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ABSTRACT OF THE DISSERTATION

Thurston theory and polymorphic maps

by

Zachary Bruce Smith

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Mario Bonk, Chair

Let A ⊆ S2 be a finite set of points on the 2-sphere. A Thurston map f : (S2, A) →

(S2, A) induces an associated holomorphic pullback map σf : TA → TA, where TA is the

Teichmüller space of the marked sphere (S2, A). By [KPS16] this pullback map is known to

satisfy a family of functional identities of the form σf ◦ g = g̃ ◦ σf where g, g̃ ∈ Aut(TA). In

the case of four marked points we have TA = H, and such maps are known as polymorphic

maps. In this dissertation we develop a general framework for studying the cusp dynamics

of polymorphic maps of the upper half-plane H. Applying this framework to the Thurston

pullback map, we obtain a new proof of Thurston’s characterization theorem in the special

case of four marked points. We also obtain new progress on the finite curve attractor

conjecture of [Pil22]. Specifically, we prove that if a Thurston map f : (S2, A)→ (S2, A) is

totally unobstructed in the sense that all of its Thurston multipliers are strictly less than

one, then (f, A) has a finite curve attractor.
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Notation

We record here the most important notation used in this thesis.

The sets N,Z,Q,R and C will carry their usual meanings: natural numbers (starting

from 1), integers, rationals, real numbers, and complex numbers respectively. We will denote

the nonnegative numbers R≥0 := R ∩ {x ∈ R : x ≥ 0}. Similar notation will be used for

positive numbers R>0.

The cardinality of a set X is denoted by |X| and the identity map on X by idX .

If X is a topological space and A ⊆ X, then A denotes the closure, int(A) denotes the

interior, and ∂A the boundary of A in X.

If f : X → X is a map and n ∈ N, then

fn := f ◦ · · · ◦ f︸ ︷︷ ︸
n factors

.

We denote the open unit disk in C as D := {z ∈ C : |z| < 1}. We denote the upper

half-plane as H := {τ ∈ C : Im τ > 0}.

We denote the Riemann sphere as Ĉ := C ∪ {∞}. Similarly, we denote the extended

real line as R̂ := R ∪ {∞} and the extended rationals as Q̂ := Q ∪ {∞}. Typically we will

treat H as a subspace of the Riemann sphere, so ∂H = R̂.
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CHAPTER 1

Introduction

1.1. Thurston theory

The motivation of this thesis is to answer certain dynamical questions that arise in

context of Thurston maps. A Thurston map is an orientation-preserving branched cover

f : S2 → S2 that is not a homeomorphism and such that each of its critical points has a

finite forward orbit; it is considered together with the data of a finite forward-invariant set

of marked points A that contains said forward orbits. These maps are named after William

Thurston, who introduced them as combinatorial models of postcritically-finite rational

maps.

In 1982 Thurston presented his celebrated characterization theorem, which gives neces-

sary and sufficient conditions for when a Thurston map is “realized” by a rational map in a

suitable sense. The proof, as explicated by Douady and Hubbard [DH93], uses an analytic

map on a suitable Teichmüller space σf : TA → TA that is induced by f by pulling back

complex structures. The question of whether f is realized by a rational map then reduces

to whether σf has a fixed point in TA.

The main requirement in Thurston’s theorem is the (non)existence of Jordan curves in

S2 \ A with special invariance properties. More generally, every Thurston map induces a

pullback relation on isotopy classes of Jordan curves in S2 \ A. The restriction f : S2 \

f−1(A) → S2 \ A is a covering map, so if γ ⊆ S2 \ A is a Jordan curve, then a component

γ̃ of f−1(γ) will also be a Jordan curve in S2 \ A. We say that γ̃ is a pullback of γ by f .

Lifting isotopies shows that the set of isotopy classes of f−1(γ) rel. A depends only on the

isotopy class of γ rel. A. See Figure 2.

With this in mind, understanding the dynamics of Thurston maps f , finding suitable

invariants by which to classify such maps, and understanding the dynamics of the associated
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Figure 1. A combinatorial depiction of a Thurston map with four marked
points. White tiles are mapped to the front face of the “pillow” on the right
(which is a copy of S2), and gray tiles are mapped to the back face.

pullback map σf are all closely related to the curve pullback relation described above. See,

for example, [BEKP09],[Sel12], [Koc13], [KPS16], and [Pil22].

One of the major open problems in the study of the pullback relation on curves is the

following (see [Lod13] and [Pil22]):

Conjecture 1.1 (Finite curve attractor (FCA) conjecture). Let f : (S2, A)→ (S2, A) be a

Thurston map that is realized by a rational map and that is not of type (2, 2, 2, 2). Then

there is a finite set A(f) of Jordan curves in S2 \ A with the following property: for every

Jordan curve γ in S2 \ A there is a positive integer N(γ) such that, for n ≥ N(γ), all

pullbacks γ̃ of γ under fn are contained in A(f) up to isotopy rel. A.

The assumption that f is “not of type (2, 2, 2, 2)” is a technical requirement that we

will make precise later. For now, let it suffice to say that most Thurston maps meet this

requirement. The FCA conjecture thus claims that, for most rational Thurston maps, if one

iterates the pullback relation on curves, then one eventually lands in a finite set of isotopy

classes.

The FCA conjecture has been the subject of much study. Koch, Pilgrim, and Selinger

have shown it holds when the associated virtual endomorphism is contracting [KPS16].

Belk, Lanier, Margalit, and Winarski have proven it for all postcritically-finite polynomials

[BLMW22]. Hlushchanka has proven it for rational maps where every critical point is a

fixed point [Hlu19]. In the case of four postcritical points it is also known for certain NET

maps [Lod13, FKK+17], for all quadratic non-Lattès maps [KL19], and for maps obtained

2
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Figure 2. Some iterates of the pullback relation on curves for the map from
Figure 1, where the isotopy class relative to the marked points is redrawn
in the square pillow after each pullback. Each essential curve class has a
representative that is a geodesic with extended rational slope in the square
pillow picture, so there is a bijection between essential curve classes and the
extended rationals in this case. Using this identification, the above picture
represents µf : 8/1 7→ 4/1 7→ 2/1 7→ o, where o denotes the “trivial” curve
classes.

from a certain blowup of 2 × 2-Lattès maps [BHI21]. The general conjecture—even in the

simplest nontrivial case of four marked points—still remains open.

It turns out that the Thurston pullback map and the pullback relation on curves are

related to each other in a significant way: the map σf : TA → TA admits an extension to the

Weil–Petersson boundary of Teichmüller space, and the pullback relation on curves is then

encoded in the boundary behavior of this extension. This correspondence was demonstrated

by Selinger in [Sel12]. In the case where |A| = 4, there is the pleasingly simple description

of all these objects. The Teichmüller space is just the upper half-plane H and the Weil–

Petersson boundary is just the extended rationals Q̂ = Q ∪ {∞}. On the other hand, the

isotopy classes [γ] of (essential) Jordan curves of S2 \ A are in bijection with Q̂; roughly

speaking, one can think of each curve as equivalent to a geodesic with extended rational

slope in the square pillow picture as in Figure 2. Thus the pullback relation on curves is

just a function µf : Q̂∪{o} → Q̂∪{o}, where o represents isotopy classes of “trivial curves.”

3



As we shall see later, these two pullback maps are essentially the same on the extended

rationals (up to conjugation by negative inversion).

In this special setting, where |A| = 4 and σf : H → H, it is natural to ask whether

(and to what extent) classical function theory can be used to understand the pullback map

σf and its boundary dynamics. After all, the boundary behavior of holomorphic self-maps

of hyperbolic 2-space is well-understood via the notion of nontangential limits, angular

derivatives, and the Julia–Wolff–Carathéodory theory.

The answer to the above question is yes, but only if we make use of a special additional

structure that underlies the Thurston pullback map. Indeed, let G be the pure mapping class

group of the marked sphere (S2, A), which we identify with its action on TA by isometries.

Then a general Thurston pullback map σf : TA → TA satisfies a family of functional identities

of the form

σf ◦ g = ϕf (g) ◦ σf

where g ranges over a finite-index subgroup H of G, and ϕf : H → G is a homomorphism

(see [KPS16]). In the case where |A| = 4, we have TA = H and we can think of H and G

as discrete subgroups of Aut(H), i.e., Fuchsian groups. Analytic maps on the upper half-

plane H satisfying such a collection of functional identities are called polymorphic maps in

the classical literature. We are henceforth interested in the dynamics of these polymorphic

maps.

1.2. Polymorphic maps

The study of polymorphic maps has a venerable history going all the way back to Fricke

and Klein, who originally studied them in relation to elliptic modular forms (see, e.g.,

[Fri12]). The term “polymorphic” was coined by Fricke (see [BWFH21, pp. 432]) so as to

contrast these functions with automorphic functions. More recently they have been the

subject of investigations by Hejhal [Hej75,Hej76], Mejía and Pommerenke [MP12a,MP12b,

MP08], and many others.

4



In general, a polymorphic map is a meromorphic function σ : H → Ĉ that satisfies the

intertwining relation

σ ◦ g = ϕ(g) ◦ σ

for all g in a Fuchsian group G, where ϕ : G→ PSL(2,C) is a homomorphism into the group

of Möbius transformations. This setting is inappropriate for dynamics, so throughout this

thesis we will use the following restricted definition: let G and G′ be finite coarea Fuchsian

groups, and let ϕ : G → G′ be a homomorphism. We will say a nonconstant holomorphic

function σ : H → H is ϕ-polymorphic (or just polymorphic) if σ satsifies the intertwining

relation

σ ◦ g = ϕ(g) ◦ σ

for all g ∈ G. We shall call the homomorphism ϕ an intertwining homomorphism. In the

special case where G and G′ are finite-index subgroups of the modular group PSL(2,Z), we

will call the map σ modularly polymorphic.

The polymorphicity property gives the map σ : H→ H just enough additional structure

to make the study of its boundary dynamics tractable. The boundary points can be divided

into two classes: cusps and conical limit points of G. At contact cusps (those which them-

selves map to cusps) the angular derivative of σ both exists and can be computed from data

encoded by the intertwining homomorphism. For simplicity we only formulate these results

for modularly polymorphic maps, but similar results can be formulated even when G and

G′ are not subgroups of the modular group so long as cusp(G′) ⊆ cusp(G).

Since a Thurston map (f, A) with |A| = 4 induces a ϕf -polymorphic Thurston pullback

map σf : H → H where ϕf is a homomorphism of finite-index subgroups of the modular

group, the above considerations give us access to angular derivatives as a new tool to un-

derstand the boundary dynamics of σf . It also suggests that some problems, such as the

FCA conjecture, have an analogous formulation for polymorphic maps beyond those which

arise as Thurston pullbacks. In paricular, we conjecture the following:

5



Conjecture 1.2 (Finite cusp attractor (FCA) conjecture). Suppose σ : H→ H is modularly

polymorphic, has an interior fixed point, and is not an automorphism. Then σ has a finite

cusp attractor in the following sense: there is a finite set A ⊆ Q̂ such that, for every r ∈ Q̂,

either σN(r) ∈ H for some positive integer N , or σn(r) ∈ A for all n sufficiently large.

Since the finite cusp attractor conjecture for polymorphic maps would imply the finite

curve attractor conjecture for Thurston maps with four marked points, we shall not distin-

guish the acronyms and instead use FCA to refer to both problems.

With all of this in mind, the central aims of this thesis are as follows: (i) to collect

and codify the machinery of polymorphic maps in the dynamical setting (i.e., modularly

polymorphic maps); (ii) to recast known facts about Thurston maps with four marked

points in terms of this machinery; and (iii) to leverage this machinery to prove new results

about Thurston maps.

1.3. Outline and main results

We will now outline the structure of the thesis and describe our results.

In Chapter 2 we will present the key definitions and constructions of Thurston theory. We

provide a careful description of the problems we are most interested in—namely, Thurston’s

characterization theorem and the FCA conjecture. We also discuss how to phrase these

problems in terms of the Thurston pullback map σf : TA → TA and prove important prop-

erties of this map. In Section 2.4 we describe the set of homeomorphisms which lift under a

Thurston map (f, A). The mapping classes of these liftable homeomorphisms LMod(f, A)

form a finite-index subgroup of the pure mapping class group PMod(S2, A). This result was

established in [Pil12,KPS16] and we present a full proof in Theorem 2.19. Using this we

establish the polymorphic nature of the Thurston pullback σf in Theorem 2.30. In the last

section of the chapter we specialize the considerations to the case where |A| = 4 and elabo-

rate on the niceties of this setting, some of which we described earlier in the introduction.

In Chapter 3 we provide the additional background necessary for understanding poly-

morphic self-maps of hyperbolic 2-space. In the first three sections we review Fuchsian

6



groups, their limit sets, and the special properties of the modular group PSL(2,Z). The

remainder of the chapter is devoted to the classical theory of boundary behavior for holo-

morphic self-maps of hyperbolic 2-space. Nontangential limits and angular derivatives are

defined and we establish an important estimate for the growth of horoballs in terms of the

angular derivative in Corollary 3.18.

In Chapter 4 we define and study polymorphic maps. We show that a ϕ-polymorphic

map with ϕ : G→ G′ admits a continuous extension to a map H∪ cusp(G)→ H∪ cusp(G′).

We also present a rigidity result due to Pommerenke that says ϕ-polymorphic maps are

uniquely determined by their intertwining homomorphism ϕ. We then restrict the setting

to modularly polymorphic maps, for which we can compute the angular derivatives. The

angular derivative is determined by a ratio of integer cusp widths. These ratios give us the

notion of cusp multipliers λ(r) and the reciprocal notion of cusp dilation factors δ(r) =

1/λ(r). In particular, we prove

Theorem 4.5. Suppose σ : H → H is modularly polymorphic. Then we have the following

properties:

(i) the map σ extends to a continuous map σ : H ∪ Q̂→ H ∪ Q̂

(ii) if r ∈ Q̂ is a contact cusp in the sense that r′ = σ(r) ∈ Q̂, then the angular

derivative σ′(r) is finite. Moreover, if r = p/q for coprime integers p and q > 0,

and likewise r′ = p′/q′ for coprime integers p′ and q′ > 0, then

σ′(r) =
1

λ(r)

(
q

q′

)2

= δ(r)

(
q

q′

)2

,

where λ(r) is the cusp multiplier and δ(r) = 1/λ(r) is the cusp dilation factor. If r

or r′ is ∞, then we respectively take q or q′ to be 1 in the above formula.

Since finite-index subgroups of the modular group have finitely many cusp classes, the

set of cusp multipliers attained by σ, denoted Sλ(σ), is a finite list. The same is also true

for for the set of cusp dilation factors Sδ(σ).

7



In the last section of Chapter 4 we apply the Denjoy–Wolff fixed point theorem to our

setting. Recall that the Denjoy-Wolff theorem says a nonidentity holomorphic self-map of

H has a unique nonrepelling fixed point in H, which is called the Denjoy–Wolff (DW) point.

We present a second rigidity theorem that shows the DW point of a polymorphic map σ can

only occur at a boundary conical limit point when σ is a Möbius transformation. Presuming

G admits at least one cusp class, then we can further say that σ is an automorphism of H.

This together with Theorem 4.5 will imply

Theorem 4.9. Suppose σ : H → H is modularly polymorphic and not an automorphism.

Then σ has an interior fixed point τ0 ∈ H if and only if there is no fixed cusp r ∈ Q̂ with

dilation factor δ(r) ≤ 1.

Since the cusp multiplier λ(r) of the Thurston pullback map σf coincides with the

Thurston multiplier of the corresponding curve (which has slope class s = −1/r), applying

the above theorem to the Thurston pullback map σf produces a new proof of Thurston’s

characterization theorem in the case of four marked points:

Theorem 4.10 (Thurston’s criterion for four points). Let (f, A) be a Thurston map with

|A| = 4 and suppose f is not of type (2, 2, 2, 2). Then f is combinatorially equivalent to

a rational map if and only if f has no Thurston obstruction, i.e., there is no f -invariant

essential Jordan curve γ with λf (γ) ≥ 1.

Note that an essential Jordan curve γ in (S2, A) is said to f -invariant if each essential

pullback of γ under f is isotopic to γ rel. A. The quantity λf is the Thurston multiplier of

γ; see Section 2.5 for the precise definition.

Our proof of the above theorem is remarkably shorter and different in flavor from

Thurston’s original proof as presented in [DH93], which mostly works on the level of moduli

space and us a nontrivial amount of hyperbolic geometry.

There are other facts about the pullback relation that can be proven using these calcu-

lations. For example, we can apply an inequality due to Cowen and Pommerenke [CP82] to

obtain

8



Corollary 4.12. Suppose σ : H → H is a modularly polymorphic map with interior DW

point τ0 ∈ H. Define

C := min{σ′(r) : r ∈ Q̂ and σ(r) = r}.

Then C > 1 and

|Fix(σ ∩ Q̂)| ≤ 1

C − 1

(
1− |σ′(τ0)|2

|1− σ′(τ0)|2

)
.

In particular, σ has finitely many fixed cusps.

Applying this to the Thurston pullback map gives

Corollary 4.13. Suppose (f, A) is a rational Thurston map with |A| = 4 that is not of type

(2, 2, 2, 2). Then f has finitely many f -invariant essential curve classes.

We also obtain a new estimate for the number of fixed curves classes. The finiteness

portion of this corollary was previously known even in the general case (see [Pil12, Theorem

1.5]). [Par18, Theorem 10.1] has a similar estimate for the |A| = 4 case, but it is given in

terms of group data rather than the Thurston pullback map itself.

In Chapter 5, we return our attention to the FCA conjecture for polymorphic maps.

Combining our machinery with techniques previously used by the author in [Smi24] we

prove

Theorem 5.1. Let σ : H → H be a modularly polymorphic map with spectrum of cusp

dilation factors satisfying minSδ(σ) > 1. Then σ has a finite cusp attractor.

Of course, there is also a corresponding result for Thurston maps. We say a Thurston

map (f, A) is totally unobstructed if all of its Thurston multipliers satisfy λf (r) < 1. Then

the above theorem implies

Corollary 5.12. If (f, A) is a totally unobstructed Thurston map, then (f, A) has a finite

global curve attractor.

Totally unobstructed Thurston maps is a nonempty class and we provide several exam-

ples. Thus Corollary 5.12 represents new progress on the FCA conjecture.

Finally, in Chapter 6, we formulate some conjectures and discuss possible directions for

future study.
9



CHAPTER 2

Thurston theory

2.1. Basic definitions

In this section we summarize the basic definitions and constructions of Thurston theory.

We omit proofs of the stated propositions, but they can be found in any standard reference

on the subject (e.g., [DH93], [BCT14], [BM17, Chapter 2]).

Let S2 be the 2-sphere, which we take to be oriented. We say f : S2 → S2 is a branched

covering map if it is: (i) continuous and surjective; and (ii) expressible as a power map

z 7→ zd in local homeomorphic coordinates, where d is some positive integer. In other

words, given any x ∈ S2, we require that there are open topological disks U, V ⊆ S2 with

x ∈ U and y := f(x) ∈ V as well as orientation-preserving homeomorphisms ϕ : U → D and

ψ : V → D with ϕ(x) = 0 and ψ(y) = 0 such that

(ψ ◦ f ◦ ϕ−1)(z) = zd

for all z ∈ D. This is equivalent to the commutativity of the following diagram:

x ∈ U ⊆ S2 y ∈ V ⊆ S2

0 ∈ D 0 ∈ D.

ϕ

f

z 7→zd

ψ

The positive integer d in the above definition only depends on f and the point x ∈ S2;

it is called the local degree of f at x, and is denoted by deg(f, x). The topological degree of

f : S2 → S2 is denoted by deg(f). The two quantities are related by the formula

∑
x∈f−1(y)

deg(f, x) = deg(f)

10



where y ∈ S2 is any point.

A point c ∈ S2 where the local mapping degree deg(f, c) is at least 2 is a critical point,

and we denote the set of critical points by Cf . The immediate images of critical points are

called critical values, and the set of all critical values is Vf := f(Cf ). If f : S2 → S2 is a

branched covering map, then it restricts to an ordinary covering map from S2 \ f−1(Vf ) to

S2 \ Vf .

A postcritical point of f is a point p ∈ S2 of the form p = fn(c) where c is a critical

point of f and fn denotes the nth iterate of f for a nonnegative integer n. We denote the

set of all postcritical points Pf , so

Pf =
⋃
n≥1

{fn(c) : c ∈ Cf}.

Denote the cardinality of the above set by |Pf |. If |Pf | is finite, then f is said to be

postcritically-finite.

Definition 2.1. Let f : S2 → S2 be an orientation-preserving postcritically-finite branched

covering map with deg(f) ≥ 2. Let A ⊆ S2 be a finite set of marked points with the

properties Pf ⊆ A and f(A) ⊆ A. We call the map of pairs f : (S2, A) → (S2, A) a

Thurston map.

Remarks 2.2.

(1) In the above definition it may be the case that Pf is a proper subset of A. This slightly

extends the standard definition of Thurston maps, where A = Pf . We will sometimes

use the phrase marked Thurston map to emphasize the more general setting. We refer

the reader to [BCT14] for a general overview of Thurston theory with markings and

how it differs from the original setting of [DH93].

(2) The (·, A) portion of the notation will be suppressed when the marked set is clear.

(3) Conversely, when we wish to emphasize that a map f is being considered relative to a

particular set of marked points, we may write (f, A).

(4) We will assume throughout our discussions that |A| ≥ 3.
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It is clear from the definitions that any rational map f : Ĉ → Ĉ is a branched covering

map, and so any postcritically-finite rational map is Thurston map. Accordingly, we shall

refer to such maps as rational Thurston maps from now on. The class of rational Thurston

maps is quite large and it is not difficult to produce examples.

Example 2.3. Consider the quadratic map f(z) = (1 − 2z)2. This map has the following

dynamical portrait:
1
2

0 1 ∞ 2:1
2:1

The critical set is Cf = {1/2,∞} and the postcritical set is Pf = {0, 1,∞}. Since this is a

postcritically-finite rational map, (f, Pf ) is a rational Thurston map. We might also consider

this map relative to a larger set of marked points. For example, there is a nonpostcritical

fixed point at 1/4, so the set A = {0, 1,∞, 1/4} ) Pf is a valid marking set and (f, A) is a

Thurston map with four marked points.

The dynamics on the postcritical set determine some of the geometry of the underlying

Thurston map. This geometry is naturally described by a type of object called an orbifold.

An orbifold is a space that is locally the quotient of a model space by some group action.

For Thurston maps the model space is 2-dimensional and the group actions will be given by

cyclic groups. To this end, consider the ramification function of a Thurston map f : S2 → S2,

which is the function νf : S2 → N ∪ {∞} defined by

νf (p) = lcm{deg(fn, x) : x ∈ S2, n ∈ N, and fn(x) = p}.

This function has the property νf (p) = 1 for p ∈ S2 \ Pf and νf (p) ≥ 2 for p ∈ Pf . It can

be thought of as encoding the orders of the cyclic group actions generating the orbifold.

Accordingly, the orbifold Of associated to a Thurston map f is just the pair (S2, νf ). If we

label the finitely many points of Pf as p1, . . . , pk in such a way that 2 ≤ νf (p1) ≤ · · · ≤ νf (pk)

, then the k-tuple

(νf (p1), . . . , νf (pk))

12



is the signature of the orbifold Of . We will sometimes refer to the orbifold signature of Of

as the type of the Thurston map f .

The orbifold Of has Euler characteristic

χ(Of ) := 2−
∑
p∈Pf

(
1− 1

νf (p)

)
.

We use the convention 1/∞ := 0 in the formula above. If χ(Of ) = 0 we say the orbifold is

parabolic and if χ(Of ) < 0 we say the orbifold is hyperbolic. The orbifold Of of a Thurston

map f is always parabolic or hyperbolic (see, e.g., [BM17, Proposition 2.12]).

For more background on orbifolds and ramification functions for Thurston maps, we

refer the reader to [BM17, Section 2.5 and Appendix A.10] and [Mil06, Appendix E].

Example 2.4. Consider again the map f(z) = (1− 2z)2 of Example 2.3. It is not hard to

see that νf (∞) =∞ since this point is a fixed critical point. Meanwhile, νf (0) = νf (1) = 2.

Thus the signature of the Thurston map (f, Pf ) is (2, 2,∞). The ramification funtion is

supported on the postcritical set, so adding additional points to the marked set does not

change the orbifold signature. Since

χ(Of ) = 2−
(

1 +
1

2
+

1

2

)
= 0,

this map has parabolic orbifold.

Example 2.5. Consider a Thurston map with the following combinatorial description: glue

two copies of the unit square together along their boundary to obtain a “pillow” as depicted

on the right side of Figure 3. This is a topological 2-sphere. Choose the four corners

{a, b, c, d} as a marking set A. On the left, we have a tiled surface which is also a topological

2-sphere. We define a Thurston map L from the left sphere to the right sphere by scaling

a white tile on the left to the front face of the pillow on the right, and then extending to a

map defined on the whole sphere by a successive Schwarz reflection process. Thus the gray

tiles map to the back face of the pillow while the white tiles map to the front face of the

pillow.
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f

Figure 3. A combinatorial depiction of the 2× 2 Lattès map.

The map L is a degree 4 Thurston map with PL = {a, b, c, d}. The preimage of any of

the points p ∈ PL consists of two critical points, both of which map to p with degree 2.

Thus this map is of type (2, 2, 2, 2). It is an example of what is known as a Lattès map. We

refer the reader to [BM17, Chapter 3] for more information about Lattès maps.

2.2. Isotopies and combinatorial equivalence

Definition 2.6. Let X and Y be topological spaces. A continuous map H : X × [0, 1]→ Y

is called an isotopy if Ht := H(·, t) : X → Y is a homeomorphism for each t ∈ [0, 1].

The map Ht is called the time-t map of the isotopy. Given a distinguished subset A ⊆ X,

the map H is said to be an isotopy relative to A if Ht|A = H0|A for each t ∈ [0, 1]. Two

homeomorphisms h0, h1 : X → Y are called isotopic (relative to A) if there exists an isotopy

H : X × [0, 1] → Y (relative to A) with H0 = h0 and H1 = h1. If h0 and h1 are isotopic

relative to A, we will write h0 ' h1 rel. A.

We can now introduce a notion of equivalence for Thurston maps.

Definition 2.7. Two marked Thurston maps (f, A) and (g, A′) are said to be combinatori-

ally equivalent or Thurston equivalent if there exist orientation-preserving homeomorphisms
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h0, h1 : (S2, A)→ (S2, A′) such that the diagram

(S2, A) (S2, A′)

(S2, A) (S2, A′)

f

h1

h0

g

commutes, and also h0 ' h1 rel. A.

Combinatorial equivalence is, in general, weaker than topological conjugacy (though

there are some special cases where the two notions coincide). A basic problem in Thurston

theory is how to determine when a given Thurston map (f, A) is combinatorially equivalent

to a rational Thurston map. When this occurs, we say that the Thurston map (f, A) is

realized by a rational map.

The answer to the above problem is the content of Thurston’s characterization theorem.

We review some important relevant definitions before describing the theorem and the key

idea behind its proof.

Definition 2.8. We will say two orientation-preserving homeomorphisms ϕ0, ϕ1 : S2 → Ĉ

are marking equivalent and write ϕ0 ∼ ϕ1 if there is a Möbius transformation M : Ĉ → Ĉ

such that ϕ1 'M ◦ ϕ0 rel. A and also the diagram

Ĉ

(S2, A)

Ĉ

ϕ0

M

ϕ1

commutes on A. The equivalence class of a marking ϕ under the relation ∼ is denoted by

[ϕ]. The Teichmüller space of a marked sphere (S2, A), denoted TA or Teich(S2, A), is the

space of all such marking equivalence classes.

15



To each Thurston map f : (S2, A) → (S2, A) there is an associated pullback map on

Teichmüller σf,A : TA → TA. The construction of this map is based on the following propo-

sition:

Proposition 2.9. Let (f, A) be a Thurston map, and let ϕ : (S2, A) → (Ĉ, ϕ(A)) be a

marking homeomorphism. Then there is another marking homeomorphism ψ : (S2, A) →

(Ĉ, ψ(A)) and a rational map R : (Ĉ, ψ(A)) → (Ĉ, ϕ(A)) so that the following diagram

commutes:
(S2, A) (Ĉ, ψ(A))

(S2, A) (Ĉ, ϕ(A)).

ψ

ϕ

f R

Moreover, the map ψ is unique up to equivalence with respect to the relation ∼ defining TA.

Definition 2.10. Given a Thurston map f : (S2, A) → (S2, A) the associated Thurston

pullback map σf,A : TA → TA is the map [ϕ] 7→ [ψ], where ψ is the map provided by the

previous proposition.

Remarks 2.11.

(1) The “·, A” portion of the subscript is to emphasize the more general setting of a marked

Thurston map (f, A), since σf typically denotes the pullback of (f, Pf ). Since we work

almost exclusively in the marked setting in this paper, we will suppress the subscript

and simply write σf := σf,A.

(2) The map σf can be defined even when the requirement deg(f) ≥ 2 is dropped from the

definition of a Thurston map, i.e., when f is simply a homeomorphism with f(A) = A.

(3) The map σf is holomorphic with respect to the complex structure of Teichmüller space

TA (see [DH93, Proposition 2.2]).

(4) We have the iteration property σfn = σnf for any n ∈ N.

The main utility of the Thurston pullback map σf is that it reduces the problem of

finding of finding a rational representative of a given combinatorial equivalence class to a

fixed point problem:
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Proposition 2.12. The Thurston map (f, A) is combinatorially equivalent to a rational

Thurston map if and only if σf : TA → TA has a fixed point.

We omit the proof, but it follows from the definitions of combinatorial equivalence and

the Thurston pullback map in a relatively straight-forward manner.

An immediate consequence of the above proposition is that every Thurston map (f, A)

where |A| = 3 is realized by a rational map as TA is just a single point in this case.

The proposition also hints at why type (2, 2, 2, 2) maps are usually excluded from our

considerations. As a self-map of the hyperbolic space TA the map σf is always weakly

contracting (see, e.g., [Roy71]), but the additional assumption that (f, A) is not of type

(2, 2, 2, 2) allows us to further say that σ2
f = σf2 is strictly contracting on TA (see [DH93,

Proposition 3.3]). Type (2, 2, 2, 2) maps, on the other hand, admit Thurston pullbacks σf

that are automorphisms of TA. The Lattès map presented in Example 2.5 has TA = H and

σf = idH, for instance. Some of our later considerations do apply to even these cases, but we

will generally focus on the setting where some iterate of σf (and later, a generic polymorphic

map σ) is strictly contracting.

2.3. Pullback relation on curves

In this section we will finally give a precise statement of Thurston’s characterization

theorem. We will also provide some additional details for our description of the the curve

pullback relation that appears in the FCA conjecture.

We will call a curve γ ⊆ S2 a Jordan curve if it is simple and closed. For a finite set

A ⊆ S2, we will call a curve γ a Jordan curve in the marked sphere (S2, A) if γ ⊆ S2 \ A.

A Jordan curve γ in (S2, A) is essential if each of the two connected components of S2 \ γ

contain at least two points of A. We call a Jordan curve peripheral if it is not essential (so

γ either encircles a single marked point or is nullhomotopic in S2 \A). Denote by C(S2, A)

the set of isotopy classes of essential unoriented Jordan curves in S2 \ A. A multicurve Γ

is a nonempty set of distinct elements of C(S2, A) represented by pairwise nonintersecting

curves.
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Consider a Thurston map f : S2 → S2 with marked set A. As stated in the introduction,

there is a pullback relation on Jordan curves in (S2, A) defined in the following manner: if

γ is a Jordan curve in S2 \A, then a connected component γ̃ of f−1(γ) is a pullback of γ by

f . The restriction of f : S2 \ f−1(A)→ S2 \A is an ordinary covering map, so each pullback

γ̃ of γ is itself a Jordan curve in (S2, A). The restriction f |γ̃ : γ̃ → γ is also a covering map,

and so has some finite degree, which we denote deg(f : γ̃ → γ).

By lifting isotopies one can see that the isotopy classes of curves in f−1(γ) rel. A depends

only on the isotopy class of γ rel. A, and not on the specific choice of γ. More precisely, we

have the following proposition:

Proposition 2.13. Let (f, A) be a Thurston map and let α and β be Jordan curves in

(S2, A) with α ' β rel. A. Then there is a bijection α̃↔ β̃ between the pullbacks α̃ of α and

the pullbacks β̃ of β under f such that, for all pullbacks corresponding under this bijection,

we have α̃ ' β̃ rel. A and deg(f : α̃→ α) = deg(f : β̃ → β).

See [BM17, Lemma 6.9] for a proof.

Thus there is a well-defined pullback relation on the set of isotopy classes of Jordan

curves in S2 \ A. Under this relation, a multicurve pulls back to another multicurve after

discarding peripheral pullbacks. We say a multicurve Γ is f -invariant if f−1(Γ) ⊆ Γ.

Denote by Z[C(S2, A)] and R[C(S2, A)] the free Z- and R-modules generated by C(S2, A),

so that an element w ∈ Z[C(S2, A)] is given by the formal finite linear combination

w =
k∑
i=1

ai[γi],

where each ai ∈ Z. The free submodules generated by a multicurve Γ will be denoted by

ZΓ and RΓ.

The Thurston linear transformation Lf : R[C(S2, A)] → R[C(S2, A)] is defined on basis

vectors [γ] in the following way: suppose a representative γ has essential pullbacks γ̃1 . . . , γ̃n.

Then

Lf ([γ]) =
n∑
i=1

λi[γ̃i] (2.1)
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where

λi =
∑

f−1(γ)⊇δ'γ̃i

1

deg(f : δ → γ)
;

the sum ranges over preimages δ of γ isotopic to γ̃i. If a multicurve Γ happens to be f -

invariant, then Lf restricts to a linear transformation of the submodule RΓ; we shall denote

this restriction by Lf,Γ.

Definition 2.14. A Thurston obstruction of a Thurston map (f, A) is an f -invariant mul-

ticurve such that the spectral radius of Lf,Γ satisfies ρ(Lf,Γ) ≥ 1.

Theorem 2.15 (Thurston’s characterization). Let (f, A) be a Thurston map that is not of

type (2, 2, 2, 2). Then f is combinatorially equivalent to a rational map if and only if f has

no Thurston obstruction.

2.4. Liftables and polymorphicity

Definition 2.16. For a finite set of points A ⊆ S2, let Homeo+(S2, A) be the group of

orientation-preserving homeomorphisms ϕ : S2 → S2 such that ϕ|A = idA; we endow the

space with the compact-open topology.

Let Homeo+
0 (S2, A) denote the path-component of Homeo+(S2, A) that contains the

identity map, meaning this set consists precisely of those elements that are isotopic to the

identity relative to A. This is easily seen to be a normal subgroup of Homeo+(S2, A); define

the pure mapping class group of (S2, A) to be the quotient

PMod(S2, A) := Homeo+(S2, A)/Homeo+
0 (S2, A).

Definition 2.17. Let (f, A) be a Thurston map. We say that ϕ ∈ Homeo+(S2, A) is liftable

by f if there is a ϕ̃ ∈ Homeo+(S2, A) such that

ϕ ◦ f = f ◦ ϕ̃. (2.2)
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In this situation, the following diagram commutes:

(S2, A) (S2, A)

(S2, A) (S2, A).

f

ϕ̃

ϕ

f

If we weaken the definition so that ϕ, ϕ̃ : S2 → S2 are just orientiation-preserving home-

omorphisms not necessarily fixing A pointwise, but we retain (2.2), then we will say that ϕ

is weakly liftable. When we wish to emphasize the difference between the two concepts, we

will refer to the former property as strong liftability.

Denote the set of weakly liftable and strongly liftable homeomorphisms by Lift(f) and

Lift(f, A) respectively. By lifting isotopies rel. A by the Thurston map (f, A), we get

Proposition 2.18. If ϕ0 ' ϕ1 rel. A and ϕ0 is weakly or strongly liftable by (f, A), then ϕ1

is respectively weakly or strongly liftable.

In light of the above proposition, let LMod(f) and LMod(f, A) be the subgroups of

PMod(S2, A) consisting of weakly and strongly liftable mapping classes respectively. One

of the deepest results in Thurston theory is that the pure mapping class group is virtually

strongly liftable, in the sense that there is a subgroup of finite index which is strongly

liftable:

Theorem 2.19 (Virtual liftability). For any Thurston map (f, A), LMod(f, A) has finite

index in PMod(S2, A). Furthermore, the assignment [ϕ] 7→ [ϕ̃] is a well-defined homomor-

phism from LMod(f, A) to PMod(S2, A).

A version of this result first appeared in [Pil12] and was generalized to the nondynamical

setting of admissible covers f : (S2, A)→ (S2, B), where A and B are potentially different,

in [KPS16]. The proof is quite complicated, but since the result is essential for establishing

the polymorphicity of the Thurston pullback map, we endeavor to present it in full. Our

argument mostly follows that of [KPS16] with some modifications.
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Algebraic preliminaries. We first fix some notation. Let G be a group and suppose

G y X is a group action on a set X. We define the orbit of an element x ∈ X under

G to be Gx := {gx : g ∈ G}. We define the stabilizer of an element x ∈ X to be

Gx := {g ∈ G : gx = x}. Clearly Gx is a subgroup of G. Denote the index of Gx in G by

[G : Gx]. Then we have

Lemma 2.20 (Orbit-Stabilizer theorem). Suppose G y X is a group action on a set X.

Then, for each x ∈ X, we have

|Gx| = [G : Gx].

In particular, if Gx is finite, then Gx is a finite index subgroup of G.

Proof. Fix some x ∈ X, and put H := Gx. For g1, g2 ∈ G, note that g1x = g2x if and only

if g−1
1 g2 ∈ H, which is true if and only if g1H = g2H. Thus there is a well-defined bijection

between points in the orbit Gx and left cosets of H in G. �

Lemma 2.21. Let α : G→ G′ be a surjective group homomorphism. If H is a finite-index

subgroup of G, then α(H) is a finite-index subgroup of G′. Moreover, [G′ : α(H)] ≤ [G : H]

Proof. Suppose [G : H] = n. Then there are distinct elements g1, . . . , gn ∈ G such that

G = g1H ∪ · · · ∪ gnH. Let g′i = α(gi) for i = 1, . . . , n. Since α is surjective, we have

K = α(G) = g′1α(H)∪· · ·∪g′nα(H). This shows that α(H) has finite index in K. The index

inequality follows from the fact that the list g′1, . . . , g′n has at most n distinct elements. �

Lemma 2.22. If G is a finitely-generated group, then it has at most finitely many subgroups

of a given index n ∈ N.

Proof. Let H be a subgroup of index n, so there are n distinct (left) cosets of H. If X is

the set of these cosets, then there is a group action Gy X given by left-multiplication: for

g ∈ G, we have g0H 7→ gg0H. If we label the cosets {1, . . . , n} (where H itself is labeled 1),

then the group action gives a homomorphism α : G→ Sn. We also have H = G1 = {g ∈ G :

α(g)(1) = 1}. Thus every index n subgroup of G arises from a homomorphism α : G→ Sn.
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Now if g1, . . . , gm is a set of generators for G, then α is completely determined by the

images α(g1), . . . , α(gm) ∈ Sn. There are |Sn| = n! choices for each image, and thus there

are at most (n!)m homomorphisms α : G → Sn. The previous paragraph shows that every

index n subgroup arises from such a homomorphism, so there are finitely many index n

subgroups. �

Liftability. Our goal in this section to develop a characterization for when a homeomor-

phism is weakly liftable. By Proposition 2.18, the weak liftability of ϕ ∈ Homeo+(S2, A)

depends only on the isotopy class of ϕ relative to A. Fix a point x0 ∈ S2 \ A. Standard

arguments show that each isotopy class in the punctured sphere contains an element that

fixes x0. We will accordingly focus our analysis on this case.

In the following, π1(X, x0) will denote the fundamental group of a topological space X

relative to the basepoint x0. Recall that any continuous map of pointed topological spaces

f : (X, x0) → (Y, y0) induces a homomorphism on fundamental groups f∗ : π1(X, x0) →

π1(Y, y0). We refer the reader to [Hat02, Chapter 1] for additional details about fundamental

groups.

Lemma 2.23. Let u0, u1 ∈ f−1(x0) and put H = f∗(π1(S2\f−1(A), u0)) and H ′ = f∗(π1(S2\

f−1(A), u1)). Suppose ϕ ∈ Homeo+(S2, A) and ϕ(x0) = x0. Then ϕ is weakly liftable to a

homeomorphism ϕ̃ : S2 → S2 with ϕ̃(u0) = u1 if and only if ϕ∗(H) = H ′.

Proof. If ϕ is weakly liftable, then we have the following diagram of pointed topological

spaces:

(S2 \ f−1(A), u0) (S2 \ f−1(A), u1)

(S2 \ A, x0) (S2 \ A, x0).

ϕ̃

f f

ϕ

.

Applying the π1 functor (and keeping in mind that ϕ and ϕ̃ are homeomorphisms and thus

induce group isomorphisms), we get ϕ∗(H) = H ′.

22



Now suppose that ϕ∗(H) = H ′, and consider the following redrawn diagram:

(S2 \ f−1(A), u1)

(S2 \ f−1(A), u0) (S2 \ A, x0) (S2 \ A, x0).

f
ϕ̃

f ϕ

Since

(ϕ ◦ f)∗(π1(S2 \ f−1(A), u0)) = ϕ∗(H) ⊆ H ′ = f∗(π1(S2 \ f−1(A), u1))

by assumption, the lifting criterion for covering spaces (see, e.g., [Hat02, Proposition 1.33])

implies the existence of a continuous lift ϕ̃ making the above diagram commute. Since

ϕ−1
∗ (H ′) = (ϕ−1)∗(H

′) ⊆ H, we can also apply the lifting criterion to ψ = ϕ−1 as well; call

the continuous lift so-obtained ψ̃.

We claim that ψ̃ = ϕ̃−1, which will show that ϕ̃ is a homeomorphism. To see this,

observe that

f ◦ ψ̃ ◦ ϕ̃ = ψ ◦ f ◦ ϕ̃ = ψ ◦ ϕ ◦ f = f,

so ψ̃ ◦ ϕ̃ is a deck transformation of f . Also note that (ψ̃ ◦ ϕ̃)(u0) = u0. Since the only deck

transformation that fixes a point is the identity, we conclude ψ̃ ◦ ϕ̃ = idS2\f−1(A) . A similar

argument works for the other composition order, so the claim is proven.

We have shown that there exists a lift homeomorphism ϕ̃ of the punctured sphere

S2 \ f−1(A) to itself. Taking the end compactification (also known as the Freudenthal

compactification; see, e.g., [AN93, Section VI.3] for details) uniquely extends this map to a

homeomorphism of the whole sphere. This completes the proof. �

We can say even more about the subgroups H and H ′ considered in the previous lemma.

Since they are the images of fundamental groups based at points in the same fiber of f , they

will in fact be conjugate to each other in π1(S2 \ A, x0) (see, e.g., [Hat02, Theorem 1.38]).

Thus the lemma might be rephrased as follows:

23



Lemma 2.24. Suppose ϕ ∈ Homeo+(S2, A) with ϕ(x0) = x0. Let u0 ∈ f−1(x0) and H =

f∗(π1(S2 \ f−1(A), u0)). Then ϕ is weakly liftable if and only if ϕ(H) = gHg−1 for some

g ∈ π1(S2 \ A, x0).

Virtuality. To prove the finite-index claim of Theorem 2.19, we will need the next two

lemmas.

Lemma 2.25. LMod(f, A) has finite index in LMod(f).

Proof. The main issue to contend with is that a given weak liftable ϕ might have multiple

lifts, each fixing f−1(A) setwise. Following [KPS16], let HA := Homeo+(S2, A) and let

H{f−1(A)} denote the group of homeomorphisms that fix f−1(A) setwise. Let Q be the

subgroup of HA × H{f−1(A)} consisting of ordered pairs (ϕ, ϕ̃) satisfying (2.2) where ϕ is

weakly liftable. This group acts on f−1(A) since ϕ̃ induces a permutation on this set. By

the orbit-stabilizer theorem, for each a ∈ A ⊆ f−1(A), the subgroup Qa consisting of pairs

(ϕ, ϕ̃) with ϕ̃(a) = a has finite index inQ. Since the intersection of finitely many finite-index

subgroups also has finite index, we see that

QA =
⋃
a∈A

Qa

has finite index in Q as well. Moreover, we have the following commutative diagram:

QA Q

Lift(f, A) Lift(f)

LMod(f, A) LMod(f).

The first row of vertical arrows are the surjective homomorphisms given by projecting to

the first coordinate, i.e., (ϕ, ϕ̃) 7→ ϕ. The second row of vertical arrows are the surjective

homomorphisms given by taking the isotopy class relative to A, i.e., ϕ 7→ [ϕ]. The lemma

now follows from Lemma 2.21 and the fact [Q : QA] <∞ . �
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Lemma 2.26. LMod(f) has finite index in PMod(S2, A).

Proof. Let d = deg f ≥ 2. Consider the set of conjugacy classes of index d subgroups in

π1(S2 \ A, x0):

X :=
{

conj(H) : [π1(S2 \ A, x0) : H] = d
}
.

The fundamental group π1(S2 \A, x0) is finitely generated, so it has a finite number of index

d subgroups by Lemma 2.22, and hence a finite number of such conjugacy classes.

LetG := PMod(S2, A). We can define a group actionGy X by conj(H) 7→ conj(ϕ∗(H))

where ϕ is a representative of [ϕ] ∈ G with ϕ(x0) = x0. This action is well-defined because

isotopic maps both fixing x0 will induce the same map on fundamental groups.

Now for u0 ∈ f−1(x0), the image f∗(π1(S2 \ f−1(A), u0)) is an index d subgroup of

π1(S2 \ A, x0), and so determines a conjugacy class ξ ∈ X. By Lemma 2.24 we see that

[ϕ] ∈ LMod(f) if and only if [ϕ] stabilizes ξ under the group action defined above. Since

X is a finite set, Gξ = LMod(f) has finite index in G by the orbit-stabilizer theorem. This

completes the proof. �

Proof of Theorem 2.19. That LMod(f, A) has finite index in PMod(S2, A) immediately fol-

lows from the previous two lemmas. All that remains to show is that the assignment

[ϕ] 7→ [ϕ̃] is a well-defined homomorphism from LMod(f, A) to PMod(S2, A), which we will

do in two steps.

First we claim given a representative ϕ of an element in LMod(f, A), there is a unique

lift ϕ̃ that fixes A pointwise. This statement is equivalent to the following claim: if f = f ◦ϕ̃

with ϕ̃|A = idA, then ϕ̃ = idS2 . There are several ways to show this, but perhaps the simplest

is to equip the spheres with complex structures such that f is holomorphic, which we may

do by Proposition 2.9. Then ϕ̃ will be topologically conjugate to a Möbius transformation

which also fixes the points of A. Since |A| ≥ 3, this Möbius transformation will be the

identity, and thus ϕ̃ must be the identity as well. This proves the claim.
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Finally, we must show that given two strong liftables with ϕ0 ' ϕ1 rel. A, the unique

lifts fixing A described above have ϕ̃0 ' ϕ̃1 rel. A. This follows by lifting the isotopy by the

Thurston map f , so we are done. �

The homomorphism described by Theorem 2.19 is traditionally called the virtual en-

domorphism for the Thurston map (f, A), and it is denoted by ϕf : Hf → G. Here,

Hf = LMod(f, A) and G = PMod(S2, A). We remark that this homomorphism ϕf should

not be confused with the liftable homeomorphisms just discussed.

Evaluation. Determining which homeomorphisms are liftables, and if so, what their lifts

are, can be computationally difficult. There is one class of homeomorphisms for which this

problem is easy: Dehn twists about essential curves in (S2, A). We refer the reader to

[FM12, Chapter 3] for general background on Dehn twists.

We denote the (left) Dehn twist about such a curve γ by Tγ. It is easy to see that if

Jordan curves γ0, γ1 ⊆ S2 \A are isotopic relative to A, then Tγ0 and Tγ1 belong to the same

isotopy class in PMod(S2, A). In what follows, we will simplify notation by identifying Tγ

with its mapping class.

Let C(S2, A) denote the union of C(S2, A) together with all of the peripheral isotopy

classes in (S2, A). We can extend the definition of the Thurston linear transformation Lf

to a transformation Lf : R[C(S2, A)]→ R[C(S2, A)] by including peripheral pullbacks in the

defining equation (2.1).

Theorem 2.27 ([Pil12, Corollary 3.4]). Let [γ] ∈ C(S2, A) and suppose a representative γ

has pullbacks γ̃1 . . . , γ̃n, some of which may be peripheral. Then T aγ ∈ LMod(f, A) for a ∈ Z

if and only if Lf (a[γ]) ∈ Z[C(S2, A)]. In this case, suppose Lf (a[γ]) = b1[γ̃1] + · · · + bn[γ̃n]

for b1, . . . , bn ∈ Z. Then

ϕf (T
a
γ ) =

n∏
k=1

T bkγ̃k .

If a particular γ̃i happens to be peripheral, then the corresponding twist Tγ̃i is isotopic

to the identity map rel. A. We remark that our formulation of the above theorem is a slight
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correction to the original in [Pil12], where the subtle issue of peripheral pullbacks was not

considered.

Polymorphicity. We will now pass the results of the previous section through to the

Thurston pullback. We first state two simple propositions, both of which directly follow from

our construction of the the Thurston pullback map in Section 2.2. Call a map f : (S2, A)→

(S2, A) admissible if it is either a Thurston map or an element of Homeo+(S2, A).

Proposition 2.28. Suppose f : (S2, A)→ (S2, A) and g : (S2, A)→ (S2, A) are admissible.

Then g◦f : (S2, A)→ (S2, A) is admissible, and σg◦f = σf ◦σg. In other words, the following

diagram commutes:

TA TA TA.
σg σf

σg◦f

Proposition 2.29. If [ϕ] ∈ PMod(S2, A), then σϕ : TA → TA is an automorphism.

Thus consider the subgroup G ≤ Aut(TA) determined by the image of PMod(S2, A)

under the antihomomorphism [ϕ] 7→ σϕ. Let H ≤ G be the finite-index subgroup which

corresponds to the image of LMod(f, A). Then Proposition 2.28 and Theorem 2.19 together

imply

Theorem 2.30 (Polymorphicity of Thurston pullback). For any Thurston map (f, A),

there is some subgroup G of Aut(TA), a finite-index subgroup H ≤ G, and homomorphism

ϕf : H → G such that

σf ◦ g = ϕf (g) ◦ σf

for all g ∈ H.

2.5. Specialization to four marked points

When |A| = 4, multicurves have at most one essential curve class. Furthermore, these

curve classes are in bijection with Q̂. There are multiple constructions of this bijection; see,

for example, [BHI21, Appendix] or [FM12, Proposition 2.6]. As we did in the introduction,
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we can describe the pullback relation on curves as a function µf : Q̂∪ {o} → Q̂∪ {o} where

o represents any of the peripheral curve classes.

The Thurston linear transformation reduces to a matrix with a single value, which we

call the Thurston multiplier. In particular, we have

Definition 2.31. For a Thurston map (f, A) with |A| = 4, let γ be an essential Jordan

curve of (S2, A). Let γ̃1, . . . , γ̃n be the set of essential pullbacks of γ under f . The Thurston

multiplier of γ is defined to be

λf (γ) :=
n∑
j=1

1

deg(f : γ̃j → γ)
.

If all pullbacks of γ are peripheral, then λf (γ) = 0.

Remarks 2.32.

(1) By Proposition 2.13, the multiplier may be regarded as being defined on isotopy classes.

(2) A simple but powerful fact is that a given Thurston map (f, A) has finitely many

possible multiplier values.

Theorem 2.33 (Thurston’s criterion for four points). Let (f, A) be a Thurston map with

|A| = 4 and suppose f is not of type (2, 2, 2, 2). Then f is combinatorially equivalent to

a rational map if and only if f has no Thurston obstruction, i.e., there is no f -invariant

essential Jordan curve γ with λf (γ) ≥ 1.

As described in Selinger’s thesis [Sel12], σf extends to the Weil–Petersson completion of

Teichmüller space T A, which for |A| = 4 is T A = H ∪ Q̂. The behavior of σf on Q̂ encodes

the pullback action on essential Jordan curves in (S2, A). In particular, if µf (s) = s′ for

s, s′ ∈ Q̂, then σf (r) = r′ where r = −1/s and r′ = −1/s′. If µf (s) = o, then σ(r) ∈ H. For

a detailed discussion of these facts, see [CFPP12, Section 6].

Since we will only every work on the level cusps rather than curves, we shall use the

notation λf (r) to denote the multiplier for the curve γ with slope class s = −1/r throughout

the remainder of this paper.
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As for the pure mapping class group, there is a natural identification of PMod(S2, A)

with Γ(2), the projectivized level-2 congruence subgroup of PSL(2,Z). This identification

is given by the correspondence

T0 7→
[
1 2

0 1

]
and T∞ 7→

[
1 0

−2 1

]
where T0 and T∞ are the Dehn twists which fix the curves of slope 0 and ∞ respectively.

We can also specialize the result of Theorem 2.27 to the case where |A| = 4 to get:

Theorem 2.34. For a Thurston map (f, A) with |A| = 4, suppose a curve with slope class

s pulls back to a curve with slope class s′. If λf (s) = b/a for positive integers a, b, then there

is some positive integer n such that the Dehn twist T nas is liftable and ϕf (T nas ) = T nbs′ .

If the curve of slope class s has no peripheral pullbacks, or the peripheral pullbacks

all have degree dividing a, then we can take n = 1 in the above theorem. Otherwise it

is necessary to pass to some multiple in order to ensure that Lf (na[s]) ∈ Z[C(S2, A)] in

Theorem 2.27.
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CHAPTER 3

Background for polymorphic maps

In this chapter we collect all the background material needed for our systematic study

of polymorphic maps.

In Section 3.1 we define Fuchsian groups and give an overview of their basic properties.

In Section 3.2 we describe the structure of the limit set of a finite coarea Fuchsian group.

The behavior of a ϕ-polymorphic map near the boundary depends largely only the limit set

structure of the Fuchsian groups G and G′.

In Section 3.3 we define the modular group and discuss some of its basic properties. In

particular, we define notion of cusp width, which is essential for our computation of angular

derivatives of modularly polymorphic maps.

In Section 3.4 we review the classical theory of complex functions near a boundary. In

particular, we define the notions of nontangential limits and angular derivatives. We also

present the famous Julia–Wolff–Carathéodory theorem.

3.1. Fuchsian groups

By Aut(H) we shall denote the group of conformal automorphisms of the upper half-

plane, which consists of orientation-preserving isometries with respect to the hyperbolic

metric of H. All such maps are Möbius transformations with real coefficients, i.e., maps g

given by

g(τ) =
aτ + b

cτ + d

where a, b, c, d ∈ R and ad− bc 6= 0. Möbius transformations are unchanged by scaling the

coefficients by a nonzero parameter, so we will normalize so that ad − bc = 1. This yields

the standard identification of Aut(H) with the matrix group PSL(2,R):
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PSL(2,R) =

{
τ 7→ aτ + b

cτ + d
:

[
a b

c d

]
∈ SL(2,R)

}
. (3.1)

Note that PSL(2,R) = SL(2,R)/{±I} where I is the identity matrix, so elements of

PSL(2,R) are uniquely represented by SL(2,R) matrices up to sign.

The absolute trace of g ∈ Aut(H) is defined by | tr(g)| = |a+ d|, where

g(τ) =
aτ + b

cτ + d
for

[
a b

c d

]
∈ SL(2,R).

The absolute trace detects the fixed point structure of an automorphism of H. Accordingly,

there is a classification of elements of g ∈ Aut(H) \ {idH} into three types:

(1) g is elliptic if | tr(g)| < 2, or equivalently, if g fixes a single point in H,

(2) g is parabolic if | tr(g)| = 2, or equivalently, if g fixes a single point on R̂,

(3) g is hyperbolic if | tr(g)| > 2, or equivalently, if g fixes two points on R̂.

In what follows, it will sometimes be convenient to use the disk model D of hyperbolic

plane. Nonidentity elements of Aut(D) fall into the same three categories above, distin-

guished by the conditions on the fixed points (i.e., having one fixed point in D, one fixed

point on ∂D, or two fixed points on ∂D).

Definition 3.1. A Fuchsian group G is a discrete subgroup of Aut(H).

Many authors alternatively define Fuchsian groups as subgroups of Aut(H) that act

properly discontinuously in the following sense: given any compact set K ⊆ H, there are

only finitely many maps g ∈ G for which g(K)∩K 6= ∅. These two definitions are equivalent.

The quotient surface H/G is a hyperbolic orbifold with a metric induced by the standard

Poincaré metric on H. The genus g of a Fuchsian group is the genus of the underlying

topological surface of H/G.

A Fuchsian group G is said to be cocompact if H/G is compact, and it is finite coarea if

H/G has finite area. If G is finite coarea, then let m be the number of conjugacy classes

of maximal parabolic or maximal elliptic cyclic subgroups of G. Each maximal elliptic

cyclic subgroup corresponds to a cone point, while each maximal parabolic cyclic subgroup
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corresponds to a puncture. Since a finite area orbifold has finitely many cone points and

punctures, m is indeed a finite number. Furthermore, if G is finite coarea and has no elliptic

elements then H/G is a compact Riemann surface with m punctures. See, e.g., [Kat92] or

[Bea95] for more details.

A useful fact, which we shall employ several times in later chapters, is that every finitely

generated Fuchsian group is virtually torsion-free:

Lemma 3.2 (Selberg’s lemma). A finitely generated Fuchsian group has a finite-index sub-

group that is torsion-free, i.e., has no elliptic elements.

A modern proof of Selberg’s lemma can be found in [Alp87].

Using this lemma we can obtain as a corollary the following:

Proposition 3.3. Given any homomorphism ϕ : G→ G′ where G,G′ are finitely generated

Fuchsian groups, there are torsion-free finite-index subgroups H ≤ G and H ′ ≤ G′ so that

ϕ(H) ⊆ H ′.

Proof. Use Selberg’s lemma to obtain a torsion-free finite-index subgroup H ′ of G′. Then

ϕ−1(H ′) has finite index in G. Apply Selberg’s lemma again to obtain a finite-index torsion-

free subgroup H ≤ ϕ−1(H ′). This subgroup H also has finite index in G, and it has the

property ϕ(H) ⊆ H ′ by construction. �

3.2. Limit sets of Fuchsian groups

Let G be a nonelementary Fuchsian group, that is, one which does not admit a finite

orbit in H := H ∪ R̂. The limit set of G, denoted by L(G), is the set of limit points of an

orbit Gτ for some τ ∈ H:

L(G) = {x ∈ H : there exist gn ∈ G such that gn(τ)→ x as n→∞}.

This set does not depend on the choice of z ∈ H. Furthermore, L(G) is closed in H, is

G-invariant, and satisfies L(G) ⊆ R̂.
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We say that a Fuchsian group G is of the first kind if L(G) = R̂. It is a basic fact that

any finite coarea Fuchsian group is of the first kind.

We will divide L(G) into points of two types:

Definition 3.4. A point x ∈ L(G) is called a cusp of G if there exists a parabolic element

g ∈ G such that g fixes x. We denote the set of all cusps of G by cusp(G).

Definition 3.5. A point x ∈ L(G) is called a conical limit point if there exists a Stolz angle

S and a sequence of elements gn ∈ G such that gn(i) → x in S. We denote the set of all

conical limit points of G by con(G).

A Stolz angle within a particular domain with smooth boundary is an angular sector

with vertex on the boundary and which, in a neighborhood of the vertex, intersects the

boundary only at the vertex. For the upper half-plane H = {x + iy : y > 0}, a Stolz angle

based at x0 ∈ R is given by the region y ≥ m|x − x0| where m > 0. A Stolz angle with

vertex ∞ is just the image of a Stolz angle with vertex 0 under the map τ 7→ −1/τ .

The choice of distinguished baspoint i in the definition of conical limit point may be

replaced with any τ ∈ H (see [Bea95, Theorem 10.2.1]). In other words, x ∈ L(G) is a

conical point if there is a Stolz angle S and a sequence gn ∈ G such that, for each τ ∈ H,

gn(τ)→ x in S.

The set of cusps and conical limit points are disjoint. Moreover, for a finitely generated

Fuchsian group G, these are the only points of L(G), and this property characterizes finitely

generated groups:

Theorem 3.6. A Fuchsian group G is finitely generated if and only if each point of L(G)

is either a cusp or a conical limit point, i.e., L(G) = cusp(G) ∪ con(G).

A proof can be found in [Bea95, Theorem 10.2.5].

It will sometimes be convenient in our calculations to replace G with a finite-index

subgroup H ≤ G. Accordingly, we must understand how the structure of the limit set

changes when passing to finite subgroups.
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Proposition 3.7. If H ≤ G is a finite-index subgroup of a finitely-generated Fuchsian group

G, then we have the following:

(i) L(H) = L(G)

(ii) cusp(H) = cusp(G)

(iii) con(H) = con(G).

Proof. In light of Theorem 3.6 it will suffice to establish any two items in the list.

We first prove (i). The inclusion L(H) ⊆ L(G) is automatic, so we need only consider

the other direction. We make the following claim: given any τ ∈ H there is some r > 0

such that for any g ∈ G there exists some h ∈ H such that dH(g(τ), h(τ)) ≤ r. To

see this, let n = [G : H] and consider a decomposition of G into n (right) cosets of H:

G = Hg1 ∪ · · · ∪ Hgn. Given any g ∈ G, there is some i = 1, . . . , n such that gg−1
i ∈ H.

Moreover, since G consists of hyperbolic isometries,

dH(g(τ), gg−1
i (τ)) = dH(τ, g−1

i (τ))

for any τ ∈ H. Thus, for fixed τ ∈ H, put

r := max
1≤i≤n

dH(τ, g−1
i (τ)).

The claim then follows.

Now let x ∈ L(G), so there is some τ ∈ H and sequence gn ∈ G such that gn(τ) → x.

The preceding claim implies the existence of an r > 0 and a sequence hn ∈ H such that

dH(gn(τ), hn(τ)) ≤ r for each n ∈ N. By the properties of the hyperbolic metric, since

gn(τ) → x ∈ R̂ as n → ∞, it must be the case that hn(τ) → x as n → ∞ as well. This

proves (i).

We now prove (ii). The inclusion cusp(H) ⊆ cusp(G) is again automatic. For the other

direction, suppose x ∈ R̂ is a cusp of G, so there is some parabolic element g ∈ G such

that g(x) = x. We claim there is some positive integer N such that gN ∈ H. This will

immediately imply the remaining direction, since then gN(x) = x for gN ∈ H.
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To prove the claim, again let n = [G : H], and consider the list of cosets

{gH, . . . , gnH, gn+1H}.

Since there are only n distinct cosets of H, two cosets in the above list must coincide by

the pigeonhole principle. If giH = gjH for i 6= j, then we see that gi−jH = H, and thus

gN ∈ H for N = |i− j|. This completes the proof. �

3.3. The modular group

The modular group is the subgroup of matrices in PSL(2,R) with matrix representatives

belonging to SL(2,Z). In other words,

PSL(2,Z) =

{
τ 7→ aτ + b

cτ + d
:

[
a b

c d

]
∈ SL(2,Z)

}
. (3.2)

This Fuchsian group has a few special properties that we shall make use of. For one,

PSL(2,Z) = 〈S, T 〉 where S(τ) = −1

τ
and T (τ) = τ +1 for τ ∈ H, so it is finitely generated.

It also has finite coarea (see [Kat92, Example 3.A]), so it is of the first kind.

Proposition 3.8. If G = PSL(2,Z), then cusp(G) = Q̂. Moreover, there is a single cusp

class and cusp(G) = G∞.

Proof. First observe that ∞ is a cusp of G, since T ∈ PSL(2,Z) given by T (τ) = τ + 1 has

T (∞) =∞ and T is parabolic.

Next, let r ∈ Q be a finite rational number, so we may write r = p/q for coprime p, q ∈ Z

with q > 0. Since p and q are coprime, there are integers u, v ∈ Z such that up+ vq = −1.

Then there is gr ∈ G such that gr(r) =∞ given by

gr(τ) =
uτ + v

qτ − p
.

The element Tr := g−1
r ◦T ◦ gr is a parabolic element which fixes r, so r is also a cusp. Thus

Q̂ ⊆ cusp(G).
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On the other hand, if x ∈ cusp(G) then there must be some parabolic element g ∈

PSL(2,Z) such that g(x) = x. Suppose g has form

g(τ) =
aτ + b

cτ + d

where ad− bc = 1 and a, b, c, d ∈ Z. We get the equation

ax+ b

cx+ d
= x.

If c = 0 then ad = 1 and so a = d = ±1. Thus the equation reduces to the statement

x± b = x. We cannot have b = 0 since then g is the identity and not a parabolic element.

If b 6= 0 though, then we must have x =∞ ∈ Q̂.

Next suppose c 6= 0. Rearranging the equation and using the quadratic formula gives

x =
(a− d)±

√
(a+ d)2 − 4

2c
.

Since g is parabolic we must have (a+ d)2 = |a+ d|2 = 4. It follows that x ∈ Q in this case.

This completes the proof. �

Since cusp(G) = Q̂ and G is a finitely-generated Fuchsian group of the first kind, it

follows that con(G) = R̂ \ Q̂ = I, the set of irrational numbers.

Proposition 3.9. If g ∈ PSL(2,Z) fixes ∞, then g(τ) = τ + b for some b ∈ Z.

Proof. Suppose g fixes ∞ and has form

g(τ) =
aτ + b

cτ + d

where ad− bc = 1 and a, b, c, d ∈ Z. Since g(∞) = a/c =∞, we must have c = 0 and thus

ad = 1 by the determinant condition. Thus either a = d = 1 or a = d = −1. We may

suppose without loss of generality that the former is true. Then g(τ) = τ + b for b ∈ Z, as

claimed. �
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We know by the proof of Proposition 3.7(ii) that if G = PSL(2,Z) and H ≤ G is a

finite-index subgroup, then there is a unique minimal positive integer N such that TN ∈ H

for T (τ) = τ + 1. In fact, given any r ∈ Q̂ we see that there is a unique minimal positive

integer N(r) depending only on r such that TNr ∈ H, where Tr = g−1
r ◦ T ◦ gr is as in the

proof of Proposition 3.8. Any parabolic element of H fixing r is of this form. Indeed, if

h ∈ H and h(r) = r, then gr ◦ h ◦ g−1
r ∈ G fixes ∞ and hence must be of the form T b for

some integer b ∈ Z by Proposition 3.9. Since N(r) was chosen to be minimal we must have

h = T br ∈ 〈T
N(r)
r 〉.

We shall call N(r) the width of the cusp r in the subgroup H.

3.4. Julia–Wolff–Carathéodory theory

In this section we shall record some classical results about the boundary behavior of

holomorphic self-maps of hyperbolic 2-space. See [Aba23, Chapter 2], [Sha93, Chapter 4],

or [Bur79, Section VI.4] for modern expositions on this material.

In keeping with the literature, we shall initially present our results in the disk model D

and then describe how to translate the results to the upper half-plane model H afterwards.

Definition 3.10. Given a holomorphic map σ : D → Ĉ, we say σ has angular or nontan-

gential limit at ζ ∈ ∂D if there is L ∈ Ĉ so that, given any Stolz angle S with vertex ζ, and

any sequence zn → ζ in S, we have σ(zn)→ L as n→∞.

In this case we write

∠ lim
z→ζ

σ(z) = L.

We are generally interested in the case where σ : D → D. When such a map σ has an

nontangential limit η ∈ D at ζ we shall simply write σ(ζ) = η. When η ∈ ∂D, the limit

σ′(ζ) := ∠ lim
z→ζ

σ(z)− η
z − ζ

exists (where we allow ∞), and we call this quantity the angular derivative of σ at ζ.

Theorem 3.11 (Julia–Wolff–Carathéodory (JWC) theorem). For a holomorphic function

σ : D→ D and ζ ∈ ∂D, the following statements are equivalent:
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(i) δ := lim inf
z→ζ

1− |σ(z)|
1− |z|

is finite

(ii) ∠ lim
z→ζ

σ(z)− η
z − ζ

exists and is finite for some η ∈ ∂D

(iii) ∠ lim
z→ζ

σ(z) = η ∈ ∂D and ∠ lim
z→ζ

σ′(z) ∈ C exists.

Moreover, if any of the previous conditions hold, then

σ′(ζ) = ∠ lim
z→τ

σ(z)− η
z − ζ

= ∠ lim
z→ζ

σ′(z) = ζηδ.

In particular, if σ has a fixed point at ζ and satisfies any of the above conditions, then

σ′(ζ) = δ is a finite positive real number.

We record one more classical result for the disk case, which will help us establish the

existence of nontangential limits in later proofs. See [Aba23, Section 2.4] for a proof.

Theorem 3.12 (Lindelöf principle). Let γ : [0, 1)→ D be a continuous curve such that

lim
t→1−

γ(t) = ζ ∈ ∂D.

If σ : D→ C is a bounded holomorphic function such that the limit

lim
t→1−

σ(γ(t)) = L

exists, then σ has nontangential limit L at ζ.

Let us now state the reformulation of these results for the upper half-plane model H =

{τ ∈ C : Im τ > 0}. We shall do this by means of the Caley transformation, which is the

Möbius transformation κ : Ĉ→ Ĉ defined by

κ(z) := i
1 + z

1− z

for all z ∈ Ĉ. The Cayley transformation conformally maps D onto H; when we write κ we

will typically means its restriction to these sets. Note that a region U ⊆ D is contained in

a Stolz angle in the disk if and only if κ(U) is contained in a Stolz angle in H.
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Now given σ : H → H, we can define a corresponding function σκ : D → D on the disk

defined by

σκ := κ−1 ◦ σ ◦ κ.

Given x ∈ R̂, define a corresponding point ζx := κ−1(x).

Then the nontangential limit of σ at x exists if and only if the nontangential limit of σκ

at ζx exists. Similarly, we say that σ has finite angular derivative at x ∈ R̂ if and only if σκ

has finite angular derivative at ζx ∈ ∂D. In view of the JWC theorem for disks, if σ′(x) is

finite then the corresponding limit, which we denote σ(x), must have σ(x) ∈ R̂. Moreover,

σ′κ(ζx) = ∠ lim
τ→x

σ(τ)− i
σ(τ) + i

− σ(x)− i
σ(x) + i

τ − i
τ + i

− x− i
x+ i

.

We are now ready to give the precise formulas for the angular derivatives of σ at its

boundary. These formulas must be stated in cases due to the distinguished boundary point

∞.

Definition 3.13. Suppose σ : H→ H is holomorphic and has nontangential limit σ(x) ∈ R̂

at x ∈ H.

(1) If x, σ(x) ∈ R, then

σ′(x) := ∠ lim
τ→x

σ(τ)− σ(x)

τ − x
= σ′κ(ζx)

(
σ(x) + i

x+ i

)2

.

(2) If x ∈ R, σ(x) =∞, then

σ′(x) := ∠ lim
τ→x
− 1

(τ − x)σ(τ)
= −σ′κ(ζx)

(
1

x+ i

)2

.

(3) If x =∞, σ(x) ∈ R, then

σ′(∞) := ∠ lim
τ→∞
−τ(σ(τ)− σ(∞)) = −σ′κ(1)(σ(∞) + i)2.
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(4) If x = σ(x) =∞, then

σ′(∞) := ∠ lim
τ→∞

τ

σ(τ)
= σ′κ(1).

With this in hand, one can prove the following planar version of the Julia–Wolff–

Carathéodory theorem (specialized to the case of σ(∞) =∞):

Theorem 3.14 (Planar JWC theorem). For a holomorphic function σ : H→ H the follow-

ing are equivalent:

(i) sup
τ∈H

Im τ

Imσ(τ)
<∞

(ii) lim sup
τ→∞

Im τ

Imσ(τ)
<∞

(iii) σ(∞) =∞ and σ′(∞) = ∠ lim
σ→∞

τ

σ(τ)
<∞.

Moreover, if any of the previous conditions hold, then

σ′(∞) = lim sup
τ→∞

Im τ

Imσ(τ)
= sup

τ∈H

Im τ

Imσ(τ)
.

We remark that for a fixed point at ∞, we obtain the (somewhat displeasing) property

∠ lim
τ→∞

σ′(τ) =
1

σ′(∞)
.

We conclude this section with some example angular derivative calculations that will be

useful for our later work.

Example 3.15. Consider g ∈ Aut(H) which transposes ∞ and a finite real number x ∈ R.

Then g is given by the formula

g(τ) =
xτ − (x2 + 1)

τ − x
.

Since g(∞) = x, we use formula (3) from Definition 3.13 to find g′(∞). Note that

−τ (g(τ)− x) = −τ
(
xτ − (x2 + 1)

τ − x
− x
)

= −τ
(
−1

τ − x

)
=

τ

τ − x
.
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Taking the limit as τ →∞ in a Stolz angle, we find

g′(∞) = ∠ lim
τ→∞

τ

τ − x
= 1.

Example 3.16. Let us now consider a map g ∈ PSL(2,Z) that sends a finite rational r ∈ Q

to ∞. Write r = p/q for coprime p, q ∈ Z with q 6= 0. Since p and q are coprime, there

are integers u, v ∈ Z such that up + vq = −1. Then an example of g ∈ PSL(2,Z) with the

desired property is

g(τ) =
uτ + v

qτ − p
.

Since g(r) =∞, we use formula (2) from Definition 3.13 to find g′(r). Note that

− 1

(τ − r)g(τ)
= − 1

τ − p/q
· qτ − p
uτ + v

= − q

uτ + v
.

Letting τ → p/q in a Stolz angle, we find

g′(r) = ∠ lim
τ→r
− q

uτ + v
= − q

u(p/q) + v
= − q2

up+ vq
= q2.

3.5. Horoballs in H

In this section we record some lemmas regarding horoballs in H for later use. Let

R̂ := R ∪ {∞} denote the extended real line.

Definition 3.17. Let t > 0 and x ∈ R̂. A horoball based at x with hororadius t is

Ht(x) :=

{
τ ∈ H :

Im τ

|τ − x|2
>

1

t

}
for x ∈ R and

Ht(∞) :=

{
τ ∈ H : Im τ >

1

t

}
for x =∞.

A horoball Ht(x) based at a finite point x ∈ R is simply a ball in H that is tangent to the

real line at x; a simple calculation shows the ball has Euclidean diameter t. The horoball

Ht(∞), on the other hand, is a half-plane.
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If H is a horoball, we call its boundary ∂H a horocycle. Thus a horocycle based at x ∈ R

is a circle in H that is tangent to R at x, while a horocycle based at ∞ is a horizontal line.

From here we can use the Julia–Wolff–Carathéodory Theorem 3.14 to obtain the follow-

ing reformulation of the Julia Lemma in terms of horoballs:

Corollary 3.18. For a holomorphic function σ : H → H with σ(x) = x′ for x, x′ ∈ R̂,

suppose δ := σ′(x) satisfies δ ∈ (0,∞). Then σ(Ht(x)) ⊆ Hδt(x
′).

Proof. First suppose that σ(∞) = ∞. In this case, δ = σ′(∞) < ∞, so Theorem 3.14

applies and

δ = σ′(∞) = sup
τ∈H

Im τ

Imσ(τ)
.

In particular, Imσ(τ) ≥ (1/δ) Im τ for all τ ∈ H. Now if τ ∈ Ht(∞), then Im τ > 1/t, so it

follows that Imσ(τ) > 1/(δt). Hence σ(τ) ∈ Hδt(∞) and the claim is proven.

For the general case, consider maps g1, g2 ∈ Aut(H) such that g1 transposes x and ∞

and g2 transposes x′ and ∞. If x = ∞ then we take g1 = id, and likewise for x′ and g2.

Otherwise, we use the map considered in Example 3.15:

g1(τ) =
xτ − (x2 + 1)

τ − x
and g2(τ) =

x′τ − ((x′)2 + 1)

τ − x′
.

Note that g1 and g2 are both their own inverses. A simple calculation shows that

Im g1(τ) =
Im τ

|τ − x|2
.

Thus g1(τ) ∈ Ht(∞) if and only if τ ∈ Ht(x). An analogous statement holds for g2.

The map g2 ◦ σ ◦ g1 : H → H now fixes ∞, so the previous case applies with dilation

factor (g2 ◦ σ ◦ g1)′(∞). The usual chain rule holds for angular derivatives at contact

points (see [Aba23, Proposition 2.4.7]). Since g′1(∞) = 1 and g′2(x′) = 1, we see that

(g2 ◦ σ ◦ g1)′(∞) = σ′(x) = δ. Thus

(g2 ◦ σ ◦ g1)(Ht(∞)) ⊆ Hδt(∞).
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We have g1(Ht(∞)) = Ht(x) and g−1
2 (Hδt(∞)) = g2(Hδt(∞)) = Hδt(x

′), so the above line is

equivalent to the statement

σ(Ht(x)) ⊆ Hδt(x
′).

This completes the proof. �

We will now define a special family of normalized horoballs based at rational cusps

that are paticularly well-behaved under the action by modular group elements. Suppose

r = p
q
∈ Q is written in lowest terms. Then put

Bt(r) := Ht/q2(r).

For r =∞ = 1/0, we define Bt(∞) := Ht(∞). We shall sometimes call such a horoball Bt(r)

a modular horoball. Note the Euclidean radius of Bt(r) for r 6=∞ is given by R = t/(2q2).

Since t no longer represents the true hororadius for these normalized horoballs, we shall

instead call t the hororadius parameter in this context.

Lemma 3.19. Let g ∈ PSL(2,Z) and suppose g(r) = r′ for r, r′ ∈ Q̂. Then

g(Bt(r)) = Bt(r
′).

Proof. Note that if r = p/q for coprime integers p, q with q > 0, then

Bt(r) = Ht/q2 =

{
τ ∈ H :

Im τ

|qτ − p|2
>

1

t

}
.

We show that if g ∈ PSL(2,Z) and g(r) = r′ = p′/q′ for coprime integers p′, q′ with q′ > 0,

then
Im τ

|qτ − p|2
=

Im g(τ)

|q′g(τ)− p′|2
.

It suffices to check the formula for the generators T and S of PSL(2,Z), where T (τ) = τ + 1

and S(τ) = −1/τ . In the first case, note ImT (τ) = Im τ and p′/q′ = p/q + 1, so after

putting p′ = p+ q and q′ = q the result follows for T . Similarly, in the second case we have

ImS(τ) = Im τ/|τ |2 and p′/q′ = −q/p. Putting p′ = −q and q′ = p, the stated formula is

true in this case as well. This completes the proof. �

43



An easy corollary of this lemma is the fact that, if t < 1, then the collection {Bt(r) :

r ∈ Q̂} is disjoint. Suppose for contradiction two horoballs from the family intersect. By

application of a suitably chosen g ∈ PSL(2,Z), the lemma allows us to assume one of the

horoballs is Bt(∞) = {τ ∈ H : Im(τ) > 1/t}. Any other horoball Bt(r) for r ∈ R is tangent

to the real line and has Euclidean diameter t/q2 ≤ t < 1, and so has Im(τ) < 1 for all

τ ∈ Bt(r). Since 1 < 1/t, the two horoballs must be disjoint and the claim follows.

44



CHAPTER 4

Polymorphic maps

4.1. Definition, cusps, and rigidity

We shall now finally turn our attention to polymorphic maps. Recall:

Definition 4.1. Let G,G′ be finite coarea Fuchsian groups, and let ϕ : G → G′ be a ho-

momorphism. We will say a nonconstant holomorphic function σ : H→ H is ϕ-polymorphic

if σ satsifies the intertwining relation

σ ◦ g = ϕ(g) ◦ σ (4.1)

for all g ∈ G.

An important property of ϕ-polymorphic maps is that they admit continuous extensions

to cusp(G):

Proposition 4.2. Suppose σ : H → H is ϕ-polymorphic. Then for any cusp x ∈ R̂ of G,

the nontangential limit σ(x) exists. If σ(x) ∈ R̂, then σ(x) is a cusp of G′.

This is result is at least implicitly contained in [MP08, Theorem 2]. Since our definition

of polymorphic map is more restricted than the one used there, we can give a somewhat

simplified proof.

Proof. If x ∈ R̂ is a cusp of G, then there is a parabolic g ∈ G such that g(x) = x. Let

g̃ = ϕ(g), so we have the intertwining relation

σ ◦ g = g̃ ◦ σ.

Our goal will be to show that the nontangential limit lies on the boundary only in the

case where g̃ is parabolic. To do this, we will divide the argument into cases based on the

automorphism type of g̃.
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Case 1: g̃ is the identity. Let 〈g〉 ≤ Aut(H) be the subgroup generated by the parabolic

element g. Then we have the conformal isomorphism H/〈g〉 ∼= D \ {0}, and in this iden-

tification, x ∈ R̂ on the left corresponds to the puncture at the origin on the right. Thus

σ descends to an induced map σ : D \ {0} → H, and it is easy to see (say, by the Lindelöf

principle) that σ has a nontangential limit at x if and only if σ extends to be continuous

at the origin. This statement is also true if we replace σ with with κ−1 ◦ σ : D \ {0} → D,

where κ−1 : H→ D is the inverse Cayley transformation introduced in the previous section.

Since κ−1 ◦ σ is bounded in punctured neighborhoods of the origin, Riemann’s theorem on

removable singularities guarantees κ−1 ◦ σ, and hence also σ, extends to be continuous at

the origin. This proves the existence of σ(x) in the sense of nontangential limits. We note

that σ(x) ∈ R̂ cannot happen in this case (where g̃ = idH). Indeed, if we supposed that

κ−1 ◦ σ(0) ∈ ∂D, then the maximum principle would imply κ−1 ◦ σ is constant on the disk.

This could only happen if σ : H→ H itself were constant, thus contradicting our assumption

that σ was nonconstant as a polymorphic function.

Case 2: g̃ is parabolic. In this case, σ descends to a holomorphic map from H/〈g〉 ∼=

D \ {0} to H/〈g̃〉 ∼= D \ {0}, so we get an induced map σ : D \ {0} → D \ {0}. Arguing

as before, σ extends to be continuous at the origin and so σ(x) exists in the nontangential

sense. The intertwining relation implies σ(x) is a fixed point of g̃, so σ(x) ∈ R̂ since g̃ is

parabolic.

Case 3: g̃ is hyperbolic. This case is impossible. Indeed, suppose otherwise. Then

H/〈g̃〉 ∼= A for some open annulus A = {w : r1 < |w| < r2}, where in this identification,

the two fixed points of g̃ in R̂ on the left correspond to the inner and outer boundaries

of A on the right. As in the previous cases the existence of σ(x) follows from noting the

removability of the singularity at the origin in the induced map σ : D \ {0} → A. By the

maximum principle it cannot be the case that σ(0) lies on the outer boundary |w| = r2,

and similarly by the minimum principle σ(0) cannot lie on the inner boundary |w| = r1, so

σ(0) ∈ A. But then σ(x) cannot be a fixed point of g̃, since if it were then in the induced
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map σ(0) would lie on one of the two boundaries of the annulus A. Since σ(x) must be a

fixed point of g̃ by the intertwining relation, we have derived a contradiction.

Case 4: g̃ is elliptic. Since G′ is assumed to be Fuchsian, g̃ must be finite-order (if it

were infinite order, then G′ would not act properly discontinuously on H). Thus there is a

positive integer n such that g̃n is the identity. The result will then follow from Case 1 by

replacing g with gn, which is still parabolic with cusp x. �

In the remainder of this section we present the proof of an important rigidity result from

[Pom81, Theorem 5].

Theorem 4.3. Suppose ϕ : G → G′ is a homomorphism of Fuchsian groups where G is

finite coarea. If σ1 : H→ H and σ2 : H→ H are both ϕ-polymorphic, then σ1 = σ2.

Proof. By Fatou’s theorem (see, e.g., [Zyg02, Theorem 7.2.5]), σ1 and σ2 have nontangential

limits for almost every x ∈ R̂. Almost all of these points are conical limit points of G. Let

x ∈ R̂ be such a conical limit point. By definition there is a Stolz angle S and a sequence

gn ∈ G such that, for any τ ∈ H, gn(τ)→ x in S as n→∞. Put g̃n = ϕ(gn). Then

σ1(gn(τ)) = g̃n(σ1(τ)) (4.2)

for all τ ∈ H. We can give a precise description of the pointwise limit function of g̃n by

using a theorem due to Piranian and Thron ([PT57, Theorem 1]). After replacing gn and

g̃n with suitable subsequences, there will be some function g̃ so that g̃n → g̃ pointwise on

either Ĉ or Ĉ \ {z0}, the complement of a single point. Moreover, this limit function g̃ is

either a constant or a Möbius transformation.

Taking the limit n→∞ in equation (4.2), we see that

σ1(x) = g̃(σ1(τ))

for either all τ ∈ H or all τ ∈ H \ σ−1
1 ({z0}) where σ−1

1 ({z0}) is a countable set. In either

case g̃ is a constant and thus σ1(x) is determined solely by the sequence g̃n, which itself
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is determined by the intertwining homomorphism ϕ. Thus σ1(x) = σ2(x) for almost every

x ∈ R̂, so σ1 = σ2 in H by Privalov’s uniqueness theorem (see, e.g., [Zyg02, pp. 276]). �

We remark that an alternate proof can be given by passing to quotient spaces (after

first replacing G and G′ with torsion-free finite-index subgroups as in Proposition 3.3). The

induced maps on Riemann surfaces are uniquely determined by the intertwining homomor-

phism ϕ and are hence equal.

An important consequence of Theorem 4.3 is that we may always replace an intertwin-

ing homomorphism ϕ : G → G′ with a restriction ϕ|H : H → H ′, where H and H ′ are

finite-index subgroups of G and G′ respectively, and no information about the associated

polymorphic map σ : H→ H will be lost.

4.2. Modularly polymorphic maps

We now further restrict our setting to ϕ-polymorphic maps where ϕ : G → G′ is a ho-

momorphism between finite-index subgroups of the modular group PSL(2,Z). Such groups

are still finite coarea and so the results of the previous section apply. The main advantage

of working in this setting is that there is a natural notion of cusp width (see Section 3.3),

which allows us to compute angular derivatives at the cusps of G.

Suppose r ∈ Q̂ has cusp width a ∈ N within the group G, and that r′ = σ(r) ∈ Q̂ is

also a cusp and has width b ∈ N in G′. Then the cusp multiplier at r is λ(r) = b/a. If σ(r)

is not a cusp of G′ (i.e., σ(r) ∈ H), then we shall declare λ(r) = 0. Since G and G′ have

finitely many cusp classes and hence only finitely many cusp widths, the spectrum of cusp

multipliers for σ is a finite list:

Sλ(σ) := {λ ∈ Q≥0 : λ = λ(r) is a cusp multiplier for σ}.

It will sometimes be convenient to consider the reciprocals of these multipliers instead. We

shall define the cusp dilation factor at a cusp r ∈ Q̂ to be δ(r) = 1/λ(r). Thus there is also
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a spectrum of cusp dilation factors of σ defined by

Sδ(σ) = {δ ∈ Q̂>0 : δ = δ(r) is a cusp dilation factor for σ}.

Since these two sets are related by reciprocal, we have maxSλ(σ) = 1/minSδ(σ).

We are now ready to begin the calculation of angular derivatives of modularly polymor-

phic maps. We first establish the following lemma:

Lemma 4.4. Suppose σ : H → H is a holomorphic map with σ(∞) = ∞ in the sense of

nontangential limits. If there are real numbers a, b 6= 0 such that

σ(τ + a) = σ(τ) + b

for all τ ∈ H, then σ′(∞) = a/b.

Proof. By repeated applications of the relation σ(τ + a) = σ(τ) + b, we obtain

σ(τ + na) = σ(τ) + nb

for all n ∈ Z. Putting τ = ni and dividing both sides by n, one can show that

(i+ a)
σ(ni+ na)

n(i+ a)
= i

σ(ni)

ni
+ b. (4.3)

On the other hand,

δ := σ′(∞) = ∠ lim
τ→∞

τ

σ(τ)

necessarily exists in the sense that δ ∈ (0,∞]. Thus

lim
n→∞

σ(ni+ na)

n(i+ a)
and lim

n→∞

σ(ni)

ni

both exist and are equal to a finite nonnegative real number L, where L = 1/δ. Taking the

limit as n→∞ in equation (4.3) yields

(i+ a)L = iL+ b.
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Taking real parts, we have aL = b for a, b 6= 0, so L = b/a and σ′(∞) = 1/L = a/b is a

finite positive real number. This completes the proof. �

Theorem 4.5. Suppose σ : H → H is modularly polymorphic. Then we have the following

properties:

(i) the map σ extends to a continuous map σ : H ∪ Q̂→ H ∪ Q̂

(ii) if r ∈ Q̂ is a contact cusp in the sense that r′ = σ(r) ∈ Q̂, then the angular

derivative σ′(r) is finite. Moreover, if r = p/q for coprime integers p and q > 0,

and likewise r′ = p′/q′ for coprime integers p′ and q′ > 0, then

σ′(r) =
1

λ(r)

(
q

q′

)2

= δ(r)

(
q

q′

)2

,

where λ(r) is the cusp multiplier and δ(r) = 1/λ(r) is the cusp dilation factor. If r

or r′ is ∞, then we respectively take q or q′ to be 1 in the above formula.

Proof. Since G and G′ are both finite-index subgroups of the modular group, cusp(G) =

cusp(G′) = Q̂ by Propositions 3.8 and 3.7. Part (i) then immediately follows from Proposi-

tion 4.2.

The first claim of part (ii), which is that σ′(r) is finite when r is a contact cusp, is a

consequence of the JWC theorem. For the derivative calculation, recall that every parabolic

element of G that fixes r has form T ar for some integer a 6= 0, where Tr = g−1
r ◦ T ◦ gr

is as in Section 3.3 (note that we take gr = id if r = ∞). Since ϕ(T ar ) is a parabolic

element of G′ that fixes r′, we must have ϕ(T ar ) = T br′ for some integer b 6= 0. By putting

σ̃ := gr′ ◦ σ ◦ g−1
r we obtain a map fixing ∞ such that σ̃ ◦ T a = T b ◦ σ̃. Lemma 4.4 thus

implies σ̃′(∞) = a/b = 1/λ(r). On the other hand,

σ̃′(∞) = g′r′(r
′)σ′(r)(g−1

r )′(∞)
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by the angular derivative chain rule. Assuming r, r′ ∈ Q, we have g′r′(r′) = (q′)2 and

g′r(r) = q2 by Example 3.16. Rearranging the above equation then gives

σ′(r) =
1

λ(r)

(
q

q′

)2

.

If r or r′ is ∞ then we respectively take gr = id or gr′ = id in the above calculations. Since

the identity has angular derivative 1 at every boundary point, this justifies the last claim of

the theorem statement. �

Corollary 4.6. If σ(r) = r′ ∈ Q̂ has cusp dilation factor δ := δ(r), then for any modular

horoball we have σ(Bt(r)) ⊆ Bδt(r
′).

Proof. This follows from Theorem 4.5 and Proposition 3.18. �

Compare this result to [CFPP12, Section 6], which establishes the same property for the

Thurston pullback map σf using an argument based on the moduli of curve families.

4.3. Fixed points

In this section we present two results regarding the fixed points of modularly polymorphic

maps. Theorem 4.9 characterizes the possible location of the DW point using another rigidity

statement (Theorem 4.8). We obtain as a corollary a new proof of Thurston’s theorem in

the special case of four marked points.

In Corollary 4.12 we give an estimate on the number of fixed cusps for a modularly

polymorphic with interior DW point. Appealing again to the polymorphicity of the Thurston

pullback σf , this shows that a rational Thurston map (f, A) with four marked points has

finitely many f -invariant curve classes.

Let us begin by recalling the following classical result:

Theorem 4.7 (Denjoy–Wolff theorem). If σ : H→ H is holomorphic and not the identity,

then it has a unique fixed point τ0 ∈ H with the property |σ′(τ0)| ≤ 1.

In the above theorem statement, the derivative is interpreted in the usual sense when

τ0 ∈ H and in the sense of angular derivatives when τ0 ∈ R̂.

51



The unique fixed point τ0 ∈ H is often referred to as the Denjoy–Wolff (DW) point. We

would like to characterize the location of the DW point for our polymorphic maps. It turns

out that the DW point cannot occur at a conical limit point on the boundary unless the

map is an automorphism.

Theorem 4.8. Let ϕ : G→ G′ be a homomorphism of finite coarea Fuchsian groups where

G admits at least one cusp class. If σ : H→ H is ϕ-polymorphic and not an automorphism,

then its Denjoy–Wolff point is either a cusp of G or in H.

Note that we do not need σ to be modularly polymorphic here.

The author discovered a proof of this result independently before finding that it had,

essentially, already been established within the proof of a similar statement in [Pom81,

Theorem 3].

Proof. Suppose for contradiction that the Denjoy–Wolff point of σ is neither in H nor a

cusp of G. By Theorem 3.6 it must be that the Denjoy–Wolff point is a conical limit point.

Let x ∈ R be this conical limit point. It has the property σ′(x) exists and σ′(x) ∈ (0, 1].

By definition there is a Stolz angle S and a sequence gn ∈ G such that, for any τ ∈ H,

gn(τ)→ x in S as n→∞. Put g̃n = ϕ(gn). Then

σ(gn(τ)) = g̃n(σ(τ)).

Differentiating this expression gives

σ′(gn(τ))g′n(τ) = g̃′n(σ(τ))σ′(τ). (4.4)

Suppose that

gn(τ) =
anτ + bn
cnτ + dn

and g̃n(τ) =
Anτ +Bn

Cnτ +Dn

.

Then (4.4) can be rewritten as

σ′(gn(τ)) =

(
cnτ + dn

Cnσ(τ) +Dn

)2

σ′(τ). (4.5)
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Put Mn = |cn| + |dn| + |Cn| + |Dn|, and multiply the right-hand side of the above by

M−2
n over itself. The sequences cn/Mn, dn/Mn, Cn/Mn and Dn/Mn are all bounded, so by

passage to a subsequence we may assume they all converge to real numbers c, d, C and D

respectively. Note that these numbers are not all zero, since by construction they satisfy

|c|+ |d|+ |C|+ |D| = 1. Combining this with the fact that σ′(gn(τ))→ σ′(x) for any τ ∈ H

as n→∞, taking the limit in (4.5) yields, for all τ ∈ H,

σ′(x) =

(
cτ + d

Cσ(τ) +D

)2

σ′(τ).

Note that, since σ′(x) is nonzero and finite, it cannot be the case that C and D are both

zero, and similarly it cannot be the case that c and d are both zero. We thus have the

equation
σ′(τ)

(Cσ(τ) +D)2
=

σ′(x)

(cτ + d)2
.

Integrating both sides shows that σ is a Möbius transformation.

Next we claim that, given that G admits a cusp, the Möbius transformation must be an

automorphism of H. Since σ(H) ⊆ H and σ(x) = x, the image σ(R̂) is either R̂ itself or a

horocycle based at x. If we have the former then we are done, so suppose we have the latter.

Then any cusp r ∈ cusp(G) must have σ(r) ∈ H. The proof of Proposition 4.2 implies

there is some parabolic element g fixing r that satisfies the functional equation σ ◦ g = σ.

Since σ is a Möbius transformation it is invertible, and we find g = id. This contradicts the

assumption that g was parabolic, so this case cannot happen and the proof is complete. �

Theorems 4.5, 4.7, and 4.8 immediately imply the following:

Theorem 4.9. Suppose σ : H → H is modularly polymorphic and not an automorphism.

Then σ has an interior fixed point τ0 ∈ H if and only if there is no fixed cusp r ∈ Q̂ with

dilation factor δ(r) ≤ 1.

Using this theorem and the polymorphicity of the Thurston pullback map, we can now

prove Thurston’s characterization theorem for four marked points.

53



Theorem 4.10 (Thurston’s criterion for four points). Let (f, A) be a Thurston map with

|A| = 4 and suppose f is not of type (2, 2, 2, 2). Then f is combinatorially equivalent to

a rational map if and only if f has no Thurston obstruction, i.e., there is no f -invariant

essential Jordan curve γ with λf (γ) ≥ 1.

Proof of Theorem 4.10. Consider the Thurston pullback map σf : H → H, which is ϕf -

polymorphic where ϕf : H → G is the virtual endomorphism induced on the subgroup of

liftables. We fix the identification G = PMod(S2, A) = Γ(2), so this map is actually mod-

ularly polymorphic. If (f, A) is not of type (2, 2, 2, 2), then σ2
f = σf2 is strictly contracting

and so σf is not an automorphism.

Cusp multipliers exactly coincide with Thurston multipliers of the associated curve class

by Corollary 2.34. The result then follows from Theorems 4.5 and 4.9. �

We can also say something about the number of fixed cusps on the boundary. This is

accomplished with the following general result, due to Cowen and Pommerenke (see [CP82]

or [Aba23, Theorem 4.8.4]):

Theorem 4.11 (Cowen-Pommerenke inequality). Suppose σ : H → H is a holomorphic

map that is not the identity with interior DW point τ0 ∈ H. Suppose that x1, . . . , xn are

boundary fixed points of σ. Then

n∑
i=1

1

σ′(xi)− 1
≤ 1− |σ′(τ0)|2

|1− σ′(τ0)|2
.

Note that the list of boundary fixed points in the above theorem is not assumed to be a

complete list.

Corollary 4.12. Suppose σ : H → H is a modularly polymorphic map with interior DW

point τ0 ∈ H. Define

C := min{σ′(r) : r ∈ Q̂ and σ(r) = r}.

Then C > 1 and

|Fix(σ ∩ Q̂)| ≤ 1

C − 1

(
1− |σ′(τ0)|2

|1− σ′(τ0)|2

)
.
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In particular, σ has finitely many fixed cusps.

Using the polymorphicity of the Thurston pullback map σf , we immediately obtain

Corollary 4.13. Suppose (f, A) is a rational Thurston map with |A| = 4 that is not of type

(2, 2, 2, 2). Then f has finitely many f -invariant essential curve classes.

Furthermore, we can explicitly estimate the number of f -invariant essential curve classes

using the inequality of Corollary 4.12. The constant C only depends on the underlying

Thurston map (f, A) and can be computed in terms of the Thurston multipliers as

C =
1

max{λf (r) : r ∈ Q̂ and σf (r) = r}
.

See [Par18, Theorem 10.1] for a similar estimate.
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CHAPTER 5

Cusp attractors of polymorphic maps

In this chapter we return our attention to cusp attractors for modularly polymorphic

maps. Specifically, we will prove the following partial solution to the FCA conjecture:

Theorem 5.1. Let σ : H → H be a modularly polymorphic map with spectrum of cusp

dilation factors satisfying minSδ(σ) > 1. Then σ has a finite cusp attractor.

The techniques we will employ were previously used by the author to verify the FCA

conjecture for a special subclass of Thurston maps with four marked points in [Smi24]. We

begin with an overview of the strategy.

In Section 5.1 we will find a truncated hyperbolic space X ⊆ H that is forward-invariant

under the map σ : H → H. A truncated hyperbolic space is the complement of a count-

able disjoint family of horoballs. Specifically, we will punch out horoballs based at every

rational contact point r ∈ Q̂. The space so-obtained will be cocompact in the sense that

X has compact image under the projection π : H→ H/G. Accordingly, σ will be uniformly

contracting on X.

In Section 5.2 we shall then attach a “leash” from the DW point of σ to each horoball

in the complement of X. Iterating the map σ will “tighten” this leash. There will only be

finitely many horoballs that we may land on after this procedure, and the base cusps of

these horoballs will exactly be our desired attractor on cusps. This will prove Theorem 5.1.

In Section 5.3 we apply the theorem to the the setting of Thurston maps. We will call

a Thurston map totally unobstructed if its set of Thurston multipliers has

Λf := maxSλ(σf ) = max{λf (r) : r ∈ Q̂} < 1.

Our results show that totally unobstructed Thurston maps with four marked points have

finite curve attractors. We will also provide examples to show that such maps indeed exist.
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5.1. Invariant truncated space construction

Much of our work in this section involves “capturing” the image of σ in a particular

truncation of hyperbolic space. Our first task is to characterize sets with this property.

Definition 5.2. ForG a finite coarea Fuchsian group, we will call a subsetX ⊆ H cocompact

with respect to G if the image of X under the natural projection map πG : H → H/G is

compact in H/G.

Note that, ifG is a cocompact Fuchsian group, then every closed subset ofH is cocompact

with respect to G.

Lemma 5.3. Let G be a torsion-free finite-index subgroup of PSL(2,Z). A closed set X ⊆ H

is cocompact with respect to G if and only if there is some t > 0 so that

⋃
r∈Q̂

Bt(r) ⊆ Xc.

Proof. First observe that, since G is a torsion-free finite coarea Fuchsian group, W = H/G

is a Riemann surface obtained by removing a finite number of points from a closed surface.

Label these punctures p1, . . . , pn.

If X is cocompact, then πG(X) is compact in W . About each puncture pi is an open set

Ui that both: (i) lies in the complement of πG(X), and (ii) is homeomorphic to a punctured

topological disk. Moreoever, we can choose each Ui so that some component of π−1
G (Ui) is a

normalized horoball Bti in H with hororadius parameter ti > 0. It will follow from Lemma

3.19 that all components of π−1
G (Ui) are horoballs of this form. These horoballs lie in the

complement of X by construction. Since there are finitely many punctures, we may put

t = min(t1, . . . , tn), and then ⋃
r∈Q̂

Bt(r) ⊆ Xc,

as desired.
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Conversely, suppose there is some hororadius parameter t > 0 such that

⋃
r∈Q̂

Bt(r) ⊆ Xc.

For each puncture pi, choose a cusp ri ∈ Q̂ that corresponds to it. Then Ui = πG(Bt(ri)) is

a neighborhood of the puncture pi in the surface W . Moreover, any other cusp si which is

equivalent to ri under the action of G has πG(Bt(ri)) = πG(Bt(si)). Thus

πG

(⋃
r∈Q̂

Bt(r)

)
= U1 ∪ · · · ∪ Un,

which implies

πG(X) ⊆ W \ (U1 ∪ · · · ∪ Un).

Since the latter set is topologically a closed surface with a finite number of open disks

removed, it is compact. Hence πG(X) is compact in W as a closed subset of a compact

set. �

With the previous lemma in mind, let us define a family of truncated spaces Xt ⊆ H

given by

Xt = H \
(⋃
r∈Q̂

Bt(r)

)
,

where 0 < t < 1. The aim will be to cleverly select the parameter t to obtain our forward-

invariant set. The next few lemmas will aid us in this selection.

Throughout the remainder of this section, σ : H→ H will be used to denote a modularly

polymoprhic map unless explicitly noted otherwise. We also remind the reader that a contact

cusp r ∈ Q̂ is one for which σ(r) ∈ Q̂, while a noncontact cusp is one for which σ(r) ∈ H.

Lemma 5.4. For all t > 0 sufficiently small,

σ(Bt(r)) ⊆ Xt

for all noncontact cusps r ∈ Q̂.
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Proof. We assume without loss of generality that the intertwining homomorphism ϕ : G→

G′ is such that G and ϕ(G) are both torsion-free finite-index subgroups of the modular

group, so that the quotients W = H/G and Z = H/ϕ(G) are Riemann surfaces and we have

the following commutative diagram:

H H

W Z.

σ

πG πϕ(G)

σ

For t > 0 define the set

Nt =
⋃

Bt(r),

where the union is taken over all noncontact cusps r ∈ Q̂. Our goal is to show there exists

t > 0 so that σ(Nt) ⊆ Xt. Once such a parameter t is found, then all smaller t will work as

well and the lemma will follow.

For all t > 0 sufficiently small, πG(Nt) is a finite union of neighborhoods of punctures in

W . None of the corresponding punctures themselves map to punctures in Z (for otherwise

the corresponding cusps would be contact), so σ(πG(Nt)) is a precompact set in Z. It

follows that σ(Nt) lies inside a cocompact set. By Lemma 5.3 there is some t′ > 0 such that

σ(Nt) ⊆ Xt′ . If t ≤ t′, thenXt′ ⊆ Xt and we are done. If t > t′, then since σ(Nt′) ⊆ σ(Nt) we

can just take t′ as our desired hororadius parameter instead. This completes the proof. �

Lemma 5.5. For all t > 0 sufficiently small,

σ(Bt(r)) ∩Bt(s) = ∅

for all contact cusps r ∈ Q̂ with σ(r) 6= s.

Proof. Modularly polymorphic maps have finitely many cusp dilation factors; let δ0 =

maxSδ(σ) denote the largest. For all t > 0 sufficiently small, δ0t < 1. Corollary 4.6

implies σ(Bt(r)) ⊆ Bδ0t(σ(r)). Since both δ0t < 1 and t < 1, this cannot intersect the

modular horoball Bt(s). �
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Lemma 5.6. Suppose σ : H → H is a holomorphic map that fixes ∞ and satisfies the

functional equation

σ(τ + a) = σ(τ) + b

where a, b > 0 are real numbers and σ′(∞) = a/b > 1. Then for all t > 0 sufficiently small,

σ is injective on Ht(∞) and

σ(Ht(∞)) ⊇ Ht(∞).

Proof. We first show that σ is injective on Ht := Ht(∞) for all t > 0 sufficiently small. By

the JWC theorem,

∠ lim
τ→∞

σ′(τ) =
1

σ′(∞)
> 0.

Thus there is some Stolz angle S based at∞ such that, for all t > 0 sufficiently small, Reσ′

is positive on S ∩Ht. Using the polymorphic relation

σ(τ + a) = σ(τ) + b

we can show that Reσ′ is positive on the whole horoball Ht. Since Ht is convex, it will

follow that σ is injective on this set. Indeed, suppose to the contrary that there are points

τ1, τ2 ∈ Ht such that σ(τ1) = σ(τ2). Let α ⊆ Ht be the line segment connecting these two

points with parameterization α(t) = τ1 + t(τ2 − τ1) for t ∈ [0, 1]. Then the fundamental

theorem of calculus yields

0 = σ(τ2)− σ(τ1) =

ˆ
α

σ′ dτ = (τ2 − τ1)

ˆ 1

0

σ′(τ1 + t(τ2 − τ1)) dt.

Dividing both sides of the equation by τ2 − τ1 6= 0 and taking the real part gives

0 =

ˆ 1

0

Re
(
σ′(τ1 + t(τ2 − τ1))

)
dt,

which is impossible since Reσ′ > 0 on Ht ⊇ α. This proves the first claim.

Next we claim that, for all t > 0 sufficiently small, if Im τ = 1/t then Imσ(τ) < 1/t.

Suppose for contradiction the claim is false. Then there is a sequence of tn → 0 and τn ∈ H

such that Im τn = 1/tn but Imσ(τn) ≥ 1/tn. By repeated application of the polymorphic
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relation

σ(τ + a) = σ(τ) + b

where a, b 6= 0 are real, we may assume that each τn lies in the strip S = {τ : |Re τ | ≤ a}.

It follows that τn →∞ in a Stolz angle, so we should have

lim
n→∞

Im τn
Imσ(τn)

= σ′(∞) > 1

by the JWC theorem. Yet
Im τn

Imσ(τn)
≤ 1/tn

1/tn
= 1

by construction. This proves the second claim. Combining this with the injectivity of σ

now implies the lemma. �

Lemma 5.7. Let σ : H → H be modularly polymorphic with minSδ(σ) > 1. Then for all

t > 0 sufficiently small, σ is injective on Bt(r) for all contact cusps r ∈ Q̂ and

σ(Bt(r)) ⊇ Bt(σ(r)).

Proof. This follows from Lemma 5.6 and the derivative calculation of Theorem 4.5. �

In the following, by ‖dστ‖ we shall mean the norm of the linear map dστ : TτH→ Tσ(τ)H

with respect to the hyperbolic metric.

Lemma 5.8. Let σ : H → H be modularly polymorphic with minSδ(σ) > 1. Then there is

a t > 0 such that the set X := Xt is forward-invariant under σ. Furthermore, there is some

α < 1 such that ‖dστ‖ ≤ α for all τ ∈ X.

Proof. As we did in the proof of Lemma 5.4, we assume without loss of generality that the

intertwining homomorphism ϕ : G→ G′ is such that G and ϕ(G) are are torsion-free finite-

index subgroups of the modular group, so that the quotients W = H/G and Z = H/ϕ(G)
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are Riemann surfaces and we have the following commutative diagram:

H H

W Z.

σ

πG πϕ(G)

σ

Choose t > 0 so small that Lemmas 5.4, 5.5, and 5.7 all hold.

The set πG(Xt) is compact in W , so σ(πG(Xt)) must be compact in Z. It follows that

σ(Xt) must be cocompact with respect to ϕ(G). By Lemma 5.3, this implies there is some

hororadius parameter t′ > 0 such that σ(Xt) ⊆ Xt′ . Now put X := Xt ∪Xt′ . We will show

this is the desired forward-invariant subspace.

There are several cases to consider.

If t ≤ t′, then Xt′ ⊆ Xt and X = Xt. The paragraph above shows that σ(X) ⊆ Xt′ ⊆ X,

so we are done with this case.

Now suppose that t′ < t. Then Xt ⊆ Xt′ and X = Xt′ . We already know that Xt is

mapped into Xt′ by σ, so we must show that Xt′ \ Xt maps into Xt′ . Suppose otherwise.

Then there is some r ∈ Q̂ and some τ ∈ Bt(r) \Bt′(r) such that σ(τ) /∈ Xt′ , or equivalently,

σ(τ) ∈ Bt′(s) for some s ∈ Q̂. We further divide into two subcases:

If r ∈ Q̂ is a contact cusp, then Lemma 5.5 implies s = r′. But then σ(τ) ∈ Bt′(r
′) ⊆

σ(Bt′(r)). Thus there is some τ1 ∈ Bt′(r) such that σ(τ1) = σ(τ), and τ1 6= τ since

τ ∈ Bt(r) \ Bt′(r). This contradicts the assumption that σ is injective on Bt(r), so we are

done in this case.

Now suppose r ∈ Q̂ is not a contact cusp, i.e., σ(r) ∈ H. In this case there is nothing to

do, since t was chosen such that σ(Bt(r)) ⊆ Xt by Lemma 5.4.

All cases have been exhausted, so the first claim of the lemma is proven.

For the second claim, consider the function K : H → R defined by K(τ) = ‖dστ‖.

This map is continuous. Furthermore, if τ2 = g(τ1) for some τ1 ∈ H and g ∈ G, then by
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polymorphicity and the chain rule we have

dστ2 = d(ϕ(g) ◦ σ)τ1 = d(ϕ(g))σ(τ1)dστ1 .

Since ϕ(g) is an isometry of H, we have ‖d(ϕ(g))τ‖ = 1 for all τ ∈ H. Thus K(τ2) = K(τ1),

and K descends to a well-defined continuous map K : W → R defined by K(Gτ) = K(τ).

Since πG(X) is compact and K is a continuous function with K(w) < 1 for all w ∈ W ,

there is some α < 1 such that K(w) ≤ α for all w ∈ πG(X). But then ‖dστ‖ = Kf (τ) ≤ α

for all τ ∈ X. This completes the proof. �

5.2. Leashing and proof of Theorem 5.1

Fix X as in the previous section. If γ is a smooth path in X and γ′ = σ(γ), then

l(γ′) ≤ αl(γ) where l(·) denotes the length of the curve with respect to the hyperbolic

metric. We also know that γ′ ⊆ X since X was chosen to be σ-invariant. With these nice

properties in mind, consider the following path metric induced on X:

dX(τ1, τ2) = inf{l(γ) : γ : [0, 1]→ X is a smooth path connecting τ1 to τ2}.

This metric is well-defined since X is path-connected, and by construction σ is uniformly

contracting on (X, dX). To avoid notational clutter, we shall simply write d(·, ·) = dX(·, ·).

Lemma 5.9. There is some constant C ≥ 0 depending only on σ such that, for all contact

cusps r ∈ Q̂ with r′ = σ(r) ∈ Q̂,

d
(
τ0, ∂Bt(r

′)
)
≤ αd

(
τ0, ∂Bt(r)

)
+ C.

Proof. Let r ∈ Q̂ be a contact cusp so that r′ = σ(r) ∈ Q̂. Let ε > 0, and take a path γ

from τ0 to some point on ∂Bt(r) such that l(γ) < d(τ0, ∂Bt(r)) + ε.

Note that for δ := δ(r), we have

σ(Bt(r)) ⊆ Bδt(r
′).
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Put γ′ = σ(γ). Since δ > 1, we obtain the configuration depicted in Figure 4. This yields

d(τ0, ∂Bt(r
′) ≤ l(γ′) + d(∂Bδt(r

′), ∂Bt(r
′))

≤ αl(γ) + d(∂Bδt(r
′), ∂Bt(r

′)).

On the other hand, a simple calculation shows that d(∂Bδt(r
′), ∂Bt(r

′)) = | ln(δ)|.

σ

r′

Bt(r′)

Bt(r)

r

γ

τ0 τ0

γ′

r′

σ(Bt(r))

Bδt(r
′)

r

Figure 4. Generic picture of leash image.

The quantity | ln(δ)| where δ is a contact cusp dilation factor takes on finitely many

positive values; choose C > 0 so that | ln(δ)| ≤ C. It follows that

d
(
τ0, ∂Bt(r

′)
)
≤ α(d

(
τ0, ∂Bt(r)

)
+ ε) + C

for all ε > 0. Since ε > 0 was arbitrary, we obtain the desired inequality. �

The next two lemmas show that our “leash” tightens in such a way that there are only

finitely many cusps we may land on. They are reproduced from [Smi24, Section 4.5].

Lemma 5.10. Let (xn) = (x0, x1, x2, . . . ) be a sequence of nonnegative real numbers with

the property that there is some α ∈ (0, 1) and C ≥ 0 for which

xn ≤ αxn−1 + C

for all n ≥ 1. Then for each ε > 0 there is an N so that

xn ≤
C

1− α
+ ε
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for all n ≥ N .

Proof. Observe that

x2 ≤ αx1 + C ≤ α(αx0 + C) + C = α2x0 + αC + C.

Continuing inductively, we get

xn ≤ αnx0 + C
n−1∑
k=0

αk = αnx0 + C
1− αn

1− α
=

C

1− α
+ αn

(
x0 −

C

1− α

)
for n ≥ 1. Thus, after taking absolute values we have the estimate

xn ≤
C

1− α
+ αn

∣∣∣∣x0 −
C

1− α

∣∣∣∣ .
Since αn → 0 as n→∞, the claimed result follows. �

Lemma 5.11. A disjoint collection of nonempty open horoballs in H is locally finite, mean-

ing any compact subset of H intersects only finitely many horoballs from the collection.

Proof. This result is easier to see in the Poincaré disk model of the hyperbolic plane. In this

setting, a compact set K in D must be contained inside some Euclidean disk D(0, r) with

r < 1. Suppose that a horoball intersects K, and hence also D(0, r). Then the diameter of

the horoball is at least 1−r, its Euclidean radius is at least (1−r)/2, and its Euclidean area

is at least π(1 − r)2/4. Since D has finite Euclidean area π, there can be at most finitely

many disjoint horoballs in the collection which intersect K. This completes the proof. �

Proof of Theorem 5.1. Let r ∈ Q̂. If r or any of its images is noncontact then we are done,

so suppose that σn(r) ∈ Q̂ for all n ∈ N. Define the sequence

xn = d(τ0, ∂Bt(σ
n(r)))
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for integers n ≥ 1, and we put x0 = d(τ0, r). By Lemma 5.9, this sequence satisfies the

hypotheses of Lemma 5.10. Thus there is some N(r) so that

xn := d(τ0, ∂Bt(σ
n(r))) ≤ C

1− α
+ 1

for all n ≥ N(r). Yet the set

K =

{
τ ∈ H : d(τ0, τ) ≤ C

1− α
+ 1

}
is a compact subset ofX and hence also of H. ThusK intersects only finitely many horoballs

from the collection {Bt(r) : r ∈ Q̂} by Lemma 5.11. Let A = {r1, . . . , rk} be the base cusps

of this finite collection of horoballs. Then it must be the case σnf (r) ∈ A for n ≥ N(r).

Since C, α and hence A depend only on the map σ and not on the initial cusp r, the set A

is our desired finite cusp attractor. �

5.3. Totally unobstructed Thurston maps

As mentioned in the introduction to this chapter, given a Thurston map (f, A) with

|A| = 4, we will say that (f, A) is totally unobstructed if all of its Thurston multipliers have

λf (r) < 1, i.e.,

Λf := max{λf (r) : r ∈ Q̂} < 1.

We shall sometimes refer to Λf as the multiplier radius of the Thurston map (f, A). Note

that Λf = maxSλ(σf ) = 1/minSδ(σf ) since Thurston multipliers and cusp multipliers

coincide for the Thurston pullback map, and cusp multipliers and cusp dilation factors are

reciprocally related. Thus, if (f, A) is totally unobstructed, then the associated Thurston

pullback map σf is a modularly polymorphic map satisfying the hypotheses of Theorem 5.1.

This proves

Corollary 5.12. If (f, A) is a totally unobstructed Thurston map, then (f, A) has a finite

global curve attractor.
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The class of totally unobstructed Thurston maps is nonempty, as shall see in the following

examples.

Example 5.13. Consider the rational Thurston map f : Ĉ→ Ĉ defined by

f(z) =
2z3 + 1

3z2
.

Taking the derivative gives

f ′(z) = −2(1− z3)

3z3
.

If we put ω = e2πi/3 = (−1 + i
√

3)/2, then Cf = {0, 1, ω, ω2} and Pf = {1, ω, ω2,∞}. We

have the following dynamical portrait:

0 ∞ 1 ω ω22:1 2:1 2:1
2:1

This map has orbifold signature (2,∞,∞,∞), and so is not of type (2, 2, 2, 2). It is an

example of a nearly Euclidean Thurston (NET) map, which are Thurston maps with exactly

four postcritical points and the local degree at each critical point is 2. These maps have been

extensively in [CFPP12] and [FKK+17]. The program NETmap written by Walter Parry with

assistance from Bill Floyd [PF16] is able to generate a complete list of Thurston multipliers

for such maps. For our particular example, the set of Thurston multipliers is calculated by

NETmap to be Sλ = {0, 1/3}. Thus (f, Pf ) is a totally unobstructed Thurston map and hence

has a finite curve attractor.

Example 5.14. Consider the Thurston map (f, Pf ) with four poscritical points which is

determined by the combinatorial square-tile picture in the figure below (compare Example

2.5):
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f

Figure 5. A combinatorial depiction of the map (f, Pf ) obtained from blow-
ing up the 2× 2 Lattès map along four arcs.

This map is easily seen to not be of type (2, 2, 2, 2). Walter Parry has written a program

Pf4 which is also able to produce a full set of Thurston multipliers for maps described by such

data (at least for maps of sufficiently small degree); see [Par22]. In this case, Sλ = {0, 2/3}.

Thus this map is also totally unobstructed and has a finite curve attractor.

68



CHAPTER 6

Further discussion

In this final chapter we discuss some conjectures and possible future directions of study.

The most obvious remaining question is whether the FCA conjecture for four marked

points can be proven using our analysis. In Sections 6.1 and 6.2 we present some initial at-

tempts at this. We introduce quantities that capture the long-term behavior of the Thurston

pullback at cusps. We speculate that further studying these quantities might allow us to

extend the results of the previous chapter to the general case of rational Thurston maps

that are not of type (2, 2, 2, 2). These discussions also apply more generally to modularly

polymorphic maps, but we do not formulate them as such.

In Section 6.3 we discuss what changes in the setting of a Thurston map (f, A) where

|A| ≥ 5. There is no easy translation of the polymorphic machinery to this case and we

point out some difficulties.

6.1. Dynamical multiplier radius

Recall the multiplier radius for a Thurston map (f, A) with |A| = 4 is given by

Λf := max{λf (r) : r ∈ Q̂}.

This quantity is positive unless all pullbacks of essential Jordan curves in (S2, A) are pe-

ripherial.

We conjecture the following:

Conjecture 6.1. If (f, A) is a rational Thurston map that is not of type (2, 2, 2, 2), then

there is some iterate (fN , A) which is totally unobstructed.

To study this conjecture, we shall consider a quantity Λ which captures the long term

dynamical behavior of the multiplier radius.
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For nonnegative integers n,m, we have

Λfn+m ≤ ΛfnΛfm

since a maximal multiplier λfn+m(r) on the left can be decomposed as

λfn+m(r) = λfn(r)λfm(σnf (r)) ≤ ΛfnΛfm .

Note if ΛfN = 0 for some integer N , then the pullback action of (fN , A) is trivial. We

are not interested in this case, so we shall discard it henceforth. Thus in all interesting

cases, the sequence Λfn is a submultiplicative sequence of positive numbers, and so

Λ = lim
n→∞

(Λfn)1/n

exists by Fekete’s lemma. We shall call this quantity Λ the dynamical multiplier radius of

f .

An immediate consequence of the definition is

Proposition 6.2. If Λ < 1, then some iterate of (f, A) is totally unobstructed.

We make the complementary conjecture:

Conjecture 6.3. If Λ ≥ 1, all iterates of (f, A) are obstructed.

6.2. Asymptotic multiplier growth

For each r ∈ Q̂ with σnf (r) always contact, consider the sequence sn(r) := λfn(r). Note

that if r1 and r2 belong to the same grand orbit under iteration by σf , then the tails of

sn(r1) and sn(r2) match. Thus if r1 and r2 belong to the same grand orbit, the orbits

of the multipliers have Θ-equivalent asymptotic growth rates. In other words, sn(r1) =

O(sn(r2)) and sn(r2) = O(sn(r1)). The property of being in the same grand orbit is an

equivalence relation. Since there are countably many extended rational cusps, there are at

most countably many grand orbit equivalence classes. To each class [r] we may assign an

asymptotic growth Θ-equivalence class, which we may represent as g : N0 → [0,∞).
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Proposition 6.4. If there is a grand orbit cusp class whose asymptotic growth function has

lim sup g(n) > 0, then (f, A) is obstructed.

Proof. Suppose for contradiction that (f, A) is not obstructed, meaning σf has a unique

fixed point τ0 ∈ H. The hypotheses say there is some r ∈ Q̂ such that lim supλfn(r) > 0.

Let rn := σnf (r) ∈ Q̂ for n ≥ 0, and write rn = pn/qn for coprime integers pn and qn ≥ 0.

We have the inequality

|pnτ0 + qn|2 ≤
1

λfn(r)
|p0τ0 + q0|2. (6.1)

This is essentially just the inclusion σf (Bt(r)) ⊆ Bt/λf (r)(r
′) for σf (r) = r′ iterated n times.

Put M = lim supλfn(r) > 0, which may be infinite. There is a subsequence such that

λfnk (r)→M as k →∞. If M =∞, then for this subsequence (6.1) gives us

lim
k→∞
|pnkτ0 + qnk |2 = 0.

If M is finite, we have

lim sup
k→∞

|pnkτ0 + qnk |2 ≤
1

M
|p0τ0 + q0|2.

In either case, we see that the set |pnkτ0+qnk | is bounded in k. Since a bounded set intersects

at most finitely many points in the lattice τ0Z ⊕ Z, the pigeonhole principle implies there

are numbers k and j such that rnk = rnj . Yet this implies r is preperiodic and thus has

finite orbit.

Next we claim that λfn(r) = Θ(αn) for some α ≥ 1. Indeed, since r is preperiodic there

are minimal integers N ≥ 0 and m ≥ 1 such that σN+m
f (r) = σmf (r). Put

α =

(
m∏
k=0

λf (σ
N+k
f (r))

)1/m

.

From here it is not hard to see that λfn(r) = Θ(αn), as desired.

If α < 1, then the original assumption lim supλfn(r) > 0 is false, so we must have α ≥ 1.

Yet if this is the case, then αm ≥ 1 as well. Since σmf = σfm fixes every point of the cycle

{σNf (r), . . . , σN+m
f (r)} and each of these cusps have multiplier αm under fm, the Thurston
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map (fm, A) is obstructed. This is impossible though, since if (f, A) is unobstructed then

all iterates of this map are unobstructed as well. This completes the proof. �

It follows that for an unobstructed map (f, A), we always have lim sup g(n) = 0 for every

multiplier growth function associated to f .

In the above proof, we proved the following proposition along the way:

Proposition 6.5. If r is a preperiodic cusp, then λfn(r) = Θ(αnr ) for a unique αr > 0. If

(f, A) is unobstructed, then αr < 1 for each preperiodic r.

Conjecture 6.6. For (f, A) unobstructed, supαr < 1, where the supremum is taken over

all preperiodic cusps.

6.3. Generalization to more marked points

A natural question to ask is whether any of our considerations extend to Thurston maps

(f, A) with |A| ≥ 5. After all, Theorem 2.30 concerning the polymorphicity of the Thurston

pullback holds even in this case, so long as you interpret the pure mapping class group and

the subgroup of liftables as subgroups of Aut(TA).

There are many difficulties with this idea. Although dim TA = |A| − 3 and TA = H

for |A| = 4, it is not the case that TA = H|A|−3. The structure of the higher dimensional

Teichmüller spaces is significantly more complicated than this. The WP-completion of TA

in these cases is a stratified space with strata corresponding to multicurves in (S2, A) (see

[Sel12]). Classical function theory, which was the main tool four our analysis in this thesis,

does not apply to this setting. Nevertheless, one wonders if some appropriate analogue of

angular derivatives and the Denjoy–Wolff theorems might hold for self-maps of TA.

Question 6.7. Is there a formulation of the Denjoy–Wolff theorem for holomorphic self-

maps of TA? For polymorphic self-maps? And if so, what is the correct analogue of angular

derivatives in these cases?
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