 for hummingbirds, while for passerines wing area α body mass1.275. 

Since wing length scales in sunbirds at approximately body mass1/3, this suggests that sunbirds 

have more rounded wings than hummingbirds. Future work should explore sunbird wing area 

and wing shape in relation to hovering behavior, and associate wing length and area with more 

quantitative measures of hovering behavior, such as the length of time individuals of a given 

species and with a given wing length can hover and the tendency or frequency with which 

individuals in a given species choose to hover.  

 

Hovering sunbirds do not have shortened tarsi 

Given that hummingbirds have relatively short tarsi for their mass (Collins and Paton, 1989), I 

predicted that (3) hovering sunbirds would also have significantly short tarsi for their mass. 

Hovering behavior did not correlate with tarsus length in males nor in females (reject prediction 

3). Across all sunbird species, males but not females had significantly short tarsi for their mass 

compared to what we would expect in geometric similarity. The tendency towards short tarsi in 

males initially supports the idea that nectar-eating behavior in general, rather than hovering 

behavior, may drive the need for short tarsi in sunbirds. However, the lack of shortened tarsi in 

females suggests that alternative selective pressures may be acting on tarsus length in males, 

rather than nectar-eating behavior. Given that sunbirds frequently obtain nectar from flowers by 
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perching on the flower stem (Johnson and Brown, 2004; Van der Niet et al., 2015), a longer 

tarsus may be necessary for foraging.  

 

Female sunbirds increase wing length with elevation 

With regards to elevation, I predicted that like hummingbirds, (4) sunbirds will not differ in mass 

across elevation (Skandalis et al., 2017), and (5) wing length will increase with elevation in 

hovering sunbirds more than in non-hovering sunbirds (Altshuler and Dudley, 2002; Skandalis et 

al., 2017). I found that sunbird mass does not correlate with midpoint elevation, maximum 

elevation, or elevational range (accept prediction 4). I also observed that sunbirds increase wing 

length with elevation, although the relationship is only significant in females (partially accept 

prediction 5). This lack of trend between wing length and both hovering behavior and elevation 

in males further supports the theory that selective pressures outside of aerodynamics drive wing 

length in males. Male hummingbirds tend to have shorter wings than females (Stiles et al., 2005), 

potentially as a result of sexual selection. Therefore, wing length in male sunbirds may be driven 

by pressures of sexual selection in addition to aerodynamics.  

 

Hovering sunbirds do not have relatively long tails 

Given the potential need of the tail to assist in pitch and gaze stability (Altshuler et al., 2009; Su 

et al., 2011; Su et al., 2012; Thomas and Balmford, 1995), I predicted that (6) tail length will 

scale with positive allometry in hovering sunbirds. I found that hovering behavior did not 

influence tail length (reject prediction 6). However, the data collected by R. C. K. B. showed that 

male tails are longer than what would be predicted under geometric similarity, and literature data 

for females gave a high scaling exponent but was not significantly higher than geometric 

similarity. Combined, these findings suggest that nectar-eating behavior in all sunbirds, but not 

hovering species specifically, may require relatively long tails. Literature data on tail length for 

males showed no dependence on mass, but this may be because this data included measurements 

of sexually selected elongated tail feathers, which are common in male sunbirds (Skead, 1967).  

 

Nectar-eating selects for some hummingbird-like morphologies in sunbirds 

Given that sunbirds tend to have long wings, long tails, and short tarsi relative to their body 

mass, this work suggests that nectar-eating behavior in general selects for a hummingbird-like 

morphology. The lack of significance of hovering behavior in analyses for all but one 

relationship (female wing length) indicates that hovering, particularly asymmetric hovering, does 

not apply strong selective pressures on sunbird morphology. However, this study defined 

hovering in a binary fashion. In fact, tendency to hover varies among and within species as 

certain populations hover frequently and others not at all, perhaps depending on the presence of 

flowers lacking perches (Geerts and Pauw, 2009; Janeček et al., 2011; Wester, 2013a). Several 

reports have demonstrated sunbirds frequently obtain nectar from flowers by perching on the 

flower stem (Johnson, 1996; Johnson and Brown, 2004; Van der Niet et al., 2015) or from the 

ground (Hobbhahn and Johnson, 2015; Turner and Midgley, 2016). Additionally, some plant 

species that are frequented by sunbirds have perches to aid in avian nectar-eating and pollination 

(Anderson et al., 2005). Together, these alternative cases suggest that hovering is a secondary 

method for sunbirds to obtain nectar, and that selection for morphologies that aid in hovering 

behavior may be weak. Additionally, presence of hovering behavior is biased by observation, as 

common and accessible species have more available observations and are therefore more likely 
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to have been seen hovering. Further study on the morphology of specific populations with 

different behaviors is required to determine whether hovering behavior alone alters morphology.  

 

My results also indicate strong sexual dimorphism exists in sunbirds. Specifically, males had 

short tarsi and long tails relative to their body mass while females did not, and female but not 

male wing length increased with body mass in hovering and high-elevation species. These 

differences could reflect sexual selection in males, perhaps to increase tail length for displays 

while reducing mass by shortening tarsus length.  

 

Conclusion 

To determine whether asymmetrically hovering birds had adaptations to hovering behavior akin 

those in symmetrically hovering hummingbirds, I studied morphological trends in the sunbirds, a 

group including species that do and do not hover. I found that sunbirds are partially convergent 

on the morphological trends seen in hummingbirds. These changes could be explained by the 

increased tendency of nectar-eating birds to hover as compared to birds that do not eat primarily 

nectar. The lack of trend between hovering behavior and morphology suggests that sunbird 

species employ similar strategies to obtain nectar from flowers, and that those strategies are 

primarily perching and secondarily hovering. This work broadly suggests that birds do not 

require specific morphological adaptations to perform asymmetric hovering. Instead, broad 

trends in morphology may permit birds to hover, and morphological adaptations are not required 

or do not restrict the appearance of asymmetric hovering. Further work should be done to better 

quantify hovering ability and determine whether certain morphologies are associated with better 

asymmetric hovering ability.  
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Figures 

 
Figure 1-1. Distribution of hovering behavior across the sunbird phylogeny under the all rates equal model of 

evolution (ΔAICc = 0.00). Branch colors on the underlying tree are from one possible simulation. 
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Figure 1-2. Scatterplots of wing (A, D), tail (B, E), and tarsus (C, F) length against mass for males (A, B, C) and 

females (D, E, F). Light gray dots are for non-hovering species, dark gray lines are for hovering species. Axes are 

log-transformed. Fit lines are present when the relationship between morphology and mass is significant. Fit lines 

for wing length were generated from models that included mass and hovering behavior; fit lines for tail and tarsus 

length were generated from models that used mass only. Dashed lines indicate the prediction under geometric 

similarity when the predicted slope is significantly different. 
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Figure 1-3. Number of sunbird species at average midpoint elevations, maximum elevations, and elevational ranges. 

Light gray bars are species that do not hover, dark gray bars are species that do hover. 
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Table 1-2. Coefficients and significance of log-linear morphological relationships with mass as determined using 

data collected from the literature (Literature) or data measured directly by R. C. K. B. (RCKB). All analyses were 

modeled using the Ornstein-Uhlenbeck model, although other models of evolution give similar results. The number 

of species used in each analysis is indicated by n. The effect size and its standard error are represented by β. *, **, 

and *** denote p < 0.05, p < 0.01, and p < 0.001, respectively. The subscript G indicates that the slope is 

significantly different from the prediction under geometric similarity. 

Character Sex 
Data 

Source 
n β ±SE p 

Wing Length M Literature 51 0.355 ± 0.042 < 0.001 *** 

  RCKB 11 0.393 ± 0.048 < 0.001 *** 

 F Literature 49 0.374 ± 0.030 < 0.001 *** 

  RCKB 6 0.353 ± 0.043  0.001 ** 

Tail Length M Literature 30 0.459 ± 0.245  0.071  

  RCKB 12 0.709 ± 0.164  0.002 ** G 

 F Literature 24 0.423 ± 0.124  0.003 ** 

  RCKB 6 0.474 ± 0.413  0.315  

Tarsus Length M Literature 27 0.165 ± 0.066  0.019 * G 

  RCKB 11 0.302 ± 0.072  0.002 ** 

 F Literature 21 0.336 ± 0.072 < 0.001 *** 

  RCKB 4 0.286 ± 0.094  0.093  

 

Table 1-3. Coefficients and significance of log-linear morphology modeled using an interaction model with mass 

and hovering behavior (~Mass*Hover). Models were performed using the Ornstein-Uhlenbeck model of evolution, 

although other models of evolution give similar results. The number of species used in each analysis is indicated by 

n. The effect size and its standard error are represented by β. *, **, and *** denote p < 0.05, p < 0.01, and p < 0.001, 

respectively.  

Character Sex 
Data 

Source 
n Effect β ±SE p 

Wing Length M Literature 51 Mass 0.359 ± 0.063 < 0.001 *** 

    HoverY -0.010 ± 0.173  0.954  

    Mass:HoverY -0.001 ± 0.076  0.993  

 F Literature 49 Mass 0.310 ± 0.045 < 0.001 *** 

    HoverY -0.261 ± 0.122  0.038 * 

    Mass:HoverY 0.115 ± 0.055  0.043 * 

Tail Length M Literature 30 Mass 0.546 ± 0.346  0.127  

    HoverY 0.481 ± 1.013  0.639  

    Mass:HoverY -0.194 ± 0.432  0.657  

 F Literature 24 Mass 0.377 ± 0.194  0.067  

    HoverY -0.088 ± 0.515  0.866  

    Mass:HoverY 0.050 ± 0.225  0.828  

Tarsus Length M Literature 27 Mass 0.077 ± 0.109  0.489  

    HoverY -0.456 ± 0.303  0.146  

    Mass:HoverY 0.180 ± 0.133  0.189  

 F Literature 21 Mass 0.137 ± 0.150  0.375  

    HoverY -0.625 ± 0.361  0.101  

    Mass:HoverY 0.269 ± 0.164  0.120  

 

  



 

15 

  

 

Table 1-4. Coefficients and significance of log-linear morphology modeled by an interaction model with mass and 

elevation (~Mass*Elevation). Models were performed using the Ornstein-Uhlenbeck model of evolution, although 

other models of evolution give similar results. The number of species used in each analysis is indicated by n. The 

effect size and its standard error are represented by β. *, **, and *** denote p < 0.05, p < 0.01, and p < 0.001, 

respectively.  

Character Sex 
Data 

Source 
n Effect β ±SE p 

Wing Length M Literature 39 Mass 0.415 ± 0.098 < 0.001 *** 

    Elevation 0.137 ± 0.122  0.268  

    Mass:Elevation -0.042 ± 0.049  0.400  

 F Literature 38 Mass 0.486 ± 0.070 < 0.001 *** 

    Elevation 0.198 ± 0.093  0.040 * 

    Mass:Elevation -0.074 ± 0.039  0.070  

Tail Length M Literature 23 Mass 0.353 ± 0.489  0.480  

    Elevation -0.015 ± 0.738  0.984  

    Mass:Elevation 0.043 ± 0.299  0.889  

 F Literature 20 Mass 0.753 ± 0.284  0.018 * 

    Elevation 0.526 ± 0.362  0.166  

    Mass:Elevation -0.199 ± 0.154  0.215  

Tarsus Length M Literature 21 Mass 0.107 ± 0.181  0.562  

    Elevation -0.075 ± 0.228  0.748  

    Mass:Elevation 0.049 ± 0.095  0.615  

 F Literature 18 Mass 0.657 ± 0.191  0.004 ** 

    Elevation 0.485 ± 0.283  0.109  

    Mass:Elevation -0.190 ± 0.117  0.125  
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Chapter 2.Influence of Migratory Behavior on Bone Morphology in the 

Dark-Eyed Junco (Junco hyemalis) 
 

Introduction 

Climate change alters the latitudinal and elevational distribution of birds (Tingley et al., 2009; 

Tingley et al., 2012). These movements may also alter migratory behavior, potentially reducing 

migratory distance or ablating migratory behavior altogether. Changes to migratory behavior will 

influence flight behavior, and ultimately morphology. To understand the potential influences of 

altered migratory behavior on morphology, I studied how morphology differs across the Dark-

Eyed Junco (Junco hyemalis), a species whose subspecies differ in their migratory status (e.g. 

whether they are a permanent resident or a migrant). 

 

Migratory behavior in birds requires massive increases in energy expenditure due to increased 

time spent each day in locomotion (Wikelski et al., 2003). To prepare for this challenge, some 

migratory birds increase body mass (Wolfson, 1945), reduce the size of digestive organs (Battley 

and Piersmazs, 1997; Piersma and Gill, 1998), and increase the mass of muscles related to flight 

(M. pectoralis and M. supracoracoideus) but not the mass of leg muscles (Battley and Piersmazs, 

1997; Lindström et al., 2000; Marsh, 1984). During migration, birds appear to lose fat stores but 

also muscle mass (Biebach, 1998). These rapid changes in body and muscle mass may lead to 

changes in the magnitude and rate of load applied to the bone, potentially resulting in drastic 

increases or decreases in bone mass (Kodama et al., 2000; Morey-Holton and Globus, 1998; 

Shipov et al., 2010; Tromp et al., 2006) or even fatigue fractures (Orava et al., 1978). 

 

The exact endocrine mechanisms by which these pre-migratory changes occur has been reviewed 

elsewhere (Wingfield et al., 1990). Generally, testosterone and thyroid hormone must be present 

for pre-migratory hyperphagia and restlessness to occur, and pre-migratory changes themselves 

may be connected to increases in corticosterone and prolactin secretion resulting from changes in 

day length (Holberton et al., 2008; Meier et al., 1965; Wingfield et al., 1990).  

 

However, while the nature and underlying mechanisms of pre-migratory changes in digestive 

organs, muscles, and fat prior to migration have been well studied, a knowledge of whether bone 

changes prior to or during migratory behavior is lacking. This is especially important because the 

simultaneous increase in mass and number of loads of bone during migratory flight could lead to 

an increased risk of fatigue fracture. Specifically, massive increases in body mass could increase 

strain and strain rate on bone, resulting in increased microdamage (Chamay, 1970; Schaffler et 

al., 1989) and an increased risk of fracture incidence (Reilly and Currey, 2000). 

 

Additionally, we might expect alterations in bone morphology to occur as a direct result of the 

other changes that occur prior to migration. For example, an increase in body mass could cause 

an increase in overall stress on bones, which would lead to an increase in bone mass throughout 

the body (Rubin and Lanyon, 1985). Additionally, bone mass has been associated with muscle 

mass and muscle strength (Burr, 1997). Given that the muscles involved in flight but not leg 

muscles hypertrophy prior to migration (Battley and Piersmazs, 1997; Marsh, 1984), there might 

be an increase in bone mass or bone strength in wing bones but not leg bones.  
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The potential influences of prolactin bone are more complex. Prolactin seems to increase bone 

turnover in mice and rats (Krishnamra and Seemoung, 2011; Lotinun et al., 2003) and may lead 

to reduced bone formation and development in developing rats (Coss et al., 2017). Additionally, 

elevated prolactin levels have been observed in schizophrenic patients receiving certain 

antipsychotic medications, and this has been associated with reduced bone mineral density and 

bone loss (Meaney et al., 2004). Increased prolactin levels in pre-migratory birds may therefore 

lead to systemic reductions in bone mineral density and bone loss.  

 

I therefore sought to determine the influence of migratory behavior on bone morphology in birds. 

To do this, I used the Dark-Eyed Junco (Junco hyemalis), a species that is widespread across 

North America and includes subspecies that do not migrate (e.g. “residents”, J. h. carolinensis, 

J. h. pontilis) and species that do migrate (e.g. “migrants”, J. h. hyemalis, J. h. montanus, J. h. 

aikeni). To determine whether systemic effects such as increased body mass or alterations in 

hormones influence bone mass or bone morphology, I compared two compartments within each 

bone: the strut-like region of trabecular bone in the metaphysis (proximal and distal ends of the 

bone), and the compact cortical bone in the diaphysis (the midshaft or middle of the bone) in 

resident and migrant birds. To tease apart the influences of increased body mass versus increased 

muscle mass in migratory birds, I compared bone volume and morphology in a bone primarily 

involved in flight (the humerus) with one not involved in the flight (the femur) in residents and 

migrants.  

 

Methods 

Specimens 

In order to assess the influence of migratory behavior on bone independent of mass and 

evolutionary history, several subspecies were used (Figure 2-1). Within the Slate-Colored 

(Hyemalis) group, Junco hyemalis hyemalis represented the migrant form, while J. h. 

carolinensis represented the resident form. Within the Oregon (Oreganus) group, J. h. montanus 

represented the migrant form, while J. h. pontilis represented the resident form. The White-

Winged Junco, J. h. aikeni was used as an intermediate, both phylogenetically and because it is a 

short-distance migrant (Aleixandre et al., 2016).    

 

Skeletal samples were loaned from the American Museum of Natural History (J. h. hyemalis n = 

18, J. h. aikeni n = 20, J. h. carolinensis n = 20, J. h. montanus n = 20, J. h. pontilis n = 9). Only 

male specimens were used because female specimens frequently contained medullary bone, a 

bony tissue formed prior to egg-laying which greatly alters cross-sectional skeletal morphology 

(Dacke et al., 2015). To ensure that only adults were taken, specimens labelled as ‘hatch year’ or 

those with less than 100% skull ossification were removed. Specimens from migratory 

subspecies would ideally be taken immediately after arriving on their breeding grounds to reduce 

the influence of post-migratory changes (e.g. reduction in body fat, testes growth) on bone 

morphology. This time varies by subspecies, sex, and age (Chandler and Mulvihill, 1990; Nolan 

and Ketterson, 1990). In practice, specimen availability dictated which specimens were taken. 

Where more than 20 samples were available, samples were randomly chosen to span the 

available sampling locations.  

 

For each specimen, one humerus and one femur was scanned. The left bone was used unless it 

was broken, missing, or still attached to the skeleton, in which case the right bone was used. To 
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keep scanning conditions similar across all samples, bones were placed in a 3D-printed sample 

holder that held four samples at a time (a humerus and a femur from two birds), and then 

scanned in air. Scanning in air increases x-ray beam attenuation compared with scanning in other 

media (saline, ethanol) and thus influences measured density (Bouxsein et al., 2010; Nazarian et 

al., 2008). The densities reported here are therefore for comparative purposes only and should 

not be used as true measures of density in J. hyemalis bone.   

 

Micro-computed tomography scanning 

Bone morphology and microarchitecture were assessing using a high-resolution micro-CT 

scanner (μCT 35, Scanco Medical, Brüttisellen, Switzerland) at an x-ray energy of 70 kVP, 

integration time of 300 ms, and an isotropic voxel size of 6 μm.  

 

Cortical bone morphology was assessed using a 0.6 mm long region centered around the center 

of the bone midshaft. To assess trabecular (cancellous) bone morphology, 0.6 mm long endosteal 

regions were defined. The region was kept 0.036 mm away from the endosteal surface of the 

cortex to ensure that no cortical bone was included in the analysis. In the humerus, the region 

was in the proximo-caudal portion of the bone, just distal to the opening of the fossa 

pneumotricipitalis. In the femur, the region was just proximal to the portion of the scan in which 

both femoral condyles were present. These regions were outlined using semi-automatic region-

drawing scripts, then a threshold of 540 mmHg/cm3 was applied to separate bone from air.  

 

To determine bone morphological properties, a Scanco script employing distance transformation 

methods was used. Cortical morphological properties included bone volume fraction (Vol. Frac, 

(%)), tissue mineral density (TMD, mgHA/cm3), bone volume (CtBV (mm3)), cortical thickness 

(CtTh (mm)), cortical diameter (Diam (mm)), polar moment of inertia (pMOI (mm4)), maximum 

moment of inertia (Imax (mm4)), and minimum moment of inertia (Imin (mm4)). Trabecular 

morphological properties included bone volume fraction (Vol. Frac., (%)), bone volume (TbBV 

(mm3)), trabecular number (TbN (1/mm)), trabecular thickness (TbTh (mm)), and structural 

model index (SMI).  

 

Whole bone stiffness, that is, whole bone resistance to loading, is proportional to material and 

geometric properties. Bird bones experience many forms of loading, but the largest ones are 

bending and torsion (Biewener and Dial, 1995). Resistance to bending is proportional to EI, 

where E is the Young’s modulus, or the stiffness of the material in bending; and I is the second 

moment of area in bending, or the geometric arrangement of material in the cross section. 

Resistance to torsion is GJ, where G is the shear modulus, or the stiffness of the material in 

torsion; and J is the second moment of area in torsion, usually equivalent to pMOI. The stiffness 

moduli E and G are thought to depend primarily on mineral density in bone (Guo, 2001; Launey 

et al., 2010). Since mineral density was similar in all of the bones used here, I assume that whole 

bone stiffness will primarily vary with the geometric properties of I and J (pMOI). For this 

reason, I hereafter refer use the terms “geometric bending stiffness” synonymously with Imax and 

Imin, and “geometric torsional stiffness” synonymously pMOI.  

 

Statistical analyses 

Linear mixed effects models were implemented in RStudio (RStudio Team, 2015) using the lme 

function in the nlme package (Pinheiro et al., 2019). For bone morphology analyses in which the 
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outcome variable had units of length, mass and the outcome were log-transformed prior to 

analyses.  

 

First, to determine which variables significantly explain bone morphology, several models were 

tested that included one or more of bird mass, subspecies, migratory status (resident or migrant), 

altitude, and day of the year (as an integer). Then, the best model was identified using the second 

order Akaike Information Criterion (ΔAICc). This method determines whether each additional 

term in a model significantly improves fit, and also takes sample size into account (Burnham and 

Anderson, 2002). A model with a score of less than 7 was considered to be a good fit. 

 

Second, because was interested primarily in the influence of mass and migratory status on bone 

morphology, I pooled data on residential and migratory individuals from all subspecies. Then, I 

modeled each morphological variable as an additive function of mass and migratory status. 

Altitude and day of the year were included as random effects. A p-value cutoff of 0.05 was used 

to determine whether each term explained a significant portion of that morphological variable.  

 

Results 

Variables contributing to model fit 

Model fits based on ΔAICc scores are shown in (Table 2-1). Altitude and day of the year did not 

significantly explain any aspects of bone morphology, except for femur trabecular thickness, 

where altitude was an acceptable model.  

 

Bone length. Both humerus and femur length in males were best explained either by a model 

that included just subspecies, or an additive model with mass and subspecies.  

 

Trabecular morphology. A constant was the best model for most trabecular morphology 

parameters. In the humerus, migratory status was also a good model for trabecular volume 

fraction, trabecular number, and SMI. Mass was a good model for humeral trabecular volume 

and number. In the femur, migratory status was a good model for trabecular volume fraction, 

trabecular number, trabecular thickness, and SMI; subspecies was also a good model for 

explaining trabecular volume and SMI. For both the humerus and the femur, trabecular 

connective density was best explained by a model including additive and interaction terms for 

mass and subspecies.  

 

Cortical morphology. A model including mass or an additive model with mass and migratory 

status were the best models for most cortical morphology parameters. However, cortical bone 

volume fraction differed as the best fit models included either a constant or subspecies. Cortical 

thickness could also be modeled by a constant for both the humerus and femur. Cortical bone 

volume differed between the humerus and femur: in the humerus, a model with mass was the 

only good fit for cortical bone volume, while in the femur, an additive model with mass and 

migratory status was the only good fit. In the humerus, a model that also included the interaction 

of mass and migratory status was a good fit for pMOI and Imax.  
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Influence of mass and migratory status on bone morphology 

All morphological variables were modeled as a function of mass and migratory status with 

altitude and day of the year as random effects. See Table 2-2 for the significance and effect size 

of all morphological variables. 

 

Bone length. Mass was a significant explanatory variable for bone length in both the humerus 

and femur of male birds (Figure 2-2). In the femur, migratory status was also significant: 

migrants had significantly shorter femora than residents (-0.017 ± 0.008, p=0.049).  

 

Trabecular morphology. Volume fraction did not depend on mass or migratory status in resident 

or migrant male birds. Bone volume was explained by mass for both the humerus and femur, but 

not by migratory status (Figure 2-3). Neither mass nor migratory status could explain any other 

trabecular morphology in the humerus. However, in the femur, trabecular thickness was 

decreased in migrants (-0.091 ± 0.039, p=0.033). Migrants also had higher trabecular connective 

density than residents (0.399 ± 0.185, p=0.047). 

 

Cortical morphology. In both the humerus and femur of male birds, cortical volume fraction was 

not significantly associated with mass but was significantly lower in migrants (humerus: -0.025 ± 

0.007, p=0.002; femur: -0.022 ± 0.006, p=0.001). Tissue mineral density also did not depend on 

mass but was lower in migratory femora (-88.5 ± 36.9, p=0.030). All other cortical morphologies 

(volume, thickness, diameter, pMOI, Imax, Imin) increased significantly with mass in both the 

humerus and femur (Figure 2-4). Additionally, migrant humeri had the same bone volume as 

resident humeri (p=0.524), but migrant humeri were significantly thinner (-0.050 ± 0.018, 

p=0.013) and wider (0.025 ± 0.009, p=0.009). These changes did not result in any changes in 

pMOI, Imax, or Imin (p=0.185, p=0.187, p=0.184, respectively). Migrant femora had lower bone 

volume (-0.087 ± 0.022, p=0.001), and their femora were significantly thinner (-0.090 ± 0.018, 

p<0.001), but diameter was not different (p=0.382). This resulted in lower pMOI (-0.103 ± 

0.043, p=0.032), Imax (-0.106 ± 0.044, p=0.030), and Imin (-0.098 ± 0.045, p=0.047). 

 

Discussion 

To determine whether and how migratory behavior alters bone mass and morphology, I 

compared male representatives of resident (J. h. carolinensis, J. h. pontilis) and migrant (J. h. 

hyemalis, J. h. montanus, J. h. aikeni) subspecies of the Dark-Eyed Junco (Junco hyemalis). I 

looked at a bone primarily involved in flight (the humerus) as well as one not involved in flight 

(the femur) and at both trabecular and cortical compartments of bone to tease apart the influences 

of systemic pre-migratory hormones, pre-migratory hyperphagia, and increased mass of muscles 

related to flight on bone morphology. I found that migratory birds had humeri with lower bone 

volume fraction because they were significantly wider and thinner, but that these changes did not 

alter geometric bending or torsional stiffness. In contrast, migrant femora had lower bone 

volume fraction due to significantly less cortical bone, a thinner cortex, and lower tissue mineral 

density, resulting in lower geometric bending and torsional stiffness. Migrants also had lower 

trabecular bone thickness in the femur. Below, I broadly discuss the potential mechanisms 

driving these differences. I first discuss potential endocrine mechanisms that may result in these 

changes over an individual’s lifetime. Then, I discuss how differences between behaviors of 

migrants and residents may result in morphology differences over evolutionary time. Finally, I 
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discuss other potential explanations for the morphological trends seen here, including time of 

collection and subspecies differences.  

 

Physiology and morphology in migratory juncos 

Bone volume decreases in the femoral cortical region but not in the trabecular region. This 

suggests that pre-migratory increases in hormones or in body mass may not cause systemic 

increases in bone mass. However, studies have shown that the primary effect of prolactin is to 

increase calcium resorption and bone turnover (Coss et al., 2017; Krishnamra and Seemoung, 

2011; Lotinun et al., 2003). I did observe a significant decrease in femoral cortical tissue mineral 

density in migratory birds, but this effect was not observed in the humerus. This suggests that 

prolactin may cause calcium resorption, but that the effect is modulated by other factors. 

 

The differences in the influence of migratory behavior on humerus and femur cortical 

morphology suggest that large increases in body mass during migration do not correlate with 

bone morphology. Although the loads per day during migration are presumably higher in the 

humerus than in the femur, the femur does experience loading during stopovers. A small number 

of load applications per day are required in order to maintain a given bone mass, beyond which 

additional load applications do not greatly increase bone mass (Rubin and Lanyon, 1984). 

Therefore, an increased body mass should theoretically cause similar increases in the humerus 

and femur. Given that femur but not humerus bone volume is decreased in migratory birds, 

factors other than body mass may contribute to bone volume. For example, increased muscle 

mass in the migrant pectoralis but not in the leg muscles may be correlated with the differences 

in cortical bone morphology (Battley and Piersmazs, 1997; Marsh, 1984). However, such 

increases would tend to an increase bone mass in the humerus but not in the femur. In contrast, I 

see similar bone mass in the humerus in residents and migrants, but decreased bone mass in 

migratory femora. 

 

An alternate explanation could be a combination of the two influences: the pre-migratory spike 

in prolactin may initially decrease bone mass and tissue mineral density in both the femur and 

humerus. However, the increased pectoral muscle mass in migrants may then increase strains on 

the humerus, leading to recovery of bone mass or prevention of bone loss. In contrast, a lack of 

increase in muscle mass in the femur may cause it to experience only the losses from prolactin. It 

has also been shown that migratory behavior itself leads to the loss of muscle mass in both the 

flight apparatus and in the legs (Piersma, Gudmundsson and Lilliendahl, 1999; Lindström et al., 

2000; Engel, Biebach and Visser, 2006). Given that muscle mass increases in the flight apparatus 

but not in the legs prior to migration (Marsh, 1984; Battley and Piersmazs, 1997), the losses in 

muscle mass during migration could result in a cumulative loss in muscle mass in the legs but 

not in the flight apparatus. Since loss of muscle mass is associated with loss of bone mass (Burr, 

1997), this could also result in the overall loss of bone mass at the femur.  

 

Yet another explanation for the lack of difference between migratory and resident birds in 

geometric stiffness of the humerus may be that the humerus is under similar forces regardless of 

whether a bird migrates or not. In order to tolerate changes in climate during the winter, resident 

birds are known to acclimatize primarily by shivering (Dawson et al., 1983). Although not as 

metabolically expensive as flight, shivering does increase basal metabolic rate during the winter, 

and as such resident birds build up energy stores prior to the winter season much like migrants 
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do prior to migration. Additionally, the muscles primarily used in shivering thermogenesis are 

the flight muscles. Therefore, the lack of difference in humerus morphology between residents 

and migrants may be in part because both groups apply similar strains on their humeri during the 

winter, resulting in similar humerus morphology.  

 

Evolutionary differences between migrant and resident juncos 

The birds used in this study were collected during the months of breeding (May through July), 

rather than directly before or during migration (March through May) (Figure 2-5) (Nolan, Jr. et 

al., 2002). Therefore, differences in bone morphology as a direct result of pre-migratory and 

migratory behavior may have been reversed by the time specimens were collected and thus not 

present in these specimens. For example, the migratory subspecies J. h. hyemalis has been shown 

to have shorter, more pointed wings for a given body mass than its close relative, the resident 

subspecies J. h. carolinensis (Mulvihill and Chandler, 1991). This may alter the torsional forces 

and lead to the thinner, wider humeri observed in migrants in this study. 

 

Migratory birds may have stronger selective pressures to reduce bone mass due to the expense of 

transporting it during long-distance migration. Specifically, the selection to reduce overall mass 

may be stronger than selection to maintain geometric stiffness and strength in the femur, 

ultimately resulting in the observed trend of lower bone mass in migratory femora. Work on 

alligators has shown that safety factor can differ between different limbs in the same animal due 

to variations in load or high safety factors overall (Blob et al., 2014). In migratory birds, reduced 

loading on the femur during migration and high safety factors in all bones may reduce selection 

for high geometric stiffness and increase selection for reduced mass.  

 

Finally, although the endocrine mechanisms discussed above may not change the morphology of 

an individual during each migration, they may still underlie the differences between residents 

and migrants. That is, differences in the overall endocrine environment of migrants versus 

residents over their lifetimes may gradually cause the changes shown here in migratory birds, 

thereby differentiating them from residents.  

 

Regardless of the mechanisms driving differences in morphology between resident and migrant 

J. hyemalis exist, the finding that migrant femora are less stiff than resident femora suggests that 

selective pressures may be constraining bone mass in migrants. If climate change reduces 

migratory behavior, these pressures may be lifted, allowing migrants to have stiffer and heavier 

femora. It is unclear whether this would be a benefit, as stiffer femora may be more prone to 

fracture due to reduced toughness (Schaffler et al., 1995).  

 

Morphological differences across subspecies 

Several subspecies of J. hyemalis were used in this study, each of which represents a distinct 

lineage (Aleixandre et al., 2016) with distinct habits. My model exploration suggested that only 

bone length and trabecular connective density were best explained by subspecies differences. 

This suggests that while subspecies may differ in bone size, other bone morphological 

parameters are better explained by mass and/or migratory status.  

 

Additionally, the individuals used in this study vary in the location, latitude (Figure 2-1), and 

altitude (Figure 2-6) at which they were captured. Increased latitude is known to increase body 
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mass in J. hyemalis (Nolan, Jr. and Ketterson, 1983). Given that migrants were broadly taken 

from higher latitudes, my results for migratory status may be confounded with results for higher 

latitude.  

 

Subspecies also differ broadly in behavior (Nolan, Jr. et al., 2002), e.g. time spent foraging on 

the ground versus in trees and bushes, food preferences, and timing of breeding. These 

differences, as well as evolutionary drift, may explain differences in bone morphology. Further 

work being performed to determine the extent to which bone morphology can be modeled by 

subspecies rather than migratory status.  

 

Other factors driving bone morphology 

Day of the year did not significantly improve model fit, as determined with ΔAICc, for any 

aspect of bone morphology. This suggests that time of year does not contribute significantly to 

bone morphology, at least compared with mass and migratory behavior. However, birds used in 

this study were all taken during the breeding season, and therefore any differences that occur 

during the year due to molt, migratory behavior itself, wintering, or other behaviors are not 

included in the day of the year variable. Indeed, bone density has been shown to go down in 

poultry during molt (Hester et al., 2004). In order to determine whether bird bone morphology 

changes significantly over the course of the year, a study including birds from different times of 

year is required.  

 

Model fit also did not improve with the inclusion of altitude for any variable except femur 

trabecular thickness. Increased altitude reduces air density and thus reduces the lift that can be 

produced under the same flight kinematics. Recent work in hummingbirds has suggested that the 

primary mechanism by which birds overcome this disparity is by increasing wing area, rather 

than by changing wing velocity or other kinematic parameters (Skandalis et al., 2017). As such, 

we might not except altitude to significantly influence bone morphology. However, birds used in 

this study were not collected with the goal of exploring variation across elevations, and sampling 

is therefore concentrated on specific elevations at which collecting trips occurred (Figure 2-6). 

Further, expect for J. h. montanus, subspecies tend to be distributed at certain elevations, and this 

metric may therefore be confounded with subspecies. 

 

Future work 

The data presented here gives initial support to the potential role of pre-migratory changes in 

influencing bone morphology via increases in prolactin, increase in whole body mass, and 

increases in muscle mass. However, this study compared subspecies of J. hyemalis collected 

during breeding. To better determine the exact influence of pre-migratory hormones and changes 

in body and muscle mass, future studies should compare migratory juncos that are allowed to 

migrate or fly in a wind tunnel with those that are prevented from flying, or perform in vivo 

micro-computed tomography scanning before, during and after migration to elucidate changes. 

 

Conclusion 

To understand the influences of migratory behavior on bone morphology in birds, I compared 

trabecular and cortical morphology in the femur and humerus of resident and migrant Dark-Eyed 

Juncos (Junco hyemalis). I found that migrant humeri are wider and thinner than resident humeri, 

but that they do not differ in the amount of bone or in whole bone geometric stiffness. In 
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contrast, migrant femora had less bone due to a thinner cortex, resulting in bone that had lower 

geometric stiffness overall. I propose that these differences are due to two combined changes that 

occur in the pre-migratory period: increased prolactin secretion, and increased mass of the 

muscles involved in flight but not in the leg muscles. Prolactin increases calcium resorption, 

which is nullified by increased load by larger flight muscle mass in the humerus but not in the 

femur. Alternatively, broad evolutionary differences between residents and migrants, including 

differences in the endocrine environment, may drive morphological variation. Regardless, these 

findings suggest that migratory birds may be under selective pressures that reduce their bone 

mass. These pressures would be lifted if migratory distance was reduced during climate change, 

potentially altering bone morphology. Further study should compare bone morphology in a 

single population of migratory birds that is allowed and prevented from flying in order to 

determine the exact influences of pre-migratory and migratory behavior on bone, and thus the 

potential changes that might result from reduced migratory behavior under climate change.  
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Figures 

 

 
Figure 2-1. Distribution of Junco hyemalis subspecies used. Black dots represent locations from which samples were 

taken. Figure modified with permission from (Aleixandre et al., 2016). 
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Figure 2-2. Junco humerus (A) and femur (B) length as a function of mass in residents (circles) and migrants 

(squares) of various species (colors). Axes are log-transformed, values are actual, and each dot represents one 

individual. The solid line in A indicates that humerus length is significantly explained by mass (p<0.001), but not by 

migratory status (p=0.286). The two lines in B indicate that femur length is significantly explained by mass 

(p<0.001) and migratory status (p=0.021).  
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Figure 2-3. Trabecular bone morphology in the humerus (A, B) and femur (C, D). Resident birds are in green, 

migrant birds in orange. Axes are log-transformed, values are actual, and each dot represents one individual. A black 

line indicates a significant relationship between mass and the morphological measurement, but no relationship of the 

morphological measurement with migratory status. Green and orange lines indicate significant differences between 

residents and migrants. Bot humerus and femur bone volume increased with mass (phumerus=0.009, pfemur=0.002), but 

was not influenced by migratory status (phumerus=0.237, pfemur=0.110). Trabecular thickness does not depend on mass 

(p=0.889) or on migratory status (p=0.123) in the humerus. In the femur, trabecular thickness is not influenced by 

mass (p=0.598) but is lower in migrants (p=0.033).
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9
 

 

Figure 2-5. Day of the year at which birds from various subspecies (colors) were collected. Birds were collected 

from early May (121 = May 1st) through mid-July (200 = July 19). Each dot represents one individual. 

 

 

Figure 2-6. Altitude at the subspecies (colors) were collected as a function of their mass. Individuals collected on the 

same trip tended to be collected at specific altitudes. Axes are log-transformed, values are actual, and each dot 

represents one individual.



 

 

 
 

 

30 

T
a
b

le
s 

T
ab

le
 2

-1
. 

C
o

m
p

ar
is

o
n
 o

f 
m

o
d

el
 f

it
 u

si
n

g
 Δ

A
IC

c.
 F

o
r 

ea
ch

 m
o

rp
h
o

lo
g
ic

al
 m

ea
su

re
m

e
n
t,

 1
9

 m
o

d
el

s 
w

er
e 

te
st

ed
 t

h
at

 c
o

m
b

in
ed

 m
as

s,
 m

ig
ra

to
ry

 s
ta

tu
s 

(S
ta

t,
 

R
es

id
en

t 
v

s.
 M

ig
ra

n
t)

, 
su

b
sp

e
ci

es
 (

S
u
b

sp
p

),
 d

ay
, 

a
n
d

 a
lt

it
u
d

e
 (

A
lt

i)
. 

S
u
b

sp
ec

ie
s 

an
d

 m
ig

ra
to

ry
 s

ta
tu

s 
re

su
lt

 i
n
 a

 s
in

g
u
la

ri
ty

 i
n
 m

o
d

el
 f

it
ti

n
g
, 

a
n
d

 t
h
er

ef
o

re
 o

n
ly

 

o
n
e 

co
u
ld

 b
e 

u
se

d
 i

n
 a

n
y
 g

iv
e
n
 m

o
d

el
. 

M
o

d
el

s 
w

it
h
 Δ

A
IC

c 
<

 7
 h

av
e 

sh
ad

ed
 c

el
ls

. 
C

o
n

n
. 

D
en

s.
 =

 c
o

n
n
ec

ti
v
e 

d
en

si
ty

; 
F

 =
 f

e
m

u
r;

 H
 =

 h
u

m
er

u
s;

 I
m

a
x
 =

 m
ax

im
u

m
 

se
co

n
d

 m
o

m
en

t 
o

f 
ar

ea
; 

Im
in

 =
 m

in
im

u
m

 s
ec

o
n
d

 m
o

m
e
n
t 

o
f 

ar
ea

; 
p

M
O

I 
=

 p
o

la
r 

m
o

m
e
n
t 

o
f 

in
er

ti
a;

 S
M

I 
=

 S
tr

u
ct

u
ra

l 
M

o
d

el
 I

n
d

ex
; 

V
o

l.
 F

ra
c.

 =
 v

o
lu

m
e 

fr
ac

ti
o

n
. 

 

 
 

~1 

~Mass 

~Stat 

~Subspp 

~Day 

~Alti 

~Mass* 

  Subspp 

~Mass+ 

  Subspp 

~Mass* 

  Stat 

~Mass+ 

  Stat 

~Mass* 

  Day 

~Mass* 

  Alti 

~Stat* 

  Day 

~Stat* 

  Altit 

~Day* 

  Alti 

~Mass* 

Stat*Day 

~Mass* 

Stat*Alti

tude 
~Status* 

 

Alti*Day 
~Mass* 

  Stat* 

Alti*Day 

 
H

 
L

en
g

th
 

1
0

7
 

2
3
 

1
1

1
 

0
 

1
1

2
 

1
1

3
 

1
9
 

3
 

2
7
 

2
7
 

4
3
 

4
0
 

5
0
 

1
2

3
 

1
3

5
 

4
1
 

7
2
 

1
1

1
 

1
8

6
 

 
F

 
L

en
g

th
 

4
2
 

7
 

4
3
 

0
 

5
3
 

5
6
 

1
5
 

6
 

1
2
 

7
 

2
9
 

4
1
 

3
3
 

7
1
 

8
8
 

4
9
 

7
7
 

9
7
 

1
9

6
 

Trabecular Morphology 

Humerus 

V
o

l.
 F

ra
c.

 
0

 
1

1
 

6
 

3
2
 

1
7
 

2
5
 

8
5
 

4
3
 

3
0
 

1
7
 

4
6
 

6
2
 

3
8
 

5
3
 

7
2
 

9
2
 

1
2

8
 

1
3

8
 

2
9

2
 

V
o

lu
m

e
 

6
 

0
 

1
4
 

1
8
 

2
4
 

2
8
 

6
6
 

2
9
 

2
0
 

8
 

3
6
 

4
9
 

3
4
 

5
5
 

7
6
 

7
7
 

1
1

4
 

1
2

7
 

2
7

1
 

N
u

m
b

er
 

0
 

6
 

5
 

1
8
 

1
3
 

2
0
 

3
9
 

2
3
 

1
9
 

1
1
 

3
4
 

4
7
 

2
7
 

4
2
 

5
8
 

5
4
 

9
6
 

1
0

9
 

2
1

5
 

T
h

ic
k

n
es

s 
0

 
1

5
 

1
1
 

2
8
 

2
1
 

1
7
 

9
5
 

4
3
 

4
1
 

2
6
 

5
9
 

6
3
 

4
5
 

4
9
 

6
9
 

1
1

0
 

1
3

7
 

1
4

8
 

3
3

2
 

S
M

I 
0

 
9

 
4

 
1

6
 

1
2
 

1
9
 

3
9
 

1
9
 

2
1
 

1
3
 

3
5
 

5
0
 

2
6
 

4
1
 

5
4
 

6
0
 

9
2
 

1
0

6
 

2
1

4
 

C
o

n
n

. 
D

en
s.

 
6

2
 

6
2
 

5
8
 

3
5
 

6
7
 

6
2
 

0
 

3
3
 

5
6
 

5
8
 

7
2
 

7
1
 

6
0
 

6
7
 

8
2
 

5
2
 

7
5
 

9
8
 

1
3

0
 

Femur 

V
o

l.
 F

ra
c.

 
0

 
1

1
 

6
 

8
 

1
9
 

1
2
 

6
3
 

1
8
 

2
7
 

1
7
 

4
2
 

5
2
 

3
2
 

4
4
 

6
2
 

8
1
 

1
1

8
 

1
2

9
 

2
7

6
 

V
o

lu
m

e
 

2
4
 

1
2
 

2
8
 

0
 

4
2
 

3
0
 

4
7
 

1
0
 

2
4
 

1
4
 

4
1
 

4
5
 

3
1
 

5
4
 

7
6
 

6
5
 

1
0

3
 

1
2

4
 

2
5

2
 

N
u

m
b

er
 

0
 

9
 

3
 

1
7
 

1
1
 

1
7
 

4
2
 

2
3
 

1
9
 

1
2
 

3
4
 

4
6
 

2
2
 

3
8
 

5
3
 

5
7
 

9
2
 

1
0

1
 

2
1

8
 

T
h

ic
k

n
es

s 
0

 
1

4
 

4
 

1
3
 

2
1
 

6
 

8
0
 

2
9
 

3
2
 

1
8
 

5
2
 

5
3
 

3
2
 

3
5
 

5
8
 

9
7
 

1
2

2
 

1
3

7
 

3
0

8
 

S
M

I 
5

 
1

4
 

6
 

0
 

1
9
 

8
 

2
1
 

6
 

2
2
 

1
5
 

4
1
 

3
9
 

2
5
 

3
0
 

4
7
 

6
0
 

8
1
 

9
5
 

2
0

6
 

C
o

n
n

. 
D

en
s.

 
1

3
3
 

1
3

1
 

1
2

2
 

5
7
 

1
3

5
 

1
1

5
 

0
 

5
0
 

1
1

7
 

1
2

0
 

1
3

7
 

1
2

3
 

1
1

5
 

1
1

0
 

1
3

0
 

8
8
 

1
1

2
 

1
3

2
 

1
3

4
 

Cortical Morphology 

Humerus 

V
o

l.
 F

ra
c.

 
1

 
1

5
 

0
 

2
9
 

1
1
 

2
5
 

7
4
 

4
1
 

2
5
 

1
4
 

4
2
 

6
4
 

3
1
 

4
6
 

6
4
 

8
4
 

1
1

7
 

1
3

0
 

2
7

8
 

V
o

lu
m

e
 

5
9
 

0
 

6
8
 

2
2
 

7
0
 

7
6
 

6
4
 

2
7
 

1
9
 

1
0
 

3
5
 

4
4
 

4
0
 

9
9
 

1
1

2
 

7
0
 

1
0

5
 

1
2

8
 

2
6

7
 

T
h

ic
k

n
es

s 
5

 
0

 
1

2
 

2
3
 

2
4
 

2
7
 

7
7
 

3
6
 

1
8
 

5
 

3
6
 

5
2
 

2
7
 

5
6
 

7
6
 

8
1
 

1
1

4
 

1
3

0
 

2
8

8
 

D
ia

m
et

er
 

6
8
 

0
 

7
3
 

1
2
 

6
3
 

8
7
 

5
4
 

1
6
 

1
0
 

1
 

1
9
 

4
6
 

3
6
 

1
0

4
 

1
0

8
 

6
1
 

1
0

3
 

1
2

2
 

2
6

1
 

p
M

O
I 

8
6
 

0
 

9
2
 

1
1
 

8
4
 

1
0

2
 

4
1
 

8
 

7
 

5
 

1
7
 

4
0
 

4
3
 

1
1

9
 

1
2

4
 

5
0
 

9
3
 

1
2

4
 

2
4

3
 

Im
a

x
 

8
1
 

0
 

8
8
 

1
3
 

8
0
 

9
8
 

4
8
 

1
3
 

7
 

7
 

1
7
 

4
4
 

4
3
 

1
1

9
 

1
2

3
 

5
6
 

9
8
 

1
3

2
 

2
5

8
 

Im
in

 
8

3
 

0
 

9
0
 

1
7
 

8
2
 

1
0

0
 

5
9
 

1
7
 

1
5
 

6
 

2
4
 

4
3
 

4
7
 

1
2

0
 

1
2

5
 

6
2
 

1
0

5
 

1
3

0
 

2
6

8
 

Femur 

V
o

l.
 F

ra
c.

 
4

 
1

7
 

0
 

3
0
 

1
0
 

2
8
 

7
7
 

4
2
 

2
6
 

1
4
 

3
8
 

6
6
 

3
1
 

4
7
 

6
4
 

8
3
 

1
2

0
 

1
3

1
 

2
8

5
 

V
o

lu
m

e
 

4
4
 

1
2
 

4
6
 

1
9
 

6
2
 

6
1
 

6
6
 

2
4
 

1
3
 

0
 

3
5
 

5
9
 

3
8
 

8
2
 

1
0

8
 

7
3
 

1
0

8
 

1
3

2
 

2
7

4
 

T
h

ic
k

n
es

s 
6

 
1

0
 

2
 

1
9
 

2
1
 

2
8
 

7
9
 

3
2
 

1
5
 

0
 

3
1
 

6
1
 

2
4
 

4
8
 

7
4
 

8
2
 

1
1

7
 

1
3

2
 

2
9

6
 

D
ia

m
et

er
 

4
3
 

0
 

5
3
 

2
7
 

5
7
 

6
1
 

6
9
 

3
4
 

2
2
 

1
0
 

3
8
 

4
7
 

4
4
 

8
8
 

1
0

3
 

7
6
 

1
1

3
 

1
3

2
 

2
7

9
 

p
M

O
I 

5
0
 

0
 

5
8
 

2
4
 

6
7
 

6
7
 

6
7
 

2
8
 

1
6
 

3
 

3
6
 

4
8
 

4
7
 

9
3
 

1
1

3
 

7
3
 

1
1

0
 

1
3

5
 

2
7

9
 

Im
a

x
 

4
5
 

0
 

5
4
 

2
5
 

6
4
 

6
3
 

7
6
 

3
1
 

1
8
 

5
 

3
8
 

5
0
 

4
7
 

9
2
 

1
1

1
 

8
1
 

1
1

6
 

1
3

9
 

2
9

5
 

Im
in

 
5

0
 

0
 

6
0
 

3
3
 

6
9
 

6
9
 

8
1
 

3
6
 

1
9
 

5
 

3
9
 

5
1
 

5
2
 

9
9
 

1
1

8
 

8
3
 

1
2

1
 

1
4

8
 

3
0

1
 



 

31 

  

 

Table 2-2. Effect sizes and significance of mass and migratory status (Stat) in explaining length, trabecular 

morphology, and cortical morphology. Analyses were performed on log-transformed data except for the unitless 

metrics (volume fraction, structural model index). SMI = Structural Model Index; Stat = migratory status; TMD = 

tissue mineral density. 

   Humerus Femur 

  Effect β ±SE p  β ±SE p  

 
Length 

Mass 0.211±0.035 <0.001 *** 0.240±0.031 <0.001 *** 

Stat -0.014±0.011 0.223  -0.017±0.008 0.049 * 

T
ra

b
ec

u
la

r
 

Volume 

Fraction 

Mass 0.001±0.001 0.228 
 

0.001±0.001 0.141 
 

Stat -0.009±0.006 0.127 
 

-0.005±0.004 0.269 
 

Volume 
Mass 0.773±0.283 0.009 ** 0.696±0.216 0.002 ** 

Stat -0.092±0.074 0.237 
 

-0.96±0.057 0.110 
 

Number 
Mass 0.146±0.088 0.102 

 
-0.004±0.080 0.963 

 

Stat 0.018±0.022 0.429 
 

0.035±0.020 0.101 
 

Thickness 
Mass -0.019±0.135 0.889 

 
-0.067±0.127 0.598 

 

Stat -0.061±0.037 0.123 
 

-0.091±0.039 0.033 * 

SMI 
Mass -0.004±0.014 0.768 

 
-0.007±0.013 0.597 

 

Stat 0.066±0.076 0.403 
 

0.076±0.069 0.290 
 

Conn. 

Dens. 

Mass 0.374±0.806 0.644 
 

0.908±0.586 0.128 
 

Stat 0.189±0.238 0.440 
 

0.399±0.185 0.047 * 

C
o

rt
ic

a
l 

Volume 

Fraction 

Mass 0.000±0.001 0.931 
 

0.000±0.001 0.673 
 

Stat -0.025±0.007 0.002 ** -0.022±0.006 0.001 ** 

TMD 
Mass -66.7±142.4 0.614  -56.3±144.0 0.698  

Stat -56.1±37.2 0.152  -88.5±36.9 0.030 * 

Volume 
Mass 0.756±0.073 <0.001 *** 0.638±0.085 <0.001 *** 

Stat -0.012±0.018 0.524 
 

-0.087±0.022 0.001 ** 

Thickness 
Mass 0.395±0.071 <0.001 *** 0.357±0.071 <0.001 *** 

Stat -0.050±0.018 0.013 * -0.090±0.018 <0.001 *** 

Diameter 
Mass 0.366±0.035 <0.001 *** 0.308±0.044 <0.001 *** 

Stat 0.025±0.009 0.016 * -0.010±0.011 0.382 
 

pMOI 
Mass 1.413±0.136 <0.001 *** 1.199±0.165 <0.001 *** 

Stat 0.049±0.035 0.185 
 

-0.103±0.043 0.032 * 

Imax 
Mass 1.388±0.139 <0.001 *** 1.141±0.168 <0.001 *** 

Stat 0.050±0.036 0.187 
 

-0.106±0.044 0.030 * 

Imin 
Mass 1.464±0.139 <0.001 *** 1.285±0.170 <0.001 *** 

Stat 0.050±0.036 0.184 
 

-0.098±0.045 0.047 * 
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Chapter 3.Microstructure and Mechanical Properties of Bird Bone 

During Egg-Laying 
 

Introduction 

Medullary bone is a woven bone tissue that birds lay down inside their long bones in the weeks 

prior to laying an egg (Bloom et al., 1941; Taylor and Moore, 1953). It primarily functions as a 

labile source of calcium during formation of the eggshell (Bloom et al., 1958; Driggers and 

Comar, 1949; Taylor, 1966). Recent studies have demonstrated that species differ in which bones 

have or do not have medullary bone (Canoville et al., 2019; Werning, 2018), but it is not clear 

why species differ. To answer this question, we must know the evolutionary benefits and costs of 

producing medullary bone. These broadly include: 1) its influence on calcium metabolism during 

its production and during egg-laying; 2) its influence on whole bone mechanical properties; and 

3) its contribution to bone mass and body mass, and consequential influences on energy 

expenditure and flight mechanics.  

 

Literature to date has focused primarily on how medullary bone varies as a function of calcium 

homeostasis, especially in poultry (Clunies, Emslie and Leeson, 1992; Dacke et al., 1993; Rennie 

et al., 1997; Hurwitz and Bar, 2012). While bone plays an important role in calcium homeostasis, 

it also must remain stiff to protect organs and to resist the large bending and torsional forces 

applied to it during flight and locomotion (Biewener and Dial, 1995). However, the influence of 

medullary bone on whole bone mechanical properties is not well known. Medullary bone has 

been shown to increase whole bone strength (Fleming et al., 1998; Knott and Bailey, 1999; Rath 

et al., 2000), which would mean that birds with medullary bone are less likely to obtain a fracture 

under similar conditions. However, others claim that medullary bone may weaken the skeleton 

by replacing structural bone (Whitehead, 2004), and many authors have stated that medullary 

bone itself is inherently less stiff and strong than structural bone (Beck and Hansen, 2004; 

Fleming et al., 2006; Kim et al., 2004; Rath et al., 2000; Riczu et al., 2004). If bones in the wing 

are less stiff, they will deform more under the same loading forces, which could alter flight 

mechanics and energetics. Bones that are less stiff and strong will also be more prone to fracture. 

Most birds continue to forage while medullary bone is present inside their bones, and alterations 

to whole bone mechanics could influence flight mechanics and the risk of fracture. Therefore, the 

objective of this study was to understand the structural contribution of medullary bone to whole 

bone stiffness to determine whether it is a benefit or cost to flight mechanics and energetics.   

 

Production of medullary bone also increases whole bone mass by some 10% (Fleming et al., 

1998; Rath et al., 2000). However, the influence of this change on energy requirements has not 

been explored. Increased bone mass could increase the energy required for flight by increasing 

inertial power requirements (increased energy to oscillate limbs) and induced power 

requirements. This increase in energy requirements may require birds to spend more time 

foraging for food during the critical reproductive period. Therefore, I also consider here how the 

production of medullary bone could alter bird energy balance and flight mechanics.  

 

To better understand the structural contribution of medullary bone and its influence on flight 

mechanics and energetics, I created models of long bones with and without medullary bone using 
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micro-computed tomography (CT) scans. I used male zebra finches (Taeniopygia guttata) given 

an estrogen-eluting implant to create a reliable, repeatable source of medullary bone. I also used 

females preparing to lay an egg or in the process of laying an egg to confirm that my experiments 

reflect what occurs naturally. My findings will allow us to identify how medullary bone changes 

whole bone mechanical properties, and thus will contribute to our understanding of the 

evolutionary tradeoffs of producing medullary bone. Better knowledge of medullary bone 

micromechanics may also help us understand calorie requirements and osteoporosis occurrence 

in laying fowl.  

 

Methods 

Subjects  

Birds used in this study originated from two captive colonies. One colony housed in a 2.7 m by 

2.5 m by 2.1 m indoor flight aviary at the University of California, Berkeley Field Station for the 

Study of Behavior, Ecology and Reproduction (FSSBER). The remaining 2 females originated 

from a captive colony housed in a smaller aviary at the University of California, Berkeley 

(UCB). Birds at FSSBER were exposed to natural changes in day length supplemented by 

artificial lighting at a light/dark schedule of 12L:12D, while birds at UCB only experienced the 

artificial lighting schedule. All birds were given ad libitum food and water. During experiments, 

birds in this study were kept in a separate indoor flight aviary at FSSBER under the same 

conditions. Experimental procedures for all experiments were approved by the UC Berkeley 

Institutional Animal Care and Use Committee. 

 

Experimental design  

Males. Ten adult male birds were given subcutaneous silastic implants on May 3, 2017. Implants 

consisted of a 5 mm long silastic tube (i.d. 0.76 mm, o.d. 1.65 mm; 2415542, Dow Corning, 

Midland, Michigan) packed full of crystalline estradiol (E8875, Sigma-Aldrich, St. Louis, 

Missouri) (n=6) or left empty as a control (n=4) and sealed using silastic medical adhesive (Type 

A, Dow Corning, Midland, Michigan). Briefly, the surgical procedure was as follows: 24 hours 

prior to injection, implants were placed in sterile saline to soak. Each animal was anesthetized 

using isoflurane and an incision was made between the wing and knee on the animal’s right side. 

The implant was placed under the skin and the incision was closed using Nexaband tissue 

adhesive. After 2 weeks, animals were euthanized and both humeri and femora were collected 

for micro-CT scanning. Four individuals from each group were analyzed for this study. 

 

Females. Three experiments were performed as part of a larger study of female bone during egg-

laying. In each, an equal number of males and females were housed together in a large flight 

aviary and checked once daily between 0800-1200 for nest formation and the presence of new 

eggs. After at least 1 female in an experiment laid an egg, all females were euthanized between 

2000-2200 the same day to capture the egg-laying female while she was calcifying a second egg. 

Reproductive state was identified using the reproductive organs: pre-egg-laying females had 

ovaries with small yellow or hierarchical ova, while egg-laying females had a partially calcified 

egg in the uterus. After reproductive state was determined, both humeri and femora were then 

collected for micro-CT scanning. These experiments occurred from March 1 – 25, 2018 (n=10), 

June 6 – 22, 2018 (n=4), and August 3 – 26, 2018 (n=10). A subset of 5 birds are analyzed here: 

2, 1, and 2 birds from each experiment respectively.  
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Micro-computed tomography scanning 

Left side bones were scanned unless they were broken or missing, in which case right side bones 

were used. Bones were placed in a 3D-printed specimen tube that held four bones at a time. This 

tube was placed in a sample holder (o.d. 11.5 mm i.d. 10 mm, U40830, Scanco Medical, 

Brüttisellen, Switzerland) and filled with saline. Then, micro-CT scans were obtained at an x-ray 

energy of 70 kVp, integration time of 300 ms, and 6 μm isotropic voxel size (μCT 35, Scanco 

Medical, Brüttisellen, Switzerland). Two regions were scanned: first, a 0.6 mm long region 

centered around the center of the midshaft was used in both the humerus and femur to assess the 

diaphysis. Second, a 0.6 mm long region at one end of each bone was obtained to assess the 

metaphysis. For the humerus, this region was at the proximal end of the bone, extending distally 

from the opening of the fossa pneumotricipitalis. For the femur, this region was at the distal end 

of the bone, extending proximal to the portion of the scan in which both condyles were present.  

 

Model creation 

Scans were converted to the DICOM imaging format and imported into MATLAB for model 

creation. A threshold equivalent to 879 mgHA/cm3 was applied to all images. Each scan volume 

was then rotated to ensure that all bones were aligned in the same manner. First, a known linear 

landmark was found on each bone metaphysis. For the humerus, this feature was the flat plate 

containing the crista deltopectoralis, crista bicipitalis, and facies bicipitalis, identified using the 

‘Orientation’ property in the regionprops function over 100 slices. For the femur, the plane 

containing the condyles medialis and condyles lateralis was identified manually on 5 slices. For 

both the humerus and femur, the scan was then rotated about its transverse axis to orient the 

landmark feature dorsally. Second, the long axis of the bone was identified in the diaphysis using 

the ‘Centroid’ property in the regionprops function, and the scan was rotated to align the long 

axis of the bone with the transverse axis of the scan. Finally, all bones were cropped so that all 

analyzed transverse slices were complete. This resulted in a 0.366 mm long region for male 

bones, and a 0.3120 mm long region for female bones.  

 

To determine the mechanical contribution of medullary bone to whole bone stiffness, medullary 

bone tissue needed to be digitally removed from models containing it. Medullary bone has the 

same density as cortical bone (using this scanner and resolution, but see (Fleming et al., 2006)), 

and therefore a threshold could not be used to distinguish the two bone tissues. Instead, the 3D 

dataset was opened, closed, and eroded using spherical structuring elements. Since a spherical 

structuring element does not work well at the edges of a 3D dataset, these operations were 

performed on the first and last 7 slices using a circular disk structuring element with the same 

parameters. Medullary bone varied in amount and shape among individual birds, and therefore 

the radius of the opening, closing, and eroding structuring elements were varied from 0.0120 – 

0.0480 mm until the resulting images had similar thicknesses of medullary bone, approximately 

0.035 mm. This overestimates the amount of medullary bone, and thus will give a generous 

estimate of its mechanical properties.  

 

These 2-material images were exported in the DICOM format, loaded into IDL running in Red 

Hat Linux, and converted to a volume. To ensure that the loading applied results in bending 

rather than shear, the volume must be at least as long as the bone diameter (Saint-Venant's 
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principle) (Toupin, 1965). The volume lengths used here were short relative to the bone diameter 

(for the male humerus: volume length 0.366 mm, average diameter: 1.36 mm), and therefore the 

bone was mirrored 4 times to increase its length, resulting in a model length of 1.86 mm for 

males and 1.56 mm for females. 

 

Finite element analyses 

Material properties. The whole bone was treated as two materials. Histologically, long bones in 

small birds are either lamellar or fibrolamellar (Chinsamy and Elzanowski, 2001; de Ricqles et 

al., 1991; Starck and Chinsamy, 2002) and vascular arrangement is primarily circumferential (de 

Margerie et al., 2005), potentially as adaptations to torsional loading. Regardless, this suggests 

that avian bone will deform differently when loaded in a longitudinal, circumferential, or radial 

direction. However, cortical bone was treated as transversely isotropic (e.g. same material 

properties in the circumferential and radial directions) due to technical difficulties.  

 

Medullary bone collagen is arranged in a random, isotropic pattern rather than along a 

longitudinal axis (Candlish and Holt, 1971). Additionally, mineralization in medullary bone does 

not occur in line with collagen fibrils, but rather in vesicles, resulting in randomly arranged 

globular structures of mineral (Bonucci and Gherardi, 1975; Yamamoto et al., 2005). Given the 

random arrangement of collagen and mineral in medullary bone, it was treated as isotropic 

material.  

 

Boundary conditions. To simulate bending on bone models, the proximal end of the model was 

fixed and all nodes at the distal end of the bone were displaced by 1% of bone length (0.004 mm 

for males, 0.003 mm for females). To ensure that plane sections remain plane, the model was 

constrained from deforming in the cranial-caudal axis, and therefore deformation could only 

occur along the axis of the bone and in the dorsal-ventral axis.  

 

Morphological data 

Custom MATLAB code was used to determine model volume (mm3) and second moment of area 

in the axis of bending (Ixx, mm4). Volume and Ixx did not differ significantly between empty-

implanted males and estrogen-implanted males in which medullary bone was digitally removed, 

suggesting that models in which medullary bone is digitally removed are good representations of 

birds in which medullary bone is not present. Given this, the remaining work directly compared 

each bone against itself with and without medullary bone to directly assess how medullary bone 

influences whole bone mechanics. To compare the usefulness of medullary bone in contributing 

to geometric resistance to bending, an efficiency metric was created: efficiencygeometric, defined as 

Ixx/volume (mm4/mm3). Two-tailed paired t-tests implemented in the R-environment (R Core 

Team, 2018) through R Studio 1.1.456 (RStudio Team, 2015) were used to determine whether 

volume, Ixx, or efficiencygeometric changed significantly with the removal of medullary bone. 

 

Stiffness data 

To determine the average reaction force experienced by each bone, data were imported into 

MATLAB. The average shear stress in the yz-direction on all voxels and slices was found and 

converted into a reaction force (N). This was converted to whole bone stiffness (K, N/mm) by 

dividing by the displacement applied: 0.0183 mm for males, 0.0156 mm for females. To compare 
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the ability of bone to resist force when medullary bone is present or absent, an efficiency metric 

was created: efficiencyFEA, defined as bone stiffness/volume (K/mm3). As with the 

morphological data, two-tailed paired t-tests were used to determine whether stiffness and 

efficiencyFEA changed significantly with the removal of medullary bone. Finally, to determine 

how much load was held by cortical versus medullary bone, the average load held by each bone 

type at each slice was determined using custom MATLAB code.  

 

Results 

Bone morphology 

Averages for all medullary bone parameters are listed in Table 3-1. Medullary bone significantly 

increased total volume in the male humerus (36%, p=0.002), male femur (41%, p=0.001), and 

the female humerus (36%, p<0.001) (Figure 3-1a). The presence of medullary bone also yielded 

significant increases in the relevant second moment of area (Ixx) for the male humerus (23%, 

p=0.010), male femur (29%, 0.004), and female humerus (24%, p=0.001) (Figure 3-1b). 

Geometric efficiency significantly decreased with the addition of medullary bone in the male 

humerus (10%, p=0.005), male femur (8%, p=0.003), and female humerus (8%, p=0.004) 

(Figure 3-1c).  

 

Bone stiffness 

Stiffness under a 1% bending displacement increased significantly with the addition of medullary 

bone in the male humerus (30%, p=0.013), male femur (p=0.028), and female humerus 

(p<0.001). (Figure 3-1d). EfficiencyFEA decreased significantly with the addition of medullary 

bone in the male femur (12%, p=0.013) and female humerus (5%, p<0.001). It also decreased in 

the male humerus, but the change was not significant (5%, p=0.053) (Figure 3-1e).  

 

Load sharing 

Medullary bone occupied an average of 26% of the male humerus, 29% of the male femur, and 

26% in the female humerus. It held a slightly smaller portion of the load: 25% in the male 

humerus, 23% in the male femur, and 24% in the female humerus (Figure 3-2). Its presence also 

resulted in a decrease in the load held in the cortex by 6% in the male humerus, 7% in the male 

femur, and 2% in the female humerus.  

 

Discussion 

This study addressed the question of how medullary bone influences whole bone 

microarchitecture, and the resulting influences on mechanical properties and flight mechanics. 

My results showed that a 36 – 41% increase in bone volume leads to only a 24 – 30% increase in 

whole bone stiffness. This resulted in a decrease in efficiencygeometric by 8 – 10% and 

efficiencyFEA by 5 – 12%. Therefore, addition of bone volume as medullary bone does not lead to 

a concomitant increase in resistance to bending, and medullary bone is not an optimum use of 

material in terms of increasing bending stiffness. In other words, medullary bone does not 

significantly change whole bone stiffness. The findings of this study align with previous work by 

(Fleming et al., 1998a) who showed that an increase in bone mass of 13% led to only a 5.8% 

increase in breaking force in bending for birds with a medullary bone score of 2, and by other 
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studies that show that medullary bone is not as strong as structural bone (Fleming et al., 1996; 

Fleming et al., 1998a; Knott and Bailey, 1999).  

 

The fact that medullary bone does not change whole bone stiffness means that it should 

minimally alter flight mechanics and energetics. That is, wing bones with medullary bone will 

deform similarly during flight to those without medullary bone, resulting in similar muscle 

requirements and therefore similar amounts of energy required to fly.  

 

Influence of medullary bone on whole bone loading 

Additionally, although medullary bone occupies some 26 – 29% of bone volume in our study, it 

only reduces the loading experienced in the cortical bone by 2 – 7%. Therefore, this placement of 

large quantities of bone ensures that cortical loading is maintained and minimizes the chance of 

cortical resorption as a result of reduced loading. If mechanical loading remains the same, bone 

mass and thus whole bone mechanical properties will be maintained (Lanyon and Rubin, 1984). 

In contrast, reduced loading can result in bone resorption and diminished mechanical properties 

(Biewener and Bertram, 1994; Ellman et al., 2013; Shipov et al., 2010). Therefore, maintenance 

of mechanical loading during egg-laying may ensure that whole bone mechanical properties will 

be the same after egg-laying. Further, some studies have shown that birds lose structural bone in 

the process of forming medullary bone (Fleming et al., 1998b; Taylor and Moore, 1954; Turner 

et al., 1993; Wilson and Thorp, 1998). If this loss in bone mass is similar to the 2 – 7% decrease 

in cortical loading shown here, cortical loading may be fully maintained during egg-laying.  

 

Given that medullary bone increases bone volume by 36 – 41% but minimally alters bending 

stiffness and cortical loading, it represents an ideal compromise between the need to store 

calcium for use during egg-laying while maintaining bone loading and bone mechanical 

integrity. This work therefore confirms the primary role of medullary bone to store calcium 

during egg-laying, as stated by many previous authors (Bloom et al., 1958; Comar and Driggers, 

1949; Taylor, 1966). Further, my work demonstrates that medullary bone microstructure 

minimizes the potentially negative side effects of drastically increasing bone mass. This means 

that the bone morphology prior to egg-laying should be fully maintained during egg-laying, and 

therefore the bird should be able to quickly regain its original bone stiffness and bone strength 

after egg-laying. This is especially important because after laying an egg, birds must continue to 

forage and survive to keep the egg warm. 

 

Structural and material properties of medullary bone 

The reduction in efficiencyFEA of 5 – 12% is similar to the 14% decrease we can calculate for 

birds with a medullary bone score of 2 in the study by Fleming and coauthors (1998). Since I 

modeled medullary bone using similar material properties to those for structural bone, this 

reduced efficiency can be explained by morphological factors: first, medullary bone is placed on 

the interior surface of the bone, very close to the neutral axis of bending, and thus is not in an 

ideal location for resisting bending forces. Second, medullary bone is laid down in thin struts or 

spicules, rather than as complete sheets of bone. Although the spicules hold force, they are not 

able to transfer load along the bone as easily as continuous sheets of bone.   
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Some workers have suggested that medullary bone is inherently weaker because of its 

differences in material makeup (Knott and Bailey, 1999; Whitehead, 2004). These differences 

include that medullary bone mineral crystals are arranged in globules rather than along collagen 

fibrils, that it has reduced collagen content but increased proteoglycan content, that it lacks 

lamellar arrangement, and that it differs in cross-linking relative to structural bone (Ascenzi et 

al., 1963; Candlish, 1971; Candlish and Holt, 1971; Knott and Bailey, 1999; Yamamoto et al., 

2005). However, given that the reduced efficiency found here is similar to that observed in 

mechanical tests of medullary bone, and given that the material properties of medullary and 

structural bone were similar in this study, my work shows that it is microstructure, not material 

makeup, that gives medullary bone its poor mechanical advantage. A potential explanation lies in 

the theory that bone stiffness (e.g. pre-yield mechanical properties) is primarily determined by 

the mineral content of bone, while ductility (e.g. post-yield mechanical properties) is primarily 

determined by organic components (Burstein et al., 1975). Since medullary bone has similar 

mineral content to structural bone, it provides similar resistance to mechanical loading, despite 

differences in the content and arrangement of its organic material.  

 

Influence of medullary bone on flight mechanics and energetics 

I also wondered whether the 36 – 41% increase in bone mass that I observed might significantly 

increase induced and/or inertial power requirements. Skeletal mass in small passerine birds is 

typically about 5% of total body mass (Prange et al., 1979). Since induced power scales 

approximately with bird mass3/2, this will result in an increase in power by only 3%. Inertial 

power depends on wing moment of inertia, which is proportional mass × distance2. In birds, 

wing moment of inertia is bell-shaped, as heavy bone and mass are located proximally in order to 

minimize the moment of inertia (Berg and Rayner, 1995). Further, muscle contributes far more 

to total mass than bone, at 30% in most birds (Lindström et al., 2000). Given its proximal 

distribution and proportionally small contribution to wing mass, a 40% increase in bone mass 

will only increase inertial power requirements by around 4%. Although small, these increases in 

power requirements will increase the energy a bird needs to consume a time when nutrient 

requirements are high in order to create eggs. This may partially explain why some species 

increase nutrient storage prior to laying an egg (Perrins, 1980). 

 

Conclusion 

Medullary bone formation increased bone mass by 36 – 41% but increased whole bone stiffness 

in bending by only 24 – 30%. Its inefficiency is due to its placement and its spicule-like 

microstructure, rather than its material properties. It also had minimal influences on load held in 

the cortex. It thus represents an ideal compromise between the need to store calcium for use 

during egg-laying while maintaining bone loading and bone mechanical integrity.  
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Figures 

 
Figure 3-1. Geometric and loading properties in the female humerus during egg laying and in the estrogen-implanted 

male femur and humerus when medullary bone is present or absent. Volume (A), second moment of area (B), 

stiffness (C), efficiency as determined using bone stiffness relative to volume (D), and efficiency as determined 

using second moment of area relative to volume (E). For each bone type, results are shown in which medullary bone 

was virtually removed or kept in the model. Error bars indicate standard error. An asterisk (*) indicates a significant 

difference (p<0.05) between the bars. 
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Figure 3-2. Proportion of load held by medullary as a function of position (proximal to distal) in the model. Results 

are shown for the estrogen-implanted male humerus and femur as well as the female humerus during egg-laying. 

The shaded area around each line indicates standard error. 
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Tables 
 

Table 3-1. Morphological parameters and finite element analysis results for estrogen-implanted male humeri and 

femurs and for female humeri during egg-laying with and without medullary bone. 

 MEDULLARY BONE ABSENT MEDULLARY BONE PRESENT 

 
Volume 

[mm3] 

Ixx 

[mm4] 

Efficiency 

[N mm-3] 

Volume 

[mm3] 

Ixx 

[mm3] 

Efficiency 

[N mm-3] 

MALE HUMERUS      

53 0.214 0.854±0.006  -31.68 0.289 1.031±0.011 -22.20 

54 0.203 0.877±0.003  -32.41 0.285 1.127±0.005 -28.39 

55 0.196 0.657±0.006  -27.57 0.249 0.767±0.010 -19.83 

56 0.219 1.014±0.016  -31.54 0.307 1.260±0.011 -31.22 

Average 0.209±0.008 0.897±0.147 30.80±1.89 0.282±0.021 1.046±0.225 29.40±2.17 

       

MALE FEMUR      

53 0.106 0.277±0.004  -24.83 0.146 0.349±0.006 -21.54 

54 0.114 0.375±0.007  -27.08 0.165 0.487±0.007 -25.66 

55 0.092 0.253±0.007  -24.06 0.126 0.315±0.008 -20.65 

58 0.099 0.330±0.005  -28.09 0.141 0.439±0.010 -24.01 

Average 0.103±0.008 0.333±0.050 26.01±1.64 0.145±0.014 0.432±0.071 22.96±1.98 

       

FEMALE HUMERUS      

109 0.148 0.734±0.007  -45.60 0.193 0.898±0.009 -35.70 

110 0.140 0.670±0.009  -41.62 0.188 0.830±0.007 -32.77 

112 0.139 0.719±0.007  -44.14 0.193 0.921±0.012 -35.36 

115 0.161 0.673±0.005  -41.91 0.195 0.774±0.006 -34.81 

116 0.114 0.509±0.016  -39.31 0.173 0.675±0.017 -32.94 

Average 0.140±0.015 0.661±0.080 42.52±2.17 0.189±0.008 0.819±0.089 40.42±2.09 
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