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Linking global top-down views to first-person views in the brain
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Humans and other animals have a remarkable capacity to translate their position from
one spatial frame of reference to another. The ability to seamlessly move between top-
down and first-person views is important for navigation, memory formation, and other
cognitive tasks. Evidence suggests that the medial temporal lobe and other cortical
regions contribute to this function. To understand how a neural system might carry
out these computations, we used variational autoencoders (VAEs) to reconstruct the
first-person view from the top-down view of a robot simulation, and vice versa. Many
latent variables in the VAEs had similar responses to those seen in neuron recordings,
including location-specific activity, head direction tuning, and encoding of distance to
local objects. Place-specific responses were prominent when reconstructing a first-person
view from a top-down view, but head direction–specific responses were prominent when
reconstructing a top-down view from a first-person view. In both cases, the model
could recover from perturbations without retraining, but rather through remapping.
These results could advance our understanding of how brain regions support viewpoint
linkages and transformations.

cognitive map | head direction cells | place cells | robotics | variational autoencoders

Humans are able to translate their location and navigational goals on an external map
into decision-making behaviors in the environment. A glance at a map can help place
you in your local surroundings. Conversely, when looking at one’s local surroundings,
one can place oneself on a global map. The ability to seamlessly move between top-down
views (TDVs) and first-person views (FPVs) may be important for navigation and memory
formation, as well as many cognitive tasks (e.g., building a cabinet from a plan drawn on
paper, or finding an extra screw after the cabinet is constructed, and referring back to
the plan to find out where the screw should go). Evidence from other animals suggests
that they also have the ability to translate their position from one spatial reference frame
to another (1–4). In particular, bats appear to have the ability to translate a TDV while
flying above the landscape to an FPV when navigating on the ground or foraging for
food (4–7).

Studies suggest that the entorhinal cortex (EC), retrosplenial cortex (RSC), subiculum
(SUB), posterior parietal cortex (PPC), and hippocampus (HPC) could play significant
roles in linking locations and orientations relative to one view to locations and orientations
relative to another (1, 2, 8–12). The computations and neural implementations that
manifest this cognitive ability have scarcely been addressed, despite numerous navigation
experiments in humans and rodents. Computational modeling suggests that these trans-
formations and linkages could be accomplished through specific encoding of parameters
(8, 12, 13), or mixed selectivity that responds to multiple variables (14). However, it is
unclear whether mechanisms for linkage and transformation among perspectives operate
to form a single mapping of location from both perspectives, or serve to link analogous
locations in two different mappings. Mapping of location and orientation is robustly
observed in the rodent EC, HPC, and SUB (15–18), which provide input to RSC
and other brain regions. The PPC provides egocentric information to the RSC (19).
Furthermore, the visual system plays an important role in driving spatial activity (3). Still,
the exact role of these brain regions and their neural computations, especially in the context
of viewpoint transformations, remain poorly understood.

In the present article, we attempt to answer the following open questions: 1) What
architectures might support these transformations and linkages? 2) What are the com-
putations and neural implementations underlying linkages and transformations between
TDVs and FPVs? 3) What cues or landmarks are required to make these transformations
and linkages? To answer these questions, we take a model-free approach by using
variational autoencoders (VAEs) to reconstruct the FPV from the TDV of a robot
simulation, and vice versa (20). The latent variables, which make a transformation between
the encoding network layers and the decoding network layers, will be compared with brain
responses.
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first-person experience and a
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the underlying computations
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reconstruct the top-down images
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place-specific coding is more
prevalent when linking a
top-down view to a first-person
view, and head direction
selectivity is more prevalent in the
other direction. In both cases, the
system recovers from
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remapping. This modeling brings
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approach to understanding
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perspectives and suggests
testable predictions in the
nervous system.
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Fig. 1. Simulation setup and model architectures. (A) Robot freely explored a square arena, which had three colored cylinders. The robot is located on the
middle right facing the blue cylinder. Inset shows the robot’s camera view. Note that the camera view did not overlay the top-down images during data collection.
The robot was simulated using Webots (21, 22). (B and C) VAEs reconstruct images from robot simulation. The latent variables between the encoder and decoder
are analyzed to understand the transformations and linkages between views. (B) Takes an FPV as input and reconstructs a TDV. (C) Takes a TDV as input and
reconstructs an FPV.

In contrast to neurobiologically inspired models of these trans-
formations (8, 13), which suggest that the computations in each
direction utilize the same circuit by inverting the transformation
operation, our results indicate that each direction of transforma-
tion is dictated by different computations carried out by separate
circuits. Whereas going from a TDV to an FPV required specific
representations of place and objects, going from an FPV to a TDV
tended to use mixed representations and strong head direction
signaling. In both cases, one view was accurately reconstructed
from the other. In addition, both neural codes were flexible
and adaptive to perturbations. We suggest that this is a possible
neural implementation that could support important navigation
functions.

Results

Robot Simulation and Modeling Transformations. To test the
ability to link TDV to FPV and vice versa, data were collected
with the Webots (21, 22) robot simulation environment (Fig. 1A).
The simulated robot was a Khepera with a camera, and proximity
sensors to detect objects and boundaries. The robot freely explored
its space. Approximately every second, the overhead view of
simulation (TDV) and the robot’s camera image (FPV), position,
heading, and distance to the three cylinders were saved. Ten
thousand data points were collected: 8,000 for training and 2,000
for testing. In all conditions, even when environmental conditions
changed (e.g., removing an object or changing the background),
the robot position, heading, and trajectory were identical for the
10,000 data points.

Two VAEs were constructed: one for reconstructing the TDV
of the simulation environment from the FPV of the robot
(Fig. 1B) and another for reconstructing the FPV from the
TDV (Fig. 1C ). The number of latent variables (μ, σ, and z
in Fig. 1 B and C ) varied from 30 to 50 to 100. In the results
presented below, only the 2,000 testing data points were used for
analysis.

The VAE was able to reconstruct a TDV from an FPV, and
vice versa. Fig. 2 shows how the reconstructions improved as the
loss decreased during training with 100 latent variables. After
20,000 epochs of training, the median reconstruction losses for
the FPV to TDV and the TDV to FPV transformations were
less than 0.01. The process was repeated five times with different
random number generator seeds. All five runs for each number of
latent variables were used for analysis. SI Appendix, Figs. S1–S3
shows the loss for simulations with 30, 50, and 100 latent vari-
ables. Although the medians were roughly similar for both types
of transformations (e.g., with 100 latent variables, the median
was 0.0078 for FPV to TDV and 0.0084 for TDV to FPV in
SI Appendix, Fig. S3), the TDV to FPV transformation had more
outliers (i.e., images it had difficulty reconstructing). Because
of this, the two distributions for all numbers of latent variables
were significantly different (p < 0.000001; Wilcoxon signed-
rank test). SI Appendix, Figs. S4 and S5 shows examples of the
reconstructions after training.

Spatial Representations in Latent Variables. We wondered
whether the latent variables of the VAEs had similar qualities
to spatial representations observed in RSC, HPC, and SUB
recordings. Indeed, many latent variables were sensitive to place,
heading, and objects. We looked at how well a latent variable
correlated with the robot’s distance to a cylinder, to an idealized
head direction cell (cosine tuning curve with one of 16 preferred
directions), or to an idealized place cell (two-dimensional [2D]
Gaussian with one of 16 preferred locations). Table 1 shows the
percentage of significant correlations in each case. The TDV to
FPV transformations had significantly more latent variables that
were strongly correlated with distance to the cylinder objects,
and significantly more latent variables strongly correlated with
place fields than the FPV to TDV transformations. In contrast,
the FPV to TDV transformations had significantly more latent
variables sensitive to head direction than the TDV to FPV
transformation. SI Appendix, Fig. S6, which plots the correlations
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Fig. 2. Reconstruction loss during VAE training with 100 latent variables. The true image is the VAE target, and the other images are reconstructions at different
points in the training. (A) TDV to FPV transformation. (B) FPV to TDV transformation.

for all latent variables, shows these trends, especially in the tails
of the distributions where latent variables were strongly positively
and negatively correlated.

Fig. 3 shows representative latent variable examples of head
direction and location-specific tuning. Interestingly, the place
fields for TDV to FPV tended to be sharp, whereas the FPV

Table 1. Percentage of strong correlations (p < 0.01)

LV Hdg (FPV to TDV), % Hdg (TDV to FPV), % Obj (FPV to TDV), % Obj (TDV to FPV), % Plc (FPV to TDV), % Plc (TDV to FPV), %

30 49* 33 50 73* 50 73
50 54* 26 49 73* 47 70*

100 55* 30 49 67* 47 69*

*Denotes significantly more strong correlations for that transformation direction (p < 0.01; Wilcoxon rank sum test).
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Fig. 3. Representative latent variable responses during simulations with 100
latent variables. (A and B) Latent variables that responded similarly to head
direction cells. (C and D) Latent variables that responded similarly to place
cells. Note that C was typical of an FPV to TDV transformation, and D was
typical of a TDV to FPV transformation.

to TDV tended to be more diffuse. Even though there were
fewer head direction–sensitive latent variables in the TDV to
FPV transformation, the shape of the head direction latent
variables was similar for both transformation directions (see
SI Appendix, Figs. S7 and S8 for more examples). In contrast,
FPV to TDV latent variables that were strongly correlated with
place tended to be more diffuse than those in the TDV to FPV
direction. For example, compare the FPV to TDV place fields
in SI Appendix, Fig. S11 to the TDV to FPV place fields in
SI Appendix, Fig. S12.

To understand the difference in spatial coding between trans-
formation directions, we measured the spatial information (23)
and spatial coherence (24) of the latent variables. In general,
spatial information measures the extent to which activity rates
are high across a small subset of locations and low or nonexistent
across the remainder of an environment. Coherence measures the
extent to which high activity rates cluster in a single location,
as in “place fields” of HPC neurons. Together, they provide a
good metric for how strongly the latent variables encode loca-
tions. Fig. 4 shows the distributions for these spatial metrics in
simulations with 100 latent variables. For both transformation
directions, the spatial information and spatial coherence were
significantly larger than a random distribution containing the
same latent variables with their positions shuffled (p < 0.000001;
Wilcoxon signed-rank test). Furthermore, the spatial metrics were
significantly larger for the TDV to FPV transformation than the
FPV to TDV transformation (p < 0.000001; Wilcoxon signed-
rank test). Latent variable place fields were distributed throughout
the environment, with some tendency for the centers of place
fields to be on the borders and corners (SI Appendix, Fig. S36).
The sparsity metric (23), which is roughly the fraction of the
environment in which the latent variable was active, ranged from
very specific to broad (SI Appendix, Fig. S37). Together, these
measures suggest that both VAEs had strong spatial tuning and
that TDV to FPV had stronger spatial tuning than FPV to TDV.
Overall, these results suggest that the TPV to FPV transformation
relied more on place-specific coding, whereas the FPV to TPV
transformation relied more on head direction coding with diffuse
place fields.

Spatial representations, such as place cells, grid cells, and head
direction cells, appear early in rodent development (25) and
almost immediately upon entering a new environment (26). We
looked at the spatial metrics of the latent variables in the VAE
model at 20, 200, and 2,000 epochs of training (Fig. 5). At each of
these training stages, the spatial information and coherence were
significantly larger than random in both transformation directions

Fig. 4. Spatial metrics for latent variables. Top shows the distributions of spatial information, and bottom shows the distributions of spatial coherence for
simulations with 100 latent variables. Left compares the spatial metrics for FPV to TDV transformations (orange) with a random distribution (blue) in which
the location activity bins were shuffled. Middle compares the spatial metrics for TDV to FPV transformations (orange) with a random distribution (blue). Right
compares TDV to FPV transformations (orange) with FPV to TDV transformations (blue). The TDV to FPV transformation had significantly stronger spatial metrics
then the FPV to TDV transformation for both information and coherence.
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Fig. 5. Spatial metrics for latent variables during early training. Top shows
the distributions of spatial information, and Bottom shows the distributions
of spatial coherence, for simulations with 100 latent variables after 20, 200,
2,000, and 20,000 epochs of training.

(Wilcoxon signed-rank test; p < 0.001). At 20 epochs, the spatial
information was bimodal, with many latent variables close to zero.
By 200 epochs and continuing to the end of training (20,000
epochs), the spatial information had a high degree of overlap with
the end of training (Fig. 5, Top). After 20 epochs of training,
coherence was extremely low. Similar to spatial information, from
200 epochs until the end of training, the coherence had a high
degree of overlap with the end of training (Fig. 5, Bottom).
SI Appendix, Figs. S43–S54 shows example latent variables that
respond to place and head direction after 20, 200, and 2,000
training epochs. Given the spatial metric values and low recon-
struction loss by 200 training epochs, it appears the model can
support spatial navigation after limited environmental exposure.

Effect of Latent Variable Ablations. We next tested how sensitive
reconstruction was to particular latent variables. We ablated (i.e.,
set to zero) the most sensitive (top 25%) latent variables to
environmental features. Fig. 6A shows the relative FPV to TDV
reconstruction losses, and Fig. 6B shows the relative TDV to FPV
reconstruction losses. Relative loss was calculated by dividing the
ablation loss by intact loss for each image. For the sensitivity to
cylinders, head direction, and location, the loss was significantly
greater for the TDV to FPV transformation when the top 25%
of latent variables were ablated. This may be due to different
representation schemes; whereas TDV to FPV relies more on
specific selectivity, which could be sensitive to ablations, FPV to
TDV may rely on a more distributed population code. Example
reconstructions are shown in SI Appendix, Figs. S13–S24.

Effect of Environmental Perturbations. We wondered how the
VAEs would respond to perturbation of local and distal cues in the
environment. Therefore, we ran simulations where the robot took
the same trajectory for 10,000 data points, but some aspect of the
environment was changed. For example, the original background,
which was an entrance hall (Fig. 1A), was changed to mountains,
while leaving everything else the same. This was an example of
perturbing distal cues. In the other cases, we perturbed local cues
by rendering the green cylinder invisible, or by rendering both

the green and blue cylinders invisible. We then examined how the
VAE, which was trained on the original environment, responded
to the 2,000 test data points in the perturbed environment
(Fig. 7).

Perturbing the local and distal cues had three effects. First, the
relative loss was significantly greater for the TDV to FPV than
the FPV to TDV transformation for both distal and local cues
(p < 0.0000001; Wilcoxon signed-rank test). In fact, the median
loss was zero for FPV to TDV transformations when the green
cylinder was missing, meaning that there was no loss in many
cases. This makes sense, since images in the FPV do not always
contain a cylinder. Second, in both transformation directions, the
loss due to the background change was significantly larger than
removing cylinders, and the loss due to removing the green and
blue cylinder was significantly greater than removing just the green
cylinder. Large loss due to background change makes sense, since
more pixels in the images are affected. Third, in most cases, the
transformation losses were relatively small, suggesting that, with
the exception of outliers, the VAEs were able to recover many
features in a view image (SI Appendix, Figs. S25–S32). Further-
more, at the population level, these perturbations appeared to

Fig. 6. Relative loss during ablation studies of the top 25% of latent variables
that were correlated with objects (Obj), heading (HD), or place (Plc). The figures
show the ratio of the ablation loss to the intact model loss for each image. In
each box, the central mark is the median (red), the edges of the box are the
25th and 75th percentiles (blue), the whiskers extend to the most extreme
data points that are not considered outliers, and the outliers are plotted
individually with a red plus sign. (A) FPV to TDV transformation. (B) TDV to
FPV transformation. All reconstruction losses for ablations were significantly
larger for TDV to FPV than for FPV to TDV transforms (p < 0.0000001, Wilcoxon
signed-rank test).
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Fig. 7. Relative loss during perturbation experiments. The figures show the
ratio of the loss due to a perturbation loss to the intact model loss for each
image. Relative losses are shown for changing the background to mountains
(Mtn), removing the green cylinder (NoGrn), and removing both the green
and blue cylinders (NoGrnBlu). (A) FPV to TDV transformation. (B) TDV to
FPV transformation. All reconstruction losses for ablations were significantly
larger for TDV to FPV than for FPV to TDV transforms.

have a minimal effect on latent variable sensitivity to the distance
to an object, heading, or place (SI Appendix, Figs. S33–S35). The
range of correlation values (i.e., many latent variables had strong
correlations) and the trends observed in the intact model were
preserved.

Perturbations of local and distal cues led to substantial remap-
ping. Table 2 shows the percentage of latent variables that were
not correlated before the perturbation but remapped to be sig-
nificantly correlated with spatial features after the perturbation,
and those latent variables that were previously correlated with
spatial features prior to the perturbation and remapped to not

Fig. 8. Loss comparison between a sequence of images and a single image
used for reconstruction.

be correlated with spatial features after the perturbation. There
was significantly more remapping when the distal cues changed
during FPV to TDV transformations (see top row in Table 2),
and there tended to be more remapping during FPV to TDV
transformations when local cues changed (see bottom two rows
in Table 2). Such adaptation and remapping has been observed in
the RSC (1, 14).

Alternative Models.
Benefit of sequences for linking views. Unlike the nervous system,
the model presented here does not have a temporal compo-
nent. Rather, a single image from one view is linked to another.
We wondered whether a sequence of image views would ben-
efit the ability to link different view perspectives. We created
VAEs that took, as input, a sequence of five images from one
view and output a reconstruction of the last image in the other
view (SI Appendix, Figs. S38 and S39). Interestingly, the loss was
roughly the same for a TDV to an FPV transformation, but
the loss was reduced when a sequence of FPVs was used to
reconstruct the TDV (Fig. 8). This makes intuitive sense because
a sequence of FPVs would provide more varied information
than a sequence of TDV images. Despite these differences, the
reconstruction loss was small in both cases, and the spatial metrics
in both cases were similar (see SI Appendix, Fig. S41 for spatial
metrics, and see SI Appendix, Figs. S55–S58 for example place-
and head direction–sensitive latent variables). Although this may
be important for a living organism, the computational overhead
may outweigh the benefit of using sequences if this model were
deployed on a system like a navigating robot.
Combined VAE that reconstructs FPV to TDV and TDV to FPV simul-
taneously. An open issue is whether a single VAE could perform
the linkage of views in both directions. We constructed a VAE
to test this by interleaving FPVs and TDVs as inputs, while
conducting the training for reconstructing the transformed view
(SI Appendix, Fig. S40). This combined model had spatial infor-
mation and coherence nearly identical to the two separate VAEs
(SI Appendix, Fig. S42). As before, the spatial information and the

Table 2. Remapping due to environmental perturbations (LV = 100)

Obj Obj Hdg Hdg Plc Plc
Perturbation (FPV to TDV), % (TDV to FPV), % (FPV to TDV), % (TDV to FPV), % (FPV to TDV), % (TDV to FPV), %

Mountains 30* (18*) 14 (12) 28* (19*) 8 (10) 28* (19*) 13 (11)
No green 2 (2) 13* (16*) 1 (1) 8 (11*) 2 (1) 12* (15*)

cylinder
No green, no blue 6 (4) 13* (17*) 2 (3) 8 (11*) 6 (4) 13* (15*)

cylinder

Table entries show the percent of latent variables that became significant (p < 0.01), and table entries in parentheses show the percent of latent variables that became insignificant
(p ≥ 0.01) after the perturbation.
*Denotes significantly more remapping for that transformation direction (p < 0.01; Wilcoxon rank sum test).
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coherence of latent variables were higher going from a TDV to
an FPV than from an FPV to a TDV. Furthermore, many latent
variables responded to head direction. Example latent variables
that are sensitive to place and heading for the combined model
can be seen in SI Appendix, Figs. S59–S62. It should be noted
that, although the reconstruction loss going from TPV to FPV
was similar, the loss going from FPV to TDV was significantly
higher in the combined model (Wilcoxon signed-rank test; p <
0.001). These results suggest that one system could perform this
function, but that there may be advantages to having a separate
system for each transformation direction.

Discussion

Using tools from machine learning and artificial intelligence (AI)
(i.e., VAEs), we investigated a fundamental cognitive computa-
tion, which is the ability to change one’s perspective from a global
mental map to an egocentric sensory experience, and vice versa.
This is an important, but oftentimes overlooked, aspect of the
cognitive map (27). Our results suggest that two types of neural
activity can support this transformation: 1) Specific representa-
tions of locations and objects were observed when reconstructing
an FPV from a TDV, and 2) specific representations of heading
with more diffuse representations of location were observed when
reconstructing a TDV from an FPV. The response of the latent
variables in the present VAEs has similarities to those observed
in the brain, with latent variables resembling head direction cells,
place cells, and cells that encode the distance to objects. Critically,
we did not explicitly create such cell types in our model; rather,
these responses, which resemble place and head direction cells,
emerge from the way our model solves this problem.

Neurobiological Evidence for Transformations between Views.
Studies with humans and nonhuman primates have revealed neu-
ral correlates for transformations between views or perspectives.
In humans, evidence suggests that RSC activity is related to route
learning from an egocentric viewpoint (28) and to navigating from
a first-person perspective after looking at a top-down map perspec-
tive (29, 30). Although RSC is more active in first-person naviga-
tion compared with top-down navigation (29), the evidence for a
transformation is indirect, and there are multiple factors to which
the RSC could be responding. Within the first-person perspective,
RSC is involved in changing viewpoints to different locations. For
example, mentally rotating one’s viewpoint to the position of an
avatar or an arrow yields activation in RSC and parietal–occipital
sulcus (31). In addition, RSC activity is related to the amount of
viewpoint change relative to the environmental frame (32), and
RSC activity is modulated by the magnitude of a viewpoint shift
(33). Furthermore, RSC responds to perspective changes when
the magnitude of the shift is unknown ahead of time, indicating
that it is helpful in making online perspective changes.

Human intracranial recordings in the medial temporal lobe re-
vealed boundary-anchored neural representations that were mod-
ulated by one’s own as well as another individual’s spatial location
(34), and recordings of the EC in the monkey revealed neurons
that represent gaze position in multiple spatial reference frames
(2). These findings more broadly indicate that multiple brain
regions in the primate play a role in orienting and processing view-
based information from different perspectives (35, 36).

In the rat, neurons have been observed that respond to specific
spatial frames of reference (e.g., allocentric, egocentric or route-
centric), as well as multiple spatial reference frames (1, 37, 38).
Some RSC neurons have place-specific responses, and the activity
of a population of RSC neurons is sufficient to predict the location

of a rat in a maze (1). RSC neurons are sensitive to distance and
orientation relative to boundaries (39). RSC in both humans (40,
41) and rodents (42) has been implicated in mapping distance to
other locations in the environment. RSC head direction neurons
encode allocentric orientation relative to environmental bound-
aries (43). RSC activity is sensitive to distance and orientation
relative to boundaries and to left versus right turning actions (42,
44). PPC neurons have been observed to simultaneously map the
position in multiple external frames of reference (38). Still, none
of these studies have put the rodent in situations where it had
multiple viewpoints, which would be difficult to undertake. One
study, which is a step in this direction, recorded from the rodent
HPC and showed place cell responses to itself and to another rat
it was observing (15).

However, these studies only involve changes between different
first-person viewpoints. Extending this, our simulations suggest
a neural solution that uses strong heading signals plus a mixture
of place responses to link FPVs to TDVs and more-specific place
responses with heading to link TDVs to FPVs.

An interesting parallel to the task carried out in our simulations
are studies with freely behaving bats. Place cells, head direction
cells, and grid cells have been observed in the bat both on the
ground when crawling and in the air when flying (4, 5, 7). Similar
to ref. 15, social place cells have been found when the bats are
viewing other bats (6). GPS tracking of foraging bats over long
time periods has demonstrated the ability to use landmarks and
take novel routes from a TDV (45, 46). Taken together, there is ev-
idence suggesting that encoding and utilizing different spatial per-
spectives during navigation and memory is a common cognitive
function across multiple organisms and multiple brain regions.

Modeling Transformations between Views. Computational
neuroscience models have attempted to simulate transformations
between allocentric position and orientation in the real world
and the egocentric, retina-framed view at that location and
orientation. In one influential model, head direction or
gaze direction cells modulated activity in RSC by rotating
environmental variables (8, 13). This modulation converted
allocentric border or object vector cells into an egocentric bearing
to boundaries and objects, and vice versa. Such gain-modulated
fields have been postulated and observed in PPC (47, 48). In
another model, RSC acted as an arbitrator, which, depending
on the model’s confidence in the current task, would activate an
allocentric reference frame in the HPC or an egocentric frame in
the PPC (12). While these models and others have been useful in
suggesting the pathways and neural activity that might produce
these transformations, they make assumptions on the underlying
computations. For example, Byrne et al. (8) and, later, Bicanski
and Burgess (13) suggested that the same circuit computed the
transformation for both directions. In addition, they did not
specifically examine the linkages between FPVs and TDVs.

The present model attempts to be agnostic on how these com-
putations are implemented. Rather than creating a neural network
model based on the known responses or connectivity in specific
brain regions, we used VAEs to solve the transformation task
(20), and then tested their feasibility by comparing their responses
(i.e., hidden layers and latent variables) to empirical experiments.
The latent variables in these VAEs indicate different responses
and computations, depending on the transformation direction.
Furthermore, the separate models for each transformation had
less reconstruction loss than a combined model. Whereas strong
spatial coding by individual latent variables was observed in TDV
to FPV transformations, head direction coding and diffuse place
coding were more prevalent in FPV to TDV transformations.
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Applying Artificial Neural Networks to Neuroscience. Neuro-
scientists are turning to AI methods to explain their data (49).
For instance, using deep convolutional neural networks (CNNs)
as models of hierarchical feature representation in the ventral
visual stream can show different cortical responses in the hidden
layers (50–52). Moreover, CNNs have shown cortical responses in
the dorsal visual stream (53). Others proposed similar models to
synthesize control images to maximally activate specific neuron
sites in the monkey V4 (54). In a somewhat related robotics
study, a deep learning network used the robot’s local views and
geographic hints, such as satellite images or road maps, to plan
paths over a variety of environments (55). In the present work,
these TDVs were used to predict FPV, and vice versa. This might
be an alternative method to localization and mapping in robotics.

The present work compared the sensitivity of latent variables
with neural responses. Similarly, latent representations have been
used to model the human visual system during working memory
tasks (56). In another modeling study, a latent factor analysis using
dynamical systems was applied to monkey and human motor
cortex data to accurately predict behavioral variables and neural
dynamics (57). Deep VAEs have been used to interpret fMRI
data where there is a lack of labeled data (58). Our work is
another example of how VAEs can be used to model the nervous
system and make valuable predictions about the computations and
implementations underlying cognitive function.

The present modeling work suggests a means to link an FPV to
a TDV, and vice versa. Although the modeling work is not based
in neurobiology, the different encodings depending on the trans-
formation direction may be compatible with the RSC anatomy
(59). Whereas the dysgranular RSC has greater connectivity with
cortical regions, such as the visual cortex, which provide first-
person information (60), granular RSC interacts more with the
hippocampal formation and SUB, which is more sensitive to
the allocentric coordinates (39, 42, 61). In our simulations, we
showed that the model can recover from perturbations, without
retraining, much like place cells in the HPC. Moreover, the system
did not collapse when large proportions of latent variables were
ablated. These perturbation and ablation simulations suggest that
the model can flexibly and rapidly adapt to change, which is a
hallmark of neural systems.

In summary, we present a computational model for linking
perceptual views, which suggests a potential neural implementa-
tion for this cognitive function. Furthermore, it makes predictions
regarding the functional anatomy suggesting separate encodings
depending on the direction of the view transformation, and the
ability to adapt without retraining when challenged with pertur-
bations. Although this model provides a possible implementation,
we do not yet know exactly how the mammalian brain carries
out such a task. Therefore, it will be of interest to follow up this
modeling study with similar experiments tailored for humans and
other animals. Furthermore, linking different views, as in ref. 55,
may be applicable to robot navigation.

Materials and Methods

Robot Simulations. The Webots robot environment (21, 22) was used to sim-
ulate an animal freely exploring its environment (Fig. 1). The Khepera robot,
which is a two-wheeled robot produced by K-Team, was used for the simulations.
During exploration, the robot had a 50% chance of moving straight, 25% chance
of veering (i.e., an arcing turn) toward the left, and 25% chance of veering to the
right. The robot has eight distance sensors that were used to detect the arena
walls and the cylinders. If detected, the robot rotated, with a 50% chance, either
clockwise or counterclockwise until the front-facing distance detectors were clear.
A camera was mounted on top of the robot for the FPV. Every update cycle, the
camera frame was converted into a 64 × 64 RGB image (FPV), and a simulated

overhead camera took a JPEG image (TDV) of the robot in its environment. During
the exploration, the TDV from the simulator, the FPV from the robot’s camera,
and other environmental parameters (e.g., place, heading, distance to object)
were collected and saved. The “entrance hall” was used as a default background.
In the perturbation experiments, this was replaced with the “mountains” back-
ground, which was a desert scene with mountains in the distance. During the
local cue perturbation experiments, either the green cylinder or both the green
and blue cylinders were rendered invisible using the transparency setting in
Webots. The Khepera’s distance sensors still detected the object, but they were
not visible to the camera. The same random number generator seed was used
on all simulation runs to ensure that the robot’s trajectory was the same in
each condition. The software used to run the simulation is available on GitHub
(10.5281/zenodo.7121464; 10.5281/zenodo.7114757).

VAE Construction and Latent Variable Analysis. VAEs (20) were constructed
to transform between TDVs and FPVs. Briefly, the VAE design is as follows. The
perspective transformation model used in the preliminary results is based on
standard VAE training whose loss includes a reconstruction loss term and a
Kullback-Leibler (KL) divergence term. The reconstruction term optimizes the
network so that the input could be reconstructed, while the KL divergence term
is used to constrain the latent representation close to the prior distribution. To
promote stable training, we used KL annealing to gradually increase the weight of
the KL term from zero to one (62). The model was trained for 20,000 epochs. In the
first 50 epochs, the KL term increased linearly from zero to one. After 50 epochs,
the KL term weight was kept at one. After the VAE was trained, TDVs or FPVs were
presented to the model. We then could measure the latent variable sensitivity by
examining how much each latent variable changes with environmental changes.
More details are given in SI Appendix.

The VAE’s latent variables were analyzed for sensitivity to objects, heading,
and place.

Object sensitivity was measured by Pearson’s correlation of the latent variable
to the distance from the robot to the red, green, and blue cylinders. The distance
function was given by Eq. 1,

dCylti =
T∑

t=1

3∑

i=1

‖(loct − cyli)‖, [1]

where ‖(loct − cyli)‖ is the Euclidean distance between the location of the
robot, loc, and the location of cylinder, cyl. The distance, dCyl, was calculated for
each i cylinder at time t with T equal to 2,000 time steps. This created a vector of
length 2,000 of the distances to each cylinder object (dCyl) in the simulation. The
sensitivity of each latent variable to the cylinder objects was then given by Eq. 2,

cylni =
N∑

n=1

3∑

i=1

corr(lvn, dCyli), [2]

where N is the number of latent variables, i is the cylinder index, and lvn is the
response of the latent variable n for the 2,000 time steps. The resulting cylni are
correlation coefficients for each latent variable to the red, green, and blue cylinder
objects.

Head direction sensitivity was measured by Pearson’s correlation of the latent
variable to a cosine tuning curve with one of 16 preferred directions, which were
evenly spaced from zero to 2π. The cosine tuning curve was given by Eq. 3,

rHDti =
T∑

t=1

16∑

i=1

max(0.0, cos(rott − pdi)), [3]

where the expected cosine tuning response for each i preferred direction pd
was calculated based on the robot’s heading rot at data point t with T equal to
2,000 time steps. This created a vector of length 2,000 of expected head direction
responses for each preferred direction (rHD). The sensitivity of each latent variable
to head direction was then given by Eq. 4,

hdni =
N∑

n=1

16∑

i=1

corr(lvn, rHDi), [4]

where N is the number of latent variables, i is the preferred direction index, and
lvn is the response of the latent variable n for the 2,000 time steps. The resulting
hdni are correlation coefficients for each latent variable for each of the 16 idealized
head direction cells.
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Place cell sensitivity was measured by Pearson’s correlation of the latent
variable to a 2D Gaussian centered at one of 16 locations, which were evenly
spaced across the robot’s arena. The Gaussian function was given by Eq. 5,

rPlcti =

T∑

t=1

16∑

i=1

exp(−‖(loct − ctri)‖)
σ

, [5]

where‖(loct − ctri)‖ is the Euclidean distance between the location of the robot,
loc, and the centroid of the place cell, ctr, and σ was set to 0.33. The response,
rPlc, was calculated for each i place at time t with T equal to 2,000 time steps. This
created a vector of length 2,000 of expected place cell responses for each location
(rPlc). The sensitivity of each latent variable to place was then given by Eq. 6,

plcni =
N∑

n=1

16∑

i=1

corr(lvn, rPlci), [6]

where N is the number of latent variables, i is the preferred direction, and lvn is
the response of the latent variable n for the 2,000 time steps. The resulting plcni

are correlation coefficients for each latent variable for each of the 16 idealized
place cells.

Data, Materials, and Software Availability. Neural network code and sim-
ulation software have been deposited in Zenodo (10.5281/zenodo.7121464;
10.5281/zenodo.7114757) (63).

ACKNOWLEDGMENTS. This work was supported by Air Force Office of Scien-
tific Research Contract FA9550-19-1-0306, by the National Science Foundation
Information and Intelligence Systems Robust Intelligence (Award 1813785) and
by the NSF Neural and Cognitive Systems Foundations Award Information and
Intelligence Systems (Award 2024633).

1. A. S. Alexander, D. A. Nitz, Retrosplenial cortex maps the conjunction of internal and external spaces.
Nat. Neurosci. 18, 1143–1151 (2015).

2. M. L. R. Meister, E. A. Buffalo, Neurons in primate entorhinal cortex represent gaze position in multiple
spatial reference frames. J. Neurosci. 38, 2430–2441 (2018).

3. M. Meister, Memory system neurons represent gaze position and the visual world. J. Exp. Neurosci.
12, 1179069518787484 (2018).

4. M. Geva-Sagiv, L. Las, Y. Yovel, N. Ulanovsky, Spatial cognition in bats and rats: From sensory
acquisition to multiscale maps and navigation. Nat. Rev. Neurosci. 16, 94–108 (2015).

5. N. Ulanovsky, C. F. Moss, Hippocampal cellular and network activity in freely moving echolocating
bats. Nat. Neurosci. 10, 224–233 (2007).

6. D. B. Omer, S. R. Maimon, L. Las, N. Ulanovsky, Social place-cells in the bat hippocampus. Science 359,
218–224 (2018).

7. A. Sarel, A. Finkelstein, L. Las, N. Ulanovsky, Vectorial representation of spatial goals in the
hippocampus of bats. Science 355, 176–180 (2017).

8. P. Byrne, S. Becker, N. Burgess, Remembering the past and imagining the future: A neural model of
spatial memory and imagery. Psychol. Rev. 114, 340–375 (2007).

9. E. R. Chrastil, S. M. Tobyne, R. K. Nauer, A. E. Chang, C. E. Stern, Converging meta-analytic and
connectomic evidence for functional subregions within the human retrosplenial region. Behav.
Neurosci. 132, 339–355 (2018).

10. B. J. Clark, C. M. Simmons, L. E. Berkowitz, A. A. Wilber, The retrosplenial-parietal network and
reference frame coordination for spatial navigation. Behav. Neurosci. 132, 416–429 (2018).

11. R. A. Epstein, E. Z. Patai, J. B. Julian, H. J. Spiers, The cognitive map in humans: Spatial navigation and
beyond. Nat. Neurosci. 20, 1504–1513 (2017).

12. T. Oess, J. L. Krichmar, F. Rohrbein, A computational model for spatial navigation based on reference
frames in the hippocampus, retrosplenial cortex, and posterior parietal cortex. Front. Neurorobotics
11, 4 (2017).

13. A. Bicanski, N. Burgess, A neural-level model of spatial memory and imagery. eLife 7, e33752 (2018).
14. E. L. Rounds, A. S. Alexander, D. A. Nitz, J. L. Krichmar, Conjunctive coding in an evolved spiking model

of retrosplenial cortex. Behav. Neurosci. 132, 430–452 (2018).
15. T. Danjo, T. Toyoizumi, S. Fujisawa, Spatial representations of self and other in the hippocampus.

Science 359, 213–218 (2018).
16. D. Derdikman, E. I. Moser, A manifold of spatial maps in the brain. Trends Cogn. Sci. 14, 561–569

(2010).
17. S. M. Kim, S. Ganguli, L. M. Frank, Spatial information outflow from the hippocampal circuit:

Distributed spatial coding and phase precession in the subiculum. J. Neurosci. 32, 11539–11558
(2012).

18. P. E. Sharp, Subicular cells generate similar spatial firing patterns in two geometrically and visually
distinctive environments: Comparison with hippocampal place cells. Behav. Brain Res. 85, 71–92
(1997).

19. A. A. Wilber et al., Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of
the rat. Front. Neural Circuits 8, 146 (2015).

20. D. P. Kingma, M. Welling, An introduction to variational autoencoders. Found. Trends Mach. Learn. 12,
307–392 (2019).

21. Cyberbotics, Webots open source robot simulator. http://www.cyberbotics.com/. Accessed 22
September 2022.

22. O. Michel, Webots: Professional mobile robot simulation. J. Adv. Robotics Syst. 1, 39–42 (2004).
23. W. E. Skaggs, B. L. McNaughton, M. A. Wilson, C. A. Barnes, Theta phase precession in hippocampal

neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).
24. J. L. Kubie, R. U. Muller, E. Bostock, Spatial firing properties of hippocampal theta cells. J. Neurosci.

10, 1110–1123 (1990).
25. T. J. Wills, F. Cacucci, N. Burgess, J. O’Keefe, Development of the hippocampal cognitive map in

preweanling rats. Science 328, 1573–1576 (2010).
26. L. M. Frank, G. B. Stanley, E. N. Brown, Hippocampal plasticity across multiple days of exposure to

novel environments. J. Neurosci. 24, 7681–7689 (2004).
27. E. C. Tolman, Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948).
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