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EPIDEMIOLOGY

Identifying Transmission Clusters with Cluster
Picker and HIV-TRACE

Rebecca Rose,1 Susanna L. Lamers,1 James J. Dollar,1 Mary K. Grabowski,2

Emma B. Hodcroft,3 Manon Ragonnet-Cronin,3 Joel O. Wertheim,4

Andrew D. Redd,5,6 Danielle German,2 and Oliver Laeyendecker5,6

Abstract

We compared the behavior of two approaches (Cluster Picker and HIV-TRACE) at varying genetic distances to
identify transmission clusters. We used three HIV gp41 sequence datasets originating from the Rakai Community
Cohort Study: (1) next-generation sequence (NGS) data from nine linked couples; (2) NGS data from longitudinal
sampling of 14 individuals; and (3) Sanger consensus sequences from a cross-sectional dataset (n = 1,022) con-
taining 91 epidemiologically linked heterosexual couples. We calculated the optimal genetic distance threshold to
separate linked versus unlinked NGS datasets using a receiver operating curve analysis. We evaluated the number,
size, and composition of clusters detected by Cluster Picker and HIV-TRACE at six genetic distance thresholds
(1%–5.3%) on all three datasets. We further tested the effect of using all NGS, versus only a single variant for
each patient/time point, for datasets (1) and (2). The optimal gp41 genetic distance threshold to distinguish linked
and unlinked couples and individuals was 5.3% and 4%, respectively. HIV-TRACE tended to detect larger and
fewer clusters, whereas Cluster Picker detected more clusters containing only two sequences. For NGS datasets
(1) and (2), HIV-TRACE and Cluster Picker detected all linked pairs at 3% and 4% genetic distances, respec-
tively. However, at 5.3% genetic distance, 20% of couples in dataset (3) did not cluster using either program, and
for >1/3 of couples cluster assignment were discordant. We suggest caution in choosing thresholds for clustering
analyses in a generalized epidemic.

Keywords: HIV, viral clustering, Uganda

Introduction

V iral phylogenetic analysis is critical for assessing HIV
epidemiological and evolutionary dynamics in populations

and is an important tool to both design and evaluate HIV control
strategies.1–6 The identification of transmission clusters can
support epidemiologically linked transmission events,7 identify
putative transmission chains,8 and reveal mixing between
key risk groups and geographic subpopulations.9

Transmission clusters of HIV infections are typically defined
using either genetic distances among sequences4 or genetic
distances in addition to branch support values (e.g., bootstrap
values).3 However, genetic distance and branch support cutoffs

markedly vary between studies and the rationale for a given
cluster definition is rarely specified.10–15 Many factors can in-
fluence the choice of genetic distance and branch support cutoff
values used to define clusters, such as the spatial and temporal
scale of analysis, HIV subtype, the underlying mode of trans-
mission (e.g., heterosexual vs. injection drug use), and the viral
genomic region(s) being analyzed. Branch support values may
also be affected by the statistical model used to reconstruct the
phylogenies (e.g., maximum likelihood, Bayesian) and the total
amount of viral genetic diversity in the dataset.10

In this study, we systematically compare two programs
used to detect HIV-1 transmission clusters, Cluster Picker12

and HIV-TRACE,10 using three separate HIV-1 sequence
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datasets from HIV-infected participants in the Rakai Com-
munity Cohort Study (RCCS). Two of these datasets were
generated using next-generation sequence (NGS) methods and
included (1) sequential sequences from the same person and
(2) sequences from epidemiologically linked heterosexual
couples. We used these NGS data to establish appropriate
genetic distance and bootstrap threshold values such that
known linked sequences clustered together. We next com-
pared the two programs using dataset (3), a cross-sectional
population-based sequence dataset consisting of 1,022 RCCS
participants. Specifically, the total number and composition of
transmission clusters were characterized and then compared.

Materials and Methods

HIV-1 sequence datasets

All HIV-1 sequences used for this study were obtained
from HIV-infected participants in the RCCS, a population-
based HIV surveillance cohort (n = 15,000) established in
southern Uganda in 1994. The RCCS surveys individuals
aged 15–49 every 12–18 months, and collects detailed in-
formation on sexual behaviors and partnerships as well as
healthcare-seeking behaviors and HIV status.16 Serum sam-
ples are also collected for viral sequencing studies. The
participation rate in the RCCS cohort is high: *90% of
persons available at the time of survey agree to participate
and the follow-up rate is *75% between survey rounds.

Three unique datasets of published HIV-1 sequences from
RCCS participants were analyzed in this study.17–19 Datasets
(1) and (2) contained viral sequences spanning a 325–330 base
pair segments of the HIV gp41 gene, generated using the Roche
454 method.17,18 Dataset (1) comprised of nine epidemiolog-
ically linked couples with prior evidence of a virally linked
transmission event (donor and recipient). Couples were ini-
tially serodiscordant, but the second partner tested positive at a
follow-up visit. NGS data were available from an early time
point from the donor, and a later time point from both partners,
corresponding to the first visit at which the recipient tested
positive.17

Dataset (2) was comprised of viral sequences from 14
HIV-positive individuals who were sampled at two different
time points. These sequences were used in a previous study to
determine the frequency of HIV superinfection in the
RCCS.18 Individuals who were previously determined to
have experienced superinfection were excluded in this study,
as the high intrapatient genetic diversity resulting from un-
related strains violates the underlying assumption that ge-
netic diversity is a result of on-going evolution of the initially
infectious strain. We refer to the couples and individuals
collectively as ‘‘pairs.’’

We also created two additional unlinked datasets by ran-
domly shuffling the couples in dataset (1), and the individuals
in dataset (2), while maintaining the same HIV subtype. The
goal was to establish genetic distance threshold cut off values
that best distinguish unrelated from related sequences. The
NGS data had previously been compressed, so that all similar
sequence reads were collapsed into one representative vari-
ant, with the overall frequency of the variant retained (Sup-
plementary Table S1; Supplementary Data are available
online at www.liebertpub.com/aid). The number of variants
per individual per sample time point ranged from 3 to 116.
We performed some analyses using all of the variants, des-

ignated the ‘‘NGS data.’’ We also used just the most frequent
variant from each member of the pair, designated the ‘‘single
variant data,’’ which is analogous to a Sanger consensus se-
quence dataset.

Dataset (3) was derived from a cross-sectional phylogenetic
study of the RCCS, and included one consensus sequence of
the HIV gp41 region from a total of 1,022 individuals sampled
between 2008 and 2009.19 Consensus sequences were ob-
tained using Sanger sequencing (gp41 fragment, HXB2 nt
7858 to 8260) as previously described.20 Of the 1,022 indi-
viduals, 182 individuals were identified to be part of an epi-
demiologically linked heterosexual couple (91 couples), where
either one or both partners named the other as a sexual part-
ner.19 Of these 91 couples, 28 were defined as ‘‘incident,’’ in
which one (n = 21) or both (n = 7) partners were diagnosed with
HIV during the intersurvey interval (*1.5 years). Couples
were defined as ‘‘prevalent’’ otherwise.

Genetic distance and receiver operating curve analysis

Pairwise distances were calculated using the Tamura-Nei21

substitution model in the HIV-TRACE package. All other
statistics were generated using the R statistical software (ver-
sion 3.2.4). The receiver operating curve (ROC) was plotted,
and the optimal genetic distance threshold was selected using
both the closest point to the top left corner and the Youden’s J
statistic (where the optimal cut-off is the threshold that maxi-
mizes the distance to the identity line).22 The area under the
curve (AUC) was calculated to determine the prediction value
of genetic distance, and the uncertainty calculated with the
DeLong method.23 We removed all intrasample distances to
avoid biasing distributions toward lower distances.

Phylogenetic inference

We inferred maximum likelihood (ML) trees using com-
binations of the general time reversible (GTR) model for nu-
cleotide substitution with gamma-distributed variation of rates
among sites (+G4) or the Hasegawa–Kishino–Yano (HKY)
model +G4, and the nearest neighbor interchange (NNI)
branch-swapping algorithm, both with and without the subtree
pruning–regrafting (SPR) algorithm. Branch support was as-
sessed using either 200 bootstrap replicates or the approximate
likelihood ratio (aLRT) test. All ML analyses were conducted
in PhyMLv3.0.24 Trees were inferred for datasets (1) and (2) in
two ways: first, by only using one variant from each individual/
time point (46 sequences from 23 pairs), and second, by using
all of the NGS variants (2,199 sequences from 23 pairs). Trees
were inferred for dataset (3) with 1,022 Sanger sequences from
1,022 individuals.

Clustering

Two programs were used to identify clusters: Cluster
Picker and HIV-TRACE. Cluster Picker [12] is a Java-based
program available at: http://hiv.bio.ed.ac.uk/software.html as
input, Cluster Picker requires a phylogenetic tree and se-
quence data. Clusters are specified using user-specified ge-
netic distance and bootstrap thresholds. HIV-TRACE is
available as a web interface at www.hivtrace.org and as a
command line application at https://github.com/veg/hivtrace
(approach described in Wertheim et al.10). Clusters are de-
fined using a user-specified genetic distance threshold.
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Results

Genetic distance thresholds of 4%–5.3% separated
linked and unlinked pairs

The interquartile range and median pairwise genetic dis-
tance between unlinked sequence datasets (i.e., the shuffled
pairs) was much higher than in the linked sequence datasets
(Fig. 1). Using ROC analyses, the optimal genetic distance
threshold was calculated under four scenarios, using as cases/
controls: (1) couples from dataset (1), at a single time point for
each person in the pair/shuffled couples with two individuals
not epidemiologically linked, but infected with the same sub-
type; (2) couples from dataset (1), with two time points for the
donor and one time point for the recipient/shuffled couples; (3)
individuals from dataset (2), with two longitudinal time points/
shuffled individuals where two time points came from different
individuals, but infected with the same subtype; and (4) all
couples and individuals from datasets (1) and (2) combined/all
shuffled pairs. In all cases, sensitivity and specificity were
>94% with a genetic distance of 4%–5.3% and the AUC was

>99% (Fig. 2 and Supplementary Table S2). We, therefore,
used 5.3% as our highest threshold in subsequent analyses.

Cluster Picker was biased toward smaller clusters
at low genetic distances with NGS data

At genetic distances £3%, Cluster Picker detected nearly
eightfold more clusters than HIV-TRACE (Fig. 3). As the
genetic distance threshold increased >3%, HIV-TRACE de-
tected fewer clusters containing multiple pairs, whereas Cluster
Picker detected fewer clusters that contained all of the se-
quences from given pairs.

HIV-TRACE detected pairs at lower genetic
distances than Cluster Picker with NGS data

At the 1% genetic distance threshold, 23/24 pairs from da-
tasets (1) and (2) were detected by HIV-TRACE, but only 8/24
were detected by Cluster Picker (Supplementary Table S3). At
3% genetic distance, HIV-TRACE detected all pairs; however,
two sets of couples (couples 2 and 9, and couples 5 and 8)
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overlapped. At 4% genetic distance, Cluster Picker detected all
pairs, with only one overlapping set of couples (couples 2 and 9).

Cluster Picker retains more 2-seq clusters
at higher genetic distances with single variant data

Branch support showed little difference among ML trees
inferred using different model parameters (Supplementary
Table S4). When branch support threshold was set to 0 in Cluster
Picker to detect the influence of topology and genetic distance
only, both programs performed similarly (Supplementary
Table S5). At 5% genetic distance, both programs detected all
pairs; however, Cluster Picker retained two-sequence (2-seq)
clusters, whereas HIV-TRACE detected larger clusters.

HIV-TRACE detects fewer, larger clusters
than Cluster Picker at >3% genetic diversity
in the cross-sectional dataset

The number of clusters detected by Cluster Picker varied
very little among different parameter settings in the ML trees
inferred for dataset (3) (Supplementary Table S6). HIV-
TRACE and Cluster Picker detected similar numbers of
clusters at genetic distances £3% (Fig. 4A) and an average of
*2 sequences/cluster (Fig. 4B). Cluster Picker continued to
detect additional clusters at higher genetic distances with a
relatively linear rate. However, the number of clusters de-
tected by HIV-TRACE decreased when genetic distance was
>4%. The number of 2-seq clusters again increased with a
relatively linear rate as genetic distance increased, whereas
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HIV-TRACE detected fewer clusters at genetic distances
>3%. While HIV-TRACE included a higher total number of
sequences in the dataset in some cluster (Fig. 4C), the average
number of sequences per cluster increased exponentially as the
genetic distance increased. Of the 91 couples in this dataset,
HIV-TRACE and Cluster Picker performed similarly at ge-
netic distances >3%, but again the number of couples detected
in a 2-seq cluster by HIV-TRACE decreased at higher levels.
Cluster Picker detected the maximum number of couples in
2-seq clusters at 5%, and decreased slightly at 5.3%.

Most couples detected only at higher genetic distances
were in >2-seq clusters

HIV-TRACE was more likely to detect couples in >2-seq
clusters than Cluster Picker, as expected from previous re-
sults (Table 1). The number of couples detected in 2-seq
clusters at the highest genetic distance (n = 22) was only
slightly higher than the number detected at 1% (n = 16). On
the other hand, the number of couples who did not cluster in
either analysis at 1% (n = 68) decreased to only 18 at 5.3%.
Most of these couples were assigned to >2-seq clusters by
HIV-TRACE or both HIV-TRACE and Cluster Picker. In-
terestingly, only 5 of 28 couples who were not detected by
either program at 5.3% were incident.

Discussion

The goals of this study were twofold: (1) identify a sta-
tistically supported genetic distance threshold to define
transmission clusters specific to our data, and (2) compare the
behavior of HIV-TRACE and Cluster Picker at detecting
clusters at this threshold. Our data were derived from a rel-
atively small geographic region with stable HIV prevalence.
We initially used two NGS datasets from epidemiologically
linked pairs (couples and longitudinally sampled individu-
als), in which genetic distances represented evolution within
individuals since the time of transmission. The difference in
pairwise distributions of the linked pairs and shuffled pairs
was striking: for all comparison, the ROC provided optimal
genetic distance values with >94% specificity and sensitivity
in all cases. Interestingly, the optimal distances were quite

high (>4%). We, therefore, used the optimal threshold for
couples (5.3% genetic diversity), as well as a range of more
typically used values (1%–5%) for the remainder of the
clustering analyses.

We found some interesting differences in the number and
composition of clusters detected by the two programs. As ge-
netic distances increased past 3%, HIV-TRACE tended to
detect larger and fewer clusters than Cluster Picker, whereas
Cluster Picker continued to detect more clusters and more 2-
seq clusters at higher genetic distances. For the NGS data,
Cluster Picker detected nearly eightfold more clusters than
HIV-TRACE at 1%, but detected all linked pairs at 4%, and
detected only slightly fewer clusters as high as 5.3% (n = 22).
HIV-TRACE detected all linked pairs at 3%; however, at 5.3%,
only nine larger clusters were detected. This might be an im-
portant consideration when the goal is to detect distinct trans-
mission events (i.e., two individuals) that may be separated by a
long period of time during which the viral population diverged
(and thus higher genetic distance thresholds can be used).

On the other hand, when the goal is to detect larger net-
works of sequences, HIV-TRACE may offer an advantage.
For example, HIV-TRACE may perform better in epidemics
with high coverage, where long transmission chains are ex-
pected. The similarity between the Cluster Picker and HIV-
TRACE results may be different in a broad surveillance
setting, which needs to be investigated more thoroughly.

Interestingly, NGS data allowed detection of related sam-
ples at lower genetic distance thresholds (3%–4%) in com-
parison to single sequence data, which required genetic
distance thresholds of 5% to detect all pairs for both programs.
These results suggest that the most frequent variant from two
individuals of a couple or from two time points are not nec-
essarily closely related, and the full information from a deeply
sequenced dataset can provide useful information that is oth-
erwise hidden. Previous studies have also found that couples
who were initially assessed as unlinked based on consensus
sequences were actually found to be linked when gp41 NGS
data were used.7 We also found that branch support was robust
to parameter in the ML analysis, therefore, less computation-
ally intensive tree-building methods may be used on these
larger datasets allowing practical phylogenetic analyses.
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In the cross-sectional dataset, 20% (18/91) of self-
identified couples did not cluster at all, even at the highest
level of genetic distance tested in this study (5.3%). This
observation is similar to the findings from a study of couples
involved in the HPTN052 trial, in which 18.4% of couples
were determined to be unlinked through consensus pol se-

quences and gp41 NGS.7 At the highest genetic distance,
couples were nearly equally separated into four categories
corresponding to the type of cluster (2-seq, >2-seq, no clus-
ter) assigned by HIV-TRACE and Cluster Picker. More than
one-quarter (28%) of couples were in the discordant category
of 2-seq by Cluster Picker and >2-seq by HIV-TRACE.
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Combining this information can potentially provide addi-
tional insight into the transmission dynamics.

Clearly, the optimal threshold for detecting clusters de-
fined here of 5.3% may not be appropriate for all datasets, for
example, the pol region, which is used by many studies for
drug resistance screening and public health surveillance. On
the other hand, pol and env have been shown to produce
identical phylogenetic clustering patterns with similar sta-
tistical support,1,25 suggesting that branch support thresholds
are consistent across genes. Our data were collected from
stable epidemic in Uganda in which genetic diversity has
accumulated over time, whereas other clustering studies have
examined more recent and localized HIV outbreaks6,26,27 or
epidemics10 in which less diversity is present. Yet, this study
clearly demonstrates the value of investigating dataset-
appropriate thresholds and using multiple approaches to de-
termine linkage. Additional approaches to define clusters
beyond those tested here could also be included, for example,
Bayesian probabilistic methods,7 which may provide addi-
tional insight into community transmission dynamics.

HIV phylogenetic analysis is increasingly being used to help
understand community transmission dynamics and inform
opportunities for intervention.28–31 Transmission clusters can
provide insight into shifts in social and structural dynamics
influencing transmission over time and the role of social dis-
tance and other structural influences on transmission, inde-
pendent of participant-reported history.32 There is great
potential for using these data to help identify segments of the
population at highest risk for incident HIV infection, which can
inform the mechanisms, upper limits of reach, and targeting for
network-based HIV testing and care interventions, PrEP, and
other social and behavioral intervention.33

However, effective public health application relies upon
sufficient network completeness and appropriate application
of sequencing algorithms to identify transmission clusters. It
is also important that data users are able to have confidence in
the results of cluster analyses. The results of the current
analysis suggest a need for greater appreciation of the nu-
ances involved in identifying genetic linkages for HIV and
perhaps an approach that uses multiple methods.
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