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ABSTRACT OF THE DISSERTATION

Exponential time integration and chemical combustion simulations

by

Jared James Stewart

Doctor of Philosophy in Applied Mathematics

University of California Merced, 2024

Mayya Tokman, Chair

Computational combustion plays a major role in engineering applications. How-

ever, solving the large systems of differential equations that model combustive

processes is challenging. One of the major computational difficulties with the nu-

merical modeling of combustion lies in the widely varying time scales present in

the model equations that describe chemical interactions of species with the fluid

and thermodynamic transport phenomena. The resulting dramatic stiffness of

the equations demands the development of more efficient temporal integrators to

enable efficient and accurate combustion simulation.

Traditionally, the stiffness of computational combustion models has been ad-

dressed using implicit methods. However, the performance of the implicit schemes

depends highly on the availability of an efficient preconditioner to alleviate stiffness

constraints. Additionally, due to the complexity of the coupling between chem-

istry, fluid, and transport phenomena, splitting is often used to simplify the time

integration of the model equations. Splitting, in turn, reduces the accuracy of the

approximation. While constructing a preconditioner for a portion of the source

terms, such as chemical reactions, is feasible, this task becomes more complicated

if one considers the full source term of the equations.

Exponential integrators have recently emerged as an efficient alternative to

implicit methods for solving large-scale stiff systems, particularly when no effective

preconditioner is available. In this thesis, we explore whether exponential methods

xi



can be used for combustion simulations and study the computational advantages

of such schemes.

We first explore how to tackle the stiff nature of chemical kinetics in a model

that forgoes transport phenomena to isolate the chemical kinetics terms and forms

the core of various more complex combustion models. A novel time adaptive expo-

nential integrator is presented and then applied to this zero-dimensional (Zero-D)

combustion problem. We demonstrate that the new method can perform compa-

rably to well-established implicit-Krylov time integration methods. We study the

performance of the exponential integration methods and demonstrate how they

are affected by the spectrum of the problem.

We then extend the chemical kinetics core to include transport phenomena and

develop an exponential integration-based numerical approach to the propagating

flame front model in one dimension. In addition to the embedded homogeneous

reactor problem, advection and diffusion terms are added, and continuity is con-

sidered, which generates a highly coupled system of PDEs. In these problems,

operator splitting is typically used to separate the stiff chemical reaction source

terms from the much slower transport phenomena. Effectively, this reduces the

equations to a Zero-D problem and a transport problem, which needs to be solved

at each time step. While effective, this introduces unfavorable splitting errors;

we demonstrate that this split can be avoided when using an exponential time

integration scheme. We study the performance of the new exponential integration

approach for the model using several different chemical mechanisms and compare

the performance of the new integrators to the state-of-the-art NGA code, which

uses implicit methods.

Our computational models and numerical experiments indicate that exponen-

tial methods offer a promising approach to modeling combustion and highlight

directions for further studies that can help to develop more efficient time integra-

tors for computational combustion problems.

xii



Chapter 1

Introduction

Many dynamic processes in science and engineering are modeled as initial value

problems for either systems of ordinary (ODEs) or partial differential equations

(PDEs). With the method of lines and an appropriate spatial discretization, PDEs

may be rewritten as a system of ODEs. However, analytic solutions to these com-

monly large-scale, nonlinear systems of ODEs are infeasible, and the primary tools

to solve these systems are numerical simulations. This, together with the grow-

ing demand for more efficient and accurate numerical algorithms and techniques,

demonstrates the increasingly important role of scientific computing in science and

engineering.

Combustion technology is ubiquitous in the transportation and energy indus-

tries. The common goal of these fields is to leverage the properties of controlled

exothermic chemical reactions to produce hot gases that are then expanded or used

for heating. Some practical applications are jet engines, which provide means of

propulsion for airplanes; internal combustion engines (ICEs) in vehicles; and rock-

ets for space exploration and satellite delivery. Before numerical simulations, the

only way to study this type of chemistry was through experiments, theory, and cre-

ating reduced models of chemistry that would yield analytic solutions. Numerical

simulations allow for the use of realistic, complex, high-fidelity models that couple

evolution equations together in non-trivial geometries for zero, one, two, or three

spatial dimensions. For example, airplane jet engines, with their complex sets of

moving parts interacting with hot combusting jet fuel, can be simulated with high

1
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fidelity, allowing access to data and information about these systems that would

otherwise not be available. Thus, computer simulations significantly speed up the

research and development of new combustion technologies.

The combustion process involves a complex series of branching chemical re-

actions occurring over a wide range of temporal scales. The broad spectrum of

scales manifests in the wide spread of eigenvalues of the Jacobian derived from the

chemical source terms appearing in the mass conservation equations. A majority

of these eigenvalues are negative, but positive eigenvalues associated with the ex-

plosive behavior of the system may also be present once combustion commences

[1, 2, 3]. Numerical simulation of combustion is complicated by the stiffness of

the combustion models, characterized by the large ratio of the smallest and largest

magnitude eigenvalues.

Combustion is modeled by a system of PDEs, which couples chemical kinet-

ics with both thermodynamic processes and fluid transport. In order to address

the complexity introduced by this highly nonlinear coupling, splitting methods are

often leveraged to break the larger problem into a series of more manageable sub-

systems solved one after the other. A common splitting strategy is to integrate the

chemical reaction terms separately from the transport phenomena [4]. This integra-

tion is typically handled implicitly due to the problem’s stiffness, commonly with

one of the Backward Differentiation Formula (BDF) methods [5, 6]. A number of

scientific computing software packages, such as the Sundials suite [7], implement

such algorithms. If an efficient preconditioner is chosen, the BDF methods are

computationally quick when applied to spatially homogeneous chemical kinetics

problems with large numbers of species [8, 9].

Additionally, splitting introduces a significant numerical error in the solution.

It may be desirable to avoid splitting and integrating the forcing terms that include

both the chemistry and transport terms together. It is reasonable to ask whether it

is possible to develop a more efficient time integrator that can allow for large time

step sizes akin to implicit methods while still developing computational savings.

Over the past decades, exponential time integrators, which work well and often

outperform implicit methods for large-scale stiff systems, have been developed
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[10, 11, 12, 13]. In this thesis, we explore the applicability of exponential schemes to

combustion problems and demonstrate that the exponential integration approach

is indeed promising in this field.

The core concept of exponential time integrators is to express the approximate

solution in terms of matrix-vector products of exponential and exponential-like

functions of the Jacobian or its estimate. Exponential schemes result from choos-

ing efficient algorithms to estimate these products in conjunction with an appro-

priate quadrature rule. Similar to a rational function of the Jacobian used in an

implicit method, exponentials of this matrix allow integration with a time step

size that far exceeds the stability constraints suffered by explicit integrators. Si-

multaneously to the introduction of Krylov-type algorithms [14], which compute

matrix-vector products for exponential or exponential-like matrix functions, the

computational savings delivered by these computations became clear when com-

pared to using the iterative algorithms that estimate rational functions of a matrix.

Over the past several decades, many classes of exponential methods have been con-

structed with these ideas, and they demonstrably work well for several applications

[10, 11, 12, 13]. In particular, Exponential Propagation Iterative (EPI) methods

have been proposed for general large-scale stiff systems of differential equations

[13, 10], and when applied, provide computational savings compared to commonly

used implicit and explicit integrators for problems from plasma physics [15], fluid

dynamics [16, 17] and other fields [18]. Combining EPI methods with the KIOPS

algorithm to compute linear combinations of exponential-like φk functions of ma-

trices with vectors delivered efficient schemes for problems where constant time

stepping is used [19]. These results inspire our investigation into whether simi-

lar exponential methods can be effectively applied to problems in computational

combustion. The main focus of this thesis is to employ ideas and advances in expo-

nential integration and construct methods that can deliver computational savings

for combustion modeling.

The thesis is organized as follows. In Chapter 2, we describe the set of com-

bustion problems that will serve as a test suite for our new methodology. We

present a detailed description of these problems, discuss the numerical challenges
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they present, and describe the practical implementation of these systems. Also, the

overall construction of an exponential integrator and the numerical linear algebra

algorithms needed to evaluate the matrix functions-vector products as part of the

exponential schemes are presented.

We describe two approaches to applying exponential integration to combustion

models. The first is found in Chapter 3, where we consider the so-called Zero-D

problem. We isolate the chemistry and explore how exponential integration per-

forms for homogeneous reactor problems. Such an application of the exponential

integrators could potentially be implemented within a splitting approach by speed-

ing up simulations of the chemical kinetics integration step. A novel third-order in

time exponential time integrator is presented and demonstrated to perform com-

parably to implicit methods.

In Chapter 4, we consider the second approach, which integrates a more com-

plex problem that couples chemical kinetics and transport processes in one di-

mension. We formulate a 1D propagating flame front problem and study the

performance of exponential methods in application to this model. We compare

exponential schemes with a split implicit-explicit method [5] and discuss the rel-

ative performance of these two numerical schemes and the advantages of the new

approach.

Finally, in Chapter 5, we summarize the results, discuss the broader implica-

tions of the work, and outline research directions for future work and development.



Chapter 2

Preliminaries

This chapter will discuss the preliminary material that provides the necessary

context and information for the subsequent chapters. We describe the numerical

characteristics of computational combustion modeling that motivate this work.

In addition, we provide a brief historical overview of exponential integrators and

describe the numerical algorithms we used for combustion simulations.

2.1 The simulation of reactive flows

Mathematical models of chemically reactive flows, such as those encountered

in combustion applications, consist of a set of conservation equations for mass,

momentum, and energy, which take the form of a system of coupled non-linear

partial differential equations (PDEs) for unsteady and spatially inhomogeneous

scalar and vector fields. Within the confines of the ideal gas model, the kinematic

and thermo-chemical states of the reactive gas are uniquely identified by the density

of each of the molecules and atoms in the gaseous mixture, the mass-averaged

velocity of the gas, and its pressure and temperature (or alternatively its specific

enthalpy or internal energy). Thus, coupled and non-linear PDEs for each field

that appears in the state vector must be solved.

The PDEs are complemented by so-called closures, such as the equation of state

for a mixture of ideal gases, a constitutive law for the stress tensor (typically the

one for Newtonian fluids), and algebraic expressions for transport properties (e.g.,

5



6

viscosity, thermal conductivity, and species diffusion coefficients) and chemical

reaction rates.

As a matter of example, each of the governing equations for the density of

species i of M reads

∂ρi
∂t

+∇ · (ρiu) = ∇ · (ρDi∇Yi) + ρωi, i = 1, . . . ,M, (2.1)

where ρi is the density of the species, t is time, u is the fluid velocity, ρ is the

mixture density, Di the species mass diffusion coefficient, Yi its mass fraction (i.e.,

the mass of species i per unit mass of the gaseous mixture), and ωi the rate of

production of mass of species i per unit mass of the mixture. In the order in which

they appear, the terms on the left-hand-side are: unsteady and convective terms.

The terms on the right-hand-side are the diffusive and chemical source terms.

In most combustion applications, the fuel consists of hundreds of individual

species [20, 21, 22, 23] (often hydrocarbons, but recently also carbon-free fuels

such as hydrogen and ammonia), which undergo thousands of chemical reactions as

they oxidize to products (e.g., carbon dioxide and water) through complex chemical

pathways involving oxygen and many intermediate species and radicals [23, 24].

Accurate modeling of the heat release rate associated with fuel oxidation and

pollutant emissions such as oxides of nitrogen requires detailed chemical models,

which feature extensive networks of chemical reactions and intermediate species

[9, 20].

Such detailed combustion mechanisms have important computational implica-

tions since they result in a large number of chemical species and chemical reactions.

Since the inclusion of a species implies that a PDE for its density field must be

solved, it is apparent how detailed combustion mechanisms result in large systems

of PDEs. Combustion mechanisms featuring O(100−1000) species are not unusual

when simulating combustion in realistic configurations. However, most simulations

attempt to reduce the number of species by adopting reduced order combustion

models [21, 25]. In fact, recent trends in combustion mechanisms show a persisting

trend whereby the number of species has increased with time so that the largest

combustion mechanisms now feature O(104) species [23].

At times, reduction of the size of the combustion mechanism is not advisable



7

due to the chemical complexity of large hydrocarbon fuel molecules, which re-

quires that many intermediate species be included in the quantitative description

of its oxidation [23, 26, 27]. Such is the case for mechanisms tasked with modeling

quantitatively the combustion of so-called transportation fuels such as gasoline

[28], diesel [29], and jet engine fuels [24, 30], including the newly proposed sustain-

able aviation fuels [31] (SAF) as those fuels feature hundreds of components and

significant chemical complexity. Furthermore, the requirement that the combus-

tion mechanism be able to predict emissions of harmful pollutants such as nitrous

oxides, polycyclic aromatic hydrocarbons (PAH), and soot (i.e., carbon particulate

matter) brings about additional complexity, increasing the dimensionality of the

models.

Beyond the obvious challenge of solving for O(100 − 1000) PDEs in addition

to those for the momentum and energy of the reactive mixture, the network of

species and chemical reactions introduces significant stiffness to the system. By

stiffness, we mean that the Jacobian, defined as the derivative of the chemical

source terms with respect to the thermo-chemical state (i.e., species densities and

temperature for isobaric applications) has a large spectrum [4]. In other words,

the eigenvalues of the chemical Jacobian are broadly distributed. In particular, the

spectrum features real negative eigenvalues of large magnitude that represent time

scales that are much smaller than those of interest. It is then clear that explicit

time integration methods are computationally inefficient, while implicit methods

are preferable for the simulation of chemical kinetics as widely accepted [5, 6,

32]. The chemical Jacobian typically features positive real eigenvalues of relatively

small magnitude as well, which represent so-called explosive modes. Those positive

eigenvalues are associated with sudden ignition and reflect the significant non-

linearity of the chemical kinetics model as explosive modes exhaust or disappear

once the gaseous system reaches equilibrium.

Once large and stiff chemical kinetics mechanisms are adopted for the simu-

lation of unsteady and spatially inhomogeneous reactive flow configurations, dis-

cretization of the governing PDEs results in very large systems with the vector

of unknowns being of high dimensionality. As a matter of example, consider the
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simulation of a laminar, steady, non-premixed coflow flame, which is a canonical

problem in numerical combustion. Such a flame features a fast moving central

jet of fuel issuing into a slowly moving coflow of oxidizing air, so that a diffu-

sion (or non-premixed) flame forms at the interface between fuel and air. Finite

difference mesh discretizations for axisymmetric coflow flames (cylindrical coor-

dinate systems with radial and axial coordinates are common) typically feature

about N = 105 grid points. If a combustion mechanism featuring M species is

considered, the number of unknowns is (M + 5) × N , since one solves for the

three components of velocity, hydrodynamic pressure, and an energy variable, e.g.,

temperature, in addition to the M species density equations (see Eq. (2.1)). Even

considering a rather “small” mechanism withM = 10 species, the problem features

(M + 5)×N ≈ 15× 105 ∼ 1.5 M unknowns.

The challenge is exacerbated further in the case of turbulent flows, which bring

about very stringent spatial and temporal resolution requirements to resolve all

pertinent scales of turbulence, which is broadly distributed with a wide dynamic

range [4]. For simulations of turbulent reactive flows, which require unsteady sim-

ulations in three dimensions, the number of grid points increases quickly upwards

of 100 M for the lowest and most modest Reynolds numbers, with finite difference

meshes featuring O(109 − 1010) grid points being state of the art at the time of

this writing.

The governing equations contain terms that represent physical processes such

as convection, diffusion, and reactions; numerical methods tailored to the time-

integration of those terms have been developed and are widely used [5, 6]. For

example, variable density reactive flows at low speeds, i.e., flows for which the

magnitude of the velocity of the fluid is smaller than the speed of sound, are mod-

eled within the low Mach number restriction of the Navier-Stokes equations [33].

Within the framework of this simplification, density is assumed to be solely a func-

tion of temperature, composition, and constant background pressure, but not of

the spatially inhomogeneous hydrodynamic pressure appearing in the momentum

equation. Such simplification is critical to computational efficiency since it removes

acoustic waves from the solution, thereby improving time step size restrictions for
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explicit time integration. Yet, coupling between reactive scalars, density, and mo-

mentum persists as fluid regions with intense exothermic chemical reactions are

characterized by large values of the velocity divergence and such non-linear cou-

pling between the momentum and thermo-chemical state of the gaseous mixture

requires specialized algorithms and methods. Specifically, the low Mach number

restriction of the Navier-Stokes equations is often solved with fractional step meth-

ods that advance momentum first, followed by the species densities and the energy

variable, and require the solution of a Poisson equation for the hydrodynamic pres-

sure at each time step [34, 35]. Segregation of the momentum equation from those

of the species densities and temperature allows replacing one large problem with

several smaller ones.

The temporal advancement of the governing equations for the species mass

densities and the energy variable (the so-called reactive scalars) is also challeng-

ing since the discrete approximations to the convective and diffusive terms bring

coupling across nearby grid points for each reactive scalar, while chemical sources

bring coupling across all scalars for each grid point. Such coupling is problematic

for implicit time-integration methods because the overall size of the problem is

equal to (M + 1) × N , where M is the number of species and N is the number

of grid points. As discussed, fully implicit methods applied to the simulations of

a modest axisymmetric flame with M = 10 and N = 105 require the solution to

a system of 1 M (non-linear) algebraic equations in 1 M unknowns at each time

step. Because of such computational challenge, most reactive flow solvers split

the time-integration of transport (i.e., convective and diffusive terms) from that of

reactions (i.e., chemical source terms) via operator splitting [34, 35]. By splitting

the terms on the right-hand side of the system of equations, methods that are most

appropriate to each task are employed. For example, the chemical source terms are

typically integrated with fully implicit Backward Differentiation Formulas (BDF)

methods implemented in available packages such as SUNDIALS. At each step,

N such integrations are performed in the form of initial value problems (IVPs),

i.e. one independent IVP per grid point.

While computationally affordable and efficient, operator splitting does intro-
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duce splitting errors [36], which limit the size of the time steps that can be taken

prior to compromising accuracy. Depending on the splitting method, the tempo-

ral order of convergence might degrade easily to first order, despite the order of

the methods used for the integration of the segregated terms being second order.

Consequently, implicit time-integration methods that avoid splitting errors while

retaining performance and accuracy for large problems are highly desirable.

Semi-implicit iterative methods blend implicit, explicit, and sometimes splitting

techniques to efficiently integrate the coupled system of reacting flow equations.

These methods can recover the stability properties of implicit methods by iteration

over each time step [36, 37, 38, 39].

These methods are varied, but they share a few common elements. First, they

employ temporal staggering, where the scalar quantities of species mass fractions,

pressure, density, and energy are stored at a half time step tn+ 1
2
and the vector

velocity is stored at the whole time step tn. For example, the popular method

of Savard et al. [36] advances the variables in the following order to construct

an iterate. First, the scalar variables are advanced, possibly with a decoupling

between the transport and chemistry source terms with different solvers, then

the density is updated, and then finally, the velocity with a predictor-corrector

method to enforce continuity. Multiple iterates of this procedure may be necessary

for accuracy and, when sufficiently converged, will ensure the true overall temporal

order of convergence is preserved despite the decoupling [36, 37, 38, 39].

Semi-implicit iterative methods also posses monolithic approaches which aim to

advance the scalar variables without the commonly used decoupling between the

transport and chemistry source terms [37]. This is accomplished by factoring the

scalar Jacobian source term into the exact chemical and second-order approxima-

tion of the transport source term. This practice was found to be computationally

efficient compared to splitting strategies and allowed for generally larger overall

time steps [37]. However, in order to maintain the overall second order of conver-

gence with a time step of ∆t, the residuals on the sub-iterates must be less than

O(∆t2). Thus, a balancing act between the costly sub-iterating process, the desire

for the higher temporal order of convergence, and accuracy must be made.



11

2.1.1 Summary of challenges

In summary, the challenges associated with the numerical simulation of chem-

ically reactive flows, such as those pertinent to combustion applications, are as

follows.

1. Problem size. Once discretized on a computational mesh, the number of

unknowns increases linearly with the number of chemical species included in

the kinetics mechanism and linearly with the number of grid points. This

is especially problematic for detailed combustion mechanisms featuring a

large number of species and for simulations of turbulent reactive flows, which

require governing equations in three-dimensions.

2. Chemical stiffness. Kinetics mechanisms for combustion applications fea-

ture significant stiffness in that the Jacobian associated with the chemical

source terms has a broad spectrum with real negative eigenvalues of large

magnitude. Such occurrences make explicit time integration methods prob-

lematic and inefficient since the time scales of interest are much longer than

those associated with the largest negative eigenvalues. While desirable for

accuracy and stability, the monolithic implicit time-integration of the semi-

discrete form of the PDEs requires addressing the large problem size of the

fully coupled system of equations with efficient and robust methods.

3. Non-linearity of the equations. The mathematical models for simulat-

ing unsteady and spatially inhomogeneous chemically reactive flows are non-

linear. Important non-linearities originate from the convective terms in the

governing transport equations, the product of transport coefficients (which

are themselves non-linear functions of the state), and the fields and their gra-

dients. Additional critical non-linearities are present in the functional form

of the chemical source terms, which are proportional to the exponential of the

mixture temperature (the so-called Arrhenius rate coefficients). Somewhat

more benign non-linearities in the chemical source terms pertain to the prod-

uct of the concentrations of the chemical species. The presence of non-linear
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terms in the mathematical models complicates the task of time integration

with implicit methods, which require the solution of large non-linear systems

of algebraic equations at each time step.

4. Density-velocity coupling and splitting errors. In the low-Mach num-

ber limit of the reactive Navier-Stokes equations, velocity is coupled to the

local thermo-chemical state of the mixture through the density of the gaseous

mixture and its transport properties, which depend on the species concen-

trations and temperature. Such coupling is usually addressed by the frac-

tional step method, which segregates the time integration of the momentum

equation from that of the reactive scalars, i.e., species densities and energy

variable – either the temperature or the enthalpy of the mixture. Fractional

step methods do require the solution of a Poisson equation for the hydro-

dynamic pressure, which can be computationally demanding. Moreover, the

reactive scalar fields are coupled locally to each other by chemical reactions

and across grid points by gradient operators. While operator splitting meth-

ods are commonly used to reduce the size of the problems, they introduce

temporal errors that might easily degrade temporal convergence to first or-

der.

Given these challenges, the questions we ask in this work are whether it is

possible to develop numerical time integrators that (i) allow for more efficient

integration of the chemical kinetics portion of the problem and/or (ii) enable a

monolithic update of the scalar variables without the use of semi-implicit itera-

tive methods that will (iii) perform comparably to the state-of-the-art. In the

subsequent chapters, we consider these two challenges and propose approaches to

temporal integration based on exponential propagation ideas, as described below.

2.2 Exponential Time Integrators

Over the past several decades, exponential integrators emerged as an efficient

alternative to explicit and implicit methods in solving initial value problems for
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certain classes of large-scale stiff systems of ODEs, such as

dy

dt
= f(y(t)), y(t0) = y0. (2.2)

Original papers introducing exponential integrators date back to the 1960’s

[40]. Initially, exponential schemes have not been widely adopted for large-scale

problems since the algorithms to approximate products of exponential-like func-

tions of matrices and vectors were not sufficiently efficient [41]. However, with the

advent of Krylov-projection-based methods to approximate these products [14],

the efficiency of the exponential methods compared to implicit techniques became

notable and spurred more research into the construction of schemes of this type

[12, 13].

The main idea behind exponential methods is that the solution of a given IVP

can be expressed in terms of exponential-like functions of a Jacobian matrix. Let

tn = t0 + nh be a discretization of the time interval over which the solution has

to be computed, and yn = y(tn) be a solution of the IVP at time tn. Using the

Taylor expansion, the right-hand-side of (2.2) around the time tn, the problem can

be written as

y′ = f(y) = f(yn) + f ′(yn)(y − yn) +R(y), (2.3)

where R(y) = f(y) − f(yn) − f ′(yn)(y − yn) is the nonlinear remainder function.

Defining the Jacobian of f(y) evaluated at time tn as Jn = f ′(yn) and using an

integrating factor e−Jnt equation (2.3) can be written in integral form as

y(tn + h) = yn + (hJn)
−1
(
eJnh − 1

)
hfn +

∫ tn+h

tn

eJn(tn+h−t)R(y(t))dt. (2.4)

Changing the integration variable t to s with t = tn+sh and defining φ1(z) =
ez−1
z

(2.4) can be written as

y(tn + h) = yn + φ1(hJn)hfn +

∫ 1

0

eJnh(1−s)hR(y(tn + sh))ds. (2.5)

Equation (2.5) usually serves as a starting point for the derivation of an exponential

integrator. To construct a particular exponential method, one has to develop an

approximation of the nonlinear integral in (2.5) and to choose an algorithm to

estimate the product of an exponential-like function φ1 of a matrix and a vector.
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Higher order exponential integrators are typically constructed by approximating

the nonlinear remainder R(y(tn + sh)) with a polynomial in s, which results in

the approximate solution y(tn + h) being expressed as a linear combination of

φ-functions defined by

φ0(z) = ez, φ1(z) =
ez − 1

z
, φ2(z) =

ez − z − 1

z2
, (2.6)

and, in general,

φk(z) =

∫ 1

0

ez(1−θ) θk−1

(k − 1)!
dθ. (2.7)

Over the past several decades, a number of exponential integrators have been

constructed, analyzed, and used [10, 11, 16, 15, 17, 18, 19]. Based on the literature

review and our experience with using exponential integrators for various applica-

tions including combustion [18, 42, 43] in this work, we focus on exploring the use

of Exponential Propagation Iterative (EPI) schemes with Krylov-projection-based

estimators for products exponential matrix functions and vectors for combustion

modeling.

EPI methods have been specifically designed to reduce the overall computa-

tional cost of an exponential integrator for large-scale stiff problems, particularly

when used with Krylov-projection based algorithms. Krylov-projection algorithms

were first proposed as a method to estimate a general function of a matrix-vector

product by Van der Vorst [14] and since then were developed further and shown

to be the most efficient general method to estimate products of type F (A)v where

A is a large stiff matrix. The basic idea of a Krylov algorithm is to compute an

estimate of F (A)v using projections onto the Krylov subspace

Km = span
{
v,Av, ..., Am−1b

}
. (2.8)

Since the Krylov vectors Akv do not constitute a well-conditioned basis of the

Krylov subspace, an Arnoldi iteration is typically used to construct an orthonormal

basis v1, v2, ..., vm which spans Km. If Vm = [v1v2, ..., vm] has orthonormal vectors

vk as columns, then matrix P = VmV
T
m is a projector onto the Krylov space.

Arnoldi orthogonalization algorithm can be written in a matrix form as

AVm = VmHm + hm+1,mvm+1e
T
m (2.9)
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where em the mth unit vector in Rm and Hm is an upper Hessenberg matrix

which can be calculated using the orthogonality of vectors vk by Hm = V T
mAVm.

Approximating F (A)v is then accomplished with the following estimates:

F (A)v ≈ VmV
T
mF (A)VmV

T
m v ≈ VmF (Hm)||v||2e1. (2.10)

Since Hm is then a small m×m matrix F (Hm) is calculated using Pade approxi-

mation with scaling and squaring procedure [44].

This classic version of the Krylov projection algorithm has been further refined

in a series of publications [45, 46, 47] to improve its efficiency with the use of

substepping and algorithms to estimate the parameters of the algorithm. As a

result, the KIOPS algorithm has been developed and shown to be very efficient for

a wide range of application problems. KIOPS estimates linear combinations

φ0(A)b0 + φ1(A)b1 + ...+ φk(A)bk. (2.11)

Using a reformulation of the problem to a single exponential of an augmented

matrix and an adaptive substepping procedure. We give a brief overview of KIOPS

in section 3.2 and refer the reader to [47] for details of the algorithm.



Chapter 3

Numerical modeling of

homogeneous batch reactors.

The simulation of chemically reactive systems is challenging due to their wide

range of spatial and temporal scales. Furthermore, transport of mass, momentum,

and energy are tightly coupled to chemical reactions at the molecular scale. For

many problems in the low Mach number regime, chemical reaction rates are sig-

nificantly faster than those of transport processes. When systems like these are

solved numerically, it is a common practice to use temporal integration methods

with Strang splitting, which advances chemistry and transport separately. How-

ever, integration of the chemical source terms is difficult because it involves a

large number of reactions occurring with widely-ranging reaction rates. In other

words, while Strang splitting addresses the global stiffness of the problem, inte-

gration of the chemistry is still stiff. The development of efficient time integrators

for the chemical source terms appearing in the transport equations for the species

concentrations is a critical task in computational combustion. In this paper, we in-

vestigate whether exponential time integration, which has proven efficient in other

fields, offers advantages over more established approaches for chemical kinetics

problems in combustion.

The stiffness of systems of ordinary differential equations that describe the

evolution of reactive species and temperature in a homogeneous (Zero-D) reactor

makes explicit time integration methods impractical since stability constraints on

16
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time-step sizes are too severe. Instead, implicit schemes are typically used. Com-

monly employed methods include backward differentiation formulas (BDF)-based

integrators [4, 5, 6, 48]. These algorithms are typically used in conjunction with a

modified Newton solver and Krylov-projection-type iterative methods to solve its

embedded linear systems [5, 6]. Whether the performance of such implicit meth-

ods is satisfactory or not is often predicated on whether an efficient preconditioner

can be constructed to accelerate the linear solves. Also, the functional form of

the chemical source terms is complex (these source terms and their Jacobians are

most often evaluated by software packages such as TCHEM [49], Cantera [50], or

Chemkin[51]), so it is often quite challenging to construct an effective precondi-

tioner [4, 8], particularly one that is general enough to be effective across chemical

mechanisms. Recently, exponential methods emerged as an efficient alternative

to implicit integrators for problems for which an effective preconditioner is not

available [10, 13, 32].

Herein, we apply a new time-adaptive exponential integrator to the simula-

tion of the temporal evolution of chemically reactive and spatially homogeneous

systems, i.e. chemical reactors that are described by a system of ordinary differen-

tial equations (ODEs). It is found that the novel exponential time integrator will

accurately resolve all three chosen chemical mechanisms. Chapter 3 is organized

as follows. Section 3.1 describes the governing differential equations. In Section

3.2, we discuss the time integration method. Section 4.3 presents the results and

includes a discussion of the comparative performance of legacy implicit and novel

exponential methods. The last Section 4.4 outlines the conclusions of our study

and future directions.

3.1 Governing equations

We consider a spatially homogeneous chemically reactive system consisting of

an ideal gaseous mixture undergoing chemical reactions at constant pressure. The

mass fractions of each chemical species and temperature uniquely identify the

thermo-chemical state of the mixture.
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Chemical species react with each other according to several reactions. For

reaction j, the forward reaction rate constant is given in Arrhenius form by

fj = AjT
αjexp

(−Ej

RT

)
, (3.1)

where Aj, and αj are pre-exponential and exponential constants, R is the universal

gas constant, and Ej is the activation energy. If reaction j is reversible, then the

backwards reaction constant, bj, is not zero and is given directly in Arrhenius form

(3.1) or leveraging the equilibrium constant Kj:

bj = fjKj. (3.2)

The net rate of reaction, representing the number of times that the reaction occurs

in the forward direction per unit time per unit volume, is the difference between

forward and backward rate constants multiplied by the molar concentration of the

species participating in the reaction raised to their stoichiometric coefficients, i.e.

Rj = fj

K∏
i=1

χ
v′ji
i − bj

K∏
i=1

χ
v′′ji
i , (3.3)

where v′ji and v′′ji are the reactant and product stoichiometric coefficients respec-

tively for species i in reaction j, and K is the number of chemical species.

Production or loss of a species because of reaction is equal to the difference

between the forward and backward stoichiometric coefficients times the rate of

reaction. We denote the number of reactions as N , and the total amount of

species produced is found by summing over all reactions

ω̇i =
N∑
j=1

(v′′ji − v′ji)Rj. (3.4)

The rate of change in temperature is given by the total volumetric heat production

divided by the thermal capacity of the mixture per unit volume. The negative

sign in equation (3.5a) exists because energy is understood with respect to the

chemical bonds, not the gas; if these bonds lose energy, the gas’ energy increases.

The change in the species mass fractions with respect to time is the net rate of

production normalized to mass fractions. The resulting system of ODEs models

the evolution of the temperature and species mass fractions:
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dT

dt
= − 1

ρcp

N∑
k=1

ω̇kHkWk, (3.5a)

dYi

dt
=

1

ρ
ω̇iWi, i = 1, ...,K. (3.5b)

The above system of equations includes the gas density, ρ, the heat capacity at a

constant pressure, cp, the molar rate of production, ω̇k, the specific enthalpy, Hk,

and the species’ molar mass, Wk. The system of equations requires a closure for

density ρ according to the equation of state for an ideal gas.

Equations (3.5a-3.5b) is a general model for a spatially homogeneous isobaric

reactive mixture. To finalize the model a specific list of species and reaction pa-

rameters must be provided. These are defined through carefully assembled kinetic

mechanisms that describe the species present in the gas solution, the chemical

reactions that occur, and the species’ thermodynamic properties. The resulting

model determines the evolution of the specific gas.

We will use gases consisting of hydrocarbon fuels (CxHy) and oxygen (O2), with

additional species such nitrogen (N2) and argon (Ar) accounting for most of the

mass [24, 25, 28].

In order to model the complexity of chemical reactions and the numerous

branching pathways typical of large hydrocarbon oxidation, a large number of

species and reactions are required. We study three hydrocarbon-based kinetic

mechanisms: GRI3.0 [52], n-butane [53], and n-dodecane [54], which model the

combustion of methane, butane, and dodecane, respectively. Methane, CH4, while

the smallest hydrocarbon we study, is found in a wide variety of fuels and is the

main component of natural gas. The methane mechanism is detailed and contains

53 species and 325 reactions. The second mechanism is for butane, C4H10, and

contains 154 species and has 680 reactions. Butane behaves similarly to more com-

plex practical fuels [53] and is a component of gasoline [28]. The last mechanism is

n-dodecane, which is the largest hydrocarbon, C12H26, we study. It is a component

of kerosene and some jet fuels [55]; it contains 105 species and 420 reactions.



20

3.2 Methods & Implementation

For ease of notation, we organize the thermo-chemical state variables in a vector

ordered with temperature followed by species in the same order as they appear in

the chemical mechanism with Ns being the number of species:

y(t) = [T (t), Y1(t), ... , YNs(t)]
T . (3.6)

Denoting the initial gas state of the mixture y(t0) = y0, one obtains the initial

value problem

dy(t)

dt
= F (y(t)), (3.7a)

y(t0) = y0. (3.7b)

Time is discretized as [t0, t1, . . . , tm], where ti+1 = ti + hi, and hi is the time step

size. Approximations of the state, right-hand-side function and Jacobian at time

tn are denoted as yn ≈ y(tn), Fn ≈ F (y(tn)), Jn ≈ J(y(tn)), respectively.

We employ TCHEM [49] in order to compute the chemical source terms and

Jacobians. Given the mass fractions, temperature, and gas pressure, TCHEM re-

turns both Fn and Jn. The Jacobian can be computed either via finite differences

or analytically. We use the analytical version to avoid the inaccuracies associated

with approximations. Moreover, it is well known that computation of the Jaco-

bian via finite differences is inefficient and computationally expensive for large

mechanisms [56].

The simulation of combustion processes requires the solution of nonlinear and

stiff systems of ordinary differential equations, which can be large in size depend-

ing on the chemical mechanism. Exponential propagation iterative methods of

Runge–Kutta type (EPIRK) have been shown to perform efficiently for a range

of large-scale stiff systems [47], including reaction-diffusion models [10]. Because

of the record of success of EPIRK methods and the requirement that the time

step size be adaptive in order to simulate ignition problems, we extend the EPIRK

framework to a novel time-adaptive third-order EPIRK method with an embedded

second-order scheme for error estimation. The details of the derivation of order
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conditions and their solution for constructing a particular scheme can be found

in [10]. The same approach is used to formulate the following EPIRK integrator,

EPI3V:

Y1 = yn + φ1

(
3
4
hnJn

)
hnFn, (3.8a)

R(z) = f(z)− Fn − Jn(z − yn), (3.8b)

yn+1 = yn + φ1(hnJn)hnFn + φ3(hnJn)2hnR(Y1). (3.8c)

The φ-functions are

φ1(z) =
ez − 1

z
, φ3(z) =

ez − 1
2
z2 − z − 1

z3
. (3.9)

The method above uses matrix arguments for the φ-functions; computing approx-

imations of the product of exponential-like matrix functions and vectors of type

φk(A)v is the largest computational expense of exponential integrators. Systems

of N ordinary differential equations that model realistic physical processes result

in large exponential matrices of size N × N that make the evaluation of the φ-

functions prohibitively expensive with traditional approximations like Padé [44] or

Taylor expansions. Our EPIRK method was designed to leverage KIOPS, an adap-

tive Krylov-projection algorithm designed to estimate φ-functions [47]. In KIOPS,

an augmented matrix Ã is used to express the linear combination of φ-functions

as:

w(τ) =

p∑
j=0

τ jφj(τA)bj = eτÃv. (3.10)

A sub-stepping procedure is then employed to estimate the successive products of

matrix exponentials and vectors by iteratively letting τ = τ1 + τ2 + ...+ τM :

eτÃv = e(τ0+τ1+...+τM )Ãv = eτ0Ãeτ1Ã...eτM Ãv. (3.11)

Each product e(τlÃ)vτl is approximated with a Krylov projection in the KIOPS

algorithm. With the length of Krylov basis being m, V an N × m matrix with

Krylov basis vectors vτi as its columns, and H an m × m matrix so that Hij =

(Ãvτr,j)
Tvτr,i we have the projection

eτiÃvτi ≈ V eτiHV Tvτi , (3.12)
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where eτlH is approximated using Padé with a squaring and scaling algorithm [44].

We use the Exponential Propagation Integrators Collection (EPIC) C++ pack-

age [57], which includes implementation of EPIRK methods and KIOPS and allows

for easy implementation of new methods. EPIC provides a linear combination of

products of φ-functions and vectors or a single product estimated at various scalar

multiples of the φ-function’s arguments. In order to obtain a linear combination

of φ-function vector products, the user provides a matrix A and vectors bi. EPIC

then uses KIOPS to approximate

φ0(A)b0 + φ1(A)b1 + ...+ φp(A)bp. (3.13)

The user can also provide a single bi and a set of intermediate time points

[T1, . . . , TM ], Tj+1 > Tj, Tj ∈ (0, 1). (3.14)

The KIOPS algorithm allows the time integrator to stop at each Tj and save the

values:

φi(T1A)bi, φi(T2A)bi, ... , φi(TMA)bi, φi(A)bi. (3.15)

We accomplish all φ-function approximations with two calls to KIOPS. The

first call estimates both

φ1

(
3
4
hnJn

)
hnFn, and φ1(hJn)hnFn. (3.16)

The second call estimates

φ3(hnJn)2hnR(Y1). (3.17)

Two separate calls are necessary in order to obtain the local truncation error

in support of the adaptive time step size selection algorithm. The lower order

exponential Euler method is:

yn+1 = yn + hnφ1(hJn)Fn. (3.18)

Thus, by subtracting the right hand side of equation (3.18) from the right hand

side of equation (3.8c), we obtain a local truncation error estimate:

φ3(hnJn)2hnR(Y1). (3.19)
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This quantity is obtained by the second call to the KIOPS algorithm (3.17).

We implemented a standard adaptive controller from Wanner et al. [58] to

create a time-adaptive method. After a step is calculated, the local truncation

error (3.17) is compared with the controller’s tolerance. If not within tolerance,

and the step is rejected, the time step is adjusted and the process is repeated.

Once the tolerance is achieved, the step is accepted, the time step is adjusted, and

the iteration proceeds to the next step. We also implement slight modifications

due to the specific features of an ignition process. Step sizes change dramatically

during the chain-branching phase of ignition and shortly thereafter. The following

constraints limit the change between step sizes: hold, hnew, and the estimated new

step size ĥ hnew = 2ĥ, ĥ > 100hold

hnew = 1
100

ĥ, ĥ < 1000hold.
(3.20)

Implicit methods have shown to be effective for solving stiff systems of equations

arising from modeling homogeneous chemically reacting systems for over thirty

years [5, 6]. The CVODE package from Lawrence Livermore National Laboratory

is widely used for solving general systems of ODEs. This C++ package imple-

ments a variable-coefficient ODE (VODE) solver offering adaptivity of the step

size [7]. The user can select linear and non-linear solvers from a list of available

options. Because the proposed EPI3V method uses Krylov projection methods,

we configure CVODE to allow for the most informative comparison possible. We

choose the BDF non-linear solver and the Scaled Preconditioned Generalized Min-

imized Residual (SPGMR) linear solver. Additionally, we force the Jacobian to be

evaluated once each time step and fix the maximum order to 3.

The EPIC package uses NVector data structures from SUNDIALS for vector

operations. The current version of EPIC is compatible with SUNDIALS v5.7.

3.3 Numerical experiments

Our novel time integration method is compared to that implemented in CVODE

by simulating the ignition of mixtures of air and hydrocarbons. Ignition is a funda-
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mental process in combustion, whereby the gaseous species in the mixture undergo

accelerating exothermic chemical reactions. As the energy in the chemical bonds

of the fuel is converted into sensible enthalpy, it contributes to an increase in the

mixture temperature, which in turn leads to an acceleration of the reaction rate.

Thus, ignition is characterized by a sudden and abrupt exponential increase in

temperature and rate of chemical reactions, which are accompanied by a corre-

sponding depletion of fuel and oxidizer and the formation of combustion products,

i.e., water and carbon dioxide. Once either the fuel or oxidizer is exhausted, the

mixture reaches an elevated equilibrium temperature and composition, which no

longer vary in time.

In this work, we hasten the onset of ignition by setting the initial temperature

at or above 1000 Kelvin, which is sufficient to induce the thermal decomposition

of molecular oxygen into its O atoms, which commence ignition by attacking the

fuel molecule.

For our numerical experiments we ensure that the parameter values for simula-

tions, including temperature, pressure and initial mass fractions, are sufficient for

auto-ignition and lean fuel mixtures. The lean mixtures mean that stoichiometri-

cally there is more oxygen than fuel which will ensure the combustion terminates

when the fuel is consumed, preventing reactions between products of combustion

with the fuel hydrocarbons. Experiments are run through the initial buildup phase

into the ignition phase until the steady state is achieved. Table 4.1 shows the tem-

perature, mass fractions and final simulation times for each kinetic mechanism.

Data sets are generated by executing simulations of ignition and storing the

state vector at the end of the time integration interval. The same simulations are

run repeatedly with different absolute and relative tolerances in order to obtain

a set of solutions of increasing accuracy for each kinetic mechanism. The error

at the final time is computed with respect to a reference solution generated using

CVODE with tight relative and absolute tolerances.

We compare the performance of the EPI3V method against that of CVODE

by plotting precision diagrams (CPU time versus a measure of accuracy, here
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Figure 3.1: Precision diagrams comparing the CPU run time against the 2-norm

error of EPI3V versus CVODE. The plots show GRI3.0 (a), n-dodecane (b), and

n-butane (c) respectively.

the 2-norm of the error vector) for both methods in figure 3.1. Tolerances were

chosen in order to generate error values for the two methods. Table 3.2 contains

the tolerances selected for each numerical experiment. Table 3.3 contains the

tolerances which generate each experiment’s CVODE reference solution.

For the GRI3.0 mechanism, we see a modest advantage in performance for

CVODE if loose tolerances are used. However, at tighter tolerances that yield er-

rors below 10−5 the EPI3V method outperforms CVODE. With the butane mech-

anism, we observe a similar relative performance between the two methods. For

loose tolerances, the computational time spent integrating the method is insensi-

tive to accuracy, although the wall-clock time is larger than with CVODE until

the error is approximately 10−5. For errors lower than 10−5, the EPI3V method
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Table 3.1: Experiment configurations.

GRI 3.0 Mechanism initial values

Item Value

Kelvin 1000

CH4 0.0548

O2 0.2187

Ar 0.0126

N2 0.7137

n-butane Mechanism initial values

Item Value

Kelvin 1200

O2 0.2173

C4H10 0.0607

Ar 0.0125

N2 0.7092

n-dodecane Mechanism initial values

Item Value

Kelvin 1200

O2 0.2169

C12H26 0.0624

N2 0.7080

Mechanism final times

Mechanism Final time (s)

GRI 3.0 1.2

n-butane 2 · 10−3

n-

dodecane

5 · 10−4

becomes slightly faster than CVODE. It is important to note that while CVODE

is an established code with decades of optimization, our EPI3V implementation is

rather new; both software and algorithmic optimizations are ongoing and improve-

ments are expected. For example, significant computational savings were obtained

for EPIRK methods recently as the exponential matrix functions evaluations tran-

sitioned from straightforward Krylov projection to adaptive Krylov method phipm

[46] and later to KIOPS [47]. In fact, in addition to improvements of the methods’

parameters new algorithms may be beneficial for approximating exponential ma-

trix functions for select problems. Our third test problem, n-dodecane, illustrates

the importance of research in this direction.

Unlike the other two mechanisms, simulation of ignition with the n-dodecane

mechanism presented a challenge for the EPI3V method. Like in the other exper-

iments, we verified the EPI3V method generated the correct solution. However,

unlike for the two previous cases, EPI3V was consistently slower than CVODE by

an order of magnitude. To explore potential causes we considered the spectrum of

the Jacobian matrix for all cases.
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Table 3.2: Absolute and relative tolerances used to generate precision diagrams in

figure 3.1.

GRI3.0

Method (Absolute Tolerance, Relative Tolerance)

EPI3V (10−10, 2·10−2), (10−10, 3·10−3), (10−10, 5·10−4), (10−10,

10−4),

(10−10, 10−5), (10−11, 5·10−6), (10−12, 2·10−6), (10−13,8·
10−7).

CVODE (10−7, 10−5), (10−8, 10−6), (10−8, 10−7), (10−9,10−8),

(10−10, 10−10), (10−10, 10−11), (10−11, 10−11), (10−11,

10−12).

n-butane

Method (Absolute Tolerance, Relative Tolerance)

EPI3V (10−7, 4 · 10−4), (4 · 10−8, 2 · 10−4), (2 · 10−8, 10−4),

(10−8, 10−4), (10−10, 10−5), (10−11, 10−6).

CVODE (10−10, 10−5), (10−10, 10−6), (10−10, 10−7),

(10−10,10−9), (10−11, 10−10), (10−12, 10−11).

n-dodecane

Method (Absolute Tolerance, Relative Tolerance)

EPI3V (10−5, 5 · 10−4), (2 · 10−6, 2 · 10−4), (10−7, 5 · 10−5),

(10−8, 10−5), (5 · 10−9, 5 · 10−6), (10−10, 10−6), (10−11,

10−7).

CVODE (10−8, 10−3), (10−8, 10−4), (10−8, 10−5), (10−8,10−6),

(10−8, 10−7), (10−8, 10−9), (10−8, 10−10), (10−8, 10−11).

For each experiment, we computed the eigenvalues of the exact Jacobian pro-

vided by TCHEM using MATLAB’s eig function. The tightest set of tolerances

from Table (3.2) were chosen, and the three experiments were carried out using
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Table 3.3: Tolerances used to generate the reference solutions in figure 3.1.

Reference tolerances

Mechanism

name

Absolute toler-

ance

Relative toler-

ance

GRI 3.0 10−13 10−13

NButane 10−12 10−12

NDodecane 10−10 10−10

the EPI3V time integration scheme, storing the Jacobian calculated by TCHEM

at each step. In order to provide a measure of the size of the spectrum of the

Jacobian, we define the area Ω of the smallest rectangle with sides aligned with

the coordinate axes such that it encloses all the eigenvalues in the complex plane,

i.e. if λj = aj + i bj (j = 1, ..., N) are the eigenvalues, the sides of the rectangle

are α = maxj(aj) −minj(aj) and β = maxj(bj) −minj(bj) so that Ω = αβ. Fig-

ure 3.2 shows evolution of α and Ω during ignition, along with a normalized step

cost, defined as the CPU time spent computing a step divided by the time interval

stepped.

It is apparent in figure 3.2 that the n-dodecane mechanism has both the largest

real spread α and Ω in all cases. The KIOPS algorithm is based on projections onto

the Krylov subspace and the estimation of exponentials of approximate eigenvalues.

If the problem’s spectrum contains large positive real eigenvalues with a large Ω,

computing exponentials of these augmented systems is problematic; the adaptive

time stepping procedure in KIOPS will reduce the time step size significantly

to accommodate the user designated tolerance. However, in the case of the n-

dodecane mechanism, this time step reduction penalizes performance of EPIRK

methods compared to the implicit scheme implemented in CVODE. This increased

cost is also reflected in the normalized CPU time in figure 3.2.
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Figure 3.2: Plots vizualizing Ω, which measures the area of the spectrum, and

α, measuring the real spread of the specturm, versus normalized step cost (the

time spent integrating a step divided by the time step used). Plots (a) and (b)

display information for the GRI mechanism. Plots (c) and (d) show the results for

n-dodecane, while (e) and (f) demonstrate n-butane data. Ω and α scales are set

on the left axes, while the normalized step costs scales are on the right axes of the

plots.

3.4 Conclusion

In our work, we investigated the performance of the novel EPI3V variable time

stepping exponential integrator for the simulation of chemically reactive and spa-

tially homogeneous systems, i.e. chemical reactors. We compared the performance

of our EPI3V method to that of CVODE, which uses a modified Newton solver and



30

Krylov-projection-type iterative method. Numerical expleriments were conducted

for three chemical kinetics mechanisms of increasing complexity. We found that

the exponential method performed favorably for certain mechanisms, but not for

others. Comparable CPU time and accuracy were observed for both the GRI3.0

and n-butane mechanism. However, for the n-dodecane mechanism the CPU time

for the EPI3V method required to obtain similar errors to the CVODE was an

order of magnitude higher than that for CVODE at the same value of the error

norm.

We found the performance degradation of EPI3V method for n-dodecane stems

from a combination of a wide spectrum of the Jacobian and the presence of very

large positive real eigenvalues. Because KIOPS is based on Krylov-iteration ap-

proximation of matrix exponential, its performance degrades in the presence of such

spectra. This finding points to a promising research direction to explore alterna-

tives to Krylov-based algorithms for estimating products of matrix exponentials

with vectors. In the future we plan to investigate whether contour integration

and quadrature-based methods will yield better performance [59]. We are also

currently extending our study to combustion problems that include transport, in

particular to modeling flame front propagation.



Chapter 4

Numerical modeling of

propagating flame front.

Combustion plays a major role in many applications, so modeling, understand-

ing, and predicting properties of combustive processes are necessary components

of modern engineering. Experimental verification of theoretical predictions of com-

bustive behavior can be very expensive in terms of time, effort, and cost. Computer

simulations of combustion offer a relatively cheap and safe alternative to experi-

mental verification and engineering design [21, 26, 27]. While computer simulations

do not fully replace physical experiments, they have become an integral part of

the engineering workflow [21, 26].

Numerical simulation of combustion involves solving a large system of PDEs

wherein the velocity, temperature, and species are strongly coupled [26, 27, 60].

The primary challenge in multidimensional large-scale chemical combustion prob-

lems is their stiffness caused by the widely varying time-scales. The temperature,

species mass fractions, and velocity equations include advective, diffusive, and re-

active source terms. In low Mach number regimes, reaction term time-scales are

significantly faster than those of the transport phenomena. Splitting techniques

that separate the fast chemistry source term from the relatively slow transport

properties are commonly used to overcome this challenge. However, this approach

incurs a splitting error penalty [34, 35, 36, 60, 61]. We employ exponential in-

tegrators and show that the performance of these methods is comparable to the

31
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state-of-the-art implicit techniques with the added benefit of not requiring an op-

erator splitting between transport and reaction phenomena in the temperature and

chemical species equations.

4.1 Model

We perform simulations to model the propagation of a flame front inside a

gaseous mixture. Accurately modeling this combustion process necessitates solving

a coupled system of PDEs that govern the evolution of the thermo-chemical state

and the fluid dynamics. Specifically, the governing PDEs consist of equations for

energy, species mass fractions, and continuity, which include source terms that

account for chemical reaction rates and species production/consumption.

The reaction terms describe how chemical species interact with one another

via a list of N many global reactions. For reaction j, the forward reaction rate

constant is in Arrhenius form:

fj = AjT
αjexp

(−Ej

RT

)
, (4.1)

where Aj and αj are pre-exponential and exponential constants, R is the universal

gas constant, Ej is the activation energy, and T is the temperature. This Arrhe-

nius expression encapsulates the non-linear dependence of the reaction rate on the

temperature and accounts for the energy barrier that must be overcome so that

the reaction can proceed.

If reaction j is reversible, then the backward reaction constant, bj, is not zero

and is given directly in Arrhenius form (4.1) or leveraging the equilibrium constant

Kj:

bj = fjKj. (4.2)

How many times reaction j occurs in the forward direction per unit time per unit

volume is denoted by the variable Rj. This is the difference between forward and

backward rate constants multiplied by the molar participating species concentra-

tion in the reaction raised to their stoichiometric coefficients,

Rj = fj

Ns∏
i=1

χ
v′ji
i − bj

Ns∏
i=1

χ
v′′ji
i , (4.3)
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where v′ji and v′′ji are the reactant and product stoichiometric coefficients for species

i in reaction j, and Ns is the number of chemical species.

Production or loss amount of a species due to reaction is equal to the difference

between the forward and backward stoichiometric coefficients times the rate of

reaction. Let the number of reactions as N , then by summing all reactions the

total species produced is

ω̇i =
N∑
j=1

(v′′ji − v′ji)Rj. (4.4)

The equation for the total change in the amount of species Yi mass fraction is

∂Yi

∂t
= −v · ∇Yi +

1

ρ
∇ · (ρDi∇Yi) +

ω̇i

ρ
, i ∈ {1, 2, ..., Ns}, (4.5)

where ρ is the density of the gas, Di is the diffusion coefficient for species i, v

is the gas velocity, and cp is the heat capacity of the gas at a constant pressure.

Temperature, denoted T , in units of Kelvin, measures the kinetic energy of the

gas, which is affected by the total heat enthalpy of formation. Summing over all

reactions and using the enthalpy of formation of the reaction, hi, we obtain

ω̇T =
N∑
i=1

hiω̇iWi. (4.6)

Using (4.6) the governing equation for the temperature variable becomes

∂T

∂t
= −v · ∇T +

1

ρcp
∇ · (λ∇T ) +

ω̇T

ρcp
+

1

ρcp

dp

dt
, (4.7)

where λ is the thermal diffusion coefficent. Under our assumption of the constant

and uniform pressure the final term for pressure vanishes, leaving

∂T

∂t
= −v · ∇T +

1

ρcp
∇ · (λ∇T ) +

ω̇T

ρcp
. (4.8)

The equation for velocity divergence is derived from the continuity equation:

∂ρ

∂t
= −∇ · (ρv) = −(∇ρ) · v − ρ(∇ · v). (4.9)

Rearranging equation (4.9) with the aid of the material derivative, Dρ
Dt

= ∂ρ
∂t
+v ·∇ρ

we get
1

ρ

Dρ

Dt
= −∇ · v. (4.10)



34

Then by applying the material derivative to the equation of state, p = ρRT , where

R = R
W

we obtain

−1

ρ

Dρ

Dt
=

1

T

DT

Dt
+

1

R

DR

Dt
− 1

p

Dp

Dt
, (4.11)

which can be substituted into equation (4.10), yielding

∇ · v =
1

T

DT

Dt
+

1

R

DR

Dt
− 1

p

Dp

Dt
. (4.12)

Working out the dependence between R and W we find that:

DR

Dt
= W

DW−1

Dt
=

M∑
i=1

W

Wi

DYi

Dt
. (4.13)

Using (4.13) in the velocity divergence (4.12) we obtain the final form of the velocity

divergence term:

∇ · v =
1

T

DT

Dt
+

M∑
i=1

W

Wi

DYi

Dt
− 1

p

Dp

Dt
. (4.14)

Finally, we apply the definition of the material derivatives to the velocity divergence

equation and use the fact that pressure is held constant. These equations give the

general model for a spatially inhomogeneous isobaric reactive mixture:

dT

dt
= −v · ∇T +

1

ρcp
∇ · (λ∇T )− ω̇T

ρcp
, (4.15a)

dYi

dt
= −v · ∇Yi +

1

ρ
∇ · (ρDi∇Yi) +

ω̇i

ρ
, i = 1, ..., Ns, (4.15b)

∇ · v =
DT

T
∇2T +

1

ρcpT
∇λ · ∇T +

ω̇T

ρcpT
(4.15c)

+
Ns∑
i=1

W

Wi

(Di∇2T +
1

ρ
∇(ρDi) · ∇Yi +

ω̇i

ρ
). (4.15d)

The governing equations are augmented with three chemical mechanisms rep-

resenting fuels of practical and experimental interest in combustion. The first

mechanism models the combustion of hydrogen (H2) fuel molecules [62]. The rela-

tively small chemical model consists of 10 species and 21 reactions and is attractive

as a potential low-emission alternative to hydrocarbon fuels. Second, we consider

the ammonia (NH3) mechanism that includes 31 species and 203 reactions [63].

Ammonia is also an appealing hydrocarbon alternative because it can be used
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Table 4.1: Initial gas configurations.

GRI 3.0 mass fractions, T=800K, P= 4 atm

ϕ CH4 O2 N2

0.8 0.0446 0.2225 0.7328

1.0 0.0551 0.2200 0.7247

1.2 0.0654 0.2176 0.7168

Hydrogen mass fractions, T=445.8 K, P=4 atm

ϕ H2 O2 N2

0.8 0.0229 0.2275 0.7494

1.0 0.0285 0.2263 0.7452

1.2 0.0340 0.2250 0.7410

Ammonia mass fractions, T=800 K, P = 1 atm

ϕ NH3 O2 N2

0.8 0.1167 0.2057 0.6775

1.0 0.1418 0.1998 0.6582

1.2 0.1655 0.1943 0.64012

with hydrogen and is safer to store and transport than pure hydrogen fuels. Fi-

nally, we study the methane hydrocarbon fuels (CH4) mechanism, comprising 54

species and 680 reactions [52]. In all these cases, the fuel is combined with oxygen

(O2) along with additional species such as nitrogen (N2) accounting for air which

forms most of the mass [24, 25].

4.2 Methods & Implementation

This subsection details the combustion simulation’s methods and specifics. It

includes a discussion of the spatial operators and their finite difference approx-

imation, the geometry and the imposed boundary conditions, the sub-problems

generated by splitting, and the methods used to solve these parts.

Computational simulations of a propagating flame front within a radially sym-
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metric tube will be performed. Due to the radial symmetry, the tube’s three-

dimensional computational domain can be reduced to a one-dimensional line seg-

ment. For a variableX and the grid spacing of ∆x, the operators are approximated

by:

∇ ·X ≈ Xi+1 −Xi−1

2∆x
, ∇X ≈ Xi+1 −Xi−1

2∆x
, ∇2X ≈ Xi−1 − 2Xi +Xi+1

∆x2
.

A Marker-and-Cell (MAC) method [64] is used for fluid flow stability; here,

the faces of the computational cells store the velocity, and the centers store the

pressure and other scalar quantities. In one spatial dimension, the cells reduce to

two staggered grids, where the velocity grid is offset by one-half the step-size, e.g.,

the spacing between neighboring velocity and scalar spatial points is ∆x
2
. Due to

staggering, an equation will often require data stored on one grid rather than the

other. These scenarios are handled in one of two ways. If a derivative quantity is

needed, it is possible to obtain these estimations with second-order accuracy via

the equations with the step size of ∆x
2

via the estimation

X ′
staggered =

Xi+ 1
2
−Xi− 1

2

∆x
. (4.16)

Otherwise, adjacent cell averaging estimation is used to obtain the needed quanti-

ties.

The imposed boundary conditions are such that one end of the tube is open

while the other is closed. The right end of the tube is designated as the open end,

and the left end is closed. A homogeneous Neumann boundary condition is applied

at the open end, whereas the closed end is subject to a fixed, non-homogeneous

Dirichlet boundary condition. In the MAC configuration, the boundary locations

coincide with the velocity grid. Thus, non-homogeneous Dirichlet scalar boundary

quantities cannot be stored. Near the closed boundary, when a stencil requires

information outside the computational domain, the stenciling assumes the data at

the needed point has the same value as the non-homogeneous Dirichlet boundary

condition, which is enforced to be to the gas’s uniform initial composition as seen

in the table (4.1).

Splitting methods are a commonly used strategy to overcome challenges as-

sociated with combustion in state-of-the-art combustion simulation strategies. A
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standard approach as developed in Tomboulides and Orzag [60] tackles the stiff

system of PDEs with a two-stage, three sub-step splitting approach. Splitting be-

tween the vector equation (4.15d) and the scalar equations (4.15a-4.15b) is made,

and then a further splitting between the transport terms and the chemical reaction

terms inside equations (4.15a-4.15b) is used. The first two sub-steps will hold the

velocity constant to advance the temperature and species variables. The slower

transport phenomena are first advanced with a semi-implicit scheme; then, the

faster reaction term is integrated with an implicit BDF method. The advance-

ment of the velocity field is last and is typically done with a pressure corrector

method.

To numerically solve the governing system of PDEs given by equations (4.15a-

4.15d), a method of lines approach is employed. The spatial derivatives are ap-

proximated using a second-order finite difference scheme with uniform grid spacing

∆x, reducing the PDEs to a system of coupled ODEs. The scalar quantities of

temperature and species mass fractions each have an ODE for each computational

point. We denote the number of spatial points as M and then the state vector y

can be represented as a vector of length (Ns + 1) ×M :

y = [T1, ..., TM , Y1,1, ..., Y1,M , Y2,1, ..., Y2,M , ..., YNs,1, ..., YNs,M ]′. (4.17)

Additionally, in order to calculate the quantities once per time step all the thermo-
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chemical and thermodynamics properties are stored for each computational point

ρ = [ρ1, ..., ρM ],

λ = [λ1, ..., λM ],

cp = [cp1, ..., cpM ],

ω̇T = [ω̇T1, ..., ω̇TM ],

ω̇1 = [ω̇1,1, ..., ω̇1,M ],

...

ω̇Ns = [ω̇Ns,1, ..., ω̇Ns,M ],

D1 = [D1,1, ..., D1,M ],

...

DNs = [DNs,1, ..., DNs,M ],

λNs = [λNs,1, ..., λNs,M ].

By applying finite difference approximations to the scalar equations (4.15a-

4.15b) we generate a system of (Ns + 1) ×M ODEs that advance the temperature

and species mass fractions. For the i-th chemical species, the first spatial point

requires the Dirichlet boundary condition, and the ODE is written as:

dYi,1

dt
= −v1 + v2

2
· Yi,2 − Yi,inlet

2∆x
+

1

ρ1
·
(ρ2 − ρinlet

2∆x
·Di,1 ·

Yi,2 − Yi,inlet

2∆x
+

ρ1 ·
Di,2 −D1,inlet

2∆x
· Yi,2 − Yi,inlet

2∆x
+ ρ1 ·Di,1 ·

Yi,2 − 2Yi,1 + Yi,inlet

∆x2

)
+

ω̇i

ρ1
.

The variables that include the “inlet” subscript denote the scalar non-homogeneous

Dirichlet boundary conditions. Any interior j-th point will have the usual two and

three-point stenciling

dYi,j

dt
= −vj + vj+1

2
· Yi,j+1 − Yi,j−1

2∆x
+

1

ρj
·
(ρj+1 − ρj-1

2∆x
Di,j ·

Yi,j+1 − Yi,j-1

2∆x
+

ρj ·
D1,j+1 −D1,j-1

2∆x
· Yi,j+1 − Yi,j-1

2∆x
+ ρj ·Di,j ·

Yi,j+1 − 2Yi,j + Yi,j-1

∆x2

)
+

ω̇i,j

ρj
.

Then, for the species ODE associated with the pointM nearest to the homogeneous
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Neumann boundary condition we have:

dYi,M

dt
= −vM + vM+1

2
· Y1,M − Y1,M−1

2∆x
+

1

ρM
·
(ρM − ρM-1

2∆x
·D1,M

YM − YM-1

2∆x
+

ρM · Di,M −Di,M-1

∆x
· Yi,M − Yi,M-1

2∆x
+ ρM ·Di,M · Yi,M-1 − Yi,M

∆x2

)
+

ω̇i,M

ρM
.

The boundary conditions for the temperature ODEs are applied in a similar way;

for the first computational point, we have the following temperature ODE

dT1

dt
= −v1 + v2

2
· T2 − Tinlet

2∆x
+

1

cp1 · ρ1
·
(λ2 − λinlet

2∆x
· T2 − Tinlet

2∆x
+

λ1 ·
T2 − 2T1 + Tinlet

∆x2

)
+

˙ωT1

cp1 · ρ1
.

The interior points have ODEs which are

dTj

dt
= −vj + vj+1

2
· Tj+1 − Tj−1

2∆x
+

1

cpj · ρj
·
(λj+1 − λj−1

2∆x
· Tj+1 − Tj−1

2∆x
+

λj ·
Tj+1 − 2Tj + Tj−1

∆x2

)
+

˙ωTj

cpj · ρj
.

And the point nearest the homogeneous Neumann boundary condition have the

following ODE

dTM

dt
= −vM + vM+1

2
· TM − TM−1

2∆x
+

1

cpj · ρj
·
(λM − λM−1

2∆x
· TM − TM−1

2∆x
+

λM · TM−1 − TM

∆x2

)
+

˙ωTM

cpM · ρM
.

All these ODEs are altogether compactly written as the vector F (y):

F (y) =

[
dT1

dt
, ..,

dTM

dt
,
dY1,1

dt
, ...,

dY1,M

dt
,
dY2,1

dt
, ...,

dY2,M

dt
, ...,

dYNs,1

dt
, ...,

dYNs,M

dt

]′
.

(4.18)

Exponential integrators, described in the next subsection, offer an advantage com-

pared to the implicit methods of advancing the large scalar temperature and species

ODEs (4.18) without a splitting method between the transport and reaction terms.

Advancing this large system of ODEs is the first of the two sub-steps employed to

advance the whole equation. This computation is then followed by the advance-

ment of velocity.
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For higher dimensional problems the velocity advancement is typically done us-

ing a pressure corrector method. However, since we have a one dimensional model

we can integrate of the velocity divergence equation directly (4.15d). Applying

spatial discretization to the divergence of the velocity on the scalar grids gives a

series of M equations.

∇ · v1 =
DT1

T1

· T2 − 2T1 + Tinlet

∆x2
+

1

ρ1 · cp1 · T1

· λ2 − λinlet

2∆x
· T2 − Tinlet

2∆x
+

Ns∑
i=1

W1

Wi

·
(
Di,1 ·

T2 − 2T1 + Tinlet

∆x2
+

Di,1

ρ1
· ρ2 − ρinlet

∆x
· Yi,2 − Yinlet

∆x
+

Di,2 −Di,inlet

∆x
· Yi,2 − Yinlet

∆x
+

ω̇i,1

ρ1

)
,

...

∇ · vj =
DTj

Tj

· Tj+1 − 2Tj + Tj−1

∆x2
+

1

ρj · cpj · Tj

· λj+1 − λj−1

2∆x
· Tj+1 − Tj−1

2∆x
+

Ns∑
i=1

Wj

Wi

·
(
Di,j ·

Tj+1 − 2Tj + Tj−1

∆x2
+

Di,j

ρj
· ρj+1 − ρj−1

∆x
· Yi,j+1 − Yj−1

∆x
+

Di,j+1 −Di,j−1

∆x
· Yi,j+1 − Yi,j−1

∆x
+

ω̇i,j

ρj

)
,

...

∇ · vM =
DTM

TM

· TM−1 − TM

∆x2
+

1

ρM · cpM · TM

· λM − λM−1

2∆x
· TM − TM−1

2∆x
+

Ns∑
i=1

WM

Wi

·
(
Di,M · TM − TM

∆x2
+

Di,M

ρM
· ρM − ρM−1

∆x
· Yi,M+1 − YM−1

∆x
+

Di,M −Di,M−1

∆x
· Yi,M − Yi,M−1

∆x
+

ω̇i,M

ρM

)
.

Solving for an updated velocity is done by approximating the integral∫ x

0

∇ · v(s)dx =
N∑

n=1

∫ bn

an

∇ · v(x)dx. (4.19)

Each ai and bi represent a cell with two velocity points and a single scalar point.

The approximation for the integral of a cell is given by:∫ b

a

∇ · v(x)dx ≈ b− a

6
·
[
∇ · v(a) + 4∇ · v

(a+ b

2

)
+∇ · v(b)

]
. (4.20)
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Because a and b are chosen to be on the cell boundaries, the quantity of ∇ · v
cannot be computed directly at both a and b; however, the center a+b

2
can as that

is on the scalar grid. Thus, the edges are approximated with averaging. Once the

velocity field has been advanced by this method, the time step is complete.

In our implementation, we employ third-party software libraries and packages

to aid in constructing the source term. Utilizing third-party software allows our

implementation to leverage validated and optimized routines, and this modular

approach allows for flexibility in incorporating different chemical mechanisms or

thermodynamics models without requiring extensive development and testing.

TCHEM suite [65] is an open-source software package written in C++ by San-

dia National Laboratories. TCHEM implements a variety of different combustion

problems, and the one pertinent to the propagating flame front problem is the

homogeneous isobaric batch reactor problem. The reactive terms written in equa-

tions (4.15a-4.15b) by themselves are equivalent to a homogeneous batch reactor

problem. Thus, TCHEM is used to obtain these required source terms for the

larger propagating flame front problem. At the beginning of each integration sub-

step, TCHEM is called once for each computational point. TCHEM is given the

thermo-chemical state and the pressure for that point and outputs the source term

which is then stored for use as a component of the total source terms in equations

(4.15a-4.15b).

Currently TCHEM does not support the generation of transport terms or their

necessary transport coefficients. For this task, Cantera [50] was chosen, which is

well-known open-source software for use in Python, C++, and MATLAB combus-

tion codes. Our propagating flame front simulation leverages Cantera to obtain the

thermal diffusion coefficient for temperature and species, DT and Di, respectively,

and the thermal conductivity, λ. Cantera uses YAML files to initiate gas phase

objects. At the start of each update step, we provide the thermo-chemical state

to Cantera via its C++ interface for each grid point. Cantera then calculates the

required transport coefficients, which are returned and saved as vectors.

A comparable version of the simulation using the NGA code framework is

used to compare and validate the results of the exponential methods. NGA is
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a structured, finite-difference code that is staggered in time and space and has

been developed for accurate direct numerical simulation (DNS) and large eddy

simulation (LES) computations in one, two, or three spatial dimensions [39]. This

framework is flexible and allows development for a wide variety of CFD simulations,

including but not limited to low mach turbulent flows [39], solid gas suspensions

[66], and particle collision dynamics [67]. This code will represent and implement

the standard semi-implicit solutions for the scalar transport, implicit treatment of

reaction, and fractional-step pressure corrector methods for the velocity update.

Additionally, ChemJac produces analytic versions of the chemical Jacobians [68].

4.2.1 Exponential time integrators

Exponential time integrators are a class of methods designed for systems of

ODEs of the form
dy

dt
= F (y), y(t0) = y0. (4.21)

On large-scale stiff problems they have demonstrated favorable stability and com-

putational time costs when compared to implicit time integration methods [13, 12,

11, 10].

To numerically integrate the system of ODEs, the time variable is represented

discretely as a set of equally spaced points [t0, t1, . . . , tm]. where the time difference

between any two consecutive points is ∆t, i.e., tn+1 = tn +∆t. Assuming that the

source term F is differentiable, we approximate F and its derivative, F ′, at time tn.

We denote their approximations by yn ≈ y(tn), Fn ≈ F (y(tn)), and F ′
n ≈ F ′(y(tn))

respectively. Using this notation the second order in time exponential Euler scheme

can be written as

yn+1 = yn + φ1(hnJn)∆tFn, φ1(z) =
ez − 1

z
. (4.22)

The propagating flame front problem and the three chemical mechanisms present

a system of ODEs comprising thousands of equations. Obviously, for large dimen-

sional problems, the exact evaluation of the matrix-vector product φ1(hnJn)∆tFn

is prohibitively computationally expensive, and such products require approxima-

tion. The evaluations of these products of exponential-like matrix functions and
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Simulation

detail

NGA exponential

Strang Split Yes Yes

Lie Split Yes No

Velocity update Pressure corrector 2nd order integrator

Scalar integrator BDF EPI2

Jacobians Analytic Jacobians by

ChemJac

Finite difference ap-

proximation

Table 4.2: Table of code differences

vectors that constitute an exponential integrator’s main computational cost, thus,

must be done as efficiently as possible. Some of the most effective and general

methods to estimate such products are based on Krylov subspace projections. As

discussed above, KIOPS has been shown to be one of the most efficient general al-

gorithms, and we employ it here [47]. However, similar to what was seen in the case

of homogeneous batch reactor problems, we need to use KIOPS with full orthogo-

nalization of the Krylov basis since partial orthogonalization does not provide suf-

ficient accuracy. We use EPIC (Exponential Propagation Integrators Collection)

software package (https://faculty.ucmerced.edu/mtokman/software), which

implements several exponential integrators along with KIOPS method to compute

the matrix functions-vector products.

4.3 Numerical experiments

For our experiments we model 4 millimeters (mm) long tube filled with a

uniform premixed gas mixture. The tube is represented using a uniform one-

dimensional grid of 400 scalar and 401 velocity grid points, spaced equidistantly.

The spatial resolution is 10 micrometers (µm).

https://faculty.ucmerced.edu/mtokman/software
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Figure 4.1: Comparison of NGA and exponential methods solutions of the tem-

perature (a) and fuel/oxidizer (b) variables with an equivalence ratio of 0.8 for the

hydrogen mechanism.

Initially the premixed gas mixture in the tube is at a temperature below its

auto-ignition point. A localized Gaussian heat source is then introduced near the

open end of the tube to initiate flame formation and propagation. This heat source

takes the form:

H(x) = 5 · 1010 · exp
((x− c)2

108

)
, (4.23)

where x is the spatial coordinate variable and c is a centering parameter set to 90%

of the tube’s length as measured from the closed end. The concentrated localized

heating from the Gaussian profile raises the gas temperature beyond auto-ignition

in the region around x = c.

After applying the heat source for 100 microseconds (µs), the external heating

element is deactivated. The flame front is then allowed to propagate freely for an

additional 100 µs, after which the simulation terminates. At termination, the full

thermo-chemical state (species, temperature) and velocity field data are saved by

the simulation code.

This saved data provides the initial conditions to restart the simulation and

perform precision comparisons between two different numerical integration tech-

niques. The precision study is conducted over three equivalence ratios of lean,

stoichiometric, and rich mixtures per the initial configuration data summarized in

Table (4.1). For each case, the time period required for the flame front to propagate
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Figure 4.2: Comparison of NGA and exponential methods solutions of the tem-

perature (a) and fuel/oxidizer (b) variables with an equivalence ratio of 1.0 for the

hydrogen mechanism.

Figure 4.3: Comparison of NGA and exponential methods solutions of the tem-

perature (a) and fuel/oxidizer (b) variables with an equivalence ratio of 1.2 for the

hydrogen mechanism.
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Figure 4.4: Comparison of NGA and exponential methods solutions of the tem-

perature (a) and fuel/oxidizer (b) variables with an equivalence ratio of 0.8 for the

ammonia mechanism.

one flame length is first computed using the formula:

max(∇T )

∆T
. (4.24)

A temporal refinement is then conducted by performing a sequence of simulations

with successively smaller time step sizes spanning this propagation time period.

Upon completion of each simulation, the final thermo-chemical state (species

mass fractions, temperature) and velocity field are recorded. It is important to

note that due to significant algorithmic differences between the implicit and the

exponential time integration solvers, as outlined in Table (4.2), the two schemes

are not expected to converge to an identical solution as the time-step approaches

zero. However, in the study, we demonstrate that both numerical methods capture

the qualitative behavior and profiles of combustion consistently.

Figures (4.1-4.9) show spatial profiles of the temperature, fuel, and oxidizer

variables saved at the last step of the numerical experiments for both integration

methods across all mechanisms for different values of time steps. The oxidizer is

oxygen across all experiments, but the fuels are hydrogen, ammonia, and methane

for the hydrogen, ammonia, and GRI mechanisms respectively. Separate plots

for temperature and species mass fractions are presented due to the significant

difference in scale between mass fractions and temperature.
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Figure 4.5: Comparison of NGA and exponential methods solutions of the tem-

perature (a) and fuel/oxidizer (b) variables with an equivalence ratio of 1.0 for the

ammonia mechanism.

Figure 4.6: Comparison of NGA and exponential methods solutions of the tem-

perature (a) and fuel/oxidizer (b) variables with an equivalence ratio of 1.2 for the

ammonia mechanism.
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Figure 4.7: Comparison of NGA and exponential methods solutions of the tem-

perature (a) and fuel/oxidizer (b) variables with an equivalence ratio of 0.8 for the

GRI mechanism.

Figure 4.8: Comparison of NGA and exponential methods solutions of the tem-

perature (a) and fuel/oxidizer (b) variables with an equivalence ratio of 1.0 for the

GRI mechanism.

With three species and three equivalence ratios, nine figures are presented.

These are grouped by mechanism first and within the group, sorted in ascended

equivalence ratio order (0.8, 1.0, 1.2). So figures (4.1-4.3) detail the hydrogen

mechanism experiment’s data, figures (4.4-4.6) plot the ammonia data, and fi-

nally figures (4.7-4.9) show the GRI mechanism’s temperature, fuel and oxidizer

information.

In order to highlight the more subtle quantitative differences between the two
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Figure 4.9: Comparison of NGA and exponential methods solutions of the tem-

perature (a) and fuel/oxidizer (b) variables with an equivalence ratio of 1.2 for the

GRI mechanism.

integration methods not seen in figures (4.1-4.9), figures (4.10-4.12) plots the ab-

solute point-wise difference in log scale of temperature, fuel and oxidizer variables

saved by the precision experiments. The figures are organized in the order of

hydrogen, ammonia, and GRI. Each figure contains three plots of the absolute

difference across the equivalence ratios of 0.8, 1.0, 1.2.

The spatial profile exhibits three distinct regions for a one-dimensional propa-

gating flame front. The region upstream of the flame front, where the gas mixture

is still unburnt, has a uniform temperature and species mass fraction distributions.

The reaction zone is where exothermic chemical reactions driving the combustion

process occur and is characterized by steep gradients in temperature, fuel, and

oxidizer mass fractions. Downstream of the reaction zone lies the post-reaction

region, where the combustion products begin to reach equilibrium in the wake of

the propagating flame front. In this region, temperature and species mass fraction

profiles tend to approach plateaued values, as the chemical reactions have largely

completed and convective and diffusive transport processes dominate.

Figures (4.1-4.9) illustrate that both the NGA and exponential methods cap-

ture very similar qualitative behavior in the combustion profiles. However, it is

noteworthy that there are minor quantitative differences between the two meth-

ods. Although the results appear visually similar, a closer examination of figures
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Figure 4.10: The hydrogen mechanism’s final time-step comparison of the EPI2 and

NGA integrator’s hydrogen fuel, oxygen, and temperature values at each spatial

point for the equivalence ratios of 0.8 (a), 1.0 (b), and 1.2 (c). Differences are

given in absolute value.
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Figure 4.11: The ammonia mechanism’s final time-step comparison of the EPI2

and NGA integrator’s fuel (NH3), oxygen, and temperature values at each spatial

point for the equivalence ratios of 0.8 (a), 1.0 (b), and 1.2 (c). Differences are

given in absolute value.
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Figure 4.12: The GRI3.0 mechanism’s final time-step comparison of the EPI2 and

NGA integrator’s fuel, oxygen, and temperature values at each spatial point for the

equivalence ratios of 0.8 (a), 1.0 (b), and 1.2 (c). Differences are given in absolute

value.
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Figure 4.13: Precision diagram for NGA and exponential methods for the GRI

methane mechanism with 54 species and the equivalence ratio of (a) 0.8, (b) 1.0,

and (c) 1.2. The y axis shows the square mean percentage absolute error (SMAPE)

normalized for the vector length of the fuel, temperature, and oxidizer variables

compared to the highly refined reference solution.

(4.10-4.12) reveals quantitative discrepancies.

A notable feature observed in the results for the GRI mechanism is the presence

of a remnant from the initial flame kernel used to initiate flame propagation within

the tube. This remnant manifests as an additional peak in the temperature pro-

files in the post-flame region, as evident in Figures (4.7-4.9). This artifact would

have been convected out of the computational domain with sufficient simulation

time due to the transport phenomena, resulting in a more uniform, plateau-like

temperature profile in the post-reaction region.

For the hydrogen mechanism, as seen in figures (4.1-4.3) and (4.10), the ex-

ponential methods show minor discrepancies in temperature in the initial portion

of the post-reaction region. However, as we progress further downstream, these

deviations between the two numerical solutions gradually diminish. Aside from

the hydrogen case, there are small orders of 10 differences or less in temperature

in the reaction and the initial regions of the reaction and post-reaction zones.

This is a small relative difference, given the temperature values are in the order of

thousands.

The relative performance of the NGA and exponential time integration methods

is plotted in figure (4.15). This figure shows the CPU time versus the error for

both methods over one characteristic flame length. The x-axis represents the CPU
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Figure 4.14: Precision diagram for NGA and exponential methods for the hydrogen

mechanism of 10 species and the equivalence ratio of (a) 0.8, (b) 1.0, and (c) 1.2.

The y axis shows the square mean percentage absolute error (SMAPE) normalized

for the vector length of the fuel, temperature, and oxidizer variables compared to

the highly refined reference solution.

Figure 4.15: Precision diagram for NGA and exponential methods for the ammonia

mechanism with 31 species and the equivalence ratio of (a) 0.8, (b) 1.0, and (c) 1.2.

The y axis shows the square mean percantage absolute error (SMAPE) normalized

for the length of vector for the fuel, temperature, and oxidizer variables compared

to the highly refined reference solution.
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time spent integrating the scalar update step, while the y-axis depicts the error.

The chosen error norm is the Square Mean Absolute Percentage Error (SMAPE).

SMAPE is beneficial as it smooths out single points with high relative errors by

averaging over the entire computational domain. Without using SMAPE, specific

points in the reaction and post-reaction zone corresponding to vanishing species

exhibited sizeable relative errors. Additionally, the error calculation considers the

same subset of the thermo-chemical state variables of the temperature, fuel, and

oxidizer mass fractions. Comparing the results using the entire thermo-chemical

state, including all species, did not reveal any qualitative behavioral differences.

The precision diagrams in figure (4.15) demonstrate that the exponential method

performs comparably to the implicit method when updating the scalar equations.

Notably, when the time step size is small, the exponential method becomes a more

efficient choice compared to the NGA method.

4.4 Conclusion

The propagating flame front experiments demonstrate that exponential time

integrators can reliably obtain numerical solutions that exhibit qualitatively simi-

lar behavior to implicit methods, which are widely considered state-of-the-art for

stiff combustion problems. Furthermore, the computational efficiency of the ex-

ponential approach, as measured by the CPU run time vs error, is comparable to

that of implicit methods. A notable advantage of exponential integrators is their

ability to advance the scalar equations without a splitting between the transport

and reactive terms, leading to improved accuracy.

The results are promising as a proof of concept for the application of expo-

nential time integrator methods to both propagating flame front and more general

combustion simulations. The current implementation of the exponential propagat-

ing flame front is penalized in its CPU time performance. The method relies on

finite difference approximations for the Jacobian terms, which are comparatively

slow to analytic methods for problems of moderate scale or larger. Because the

scalar advancement step is handled without employing a Lie splitting technique,
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the derivatives of both the transport and reaction terms are treated together as

a finite difference approximation. The transport component of the Jacobian is

particularly complex since the transport coefficients are interdependent on the

thermo-chemical state, making it challenging to derive an analytic closed-form ex-

pression. Future work should focus on developing methods to address this issue.

One potential approach is to use a partially analytic Jacobian, where the reactive

component is provided analytically by TCHEM, and the transport component is

approximated using finite differences. Another avenue worth exploring is the use

of automatic differentiation techniques, where software packages such as SACADO

can be employed to calculate the combined source term, including both transport

and chemical contributions.



Chapter 5

Conclusion

Numerical modeling of combustion is challenging due to its multi-physics and

multi-scale nature. The complex interaction of fluid mechanics, thermodynamics,

and chemical kinetics processes in combustion results in a strongly coupled set of

PDEs that describe evolution occurring over a wide range of spatial and temporal

scales. Consequently, the numerical solution of this system in time requires careful

choice of temporal integration methods that can handle the severe stiffness of the

problem.

Traditionally, splitting methods have addressed computational challenges present

in computational combustion. In particular, the spatially discretized PDEs usually

are evolved with a three-stage time advancement. First, the scalar quantities are

evolved, and then the velocity field is advanced. Of the two scalar substeps, the

one that contains the chemical kinetics terms is formulated as a series of homoge-

neous batch reactors to advance the chemistry. The remaining sub-steps advance

the transport and velocity. While this approach has advantages, splitting always

introduces additional computational errors and numerical remedies, such as extra

iterations, which have to be used to increase the accuracy of the solution. Thus,

it is desirable to explore whether other temporal integrators exist that can ensure

an accurate solution while not sacrificing the efficiency of the calculation.

In this thesis, we have explored whether exponential integration can deliver

computational savings in numerical combustion modeling. We studied two ap-

proaches to designing efficient exponential integration schemes for combustion

57
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simulations. First, we applied exponential integration to evolve only the chem-

ical kinetics portion of the dynamics. The second approach was to exponentially

integrate chemical kinetics and thermodynamics jointly to avoid one of the splits

in the standard integration methods.

Our first study (Chapter 3) applied a novel time-adaptive EPIRK method,

EPI3V, to constant-pressure homogeneous batch reactor problems involving vari-

ous chemical mechanisms representing hydrocarbon combustion. The performance

of EPI3V was evaluated and found to be comparable to the widely adopted CVODE

software suite, which implements an implicit variable time-stepping BDF implicit

method. The results seen in homogeneous batch reactors indicated that exponen-

tial time integration methods may serve as a viable alternative to implicit methods

within larger multi-stage splitting schemes commonly employed in combustion sim-

ulations. Specifically, exponential integrators could potentially replace the implicit

solvers used for the sub-step dedicated to advancing the stiff chemical kinetics while

leveraging their favorable stability and accuracy properties.

In the second part of the thesis (Chapter 4), we developed a computational

model of the propagating flame front that involved exponentially advancing the

temperature and mass fractions scalar equations without using the traditional split-

ting approach. The model consisted of a one-dimensional tube simulation and was

solved with an exponential Euler method coupled with a Krylov-projection based

algorithm to evaluate exponential-like matrix functions. Testing this numerical

approach for three different chemical mechanisms and comparing it with a proven

implicit-methods-based code, we found that exponential methods deliver the same

qualitative behavior of the solution as the implicit method with comparable effi-

ciency while avoiding the chemistry-thermodynamics splitting error.

By demonstrating the applicability and competitiveness of exponential time in-

tegration techniques for homogeneous reactors and propagating flame front prob-

lems, this thesis paves the way for further exploration and adoption of these meth-

ods in the broader domain of computational combustion. The findings contribute

to the growing body of evidence supporting the potential benefits of exponential

integrators for efficiently and accurately simulating large-scale stiff systems, such
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as those arising in combustion processes.

Several future research directions are motivated by the results of this thesis.

Our studies suggest that both the homogeneous batch reactor and the propagat-

ing flame front problem would benefit from using novel higher-order exponential

methods coupled with advanced Krylov-projection-based algorithms. In the case of

homogeneous batch reactors, higher-order adaptive time-stepping methods would

be particularly beneficial due to the necessity of variable time-stepping. KIOPS

offers the ability to calculate linear combinations of φmatrix-vector products, mak-

ing adaptive methods relatively computationally inexpensive. The new high-order

time adaptive exponential methods may offer the ability to take fewer overall time

steps, thus offering considerable computational savings over lower-order methods

and can be competitive with widely used implicit integrators. While adaptive time-

stepping is less critical for propagating flame front problems, applying or deriving

efficient high-order methods may yield improved accuracy and efficiency. Further

development of adaptivity in exponential time integration of combustion models is

also a potentially promising research direction. Our tests indicated that improve-

ments can be made in the efficiency of the calculations if the adaptive algorithms

are improved to minimize the number of rejected time steps, thus optimizing tem-

poral integration.

The new exponential integration-based approach has to be tested for higher-

dimensional combustion models. A simple extension of the propagating flame

front problem would be to extend the model to two and three spatial dimensions

and explore additional chemical mechanisms. Recent advances have been made in

improving the Krylov-projection-based algorithms, particularly for massively par-

allel computations using low-synchronization algorithms. It would be valuable to

explore whether such approaches can tackle the combustion models’ high dimen-

sionality and stiffness.

In summary, we proposed new exponential integration-based numerical meth-

ods for numerical combustion modeling. Our studies demonstrated this exponen-

tial approach is promising from the perspectives of both accuracy and efficiency

improvements, and suggests new promising research directions which may deliver
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further computational savings.
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