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There has been recent growth in using hidden Markov models (HMMs) to chronicle 

the latent spatiotemporal dynamics of brain activity acquired from functional magnetic 

resonance imaging (fMRI).  This technique can be used to model resting state data or 

dynamic processing, such as attention.  The locus coeruleus (LC), a small subcortical 

structure, is the main source of norepinephrine throughout the brain and therefore is 

involved in modulating attention and arousal.  An HMM can be used to identify latent 

fMRI-based brain states comprised of a combination of networks, and to determine how 

the behavior of these brain states change as a function of attentional perturbations. 

The purpose of this investigation is two pronged.  We aimed to create a 

comprehensive theoretical and empirical overview of various HMM subtypes in effort to 

make informed decisions about which should be used under different circumstances for 

future investigations.  We then fit this probabilistic model to an fMRI dataset optimized to 



 vii 

image the effects of the LC to gain insight into its dynamic relationship with attention and 

arousal. 

To accomplish this, we first theoretically contrasted three HMM subtypes, then 

applied them to an fMRI resting state dataset to obtain an empirical understanding of the 

strengths and weaknesses of each one.  One model type, an activation-based HMM, was 

applied to a pseudo-resting state dataset where LC activity was noninvasively up-regulated 

via a handgrip task.  This aimed to analyze how HMM-related measure focusing on 

attentional networks changed as a function of actively squeezing a squeeze-ball. 

We found that an activation-based HMM is ideal for capturing temporal dynamics 

and is preferred if activation and connectivity state patterns are to be analyzed in 

conjunction.  An HMM where functional connectivity values were summed at each time 

point is advantageous if a study’s goal is to examine the general connectedness between 

nodes.  We also noted that the HMM subtype fitted to all unique correlation values from a 

sliding window analysis is preferred if an investigation wishes to explore specific nodal 

connectivity.  Our findings from HMM-based measures extricated from the LC-focused 

dataset show potential evidence of norepinephrine depletion and attentional allocation. 
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coordinates for SN and LC were taken directly from Raichle 2011 and Langley et al. 2017 

respectively (1,9,10).  The two FPCN coordinates with the strikethrough were excluded 

from analyses because of their close location to neighboring ROIs.  The information for 

ROIs within DMN, FPCN, DAN, and SN are reproduced here, and the LC has been 

included.  Page 82. 
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Chapter 1: Introduction 

The brain is a dynamic organ where activity never ceases, even in the absence of a 

task (1,2).  It is comprised of a myriad of networks that interact and govern many different 

behaviors including, but not limited to, attention and perception (3–6).  Various 

neuroimaging techniques have been used to image the brain and quantify network 

interactions thereby working towards a better understanding of the brain’s dynamic 

behavior.  Although there is a plethora of neuroimaging modalities available from which 

to acquire brain data, functional magnetic resonance imaging (fMRI) is commonly used 

because of its excellent spatial resolution and because it can image subcortical structures 

(7–10).  Using this data acquisition modality, many groups have fragmentized the brain 

into a series of states comprised of different combinations of networks (11–22).  One 

emerging technique is a hidden Markov model (HMM) because it intrinsically identifies 

spatial patterns of latent brain states and temporal patterns of the interactions between those 

brain states (23–26).  An HMM can identify latent brain states pertaining to a wide variety 

of phenomena that the brain modulates (11–13,13,27,28).  For the purposes of this 

dissertation, we focused on attention. 

We were interested in better understanding how attention shifts during resting state, 

i.e., in the absence of a task.  Furthermore, we concentrated on attention in order to examine 

the locus coeruleus (LC) circuit which has an established relationship with attention and 

arousal (29).  The LC is a 2mm in diameter subcortical structure sitting atop the fourth 

ventricle in the brain (7,8).  It is the main source of norepinephrine throughout the brain 

thereby making it the principal modulator of attention, the sleep-wake cycle, and stress 
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(9,10,29–32).  Analyzing this structure is important because degradation of this structure 

has been linked to Alzheimer’s and Parkinson’s diseases (33,34).  Thus, in order to 

comprehend LC dysfunction, we must first understand normal LC function.  Because LC 

is associated with arousal and attention, examining its relationship with these trends 

provides major insight into its general function.  We fit an HMM to a dataset optimized to 

image the LC to observe spatial patterns of attention-related brain states and discern how 

its measures changed over time in response to performing a handgrip task. 

In Chapter 2, three different HMM subtypes were theoretically compared in effort 

to understand which model-type should be used to examine a certain research topic for 

future investigations.  To accomplish this, we investigated three HMM subtypes that could 

be used to assess various neuroimaging-related topics: an activation-based HMM (AB 

HMM), a summed functional connectivity HMM (SFC HMM) derived from Ou et al. 2014, 

and a full functional connectivity HMM (FFC HMM) (11–13,28).  The theoretical basis of 

each subtype was explained in great detail, as well as how model inputs were formatted 

and how model outputs were acquired.  We discussed theoretical similarities and 

differences amongst all three subtypes as well as how the temporal resolution was affected 

by each model type’s input.  Two different yet synergistic methods of model order 

determination were introduced along with local and global analyses—all of which were 

utilized in Chapters 2, 3, and 4 (11,35).  Local analyses focused on state patterns and 

characteristics.  We examined different methods used to acquire activation and 

connectivity state patterns from each model type and explained why we expected them 

differ within and across each one.  Global analyses described evaluation of measures 
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directly outputted from all three model types, or of ones that could be derived from the 

outputs.  Specifically, we theoretically compared and contrasted the Viterbi path, transition 

probability matrix, switching rate, and fractional occupancy correlation across each model 

type.  Two overarching questions emerged from our theoretical analyses: (1) What kinds 

of questions does each model type answer?  (2) When is it useful to employ each model 

type?  We attempted to obtain as much insight as possible into these inquiries in Chapter 

3. 

Chapter 3 focused on applying all HMM techniques described in Chapter 2 to an 

fMRI dataset to obtain empirical insight into the strengths and weaknesses of AB HMM, 

SFC HMM, and FFC HMM.  From these results, we intended to deduce which HMM 

subtype is best used when exploring a particular research focus in an investigation.  We 

analyzed a resting state dataset from the Human Connectome Project (HCP) as well as four 

specific attention-related networks: default-mode network (DMN), fronto-parietal control 

network (FPCN), dorsal attention network (DAN), and salience network (SN).  After 

determining the ideal number of states to pursue in each model type, all activation and 

connectivity spatial patterns were closely contrasted.  The Viterbi paths, transition 

probability matrices, switching rate, and fractional occupancy correlation from AB HMM, 

SFC HMM, and FFC HMM were also compared.  We ended the chapter by proposing 

which model should be used in certain scientific inquiries based on the empirical evidence 

presented in the chapter. 

In Chapter 4, we applied one HMM subtype (AB HMM) to a dataset targeting the 

LC circuit.  The goal of this chapter was to understand how LC activity up-regulation 
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affected HMM-related measures (i.e., local and global analyses) in effort to obtain insight 

into LC’s dynamic modulation of attention.  Only AB HMM was chosen because the LC-

dataset was a relatively short and employed a block design, so utilizing a windowed 

analysis would have reduced the temporal resolution to the point where no temporal 

dynamics could be extricated.  Furthermore, conclusions from Chapter 2 indicated that SFC 

HMM and FFC HMM are not optimal for temporal dynamics, and because Chapter 4 aimed 

to dissect latent brain states over time, we opted not to use connectivity-based HMMs.  

Thus, a standard HMM was pursued and fitted to a modified handgrip experimental 

paradigm.  Squeezing has previously been shown to stimulate sympathetic arousal, the 

underlying neural dynamics of which involve the solitary tract which innervates the LC 

(36–38).  Thus, squeezing is thought to up-regulate LC activity, and its manifestation in 

perceived changes in downstream attentional network behavior was analyzed via an HMM.  

We focused on attention by fitting the HMM to attention-related ROIs, i.e., ones from 

DMN, FPCN, DAN, SN, and rostral and caudal LC.  The same stability, local, and global 

analyses described in Chapters 2 and 3 were implemented here.  We analyzed activation 

and connectivity patterns as well as the Viterbi path, switching rate, and transition 

probability matrix.  Additionally, the fractional occupancy of a state, average state 

duration, and Fano factor were also included in the global analyses to evaluate how they 

changed as a function of active squeeze.  Pupillometry data were also analyzed as a 

noninvasive proxy measure of fluctuations in LC activity. 

 In this chapter we have introduced the broad scientific topics discussed in Chapters 

2-4.  We provided background, rationale, and significance for studying HMMs and for 
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applying them to an LC-focused dataset.  Over the next three chapters we delve deeper into 

these research aspects by exploring the related methods, results and discussion.  Finally, 

we conclude the dissertation by summarizing our findings and their implications. 
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Chapter 2: Theoretical Foundations of Different Hidden Markov Model Types in 

Neuroimaging 

2.1 Abstract 

In order to better understand the underlying neural mechanisms of brain dynamics, 

many groups have examined brain states as a means of identifying recurring patterns of 

activation or connectivity.  Although there is an abundance of methods of establishing and 

interpreting brain states, hidden Markov models are becoming an increasingly popular 

choice in neuroimaging.  These models not only recognize the spatial patterns of the brain 

states, but also evaluate their temporal progression.  Because it is so practical, an 

assortment of instantiations has arisen for diverse purposes and have been applied to data 

acquired from various neuroimaging modalities.  Here we investigated more closely the 

methodology and theory involved in the most popular ones.  We worked to attain clearer 

insight into their nature in order to make informed decisions about model choice in future 

analyses.  Three hidden Markov models were introduced, and their inputs and outputs 

defined.  We theoretically compared them by analyzing each subtype’s assumptions, how 

they were applied to a dataset, and their potential applications.  We discussed different 

types of analyses (local and global) that we intend to execute when applying the three 

model types to a neuroimaging dataset.  We also posed two overarching questions that we 

expect to obtain insight into from empirical analyses. 

2.2 Introduction 

Analyzing the brain as a series of interacting and interchanging brain states is very 

popular in neuroimaging (11–14).  Brain states are patterns of activation levels or 
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connectivity strengths that work to characterize the brain and quantify interactions amongst 

networks.  Because the brain is not stationary, there lies an interest in studying brain states 

as a noninvasive way of gaining a deeper understanding of the underlying neural 

mechanisms of brain dynamics (11,13,14).   

Other groups have derived brain states using coactivation patterns (CAPs), 

independent component analysis (ICA), or structural equation modelling (SEM) (15–20).  

CAPs is a modified point-process method that allows for extraction of network information 

from only a fraction of the data, and has shown that analysis of certain time points suggests 

the presence of multiple spatially distinct coactivation patterns (15,16).  ICA decomposes 

thousands of voxels of data into components of networks and/or regions (17,18).  SEM 

uses effective connectivity to identify nodal connections and determines potential causal 

dependencies between latent variables and their indicators (19).  While CAPs, ICA, and 

SEM are useful methods for acquiring the spatial patterns of brain states, they simply 

identify the states themselves and do not report how they interact or change temporally.   

To study the temporal evolution of brain states, the dynamic functional connectivity 

(dFC) is typically examined via a sliding time window approach (14,21,22).  Information 

contained within a certain window length is correlated between time series, which is moved 

a certain number of time points until a general picture of connectivity shifts is obtained 

(14).  This method can be beneficial because it retains sequential dynamic temporal 

information (11), and because the window size can be tailored to contain as much 

information from the time series as desired (14,21,39–41).  However, brain states may be 

changing faster than what is allowed to be captures using a sliding window.  Furthermore, 
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a sliding window correlation analysis is restricted to only recognizing state spatial patterns 

and how they change over time and may ignore important dynamic aspects of those 

parameters in a dataset (28). 

Hidden Markov models (HMMs) have been shown to adequately characterize the 

fluctuating dynamics of temporally changing brain states in a data-driven manner 

(11,12,23,25).  HMMs are probabilistic models that determine a hidden state sequence path 

not directly observable from collected data (23,25,26,42).  It uses Markov chains to 

statistically infer the underlying states where the probability of residing in any one of them 

depends only on the previous state, and where each one of those hidden states generates 

the observable data collected (23,25,26,42).  This model uses three different algorithms 

(the forward algorithm, the Viterbi algorithm, and the Baum-Welch algorithm) in 

conjunction to find the most likely sequence of hidden states, transition probabilities, and 

emission probabilities based on an observable sequence of data (23,24,42).   

In the past, HMMs have been applied to climate data for weather predicting (43), 

in computational biology to predict introns, exons, and slicing sites (26), and in finance to 

forecast stock market price trends (44).  More recently HMMs have been used in 

neuroimaging to define spatial patterns of latent brain states as well as to recognize the 

transitions and time spent in those states (11–13,45).  HMMs are useful in our investigation 

of a functional magnetic resonance imaging (fMRI) dataset because they do not form 

hypotheses about the relationship between brain states (11) and because analysis of spatial 

and temporal changes are inherent to the model.  Specifically, HMMs can identify latent 

brain states from brain signals acquired from neuroimaging modalities such as fMRI and 
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magnetoencephalography (11,12,27,46–49).  For fMRI, HMMs have shown sensitivity to 

changes in both the blood oxygen level dependent signal (11–13) and dynamic functional 

connectivity (28,49–51), and have been used in analyses where data were extracted from 

voxels (52–54), parcellations (12,13), or large-scale predefined regions of interest (11,28).  

With so many different types of HMMs available, choosing which model type is best for 

specific investigations can be challenging.   

In this chapter we aimed to theoretically compared and contrasted three general 

HMM subtypes that can be fitted to any of the neuroimaging data types previously 

mentioned: (1) an activation based HMM (AB HMM) which is a standard HMM, (2) a 

summed functional connectivity HMM (SFC HMM) which has been applied to dFC 

analyses in the past and sums the Pearson correlations within each window into a 

representative connectivity vector (28), (3) a full functional connectivity HMM (FFC 

HMM) which is an extension of SFC HMM that fits all possible Pearson correlations from 

the dFC analysis  The goal of these analyses is to identify strengths and limitations of each 

subtype in order to make informed decisions about which one should be selected during 

future investigations to analyze a specific research topic. 

2.3 Methods 

2.3.1 Overview 

In this section we define two different categories of HMMs in three different 

instantiations for comparison.  We focus on one activation-based and two connectivity-

based HMMs.  The activation-based model is termed AB HMM while the connectivity-

based HMMs are termed SFC HMM (summed functional connectivity HMM) (28), and 



 10 

FFC HMM (full functional connectivity HMM).  After establishing the background for 

these models, we examine differences in the temporal resolution of inputted data, explain 

why we cannot directly compare the state patterns across the model types, and consider an 

alternative method for acquiring state spatial patterns for comparison with the direct model 

output counterpart.  We then explore two different stability analysis methods that can be 

applied to all three HMMs as a means of determining the optimal model order.  We then 

probe local and global analyses that can be performed to collate model subtype behavior 

and outputs.  Then we pose two main questions that we aim to obtain empirical insight into 

by fitting all three HMM subtypes to an fMRI dataset.  We finish this section by introducing 

and detailing a dataset and four predefined networks of interest. 

2.3.2 Mathematical Background 

 Each of the HMMs are based on the same fundamental assumptions and equations.  

Here we feature the main mathematical equations and concepts, and for a more detailed 

discussion please refer to Rabiner and Juang 1986, Rabiner 1989 and Jurafsky and Martin 

2009 (23,24,42).  All equations and theory summarized below are based on their work 

(23,42).     

HMMs employ two major assumptions.  The first is a Markovian assumption where 

the probability of residing in a state depends only on the previous state (23,42).  The second 

is an Output Independence assumption where the probability of an observation depends 

only on the state associated with generating that observation (23,25,26,42).  Both are 

written in mathematical form below where Q is a set of N states (Q = q1q2…qN) and O is 

the sequence of observations (O = o1o2…oN) (23,42).  
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Markovian Assumption: 𝑃(𝑞𝑖|𝑞1 … 𝑞𝑖−1) = 𝑃(𝑞𝑖|𝑞𝑖−1) 

Output Independence Assumption: 

𝑃(𝑜𝑖|𝑞1 … 𝑞𝑖, 𝑞𝑇 , 𝑜1, … , 𝑜𝑖, … , 𝑜𝑇) = 𝑃(𝑜𝑖|𝑞𝑖) 

 An HMM uses two algorithms in combination to identify the most likely sequence 

of hidden states given an observable sequence of data.  The forward algorithm determines 

the probability of the observed data given the most probable sequence of hidden states.  

The corresponding mathematical equation is written out in Eq. 3 which shows that the 

probability of being in state j at time t is found by summing the probability of the most 

likely state for all previous time points as weighted by their transition and emission 

probabilities.  αt gives the probability of state j occurring at time point t based on the 

information from the previous time step, aij represents the probability of transitioning out 

of one state, i, and into another, j, and bj(ot) represents the probability that the current state 

generates the observation seen at time point t (23,42).   

Forward Algorithm: 𝛼𝑡(𝑗) =  ∑ 𝛼𝑡−1(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡)𝑁
𝑖=1  

The most probable sequence of states (Viterbi path) and the corresponding 

probability of that sequence given the observed data is decoded by the Viterbi algorithm.  

It also makes use of a backtrace algorithm which monitors the path of hidden states that 

led to each state.  Eq. 4 gives the maximum probability, v, of a state j occurring at time 

point t while Eq. 5 reports the actual sequence of states.  The Viterbi algorithm is essentially 

the forward algorithm with one important distinction: it computes the maximum 

probability of previous path probabilities whereas the forward algorithm calculates the sum 

of this parameter over all time points.  This method is computationally efficient and distinct 

Eq. 1 

Eq. 2 

Eq. 3 
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because it computes the maximum likelihood for each time point, t (and total time T), for 

each state in succession.  This is in place of estimating the probability of the observable 

data given the entire state sequence and recursively changing the state sequence until the 

maximum observation likelihood is reached, and the model converges to the most likely 

hidden state sequence.  The latter alternative technique is computationally costly and 

requires exponentially more calculations since there can be up to T states (23,42).   

Viterbi Algorithm: 𝑣𝑡(𝑗) =  max
1≤𝑖≤𝑁

𝑣𝑡−1(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡) 

Backtrace: 𝑏𝑡𝑡(𝑗) =  argmax
1≤𝑖≤𝑁

𝛼𝑡−1(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡) 

 The HMM uses the Baum-Welch algorithm (forward-backward algorithm) to 

calculate the transition and emission probabilities of a given state.  That is, for a given 

observable sequence of data, the HMM uses this algorithm to compute the parameters A 

(transition probability matrix where A = a11…. aij…. aNN) and B (sequence of observation 

likelihoods or emission probabilities where B = bi(ot)) by starting with an initial estimate 

then recursively changing it to compute a better one.  The Baum-Welch algorithm is a 

recursive algorithm resulting in the output variable for one time point becoming an input 

variable for a succeeding time point (23,42).  

Baum-Welch Algorithm: 𝛽𝑖(𝑖) =  ∑ 𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1)𝛽𝑡+1(𝑗)𝑁
𝑗=1  

In the information summarized above, the method for acquiring state patterns is not 

mentioned.  HMMs have usually been fitted to categorial data where the hidden states are 

already known and where the motivation for implementing HMMs lie in acquiring the 

sequence of hidden states, transition probabilities, and emission probabilities 

(23,26,42,43).  Only recently have HMMs been applied to neuroimaging data resulting in 

Eq. 5 

Eq. 6 

Eq. 4 
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different groups using different methods to obtain the spatial patterns of their hidden states.  

Vidaurre et al. 2017 and Stevner et al. 2019 utilized the HMMMAR toolbox to acquire 

activity patterns of each state (12,13).  The hmmlearn python library outputs a mean 

parameter which is interpreted as state spatial patterns directly outputted by the model (55).  

Chen et al. 2016 acquired spatial patterns by averaging the z-scores of all time frames 

wherever the Viterbi algorithm decoded a state to be active (11).  As discussed later in this 

chapter, we also acquired state spatial patterns in the same manner and compared them to 

the model output counterpart to ensure that they spatially match.   

The mathematical equations and concepts described above are inherent to the 

hmmlearn python library, so the data simply needs to be structured into the right format 

prior to inputting it (55).  All three HMM subtypes involve standard preprocessing the 

fMRI data, extracting the blood oxygen level dependent (BOLD) signal from chosen 

regions of interest (ROIs), and z-scoring them within each subject.  The resulting BOLD 

signal is then organized differently for each HMM of interest as reviewed in detail in later 

sections.  Once the data has been properly restructured and is ready to be fitted by an HMM, 

it is concatenated timewise across all subjects to create a matrix of size (time * # subjects) 

x (# ROIs).  The hmmlearn library in python outputs the same four pieces of information 

for all three HMM subtypes used in our investigation: mean state patterns, covariance 

matrices for each state, a transition probability matrix, and a Viterbi path defining which 

state is active at each time point for every subject (55).  The emission probability is not 

listed as a measure of interest because, in this case, it speaks more to the stability of the 

model, i.e., how well does the fitted model describe the observable dataset.  Previous 
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investigations of HMMs applied to neuroimaging datasets explored techniques involving 

state spatial pattern robustness and reproducibility to assess the model’s stability.  To 

remain consistent with these established methods, we also employed these neuroimaging-

based stability analyses described in additional detail in Section 3.3.1 (11,35). 

2.3.3 Models to Compare 

 In this section we describe the procedure for implementing the HMMs in greater 

detail.  We explain how to organize the data for input and how to acquire state patterns for 

all three instantiations. 

2.3.3.1 Model Type 1: Activation Based Hidden Markov Model (AB HMM) 

As aforementioned, this is a standard HMM that has been fitted to data acquired 

from various neuroimaging modalities (11–13).  The BOLD signal from various ROIs are 

extracted, z-scored, and concatenated across subjects.  That information is then subjected 

mathematical algorithms intrinsic to the HMM (as described in section 2.3.2) which 
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compute mean state patterns, a Viterbi path, a transition probability matrix, and covariance 

matrices for every state.  This procedure is outlined in Fig. 1.  

2.3.3.1.1 Inputs 

AB HMM requires z-scored BOLD signal as an input, so no data reformatting 

beyond the description in previous sections is necessary (Fig. 1).  

2.3.3.1.2 Outputs 

Mean activation state patterns are obtained as a direct output from the model.  As 

explained later in this chapter, we also acquired state patterns using the method Chen et al. 

2016 employed to ensure that our outputted states were spatially consistent using two 

different techniques of procurement (11).  Connectivity states corresponding to each 

activation state were acquired by mathematically transforming the covariance matrices into 

Pearson correlation values. (12,13,49).   

2.3.3.2 Model Type 2: Summed Functional Connectivity Hidden Markov Model (SFC 

HMM) 

Although converting the covariance matrices acquired from activation-based 

HMMs into Pearson correlations is an instituted method of defining connectivity states, 

this technique did not satisfy our interest of comparing BOLD-based HMM outputs to 

connectivity-based HMM outputs.  To account for this, we discuss the first of our two 

connectivity-based HMMs: SFC HMM.  This method is adapted from Ou et al. 2014 and 

is an established method appropriate for comparison to AB HMM because it acquires 

connectivity states stemming from connectivity inputs (28).   
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2.3.3.2.1 Inputs 

As seen in Fig. 2, Ou et al. 2014 performed a sliding time window analysis (window 

length Δt) to obtain an ROI x ROI connectivity matrix within each time window (28).  This 

generated a “dFC time series” of length (# TRs – Δt) representing the dynamics of 

functional connectivity over time.  These connectivity matrices were summed across a 

dimension to create a vector depicting the overall connectedness of each node to all other 

nodes.  Repeating this for every time window provided a “summed dFC time series” 

containing a (# time windows) x ROI data matrix for every subject.  Ou et al. 2014 then 

performed a two-stage hierarchical clustering analysis prior to concatenating this 

information across subjects to reduce the computational cost of performing the HMM (28).     
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One decision about this model left to the discretion of the user is the time window 

length (Δt) employed in the sliding window correlation analysis.  Ou et al. 2014 empirically 

determined that a window size of 14 time points was suitable for their dataset (28).  Lurie 

et al. 2020 discussed that new evidence shows an ideal window size might contain less than 

60 seconds of data (14).  Because Δt might speak to the temporal resolution overall, we 

compared SFC’s state patterns from a sliding window approach (and resulting “dFC time 

series”) using a window size containing between 20 and 60 seconds of data to assess its 

effect on the temporal resolution.  Although we inputted Pearson correlations of z-scored 

BOLD signal rather than that of the raw BOLD, we do not expect the model outputs were 

affected.  Z-scoring simply removes the mean and scales the BOLD signal, so it does not 

influence the direction of fluctuations that an ROI’s signal exhibits. 

2.3.3.2.2 Outputs 

Unlike those for AB HMM, SFC HMM state patterns are not directly outputted 

from the model.  Instead, the ROI x ROI connectivity matrices from the “dFC time series” 

are averaged across all time windows where the SFC HMM Viterbi path labeled a state to 

be active.  Repeating this for every state provides a connectivity state profile.  As shown 

in Section 3.3.2.2, the raw connectivity states look very similar to one another.  To identify 

defining points and unique properties from each state, highlights from each connectivity 

state were observed and analyzed.  This was done by calculating the grand mean of all state 

patterns except for the one in question and subtracting it from the raw connectivity patterns 

(13).  This is shown in greater detail in Fig. 14 in Section 3.3.2.2.   
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As seen in the previous section, the mean patterns AB HMM outputs are the mean 

activation values that comprise each state and are based on activation levels observed in 

each node during each TR.  Contrarily, SFC HMM’s mean pattern and covariance outputs 

are unsuitable for the purposes of this investigation and for our analyses.  This HMM 

subtype’s outputted mean patterns are vectors describing mean summed correlation values 

because they are based on the inputs illustrated in Fig. 2: vectors of summed correlations 

representing global nodal strength during a particular time window.  However, because we 

aim to have full connectivity matrices as states, converting the 1 x ROI vector of mean 

sums outputted into an ROI x ROI matrix of R2 values is not feasible.  Because SFC 

HMM’s outputted covariances matrices are similarly dependent on the summed 

correlations inputted, they cannot be converted to R2 values and therefore cannot be used 

to obtain connectivity state patterns in the same manner as the AB HMM counterparts when 

covariances were transformed into correlations.  Instead, state patterns will be obtained by 

averaging dFC connectivity matrices wherever the SFC HMM Viterbi path labeled a state 

to be active. 

2.3.3.3 Model Type 3: Full Functional Connectivity Hidden Markov Model (FFC 

HMM) 

While SFC HMM is an established method, the HMM is fit to a summary statistic 

(summed connectivity values within each ROI x ROI matrix from the “dFC time series”) 

rather than to actual connectivity values.  This results in the HMM identifying changes in 

this summary measure rather than in the raw correlations forcing the user to create the 

states themselves rather than the model directly outputting it.  To account for this, we 
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discuss a third HMM model type, FFC HMM, fitted to all correlation values in the lower 

(or upper) triangle of the dFC matrix in every time window.  FFC HMM should also aid in 

determining the effect that summing the R2 values across a dimension of the matrices from 

the “dFC time series” has on the state patterns. 

2.3.3.3.1 Inputs 

The sliding window correlation analysis is still performed with window length Δt, 

but instead of summing across one of the dimensions of the ROI x ROI matrices, the lower 

(or upper) triangle of R2 Pearson correlation values is restructured into a 1 x 
(# 𝑅𝑂𝐼)2−(# 𝑅𝑂𝐼)

2
 

vector (Fig. 3).  Repeating this for every time window gives a (# time windows) x 

(# 𝑅𝑂𝐼)2−(# 𝑅𝑂𝐼)

2
 data matrix for every subject. which is concatenated subject-wise.  
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FFC HMM will also utilize a Δt of approximately 40 seconds since it stems from 

the same sliding window analysis as SFC HMM.  The effect of window size and temporal 

resolution on FFC HMM state patterns were also assessed by acquiring them when window 

sizes containing 20 to 60 seconds of data were used.   

2.3.3.3.2 Outputs 

Unlike that for SFC HMM, FFC HMM state patterns are directly produced from 

the model.  The mean patterns that FFC HMM provides mean connectivity patterns 

corresponding to the 1 x 
(# 𝑅𝑂𝐼)2−(# 𝑅𝑂𝐼)

2
 correlation vector inputted for every time window.  

These patterns are then reformatted back into a symmetric ROI x ROI matrix to constitute 

the connectivity states.  Because R2 values were used as inputs, FFC HMM was capable of 

directly producing spatial patterns related to raw correlations from each nodal pair and 

eliminated the need to manually create the state patterns.  As with SFC HMM, the 

highlights were found for each connectivity state and used for all subsequent analyses. 

2.3.3.4 Summary of HMM Model Subtypes 

In summary, we defined three different HMM subtypes, their inputs, and their 

outputs.  AB HMM requires z-scored BOLD signal as its input and activation states are 

acquired as direct outputs of the model.  SFC HMM’s input is a vector of summed R2 

values within each time window after a sliding window analysis and its states are solely 

defined as the global average of dFC matrices from time points where its Viterbi path labels 

a state to be active (28).  FFC HMM necessitates a vector of all R2 values from a sliding 

window analysis as its input and its connectivity states are straightforwardly outputted from 

the model.  The connectivity-based HMMs will utilize a window size of ~40 seconds in 
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accordance with ideas from Lurie et al. 2020 and will be moved over one time point to 

maximize temporal resolution (14).  Furthermore, all analyses hereafters will be performed 

on the highlights of each connectivity state.     

Using the methods outlined above, we compared different measures of interest 

within and across HMM model types.  We theoretically analyzed differences between 

model types as well as stability analyses that can be applied to each.  Then we delineated 

local and global analyses that can be applied to fMRI data. 

2.3.4 Model Type Comparison 

 Now that we have introduced and defined each HMM subtype in detail, we discuss 

important differences and commonalities to all.  Main differences between each model type 

lie in the temporal resolution and in our inability to compare state patterns, while the 

method of model order determination and measures of interest are common to all. 

2.3.4.1 Differences Between All Model Types 

2.3.4.1.1 Temporal Resolution 

One major discrepancy between the activation-based and connectivity-based 

HMMs is the temporal resolution of the data inputted into the models.  The sliding window 

correlation analysis forces the information inputted into the connectivity-based HMMs to 

contain Δt fewer time points than that of the BOLD data and AB HMM.  Because we 

choose to move our time window over only one time point and because each window 

contains approximately 40 seconds of data, autocorrelation inevitably artificially smooths 

the data across time.  Furthermore, transforming the data from normalized intensity to 

Pearson correlations compresses the scale of the data to strictly range from -1 to 1 rather 
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than allowing the inputted values to freely range as with AB HMM’s inputs.  This reduced 

scope of inputs could potentially aggravate the temporal smearing as changes in correlation 

values may not be as exaggerated as those in BOLD signal patterns and possibly may not 

be recognized by the model. Examining all three model types in parallel allows us to 

observe the effect that this inconsistent temporal resolution has on measures of interest.   

While FFC HMM has a temporal resolution equal to that of SFC HMM, both have 

a poorer resolution than AB HMM, which we expect to be reflected in the HMM outputs.  

Because the Viterbi path shows the sequence of states that subjects reside in at each time 

point, this measure ought to overtly exhibit the effects of poorer temporal resolution, 

smoothing, and summing the connectivity values.  Specifically, we expect that switching 

between each state is reduced and that the Viterbi path overall to show temporal smoothing 

resulting in reduced transitions between states in the connectivity-based HMMs.  Although 

the FFC HMM is still expected to exhibit these characteristics, we expect it to be less overt 

since a fuller, more holistic, portrayal of the data is fitted on the basis that all R2 values are 

fitted per time window, thereby accounting for some of the phenomena mentioned.  

2.3.4.1.2. Activation vs. Connectivity State Patterns 

All three model types inherently detect different patterns of underlying latent brain 

states.  However, direct comparison between the activation states arising from AB HMM 

with the connectivity states stemming from SFC HMM and FFC HMM is unfeasible.  With 

the tools and methods presented in this dissertation activation states cannot be directly 

linked to connectivity states purely based on the levels of either measure.  Designing a 

mechanism to do so is outside the scope of this investigation.  Furthermore, connectivity 
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states from SFC or FFC cannot be directly related to the covariance-based connectivity 

states from AB HMM.  The HMM subtypes were fit to different data types so there is no a 

priori reason to believe that the activation-based and connectivity-based models recognize 

the same states.  There is also no literature support or mathematical reasoning to suggest 

that all HMM sub-types should have the same model order, further reinforcing the idea that 

each identifies different states. 

SFC states can potentially be linked to the FFC states.  We have an a priori reason 

to believe that these states should show similarity because they both stem from the same 

ROI x ROI connectivity matrices formed in the sliding window analysis.  The state patterns 

can be matched by Pearson correlating (11) or computing the Euclidean distance (56) 

between all states and determining which pairs have the highest/lowest values respectively.   

2.3.4.2 Common to All Model Types 

2.3.4.2.1 Model Order Determination (Stability Analysis) 

2.3.4.2.1.1 Overview 

When comparing state patterns within each model type for robustness and 

reproducibility, determining the optimal number of states naturally arises.  Employing too 

many states could create an unstable model where the state patterns are no longer consistent 

across different model initializations or could potentially contain repeated states indicating 

a lack of parsimony (11,13).  Although the model outputs emission probabilities and a 

model-based log likelihood, these measures are not typically used for assessing 

neuroimaging-based HMM state patterns (cite 11-13 here).  Instead, a few groups 

examining HMMs in neuroimaging chose their model order by exploring the free energy 
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for a range of model orders (12,13).  Where the free energy levels plateaued indicated the 

optimal model order for the dataset in question.  Stevner et al. 2019 examined the median 

fraction occupancy (the median value of the average time spent in all states) for model 

orders 3 to 45, and where this value leveled off signified a model order suitable for their 

investigation (13).  One group chose to pursue 12 states simply because Vidaurre et al. 

2017 decided that was best for their investigation despite examining a completely different 

dataset (57).  The overall consensus is that any model order chosen is acceptable as long 

as there is a valid justification for that choice.  These groups utilized the HMM-MAR 

Matlab toolbox to implement their HMMs and were able to easily calculate the free energy 

as it was one of the toolbox’s included functions (12).  However, this toolbox did not 

provide us with the reproducibility of state patterns and state sequences we aimed for, so 

we opted to use the hmmlearn library in python instead.  Furthermore, we chose not to 

examine the free energy or median fractional occupancy because previous groups who had 

utilized the hmmlearn python library had evaluated the robustness and reproducibility of 

acquired state spatial patterns and we wished to remain consistent with their work (cite 55 

here).  We therefore employed two different methods to assess whether each HMM 

subtype’s states converged to the same pattern despite the initialization probabilities used 

while simultaneously deciding model order.  For SFC and FFC HMMs, these analyses were 

performed on the connectivity state highlights rather than on the raw connectivity states. 

2.3.4.2.1.2 Method 1: RAICAR-based Stability Analysis 

The first method is taken from Chen et al. 2016 and adapted from Yang et al. 2010’s 

Ranking and Averaging Independent Component Analysis by Reproducibility (RAICAR) 
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method (11,35).  This method was developed to assess the optimal number of parcellations 

in ICA but has since been used to determine the optimal number of states in HMMs fitted 

to fMRI data (11,35).  We used a RAICAR-based method to evaluate the reproducibility 

of states across different HMM initialization parameters where stability values above a 

threshold was considered stable.  As depicted in Fig. 4, the HMM was run thrice (three 

“realizations”) each with a different starting probability of residing in a certain state so that 

three sets of state patterns were obtained.  State patterns across realizations were matched 

via the highest Pearson correlations computed and relabeled so that each state assignment 

universally corresponded to the same spatial pattern.  Within each state assignment, the 

matched state patterns were Pearson correlated between all realizations to obtain 

(# 𝑠𝑡𝑎𝑡𝑒𝑠)!

2!(# 𝑠𝑡𝑎𝑡𝑒𝑠−2)!
 R2 values thereby determining the degree of similarity between the matched 

patterns.  These values were then averaged, sorted from largest to smallest, and plotted 

against model order.  Repeating this for a range of model orders generated a set of bar 



 26 

graphs whose heights were compared against a predetermined threshold of stability.  Model 

orders where R2 values began to dip below a threshold indicated that the model of that 

order was unstable because the states were no longer matching sufficiently.  Thus, the 

model order was too large by 1 (11,35).   

2.3.4.2.1.3 Method 2: ED-based Stability Analysis 

The second stability analysis performed (Fig. 5) uses Euclidean distances to assess 

the reproducibility of states where the smaller the value the more similar the state patterns.  

In this Euclidean distance-based (ED-based) stability analysis state assignments from two 

realizations, Ri and Rj, within a certain model order are permuted and their spatial patterns 

matched via the smallest Euclidean distance such that each state universally corresponds 

to the same spatial pattern.  For example, after permuting the state assignments from Ri 

and Rj, the Euclidean distance between state 1 from Ri and all states from Rj are computed.  

The results may show that the smallest Euclidean distance was computed with state 5 from 
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Rj indicating that state 1 from Ri best corresponds to state 5 from Rj.  State 5 from Rj is 

relabeled as state 1 from Rj, then the process is repeated between state 2 from Ri and all 

states from Rj (except the relabeled state 1 as it has already been matched).  This 

permutation-and-matching procedure is performed 100 times for all pairs of realizations 

(where matching Ri → Rj is not distinguished from matching Rj → Ri)  to ensure that the 

spatial patterns are paired uniquely without any bias of state assignment.  This is repeated 

for a range of model orders generating a total of 100 * (
(# 𝑠𝑡𝑎𝑡𝑒𝑠)!

2!(# 𝑠𝑡𝑎𝑡𝑒𝑠−2)!
 realizations) * (# 

states) values for a particular model order which are then averaged to represent its overall 

stability.  This single average is plotted as a function of model order producing a curve 

where the smallest value succeeded by continuously increasing values for higher model 

orders indicates the optimal number of states for a dataset.  Although this this may seem 

similar to the RAICAR-based method, the ED-based method is more conservative because 

stability is assessed by ensuring that the average of hundreds of Euclidean distances is 

below a prespecified threshold rather than the average of a handful of R2 values. 

2.3.4.2.2 Measures of Interest 

As aforementioned, each HMM subtype outputs four measures of interest: mean 

state patterns, a Viterbi path, covariance matrices, and a transition probability matrix.  

These outcomes are then used to derive switching frequency and fractional occupancy 

correlation.  Theoretically these measures should be immediately usable for analyses, with 

the exception of the mean state patterns and covariance matrices outputted from SFC HMM 

(refer to Section 2.3.4.2.2).  The smoothing effect inherent to the connectivity models 

resulting from the sliding window approach might impact the signification of these 
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measures.  The extent to which these measures can provide insight cannot be confirmed 

until the HMMs are actually fit to the data, so these measures will be reassessed then.  

2.3.5 Types of Analyses 

Now that all three HMM types have been defined and their theoretical 

commonalities and differences delimited, we outline analyses that provide insight into 

empirically understanding their similarities and differences.  Local analyses examine 

measures specific to each model subtype: state patterns.  Thus, local analyses will focus on 

characterizing states and on evaluating activation or connectivity spatial patterns obtained 

via information from other HMM subtypes.  This is a means to better understand each 

subtype’s ability to capture the dynamics of inputted information.  Global analyses examine 

measures common to all three model types and builds upon local analyses.  Comparisons 

of these measures between model types were made as a means of obtaining insight into 

differences amongst them. 

2.3.5.1 Local Analyses 

Local analyses refer to state pattern characterization and state acquisition 

comparison.  Because we examined two different types of fundamental HMMs, we focus 

on two types of local analyses.  The first type of local analysis concentrates on activation 

state patterns.  We acquired activation patterns using the Viterbi paths from all HMMs and 

compared them to AB HMM’s direct output.  The second local analysis focuses on 

connectivity state patterns attained from average connectivity matrices where AB and FFC 

HMM Viterbi paths (in accordance with methods described in Sections 2.3.5.1.1 and 
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2.3.5.1.2).  This was followed by comparing SFC and FFC HMM state patters with AB 

HMM derived covariance-based connectivity matrices (as detailed in Section 2.3.3.1.2).  

Even after utilizing each HMM type to identify all types of states, it is likely that 

not recognizing every single state that could possibly exist in a dataset was recognized.  

There may exist subject-specific states where a single subject might reside in a state that 

only they experience (13).  For data collected during non-rapid eye movement sleep, there 

existed electroencephalogram-based states associated with various sleep stages potentially 

leading to different states being active under different conditions (13).  Our HMMs were 

fitted on a group level to find the maximum number of global states that are visited by all 

subjects.  This group-level analysis may ignore subject- or condition-specific states, but, 

for comparative purposes, we intended to focus on broad, comprehensive states, and can 

pursue investigation of less populous states in later investigations. 

2.3.5.1.1 Activation State Patterns 

After determining optimal model order using the methods detailed in Section 

2.3.4.2.1, state patterns were analyzed to obtain better insight into the model and to make 

neuroscientific interpretations.  Although AB HMM states are directly outputted from the 

model, Chen et al. 2016 defined their states using a different method which we also 

employed to ensure that our state patterns were consistent across various methods of 

acquisition (11).  As seen in Fig. 6, this method extracts and averages the BOLD signal 

from all time points where the state sequence labeled a state to be active.  Repeating this 

for all states provides a recreation of the mean activation state patterns.  We also attempted 

to recreate the activation states by averaging the BOLD signal where the SFC and FFC 
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HMM Viterbi paths label a state to be active (Fig. 7).  This would determine whether the 

model types were in fact recognizing different states and ensure that we were not acquiring 

repeated information from different HMM subtypes.  We used both techniques in parallel 

as a sanity check to confirm that our three model types are distinct and are able to identify 

changes only in the respective data type (BOLD vs. correlations) inputted.  The similarities 

of these states to each other were assessed via correlations and Euclidean distances. 
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2.3.5.1.2 Connectivity State Patterns 

For FFC HMM, the state patterns are directly outputted from the model while SFC 

HMM acquires state patterns by averaging connectivity matrices where its Viterbi path 

recognizes a state to be active.  As the methods in Fig. 8 depict, the connectivity matrices 

at every point where the FFC and AB Viterbi paths label a state to be active were also 

averaged to observe the connectivity patterns arising from this method.  The covariance 

matrices from AB HMM are converted into Pearson correlations as a means of obtaining 

connectivity states from a BOLD-based HMM.  We do not expect any of the connectivity 

patterns stemming from AB HMM (using either the Viterbi averaging method or the 

covariance-based correlation method) to be identical to ones identified from SFC and FFC 

HMMs.  The model subtypes should not be interpreting the inputs in the same way since 
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different data types (intensity vs. connectivity) were used.  This set of analyses provide us 

with an approach allowing direct comparison across all model types such that any 

discrepancies observed are not due to the difference in method of state spatial pattern 

extraction, but instead due to the differences in the fitted models themselves indicating that  

the HMM subtypes employed are behaving uniquely. 

2.3.5.2 Global Analyses 

Global analyses refer to measures that can be directly obtained or calculated from 

AB HMM, SFC HMM, and FFC HMM without tailoring the method of acquisition for a 

specific subtype.  We previously introduced four measures of interest that comprise the 

four global analyses we focused on: Viterbi paths, transition probabilities matrices, 

switching rates, and fractional occupancy correlations.  After acquiring these measures 
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from each HMM subtype, they were compared to obtain insight into similarities and 

differences between model type behavior. 

2.3.5.2.1 Viterbi Path 

The Viterbi path, or hidden state sequence, is directly outputted from all three 

HMM subtypes and is used to examine switching rate, proportion of time spent in each 

state, the average duration of a state, and fractional occupancy correlation (12,13).  The 

Viterbi path can be visualized by assigning each state a color and plotting them for every 

person as a function of TR (AB HMM) or of time window (SFC and FFC HMM) to paint 

a qualitative picture of which states are active at each time point.   

2.3.5.2.2 Transition Probability Matrix 

 As with the Viterbi path, the transition probability matrix of each HMM subtype is 

directly outputted.  This parameter provides quantitative insight into the relationship 

between states and can be visualized by observing all transition probabilities on a color 

scale. 

2.3.5.2.3 Switching Rate 

Other groups have used switching rate as a distinguishing property between two or 

more entities: metastates for Vidaurre et al. 2017 and non-rapid eye movement sleep stages 

for Stevner et al. 2019 (12,13).  We use switching rate as a means to further classify 

temporal differences between our three HMMs of interest.  We calculated it between all 

states within an HMM subtype for comparison across model types to determine whether 

one is able to capture these dynamics better than the others.  This measure is found within 

each subject by counting the number of times that subjects switched between states and 
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then dividing the value by the length of the entire time series.  Averaging these values 

across all subjects provides a global depiction of the switching rate between unspecified 

states, and boxplots can be used to visualize them. 

2.3.5.2.4 Fractional Occupancy Correlation 

Fractional occupancy correlation is a measure that Vidaurre et al. 2017 has analyzed 

in detail and is found by correlating the average time all subjects spend in a certain state 

against the time spent in another state (12).  This measure, along with the transition 

probability matrix, can potentially provide insight into the dynamic relationship between 

latent brain states.  Studying fractional occupancy correlations would aid in obtaining a 

more quantitative idea of the relationship between time spent in states beyond simply 

observing the proportion of time spent in a single state via boxplots.  Once the fractional 

occupancy correlations are found, they are visualized in a matrix where all values are 

placed on a color scale. 

Furthermore, Vidaurre et al. 2017 found that metastates (a group of states that make 

up a network) emerge organically from the plots of fractional occupancy correlations 

created from intensity-based HMM states (12).  If HMM subtypes’ model orders are large 

enough to permit, fractional occupancy correlations can potentially identify metastates and 

group activation or connectivity states together in a hierarchical fashion.  It is possible that 

the fractional occupancy correlations of the identified states from our three HMMs might 

provide insight into which model type to analyze when approaching a specific 

neuroscientific question.  While we do not dive deeply into the quantitative aspects of these 
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analyses, we qualitatively assess the plots of fractional occupancy correlations to 

hypothesize whether each HMM subtype could potentially observe metastates.   

2.3.6 Overarching Questions 

Now that we have described in detail the different HMMs of interest, discussed 

their similarities and differences, and outlined measures of interest we intend to attain, we 

are left with the following questions about HMM subtype behavior that cannot be answered 

solely from theory and methodology:  

(1) What kinds of questions does each model type answer?   

(2) When is it useful to employ each model type?  

To obtain insight into these questions, we fit all three HMMs to a large publicly 

available fMRI dataset to qualitatively and quantitatively compare their outputs. 

2.3.7 Dataset and Networks 

2.3.7.1 Dataset 

The Human Connectome Project (HCP) Unrelated 100 (a subset of the S500 

release) dataset is suitable for our investigation because it is readily available and robust 

dataset (58).  The data underwent the HCP minimally preprocessing pipeline: distortion 

correction, motion correction, alignment to standard space, and surface projection (59).  

100 subjects (age = 22–36, gender = 54 female) underwent a 14.4-minute resting state scan 

(repetition time = 720ms, flip angle = 52°, voxel size = 2mm3, echo time = 33ms, field of 

view = 208mm x 180mm).  During early iterations of the HMMs, one subject was found 

to remain in a single subject-specific state that almost no one else visited for most of the 
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scan.  Removing that subject did not affect the model order chosen (or any other parameter; 

data not shown) so we conducted all analyses on the remaining 99 subjects. 

2.3.7.2 Networks 

We narrowed our scope of analysis to pre-defined networks that have previously 

been associated with resting state.  BOLD signal was measured from four networks: the 

default mode network (DMN), fronto-parietal control network (FPCN), dorsal attention 

network (DAN), and salience network (SN).  The nodes comprising each network were 

defined using anatomical coordinates specified in literature.  Talairach coordinates for 

DMN, FPCN, and DAN were taken from Deshpande et al. 2011 and converted to Montreal 

Neurological Institute (MNI) coordinates.  MNI coordinates for SN were taken directly 

from Raichle 2011 (1,60–63).  The MNI coordinates used in this investigation can be found 

in Table 1.  Dorsal anterior cingulate cortex and left dorsolateral prefrontal cortex ROIs in 

FPCN were excluded from analyses because they overlapped or were too closely located 

to other ROIs.    Thus, we only used 29 ROIs when examining the HCP dataset.  After 

labeling each ROI with a 5mm3 isotropic marker, the BOLD signal was extracted from 

each voxel and averaged producing a single time series representing the behavior of the 

ROI as a whole. This procedure was repeated for every ROI in a network for a total of 29 

ROIs (9 from DMN, 7 from FPCN, 6 from DAN, and 7 from SN) per subject (64–66).   
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2.3.7.3 Additional Information 

When implementing SFC HMM, we followed the steps outlined in Ou et al. 2014 

with the exception of the clustering stage as it was not necessary in our investigation to 

cluster ROIs stemming from predetermined and predefined networks (28).  We examine 

only 29 ROIs which is few enough that we can avoid clustering.  Ou et al. 2014, on the 
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other hand, examined 358 ROIs acquired from DICCOL and implemented a hierarchical 

clustering stage to reduce computational cost.   

Using this HCP dataset, we characterized the state patterns (Local Analyses) for 

each model type and for different time windows centered around a 50tp (approximately 

36.6 seconds in accordance with information presented in Lurie et al. 2020) window size 

(14).  We also examined the Viterbi path, transition probability matrix, switching 

frequency, and fractional occupancy correlation (Global Analyses) for each model type. 

2.4 Conclusion (Methods Summary) 

In this chapter, we introduced, defined, and theoretically analyzed three HMM sub-

types (AB HMM, SFC HMM, and FFC HMM) that will be empirically investigated in the 

next chapter.  We first reviewed potential methods of acquiring brain states and concluded 

that HMMs provide a satisfactory balance between obtaining brain state spatial patterns 

and temporal dynamics.  We crucially noted that the three HMM sub-types of interest to 

use can be applied to fMRI, electroencephalography, and magnetoencephalography data 

making them conventional HMMs that can be applied to a variety of datasets.  We intend 

to compare and contrast these three model types in effort to pinpoint advantages, 

disadvantages, and constraints in each in effort to understand potential questions that they 

can answer.  With this information, we could then develop intelligible judgments about 

which HMM type is best to pursue under certain conditions in future analyses.   

This chapter also aimed to understand information that could be theoretically 

gleaned from the different HMMs prior to applying them to resting state fMRI data.  We 

discussed how the data in each HMM subtype is arranged and fitted in python to output 



 39 

mean state patterns, a Viterbi path for every subject, a transition probability matrix, and 

covariance matrices for each.  Although AB and FFC HMM’s state patterns are directly 

outputted from python, they will be verified against the spatial patterns resulting from 

averaging the BOLD signal and dFC matrices, respectively, from every time point where 

the corresponding Viterbi path labeled a state to be active.  Contrarily, SFC HMM’s state 

patterns are constructed using only this latter process.  For all model types, we will use the 

information in the Viterbi path to examine the switching frequency between each state as 

well as the fractional occupancy correlation.  We also discussed that analyzing states’ 

stability and establishing optimal model order work in conjunction: RAICAR- and ED-

based stability analyses pinpoint the maximum number of states possible where the 

similarity of state patterns between realizations remains above a predetermined threshold. 

We also introduced the HCP dataset and resting state networks (DMN, FPCN, 

DAN, and SN) of interest to us.  In the next chapter, we apply all three HMM subtypes to 

this dataset using the BOLD signal extracted from a total of 29 nodes.  We examine the 

outcomes in hopes of answering to the best of our abilities the overarching questions posed.  

In other words, the next chapter aims to empirically determine what information can be 

gleaned from applying AB HMM, SFC HMM, and FFC HMM to a resting state big dataset. 
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Chapter 3: Application of Hidden Markov Model Methods to an fMRI Dataset 

3.1 Abstract 

Using the methods and theory outlined in the previous chapter, we now apply three 

different instantiations of a hidden Markov model to a robust and publicly available 

neuroimaging dataset.  Here we work to obtain empirical insight into all three model types 

in effort to understand each of their behaviors and differences.  We described and 

interpreted the results of stability, local, and global analyses.  As we examined each of 

these measures individually, we worked to gain experimental knowledge into the two 

overarching questions posed in the previous chapter.  For a functional magnetic resonance 

imaging dataset, we found that a model measuring fluctuations in activation levels was best 

at capturing temporal dynamics, and connectivity-based models were better at identifying 

latent connectivity state spatial patterns.  While all model types investigated provided 

useful information to an investigation, each is better applied under different scenarios 

which we explored empirically in this chapter.   

3.2 Introduction 

 In Chapter 2 we introduced three hidden Markov model (HMM) subtypes of 

interest to us: activation based HMM (AB HMM), summed functional connectivity HMM 

(SFC HMM), and full functional connectivity HMM (FFC HMM).  We described how 

each model is set up to detect changes in activation levels, in a summed representative 

vector of a dynamic functional connectivity (dFC) values from a sliding window approach, 

and in all possible correlation values in every dFC matrix, respectively.  Each model 

subtype could be implemented using the hmmlearn library in python and output mean state 
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patterns, a transition probability matrix, a Viterbi path for every subject, and covariance 

matrices for each state (55).  These four measures of interest were compared in theory 

across all HMM subtypes.  We also discussed additional parameters to analyze in this 

chapter: switching rate and fractional occupancy correlation.   

 Now that we have discussed the theoretical aspect of our investigation as well as 

the corresponding methods and analyses, we next apply each of them to a dataset.  In this 

chapter we fit all three HMM subtypes to the Human Connectome Project (HCP) functional 

magnetic resonance imaging (fMRI) dataset introduced in Section 2.3.8.1 and contrasted 

their outputs (58,59).  We intended to gain empirical insight into the differing behaviors of 

each model subtype in effort to obtain insight into the two main questions previously posed: 

(1) What kinds of information does each model type provide insight into? (2) When is it 

useful to employ each model type?  

 In this chapter we first assessed the stability of each model type to determine the 

optimal model order of each.  This was done via the Ranking and Averaging Independent 

Component Analysis by Reproducibility-based (RAICAR-based) and Euclidean distance-

based (ED-based) methods illustrated in Section 2.3.5.2.1 (11,35).  Once the best possible 

number of states was determined, we analyzed the activation states directly outputted from 

AB HMM as well as the activation spatial patterns resulting from averaging the blood 

oxygen level dependent (BOLD) signal of every region of interest (ROI) where the AB 

HMM, SFC HMM, and/or FFC HMMs labeled a state to be active.  Then we focused on 

the connectivity states by examining the spatial patterns acquired for SFC and FFC HMMs 

when using a time window of 30 time points (21.6 seconds), 40 time points (28.8 seconds), 
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50 time points (36 seconds), and 60 time points (43.2 seconds), and 80 time points (57.6 

seconds) in the sliding window analysis to determine the effect that window size choice 

had on subsequent analyses.  We also examined the state patterns resulting from averaging 

the connectivity matrices where the FFC and AB HMM Viterbi paths labeled a state to be 

active as well as covariance-based Pearson correlation matrices directly outputted from AB 

HMM.  Subsequently, we evaluated the Viterbi paths, transition probability matrices, 

switching rates, and fractional occupancy correlations of each model subtype and related 

them back to our overarching questions.  For each measure listed, we discussed how they 

were acquired and how they were visualized.   

3.3 Results and Discussion 

3.3.1 Model Order Determination (Stability Analyses) 

3.3.1.1 Overview 

Using the RAICAR-based and ED-based stability analyses outlined in Section 

2.3.4.2.1, the optimal model order for each HMM subtype was determined.  When 

performing the three realizations for AB HMM, SFC HMM, and FFC HMM, the same set 

of initialization probabilities were used for every model type: two sets were randomly 

chosen, and one used a uniform distribution with equal probability of starting in a particular 

state (1
# 𝑠𝑡𝑎𝑡𝑒𝑠⁄ ). 

Previous groups that used the RAICAR-based method examined more ROIs (236 

from Chen et al. 2016 and 162 independent components from Yang et al. 2014) and 

employed a stability threshold of 0.8 (11,35).  Our analyses could afford to be more 

conservative because we explored only 29 ROIs and therefore appointed a threshold of 0.9.  
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Furthermore, Chen et al. 2016 utilized the same dataset and elected a 9-state model when 

using 236 ROIs (11).  We had no a priori reason to believe that the optimal model order 

must be the same between AB, SFC, and FFC HMMs, but because we used substantially 

fewer ROIs then Chen et al. 2016, we did not expect our investigation to appoint more than 

nine states to any subtype. 

3.3.1.2 Model Type 1: AB HMM 

RAICAR-based results for AB HMM (Fig. 9a) indicated model order eight to be 

extremely stable since all stability values were 1; model order nine showed a drop in the 

stability value of one state to below the predetermined threshold.  ED-based results (Fig. 

9b) were consistent with this idea: an 8-state model was the largest model order possible 

while the mean Euclidean distances were close to zero and steadily increased for 

succeeding higher order models.  Results from both methods indicated that AB HMM 

should be fitted with eight states.   

It may appear that a model order as high as 12 could be suitable for AB HMM 

because its stability values remained above the predetermined threshold.  However, model 

orders 10, 11, and 12 contained a repeated state making them undesirable indicating a lack 

of parsimony in the state spatial patterns.  The 9-state model identified a state where mean 

activation equaled zero (consistent with Chen et al. 2016’s findings) that was not observed 

in the 8-state model (11).  The 10-, 11-, and 12-state models included two occurrences of 

this activation pattern; although these model orders were considered stable, they were 

undesirable because they contained a repeated state and a lack of parsimony.  Thus, eight 

states were the preferred choice for AB HMM in this investigation as a result of examining 
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both stability analyses in conjunction and because it met our criterion of choosing fewer 

than nine distinct states in accordance with Chen et al. 2016’s findings (11). 
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3.3.1.3 Model Type 2: SFC HMM 

Fig. 10a and Fig. 10b respectively show the results of the RAICAR-based and ED-

based methods performed on the SFC state highlights.  As described in Section 2.3.3.2.2, 

connectivity state highlights were acquired by subtracting the grand mean of all other state 

patterns from each state to observe each one’s defining features. RAICAR-based results 

indicated that an 8-state model had the highest number of robust and reproducible states 

since model orders nine and above encompassed stability values below the 0.9 threshold.  

Similarly, ED-based results showed an 8-state model to be the largest model order possible 

before the Euclidean distances steadily increased suggesting that model orders nine and 

above were unstable.  Thus, eight states were best to pursue for SFC HMM in this 

investigation. 

3.3.1.4 Model Type 3: FFC HMM 

Strictly for the purposes of comparison with SFC HMM, we assigned FFC HMM 

to have eight states as well.  This allowed for a level comparison of local and global 

analyses across both connectivity-based HMMs.  We acknowledge that eight states may 

not actually be suitable for FFC HMM, and that the same model order between SFC and 

FFC HMMs may not always occur in a study.  Future investigations should perform all 

stability analyses described in Section 2.3.5.2.1 (RAICAR-based and ED-based methods). 

To verify that increasing FFC HMM’s model order past eight would decrease 

stability, FFC HMM robustness and reproducibility were examined for only model orders 

eight and nine.  Fig. 11 shows that both methods indicated an 8-state model was preferable 

for FFC HMM.  Model order nine was unstable as observed by the increase in mean 



 47 

Euclidean distance and the drop in stability values below 0.9, which were likely not seen 

in any other model order.  This confirmed that an 8-state model for FFC HMM was 

preferred over a 9-state model. 

Because of these results and because eight states were in our predetermined range 

(less than or equal to nine states) for optimal model order, we pursued eight states for all 

model types.  There is no literature or mathematical reasoning to suggest that all three 

HMM subtypes should have the same model order within a particular investigation.  We 

coincidentally determined eight states to be best for AB HMM and SFC HMM, but that 

might not always be the case.  This may have occurred because we focused on a relatively 

small number of ROIs which greatly narrowed our analyses, but a consistent model order 

for different HMMs should not be assumed. 

3.3.2 Local Analyses 

Proceeding with eight states, local analyses were conducted for all HMM subtypes.  

Local analyses refer to procuring and interpretating state patterns.  In this section we first 

discuss activation states and compare state patterns directly outputted from AB HMM with 
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those from averaging BOLD signal in accordance with all subtypes’ Viterbi paths.  Then 

we discuss connectivity states attained directly from SFC and FFC HMMs and evaluate 

them in relation to ones obtained from alternative methods of acquisition.  States from each 

subtype are distinguished with underscores corresponding to the HMM they stem from, 

i.e., S1AB corresponds to state one from AB HMM. 

3.3.2.1 Activation States 

The activation patterns for AB HMM are seen in Fig. 12a.  S1AB appears to be a 

DMN-dominant state since the DMN is activated, and all other networks are deactivated.  

S2AB shows both DMN and FPCN to be activated.  S3AB and S4AB are both attention-

dominant networks: S3AB shows DAN and SN to be activated while S4AB shows FPCN, 

DAN, and SN to be activated.  S5AB and S7AB both show all networks to be activated, but 

with S5AB having activation levels slightly lower in magnitude.  S6AB shows DMN, DAN, 

and SN to be deactivated and FPCN to have minor positive activation levels.  S8AB shows 
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all networks to be deactivated, perhaps because some other network we are not 

investigating (i.e., sensorimotor or visual networks) is activated.   

Activation patterns acquired using the method outlined in Fig. 6 are seen in Fig. 

12b and their difference from AB HMM’s direct output are seen in Fig. 12c.  Great 

consistency exists between the activation patterns obtained from two different techniques 

with little to no differences between them (R2 = 0.992, p < 0.01).  Either method is 

acceptable in obtaining activation state patterns when a dataset has a short TR and long 

duration likely making it sensitive to fast and transient changes and allowing it to capture 

these dynamics. 

Using the methods outlined in Fig. 7, the activation patterns acquired by averaging 

the BOLD signal from TRs where SFC and FFC’s Viterbi paths labeled a state to be active 

can be seen in Fig. 13b and Fig. 13e respectively and qualitative differences from AB 

HMM’s mean activation output (Fig. 13a and Fig. 13d) can be observed.  The SFC and 

FFC connectivity-based activation plots show very different spatial patterns with much 

smaller magnitudes compared to the AB HMM direct output.  There are even qualitative 

differences between the SFC- and FFC-based activation patterns.  Euclidean distances 

between each SFC spatial pattern in Fig. 13b and each AB spatial pattern in Fig. 13a are 

seen in Fig. 13c, and likewise for FFC in Figs. 13d-f.  The connectivity-based states had 

no relation whatsoever to the activation-based states (i.e., S1AB is not expected to have any 

affiliation to S1SFC or S1FFC) motivating the Euclidean distance to be computed between 

all state pairings.  Moreover, the Euclidean distance was computed because Pearson 

correlations are susceptible to parallelisms and fluctuations in patterns, so, in this case, 
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using a distance metric was more reasonable in identifying similarities or dissimilarities 

between vectors.  The Euclidean distances show that there was a great disparity between 

the AB activation states and those derived from the SFC and FFC Viterbi paths.  There 

were two instances in which the Euclidean distance was found to be quite small, indicating 

similarities between states: between S3AB and the fourth activation pattern acquired from 

FFC’s Viterbi path, and between S1AB and the fourth activation pattern acquired from 

FFC’s Viterbi path.  This likely occurred because the distance metric recognized the same 

ROIs in both types of patterns (ROIs 13 – 16) to have relatively lower activation compared 

to others (ROIs 1 to 3).  Nevertheless, these are only two instances and therefore is not 

enough to dispute the idea that AB HMM generates activation states that are spatially 

different from those acquired by averaging according to connectivity-based Viterbi paths 

(SFC and FFC HMMs).   

These results indicate that AB HMM recognized only fluctuations in BOLD signal, 

and that SFC and FFC HMMs were not sensitive to those same patterns.  Each subtype 

adequately recognized changes only in the data inputted into their respective model type 

and therefore did not all recognize the same state patterns.  Thus, each HMM subtype is 

distinct in identifying changes in the inputted data, and consequently, in identifying states.  

AB HMM can be employed to identify activation spatial patterns without fear of those 

patterns being corrupted by potential correlations in the BOLD signal between ROIs. 
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3.3.2.2 Connectivity States 

All analyses were performed on highlights from the SFC and FFC HMM 

connectivity states.  Raw connectivity states can be seen in the top row of Fig. 14a for SFC 

and 14b for FFC HMMs, and the grand mean excluding a state was calculated for S1SFC-

S8SFC and for S1FFC-S8FFC (middle for of Fig. 14a and 14b, respectively).  More 

specifically, SFC and FFC HMM state highlights were computed using Eq. 7 where Xi is 

the original raw functional connectivity matrix for state i, Hi gives the highlights of Xi, and 

j gives all state assignments for a determined model order excluding the value of i (13). 

𝐻𝑖 =  𝑋𝑖 − (
1

7
∑ 𝑋𝑗

𝑗≠𝑖

) Eq. 7 
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The resulting state highlights (Hi) are seen in the last row of Fig. 14a for SFC HMM and 

of Fig. 14b for SFC HMM. Because the repetition time (TR) was 0.72s, a window length 

of 50 time points (36 seconds) was selected for subsequent analyses (i.e., Global Analyses) 

to encompass less than 60s of data as recommended by Lurie et al. 2020 (14).  We expand 

beyond 50 time points later in this section for a comprehensive analysis regarding how 

window size impacts connectivity state patterns.  None of the state ordering amongst the 

connectivity states were paired, nor did they share any relation to the activation state 

assignments.  The only exception is the covariance-based connectivity states which 

stemmed from AB HMM and therefore were aligned with the activation states. It is also 

important to note that because we were examining state highlights rather than the raw states 

themselves, the values in the connectivity states represent connectivity levels relative to 

baseline, not the Pearson R2 values themselves.  That is, for all state highlights shown, 

negative values are associated with below baseline correlations, not anticorrelations.   
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Figure 14: Method of acquiring (A) SFC HMM and (B) FFC HMM state highlights.  Top Row: 

Raw connectivity states for states 1 through 8.  Middle Row: Grand mean (G.M.) for all 

connectivity states excluding the state indicated.  Bottom Row: The information in the middle 

row is subtracted from that in the top row to obtain the connectivity state highlights observed.  

The color bars shown correspond to the color axis for each given row. 
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For SFC HMM state highlights (Fig. 15a), S1SFC showed below baseline 

correlations amongst all ROIs from all networks, particularly within and between DAN 

and SN, indicating a disconnect within the attentional system.  S2SFC showed slightly 

elevated correlations within and between all networks expect DAN; DAN appears not to 

have much interaction with the rest of the system within this state.  There were also slightly 

higher than average correlation values within S3SFC with the exception of a few ROIs (i.e., 

5 and 6) in DMN showing below average connectivity with the rest of the system.  S4SFC 

showed the strongest connectivity within and between the attentional networks indicating 

that the most communication within the system likely occurs in this state.  S4SFC also 

exhibited the opposite behavior to that of S1SFC: S1SFC showed the lowest correlation 

amongst ROIs while S4SFC showed the greatest.  S5SFC appeared to be the converse of S2SFC 

in that there was more of a disconnect amongst DMN, FPCN, and SN.  DAN also did not 
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show distinctive behavior in this state.  In S6SFC, below baseline connectivity was seen 

within DAN and between DAN and the other networks.  Similarly, SN exhibited the same 

behavior.  These properties indicated a slight disconnect within and between these 

attentional networks, and no distinctive properties amongst DMN and/or FPCN.  S7SFC 

showed a slight disconnect between DMN and all other networks indicating a disconnect 

in the resting state networks.  S8SFC exhibited the opposite behavior to S7SFC and actually 

showed elevated connectivity within DMN and between DMN and all other networks.  This 

indicated more communication between resting state and attention networks.  Elevated 

correlations existed amongst the other networks, but the most distinguishing behavior of 

this state lies with DMN.   

 For FFC HMM state highlights (Fig. 15b), S1FFC showed no distinguishable state 

highlights since all connectivity values were around baseline while S2FFC showed slightly 

higher than baseline connectivity within and between all networks except for DAN.  S3FFC 

showed slightly above average correlations amongst all ROIs from all networks.  S4FFC 

showed all networks to have above average correlations with one another and S5FFC to have 

slightly above baseline correlations between DAN and all other networks.  S6FFC showed 

below baseline correlations between DAN and all other networks, and SN and all other 

networks.  S7FFC showed DMN to be disconnected from all other networks and SN and 

DAN to have slightly above average correlation within and between each other.  Finally, 

S8FFC showed below baseline correlations between DAN and all other networks.   

 Fig. 15c shows a distance matrix where the Euclidean distance was found between 

all pairs of SFC and FFC state highlights.  Vertical state assignments correspond to FFC 
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states and horizontal state assignments correspond to SFC states.  SFC and FFC HMMs 

could be expected to show some qualitative similarities in their state patterns because they 

stemmed from the same dynamic functional connectivity sliding time window analysis.  

Differences between the state patterns arose because SFC and FFC had different model 

inputs, or perhaps because FFC HMM was fit to 14 times as many values as SFC HMM.  

Fig. 15c shows a few smaller Euclidean distances indicating that some states across the 

connectivity-based HMMs exhibited similarities.  However, there was no obvious case 

where a unique correspondence in spatial pattern between SFC and FFC HMMs were 

observed.  A one-to-one match in states would be illustrated with one small Euclidean 

distance (one blue square) and seven large Euclidean distances (seven red squares) within 

each row.  Because this phenomenon was not observed, the two HMMs outputted states 

with no exclusive compatibility.  State patterns from both model types were quantitatively 

dissimilar and thus SFC and FFC generated different state patterns; choosing to pursue one 

method over the other will produce varying results so understanding the underlying 

meaning of each is critical.  Implementing SFC HMM is preferred if the purpose of a study 

is to examine the general connectedness of an ROI to all other ROIs.  If the investigation 

focuses on specific correlations between all nodes of interest, then choosing FFC HMM is 

satisfactory.  The two connectivity-based HMMs will not produce the same state patterns 

so model type choice is crucial.  Furthermore, it is not always the case that the same model 

order will be designated across the two connectivity-based HMMs.  Varying model orders 

for SFC and FFC HMMs may produce an even greater discrepancies between their spatial 

patterns so it is not always assumed that their states will or should be similar.   
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 Fig. 16a shows the connectivity state patterns acquired from averaging the dFC 

matrices from every time window where FFC HMM Viterbi path labeled a state to be 

active, and matched closely (Pearson correlation of R2  ≥ ~0.9) with those outputted from 

model.  As with AB HMM, when employing FFC HMM, state spatial patterns can be 

acquired either straight from the model or by averaging specific time points so long as the 

dataset is fast and large enough.  Because the states converged to the same spatial patterns 

using two techniques, these results confirm the notion that the connectivity-based model 

identified changes only in connectivity despite having a plethora of components to fit.  

The covariance-based connectivity states (Fig. 16b) do not display distinguishing 

patterns either within or between the states despite the fact that the state highlights are 

shown.  DAN in S7AB appears to be disconnected from all other networks and is associated 

with activated DMN, FPCN, DAN, and SN.  A few ROIs in within DMN and DAN appear 
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to have above average connectivity in S4AB and is linked to an attention state where FPCN 

and DAN show the highest levels of activation.  S8AB shows a few ROIs between FPCN 

and DAN to be more disconnected than in the other states and DAN to have slightly 

elevated within-network connectivity and is paired with all four networks’ deactivation.  

While these states show considerable qualitative differences from SFC and FFC states, they 

also show quantitative differences.  Fig. 17 displays distance matrices where the Euclidean 

distance was computed between the AB covariance-based connectivity matrices 

(horizontal state assignments) and the SFC and FFC connectivity states (vertical state 

assignments).  Because the Euclidean distances showed no state to be identically matched, 

these states were neither analogous to SFC states nor analogous to FFC states.  The HMMs 

were recognizing differences in connectivity when R2 (or R2-related) correlations were 

fitted but were not able to capture discernable covariance patterns from the z-scored 

BOLD.  Thus, SFC and FFC HMMs provided more information into diverse connectivity 
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patterns than AB HMM and are best used when a study involves identifying latent 

connectivity states.  However, if an investigation’s interest lies in determining connectivity 

states in conjunction with activation states, then AB HMM is required because it is the only 

subtype that can link the two state types.   

Fig. 16c shows the connectivity state patterns highlights acquired via the method 

illustrated in Fig. 8, i.e., where the ROI x ROI matrices resulting from the sliding window 

correlation analysis were averaged wherever the AB HMM Viterbi path labeled an 

activation state to be active.  Although some of these spatial patterns may qualitatively look 

like those from SFC and/or FFC HMMs, quantitative analyses actually showed them to be 

dissimilar.  The distance matrix in Fig. 18 display Euclidean distances between AB Viterbi-

based connectivity states (horizontal state assignments) and the SFC and FFC states 

(vertical state assignments).  Because all values in this plot are consistently high and 

showed no obvious cases of singularly matched states, SFC and FFC states reflected 
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changes only in connectivity patterns and were robust to fluctuations in BOLD signal.  

Thus, AB HMM suitably detected activation states while SFC and FFC HMMs 

satisfactorily ascertained connectivity states and the corresponding changes between them.  

Each model type was distinct, and the information identified in one was not muddled by 

the information inputted into others.   

To investigate how these patterns changed as a function of temporal resolution, 

state connectivity spatial patterns were acquired when using different window lengths in 

the sliding time window analysis, some above 50 time points (tp), and some less.  

Specifically, SFC and FFC connectivity patterns were found when window sizes of 30 time 

points (21.6 seconds), 40 time points (28.8 seconds), 50 time points (36 seconds), and 60 

time points (43.2 seconds), and 80 time points (57.6 seconds) were employed.  Fig. 19 

shows the patterns for SFC HMM while Fig. 20 shows those for FFC HMM.  The 
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histograms at the end of each row illustrate the overall distribution of R2 (connectivity) 

values in each state for every window size.   

SFC state highlights showed little to no variability amongst the different window 

lengths.  All state highlights matched their counterparts across window sizes with Pearson 

R2 ≥ 0.5 except when correlating S4SFC 30 time points (tp) to S4SFC 80tp (R2 = 0.3084), and 

when correlating S3SFC of any time length to 80tp (R2 =-0.3587, -0.2588, -0.3062, -0.2563).  

Likewise, FFC state highlights showed minimal differences across window lengths.  All 

states matched to their analogues with R2 ≥ ~0.5 with 1 exception: matching S3FFC 40tp to 

S3FFC 80tp (R2 = 0.3469).  SFC states potentially showed more variability amongst 

different time windows than FFC states because of the summing factor.  Notably, the poor 

pattern matchings only occurred when correlating state highlights to the 80tp indicating 

that this window size (~60 seconds) was too large and that spatial patterns began to diverge 

from their norm.  The histograms (far right columns, Figs. 19 and 20) support this idea 



 62 

because they became less separated as the window size increased meaning that the state 

patterns’ resemblance to their counterparts from smaller window sizes was reduced.  This 

was particularly noticeable in the 80tp window size where the curves were closest together.  

These results showed that a window size containing less than approximately 60 seconds of 

data was preferred for connectivity-based HMMs, consistent with the ideas Lurie et al. 

2020 presented (14).   

Overall, the connectivity state patterns appeared to be relatively robust to window 

size indicating that there was some leniency in determining this parameter in sliding 

window analyses performed on big datasets with a fast TR and many subjects.  For an 

acceptable length, window size is not a limiting factor when deciding whether to pursue 

SFC or FFC HMM for a particular investigation.  We were confident in our choice of 50 

time points (~36 seconds) because it was consistent with the suggestion to aim for a 

window size containing less than 60 seconds of BOLD data, so all global analyses 

discussed in the next section stemmed from a sliding window approach using 50tp (14).   

3.3.3 Global Analyses 

Global analyses refer to outputs or computations common to all three model types 

where methods of performing those analyses did not have to be modified for a specific 

subtype.  We compared the Viterbi path, transition probability matrix, switching rate, and 

fractional occupancy correlation across AB HMM, SFC HMM, and FFC HMM. 

3.3.3.1 Viterbi Path 

 The Viterbi paths for AB HMM (Fig. 21a), SFC HMM (Fig. 21b), and FFC HMM 

(Fig. 21c) showed which state was active at every time point for every subject.  Each color 
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represents a different state as illustrated by the color bar.  Although the stability analyses 

appointed eight states to all three subtypes, state assignment across all HMMs were 

arbitrary.  That is, S1SFC was unique to SFC HMM and had no relation to S1AB or S1FFC.  

These plots show that, compared to AB HMM, the connectivity-based HMMs were 

smoothed over time.  Temporal discrepancy between the activation and connectivity 

HMMs potentially contributed to this in that SFC’s and FFC’s x-axes employ time 

windows rather than TRs, and therefore possess Δt (50) fewer time points.  Autocorrelation 

was another contribution since the time window shifted only one time point at a time in the 

sliding window analysis.  Although the temporal smearing is blatantly obvious, the Viterbi 

path was reproducible across different initializations (R2 ≥ ~0.84).  For all realizations, the 

models recognized the same connectivity states to be prevalent during the same time 

windows and the same switches between states even with the temporal smearing.  

Neuroscientific conclusions could not be made directly from these plots, and instead 
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additional analyses, such as switching rate and fractional occupancy correlation, were 

needed.  It is possible that qualitative differences in this measure can be observed across 

different conditions.   

The FFC HMM Viterbi path showed increased temporal smoothing compared to 

that of SFC HMM and therefore contained fewer transitions between states.  Although we 

do not know exactly why this happened, we suspect that FFC HMM fitting so many more 

components than SFC HMM could have played a role.  That is, compared to SFC HMM, 

FFC HMM fitted a more holistic picture of the information in a sliding window analysis 

and therefore from fitting a profuse amount of connectivity values per time window (406).  

It nevertheless was stable because the Viterbi paths converged to the same solution for 

every realization indicating that 406 components per time window was not an irrational 

amount of data to fit.  It was, however, a much larger amount than SFC’s 29 components 

per time window which may have caused FFC HMM to take longer in recognizing switches 

from one state to another: FFC HMM worked to find significant changes in 14 times as 

many connectivity components as SFC HMM.  Fitting many values at once in combination 

with a very noisy dataset could have caused the noise to outweigh the signal in FFC HMM 

thereby resulting in fewer state transitions.  Moreover, the severe smoothing may have 

resulted from constraining FFC HMM to bear the same model order as SFC HMM.  It is 

possible that because FFC HMM had more variables that it could identify more states and 

therefore more possible spatial patterns.  As previously mentioned, eight states were chosen 

for a comprehensive comparison with SFC HMM.  However, we did not comprehensively 

dissect these ideas, so they remain hypotheses and require additional analyses. 
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Overall, AB HMM provided the most insight into fMRI temporal dynamics, so if 

an investigation focuses on time-related measures (i.e., switching), then AB HMM is the 

logical choice.  Furthermore, caution must be taken when fitting connectivity-related 

values because temporal smoothing is inherent to a windowed analysis and consequently 

reduced state transitions in the hidden state sequence which can affect subsequent analyses.  

Caution is also needed when deciding how many specific nodal connections FFC HMM 

should fit which may require preliminary tests. 

3.3.3.2 Transition Probability Matrix 

Like the Viterbi paths, transition probability matrices were directly outputted from 

each model subtype (Fig. 22a) and were of great interest because they quantitatively 

described the likelihood of transitioning out of State X and into State Y.  As with the Viterbi 

path, neuroscientific interpretations of the transition probabilities could not be directly 

compared across all HMMs because the states were not the same.  However, this measure 

could provide quantitative insight into the relationship between states within each model 

type, something that could not be observed from the Viterbi path alone.  The probability of 

remaining in the same state overpowered transitions between different states, so the 

diagonals have been removed for better visualization of the off-diagonal elements.   

The AB HMM transition probability matrix (Fig. 22a) showed notably high 

transitions from S3AB into S5AB, from S6AB into S5AB, and from S8AB into S3AB and S6AB.  

The SFC HMM transition probability matrix (Fig. 22a) showed notably high transitions 

between S1SFC and S6SFC, from S2SFC into S6SFC, and from S7SFC into S1SFC.  There were 

no transitions between S1SFC, S2SFC, S3SFC, S4SFC, and S8SFC.  Likewise, no subjects 
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transitioned between S6SFC into S4SFC.  The FFM HMM transition probability matrix (Fig. 

22a) showed notably high transitions from S2FFC into S6FFC, from S3FFC into S8FFC, from 

S6FFC into S8FFC, and from S6FFC into S7FFC.  There were no transitions from S2FFC into 

S8FFC, from S5FFC into S2FFC, or from S8FFC into S2FFC.  The plots reflect the temporal 

resolution discrepancy between the connectivity-based HMMs and AB HMM because the 

magnitude of transitions in SFC and FFC HMMs were smaller compared to those of AB 

HMM.  FFC HMM’s transition probabilities had smaller magnitudes than those of SFC 

HMM thereby reflecting its exaggerated temporal smoothing.  To compare overall 

behavior across model subtype, the relative values rather than the actual magnitudes should 

be examined.  Neuroscientific interpretations about the actual transition probabilities 

magnitudes can be examined within a model type and between conditions for a dataset.   

Along with the autocorrelation and smoothing elements, SFC HMM’s off-diagonal 

transition probabilities may have exhibited transition probabilities close to zero because 

this model type used summed node-wise correlations as input data.  Because some R2 

values within a time window might have been positive and others might have been 

negative, summing over them averaged out connectivity behavior to zero, which likely 

exacerbated the temporal smoothing effect and hindered the HMM from recognizing 

potential connectivity dynamics.  FFC HMM’s off-diagonal transition probabilities might 

have had even smaller values because this model type fit many components at once, so it 

was quite computationally demanding to identify transitions between 406 different 

components per time window. With these ideas in mind, each transition probability matrix 

nevertheless provided useful insight into their respective model subtype’s dynamics. 
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3.3.3.3 Switching Rate 

 We initially aimed to examine switching rate as a means of comparing whether one 

HMM subtype could better capture switching dynamics over the others.  However, the 

temporal smoothing factor inherent to the connectivity-based models made this very 

difficult, and thus we could not compare this measure between model types.  Nevertheless, 

switching rate can still be compared within a model type or within an investigation of fMRI 

data collected between different conditions.  Because the fMRI dataset examined in this 

chapter contained only pure resting state only one condition occurred, this measure will be 

revisited in Chapter 4 where we focused on a dataset containing BOLD signal acquired 

under different conditions.  Although it is possible to compute the switching rate within 

the connectivity-based HMMs, the results would be greatly smoothed across time and 

therefore would be overwhelmed with noise so the results might not show anything 

meaningful.  As a result, this measure is best explored when an AB HMM is employed due 

to its superiority in interpreting temporal dynamics of an fMRI dataset. 

3.3.3.4 Fractional Occupancy Correlation 

 Studying the fractional occupancy correlation provided additional quantitative 

insight into the relationship between states, and, as Vidaurre et al. 2017 suggested, 

metastates may organically arise (12).  The AB HMM fractional occupancy correlation plot 

(Fig. 22b) shows that this might be the case because two subgroups were observed: one 

containing the attention and resting state dominant networks (S1AB-S4AB) and the other 

containing the states where either all networks were activated or deactivated (S5AB-S8AB).  
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This plot shows that subjects tended to reside in and transition within each subgroup (either 

in S1AB-S4AB or in S5AB-S8AB) more often than between them.   

Fig. 22b shows that a potential metastate may have occurred comprised of S1SFC, 

S2FFC, S4SFC, and S6SFC.  The high fractional occupancy correlation values exhibited 

between these particular states (the dark red blocks in the plot) may serve as the diagonal 

for a metastate, similar to the ones seen in the AB HMM counterpart.  The FFC HMM 

fractional occupancy plots (Fig. 22b) demonstrated a relatively strong correlation in 

residence between S2FFC and S6FFC and between S6FFC and S7FFC, and a relatively strong 

anticorrelation in residence among S8FFC and S6FFC and S7FFC.  Subgroups were not 

immediately noticeable in this plot likely because the temporal smoothing was 

overpowering any dynamics in the data.  Nonetheless, further investigation into confirming 

whether metastates arise from the connectivity-based HMMs is needed but is outside the 

scope of our investigation.  We aimed to compare HMM subtypes and to propose which 

subtype to apply under certain circumstances, not to make neuroscientific observations.  

Overall, AB HMM adequately recognized fMRI temporal dynamics and therefore could 

naturally identify metastates while SFC HMM had the potential to detect them, but 

additional information was needed. 

A potential relationship between fractional occupancy correlation and transition 

probabilities is seen in Fig. 22c.  These analyses could provide additional insight into the 

interaction between states within a model type and could provide clearer neuroscientific 

interpretations of the acquired states and their corresponding behavior.  However, they will 

not be interpreted in this dissertation because it is not the focus of this study.  The plots 
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were included simply as a means of demonstrating possible supplementary analyses that 

could be carried out utilizing the information extracted from HMM subtypes.   

3.4 Conclusion 

Overall, our empirical analyses revealed that all three HMM subtypes provided 

different yet useful perspectives into an fMRI dataset, and model choice for a study 

depends on the question or concept investigated.  Each HMM subtype was distinct and 

identified changes only in the data type (activation or connectivity) inputted.  AB HMM 

identified changes only in activation levels, SFC identified changes only in the general 

connection between a node and all other nodes, and FFC identified changes only in specific 

connections between a reasonable number of nodes of interest.  Spatial patterns for AB and 

FFC HMMs could be obtained either from the model’s direct output or from averaging 

BOLD signal or connectivity matrices from their respective Viterbi paths.  The latter 

technique was inherent to obtaining SFC states.  Furthermore, AB HMM covariance-based 

connectivity states identified weak connectivity patterns, so SFC and FFC were more 

robust to establishing latent connectivity states.  However, it cannot be assumed that both 

connectivity-based HMMs will produce the same spatial patterns.  Therefore, model type 

choice in an investigation is important and depends on whether the goal is to examine 

general vs. specific nodal connections.  If an investigation’s interest lies in analyzing 

connectivity states within activation states, then AB HMM is favored and the covariance 

matrices must be converted into Pearson correlations.   

 For a large and fast dataset like the one investigated in this chapter, there was a bit 

more flexibility when choosing the window size for a sliding window analysis.  Selecting 
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a size containing less than 60 seconds of data was optimal (consistent with Lurie et al. 

2020) because the spatial patterns began to deviate from those observed when using longer 

windows (14).  SFC and FFC HMMs’ Viterbi paths were smoothed across time compared 

to AB HMM’s, likely because they arose from a windowed analysis.  Consequently, AB 

HMM is the ideal candidate for analyses that focus on the temporal dynamics.  FFC’s 

Viterbi path was more smoothed than SFC’s likely because it was fit to 14 times as many 

components making it more difficult to identify changes in many nodal correlations at once 

and because its model order was constrained to match that of SFC HMM.  Similarly, all 

transition probability matrices presented provided insight into their own model type’s 

dynamics.  Because of the largely varying scale of values, the relative changes in transition 

probabilities must be examined when comparing this measure across HMM subtypes.  

Differences in the magnitudes themselves can be analyzed within each model type. 

Switching rate provided no meaningful interpretations between model types due to 

the substantial smoothing factor but could still be used to compare different conditions 

within a dataset and within a model type.  Because this measure relies on the temporal 

resolution of the HMM, it is best analyzed within AB HMM.  Metastates naturally arose 

from AB HMM fractional occupancy correlations likely because of its superior ability in 

capturing temporal dynamics.  SFC could potentially identify metastates more clearly than 

FFC HMM, but additional information outside the scope of this investigation is needed.  

The theoretical and empirical perspectives outlined in this chapter facilitates future 

investigators to make informed decisions about which HMM subtype is best to pursue in 

their neuroimaging analyses and investigations.   
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Chapter 4: LC Dataset Findings for an Activation-Based Hidden Markov Model 

4.1 Abstract 

The locus coeruleus (LC) is a small subcortical structure situated at the top of the 

brainstem and is the principal source of norepinephrine in the brain; therefore, it is 

responsible for controlling cognitive functions related to arousal such as stress, the sleep-

wake cycle, and attention (8,29–32).  Degradation of this structure has been associated with 

aging and with neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases, 

so to understand the role that LC dysfunction plays in these conditions, its normal function 

must first be understood (33,34).  Although an affiliation between LC and attention has 

been widely established, the corresponding underlying neural mechanisms driving this 

relationship are not well understood (29,31).  In this chapter we employed a hidden Markov 

model (HMM) to derive latent brain states that centered around attention networks and fit 

it to a modified pseudo resting state paradigm where LC activity was noninvasively up-

regulated via a handgrip task (11–13,36,37,67–71).  Functional magnetic resonance 

imaging, pupillometry, and neuromelanin data were collected to understand how HMM-

related measures varied as a function of changes in LC activity, and whether they held a 

relationship with LC structure.  Specifically, we compared state transition probabilities, 

network variability, mean state duration, and state switching rates between an active 

squeeze and a sham session.  Our findings suggest that observing a consistent relationship 

between LC engagement and latent brain state dynamics is unlikely when using the 

measures employed in this investigation.  This could occur because our subject pool 

consisted of healthy young adults where LC structure is unlikely to be compromised, our 
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handgrip task may not have been strong enough to evoke a prominent LC response, or the 

measures employed in this investigation are not sensitive enough to detect it (72–74). 

4.2 Introduction 

The locus coeruleus (LC) (Fig. 23) circuit is the main source of norepinephrine in 

the brain; it projects to the entire brain and is deeply involved in cognitive functions related 

to arousal including attention, stress, and the sleep-wake cycle (7,8,29–32).  In addition, 

LC dysfunction is hypothesized to occur in prodromal stages of Alzheimer’s and 

Parkinson’s diseases (33,34).  LC degradation is also prevalent in normal aging since cell 

loss within this 

structure is thought 

to impair memory 

and cause cognitive 

reserve depreciation 

(75).  For example, 

older adults with 

compromised LC 

structure have exhibited significant correlations between poor memory performance and 

thinner LC axons, while their younger counterparts demonstrated no relationship between 

memory performance and LC microstructure (9,10,75).  Because acquired LC blood 

oxygen level dependent (BOLD) signal can be noisy due to LC’s small stature, and because 

accurate measures of LC BOLD in animals have been invasively acquired, pupillometry 

data is typically collected as a noninvasive proxy measure for LC activity (76–78).  Using 
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pupil size as a noninvasive surrogate for LC activity is a method supported in literature 

reporting strong correlations between pupillometry data and LC BOLD activity (localized 

from both neuromelanin-sensitive structure imaging and a LC atlas published by Keren et 

al. 2009) in functional magnetic resonance imaging (fMRI) studies in humans (76,78). 

After regressing out physiological noise, it has been shown that continuous measures of 

pupil diameter throughout both resting state and task stimuli are able to index tonic 

variations in LC BOLD activity, and are less liable to trial-by-trial noise than pupil dilation 

locked into task-related events (76). Electrophysiological studies in monkeys have 

similarly shown a reliable relationship between LC activity and changes in pupil diameter 

due either to spontaneous fluctuations, or to external stimuli (77). Thus, there is strong 

reason to believe that pupillometry data can act as an accurate and robust surrogate for LC 

BOLD activity.  

In normal cognition, the relationship between arousal and task performance during 

a focused attention task is explained by the Yerkes-Dodson curve (29). Moderate LC firing 

rates correspond to optimal task performance while low and high LC firing rates are 

associated with inadequate task performance because subjects are inattentive and 

distracted, respectively (29). Despite observed correlations between LC engagement and 

attention, the underlying mechanisms driving changes in network dynamics within this 

relationship are not well understood (29–31). Characterizing this dynamic affiliation 

provides foundational insight into LC by facilitating the development of computational 

models that represent the dynamic spatiotemporal influence of LC over arousal.   
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Chapters 2 and 3 demonstrated that hidden Markov models (HMMs) sufficiently 

quantify the spatiotemporal behavior of latent states.  Typically, HMMs are used for 

weather prediction, in computational biology, and in finance, however, HMMs are 

becoming more popular in neuroimaging (26,43,44).  Neuroimaging-based HMMs identify 

latent brain states which quantify network or nodal interaction as well as the probability of 

transitioning between those hidden states (11–13,27,28,46–50,52–54).  As a result, an 

HMM can be applied to fMRI data to identify the spatiotemporal behavior of latent brain 

states as a function of arousal or LC up-regulation and characterize LC’s dynamic 

underlying relationship with arousal.  To oversee how HMM-derived state behavior 

changes as a function of arousal, we compared this behavior before and after LC activity 

had been up-regulated.  LC activity can be noninvasively up-regulated via a handgrip task 

which has previously shown to induced sympathetic arousal and increases norepinephrine 

activity; therefore, LC activity should increase as a result of squeezing (36,37,67–71,79). 

In this chapter we aimed to ascertain how LC activity up-regulation affected brain 

states derived from an HMM in effort to better understand LC’s relationship with attention.  

We modified a squeezing task to create a pseudo-resting state paradigm that increases LC 

activity so we can analyze changes in brain state behavior as a function of LC up-regulation 

(37,80,81).  Pupillometry data were collected to indirectly measure changes in LC activity 

as a function of squeezing as well as the relationship between pupil dilation and latent brain 

state behavior (76,77).  Thus, it was used as a noninvasive proxy measure of quantifying 

LC’s relationship with latent brain states.  Neuromelanin data were collected to determine 

the relationship between latent brain states or pupil dilation with LC structure (7,9). 
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4.3 Methods 

In this section we first explain the dataset used in this investigation which has been 

optimized to analyze subcortical structures such as the LC as well as the experimental 

paradigm employed to up-regulate LC activity.  We also introduce four attention-related 

networks and describe the HMM that will be applied to the LC dataset.  Then we describe 

how local analyses focusing on state pattern characterization will be performed followed 

by global analyses focusing on HMM outputs and subsequent calculations.  We end this 

section by describing analyses performed on pupillometry data. 

4.3.1 Datasets and Networks 

4.3.1.1 Experimental Paradigm and fMRI Data 

 

The experimental paradigm is illustrated in Fig. 24 and shows all subjects first 

underwent a five-minute pure resting state episode prior to any squeeze.  Following this 

RS0 block, subjects underwent a 12.8-minute experiment where they alternated between 

resting state and bringing their dominant hand to their chest to squeeze a squeeze-ball at 
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maximum grip strength (SQ1-RS5) (37,80). All five squeeze blocks lasted 18 seconds 

while the interspersed five resting state blocks had durations of two-, two-, five-, one-, and 

one-minute, respectively.  Blocks SQ1 through RS5 occurred after the arousing stressor 

has been introduced and are thus deemed post-arousal (PostAr) blocks.  In order to create 

a within-subject experimental design, all subjects underwent two sessions: one where they 

executed the squeeze (active session), and one where they still brought their arm up to their 

chest but were instructed simply to touch the ball and not to squeeze it (sham session).  

Subjects with an odd identification number squeezed during their first session and held the 

ball for their second session, while even numbered subjects experienced the opposite.  

Following this resting state paradigm, subjects underwent an auditory oddball detection 

task, the details of which are not relevant to this dissertation (82).   

Thirty-one participants (18 females, mean age 25 years ± 4 years) enrolled in this 

study at the University of California, Riverside Center for Advanced Neuroimaging (81).  

All subjects gave written informed consent to participate, received monetary compensation 

for their participation, and the study’s procedures were approved by the University of 

California, Riverside Institutional Review Board.  Magnetic resonance imaging (MRI) data 

were called on a Siemens 3T Prisma MRI scanner (Prisma, Siemens Healthineers, Malvern, 

PA) with a 64 channel receive-only head coil. fMRI data were collected using a 2D echo 

planar imaging sequence (echo time (TE) = 32 ms, repetition time (TR) = 2000 ms, flip 

angle = 77°, and voxel size = 2x2x3mm3, slices=52) while pupillometry data were collected 

concurrently with a TrackPixx system (VPixx, Montreal, Canada).  Anatomic images from 

a MP-RAGE sequence (TE/TE/inversion time = 3.02/2600/800 ms, flip angle =8°, voxel 
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size = 0.8x0.8x0.8mm3) were used for registration from subject space to common space.  

One subject was excluded due to a history of attention deficit hyperactive disorder and 

consumption of related medication resulting in all functional data to be analyzed with N = 

30 (80,82).  This subject was also excluded from all other types of data analyzed in this 

dissertation.   

The functional data underwent a standard preprocessing pipeline in the functional 

magnetic resonance imaging of the brain software library (FSL): slice time correction, 

motion correction, susceptibility distortion correction, and spatial smoothing using a kernel 

gaussian smoothing factor of 
𝐹𝑢𝑙𝑙 𝑊𝑖𝑑𝑡ℎ 𝐻𝑎𝑙𝑓 𝑀𝑎𝑥𝑖𝑚𝑢𝑚

2.3598
=  

2

2.3598
= 0.8475 (83,84).  Finally, 

all data were transformed from individual subject space to Montreal Neurological Institute 

(MNI) standard space using the following procedure in FSL (83,84).  First, the T1-weighted 

image was skull stripped using the brain extraction tool.  Next, brain extracted T1-weighted 

images were aligned with the MNI brain extracted image using an affine transformation. 

Finally, a nonlinear transformation (FNIRT) was used to generate a transformation from 

individual T1-weighted images to T1-weighted MNI common space (83,84).  

4.3.1.2 Neuromelanin Data 

 

Neuromelanin MRI (NM-MRI) data were used to compute LC magnetization 

transfer contrast (MTC) which quantifies LC neuronal density and therefore quantifies the 

amount of neuromelanin in a subjects’ LC (7,9).  Data were acquired using a 

magnetization-prepared 2D gradient recalled echo (GRE) sequence: TE/TR = 3.10/354 ms, 

416 × 512 imaging matrix, 162 × 200 mm2 (0.39 × 0.39 × 3 mm3) field of view, 15 slices, 

flip angle = 40°, four measurements, MTC preparation pulse (300°, 1.2 kHz off-resonance, 
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10 ms duration), and 470 Hz/pixel receiver bandwidth with a scan time of 10 minutes and 

12 seconds (8,85). The four measurements were saved individually for offline registration 

and averaging.  NM-MRI slices were prescribed perpendicular to the dorsal edge of the 

brainstem in the T1-weighted image.  Two subjects chose not to participate in the 

neuromelanin scans, so all NM-MRI data analyzed in this chapter were done with N = 28.   

To process the NM-MRI data in FSL, images from the four GRE measurements 

were registered to the first image using a linear transformation tool in FLIRT and averaged 

(83,84).  A transformation between this averaged NM-MRI image and T1-weighted image 

was derived using a rigid body transform with boundary-based registration cost function 

in FLIRT.  Prior to the rigid body transformation, the T1-weighted image was parceled into 

grey matter, white matter, and cerebral spinal fluid regions. The quality of each registration 

between T1-weighted and NM-MRI images was assessed by overlaying the white matter 

boundary from the T1-weighted image on the NM-MRI image. No significant deviation 

was observed in all subjects.  Contrast from the magnetization transfer preparation pulse, 

denoted MTC, was then estimated using Eq. 8. 

𝑀𝑇𝐶 =
(𝐼 − 𝐼𝑟𝑒𝑓)

𝐼𝑟𝑒𝑓
⁄  

I denotes the intensity of a voxel in the NM-MRI image and Iref  refers to the mean intensity 

of a reference region in the NM-MRI image.  To ensure consistent placement of reference 

region in NM-MRI images across subjects, a reference region was drawn in the pons in 

MNI T1-weighted common space and then transformed to individual NM-MRI images.  A 

LC atlas in MNI space was used in this study to localize the region around LC for MTC 

Eq. 8 
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measurement (9).  The LC atlas was transformed to NM-MRI space using the 

aforementioned transformations and using a threshold level of 0.5.  After binarizing, each 

subject’s mean MTC was measured in the LC ROI resulting in a total of N = 28 values.  

4.3.1.3 Pupillometry Data 

 

The pupillometry data were collected using a sampling rate of 2kHz, preprocessed 

using the ET-remove artifacts toolbox (github.com/EmotionCognitionLab/ET-remove-

artifacts), and downsampled to match the temporal resolution of the fMRI data (37).  To 

measure pupil dilations relative to baseline, this dataset was normalized by dividing by 

subject-specific means of RS0 providing us with percent signal changes.  Three subjects’ 

data were improperly collected resulting in N = 27 for most pupillometry-related 

calculations.  These three subjects are different from the ones who decided not to 

participate in the neuromelanin scans.   

4.3.1.4 Attention-Related Networks 

 

The Human Connectivity Project (HCP) dataset analyzed in Chapter 3 focused on 

four networks previously associated with resting state: default mode network (DMN), 

fronto-parietal control network (FPCN), dorsal attention network (DAN), and salience 

network (SN).  The same networks are examined here because we implemented a pseudo-

resting state dataset, and because they are all related to attention in some manner.  DMN 

(a resting state network) and DAN (an attention network) were selected because squeezing 

ought to invoke a transition from the resting state into a task-positive state (86); FPCN 

because it is linked to DAN and regulates perceptual attention (87); and SN because it 

determines which stimuli in our environment are most deserving of attention (37,88).  
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Talariach coordinates for regions of interest (ROIs) within DMN, FPCN, and DAN were 

taken from Deshpande et al. 2011 and converted to MNI coordinates while SN MNI 

coordinates were taken directly from Raichle 2011 (1,60–62).  Two ROIs from FPCN 

(dorsal anterior cingulate cortex and left dorsolateral prefrontal cortex) were excluded due 

to their close location to other ROIs.   

LC was localized using the probabilistic atlas described in Langley et al. 2020 

(9,10).  Briefly, a reference region was drawn in the pons and its mean (μref) and standard 

deviation (σref) were calculated.  Next, the LC atlas was transformed from MNI space to 

native NM-MRI space using the transforms described in Section XXXX using a threshold 

level of 0.01.  After binarizing and dilating the transformed LC atlas, voxels in the dilated 

LC region of interest with intensities greater than I > μref + (4*σref) were considered part of 

LC.  

Table 2 shows the MNI coordinates for all networks and ROIs discussed and were 

used to center a 5mm3 isotopic marker.  It displays the same information as Table 1 but 

also includes the LC (whose dilated voxels were split into rostral and caudal regions) (64–

66).  BOLD signal from each voxel within an ROI were extracted and averaged to represent 

the overall signal for an ROI.  This was repeated for 31 total ROIs: 9 from DMN, 7 from 

FPCN, 6 from DAN, 7 from SN, and 2 from LC.  The MNI anatomical coordinates for the 

four attention networks and LC are found in Table 2 and were used to center a 5mm3 

isotopic marker (64–66).  Although the LC is only a single ROI split into rostral and caudal, 

it is an entity distinguishable from the large-scale networks.  So, it will henceforth be 

referred to as a network for the purposes of this dissertation. 
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4.3.2 Hidden Markov Model 

In this investigation we aimed to focus on the temporal dynamics of the described 

dataset and on comparing measures of interest across two conditions (active vs. sham).  

According to the discussion in Section 3.4, of the three HMMs described, the activation 
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based HMM (AB HMM) was the ideal choice to examine these characteristics and for the 

goals of this study.  Furthermore, preliminary tests in applying the connectivity-based 

hidden Markov models to this dataset yielded that the inherent smoothing factor in a 

windowed analysis was overwhelming and obliterated any useful dynamics.  This likely 

occurred because the LC dataset was much smaller and slower than the HCP Unrelated 100 

dataset.  Because the AB HMM is the only HMM subject employed in this investigation, 

it will henceforth be referred to simply as HMM. 

To implement the HMM, the same methods described in Section 2.3.4.1 in Chapter 

2 were used (11–13).  The data for RS0 and SQ1-RS5 were z-scored separately for a total 

of four z-scorings performed per subject: RS0 for active and sham sessions, and SQ1-RS5 

(PostAr) for active and sham sessions.  The normalized BOLD signal from the predefined 

ROIs were concatenated across all subjects then inputted into an HMM from the hmmlearn 

library in python (55).  Outputs of interest include the Viterbi path (hidden state sequence), 

covariance matrices, mean state patterns, and a transition probability matrix.  Connectivity 

states directly corresponding to each activation state were acquired by converting the 

outputted covariance values into Pearson correlation values using the Matlab command 

corrcov.m (http://www.mathworks.com/) (12,13). 

4.3.3 Model Order Determination (Stability Analyses) 

As described in Chapter 2, model order determination organically arises when 

assessing the robustness and reproducibility of state patterns.  The Ranking and Averaging 

Independent Component Analysis by Reproducibility based (RAICAR-based) and 

Euclidean distance based (ED-based) methods discussed in Section 2.3.5.2.1 in Chapter 2 
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were employed to assess the stability of different model orders applied to this LC dataset 

and therefore to determine the optimal model order (11,35).  Both methods required the 

HMM to be implemented multiple times each with a different initialization probability (the 

probability of starting within a certain state) where each implementation was termed a 

“realization”.  For the RAICAR-based method, the state patterns were matched across 

realizations via Pearson correlations and reordered so that each state possessed the same 

spatial pattern (with R2 above a prespecified threshold) across all realizations (11,35).  

Then the spatial patterns for each state were correlated across all pairs of realizations.  For 

example, with three realizations, there would be three total pairings because realization 1 

could be paired with realization 2, realization 2 with realization 3, and realization 1 with 

realization 3.  These R2 values were averaged for all within-state correlations, sorted from 

highest to lowest values, and plotted against model order (Fig. 4).  For the ED-based 

method, state spatial patterns were permuted and matched via the smallest Euclidean 

distance 100 times for all pairs of realizations (Fig. 5).  The Euclidean distances from all 

permutations and matchings within a model order were averaged and plotted against model 

order. 

4.3.4 Local Analyses 

As mentioned in Section 3.3.2, local analyses refer to state pattern characterization.  

For the previous investigation we compared the acquired state patterns across the three 

different HMMs, however, in this investigation we used only one subtype (AB HMM) and 

therefore focused only on making neuroscientific interpretations about the states. 
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Despite examining both activation and connectivity state patterns, not all possible 

latent brain states in this dataset were captured (13).  It is entirely possible that there were 

states visited in one condition (either active or sham) that were not visited in the other since 

a squeezing task was performed in one session.  However, we fit the model to both 

conditions together in effort to identify globally prevalent states.  Ideally, future analyses 

would fit an HMM to active and sham sessions separately which cannot be done with this 

dataset because it is slow and short (less than half the length with more than twice the TR 

of the HCP Unrelated 100 dataset).   

4.3.4.1 Activation State Patterns 

The HMM directly outputted mean state patterns.  In accordance with Chen et al. 

2016’s method of state pattern acquisition, we also examined spatial patterns acquired by 

averaging the BOLD signal from TRs where the Viterbi path labeled a state to be active 

(Fig. 6) to determine how they compared with those from the model output (11). 

In addition to examining comprehensive state patterns, we analyzed activation state 

patterns specific to the active and sham conditions as a means of determining whether a 

certain state pattern was dominant in one session and therefore driving the overall spatial 

patterns.  These spatial configurations were acquired by averaging the BOLD signal from 

each subject’s Viterbi path for active and sham sessions separately.   

4.3.4.2 Connectivity State Patterns 

Because we employed what Chapters 2 and 3 referred to as AB HMM, we were 

able to acquire connectivity states that directly corresponded to each activation state.  These 
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connectivity-based states were found by mathematically converting the covariance 

matrices directly outputted by the model into Pearson correlations (12,13).  

4.3.5 Global Analyses 

Global analyses refer to measures of interest that can be acquired from any HMM 

applied to neuroimaging data.  As with Chapters 2 and 3, the global analyses we 

investigated from the LC data were the Viterbi path, transition probability matrix, 

switching rate, fractional occupancy, and average state duration.  These measures were 

calculated for RS0 and blocks SQ1-RS5 because this portion of the scan occurred after the 

handgrip task (both active and sham).  They were then compared across sessions as a means 

of analyzing how they changed as a function of active squeeze as well as from RS0 as a 

means of determining how they changed from baseline.   

4.3.5.1 Viterbi Path 

The Viterbi path—a direct HMM output—was used to qualitatively assess 

differences between active and sham sessions and to obtain qualitative insight into the 

temporal dynamics of the LC dataset.  Since the active and sham sessions were fitted 

together, the model provided the hidden state sequence for concatenated active and sham 

conditions.  We therefore separated the first and second halves of the outputted Viterbi path 

to examine the active and sham state sequences separately.  Each state was assigned a color 

and plotted as a function of TR for every subject. 

4.3.5.2 Fano Factor 

The Fano factor is a measure of the noise-to-signal ratio of a time series and should 

provide insight into any changes in the stability of each network within each state as a 
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function of active squeeze (89–91).  The Fano factor was computed using the raw BOLD 

signal for every TR where the Viterbi path labeled a state to be active using the equation 

seen in Eq. 9. 

𝐹𝑎𝑛𝑜 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛
=  

𝜎2

𝜇
 

Using Eq. 9, the Fano factor was calculated for the entire session (all resting state 

and squeeze blocks together) and across all subjects because the state spatial patterns 

directly outputted from the HMM were fitted on a group level for the entire scan duration.  

Active and sham sessions were kept separate to obtain an idea of how the noise-to-signal 

ratio of each network and state varied as a function of the task.  The Fano factor was 

calculated using the raw BOLD signal because it is defined as the mean divided by the 

variance (Eq. 9) (89–91).  The mean of the z-scored BOLD signal fitted by the HMM had 

been centered to zero and using it would have provided an inaccurate representation of the 

noise-to-signal ratio.  The results were plotted using boxplots for easier visualization of 

this measure for a network within every state and across active vs. sham.  Statistical tests 

were performed to determine whether the Fano factor of states and networks changed as a 

function of the handgrip task.  Furthermore, the Fano factor was correlated with LC MTC 

and plotted on a bar graph to determine whether a relationship between LC neuromelanin 

content and noisiness of networks and states existed. 

4.3.5.3 State Visits 

State visit analyses refer to any computation relying on information found using the 

hidden state sequence.  The transition probability matrix is excluded from this definition 

Eq. 9 
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because it was directly outputted from the HMM and is explored in the next section.  The 

differences of these state visit related measures between active and sham sessions per 

subject were calculated to highlight individual changes.  RS0 provided baseline measures 

since it was a pure resting state block occurring prior to any arousal inducer.  To observe 

the temporal progression of these measures relative to baseline, fractional occupancy, 

average duration, and switching rate were calculated for RS0 and for blocks SQ1 – RS5, 

the blocks after the squeeze prompt was administered.  Because the squeeze blocks were 

points where arousal should have been induced via the handgrip task, blocks SQ1-RS5 will 

henceforth be referred to as post-arousal (PostAr).  The difference in measures between 

RS0 and PostAr were computed to understand how they changed relative to baseline.  The 

difference in these measures were subsequently computed across condition to understand 

how they changed as a function of active squeezing.  To determine whether LC structure 

was predictive of active squeeze inducing changes in fractional occupancy and average 

state duration, these measures were Spearman correlated with LC MTC because we had no 

a priori reason to believe the two measures should be linearly related.  After performing 

this for each state and across all subjects the correlation values were plotted on a bar graph 

for visualization. 

4.3.5.3.1 Fractional Occupancy 

The proportion of visits to a state was calculated by first counting the total number 

of TRs each subject spent in a certain state for each block, RS0 and PostAr.  That value 

was then divided by the total number of TRs in each block (150 for RS0 and 375 for PostAr) 

to obtain the fractional occupancy of each state within either RS0 or PostAr.  This measure 
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examined differences in the overall time spent in a state between the conditions of active 

and sham.  That is, we calculated the fractional occupancy of a certain state in RS0 and 

PostAr, and for active and sham sessions to observe the temporal progression of fractional 

occupancy as a function of the task relative to baseline. 

4.3.5.3.2 Average State Duration 

Average state duration is defined as the mean time spent in a state once a subject 

entered that state.  The average duration in a state was computed for active and sham 

sessions to determine whether active squeeze impacted this measure.  This was done by 

calculating the number of consecutive TRs spent in a state once the subjects enter it, 

averaging it, then dividing by the total number of TRs within a block.  The average duration 

was computed for RS0 and PostAr, and the difference between them found within each 

session to assess these measures relative to baseline.  Subsequent statistical tests were 

conducted to determine whether average state duration was statistically and significantly 

different across state, condition, block, or any combination of them. 

4.3.5.3.3 Switching Rate 

The switching rate between sessions were examined as a means of determining 

whether performing the handgrip task affected nonspecific state transitions.  This measure 

was calculated by counting the number of state switches each subject underwent and 

dividing it by the length of the block.  This procedure was performed for RS0 and PostAr 

and the difference in switching rate between the two blocks was found to acquire switching 

rate within each session relative to baseline.  A paired t-test was performed to determine if 

the mean switching rate was significantly different across conditions. 
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The switching rate was also examined to obtain insight into the model’s ability to 

recognize attentional dynamics.  We expected there to be a difference in switching rate 

between conditions because Stevner et al. 2019 found a relationship between switching 

rate and non-rapid eye movement sleep stage (13).  They found that subjects switched 

between HMM-derived state more during the awake stages.  Because squeezing a squeeze-

ball has been shown to increase arousal causing the subjects to become more alert, we 

hypothesized that the switch rate would be greater during the active session. 

4.3.5.4 Transition Probability Matrix 

The transition probability matrix directly outputted from the HMM gave a general 

overview of transitions for both conditions as a whole and included baseline (RS0) effects 

since it was fitted to concatenated sessions.  Thus, it showed transition probabilities on a 

global level whereas we were interested in changes in transition probabilities once the 

handgrip task was introduced, i.e., during PostAr.  To calculate this, we concatenated 

Viterbi paths for active and sham sessions during the PostAr block and identified the 

number of times a subject transitioned out of a certain state and into another, then divided 

that value by the total number of transitions in the block (374).  To examine transition 

probabilities specific to each session, we again calculated the transition probability matrix 

for PostAr during active and sham sessions separately.  To remove the effects of baseline, 

the transition probability matrix was again calculated for RS0 and subtracted from each 

individual session’s PostAr transition probability matrix.  The mean of these values across 

all subjects was found to obtain a global average of transition probabilities specific to each 

session.  All transition probabilities were placed on a color scale for visualization. 
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To determine whether LC neuromelanin content facilitated switching between 

particular states, state-specific transitions within each session were correlated with LC 

MTC.  That is, once subject-specific transition probabilities were acquired and prior to 

obtaining a global average, each square in the matrix was Pearson correlated with LC MTC.  

This matrix was also visualized via color patterns and observed on a color scale. 

4.3.6 Pupillometry Analyses 

Pupillometry analyses paralleled some of the global analyses.  Specifically, we 

computed the mean pupil dilation during overall switching rate (transitions amongst any 

state) as a function of condition to determine whether LC engagement could be observed 

between active and sham sessions.  The hemodynamic response function caused a lag in 

pupil response after stimulus onset, and therefore was taken into consideration (76).  Pupil 

dilation during overall switching rate was calculated by identifying a switch in subjects’ 

state sequences, then calculating the difference between the normalized pupil size two TRs 

before the switch and the first TR after the switch.  This calculation was contingent on the 

subject remaining in the same state for two TRs before or after the identified switch to 

ensure that they settled into a stable state.  After calculating these differences, the average 

within a subject was taken and plotted in a boxplot.   

Pupil dilations were also computed for state-specific transitions in a similar manner.  

If a subject remained in the same state two TRs before and after the switch, the difference 

in pupil size two TRs before a switch and one TR after a switch was found, and the states 

assignment during these switches was also recorded.  These analyses were performed to 
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understand the relationship between active squeezing and switching between HMM-

derived brain states.  The results were plotted in a matrix and visualized on a color axis. 

Once the mean subject-specific changes in pupil size during state specific 

transitions were found for both conditions, the differences in these values were computed 

to identify distinct pupil dilation patterns as a function of active squeezing.  Each of these 

differences across session were correlated with LC MTC to determine whether LC 

neuromelanin content impacted pupil dilation during switches between HMM-derived 

latent brain states.  Because some subjects’ data were missing due to improper data 

collection or the aforementioned exclusion criterion, only subjects whose data were 

accounted for in both the pupillometry and neuromelanin datasets were correlated (at most 

N = 25).  The resulting matrix of correlations was also visualized on a color axis. 

4.4 Results and Discussion 

4.4.1 Model Order Determination (Stability Analyses) 

Fig. 25 shows the results from performing the RAICAR-based and ED-based 

stability analyses for model orders 3-15 using three realizations.  Both plots indicate that 

five states were best for this investigation.  This was the maximum model order where the 

stability values for all states remained above the predetermined threshold, and where the 

Euclidean distance remained as low as possible (zero) before dramatically increasing.  

Chen et al. 2016 and Yang et al. 2010 both used the RAICAR-based method, explored 236 

ROIs and 162 independent components respectively, and employed a stability threshold of 

0.8 (11,35).  As discussed in Section 3.3.1 we utilized a 0.9 threshold because we examined 

substantially fewer ROIs (31) so our analyses and interpretations could afford to be more 
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stringent.  However, whether we used a threshold of 0.9 or 0.8 at least one stability value 

for model orders six and above fell below 0.8; so, a 5-state model was selected via both 

standards.   

4.4.2 Local Analyses 

Both the activation patterns and the connectivity patterns of the five states identified 

in the HMM are described and interpreted in this section. 

4.4.2.1 Activation State Patterns 

Fig. 26a shows the activation state patterns directly outputted from the HMM.  State 

1 (S1) represents a DMN-dominant state because DMN showed the highest level of 

activation while State 2 (S2) corresponds to an attention-dominant state since DAN and 

SN showed the highest levels of activation.  State 3 (S3) shows all networks investigated 

to be activated, and State 4 (S4) is the squeeze state because it was prevalent during the 

squeeze blocks of the paradigm as indicated by the Viterbi path in Fig. 29.  Because this 

state was even prevalent during the “squeeze” blocks of the sham session where the 
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subjects lifted their arm to their chest but refrained from squeezing, S4 will be referred to 

as the arousal state.  S4 also shows a dramatic increase in the activation level of some ROIs 

in the attention networks, DAN and SN.  Finally, State 5 (S5) shows all networks to be 

deactivated, likely because another network not examined in this investigation was 

activated (i.e., visual or networks).  Furthermore, many of these states showed qualitative 

similarities to one another.  For example, S1 and S4 visually look like they have similar 

patterns, but with opposite signs.  DMN showed high levels of activation in S1 but was 

deactivated in S4.  Conversely ROIs 25 and 26 in SN were deactivated in S1 but were 

activated in S4.   

Fig. 26b shows the activation state patterns acquired from averaging the BOLD 

signal where the state sequence labeled a state to be active (as laid out in Fig. 6) and Fig. 

26c shows the difference between these state patterns and those directly outputted.  

Although the states created from averaging the BOLD were different from the model’s 
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direct output, in this case we did not expect them to be similar because the probability of 

assigning a state to a time point was not always close to 1.  It is also possible that  the states 

were subjected to noise resulting from a global average of hundreds of TRs for 30 subjects.  

When Viterbi-averaging the activation patterns, we assumed that the probability of residing 

in a certain state at any time point was absolute, or 1, but that was not always the case as 

sometimes the probability of a state being active within a certain TR was less than 0.8 or 

even less than 0.7, and we did not take into account these probabilities.  Thus, when we 

recreated the states, we performed a simple, global average rather than a weighted average 

which likely accounts for most of the differences seen between Fig. 26a and Fig. 26b.  This 

may also be why the recreated HCP states in Fig. 12 were almost exactly the same as the 

model output—more often than not the probability of residing in a state was between 0.9 

and 1.  This likely occurred because the HCP dataset was much faster, much longer, and 
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did not include a squeezing task so it was likely more sensitive to changes in BOLD 

fluctuations.  All in all, we trusted the state patterns outputted directly from the model 

because Chapter 2 and 3 showed us that we could trust them (and they can potentially be 

the same as the averaged version) and so we moved forward with Global Analyses using 

the spatial patterns from the direct output (Fig. 26a).  

To facilitate direct comparison with the active- and sham-specific patterns, the 

activation state patterns using the Viterbi averaging method (Fig. 6) was applied to active 

and sham sessions separately (Fig. 27a and Fig. 27b, respectively).  Qualitatively, one state 

pattern was not dominant in one condition over the other indicating that the BOLD data in 

one session (active or sham) was not driving the overall, global state patterns.  The 

differences stated above likely account for the spatial discrepancy between these plots and 

the model’s direct output as well: the spatial patterns were subject to noise from averaging 

across many TRs and we did not perform a weighted average.   

4.4.2.2 Connectivity State Patterns 

Fig. 28a shows the raw connectivity states corresponding to the activation states 

after converting covariances to Pearson correlations (12,13).  State patterns was subtracted 

from the grand mean of all other connectivity states (Fig. 28b) to highlight unique features 

of each pattern (Fig. 28c).  For Fig. 28c, it is important to note that because the highlights 

are displayed, the values in the matrices are not actually R2 values but are values relative 

to baseline.  Thus, S1 shows a state where DMN activity was higher compared to all other 

but was functionally disconnected from all other networks.  SN shows below baseline 

correlations to DMN, FPCN, and DAN as well.  In S2 DAN and SN showed the highest 
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activation values and were functionally disconnected from all other networks.  The three 

attentional networks (FPCN, DAN, and SN) appeared to have slightly below baseline 

within-network connectivity.  S3 pairs the whole-brain activation (all networks examined 

were activated) with connectivity values around baseline.  S4 links the arousal state with a 

connectivity state where most correlations were around baseline, but some were 

sporadically above or below.  As discussed in Section 4.4.2.1, S4 corresponds to the arousal 

squeeze state so these correlation patterns correspond to a few of DAN and SN ROIs’ above 

baseline activation levels.  Whole-brain deactivation in S5 corresponded to the strongest 

correlations amongst all networks of interest.  LC showed no distinguishing characteristics 

in any of these states.  Although this structure did not have a substantial effect on state 

patterns and interpretations, we expected its effect to be prevalent when calculating 

measures of interest described in the Global Analyses methods section (Section 4.3.5).  

That is, although strong LC activity was not observed in the state patterns, we expected it 

to influence the differences in measures of interest calculated between the active and sham 

sessions explored further in the Global Analyses results and discussion section (Section 

4.4.3).  

Interestingly, these states showed that networks with higher activation 

corresponded to below baseline correlations, or functional disconnectedness.  These 

connectivity state showed that even though some networks were deactivated in some states, 

that does not necessarily mean that nothing was happening.  The networks were still 

communicating, but they may have been communicating more with themselves than with 

other networks.  This was prevalent in S1, S2, and S4.  Although DAN and SN were 
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deactivated in S1, they were still communicating with themselves (i.e., the six DAN and 

seven SN ROIs were still relatively functionally connected to one another) since the R2 

values in Fig. 28c were around baseline rather than below it, and because the networks 

were still clearly visible around the diagonal of the matrix.  The same concept was seen in 

S2: DMN was deactivated but its within-network functional connectivity remained higher 

than the functional connectivity between DAN or SN and all other networks.  In S4, 

although all networks showed deactivation, their BOLD signal was still fluctuating as 

indicated by the relatively strong correlations between all four networks. 

4.4.3 Global Analyses 

Now that we have made sense of both the activation and connectivity states, we 

examine the dynamics of the data in more depth by exploring global analyses: analyses that 

can be performed when an activation-based or connectivity-based HMM was applied to 
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neuroimaging data.  We explore the hidden state sequence (Viterbi path), transition 

probability matrix, switching, and fractional occupancy acquired when applying an HMM 

to the LC dataset. 

4.4.3.1 Viterbi Path 

The Viterbi paths for active and sham sessions are seen in Fig. 29.  These plots 

qualitatively showed that even though the dataset was small and slow the HMM was still 

able to recognize dynamics in the data.  Remarkably, the squeeze blocks were obvious as 

almost all subjects visit S4 (the orange state) in both sessions for almost the entire length 

of the squeeze blocks at time points 151-159, 220-228, 289-297, 448-456, and 487-495 – 

visible as vertical orange bars running through almost all subjects.  Although we can make 

qualitative neuroscientific interpretations of the states and their differences in active vs. 

sham sessions, quantitative analyses are presented below.  



 100 

4.4.3.2 Fano Factor 

The Fano factor (Eq. 9) was calculated for every network within each state to assess 

their spatial patterns’ susceptibility to noise as LC activity was up-regulated (Fig. 30).  Two 

outlier subjects were removed (resulting in N = 28) because their Fano factor for FPCN in 

S2 was greater than 20 which greatly skewed the results and prevented adequate analysis 

of the other states’ and networks’ noisiness.  A 2 (condition: squeeze vs control) x 5 (state) 

x 5 (network: DMN, FPCN, DAN, SN, LC) repeated measures analysis of variance 

(ANOVA) was conducted to determine whether the mean Fano factor was statistically 

different across these factors.  That is, the ANOVA determined whether the mean Fano 

factor across all observations (subjects) as a function of condition regardless of state or 

network was statistically different from mean Fano factor as a function of state regardless 

of conditions or network, or from mean Fano factor as a function of networks regardless 

of condition or state.  It also tested whether the level of one factor depended on that of any 

other, or, interactions.  Because the Fano factor is a ratio of the noise-to-signal of a time 

series, the data were not normally distributed and needed to be transformed prior to 

executing the ANOVA.  To do this, the data were log10 transformed.   

The omnibus ANOVA showed significant main effects of state (F(4,108) = 12.858, 

p < 0.01) and network (F(4, 108) = 39.920, p < 0.01), but not in condition (F(1,27) = 0.535, 

p = 0.471), or in any interaction (condition*state: F(4,108) = 0.336, p = 0.826; 

condition*network: F(4,108) = 1.051, p < 0.378; state*network: F(16,432) = 1.345, p = 

0.256; condition*state*network: F(16,432) = 0.264, p = 0.884) when using the 

Greenhouse-Geisser correction for sphericity violations (according to Mauchly’s test of 
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sphericity).  Because Fano factor did not statistically change as a function of condition, nor 

did this factor interact with the others, the data were collapsed across condition to simplify 

analysis of state and network.  Consequently, a step-down 5 (state) x 5 (network) repeated 

measures ANOVA was performed.  This tested whether the mean Fano factor of the 

networks regardless of states was significantly different from the mean Fano factor of all 

states regardless of network, as well as the interaction between them despite condition.  

Since the dataset was relatively short, rather than averaging the values across conditions, 

the raw active and sham BOLD signals were concatenated and the Fano factor recalculated 

(Fig. 31a).  This alternative method provides a holistic, global sense of the dataset and was 

consistent with the data format fitted by the HMM to obtain the states’ spatial patterns.  As 

before, the recalculated Fano factors were log10 transformed prior to implementing the 5 x 

5 repeated measures ANOVA.  
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This step-down 5 x 5 ANOVA showed significant main effects of state (F(4,108) = 

5.623, p < 0.01) and network (F(4,108) = 8.885, p < 0.01), but not in an interaction 

(F(16,432) = 1.684, p = 0.159) between them when using the Greenhouse-Geisser 

correction for sphericity violations.  A lack in significant interaction prevents us from 

performing any more step-down ANOVAs, but the significant main effect of state allows 

us to look at deviation contrasts for both state and network.  Deviation contrasts for state 

determined whether the Fano factor of each state was significantly different from the global 

Fano factor of all states excluding S5.  The same interpretation was applied when 

examining deviation contrasts for the factor of networks: deviation contrasts decided 

whether each network’s Fano factor was significantly different from the global Fano factor 

of DMN, FPCN, DAN, and SN, excluding LC.    
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The deviation contrasts showed that on average and regardless of condition and 

state, DMN had a significantly different Fano factor than the global level (F(1,27) = 15.684, 

p < 0.01).  In terms of state, S1 (DMN-dominant state) and S4 (arousal state) had 

significantly different Fano factors than the global Fano factor (F(1,27) = 4.668, p = 0.04) 

and F(1,27) = 37.313, p < 0.01), respectively).   

These results, taken from the main effects of network and state, potentially indicate 

that DMN-related behavior was disrupted the most of the four networks.  This could have 

occurred  because the dataset analyzed had a pseudo resting state paradigm, so the squeeze 

(or the prompt to squeeze) disrupted resting state and therefore disrupted the core resting 

state network, DMN.  S4 exhibiting significantly more noise than the global noise likely 

alludes to the fact that it was the shortest state in duration.  Although S4 was exhibited in 

both sessions, active squeezing occurred in the active session while simply holding the ball 

occurred in the sham session.  This minor discrepancy in the task potentially explains the 

relatively large amount of noise in the spatial pattern of S4 (the “squeeze”, or arousal, 

state).  However, because the omnibus ANOVA showed no significance as a function of 

condition, this is merely a qualitative interpretation.  Nevertheless, the subjects were doing 

something different during these blocks (bringing their arm up to their chest and either 

squeezing or touching the ball) than all other blocks (resting state) within a session. 

LC MTC values (acquired using the method outlined in Sections 4.3.1.2 and 

4.3.1.3) was Spearman correlated with the log10 transformed Fano factor calculated for 

concatenated active and sham session for every network within every state (Fig. 31b) to 

determine whether LC neuromelanin content affected the noisiness of any network or state.  
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Stars (*) indicate raw significant R2 values while daggers (†) correspond to R2 values 

nearing significance.  Although one correlation produced significant p-values, no 

significant relationship between LC structure and the noise-to-signal ratio of any network 

within any state was observed.  This lack of affiliation may have occurred because we 

examined a younger population where neuronal loss was expected to be minimal, if 

occurring at all (72–74).   

4.4.3.3 State Visits 

In this section we analyze all calculations related to visiting a state: proportion of 

time spent in a state (fractional occupancy), the average time spent in a state once a subject 

entered it (average state duration), as well as the frequency of transitioning between states 

(switching rate).  These measures were also Spearman correlated with LC MTC. 

4.4.3.3.1 Fractional Occupancy 

The proportion of time spent in a state within RS0 and PostAr were calculated and 

plotted (Fig. 32) to observe any changes (relative to baseline) in the overall amount of time 

spent in a certain state as a function of active squeezing.  A 2 (condition: squeeze vs control) 

x 2 (block: RS0 vs PostAr) x 5 (state) repeated measures ANOVA was conducted to test 

whether the mean fractional occupancy of a state across all observations (subjects) of one 

element (state, block, or condition) when holding all other elements equal was significantly 

different from the mean fractional occupancy as a function of another element when 

holding all else equal.  It also tested for any interactions between these factors: whether the 

fractional occupancy as a function of one factor depended on another.  A Lilliefors test 

showed that the data were not normally distributed and needed to be transformed prior to 
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running the ANOVA.  Although the fractional occupancy is a proportion, the data could 

not simply be log10 transformed because they contained zeros.  This would result in values 

of infinity thereby making it impossible to perform any statistical test.  Instead, following 

(92), the data were square root arcsine transformed where zeros were replaced with 1 4𝑛⁄  

and ones with 100 − 1
4𝑛⁄  where n = length of each block (150 for RS0 and 375 for 

PostAr).  Then the square root of the arcsine of each data point were found (92).  

The omnibus ANOVA showed main effects of block (F(1,29) = 7.669, p = 0.010), 

and state (F(4,116) = 3.539, p = 0.039), and an interaction between the two (F(4,116) = 

17.088, p < 0.01) when using Greenhouse-Geisser corrections for sphericity violations. 

Condition (active vs. sham) was not found to be significant as a main effect (F(1,29) = 
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2.002, p – 0.168) or in any interaction (condition*block: F(1,29) = 1.057, p = 0.312; 

condition*state F(4,116) =  1.876, p = 0.147); condition*block*state: F(4,116) = 0.844, p 

= 0.425) meaning the average time spent in any state in any block (RS0 or PostAr) in the 

active session was not significantly different from its sham session counterpart.  This 

allowed us to collapse the data across condition and to examine whether the mean fractional 

occupancy as a function of only state was significantly different from the mean fractional 

occupancy as a function of only block regardless of condition.  This was tested using a 

step-down 2 (block: RS0 vs PostAr) x 5 (state) repeated measures ANOVA.  Because the 

dataset was relatively short, the active and sham Viterbi paths were concatenated for every 

subject and the fractional occupancy recalculated rather than averaging these values across 

condition (Fig. 33).  The data again were square root arcsine transformed prior to 

implementing the ANOVA.  

The step-down 2 x 5 repeated measures ANOVA yielded significant main effects 

of block (F(1,29) = 5.257, p = 0.029) and state (F(4,116) = 4.137, p = 0.023) as well as an 

interaction between the two (F(4,116) = 15.128, p < 0.01) when using the Greenhouse-

Geisser correction for sphericity violations.  Thus, the mean fractional occupancy of each 

state depended on both residing within a specific state and residing within a specific block.  

The interaction between both factors allowed us to perform additional step-down tests to 

assess statistical significance between certain states and across block.  Specifically, we 

performed two step-down one-way ANOVAs with least square difference contrasts to 

assess pairwise fractional occupancy comparisons of specific states within either block 
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(92).  We also performed paired t-tests to determine if the mean fractional occupancy of a 

particular state was different across block (Fig. 33).  

The step-down paired t-tests (Fig. 33a) showed that subjects spent more time in S3 

(p = 1.1644e-04, t = -4.4504) and in S4 (p = 0.0038, t = -3.1422) during PostAr than RS0 

regardless of whether they actively squeezed or simply held the ball.  We expected subjects 

to reside in the arousal state (S4) more once they were presented with the prompt to squeeze 

since actual squeeze blocks occurred in PostAr and only sporadically occurred during RS0.  

The higher fractional occupancy of the whole-brain activation state (S3) during PostAr 

than in RS0 is consistent with the idea that the handgrip task is meant to increase arousal 

(37).  These t-tests also showed that subjects occupied S2 (p = 4.3502e-06, t = 5.6353) 
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more during RS0 than in PostAr.  Because previous studies have shown that the handgrip 

task increases arousal causing subjects’ salient attention selectivity to increase, our results 

may initially appear counterintuitive since they show less time spent in the DAN/SN-

dominant state after performing the handgrip task.  However, while it is possible that the 

overall proportion of time spent in S2 did not increase as a function of the handgrip task 

(regardless of whether the subjects actively squeezed), it is possible that the time spent in 

S2 once subjects entered it, or the probability of transitioning into S2 during PostAr may 

still have increased.  These measures may still indicate that subjects’ attention processing 

increased post-handgrip and are explored in the next few sections. 

The first step-down one-way ANOVA showed that, on average, there was a 

statistically significant difference in the mean fractional occupancy of all five states during 

RS0 (F(4,145) = 8.906, p < 0.01).  Fig. 33b shows the fractional occupancy during RS0 of 

S1 through S5.  Least square difference contrasts showed that compared to S4, subjects 

spent more time in S1 (μdiff = 0.12389, σSE = 0.04384, p < 0.01) and in S2 (μdiff = 0.23893, 

σSE = 0.04384, p < 0.01).  This is to be expected because S4 corresponds to the squeeze 

blocks which occurred only during PostAr, so S4 occurred sporadically during RS0.  

Subjects also spent more time in S1 compared to S5 (μdiff = 0.08756, σSE = 0.04384, p = 

0.048) which was to be expected because subject underwent pure resting state during RS0.  

Thus, they spent more time in a state where the foremost resting state network was activated 

rather than in one where that network (along with all others investigated) were deactivated 

(93).  Furthermore, these statistical tests showed that subjects also spent more time in S2 

than in S1 (μdiff = 0.11504, σSE = 0.04384, p = 0.010), in S3 (μdiff = 0.15868, σSE = 0.04384, 
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p < 0.01), or in S5 (μdiff = 0.20260, σSE = 0.04384, p < 0.01).  Although we expected 

subjects to spend less time in an attention-dominant state (S2) during pure resting state, 

this may have occurred due to an increase in arousal from adjusting to the MRI atmosphere 

(37,38).  This also could account for why the fractional occupancy of S1 was not 

significantly greater than that of S3. 

 The second step-down one-way ANOVA (Fig. 33c) showed that there was a main 

effect in the mean fractional occupancy amongst all five states during PostAr (F(4,145) = 

3.964, p < 0.01).  Least square difference contrasts showed that subjects occupied S1 (μdiff  

= 0.08449, σSE = 0.04384, p = 0.035) and S3 (μdiff = 0.14086, σSE = 0.04384, p < 0.01) 

more so than S4.  This could have occurred because S4 was associated with the squeeze 

blocks and therefore only occurred for 45 total TRs out of the entire 375.  It is possible that 

no statistical difference between the time spent in S4 and S5 was observed because the 

effects of the handgrip task (regardless of active squeezing) induced arousal and 

consequently prevented subjects’ attentional networks from being deactivated for too long.  

This was likely also attributed to subjects spending more time in S3 than in S5 (μdiff = 

0.12201, σSE = 0.04384, p < 0.01): the periodic squeeze blocks likely induced whole-brain 

activation more often than whole-brain deactivation as a result of increasing arousal 

overall.  Curiously, we did not observe subjects to spend more time in S2 than in S4, a 

phenomenon that was expected since the handgrip task was designed to increase attentional 

processing.  As aforementioned, although we did not observe subjects to reside in S2 more 

than other states once the arousal blocks were introduced, it is possible that an increase in 

attentional processing related measures was observed via average state duration and/or 
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switching into S2 from S4.  These statistical tests also showed that subjects spent more 

time in S3 than in S2 (μdiff = 0.07915, σSE = 0.04384, p = 0.047) which might have occurred 

because previous studies have shown that the handgrip task induces fronto-parietal 

activation, and our fronto-parietal control network (FPCN) is activated in S3, but not in S2.  

Furthermore, it is possible that although some states did not exhibit significant differences 

in their fractional occupancies across session or across blocks, the trajectory through state 

space was different.  No additional information about LC’s dynamic relationship with 

attention could be gleaned from examining the proportion of time spent in a state since the 

factor of condition, did not reach significance in the omnibus ANOVA.   

To determine whether LC neuromelanin content had any relation to the fractional 

occupancy of a state, the two values were correlated across all subjects.  To do this, the 

proportion of time spent in each state for PostAr and baseline (RS0) were subtracted within 

each session.  These results were then subtracted across conditions and Spearman 

correlated with LC MTC.  That is, we performed the following calculation where fractional 

occupancy is abbreviated as FO: FO Correlated = (FOActive_PostAr – FOActive_RS0) – 

(FOSham_PostAr – FOSham_RS0).  The correlations seen in Fig. 32 show the degree to which LC 

MTC was associated with the fractional occupancy of all five states as a function of active 

squeeze and relative to both sessions’ baseline.  Because no significant differences in 

fractional occupancy across condition reached significance in the omnibus ANOVA, a 

similar procedure was used for the Spearman correlation with the collapsed values in that 

the difference in factional occupancy was calculated between PostAr and baseline 

regardless of session: FO Correlated = FOConcatenatedCondition_PostAr – FOConcatenatedCondition_RS0.  
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These results (Fig. 33d) indicate how correlated LC neuromelanin content was with the 

fractional occupancy of all five states relative to baseline and regardless of whether active 

squeezing occurred.  However, no value appeared to be significant or nearly significant 

indicating that we could not establish a relationship between LC neuromelanin content and 

fractional occupancy of an HMM-derived brain state. 

4.4.3.3.2 Average State Duration 

The average duration of a state between sessions and relative to baseline (RS0) was 

examined to determine whether the handgrip task affected the average time subjects 

remained in a state once entering it (Fig. 34).  A 2 (condition: squeeze vs control) x 2 

(block: RS0 vs PostAr) x 5 (state) repeated measures ANOVA was performed.  This was 

to determine whether the mean duration of a state regardless of block or condition was 

significantly different from the mean duration of a state across condition regardless of 

block or state assignment, or from the mean duration of a state across RS0 or PostAr 

regardless of condition or state assignment.  The ANOVA also tested for interactions 

between these factors: whether the duration of a state was dependent on any combination 

of state assignment, condition, or block.  As with fractional occupancy, the average state 

duration data needed to be transformed prior to conducting the ANOVA.  Again, a log10 

transformation would not suffice because the data contained 0s and log10(0) = ∞.  The 

square root arsine transformation was again performed using the aforementioned 

imputation and transformation (92).   

The 2 x 2 x 5 repeated measures ANOVA showed significant main effects of state 

(F(4,112) = 5.449, p < 0.01) and block (F(1,28) = 354.983, p < 0.01) as well as an 
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interaction between them (F(4,112) = 12.975, p < 0.01) but no significance with condition 

(condition: F(1,28) = 2.355, p = 0.136; condition*state = F(4,112) = 2.042, p = 0.127; 

condition*block = F(1,28) = 0.364, p = 0.551; condition*state*block: F(4,112) = 0.527, p 

= 0.640).  These results indicate that there was no statistical difference in average duration 

as a function of condition for any state within either block, nor did duration during active 

or sham session impact the other factors.  For easier visualization and analysis of the state 

and block factors, the data were collapsed across condition.  Because the dataset was 

relatively short, rather than averaging the state duration values across conditions, the active 

and sham Viterbi paths were concatenated, then the average duration recalculated (Fig. 35).  

The results were again square root arcsine transformed prior to conducting the ANOVA.  

A step-down 2 (block) x 5 (state) repeated measures ANOVA was implemented to 
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determine whether there was a statistically significant difference between the mean 

duration of a specific state within either block and the mean duration of any of the states 

across RS0 and PostAr.  

The step-down repeated measures ANOVA showed a significant main effect of 

state (F(4,112) = 4.635, p = 0.013) and an interaction between state and block (F(4,112) = 

6.403, p < 0.01), but not a main effect of block (F(1,28) = 1.932, p = 0.176).  The significant 

interaction allowed us to perform additional step-down statistical tests.  We conducted two 

one-way ANOVAs with least square difference contrasts testing for significant differences 

in mean state duration across specific states within each block.  Paired t-tests were also 

executed to determine the significance of changes in mean duration relative to baseline.  
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The step-down paired t-test (Fig. 35a) showed that once subjects entered S3 or S4, 

they remained in that state longer during PostAr than RS0 (S3: p = 0.0024, t = -3.3320; S4: 

p = 0.0110, t = -2.7234).  This makes sense regarding S4 since this state was prevalent 

during the squeeze blocks occurring only during PostAr and therefore occurred 

sporadically during RS0.  Regarding the whole-brain activation state (S3), it is likely that 

subjects entered a state where all attention networks were activated in response to the 

arousing handgrip task, regardless of whether they actively squeezed.  Subjects also 

exhibited a longer average duration of S2 during RS0 than PostAr (p = 0.0472, t = -2.0756), 

consistent with results from the previous section showing fractional occupancy of S2 to be 

higher in RS0 than in PostAr.  Because both fractional occupancy and state duration of S2 

were reduced in PostAr compared to RS0, this could be indicative of norepinephrine (NE) 

depletion.  Previous animal literature has shown NE levels to decrease with the onset of an 

arousing stressor (37,94,95).  Our results could be evident of this phenomenon because the 

arousing handgrip task was expected to increase subjects’ salient attentional processing via 

increased residence in S2 (37), but instead it significantly decreased.  However, invasive 

histological tests are needed to confirm this neuroendocrinological event (37,96). 

The first step-down one-way ANOVA showed a main effect for mean state duration 

within RS0 (F(4,140) = 6.035, p < 0.01).  The plots from Fig. 35a were adjusted so that the 

average duration of all states during RS0 were included in one plot, which is illustrated in 

Fig. 35b.  Least square difference contrasts showed subjects to remain in S1 (μdiff = 

0.03663, σSE = 0.01687, p = 0.032) longer than S4 once entered, likely because S4 occurred 

during the squeeze blocks in PostAr and were relatively short.  We expected subjects to 
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remain in a DMN-dominated state more so than an arousal state during RS0 since this block 

occurred prior to the handgrip task and therefore was pure resting state.  These contrasts 

also showed subjects to remain in S2 longer than S1 (μdiff = 0.04131, σSE = 0.01687, p = 

0.0.16), S3 (μdiff = 0.04926, σSE = 0.01687, p < 0.01), S4 (μdiff = 0.04926, σSE = 0.01687, p 

< 0.01), or S5 (μdiff = 0.06237, σSE = 0.01687, p < 0.01) which may have occurred because 

of the scanner environment.  It is possible that adjusting to the MRI atmosphere may have 

generated some stress triggering subjects’ LC to engage via increases in sympathetic 

arousal (37,38).  This may have caused subjects not only to reside in S2 more so than all 

other states, but also to persistently remain in it.   

The second step-down one-way ANOVA tested for differences in mean state 

duration within PostAr and showed a general significance for all five states (F(4,140) = 

4.580, p < 0.01).  Fig. 35c shows the average duration of states one through five during 

PostAr along with the results from the ANOVA included.  Least square difference contrasts 

demonstrated that subjects remained in S2 (μdiff = 0.03247, σSE = 0.01371, p = 0.019) and 

in S3 (μdiff = 0.04376, σSE = 0.01371, p < 0.01) longer than in S4.  This likely is explained 

by S4 occurring during the shortest block (only occurring for nine TRs at a time for five 

times) so we expected subjects to have the least duration in this state.  We also observed 

that, compared to S5, subjects had a longer duration in S2 (μdiff = 0.03726, σSE = 0.01371, 

p < 0.01) and in S3 (μdiff = 0.04855, σSE = 0.01371, p < 0.01).  The longer duration of S2 

than S5 is likely accounted for because the handgrip (regardless active and sham) prompted 

an increase in arousal, so subjects tended to persist more in the attention-dominant state 

(S2) (even if they did not spend more time in this state overall) than in one where all 
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networks were deactivated as a result of the handgrip task regardless of condition.  While 

this was likely for the active session where the subjects actively perform the handgrip task, 

it is also possibly explained in the sham session.  Although the subjects did not squeeze, 

they were still given the prompt and still brought their arm to their chest which might have 

triggered a small change in LC activity as evidenced by previous work (81).  Paralleling 

results from the fractional occupancy analysis, the duration of S3 may have been longer 

than S5 because the intermittent squeeze blocks induced arousal increasing the likelihood 

of all attention networks investigated being activated rather than deactivated.  This may 

also explain why S1 and S5 were not sustained longer than S4: the handgrip task prevented 

subjects from remaining in states where a resting state network was activated (S1) or where 

all attention-related networks were deactivated (S5).  Moreover, it is possible that the 

subjects persisted in the states for insignificantly different durations across block and 

condition, but the state path they traversed varied.  No additional information about how 

LC modulated attention could be gleaned from examining the average duration of a state 

since the factor of condition did not reach significance in the omnibus ANOVA.   

LC MTC was Spearman correlated with the average duration of all five states 

before (Fig. 34d) and after (Fig. 35d) collapsing the data across condition.  The ρ values in 

Fig. 34 were acquired by correlating LC MTC with the difference in average duration (AD) 

of a state from baseline and across block, i.e., Correlated AD = (ADActive_PostAR – 

ADActiveRS0) – (ADSham_PostAr – ADSham_RS0).  That is, these correlations show the degree to 

which LC MTC was correlated with the average duration of all five states as a function of 

condition and relative to baseline.  The plot displays that two trending correlations are seen.  
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This means that the amount of LC neuromelanin content affects the total time spent in S1 

(DMN-dominant) and almost affects that of S3 (whole-brain activation).  However, the 

values shown have not taken into account any corrections of family-wise error rates. 

Because the omnibus ANOVA determined average duration of any state to be 

insignificantly different across active and sham sessions, ρ was recalculated for the 

collapsed mean duration values.  The ρ values in Fig. 35d were acquired by Spearman 

correlating LC MTC with the difference in average duration across baseline, i.e., 

Correlated AD = ADConcatenatedCondition_PostAr – ADConcatenatedCondition_RS0.  Thus, these ρ values 

show the correlation between LC neuromelanin content and average duration relative to 

baseline.  It appears as if there is a significant correlation between LC MTC and the average 

duration of S4 as a function of the handgrip task.  This would indicate that the amount of 

neuromelanin in a subjects’ LC impacts how long a subject persists in the arousal state.  

However, the values shown have not taken into account any corrections of family-wise 

error rates, so it is possible that there is actually no statistical significance between average 

duration of S4 regardless of condition and LC MTC. 

4.4.3.3.3 Switching Rate 

While neither the overall time in nor the average duration of each state showed 

significant differences between active and sham sessions, it is possible that the rate of 

transitioning between states might change across condition.  Fig. 36 shows the overall 

switching rate for both sessions regardless of which state subjects were transitioning 

between and relative to baseline.  However, a paired t-test showed that this switching rate 

was not significant (p = 0.2197, t = 1.4537).  These results indicate that actively squeezing 
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did not induce an increase or a decrease in the rate at which subjects switched between any 

state.  While the transition between any state was not significantly different between 

sessions, it is possible that the handgrip task affected state-specific transitions which is 

explored further in the next section via transition probability matrices.  

4.4.3.4 Transition Probability Matrix 

Fig. 37 shows all calculated transition probability matrices (TPMs) with the 

diagonals removed for easier visualization of the off-diagonal elements.  The TPM directly 

outputted from the HMM is not shown as we wanted to examine transition probabilities 

during PostAr only.  Fig. 37a shows the TPM for concatenated active and sham PostAr 

blocks which was quantitatively similar to the HMM’s direct output (Spearman’s ρ = 
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0.8957).  When assessing these global transition probabilities calculated by hand, we 

analyzed values on par with those seen in the direct output.  Any differences between the 

two may have occurred because Fig. 37a was calculated using a count method (counting 

the number of times subjects switched) and therefore was acquired using a binary analysis.  

It is possible that HMM’s direct output was acquired using a nonbinary analysis where 

transition probabilities may have been weighted in a similar manner as the spatial activation 

patterns the model outputted may have been weighted by the posterior probability.  Fig. 

37a shows transition probabilities on a global level whereas as we were interested in 

changes in transition probabilities as a result of active handgrip, and therefore interested in 

the transition probabilities of active and sham sessions individually.   

Fig. 37b shows the transition probability matrix for the active session during PostAr 

since this is the segment of the experimental paradigm where the active squeezing occurs.  

Fig. 37c shows the sham session counterpart.  In addition to the qualitative similarities 

between the TPMActive&Sham, TPMActive, and TPMSham, they also exhibit quantitative 

similarities.  The active session TPM (Fig. 37b) had a ρ value of 0.9906 when Spearman 

correlated with the HMM TPM (Fig. 37a) while the sham session (Fig. 37c) had a ρ value 

of 0.9070.  This indicated that Fig. 37b and Fig. 37c were close enough to Fig. 37a that 

they could be compared to the global TPM but were not exact replicas since differences 

occurred between active and sham which were then analyzed and interpreted.  These high 

correlation values also indicated that the transitions between states in either session were 

not driving the transitions seen on a global level.  The transition probability matrices for 

both sessions showed that subjects had a higher probability of transitioning from S2 into 
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S4 and from S4 into S2 in the active session over the sham.  Conversely, subjects were 

more likely to transition from S1 into S3, from S3 into S1, from S5 into S4, and from S5 

into S4 in the sham session compared to the active.  However, because these TPMs were 

calculated for only PostAr, we could not explore how the transition probabilities changed 

as a function of the handgrip task since this matrix disregarded RS0, or baseline values.  In 

this case, baseline was important to consider because one subject (or even one session in 

one subject) may intrinsically have had a higher switching rate than another subject or 

session, so to understand how the handgrip task affected this measure, we removed baseline 

effects.  

To do this baseline removal, we computed the TPM for PostAr and for RS0 for 

each subject and for each session, then found the difference between them.  Fig. 37d and 

Fig. 37e show these results for active and sham sessions, respectively.  Since these TPMs 

show the probabilities relative to baseline, we termed them relative transition probability 

matrices (RTPMs).  That is, RTPMActive = TPMActive_PostAr – TPMActive_RS0 and RTPMSham = 

TPMSham_PostAr – TPMSham_RS0.  To understand how these transition probabilities relative to 

baseline changed as a function of active squeeze we found the difference between these 

RTPMs (Fig. 37f).  These subtractions were done first on an individual level prior to 

obtaining the global average.  However, these RTPMs could not be directly compared to 

the HMM TPM direct output since they now displayed changes in transition probabilities 

rather than raw transition probabilities.  Because the magnitudes of the RTPMs were small, 

we explored only the difference between active and sham and focused on cases where 

larger differences between the sessions occurred. 
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To determine whether the RTPMs were different from one another overall, the 

Euclidean distance was found between each individual subject’s RTPMActive and 

RTPMSham.  Because this was a nonparametric test applied to a distance metric, there was 

no need for transformations.  The differences in Euclidean distances across all 30 subjects 

were compared against zero using a Wilcoxon sign rank test and a p-value of 1.7344e-06 

resulted.  That is, EDi = ED(RTPMActive,i,RTPMSham,i)  where i ∈ {subjects} and a Wilcoxon 

sign rank test compared the vector EDi against 0.  This indicated that the active squeeze 

transition probabilities relative to baseline were significantly different from their sham 

counterpart.  However, these analyses did not account for the transitions between specific 

states.  To test whether the difference in transition probabilities of state-specific transitions 
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relative to baseline were significantly different from zero, a Wilcoxon sign rank test was 

conducted for each distribution of all subjects’ off-diagonal transition probabilities in 

RTPMActive – RTPMSham (Fig. 37f).  That is, Di = RPMActive,i – RTPMSham,i where i ∈ 

{subjects} and Di was then compared to 0 using a Wilcoxon sign rank test.  The stars (*) 

and daggers (†) in Fig. 37f show correlations that were, respectively, statistically 

significant and trending. 

This analysis revealed a significantly higher transition probability as subjects 

switched out of S4 and into S1 during the active session and relative to baseline (p = 0.0467; 

Fig. 37f).  Although this may seem counterintuitive as we expected the active handgrip to 

elicit an LC response and increase arousal, this observed phenomenon may be consistent 

with the idea that subjects returned to resting state following the handgrip task.  One 

explanation for this phenomenon to occur in the active squeeze session more likely over 

the sham is NE depletion.  It is possible that the arousing stressor (squeezing) depleted the 

LC’s supply of NE causing subjects to return to the DMN-dominant state rather than 

switching into an attention-dominant state (i.e., S2) thereby prompting an attention “reset” 

(97–99).  The significant level used was uncorrected as no family-wise error rates had been 

considered.  It is possible that the significant transition probability would not survive any 

corrective measures consequently rendering the value insignificant.   

The results in Fig. 37f showed that subjects also exhibited a higher probability 

relative to baseline of switching from S5 into S4 once the active squeeze was performed (p 

= 0.0226).  Although this switch was barely detectable in active PostAr alone, removing 

the effects of baseline showed that this phenomenon was exacerbated once the active 
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squeezing blocks were introduced.  This same transition from S5 into S4 was not overtly 

observed in PostAr or PostAr relative to RS0 during the sham session meaning that the 

likelihood of this transition increased as a function of squeezing.  This indicates that 

subjects were more likely to reside in S5 right before the active squeeze blocks.   

Fig. 37f also showed that subjects were more likely to transition into the attention-

dominant state (S2) after performing the active squeeze blocks in the active session (S4).  

Although there was no distinguishable difference in this transition probability between 

TPMActive (Fig. 37b) and RTPMActive (Fig. 37d), this probability actually decreased between 

TPMSham (Fig. 37c) and RTPMSham (Fig. 37e).  This shows that the higher probability 

observed in RTPMActive – RTPMSham (Fig. 37f) was due not to this probability remaining 

the same, but because the active squeeze prevented a decrease in this transition probability, 

although insignificantly.  As a result, we cannot definitively conclude that actively 

squeezing a squeeze-ball invoked arousal and increased attentiveness as a result of subjects 

transitioning into an attention-dominant state (S2) in response to active squeezing 

(36,37,67–71,80).  Thus, we cannot conclude that the handgrip task increased salient 

attentional processing because actively squeezing did not increase the likelihood of 

subjects entering the DAN/SN-dominant state (S2).  Although the difference in this value 

across condition was large, it was likely insignificant because the variance was large.  This 

high between-subject variability could indicate that subjects reacted differently when 

transitioning into the DAN/SN-dominant state (S2) after the handgrip task which is 

potential grounds for future research.  Although Mather et al. 2020 found that handgrip 

increased phasic arousal in both younger and older adults, our results show that we could 
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not reproduce their findings using our modified handgrip task in younger subjects (37).  A 

similar observation can be made with the probability of transition out of S1 and into S5 (p 

= 0.0168).  Importantly, this seemingly large and significant transition probabilities during 

the active session compared to sham and relative to baseline did not occur because the 

transition probabilities increased as a result of active squeezing.  Instead, the active squeeze 

prevented a reduction in the transition probability.  Subjects transitioning out of the DMN-

dominant state and into the whole-brain deactivation state could indicate that a processing 

system not analyzed in this study is at work in response to the active squeeze.  The idea 

that DMN was activated prior to this could indicate that the unrelated activated system 

could be associated with resting state in some way. 

Negative values in Fig. 37f delineate instances where the transition probability was 

higher during the sham session over the active.  Thus, it appears that the transition 

probability between S3 and S5 (regardless of direction) relative to baseline was greater 

during the sham session compared to the active.  The transition out of S5 and into S3 

showed a trending p-value (p = 0.0937).  Relative to baseline, the transition probability of 

S3 ↔ S5 exhibited minimal changes during PostAr in the active session but increased 

during the sham session.  Thus, the negative values seen in RTPMActive – RTPMSham 

occurred because the active squeeze impeded an increase in this transition probability 

relative to baseline, rather than the active squeeze having no or a reduction effect on this 

probability.  The increase in transition probability between S3 and S5 during the sham 

session could have occurred because subjects still lifted their arm to their chest which may 

have marginally up-regulated LC activity slightly inducing arousal (80).  The high 
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probability of transitioning between S3 and S5 during the sham condition is consistent with 

one seen in previous literature where pure resting state (with no periodic arousal-inducing 

tasks) was used (11).  This indicates that our results were consistent with those seen in 

literature where subjects were likely to transition between whole-brain activation states and 

whole-brain deactivation state in the absence of a task (11).  It is possible that the transition 

S5→S3 was significant but S3→S5 was not because the slight changes in LC activity 

triggered caused subject’s likelihood of transitioning out of a whole-brain deactivation state 

and into a whole-brain activation state where attentional networks were activated to 

increase rather than the other way around (80). 

The interpretations presented above are qualitative as we visually compared the 

differences in values between relative transition probabilities across conditions based on 

their color differences.   Although the Wilcoxon sign rank test showed a few significant 

transition probabilities (S1↔S4 and S5→S4) and one almost significant switch (S5→S3), 

family-wise error rate corrections had not been taken into consideration. 

Interestingly, no subject transitioned from S3 into S4 or back in either session.  One 

possible explanation for this observed phenomenon is that LC could be allocating attention.  

Previous studies have shown that an increase in LC activity may cause a rapid shift in 

allocation of attention in response to the sudden onset of a stimulus (97,98).  This may be 

why subjects did not transition from the arousal state (S4) into the whole-brain activation 

state (S3) where all attention-related networks were concurrently activated, and the LC 

induced some phenomenon that could not be observed in this investigation.  Instead 

transitions from S4 into S1, S2, or S5 were seen where DMN, FPCN, DAN, and SN were 
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not synchronously activated—only a few (two at most as seen in S2) were activated at the 

same time.  The LC allocated attention to DAN and SN since the subjects were observed 

to transition out of S4 was into S2.  Attention was also allocated to a resting state network 

(DMN in S1) since some subjects returned to resting state following the squeeze blocks.  

Some attention could have been allocated to a network not examined (S5), albeit more so 

in the sham session than in the active, but never to DMN, FPCN, DAN, and SN at the same 

time.  Because this idea of attentional allocation is associated with network resetting, our 

results may provide preliminary evidence that HMM-derived states can quantify the LC 

network reset hypothesis (97,98).  However, additional tests focusing on attentional shift 

during these specific transitions are needed.  

The correlations between LC MTC and the difference in transition probabilities as 

a function of the handgrip task relative to baseline are illustrated in Fig. 38.  That is, the 

LC MTC values were Spearman correlated with RTPMActive – RTPMSham across all subjects 

prior to obtaining the global average. Stars (*) indicate raw significant ρ values while 

daggers (†) corresponding to ρ values nearing significance.  A significant correlation is 

seen between LC MTC and the transition S5→S4 (ρ = 0.0150) indicating that LC 

neuromelanin content may affect the probability of subjects transitioning out of the whole-

brain deactivation state and into the arousal state as a function of the handgrip task relative 

to baseline.  Although this raw correlation appeared significant or trending, it likely would 

not survive family wise error corrections.   
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4.4.4 Pupillometry Analyses 

The mean pupil dilation when transitioning between any state was first examined, 

taking care to meet the criterion outlined in Section 4.3.6 (Fig. 39).  However, a paired t-

test showed no distinguishable differences between the active and sham sessions (p = 

0.4569, t = -0.7553).  This might have occurred because we ignored which states subjects 

transitioned between when computing dilation thereby potentially averaging over 

important, state-specific dynamics. 
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The pupil dilations were again calculated, but this time the state assignments during 

the transitions were recorded.  The pupil dilations for state-specific transitions were 

computed for active (Fig. 40a) and sham (Fig. 40b) sessions, as well as the difference 

between them (Fig. 40c) to highlight distinct pupil size changes resulting from LC activity 

up-regulation.  The difference in pupil dilation for state-specific transitions across 

conditions (prior to taking the global average across subjects) was Spearman correlated 

with LC MTC (Fig. 40d).  The criterion that subjects must remain in the same state for two 

TRs before and after the switch was enforced resulting in only a handful of subjects 

meeting this standard for a transition.  That is, the number of subjects used to calculate 

mean pupil dilation in Fig. 40abc and correlations in Fig. 40d were different for every 

square.  Fig. 40e shows that although some differences in dilations between sessions (i.e., 

from S4 into S1 or from S3 into S5) or some correlations (i.e., when correlating LC MTC 

with the transition from S2 into S4 or from S5 into S4) appear to be distinct features, these 
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correlations were performed for 10-12 subjects causing their statistical power to diminish.  

Negative results should be interpreted with caution given the amount of data loss. 

The exclusion criterion caused an insufficiently small subject pool to prevail from 

which to obtain information about pupil dilation during state-specific transitions.  As a 

result, negative results should not necessarily be interpreted as a lack of effect, but as a 

potential lack of statistical power.  This limitation can be rectified by increasing the overall 

scan duration, i.e., employing a one-hour long paradigm rather than one lasting less than 

20 minutes, and by collecting data from more subjects.  The chances of switching between 

states would increase and more subjects would survive the rejection standard consequently 

increasing the effect size.   We cannot be less stringent with the criterion of remaining in 

the same state for two TRs before and after the switch because it ensures that changes in 



 130 

pupil size were examined for specific transitions, and that dilations/contractions from 

previous or succeeding transitions do not bleed over into that calculation.  

4.5 Conclusion 

In this chapter we applied a probabilistic model to a dataset geared towards up-

regulating LC activity to examine how latent brain states and related measured changed as 

a function of performing a handgrip task.  The goal of these analyses was to obtain insight 

into the underlying neural mechanisms driving LC’s modulation of arousal.  Analyses of a 

series of different data types—functional, pupillometry, and structural—were related to the 

results from an HMM to quantity the impact that LC exerts upon attention.  Fitting the 

HMM to the described LC dataset yielded five states consisting of various activation levels 

of five attention networks.  S1 was a DMN-dominant state, S2 was an attention-dominant 

state, S3 showed all networks to be activated, S4 was an arousal state associated with the 

squeeze blocks of the experimental paradigm, and S5 showed all networks to be 

deactivated.  Connectivity state patterns showed that in activation states showing certain 

networks to exhibit high levels of activity also exhibited below baseline correlations, i.e., 

functional disconnectedness.  The outputted hidden state sequence clearly displayed the 

squeeze blocks because S4 was prevalent almost for the entire block and for almost all 

subjects. 

Examining the noise-to-signal ratio (Fano factor) of all five networks within each 

state showed DMN and S1 to consist of the most noise, likely because the resting state 

dataset investigated was disrupted with either an active squeeze or with a prompt to 

squeeze.  S4 also demonstrated a relatively higher Fano factor likely because it mostly 
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occurred during the brief squeeze blocks.  The fractional occupancy of all states as a 

function of block and regardless of condition indicated that the scanner environment could 

have induced some arousal thereby causing subjects to reside more in S2 during RS0 than 

in PostAr.  A possible indication of NE depletion resulting from the handgrip task may 

have been observed.  The average duration of the attention-dominant state (S2) once 

subjects transitioned into it was shorter during PostAr compared to baseline when we 

expected it to increase due to LC’s established modulation of attention.  The whole-brain 

activation state (S3) exhibited higher fractional occupancy and average state duration than 

the whole-brain deactivation state (S5) likely because the handgrip task up-regulated LC 

activity which then impacted downstream attention networks.  No conclusive insight into 

how LC drove arousal can be deduced because all three-way omnibus ANOVAs 

determined the difference in global measures between active and sham sessions to be 

insignificant.  Step-down statistical tests showed that these measures were significantly 

different during PostAr compared to baseline.  This allowed us to conclude that the 

handgrip task had some effect on Fano factor, fractional occupancy, and average state 

duration, but the degree to which the active squeeze had an effect cannot be determined 

from this investigation.  

Although the global switching rate relative to baseline demonstrated no significant 

difference as a function of condition, we hypothesized that the switching rate between 

certain states would vary in response to active squeeze.  We subsequently explored the 

transition probabilities for active and sham sessions separately, the transition probabilities 

for both sessions relative to baseline, and the difference in these relative probabilities 
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across condition.  These measures allowed us to pinpoint whether apparent large 

likelihoods of transitions between sessions occurred as a result of an increase due to active 

squeezing or via a decrease during sham PostAr relative to baseline.  From these results we 

were neither able to sufficiently establish an increase in arousal nor able to demonstrate an 

increase in the transition probability into an attention-dominant state (S2) as a result of 

active squeezing.  Thus, using the tools and measures presented in this dissertation, we 

were not able to adequately show how a handgrip task impacted arousal or attention.  

Furthermore, analyses of the TPMs and RTPMs showed that subjects were more likely to 

reside in the whole-brain deactivation state (S5) prior to the active squeeze blocks.   

The active squeeze increased the probability of transitioning out of S1 and into S4 

relative to baseline, likely because it provoked subjects to transition out of the DMN 

network and into a state of arousal.  The active squeeze also prevented a reduction in the 

probability of switching from S4 into S1 possibly indicating NE depletion and “resetting” 

attention (97–99).  We also observed that the active squeeze prevented an increase in the 

probability of transitioning between S3 and S5.  This indicates that subjects were more 

likely to transition between the whole-brain activation (S3) and whole-brain deactivation 

(S5) states in the absence of the arousing task, a phenomenon also observed by Chen et al. 

2016 who utilized a pure resting state data uninterrupted by any task (11).  Our results also 

suggested that a processing system unrelated to attention but related to resting state could 

have occurred since subjects transitioned from S1 into S5 in response to the squeeze.   

  Potential evidence of attentional allocation—an idea associated with the LC reset 

hypothesis—may have been observed as no subject transitioned between S3 and S4 
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(97,98).  This might be why, in response to the squeeze, subjects were more likely to 

transition from the arousal state (S4) into S2 (where DAN and SN were activated), into S5 

(where none of the networks investigated here were activated, but another attention-related 

network could be), or even into S1 (where a resting state network was activated) rather 

than into S3 where all attentional networks were concurrently activated and another LC-

induced phenomenon not observed by the tools used in this investigation may have 

occurred. 

Exploring the pupillometry data showed that accounting for subjects settling into a 

state to prevent contamination of pupil size changes between state transitions excluded 

many subjects.  This greatly reduced the statistical power of our data and as a result we 

could not glean any useful information about the relationship between pupil dilation (an 

indirect measure of LC engagement) and transitions between HMM-derived brain states.  

Although examined in Chapters 2 and 3, fractional occupancy correlation was not pursued 

in this chapter because a 5-state model was chosen which contained too few states from 

which to identify potential metastates.  Vidaurre et al. 2017 grouped six states per metastate 

(which are more than the total number of states identified from this dataset), Stevner et al. 

2019 at least three states, and in Chapter 3, four states were grouped within each identified 

metastate (12,13).  No major conclusions could have been made about state clustering, and 

thus, no additional information would have been gleaned from the fractional occupancy 

correlation that could not have been understood from the other measures described (i.e., 

transition probabilities or average duration).  As a result, we decided not to investigate this 

measure, but could do so if a longer dataset is obtained.   
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All HMM-related measures explored in this investigation (Fano factor, fractional 

occupancy, average state duration, general switching rate, specific switching rate, and pupil 

dilations during state-specific transitions) were Spearman correlated with LC MTC to 

determine if they had a relationship with the amount of neuromelanin in LC.  None of the 

correlation values found were likely to reach significance after multiple comparison 

corrections indicating that we potentially could not recognize a relationship between LC 

neuromelanin content and measures based on HMM outputs.  This may have occurred 

because the subject pool in this dataset contained only healthy young adults where neuronal 

loss is expected to be minimal if occurring at all (72–74).  Thus, we would not expect to 

see a relationship between LC structure and changes in HMM-based measures because our 

subject pool’s neuromelanin content has not been compromised due to age or to disease 

which we screened for prior to data collection (72–74).  It is possible that we would see 

significant results in older adults or in a diseased population (i.e., subjects with Parkinson’s 

or Alzheimer’s diseases) where LC neuromelanin content is more variable (10,100).  This 

limitation also applied to all HMM-related measures explored in this investigation: little to 

no insight about LC’s relationship with attention could be obtained likely because we 

examined a population where LC remained intact and where its function had not been 

compromised. 

Another reason why no difference in measures were found between active and sham 

is because the handgrip task may not have elicited a strong enough LC response.  Ideally, 

our measures would have related back to the Yerkes-Dodson curve to track subjects’ 

progression along it as their LC was engaged via squeezing (29).  However, this could not 
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be done using the measures presented in this investigation because three repeated measures 

ANOVAs and two paired t-tests showed that the measures analyzed could not be 

distinguished between active and sham sessions.  To rectify this, a stronger external 

stimulus could be used that potentially evokes an unmistakable LC response.  Alternative 

stimuli include subjects dipping their hand in cold water, administering electrical pulses, 

or presenting jarring sounds (101–105).  On the other hand, if the squeeze did induce a 

recognizable LC response, it is possible that the measures used in this investigation were 

not sensitive enough to detect it.  This may have occurred because the BOLD signal might 

not have been strong enough for the HMM to detect all possible changes in the signal.  

Future investigations could focus on improving the signal-to-noise ratio of the networks 

via denoising to obtain reliable BOLD signals and pupillometry data (106,107).  LC BOLD 

is subject to physiological noise, specifically cardiac pulsation and respiration (108–111).  

These sources of noise were not regressed out in this investigation because physiological 

data were not collected in conjunction with functional data.  In the future, cardiac pulsation 

and respiration data should be obtained in order to regress out physiological noise from LC 

BOLD prior to HMM fitting (109).  This would consequently help LC to have more of a 

presence in the activation and connectivity state pattens which would help us better 

understand how it interacts with the other networks within each state.  These corrective 

measures would also increase LC and network signal which would inadvertently allow the 

HMM to be more sensitive to BOLD fluctuations as active squeezing. 

Another limitation of this study is the number of subjects, especially in the 

pupillometry analyses.  A relatively small N was used because many subjects were 
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excluded as they did not meet the preset criterion of remaining in the same state two TRs 

before or after a switch.  Increasing N would also increase the statistical power of our 

pupillometry analyses potentially allowing us to find a relationship between pupil dilation 

and attention-related latent brain states.  Furthermore, although the dataset had been 

optimized to obtain subcortical signals, it had a relatively short scan duration and a 

relatively slow TR resulting in relatively poor temporal resolution.  The HCP dataset 

explored in Chapters 2 and 3 had more than twice the total scan duration and less than half 

the TR.  Because of this, we were even able to capture temporal dynamics when employing 

a probabilistic model based on a windowed analysis (which greatly reduced temporal 

resolution).  Increasing the length of the scan and utilizing a faster TR would make the data 

more sensitive to fluctuations in BOLD.  This potentially increases the effect size of HMM-

related measures that rely on temporal resolution (i.e., average stat duration and switching 

rate) which were found not to be significant when using the data acquisition parameters 

presented in this chapter. 

Overall, the analyses presented in this chapter could potentially provide useful 

quantitative insight into the dynamic relationship between LC and arousal if the many 

limitations discussed are elucidated. 
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Chapter 5: Conclusion 

The work presented in this dissertation aimed to understand different subtypes of 

hidden Markov models (HMMs) and to apply this technique to a pseudo-resting state 

dataset in effort to analyze various characteristics of attention-related brain states.  We 

introduced three types of HMMs: an activation-based HMM (AB HMM), a summed 

functional connectivity HMM (SFC HMM) taken from Ou et al. 2014, and a full functional 

connectivity HMM (FFC HMM) (11–13,28).  All three model types, their direct outputs, 

and HMM-based measures subsequently calculated were theoretically compared and 

contrasted.  Local and global analyses of AB, SFC, and FFC HMMs were analyzed 

empirically when applied to a resting state dataset.  The results allowed us to infer which 

model type would be best to use for certain investigations based on temporal resolution, 

spatial patterns, and transitional dynamics.  AB HMM was then applied to a dataset 

optimized to image the locus coeruleus (LC) in effort to obtain clearer insight into LC’s 

dynamic relationship with attention and arousal. 

In Chapter 2, we noted SFC and FFC HMM to have a poorer temporal resolution 

than AB HMM because they utilized a windowed analysis which severely smoothed data 

over time, restricted the information fitted by the HMM to strictly range between -1 and 1, 

and included the effects of autocorrelation.  SFC HMM’s temporal resolution was reduced 

even further because summed correlations within each TR were inputted into the model 

rather than the raw R2 values.  Although all three models could produce activation and 

connectivity state spatial patterns, not all were feasible for interpretations, nor did they 

exhibit similarities.  The connectivity-based states generated from AB HMM were 
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expected not to display the same patterns as those derived from SFC and FFC HMMs 

because the HMM was fitted to varying patterns of the blood oxygen level dependent 

(BOLD) signal.  The activation spatial patterns acquired from averaging the BOLD signal 

where SFC and FFC HMM’s Viterbi path labeled a state to be active was not analogous to 

AB HMM’s activation state patterns.  The Viterbi path from the connectivity-based model 

types were based on changes in connectivity patterns (dynamic functional connectivity), 

and therefore poorly replicated activation patterns.  Published literature discussed that an 

ideal window size for a sliding window analysis should include less than 60 seconds of 

data per window, so our analyses accordingly used ~40 seconds of data (14).  The two 

methods of model order determination described in this chapter (and implemented in 

Chapter 3) could be applied to all three HMM subtypes. 

Chapter 3’s focus was on applying all three HMM subtypes to a resting state dataset 

from the Human Connectome Project (HCP).  Both stability analysis methods of model 

order determination showed that eight states were best for this investigation.  Although we 

determined an 8-state model should be used for AB, SFC, and FFC HMMs, we crucially 

noted that identifying the same model order for all three HMM subtypes might not occur 

for all investigations.  Local analyses (characterizing state patterns from different methods 

of acquisition) and global analyses (measures that can be extracted from all HMM outputs) 

allowed us to make empirically based informed decisions regarding which model type is 

best pursued under certain circumstances.  AB HMM satisfactorily captured temporal 

dynamics, likely because it had the leading temporal resolution.  This model type also 

allows users to explore activation and connectivity state patterns in conjunction.  However, 
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it was able to identify only weak connectivity patterns, so if the focus of an investigation 

is to examine connectivity spatial patterns, then SFC HMM or FFC HMM would be 

preferred.  SFC HMM and FFC HMM produced connectivity states based on the same 

dynamic functional connectivity sliding window analysis with slight variations.  We 

determined that these discrepancies did not drastically change the spatial patterns but did 

generate enough differences that users must take it into consideration when choosing 

between the two.  SFC HMM is preferred if an investigation concentrates on examining 

general nodal connections since its inputs were vectors representing the overall 

connectivity strength between each node and all others.  Conversely, FFC HMM is 

advantageous if a study were to focus on specific nodal connections since this model type 

was fitted to every correlation value between a node and all other nodes stipulated.  We 

found that FFC HMM severely smoothed the data over time, so it was not as satisfactory 

as AB HMM, or even SFC HMM, in capturing temporal dynamics.  It is possible that eight 

may have been an unfavorable model order for this particular subtype, which must also be 

taken into consideration when comparing each HMM’s temporal resolution.  Furthermore, 

each subtype was distinct in that they recognized changes only in the data type inputted.  

We observed that switching rate could not be meaningfully interpreted across subtypes 

because of the acute smoothing factor but could be evaluated within a model type—

particularly in AB HMM since switching rate relies on temporal dynamics. 

AB HMM was fit to a pseudo-resting state dataset where LC activity was up-

regulated via a handgrip task in Chapter 4 (36,37).  The goal of these analyses was to 

understand how HMM-related measures changed as a function of performing a squeeze 
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task thereby providing us with insight into LC’s dynamic relationship with attention and 

arousal.  A 5-state model was preferred for this study.  State 1 (S1) was a default-mode 

network (DMN) dominant state, state 2 (S2) was an attention-dominant state because dorsal 

attention network (DAN) and salience network (SN) were activated, state 3 (S3) was a 

whole-brain activation state because all networks (DMN, fronto-parietal control network 

(FPCN), DAN, SN, and LC) were activated, state 4 (S4) was the arousal state prevalent 

during the squeeze blocks of the paradigm, and state 5 (S5) was a whole-brain deactivation 

state.  We performed the local and global analyses defined in previous chapters and 

examined pupil data’s relationship with the HMM outputs since changes in pupil size have 

correlated with LC activity (76–78).  Only a few statistically significant results were 

procured.  We found that subjects generally reside more in S2 prior to the introduction of 

squeeze blocks, which could indicate norepinephrine (NE) depletion as a result of the 

handgrip task (37,94–96).  We also observed that subjects never transitioned between S3 

and S4.  Because all attention-related networks were activated in S3, this could allude to 

the hypothesis that LC allocates attention which may be modulated by NE (97,98).  In 

response to the handgrip task subjects transitioned between S4 and S1 or S2 where some 

attention networks were activated, but never to S3 where they were concurrently activated.  

Thus, it is possible that the LC allocated attention as subjects transitioned into S1 or S2 

where DMN and DAN/SN were respectively active, but induced a different phenomenon 

not captured in this investigated when subjects transitioned into S3.  Additional tests 

focusing on neuroendocrinological factors including NE are needed to verify these ideas. 
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Importantly, we found that none of the measures analyzed were statistically 

significantly different between an active squeeze session and a control session.  Thus, no 

information regarding how HMM-related measures changed as a function of active squeeze 

could be gleaned, only how they changed relative to baseline.  Although there is literature 

to support the idea of active squeezing engaging the LC, it may not have evoked a strong 

enough LC response for the design used in this study (36,37).  In the future, a more stressful 

stimulus could be utilized such as cold pressors, jarring sounds, or electrical pulses (101–

105).  It is possible that informative insight can be made about LC’s dynamic modulation 

of attention and arousal when using HMM-related measures if the limitations discussed are 

amended. 

All measure analyzed were correlated with LC magnetization transfer contrast 

(MTC) to determine whether a relationship between LC structure and changes in HMM-

related measures as a function of active squeeze could be established.  However, none of 

the correlations were definitively, statistically significant.  It is possible that no significant 

relationship between LC MTC and Fano factor, fractional occupancy, or average state 

duration occurred because the subject pool of this dataset consisted of only young healthy 

adults where LC neuronal loss is minimal if occurring at all (72–74).  Similarly, we could 

not make informative observations about active squeezing’s impact on HMM-related 

parameters when analyzing the pupillometry data.  A stringent criterion was imposed where 

subjects must have remained in the same state two TRs before and after a switch between 

states.  This excluded many subjects which greatly reduced the effect size and statistical 
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power of computations.  As a result, no informative conclusions could be drawn about LC’s 

impact on arousal when inspecting LC MTC or pupil dilations.  

Altogether this dissertation explored the theoretical foundation for different HMM 

subtypes, empirically assessed which model type is best used under certain circumstances, 

and utilized HMM-related measures in an attempt to characterize LC’s dynamic 

relationship with arousal. 
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