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to quartic gauge boson couplings via vector-boson scattering. The fiducial Z(νν̄)γjj cross
section for electroweak production is measured to be 0.77+0.34

−0.30 fb and is consistent with the
Standard Model prediction. Evidence of electroweak Z(νν̄)γjj production is found with
an observed significance of 3.2σ for the background-only hypothesis, compared with an
expected significance of 3.7σ. The combination of this result with the previously published
ATLAS observation of electroweak Z(νν̄)γjj production yields an observed (expected)
signal significance of 6.3σ (6.6σ). Limits on anomalous quartic gauge boson couplings are
obtained in the framework of effective field theory with dimension-8 operators.

Keywords: Electroweak Interaction, Hadron-Hadron Scattering

ArXiv ePrint: 2208.12741

Open Access, Copyright CERN,
for the benefit of the ATLAS Collaboration.
Article funded by SCOAP3.

https://doi.org/10.1007/JHEP06(2023)082



J
H
E
P
0
6
(
2
0
2
3
)
0
8
2

Contents

1 Introduction 1

2 Experimental set-up 3

3 Data and simulation 3

4 Event reconstruction and selection 5
4.1 Object reconstruction 5
4.2 Region definitions 6

5 Background estimation 8

6 Systematic uncertainties 10

7 Signal extraction procedure and results 12

8 Combination with previous ATLAS measurement 14

9 Limits on anomalous quartic gauge couplings 18

10 Conclusion 21

The ATLAS collaboration 29

1 Introduction

The scattering of two vector bosons (VBS), V V → V V with V = W/Z/γ, is an important
process to probe the nature of electroweak (EWK) symmetry breaking in the Standard
Model (SM). The presence of the Higgs field in the SM prevents the divergence of VBS
amplitudes at high energies and violation of unitarity at the TeV scale. The non-Abelian
structure of gauge interactions in the electroweak sector of the Standard Model results in
a rich variety of VBS processes, with unique opportunities to probe physics beyond the
SM (BSM). VBS processes are sensitive to SM quartic gauge couplings (QGCs) and also
to possible anomalous QGCs (aQGCs) [1–3].

Neutral QGCs are absent in the SM at tree level, but they can be induced by BSM
physics, allowing new processes at high energy scales. The vector-boson scattering Zγ

process and a similar process exploiting the ZZ final state are the only processes sensitive
to the neutral quartic gauge couplings, with the former having the larger expected cross
section. Such processes can be studied through measurements of the electroweak production
of two vector bosons and two jets (V V jj).
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Figure 1. Feynman diagrams of electroweak Zγjj production involving the VBS subprocess (top
left) or non-VBS subprocesses (top right) and of QCD Zγjj production with gluon exchange (bot-
tom left) or the s-channel gg–qq process (bottom right).

The Zγjj final states are produced mainly through a combination of strong and elec-
troweak interactions in proton–proton (pp) collisions. The signal in this study is of the
order α4

ewk at tree level, where αewk is the electroweak coupling constant. In the following,
such processes are referred to as Zγjj EWK. The VBS process is an inseparable part of the
gauge-invariant ensemble of Zγjj electroweak processes [4]. The main background in this
study is of order α2

sα
2
ewk at tree level, where αs is the quantum chromodynamics (QCD)

strong coupling constant. In the following, such processes are referred to as Zγjj QCD.
Example Feynman diagrams of the aforementioned processes are given in figure 1.

This paper presents a measurement of electroweak production in the Zγjj final state,
where the Z boson decays into νν̄. This choice is motivated by the fact that the Z boson
branching ratio into neutrinos is larger than the branching ratio into charged leptons;
also, the background is under better control than in the hadronic decay channel. The
analysis uses pp collision data recorded between 2015 and 2018 by the ATLAS detector [5]
during Run 2 at the LHC. Based on this measurement, a search for aQGCs is performed.
Anomalous couplings produce deviations from the SM prediction that grow with increasing
momentum transfer between the incoming partons. Hence, this analysis exploits a region
of high momentum transfer by requiring a photon of transverse momentum larger than
150 GeV.

The high energy and luminosity of the LHC allow rare VBS processes to be studied
in detail. In particular, the observation of the Z(`¯̀)γjj channel has been reported [6].
Moreover, the observation of Z(νν̄)γjj has been reported [7] in a low-energy phase-space
region orthogonal to that presented in this paper. While the low-energy phase space gives
negligible sensitivity for the aQGC search, it can be combined with the current high-energy
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analysis to increase the overall sensitivity to the SM electroweak Z(νν̄)γjj process. Other
V V jj EWK processes, including ZZjj [8], Wγjj [9], same-sign WWjj [10], W±Zjj [11],
and photon-induced W+W−jj [12], have also been observed.

2 Experimental set-up

The ATLAS detector [5] is a multi-purpose particle detector with a forward–backward
symmetric cylindrical geometry and coverage of nearly the entire solid angle.1 It consists
of an inner tracking detector (ID) surrounded by a thin superconducting solenoid providing
a 2 T axial magnetic field, electromagnetic (ECAL) and hadronic (HCAL) calorimeters, and
a muon spectrometer (MS).

The ID is used for precise measurements of charged-particle tracks. It is composed of
two silicon detectors covering the pseudorapidity range |η| < 2.5: a pixel detector (including
the insertable B-layer [13, 14]) and a silicon microstrip tracker, surrounded by a straw-tube
transition radiation tracker (TRT) with an acceptance of |η| < 2.0, which also contributes
to electron identification.

The ECAL is composed of high-granularity lead/liquid-argon (LAr) calorimeters in
the region |η| < 3.2 and copper/LAr calorimeters in the region 3.2 < |η| < 4.9. It plays a
crucial role in photon identification, since photons are identified as narrow isolated showers
in the ECAL. The HCAL consists of a steel/scintillator-tile calorimeter within |η| < 1.7
and two copper/LAr and tungsten/LAr forward calorimeters within 1.7 < |η| < 4.9. The
fine segmentation of the ATLAS calorimeter system allows efficient separation of jets from
isolated prompt photons.

The MS comprises three large superconducting toroids, each having eight coils, as well
as trigger and high-precision tracking chamber systems that cover the regions |η| < 2.4 and
|η| < 2.7, respectively.

The ATLAS trigger system [15] has two levels, a hardware-based first-level trigger
and a software-based high-level trigger (HLT). The trigger system selects events from the
40 MHz LHC proton bunch crossings at a rate of about 1 kHz.

An extensive software suite [16] is used in the reconstruction and analysis of real and
simulated data, in detector operations, and in the trigger and data acquisition systems of
the experiment.

3 Data and simulation

The analysis uses the data collected by the ATLAS experiment from LHC pp collisions at
a centre-of-mass energy of

√
s = 13 TeV during 2015–2018 stable beam conditions, when

all subdetectors were operational [17], corresponding to a total integrated luminosity of
139 fb−1 [18, 19].

1A right-handed coordinate system is used with its origin at the nominal interaction point (IP) in the
centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre
of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse
plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar
angle θ as η = − ln tan(θ/2). The angular distance between two physics objects is measured in units of
∆R ≡

√
(∆η)2 + (∆φ)2.
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Simulated signal and background events were produced with various Monte Carlo
(MC) event generators, processed through the full ATLAS detector simulation [20] using
Geant4 [21], and then reconstructed with the same procedure as is used for data.

The effect of multiple pp interactions in the same and neighbouring bunch crossings (re-
ferred to as pile-up) was modelled by overlaying the signal and background MC samples of
simulated hard-scattering events with inelastic pp events generated with Pythia 8.186 [22]
using the NNPDF2.3lo set of parton distribution functions (PDF) [23] and the A3 set of
tuned parameters [24].

The signal Z(νν̄)γjj EWK events, including samples with non-zero aQGC parameters
as well as interference between Z(νν̄)γjj EWK and QCD production and background
W (`ν)γjj EWK and tt̄γjj events, were generated using MadGraph5_aMC@NLO at
leading order (LO) in both QCD and QED, interfaced to the Pythia 8 [25] parton shower
model. The decays of bottom and charm hadrons were simulated using the EvtGen [26]
program. Non-zero aQGC samples were generated for linear and quadratic BSM terms of
the process amplitude for each effective field theory (EFT) operator considered.

For the signal Z(νν̄)γjj EWK sample, the next-to-leading-order (NLO) QCD correc-
tions were produced with VBFNLO 2.7.1 [27], taking into account the mjj dependence
for consequent reweighting of MadGraph5_aMC@NLO result; the average value of the
corrections is close to 1. The scale variations from VBFNLO for the NLO QCD process
are used instead of those from the LO MadGraph5_aMC@NLO sample. EWK samples
with an alternative parton shower model are obtained using Herwig 7.13 [28, 29] instead
of Pythia 8 and used for the evaluation of that systematic uncertainty.

The V γ and V+jets QCD backgrounds, prompt single-photon (γjj) and multijet (jj)
events, including Z(νν̄)γjj,W (`ν)γjj, Z(`¯̀)γjj,W (eν)jj, Z(νν̄)jj and Z(eē) production,
were generated using the Sherpa [30] generator. Matrix elements at NLO and LO QCD
accuracy were matched and merged with the Sherpa parton shower based on Catani–
Seymour dipole factorisation [31, 32] using the MEPS@NLO prescription [33–36]. The
virtual QCD corrections for the matrix elements at NLO accuracy were provided by the
OpenLoops library [37–39]. The samples using the NNPDF3.0nnlo [40] PDF set were
normalised to the next-to-next-to-leading-order (NNLO) prediction [41].

An alternative Zγjj QCD sample was generated using Mad-
Graph5_aMC@NLO 2.3.3 [42] at NLO interfaced to the Pythia 8.212 parton shower
model. The merging procedure in the event generation was performed using the FxFx
scheme [43].

Single-top or single-anti-top s-channel production was modelled using the
Powheg Box v2 [44–47] generator, which provides matrix elements at NLO in the strong
coupling constant in the five-flavour scheme with the NNPDF3.0nlo [40] PDF set. The
events were interfaced with Pythia 8 using the NNPDF2.3lo PDF set. The decays of
bottom and charm hadrons were simulated using the EvtGen program.

The details of the matrix element generator, parton shower and parameter values
(tune), PDF choice, and cross-section order for the processes mentioned above are listed
in table 1.

– 4 –



J
H
E
P
0
6
(
2
0
2
3
)
0
8
2

Physics process Generator Parton shower Cross-section Tune PDF set
order in pQCD

Z(νν̄)γjj EWK, W (`ν)γjj EWK MadGraph5_aMC@NLO 2.6.2 [48] Pythia 8.235 LO, K-factor to NLO A14 [49] NNPDF2.3lo
Zγjj interference, aQGC MadGraph5_aMC@NLO 2.6.7 Pythia 8.244 LO A14 NNPDF2.3lo
Alternative Z(νν̄)γjj EWK & W (`ν)γjj EWK MadGraph5_aMC@NLO 2.6.2 Herwig 7.13 LO A14 NNPDF2.3lo
tt̄γjj MadGraph5_aMC@NLO 2.3.3 Pythia 8.212 LO, K-factor to NLO A14 NNPDF2.3lo
Alternative Z(νν̄)γjj MadGraph5_aMC@NLO 2.3.3 Pythia 8.212 NLO A14 NNPDF2.3lo
Z(νν̄)γjj, W (`ν)γjj, Z(`¯̀)γjj Sherpa 2.2.2 Sherpa 2.2.2 NLO default NNPDF3.0nnlo [40]
W (eν)jj, W (τν)jj, Z(νν̄)jj, Z(eē) Sherpa 2.2.1 Sherpa 2.2.1 NLO default NNPDF3.0nnlo
γjj Sherpa 2.1 Sherpa 2.1 LO, K-factor to NLO default CT10nlo [50]
jj Sherpa 2.1.1 Sherpa 2.1.1 LO default CT10nlo

tjj, tt̄jj Powheg Box v2 Pythia 8.230 NLO A14 NNPDF3.0nlo,
NNPDF2.3lo

Table 1. Simulated signal and background event samples used in the analysis with the correspond-
ing matrix element and parton shower generators, cross-section order in perturbative QCD (pQCD)
used to normalise the event yield, underlying-event tune and PDF set. Where indicated the NLO
cross section is obtained with K-factors.

4 Event reconstruction and selection

Candidate Z(νν̄)γjj events are selected by requiring the presence of a highly energetic
photon, high missing transverse momentum and two jets. The lowest-threshold unprescaled
single-photon trigger was chosen in order to select a high-energy phase-space region, which
is sensitive to aQGC. This trigger requires a transverse energy EγT > 140 GeV and applies a
‘loose’ photon identification criterion [51]. The trigger efficiency for the photon candidates
reconstructed offline and passing the ‘tight’ identification selection is more than 98.5% [52].

4.1 Object reconstruction

Photons are reconstructed [53] from clusters of energy deposited in the ECAL and selected
to pass |η| < 2.37 and EγT > 150 GeV requirements. Clusters that are matched to one or two
tracks originating from a conversion vertex are classified as converted photon candidates,
whereas clusters without a matching track or reconstructed conversion vertex in the ID are
classified as unconverted photon candidates. Electron candidates are reconstructed [53]
from ECAL energy clusters and matched to a track reconstructed in the ID. They are
required to have |η| < 2.47 and transverse momentum pT > 7 GeV. Both the photon
and electron candidates must be outside of the calorimeter barrel/endcap transition region
(1.37 < |η| < 1.52).

Muons are reconstructed [54] from tracks in the MS matched to a corresponding track
in the ID (referred to as ‘combined muons’). The combined track is required to have
pT > 7 GeV and |η| < 2.7. Electron and muon tracks are required to originate from the
primary vertex.2 The transverse impact parameter significance3 is required to be less than
5 and 3, respectively, for electrons and muons. The longitudinal impact parameter4 must
be less than 0.5 mm for both the electrons and muons.

2The primary vertex is identified as the vertex with the highest scalar sum of the squared transverse
momenta in the event.

3The transverse impact parameter significance is defined as |d0|/σ(d0), where d0 is the distance of closest
approach of e or µ to the primary vertex in the transverse plane with an uncertainty σ(d0).

4The longitudinal impact parameter is equal to |z0 · sin θ|, where z0 is the difference between the value
of the z coordinate of the point on the track at which d0 is defined and the longitudinal position of the
primary vertex.

– 5 –



J
H
E
P
0
6
(
2
0
2
3
)
0
8
2

Photons and electrons are required to meet identification criteria based on their shower
shapes in the ECAL, the amount of energy leaked into the hadronic calorimeter, and ID
tracking information. The ‘tight’ photon identification criterion corresponding to passing
all the requirements on shower shape variables is used in the analysis. The identification
efficiency for the ‘tight’ photons is greater than 88% in Run 2 [53]. ‘Loose’ photons are
selected in order to model jets misidentified as photons for the data-driven background
estimation methods described in section 5. Electron candidates are required to satisfy
the ‘loose’ electron identification criterion [53]. The ‘medium’ identification requirement is
used for muon candidates [54].

Photons must satisfy the ‘tight’ isolation criterion [53], thereby fulfilling two require-
ments. Firstly, the sum of the transverse energies (at the electromagnetic energy scale)
of positive-energy topological clusters located within a distance ∆R = 0.4 of the photon
candidate must be less than 0.022 ·EγT + 2.45 GeV. Secondly, the scalar sum of the trans-
verse momenta of the tracks located within a distance ∆R = 0.2 of the photon candidate
must be less than 0.05 ·EγT. The ‘loose’ isolation requirement is imposed on electrons and
muons [53, 54].

To suppress the beam-induced background [55], the z-axis coordinate pointed to by the
photon candidate is required to be less than 250 mm from the identified primary vertex.

Jets are reconstructed from topological clusters in the calorimeters using the anti-kt al-
gorithm [56, 57] with a radius parameter of R = 0.4 and are required to have pT > 20 GeV.
Jets are fully calibrated using the jet energy scale derived from 13 TeV data and simula-
tion [58] and corrected for pile-up effects [59]. To suppress jets originating from pile-up, jets
with |η| < 2.5 and 20 < pT < 120GeV must satisfy the ‘medium’ identification requirement
placed on the jet vertex tagger (JVT) output [60]. The forward pile-up jet vertex tagger
(fJVT) [61], which can be applied to jets with 2.5 < |η| < 4.5 and 20 < pT < 120GeV,
causes marginal changes, so it is not performed. The selected jets are required to have
pT > 50 GeV and |η| < 4.5.

The missing transverse momentum ~pmiss
T is computed as the negative vector sum of the

transverse momenta of candidate leptons with pT > 7 GeV, photons with pT > 10 GeV, jets
with pT > 20 GeV, and tracks from the primary vertex not associated with any physics
objects (the ‘soft term’) [62]. The quantity Emiss

T is defined as the magnitude of ~pmiss
T

and is used as a measure of the total transverse momentum of particles not registered by
the detector.

Possible double counting of contributions from reconstructed particles is avoided by
applying an ambiguity resolution procedure. The objects are removed in the following
order: first, an electron lying within a ∆R = 0.1 cone around a muon, then a selected jet
without any JVT requirement lying within ∆R = 0.3 of a photon, muon, or electron, and,
finally, a photon lying within ∆R = 0.4 of either a muon or an electron.

4.2 Region definitions

The Zγ inclusive region requires events with exactly one ‘tight’ isolated photon with
transverse energy EγT > 150 GeV and at least two jets. Selected events must also have
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m(jj) [GeV]

0 leptons

≥1 lepton

Zγ  

inclusive

m(jj) [GeV]

CR 1 

SR 

CR 2 

0.6

γ- centrality

300

Wγ CR
Zγ QCD

Zγ QCD

Figure 2. Definition of the regions used in the analysis.

Emiss
T > 120 GeV and calorimeter-measured Emiss

T significance5 greater than 12. An angu-
lar separation between both the leading (highest-pT) and subleading (second-highest-pT)
jets j1,2 and ~pmiss

T of |∆φ(j1/2, ~p
miss
T )| > 0.3 is also required. These criteria reduce the

number of background events characterised by Emiss
T arising from instrumental sources or

poorly reconstructed physics objects (fake Emiss
T ), mainly due to the γjj process. A lepton

veto, which discards events with any electron or muon candidate, is applied to reduce the
contribution from W (`ν)γjj and Z(`¯̀)γjj backgrounds. An azimuthal angle requirement
|∆φ(γ, ~p miss

T )| > 0.4 significantly decreases the W (eν)jj background. Finally, a restriction
on the soft term of ~pmiss

T reconstructed from ID tracks, pSoftTerm
T < 16 GeV, is effective

against most backgrounds.

TheWγ control region (CR) requires events with at least one lepton. All other selection
criteria are the same as for the Zγ inclusive region.

The Zγ inclusive region is divided into three subregions as shown in figure 2. The
signal region (SR) is required to have mjj > 300 GeV and γ-centrality6 < 0.6, where mjj is
defined as the invariant mass of the two jets with the highest values of pT in the event. The
Zγ QCD CR1 requires events with mjj < 300 GeV; it is used to estimate the Z(νν̄)γjj
QCD background yield. The Zγ QCD CR2 has the same selection criteria as the SR but
requires events with γ-centrality > 0.6; it is used to check for possible mjj mismodelling.
The values of the requirements are chosen to maximise the number of events and the purity
of the targeted process in each region.

5Emiss
T significance is calculated as |~p miss

T |2/
(
σ2

L
(
1− ρ2

LT
))
, where σL is the total variance in the direction

longitudinal to the Emiss
T , and ρLT is the correlation coefficient of the longitudinal (L) and transverse (T)

measurements [63].
6Photon centrality relative to the two jets with the highest pT values in the event is defined as γ-

centrality =
∣∣∣ y(γ)−0.5[y(j1)+y(j2)]

y(j1)−y(j2)

∣∣∣, where y = 0.5 × ln[(E + pz)/(E − pz)] is the rapidity of the objects (pz
is the z-component of the momentum of a particle).
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5 Background estimation

The main background for the Zγjj EWK process is QCD production of Z(νν̄)γjj. This
background constitutes 36% of the total predicted event yield in the SR.7 It is estimated
from a simultaneous fit of the MC distributions to data in the control regions described in
section 4. The fit procedure is detailed in section 7.

Other well-modelled backgrounds [9, 64, 65] arise from W (`ν)γjj QCD and EWK
production, and production of tt̄γjj with semileptonic or fully leptonic decays. They
contribute 25%, 7% and 6% to the total predicted event yield in the SR repectively. Their
distribution shapes are taken from MC predictions and their normalisation is obtained from
the simultaneous fit. Varying the ratio of W (`ν)γjj to tt̄γjj contributions has negligible
impact on the fit result.

The minor background from Z(`¯̀)γjj production is estimated from MC simulation
and without normalisation via the fit (it is less than 1% of the predicted event yield in the
SR). In all these processes except Z(νν̄)γjj, the leptons are either not reconstructed or
they are τ -leptons which decay into hadrons.

Background processes with object misidentification or incorrect energy measurement
are not well modelled by the MC simulation, and so they are estimated from data. There
are three such background processes: e → γ misidentification, Emiss

T mismeasurement,
and j → γ misidentification. They respectively contribute 6%, 5.5% and 2% to the total
predicted event yield in the SR. These backgrounds are included in the simultaneous fit,
with the normalisation estimated from data.

The sources of the e→ γ misidentification background are mainly processes with a W
boson decaying leptonically, which areW (eν)jj, tjj, and tt̄jj production. At high energies,
such misidentification mainly occurs when a prompt electron is mistaken for a prompt
photon, e.g. if an electron’s track is not reconstructed in the ID. The e→ γ misidentification
rate (fe→γ) is estimated from data using a variation of the tag-and-probe method (e.g. in
ref. [66]), in which it is assumed that eγ pairs with invariant mass near the Z boson mass
contain an electron or positron misidentified as a photon. The probe photon is selected
in the same way as the SR photon, while the probe electron is selected with a method
that is as close as possible to the selection of the SR photon. In this case, fe→γ can be
estimated as the ratio of the number of events containing eγ to the number containing e+e−

tag-and-probe pairs in the Z-peak region after subtraction of the Drell–Yan background.
The subtraction is performed using extrapolation of an exponential polynomial fit of the
Drell–Yan background outside the Z-peak region. The measured fe→γ ranges from 2% to
6.8% depending on photon η and ET. The systematic uncertainty of the fe→γ estimate
ranges from 3.7% to 16%. It has three contributions, which are, listed in decreasing order
of magnitude, the uncertainty from a check of the method’s validity in Z(ee) simulation,
the uncertainty from the fit to estimate the background under the Z peak, and the choice
of Z-peak region. The statistical uncertainty of fe→γ ranges from 2.5% to 6.3%. The
measured value of fe→γ is then used to estimate the background yield. The corresponding

7The indicated percentages of background contributions are calculated using the predicted event yield
after the fit described in section 7.
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W (eν)jj-enriched regions are built in data for the Wγ CR, the Zγ inclusive region, the Zγ
QCD CR1 and CR2, and the SR, with a probe electron selected instead of a photon. The
resulting event yields or distributions are multiplied by fe→γ , taking into account η and
ET dependencies. The total systematic uncertainty of the background estimate includes
systematic and statistical uncertainties of the fe→γ estimate and also the impurity of the
probe-electron control region. According to MC simulations, the contamination consists of
events with fake electrons from j → e misidentification and varies from less than 1% to 2%
depending on the region; these values are taken as the systematic uncertainties. The total
systematic uncertainty of the e→ γ background estimate varies from 4.7% to 7.4%.

The mismeasured Emiss
T in γ+jets production occurs when there is an incorrect mea-

surement of the jet energy or when some of the jets are not reconstructed in the event. To
estimate this background, a two-dimensional sideband (ABCD) method (e.g. see ref. [67])
based on the Emiss

T significance and pSoftTerm
T discriminating variables is used. Region A

corresponds to the Zγ inclusive region. Orthogonal control regions B, C, and D are built
by inverting either of the analysis selections on Emiss

T significance or pSoftTerm
T , or both. The

discriminating variables are chosen to ensure that the correlation between them is small
and to minimise leakage of signal events into the control regions. In this case, the relation
between the numbers of background events in the ABCD regions is NA/NB = NC/ND.
The background of γ+jets in the Zγ inclusive region is estimated using the yields observed
in the B, C, and D regions in the data, where contamination with non-γ+jets events is
removed using either MC simulation or data-driven estimation. The correlation factor8 is
estimated from γ+jets MC events and is 1.09±0.18; a value of 1 would indicate an absence
of correlation. The statistical uncertainty of the fake-Emiss

T background is assessed by in-
dependently varying the non-γ+jets backgrounds in the control regions by ±1σ. It results
in a 44% uncertainty in this background estimate for the Zγ inclusive region. The total
systematic uncertainty is 32%. The dominant contribution (31%) is obtained by varying
the correlation factor by its uncertainty. To obtain estimates of this background in the
signal and control regions of the analysis (the Zγ QCD CRs and Wγ CR), the distribu-
tions of mjj and γ-centrality from the γ+jets MC events are used. They are found to be
in agreement with data within the uncertainties, after subtraction of other backgrounds.
The γ+jets MC events are used to model the shape of this background in the fit for the
observable used for the cross-section extraction.

Background from j → γ misidentification arises mainly from Z boson production
where the Z boson decays into a neutrino–antineutrino pair and from multijet production
combined with fake Emiss

T . This background is also estimated using the ABCD method,
with A region corresponding to the Zγ inclusive region. The discriminating variables are
those used in the photon isolation and ECAL shower-shape identification criteria. To
construct the orthogonal regions, the SR requirement for the photon to satisfy the ‘tight’
identification criteria is replaced by a ‘non-tight’ requirement for the C and D regions, and
the ECAL-based isolation criterion is inverted in the B and D regions. The ‘non-tight’

8The correlation factor in MC is determined as R = NA·ND
NB ·NC

, where Ni is the number of background
events in the corresponfing control region. In absence of correlation R = 1.
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photon candidate must fail at least one of the two shower shape selections [68] ws3,9 and
Fside,10 which are associated with the strip layer of the ECAL. These are chosen instead
of other ‘non-tight’ variables because of their lower correlation with isolation variables
used in the construction of the regions. In addition, the correlation factor obtained from
Z(νν̄)jj inclusive MC simulation and the one obtained from data agree best when using
this ‘non-tight’ definition. The statistical uncertainty of the j → γ background is obtained
in the same way as for the γ+jets background. The largest uncertainty in the background
estimate is 52% for the Zγ inclusive region. The dominant systematic uncertainty comes
from variations of the control region definition11 and is 18%, while the total is 19%. The
Z(νν̄)γjj QCD MC sample is used as a template for the background in the fit and for
the extrapolation to the signal and control regions of the analysis (these are the Zγ QCD
control regions and Wγ control region). The reason why the Z(νν̄)γjj QCD MC sample
is used instead of the Z(νν̄)jj inclusive MC sample is that far fewer events are selected
from the latter; the distributions from these MC samples agree within their uncertainties.

Another background, due to pile-up, arises when the photon and Z boson are produced
in different pp collisions in the same LHC bunch crossing. This background is estimated
from the distribution of the longitudinal separation between the reconstructed primary
vertex and the reconstructed coordinate of a photon’s origin. Only converted photons are
used since they have better z-coordinate resolution. This contribution has no significant
effect on the overall background shape and is considered only as a systematic normalisation
uncertainty of 1.9% in the fit.

6 Systematic uncertainties

Experimental sources of systematic uncertainty include uncertainties in the energy scale
and resolution of jets, photons and electrons, in the scale and resolution of the muon mo-
mentum, and in the missing transverse momentum. Additional contributors to the experi-
mental uncertainty are the uncertainties in the scale factors used to reproduce the trigger,
reconstruction, identification and isolation efficiencies, and pile-up conditions measured
in data. The uncertainty in the combined 2015–2018 integrated luminosity is 1.7% [18],
obtained using the LUCID-2 detector [19] for the primary luminosity measurements.

The theoretical systematic uncertainties considered in this analysis are related to
higher-order QCD corrections and our choice of PDF and value of the strong coupling
constant αs. The uncertainties due to higher-order QCD corrections are estimated by
varying the renormalisation and factorisation scales by factors of one-half and two, and

9Front lateral width (3 strips) measures the shower width along η in the first layer of the electromagnetic
calorimeter, using a total of three strip cells centred on the largest energy deposit. It is calculated as
ws3 =

√
ΣEi(i−imax)2

ΣEi
. The index i is the strip identification number, imax identifies the strip cell with the

most energy, and Ei is the energy deposit in each strip cell.
10Front side energy ratio measures the lateral containment of the shower along the η direction. It is

calculated as Fside = E(±3)−E(±1)
E(±1) , where E(±n) is the energy in the ±n strip cells around the one with

the most energy.
11Variations consist in the choice of non-tight identification criteria and the choice of the energy gap

between regions with normal and inverted isolation criteria.
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Figure 3. These graphs indicate the effect of the main theory uncertainties, which are associ-
ated with the renormalisation and factorisation scales (dashed cyan), underlying event and parton
showering (UE+PS) or generator choice (dash-dotted red), alternative PDF sets (dotted orange),
combined NNPDF set variation and αs uncertainty (loosely dash-dotted green). These are shown in
the signal region for (a) the Z(νν̄)γjj EWK process and (b) the Z(νν̄)γjj QCD process. The BDT
classifier response was remapped into equal width bins for better representation. The uncertainty
band corresponds to the uncertainty due to the limited number of MC events.

ignoring the combinations that differ by a factor of four. The uncertainties due to the
PDF and αs choice are estimated using the PDF4LHC prescription [69]. Additionally, a
global modelling uncertainty was evaluated using an alternative MC generator either for
the matrix element generation, underlying event and parton showering or for only the last
two of these. The alternative PDF sets and MC generators are described in section 3.

The signal selection uses a boosted decision tree (BDT). The signal-to-background ratio
is expected to increase at high values of the BDT classifier as is described in section 7. The
effect of the theoretical systematic uncertainties on the Z(νν̄)γjj EWK and Z(νν̄)γjj
QCD processes, versus BDT classifier response, is shown in figure 3.

The yield of the interference between the Z(νν̄)γjj EWK signal and QCD background
is estimated to be small (5.8% of the total signal yield in the SR) so it is not included as
a part of the electroweak signal in the fit. Instead, the signal is represented by the pure
electroweak process, and the directly generated interference contribution is taken as an
extra signal uncertainty.

Additional uncertainties related to data-driven background estimates are also consid-
ered. Systematic uncertainties are assigned to the normalisation of the backgrounds from
e → γ misidentification, j → γ misidentification, incorrect Emiss

T measurement, and the
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combination of a Z boson and a photon from different pp collisions (pile-up background),
with values corresponding to those described in section 5.

Mismodelling of the mjj distribution is observed in the Zγ QCD CR2 (see figure 4(b),
where the prediction-to-data ratio has χ2/Ndf = 8.2/7 and a p-value = 0.31) and could have
a similar impact in the SR. Since the Z(νν̄)γjj QCD andW (`ν)γjj QCD processes are the
dominant ones in this region (contributing 45% and 31% of the total predicted event yield,
respectively) and theW (`ν)γjj QCD process is shown to be accurately modelled in theWγ

CR (see figure 4(c)), the mismodelling is attributed to the Z(νν̄)γjj QCD process. Due to
the similarities between these two processes (being produced by the same MC generator and
having final-state kinematical properties that differ only because of the final-state boson)
and the fact that the Wγ CR has data in all of the mjj and γ-centrality spectra bins, the
Z(νν̄)γjj QCD modelling in the SR was checked with the W (`ν)γjj QCD process in the
analogous part of the Wγ CR. This validates the modelling of Z(νν̄)γjj QCD in the SR to
the level of agreement between the Z(νν̄)γjj QCD and W (`ν)γjj QCD processes, and to
the level of agreement between theW (`ν)γjj QCD process and the data. The discrepancies
are used to assign two systematic uncertainties to the Z(νν̄)γjj QCD contribution in the
SR, resulting in 15% and 23% relative uncertainties in the total event yield, respectively.

7 Signal extraction procedure and results

A BDT classifier created with the TMVA [70] package is used to separate the signal from
the background processes described in section 5. It is trained in the Zγ inclusive region.
Due to the low number of events in the Zγ inclusive region, the γ+jets, Z(`¯̀)γ and Zj,
and multijet (jj) backgrounds are not used to train the classifier. In order to utilise the
full set of simulated events, two classifiers are created and trained on two statistically
independent samples. The classifier trained on one sample is applied to the other, and the
final response distribution is built by combining the responses of these two classifiers. The
following variables are used to create the classifier: mjj , ∆y(j1, j2), Emiss

T , pT-balance,12

η(j2), pT(j1), η(γ), pT-balance (reduced),13 Njets, sin (|∆ϕ(j1, j2)/2|) and ∆y(j1, γ). This
is the smallest set of variables that gives the classifier sufficient separation power. Although
the γ-centrality provides as much separation power as mjj or ∆y(j1, j2), it was not used
in the classifier because this allows the creation of an independent Zγ QCD CR2 that was
used to check the modelling of the mjj distribution.

To extract the Z(νν̄)γjj EWK cross section, a binned maximum-likelihood fit [71] is
performed using the BDT classifier response distribution in the SR and the mjj distribu-
tions in the Zγ QCD CRs 1 and 2 and the Wγ CR; this combination uses 31 bins. Three
free parameters are introduced in the combined fit: a signal strength parameter, µZγEWK,
and two normalisation factors for the main background sources. The first, µZγQCD, is used
to scale the Z(νν̄)γjj QCD process yield, while µWγ is used to scale the yields of the
W (`ν)γjj QCD, W (`ν)γjj EWK and tt̄γjj processes because of their similar final states.

12The pT-balance = |~pmiss
T +~p γT +~p j1

T +~p j2
T |

Emiss
T +EγT+pj1

T +pj2
T

.

13The pT-balance (reduced) = |~p γT +~p j1
T +~p j2

T |

E
γ
T+pj1

T +pj2
T

.
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Each source of systematic uncertainty is implemented in the likelihood function as a
nuisance parameter (NP) with a Gaussian constraint. All instrumental uncertainties, as
well as the pile-up background uncertainty, are treated as correlated between the processes
and regions. Almost all of the other uncertainties are treated as correlated between re-
gions. The exceptions are the scale uncertainties for all of the processes and the modelling
uncertainties of the Z(νν̄)γjj QCD and W (`ν)γjj QCD processes. All scale uncertain-
ties are uncorrelated between the regions. The modelling uncertainties are separated into
two groups: one correlated between all of the CRs and one for the SR. This conservative
approach avoids unnecessary constraints upon systematic uncertainties coming from the
differences in the MC generators.

To account for the effect of the limited size of the simulated samples, an uncertainty
with a Poissonian constraint is introduced for bins with a relative statistical uncertainty
higher than 5%. The signal strength, background normalisation coefficients and yields
for all of the processes are estimated in the fit to the observed data in the signal and
control regions.

The observed significance is estimated by setting µZγEWK = 0 and performing a
background-only fit to the data in all of the regions so as to determine the probability of
rejecting the background-only hypothesis. In this approach uncertainties that only affect
the signal process (i.e. theoretical uncertainties and the Z(νn̄u)jj EWK/QCD interfer-
ence) have no effect on the significance calculation. The expected significance is estimated
by fitting the artificial Asimov dataset in the same way. Such a dataset is constructed by
modifying the predicted values with the normalisation coefficients and NPs obtained in the
fit in the CRs while assuming no signal is present [72].

The signal strength is measured to be:

µZγEWK = 0.78+0.25
−0.23 (stat.)+0.21

−0.17 (syst.).

The observed (expected) significance of the result is 3.2σ (3.7σ). The µZγQCD and
µWγ normalisation coefficients are measured to be 1.21+0.37

−0.31 and 1.02+0.22
−0.17, respectively,

signifying agreement with the predicted yields within the uncertainties.
The predicted fiducial cross section is computed in the phase space defined in table 2.

The definition of the fiducial phase space closely follows the detector-level selections, using
photons, electrons, muons, Emiss

T and jets at the particle level. These stable final-state
particles (with proper decay length cτ > 10 mm) are produced in the hard scatter; this
includes those that are the products of hadronisation. Thus they are reconstructed in
simulation, prior to their interactions with the detector. The leptons used in the veto are
reconstructed at the particle level, with a correction for fully recovered final-state radiation
applied. No requirement is placed on the Emiss

T significance or pSoftTerm
T due to the complex-

ity of defining these variables at particle level; however, the detector-level Emiss
T requirement

is applied to the particle-level Emiss
T , which corresponds to the ET of the dineutrino sys-

tem. All the other kinematic selection requirements are the same as those at detector level
in section 4.2. The fiducial region selection efficiency is 33%. The fiducial cross section
was predicted with MadGraph5_aMC@NLO (interfaced with Pythia) at leading or-
der, with next-to-leading-order QCD corrections and scale uncertainties computed with
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Selections Cut value
Emiss

T > 120GeV
EγT > 150GeV

Number of isolated photons Nγ = 1
Photon isolation Econe40

T < 0.022pT + 2.45GeV, pcone20
T /pT < 0.05

Number of jets Njets ≥ 2 with pT > 50GeV
Overlap removal ∆R(γ, jet) > 0.3
Lepton veto Ne = 0, Nµ = 0
|∆φ(γ, ~p miss

T )| > 0.4
|∆φ(j1, ~p

miss
T )| > 0.3

|∆φ(j2, ~p
miss

T )| > 0.3
mjj > 300GeV

γ-centrality < 0.6

Table 2. Fiducial region definition.

VBFNLO. Its value is

σpred
ZγEWK = 0.98± 0.02 (stat.)± 0.09 (scale)± 0.02 (PDF) fb.

Combined with the measured signal strength, it results in an observed fiducial cross
section of

σZγEWK = 0.77+0.34
−0.30 fb = 0.77+0.25

−0.23 (stat.)+0.22
−0.18 (syst.) fb.

Table 3 shows the observed and expected event yields of the signal and backgrounds
in the SR and CRs after the fit is performed. The post-fit mjj and BDT classifier response
distributions are shown in figure 4, and the summary plot for all of the regions is shown in
figure 5.

The breakdown of the impact of groups of systematic uncertainties on the cross-section
measurement is shown in table 4, with the theoretical uncertainties of the electroweak signal
and the Z(νν̄)γjj QCD background having the largest impact.

8 Combination with previous ATLAS measurement

To increase the sensitivity, the measurement of electroweak Z(νν̄)γjj production presented
in this paper is combined with the measurement from the previously published ATLAS
observation of this process [7]. The analyses are statistically independent because their
phase-space regions are orthogonal in EγT. This analysis requires E

γ
T > 150 GeV, while the

previous ATLAS analysis requires 15 < EγT < 110 GeV.
The combined Z(νν̄)γjj EWK signal strength and its significance are extracted from

a simultaneous profile likelihood fit. The fit includes all signal and control regions of both
analyses and all corresponding systematic uncertainties. Various correlation schemes of jet
energy and theoretical QCD scale uncertainties were tested and found to have negligible
effect on the combined result. The observed (expected) significance of the combined result
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Wγ CR Zγ QCD CR1 Zγ QCD CR2 Signal region
Z(νν̄)γjj EWK 0.108± 0.028 11.0± 4.3 4.0± 2.2 37± 14
Z(νν̄)γjj QCD 1.04± 0.46 394± 84 143± 32 133± 39
W (`ν)γjj QCD 425± 63 237± 71 76± 24 91± 30
W (`ν)γjj EWK 63± 12 14.3± 2.7 4.5± 1.2 24.6± 4.9
W (eν)jj, tjj, tt̄jj 39.8± 2.5 70.1± 4.1 17.9± 1.3 22.5± 1.5
tt̄γjj 193± 57 57± 20 9.1± 3.4 21.3± 7.6
γjj 4.8± 7.4 52± 36 8± 11 20± 17
Zj, jj 0.06± 0.66 20± 14 5.9± 6.9 6.6± 7.8
Z(`¯̀)γjj 8.6± 2.5 6.8± 2.0 2.04± 0.95 2.2± 1.3
Total 735± 30 863± 54 271± 25 357± 30
Data 737 849 268 356

Table 3. Observed and expected event yields for the signal and all of the background processes
considered in this analysis after the fit to the data in all of the regions. The uncertainty in the
expected yield is the combination of statistical and systematic uncertainties obtained in the fit.
The individual uncertainties can be correlated and do not necessarily add in quadrature to equal
the total expected uncertainty.

Source of uncertainty ∆σ/σ [%]
Experimental
Jets −3.2 /+3.4
Electrons and photons −0.3 /+1.7
Muons −0.4 /+0.5
Emiss

T −1.8 /+2.2
Pile-up modelling −1.7 /+3.2
Trigger efficiency −0.9 /+2.1
Luminosity −1.2 /+2.6
Theory
Z(νν̄)γjj EWK/QCD interference −0.6 /+2.6
Z(νν̄)γjj EWK process −6 /+12
Z(νν̄)γjj QCD process −15 /+16
Other processes −5.3 /+7.7
Other sources
Data-driven backgrounds −0.9 /+1.2
Pile-up background −1.2 /+2.6
Z(νν̄)γjj QCD mjj modelling −4.4 /+4.4

Table 4. Impact of different components of the systematic uncertainty on the measured cross
section, without taking into account the correlations. The impact is calculated by fixing the value
of the corresponding nuisance parameters to the values obtained in the fit used to measure the cross
section, performing the fit, estimating the signal strength uncertainty, subtracting its square from
the square of the nominal uncertainty, and calculating the square root.
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Figure 4. The mjj distributions for the (a) Zγ QCD CR1, (b) Zγ QCD CR2, and (c) Wγ CR,
and the BDT classifier response distribution for the (d) SR after the fit in all regions. The BDT
classifier response was remapped into equal-width bins for better representation. The dashed line
shows the total background distribution before the fit. The vertical error bars on the data points
correspond to the data’s statistical uncertainty. Overflows are included in the last bin. The lower
panel shows the ratio of observed to expected event yields. The uncertainty band corresponds to
the combination of the statistical and systematic uncertainties obtained in the fit.
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Figure 5. Summary of the yield for processes in all regions, after the fit over all regions. The
dashed line shows the total background distribution before the fit. The vertical error bars on the
data points correspond to the data’s statistical uncertainty. The lower panel shows the ratio of
observed to expected event yields. The uncertainty band corresponds to the combination of the
statistical and systematic uncertainties obtained in the fit.

Value
POI Current analysis Ref. [7] Combination
µZγEWK 0.78 ± 0.33 1.03 ± 0.25 0.96 ± 0.19
µZγQCD 1.21 ± 0.37 1.02 ± 0.41 1.17 ± 0.27
µWγ 1.02 ± 0.22 1.01 ± 0.20 1.01 ± 0.13

Table 5. Fitted POI values for this analysis, the previous ATLAS analysis, and their combination.
The second and third columns present the values obtained in the individual analyses. The fourth
column presents the values obtained in the combination.

with µZγEWK as the parameter of interest (POI) is 6.3σ (6.6σ). The fitted values of the
signal strength (µZγEWK) and background normalisations (µZγQCD and µWγ) are listed in
table 5.

The difference in µZγEWK for the two analyses in combination is due to the lower data
statistics in the signal region of the current analysis. The difference in µZγQCD for two
analyses in combination is due to the different renormalisation and refactorisation scale
correlation schemes used in the individual analyses. The most conservative correlation
scheme that results in the highest expected uncertainty of the POI is used for both analyses
to obtain the combination result.

The observed cross section using the combined signal strength is 9.2 ± 2.0 fb. The
fiducial region definition for this cross section is based on the one described in table 2 with
the following changes: the photon isolation and γ-centrality requirements were removed
and the EγT threshold was lowered to 15 GeV. This new, larger fiducial region includes
the fiducial regions of both analyses used in the combination. The predicted cross section
extrapolated to this fiducial region using VBFNLO is 9.6± 1.0 fb.
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9 Limits on anomalous quartic gauge couplings

The results presented in section 7 are used to set limits on anomalous QGCs via the
VBS component of the measured electroweak process. New physics beyond the SM could
induce anomalous QGCs, enhancing the Z(νν̄)γjj electroweak production cross section
and modifying the kinematic distributions of the final-state bosons.

The effect of new physics introduced by aQGCs can be realised using an EFT [73]
linearly parameterised by an effective Lagrangian as:

L = LSM +
∑
i

ci
Λ2Oi +

∑
j

fj
Λ4Oj ,

where Oi and Oj are dimension-6 or dimension-8 operators induced by integrating out the
new degrees of freedom, while ci and fj represent the numerical coefficients that are meant
to be derivable from a more complete high-energy theory. The Λ term is a mass-dimension
parameter associated with the energy scale of the new degrees of freedom that have been
integrated out. The Z(νν̄)γjj VBS process is sensitive to anomalous quartic and triple
gauge couplings. Since the latter are well constrained in diboson production [74], they
are not explored in this paper. Among these higher-order operators, the dimension-8 ones
are the lowest-dimensional operators inducing only quartic gauge-boson couplings without
triple gauge-boson vertices. The impact of higher-dimensional operators is expected to
be suppressed by more powers of the cut-off scale, Λ. However the linear terms in the
EFT coefficient of the process amplitude originating from the operators of some dimensions
higher than eight, can be suppressed by the same or smaller power of Λ, compared with the
quadratic term originating from eight-dimensional operators. Therefore, it is assumed that
such contributions are suppressed by the dimensionless coupling constant, fj . Moreover,
higher-dimensional terms are currently not available and are thus not taken into account.

Two categories of dimension-8 operators contribute to the couplings in the studied final
state: OTX (X = 0–9), constructed from the field-strength tensor; and OMX (X = 0–7),
constructed from both the Higgs SU(2)L doublet derivatives and the field strength. Seven
operators are considered in this study, and the corresponding (Wilson) coefficients are:
fM0/Λ4, fM1/Λ4, fM2/Λ4, representing fMX couplings, and fT0/Λ4, fT5/Λ4, fT8/Λ4 and
fT9/Λ4, representing all types of fTX couplings. The sensitivity of the Z(νν̄)γjj EWK final
state to these operators is competitive with other electroweak production modes. The last
two of these couplings are unique and can be probed only by the neutral quartic vertices.

A clipping technique is introduced to preserve unitarity at very high parton centre-
of-mass energies. Advantage of this unitarity restoring technique among the other ones is
simplicity of application and further theoretical interpretation of the limits. The anomalous
signal contribution is set to zero for mZγ > Ec (using particle-level information), where Ec
is a cut-off scale that is a free parameter. The chosen Ec value is based on the unitarity
bounds for a given limit value calculated from partial-wave unitarity constraints [75].

Simulated Z(νν̄)γjj EWK events with non-zero EFT dimension-8 operator coefficients
were generated by MadGraph5_aMC@NLO using decomposition of the process ampli-
tude. For the case of only one non-zero Wilson coefficient at a time, the squared amplitude
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Coefficient Observed limit [TeV−4] Expected limit [TeV−4]
fT0/Λ4 [−9.4, 8.4]× 10−2 [−1.3, 1.2]× 10−1

fT5/Λ4 [−8.8, 9.9]× 10−2 [−1.2, 1.3]× 10−1

fT8/Λ4 [−5.9, 5.9]× 10−2 [−8.1, 8.0]× 10−2

fT9/Λ4 [−1.3, 1.3]× 10−1 [−1.7, 1.7]× 10−1

fM0/Λ4 [−4.6, 4.6] [−6.2, 6.2]
fM1/Λ4 [−7.7, 7.7] [−1.0, 1.0]× 101

fM2/Λ4 [−1.9, 1.9] [−2.6, 2.6]

Table 6. Observed and expected one-dimensional limits on dimension-8 aQGC coefficients. Limits
are obtained by setting all aQGC coefficients except one to zero. Unitarity is not preserved.

is the following:

|A|2 = |ASM + fjAj |2 = |ASM|2 + fj2Re(ASMA
∗
j ) + fj

2|Aj |2,

where |ASM + fjAj |2 stands for the total amplitude squared with non-zero EFT parameter
fj , ASM is the Standard Model amplitude, fj2Re(ASMA

∗
j ) is the amplitude of the interfer-

ence between the SM and the EFT operator (the linear term of the process amplitude) and
fj

2|Aj |2 is the pure EFT operator contribution (quadratic term of the process amplitude).
Individual samples using only one term at a time (SM, linear or quadratic terms) were
generated for each operator. To obtain the events at a given value of the EFT coefficient,
the respective sample is multiplied by the appropriate value (fj or f2

j ).
Limits on the dimension-8 operator coefficients are calculated using test statistics based

on the profile likelihood ratio. The likelihood function is constructed as a product of a
Poisson distribution and a Gaussian constraint term with nuisance parameters representing
the sources of systematic uncertainty. Data event and predicted yields for the limit-setting
procedure are taken from the signal region with additional optimisation of the EγT threshold
using expected confidence intervals for the EFT coefficients. The sensitivity to the aQGC
is the strongest at high EγT, as it can be seen in figure 6. Therefore, the constraints on
the aQGC parameters come from a bin, constructed from the SR by the optimisation of
additional EγT threshold and corrected for background normalisations from the background-
only fit. Observed and expected 95% CL intervals for the EFT coefficients are presented for
two cases: when the clipping technique is not applied, and hence unitarity is not preserved,
and when it is applied, and hence unitarity is preserved. The results of the fit for the first
and second cases are summarised in tables 6 and 7, respectively. The constraints are either
competitive with or more stringent than those previously published by CMS [6, 9, 76].

Illustrations of the limits’ dependence on Ec are given in figures 7 and 8. The regime in
which Ec is less than 4 TeV is obtained with an EγT threshold of 600 GeV (400 GeV) for fTX
(fMX) couplings. The regime in which Ec exceeds 4 TeV is obtained with an EγT threshold
of 900 GeV. The Ec values for unitarised limits are obtained from the Ec < 4 TeV regime by
taking the point before the one where the limits’ dependence crosses the unitarity bound.
The infinity point in the figures indicates the limits obtained when the clipping technique is
not applied, i.e. when Ec =∞. The EγT thresholds are chosen so that the analysis reaches
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Figure 6. The EγT distribution in the SR after the fit in the control regions. The red (green) line
shows the expected number of events in the case of non-zero EFT coefficient fT0/Λ4 (fM0/Λ4) with
the value shown in the legend. The vertical error bars on the data points correspond to the data
statistical uncertainty. Overflows are included in the last bin. The lower panel shows the ratio of
data to expected event yields. The uncertainty band corresponds to the combination of the MC
statistical uncertainty and systematic uncertainties obtained in the fit.

Coefficient Ec [TeV] Observed limit [TeV−4] Expected limit [TeV−4]
fT0/Λ4 1.7 [−8.7, 7.1]× 10−1 [−8.9, 7.3]× 10−1

fT5/Λ4 2.4 [−3.4, 4.2]× 10−1 [−3.5, 4.3]× 10−1

fT8/Λ4 1.7 [−5.2, 5.2]× 10−1 [−5.3, 5.3]× 10−1

fT9/Λ4 1.9 [−7.9, 7.9]× 10−1 [−8.1, 8.1]× 10−1

fM0/Λ4 0.7 [−1.6, 1.6]× 102 [−1.5, 1.5]× 102

fM1/Λ4 1.0 [−1.6, 1.5]× 102 [−1.4, 1.4]× 102

fM2/Λ4 1.0 [−3.3, 3.2]× 101 [−3.0, 3.0]× 101

Table 7. Observed and expected one-dimensional limits on dimension-8 aQGC coefficients in
the region where unitarity is preserved. The cut-off scale Ec in the simulation is given for each
parameter. Limits are obtained by setting all aQGC coefficients except one to zero.
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Figure 7. Evolution of the expected (red line) and observed (blue line) limits versus Ec values
for fT0/Λ4, fT5/Λ4, fT8/Λ4 and fT9/Λ4. The unitarity bound is shown by the black line. The
Ec < 4 TeV regime was obtained with EγT > 600 GeV. The Ec > 4 TeV regime was obtained with
EγT > 900 GeV.

its highest sensitivity. They are different for the unitarised and non-unitarised cases, since
the cut-off removes events with high EγT.

10 Conclusion

A measurement of the fiducial cross section for electroweak production of Z(νν̄)γjj in the
region of EγT > 150GeV is presented. Data from

√
s = 13 TeV pp collisions at the LHC

were collected with the ATLAS detector during 2015–2018 and correspond to an integrated
luminosity of 139 fb−1. The dominant backgrounds come from QCD mediated Z(νν̄)γjj
andWγjj processes and these are evaluated using a simultaneous fit to data. Other signif-
icant backgrounds from e→ γ and j → γ misidentifications and Emiss

T mismeasurement are
evaluated using data-driven techniques. The measurement uses the invisible decay mode
of the gauge boson, Z → νν̄, and is performed in a fiducial phase space closely matching
the detector acceptance.

The observed (expected) signal significance is 3.2σ (3.7σ), which corresponds to evi-
dence for this process in the given phase space used in the measurement. It was measured
using a binned likelihood fit over the BDT classifier distribution. The measured cross sec-
tion is 0.77+0.34

−0.30 fb, which is in agreement with SM predictions at NLO in perturbative
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Figure 8. Evolution of the expected (red line) and observed (blue line) limits versus Ec values for
fM0/Λ4, fM1/Λ4 and fM2/Λ4. The unitarity bound is shown by the black line. The Ec < 4 TeV
regime was obtained with EγT > 400 GeV. The Ec > 4 TeV regime was obtained with EγT > 900 GeV.

QCD. The cross sections and kinematics are quoted for the sum of the three neutrino
flavours.

The results of this study are combined with those of the previously published ATLAS
observation of this process to increase the sensitivity. This gives an observed (expected)
signal significance of 6.3σ (6.6σ).

Having found no significant deviations from SM predictions, the data are used to set
limits on anomalous quartic gauge couplings. The limits are set on EFT dimension-8 op-
erators fT0/Λ4, fT5/Λ4, fT8/Λ4, fT9/Λ4, fM0/Λ4, fM1/Λ4 and fM2/Λ4. These constraints
are either competitive with or more stringent than those previously published by CMS. In
particular, the constraints on the fT5/Λ4, fT8/Λ4 and fT9/Λ4 operators are significantly
stronger than results previously published by ATLAS and CMS, based on either the full
Run 2 dataset of 139 fb−1 or a partial dataset of 36 fb−1.
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