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ABSTRACT OF THE DISSERTATION 

 

Making Experts: 

Optimizing Perceptual Learning in Complex, Real-World Learning Domains 

by 

Khanh-Phuong Thai 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2015 

Professor Philip Kellman, Chair 

 

How do we accelerate the process of gaining expertise? Recent research suggests that 

advanced pattern recognition and fluency can be developed in a short period of time using 

adaptive and perceptual learning technology (e.g., Kellman & Kaiser, 1994; Kellman, Massey, 

and Son, 2009). Much is still unknown, however, about the connections between perceptual 

learning and adaptive learning technology that allow for the efficient development of such 

expertise effects.  

In six experiments, I examined a number of learning principles that bridge perceptual and 

adaptive learning and explored the generalizability of these learning principles across domains. 

In particular, I evaluated how different types of learning trial formats and feedback may bring 

about fluent structure recognition while improving training efficiency. To ensure that principles 

and experimental results are not confined to a single learning domain, I carried out these studies 

in two separate domains: mathematics and medical learning. Experiments 1, 3 and 5 trained 

undergraduates to interpret electrocardiogram recordings; Experiments 2, 4, and 6 replicated the 
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design of the other three experiments, but trained participants to map between graphical and 

symbolic representations of trigonometric and Exponential functions. Experiments 1 and 2 

showed that the combination of passive exposure to the correct classifications and active 

classification practice enhanced fluency in pattern recognition while improving training 

efficiency. Experiments 3 and 4 explored the benefit of comparisons among contrastive 

examples and revealed that training with only comparisons can be detrimental, but that having 

some comparison practice can facilitate far transfer. Experiments 5 and 6 evaluated and 

demonstrated the effectiveness of a new paradigm that adaptively triggers paired-comparisons 

based on learners’ error patterns to maximize training efficiency. Positive effects on learning 

were found in both learning domains.  

These findings help to illuminate basic questions about the processes by which expert 

information extraction advances, and they inform our understanding of the general mechanisms 

that operate across learning domains. The results also lend themselves to applications in which 

learning interventions maximize the ease with which students pick up relevant structural 

relations in novel situations while minimizing training time.  
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CHAPTER 1 

Introduction and Overview 

 

Experts differ from novices in fascinating ways. Experts are able to perceive patterns at a 

glance. For example, expert radiologists are able to detect cancer in a mammogram or a tumor in 

an x-ray in a split second (Kundel, Nodine, Conant, & Weinstein, 2007; Sowden, Davies, & 

Roling, 2000); an expert fisherman can easily distinguish between a pompano and a wahoo 

(Boster & Johnson, 1989); and chess grandmasters can spot an impending checkmate multiple 

moves in advance (de Groot, 1978), even without moving the eye (Reingold, Charness, Pomplun, 

& Stampe, 2001). Eye-tracking research has shown that experts focus faster and in greater 

proportion on relevant information while ignoring salient but irrelevant information (for a 

review, see Gegenfurtner, Lehtinen, & Saljo, 2011). In all of these domains, the important 

patterns – including relations that are quite abstract – are often invisible to novices, yet experts 

can recognize them rapidly and automatically. 

The basis for such expert pattern recognition ability is perceptual learning (e.g., Gibson, 

1969; Kellman, 2002). Defined by Eleanor Gibson (1969), perceptual learning refers broadly to 

experience-induced changes in the extraction of information (Gibson, 1969; Goldstone, 1998; 

Kellman & Garrigan, 2009; Kellman & Massey, 2013). Gibson also referred to perceptual 

learning as “differentiation learning”, to emphasize the neural and perceptual changes in the way 

we encode information, resulting in our enhanced ability to detect and differentiate relevant 

information amidst variation. These processes are pervasive in perception and learning, allowing 

us not just to pick up of minute sensory details but also to extract abstract relations in complex, 

real-world learning domains (Kellman & Massey, 2013).  
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Despite its pervasive importance, perceptual learning (PL) has received little attention in 

instruction. A major part of the difficulty is that not just any kind of practice can foster PL. 

Indeed, PL often develops separately from formal instruction, and what is learned is often 

difficult to be verbalized. Furthermore, expertise is often thought to require some combination of 

maturation and many years of practice. A widely cited rule of thumb is that it takes at least ten 

years (Hayes, 1985), or 10,000 hours of diligent, “deliberate practice” (term coined by Ericsson, 

Krampe, & Tesch-Romer, 1993) with a task. This kind of description raises both theoretical and 

practical issues. In terms of theories of learning, it seems unlikely that the passage of time per se 

comprises the mechanism that generates expertise, nor is it plausible that all varieties of practice 

exert equal effects. More likely, learning advances due to particular variables in practice 

situations and their interactions with underlying learning mechanisms. In practical terms, this 

raises a critical question: how can we understand these variables and mechanisms in order to 

accelerate this process to support the development of real-world expertise? 

 

Overview of Dissertation 

The overarching goal of this dissertation was to examine important variables that may 

contribute to or enhance perceptual learning when combined with adaptive learning techniques. 

The studies aim to advance theoretical understanding, in terms of how learning works, and 

practical applications, in which instructional efforts attempt to develop expertise in real-world 

settings. In six experiments, we tested the benefits of active classification practice and passive 

exposure, of contrastive examples and of adaptively triggered comparisons for optimizing the 

fluent pattern recognition process in PL without sacrificing efficiency.  At the core of our 

approach were major recent innovations in perceptual and adaptive learning technologies. We 
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begin with an overview of perceptual learning effects and a description of this innovative 

framework in Chapter 2. In Chapter 3, we provide an overview of the learning domains and the 

general methods used. In Chapter 4, we describe the effects of passive and active trial formats 

with Experiments 1 and 2. In Chapter 5, we explore the benefits of contrastive comparisons with 

Experiments 3 and 4. In Chapter 6, we study the additive benefits of adaptively triggered paired-

comparisons with Experiments 5 and 6, and we conclude in Chapter 7.  

In these experiments, we aimed to explore some general learning principles at the nexus 

of perceptual learning and adaptive learning to accelerate expertise. To ascertain that principles 

and experimental results are not confined to a single learning domain, we tested the same 

instructional manipulations in two unrelated domains: medical learning and mathematics 

learning. Experiments 1, 3, and 5 targeted the learning of electrocardiogram interpretation, and 

Experiments 2, 4, 6 examined the same effects in the learning of transformations in trigonometric 

and Exponential functions. 

 

  



	
   4	
  

 
CHAPTER 2 

Background 

 

Perceptual Learning 

Discovery and Fluency Effects 

Kellman (2002) grouped perceptual learning effects into two major categories: discovery 

effects and fluency effects. With practice, we discover in a given domain what features and 

relations matter to important classifications (Gibson, 1969). If we keep at it, we also improve in 

fluency, or the ease and automaticity with which we extract these relevant features and relations 

(Kellman, 2002; Schneider & Shiffrin, 1977).  

Fluency and discovery effects occur concomitantly, so improvement in one tends to lead 

to improvement in the other. For example, becoming selective in the use of information (a 

discovery effect) surely increases efficiency and improves speed (fluency effects). As we 

become more fluent at picking up relevant features or relations, we require less cognitive 

resources for that task, thus having more resources available to discover and process increasingly 

more complex features and feature relations, even those that are not initially evident (Bryan & 

Harter, 1899). Gibson (1969) emphasized these informational  “invariants” - stable properties 

and relations that can lead to appropriate classifications. One example is recognizing a specific 

melody in different pieces of music that vary in scale and instrumentation. Such interplays of 

fluency and discovery effects pave the way for high-level thinking and complex problem solving 

(Kellman & Massey, 2013). 
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Indeed, issues of discovery and fluency in perceptual learning directly address barriers to 

transfer in all domains of expertise, including mathematics and science learning (Kellman & 

Massey, 2013). In mathematics, for example, students can memorize facts (i.e., a formula or a 

theorem) and the step-by-step procedures for solving a problem, but they often have trouble 

recognizing when those facts and procedures are appropriate, especially to a problem that doesn’t 

look the same as those they trained with (e.g., Nunes, 1999; Givvin, Stigler, & Thompson, 2011; 

Stigler, Givvin, & Thompson, 2010). For example, a teacher may instantly recognize x2 - 3x + 2 

= 0 as a quadratic problem, equivalent to its transformation (x-2)(x-1) = 0. Students, however, 

often approach it as a “solve for x” problem — and get stuck trying to procedurally isolate x to 

one side of the equation.  

As Kellman & Massey (2013) stated, “All effective use of declarative and procedural 

learning presupposes pattern recognition.”  To appropriately deploy relevant facts and 

procedures to new situations, students must efficiently recognize which facts and procedures are 

relevant to that situation (see also Joy Cummings & Elkin, 1999). That depends on how they 

classify the situation, which in turn depends on how they pick up information about the structure 

of the situation (e.g., the quadratic structure within the equation). The less effort they need to 

apply to these tasks, the better they are able to discover and process higher-order relations for 

critical thinking and problem solving in new situations (Kellman & Massey, 2013). 

The crucial question in many educational domains is: how do we develop in students the 

fluent extraction of deep underlying principles from amidst irrelevant details, and the ability to 

transfer them from one situation to another situation that may look quite different from the first? 
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Perceptual and Adaptive Learning Modules 

Until recently, the development of these perceptual learning has received little attention 

in instruction. Both familiarity with PL and suitable instructional methods have been lacking. 

Recent research, however, has shown that by leveraging natural perceptual processes to support 

advanced formal reasoning and transfer, PL can be systematically accelerated in real-world 

learning domains (e.g., Goldstone, Landy, & Son, 2008; Kellman & Massey, 2013; Kellman, 

Massey & Son, 2009). In our work, PL methods are realized in perceptual and adaptive learning 

modules (PALMs). PALMs incorporate a number of goals and features that have the potential to 

accelerate expertise. These go beyond the “10,000 hours” guideline for the development of 

expertise in a number of ways. Among these is that ordinary work flow may be haphazard and 

may not provide a full range of relevant problems, structures and information extraction 

demands; ordinary exposure or instruction may not provide enough exposure to challenging 

cases; in learning important classifications, it is important to incorporate two kinds of variability: 

variability in the incidental characteristics of exemplars that do fit in some category and 

variability in exemplars that do not fit in that category or comprise members of other categories; 

ideally, laws relating to spacing in learning should be incorporated, but these require special 

techniques (Mettler & Kellman, 2014); ordinary learning situations are seldom individually 

adapted to learners to offer beneficial spacing and to focus effort where it is most needed; and 

learning seldom tracks all classifications or categories to be learned to objective mastery criteria 

for each learner. The combination of perceptual and adaptive learning techniques in PALMs 

aims to address all of these issues to enhance and accelerate learning.   
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Perceptual Learning Features 

In PALMs, students are often not asked to solve a problem, but rather to recognize what 

kind of problem it is. To do so, we engage students in making classifications or mappings of 

representations based on their underlying structures. We employ unique instances and systematic 

variations to tune learners’ attention to relevant diagnostic structures. Learning to recognize the 

patterns unique to various structural categories (e.g., different diagnostic heart patterns observed 

on electrocardiograms) requires discriminating among a large number of exemplars from each 

category in order to extract the features common, albeit in variable form, to a given category and 

distinguishable from those of other categories. Furthermore, practice with mostly novel instances 

encourages spontaneous exploration and discovery of higher-order relations (e.g., Gibson and 

Pick, 2000, p. 169) across superficially dissimilar instances, instead of memorizing labels for 

particular instances.  

To illustrate, in the Algebraic Transformation PALM, students view target equations and 

are asked to choose an equivalent equation, produced by a valid algebraic transformation, from 

among four choices.  Students must answer quickly, so they experience many such trials while 

working through a module. The equations vary systematically and almost never repeat. This 

enables students to extract the underlying structural bases to make classifications of novel 

equations, and to transfer their knowledge to problem solving. What they learn is often 

generalizable to novel instances.  

As a result, even though students never solve equations in this module, just a few hours 

of this kind of practice can lead to substantial improvements in fluency at solving algebraic 

equations. It was found that students took an average of about 28 seconds per problem before the 
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training and only 12 seconds per problem after the training (Kellman et al., 2008; Kellman, 

Massey & Son, 2009). 

The success of this method at advancing students’ fluency in grasping crucial structures 

and relations and detecting them in variable contexts has been shown in a number of other 

educational domains. We found that PALM interventions can accelerate fluent use of structure in 

contexts such as the mapping between graphs and equations (Kellman et al., 2008; Silva & 

Kellman, 1999), apprehending molecular structure in chemistry (Russell & Kellman, 1998; 

Wise, Kubose, Chang, Russell, & Kellman, 2000), understanding fractions and proportional 

reasoning (Kellman et al., 2009; Massey, Kellman, Roth, & Burke, 2011), discriminating 

between pathologic processes in skin histology images, identifying skin-lesion morphologies, 

and diagnosing wrist fractures in radiographs (e.g., Krasne, Hillman, Kellman, & Drake, 2013). 

Adaptive Sequencing Features 

This process of learning and discrimination is made more efficient by adaptive 

sequencing of trials that address different learning categories. The sequencing is based on an 

algorithm1 
that determines a “priority score” for each category, which in turn determines the 

sequence in which the next exemplar of each category is presented. The algorithm dynamically 

adjusts priorities after each learning trial based on learner accuracy and speed, as well as the 

number of trials since a category was last presented (Mettler, Massey & Kellman, 2011; Mettler 

& Kellman, 2014). As a result, learners spend most of their practice time with the classifications 

that they have most trouble with. This sequencing algorithm implements several principles that 

have been shown in learning research to strongly influence learning; these involve spaced 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Systems that use learner speed and accuracy to arrange learning events, as well as some aspects of the perceptual 
learning technology described herein, are covered by U.S. patent 7052277 and patents pending, assigned to Insight 
Learning Technology, Inc. For information, please contact either the author or info@insightlearningtech.com. 
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practice, dynamics of short and long‐term memory and relating recurrence intervals to underlying 

learning strength. One important principle is that as learning strength increases (as indicated by 

accurate and quicker responding), the delays in presenting problems that utilize the same concept 

or pattern (i.e. are in the same “category”) should increase, with interleaved “interfering” 

problems (i.e., those from different “categories”) occurring in between. This is in accordance 

with the “retrieval effort hypothesis”, which states that more difficult but successful retrievals are 

more beneficial for learning (Karpicke & Roediger, 2007; Pyc & Rawson, 2009; Storm, Bjork, 

Storm, 2010). 

The use of learning criteria that include a “target response time (RT)” within which a 

problem must be answered in order to be considered fluent is used for several reasons. First, 

fluent processing, indexed by accurate response under a target response speed, tends to indicate 

the operation of pattern recognition processes rather than lengthy conscious analyses. Secondly, 

attaining learning criteria including fluency may predict better retention of learning. Thirdly, 

fluency also implies reduced cognitive load, allowing the learner to perform important 

classifications in more complex and demanding contexts. Once a fixed number of successive 

exemplars of a category are answered accurately within the target RT, the category is “retired” so 

that future questions focus on exemplars from less well-recognized categories.  

Recent results indicate that these adaptive algorithms outperform classic adaptive 

learning methods and non-adaptive presentation in both factual and perceptual learning (Mettler, 

Kellman & Massey, 2011; Mettler & Kellman, 2014). Such results are exciting, suggesting that 

PALMs can dramatically accelerate perceptual learning processes, and provide a needed 

complement to regular classroom instruction. Much is still unknown, however, about which 

training components prepare learners for the efficient development of such expertise effects in 
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real-world settings. Here we consider a few basic learning components. 
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CHAPTER 3 

General Methods 

 

In this chapter, we describe the learning domains and the experimental methods that were shared 

among the six experiments.  

Learning Domains  

Much of the research on perceptual category learning has been carried out under highly 

constrained and standardized conditions with artificial categories and stimuli. It is unclear how 

the nature of perceptual learning in these cases is generalized to realistic learning domains and 

across learning tasks. Even when experiments used realistic learning domains, we are often left 

not knowing how well the intervention applies to other learning domains.  

Thus, to explore the domain-generality of the learning principles involved, we designed 

and tested two sets of PALMs to target learning in two different learning domains: one for 

electrocardiogram interpretation and one for recognition of Sine and Exponential 

transformations.  

Medical: Electrocardiogram Interpretation 

What are electrocardiograms (ECGs)? 

ECG traces are recordings of tiny electrical changes on the skin that are caused when the 

heart muscle depolarizes during each heartbeat. A 12-lead ECG is one in which 12 different 

electrical signals are recorded at approximately the same time and are often used as a one-off 

recording of an ECG. It is one of the simplest and oldest cardiac investigations available, yet it 

can provide a wealth of useful information and remains an essential part of the assessment of 

cardiac patients. 
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Why ECG? 

Visual interpretation of electrocardiograms (ECGs) requires superior perceptual 

recognition skills that often require years of practice to attain (Wood, Batt, Appelboam, Harris & 

Wilson, 2013; Salerno, Alguire, & Waxman, 2003; Mele, 2008), making it a great domain for 

perceptual and adaptive learning training.  

It is a difficult skill to master for both medical students (Jablonover, Lundberg, Zhang, 

Stagnaro-Green, 2014) and doctors of different grades and specialties (e.g., Montgomery et al., 

1994; Morrison & Swann, 1990; Gillespie, Brett, Morrison & Pringle, 1996; De Jager, Wallis, & 

Maritz, 2010). For example, the ability to correctly identify potentially life-threatening 

conditions was 57% in a group of US graduating medical students (Jablonover et al., 2014) and 

46.4% in a group of South African Emergency Medicine trainees (De Jager et al., 2010). 

Computerized ECG interpretation software is now built into many modern ECG machines aimed 

to automate the process, but they show poor diagnostic accuracy with up to 46.5% error rates 

(Shah & Rubin, 2007; Bhalla, Mencl, Gist, Wilber & Zalewski, 2013; Ducas et al., 2012). It is 

clear that the current generation of computerized ECG interpretation technology should not be 

solely relied upon and its interpretation should be independently verified by an appropriately 

qualified individual (Estes III, 2013; cf. Fent, Gosai, & Purva, 2015). 

One specific difficulty is with discriminating relevant from irrelevant information in 

ECGs. For any diagnostic pattern, some of the locations contain relevant information, while 

some do not. Each category involves patterns of diagnostic features, but the features are variable 

across the ECG traces. Salient features of an ECG trace do not necessarily indicate an 

abnormality, and waveforms that indicate normality on one lead may not be normal on another 

lead. Thus, learners have to know not only what to look for, but also where to look for them.  
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Despite such complexities, training with ECG PALMs with 3rd and 4th year medical 

students has shown promising results. Recent PALM studies suggest that medical students can 

learn to interpret 15 heart patterns with remarkable improvements from pretest to immediate 

posttest and maintained what they have learned for over a year later, all within just a few hours 

of practice (Krasne, Stevens, Kellman, & Niemann, under review) 

ECG PALMs  

 We focused the ECG PALM training on 7 different heart patterns, one of which was 

normal (patterns of healthy patients without abnormalities). The materials for all PALMs 

consisted of 250 unique 12-lead ECG traces from real patients, with 26 - 46 unique traces for 

each of seven categorical diagnostic patterns. The diagnostic patterns we chose did not require 

participants to view the entire 12-lead ECG to make a classification, because each heart pattern 

contained relevant information in either the left half or the right half. For some heart patterns, 

half of the graph contained no useful information (e.g., the right half for LAD and RAD, left half 

for Anterior STEMI). Depending on the experiment, we used full 12-lead and half (right half and 

left half) images for each trace. 

Mathematics: Transformation of Sine and Exponential Functions 

Because of the strong algebra-geometry connection of this topic, we called these modules 

AlgGeo PALMs. The AlgGeo PALMs aimed to train participants to appropriately map between 

graphs and equations that represent the same mathematical function. Here we focused on the 

graphical and algebraic transformations of Sine and Exponential functions. 

Earlier research (e.g. Silva & Kellman, 1999) showed that this makes a good testbed for 

manipulating variables relevant to perceptual learning. Even though students have been 

introduced to the topics covered in this training in high school, Silva & Kellman (1999) and our 
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recent data suggest that a majority have not mastered or have forgotten these skills2. For 

example, students may remember what the function y = sin(x) looks like on a graph. When asked 

what the graph of y = sin(x – 2) would look like (the same, but shifted to the right), they often 

have trouble connecting what they know to visualize the answer, even when they can recall the 

steps required to graph this function. Their difficulties are likely due in part to the limitations of 

traditional instruction and can be overcome by perceptual learning (e.g., Kellman, Massey, & 

Son, 2009; Landy & Goldstone, 2007; Kellman & Massey, 2013).  

Mathematical representations are aimed at making concepts and relations accurate and 

efficient, but they pose complex decoding challenges for learners. Each representational type 

(e.g., a graph or an equation) has its own structural features and depicts information in particular 

ways. The rationale for the PALM was that fluent use of each representational type requires the 

ability to extract particular structural attributes (e.g., knowing where to look on a graph to obtain 

the information about the transformation, and to map that appropriately to an equation structure). 

Practice with mapping across representations requires accurate selection of information in each 

representational type and may also lead to intuitions about the way equivalent structures relate 

across representational types (e.g., learning the graphical consequences of shifting on the x-axis 

or scaling on the y-axis). 

Furthermore, understanding of transformations provides a basis for later science learning 

and applications, as graphs and equations are pervasive in mathematics, physics, economics, and 

any other quantitative disciplines. This is also one of the key concerns in the common core state 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Perhaps with the exception of recent UCLA undergraduates, who in a pilot study were able to get about half of the 
questions correct at pretest. This prompted us to run the experiments on Amazon Mechanical Turk (MTurk). One 
prerequisite for participating in the study was that participants had passed Algebra II or an equivalent course (i.e., 
College Algebra), during which transformations of trigonometric and Exponential functions were generally 
introduced. Many MTurk participants had taken more advanced classes, but self-reported that it had been many 
years since they learned the materials. 
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standards (2010) for high school mathematics: students should be able to “interpret functions 

given graphically, numerically, symbolically, and verbally, translate between representations”, 

and transfer their learning to “build new functions from existing ones”. 

AlgGeo PALM 

The AlgGeo PALMs focused on four transformations of Sine and four transformations of 

natural Exponential functions from the canonical functions y = sin(x) and y = ex or exp(x):  x-

shifting, y-shifting, x-scaling, and y-scaling. Each of the transformation had 2 subtypes to 

account for the direction of the transformation. For example, the x-shifting category contains 2 

subcategories: x-shifting to the left (e.g., y = sin(x + 4)) and x-shifting to the right (e.g., y = sin(x 

– 4)). Thus, each function family had 8 subcategories of transformation. There were 9 unique 

instances for each transformation subtypes3, making a total of 144 images used in the training. 

The ranges on the axes varied across graph. This was necessary to create variation within each 

category, as well as to properly scale each function.  

Similarities and Differences between These Two Domains 

Both are excellent perceptual learning domains that require learners to extract relevant 

features and relations within highly abstract visual representations. Each category can be defined 

with a set of rules, but in both domains, there are many variations among instances of the same 

categories and many similarities between instances of different categories, so learners have to 

know what features or relations to look for, and where and how to look for them.  

They differ in two important ways: ECG traces are relatively more complex and arguably 

contain more intricacies (extraneous information) than Sine and Exponential functions. Also, our 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 This is with the exception of Experiment 2, in which the compression subtypes included only 4 instances, 

making a total of 119 unique graphs. This was because when the graphs within the compression subtypes were 
similarly scaled, they were very difficult to tell apart (e.g., y = sin(x)/8 and y = sin(x)/9). In later studies, we 
corrected for this issue by rescaling the graphs and added them back into the stimuli pool. Thus there were an equal 
number of instances per category subtype in Experiments 4 and 6. 
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participants have had more relevant background in mathematics than in ECG. These are 

noteworthy because prior research has shown that the degree of prior knowledge a learner has, 

and the degree to which stimuli include features that are irrelevant to the categorization task can 

influence the overall similarity of the exemplars, which contribute to learner’s ability to extract 

relevant category information (e.g., Kalyuga, 2007; Gentner & Markman, 1994). 

 Our goal was to examine the effect of general learning principles on perceptual learning 

training. Thus, we expected that any learning effects from the training components (passive vs. 

active trial format, contrastive comparisons, and adaptive comparisons) would be similar in both 

domains. Any differences between the two domains, however, would raise interesting questions 

for future research on the importance of prior conceptual knowledge and the complexity of the 

stimuli on perceptual learning training. 

 

Overview of Procedure 

All experiments used a between-subject, pretest-training-posttest-delayed test design. The 

ECG experiments (1, 3, 5) included a primer prior to the pretest. Because the AlgGeo 

experiments (2, 4, 6) were conducted online, they included instruction check questions, practice 

trials, and extra survey questions following the immediate posttest and delayed test.  

To investigate how different training components mediate perceptual learning, we 

manipulated the trial format and feedback within each PALM to create multiple versions for use 

in each experiment.  

 

Dependent Variables of Interest 

In a large respect, effective training for expertise means improving transfer and retention 

capability. We gave all participants a pretest before the training, and to gauge learning (rather 
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than performance, Soderstrom & Bjork, 2015) and retention, we gave them an immediate 

posttest right after the training and another posttest after a one-week delay. Thus we had three 

phases of assessment: pretest, immediate posttest, and delayed test. At these assessment phases, 

we were interested in the following three measures. 

Efficiency  

Since we were interested in optimizing our training, efficiency was our main measure. 

We considered two efficiency measures that took into account each learner’s accuracy and the 

amount of training invested: (1) trial efficiency, as accuracy gain divided by the number of 

learning trials completed, and (2) time efficiency, as accuracy gain divided by the total time 

invested (accuracy per minutes of training).  

Transfer Accuracy 

Transfer, or the ability to use knowledge flexibly and effectively in new situations, is an 

important component of proficiency. To assess discovery gains from PALM training, we 

compared participants’ accuracy in applying that they had learned to new situations. For ECG 

interpretation, transfer tests involved diagnosing novel ECG traces of trained patterns. In 

mathematics, near transfer tests involved mapping among graphs and equations of new Sine and 

Exponential functions. Far-transfer tests involved Cosine and Logarithmic functions and more 

complex combination functions, both of which measured participants’ ability to extend learned 

transformations to new (but related) and more complex functions. 

Fluency 

In assessing enhanced pattern recognition (instead of analytic, reasoning processes), we 

also analyzed changes in fluent accuracy (defined as accurate responses made quickly, i.e., 
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within the designated target RT). Thus, for fluent accuracy, we analyzed the pre-, post- and 

delayed test data, excluding responses that were not made within the 15 seconds target RT.  

Survey Measures 

Because our manipulations may produce not only differences in cognitive aspects of 

learning, but also in the motivational and engagement aspects, we asked participants to report 

their levels of engagement and enjoyment of the training experience, and to provide a judgment 

of learning and memory for the delayed test.  

 

Overview of Analysis 

Because we sought to compare differences across training conditions, we conducted 

planned comparisons among conditions. All statistical tests were two-tailed, with a 95% 

confidence level. Due to small sample size in each experiment, Bonferroni corrections for 

multiple pairwise comparisons can seriously raise Type II error (Perneger, 1998; Nakagawa, 

2004). Thus, we followed the recommendations of Nakagawa (2004) and provided effect size 

estimates to evaluate the strength and direction of each relationship in our multiple tests.  We 

reported effect sizes for ANOVA’s using partial eta-squared (η2
p) with .01 indicating a small 

effect, .06 indicating a moderate effect, and .14 indicating a large effect. In cases where there 

were differences at pretest, we conducted analysis of covariance (ANCOVA) with the pretest as 

the covariate to partial out the effect of the pretest. All assumptions for ANCOVA were met (i.e., 

pretest measures did not vary by condition, and there were never violations of the homogeneity 

of regression slopes, all p’s > .10). Whenever there was good evidence that pretest variations 

were mostly due to chance, we also analyzed immediate posttest and delayed test data 

independent of the pretest. 

To estimate the practical significance of differences between conditions, we computed 
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effect sizes (Cohen’s d) as the difference in gain scores between conditions divided by the 

pooled standard deviation of the gain scores. Similarly, for within-subject differences in phase 

(when comparing performance among pre-, post-, and delayed test), we calculated effect sizes 

(also Cohen’s d) as the mean difference divided by the standard deviation of the difference 

scores (Lakens, 2013). The thresholds for Cohen’s d are .2 for a small effect, .5 for a moderate 

effect and .8 for a large effect, and 1.30 for very large effect sizes (Cohen, 1988; Rosenthal, 

1996).  
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CHAPTER 4 

The Synergy of Passive and Active Classification 

 

INTRODUCTION 

There is considerable evidence that the learning process and resulting representational 

structure of categories depend on the learning task (e.g., Love, 2002; Markman & Ross, 2003; 

Yamauchi & Markman, 1998). PALMs typically employ active classification practice, but does 

active classification better support perceptual learning (PL) than passive exposures to appropriate 

classifications? The little research done on this topic is not conclusive.  

Active classification refers to learning tasks where the learners select a category label for 

a presented example and receive feedback that informs their perceptual, attentional and decision 

processes. Passive learning provides the same category membership information, but learners 

study the example and the category label without engaging in the choose-and-correct cycle. 

Active classification has also been known in the literature as supervised classification learning, 

discovery learning, or selection learning. The passive learning task has also been known as 

unsupervised observational learning, exposure learning, or reception learning.  

Active versus Passive 

The benefit of active retrieval over passive exposure has been well studied in memory 

literature. William James (1980) once wrote: “A curious peculiarity of our memory is that things 

are impressed better by active than by passive repetition” (p. 646, italics added). This reflects 

many findings in memory literature.  

When learners actively engage with the learning material – by answering test questions 

about it, spacing out learning events, interleaving different learning items, or generating answers 
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– its representation in memory is changed such that the material becomes easier to recall in the 

future (e.g., Bjork, 1975). This improvement is often greater than that gained by repeated 

exposure to the same information (e.g., Bjork & Bjork, 1992; Roediger & Karpicke, 2006; 

Kornell & Bjork, 2008). The benefit of these active training conditions, called desirable 

difficulties (Bjork, 1994), was discovered in numerous experiments with humans who were 

trained in various verbal learning paradigms, such as the memorization of word pairs and prose 

materials.  

Does active learning triumph over passive exposures in PL as well? Ordinary experience 

suggest that passive exposure alone can lead to discovery of relevant features and relations in PL. 

Children learn to tell dogs from cats by seeing a number of instances of dogs and cats. The 

novice participants in the classic chick sexing study by Beiderman and Shiffrar (1978) learned to 

categorize day-old baby chickens with just a single page of instruction. Novice wine drinkers can 

learn to discriminate between wines without any instruction (Hughson & Boakes, 2009). People 

can learn to recognize the styles of artists in new paintings by passive viewing of multiple 

samples of each artist (Kornell & Bjork, 2008).  

In some cases, passive presentations may actually be better than active presentations. 

Passive presentation in the form of worked examples is the preferred mode of learning for 

novices (e.g., Recker & Pirolli, 1995), and is an effective instructional alternative to solving 

problems in a variety of domains. Paas and van Merrienboer (1994) studied student learning of 

geometrical problem solving skills and found that when students studied worked examples of 

problems (passive), they attained better accuracy on solving new problems than those who had to 

solve problems from scratch (active). Paas and van Merrienboer postulated that a considerable 

part of the mental effort in the active condition was allocated to processes that were irrelevant for 
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learning. Those in the passive condition, on the other hand, could focus on the relevant aspects of 

problem structure and solutions, thus requiring less training time and less mental effort. Passive 

learning trials also offer error-free exposures to the classifications to be learned, eliminating 

residual effects of incorrect guesses that may occur in active learning. When studying worked 

examples, the learner is freed from performance demands and s/he can concentrate on gaining 

understanding (e.g., Renkl, Atkinson & Grobe, 2004). This passive exposure to the 

classifications to be learned can facilitate subsequent perceptual encoding processes involving 

those classifications (see also Jacoby, Toth, Lindsay, & Debner, 1992). Conversely, Bodemer & 

Faust (2006) found that when asking students to make active connections between multiple 

representations of fractions, they were better able to understand the underlying structures of 

fractions than when they passively observed the correspondences. 

Much of the category learning literature focuses on classification, how one learns to 

assign instances to categories. However, category learning is not simply classification learning. 

How the categories were learned is likely to have a large influence on how the category is 

represented (e.g., Anderson, Ross, & Chin-Parker, 2002). Indeed, an active task tends to 

encourage learners to focus on information that distinguishes categories, while a passive task 

tends to engage them with finding within-category regularities (e.g., Markman & Ross, 2003; 

Chin-Parker & Ross, 2002; Carvalho & Goldstone, 2014). In a recent article, Levering and Kurtz 

(2015) compared the category knowledge produced by an active classification task and a passive 

observational learning task. They trained participants to discriminate between two artificially 

created categories, each with 5 stimuli, in which a single feature determined category 

membership and other features correlated but did not perfectly predict category membership. 

They found that the active learning task biased learners toward more discriminative learning 
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compared to the passive learning task. However, passive learning allowed for enhanced 

sensitivity to the features that were not perfectly predictive. Their reasoning was, active 

classification requires explicit comparison and weighing of multiple category options of each 

trial, which emphasizes the mutual exclusivity of categories and encourages hypothesis testing 

about the diagnosticity of particular features. Just having passive exposure to the correct 

classifications, on the other hand, may support a broad understanding of the coherence among 

members of a category (see also Hoffman & Murphy, 2006, and Hsu & Griffiths, 2010).  

Combining Passive Exposure with Active Classification 

Since passive and active processes have complementary benefits, it is possible that 

combining passive and active learning may be most beneficial. One can imagine everyday life 

situation in which a domain expert must successfully perform many repetitions of a particular 

discrimination, but that s/he must first have as the basis for comprehension and inference robust 

concepts that capture the nature of each category, not just how to tell any two categories apart. 

This hypothesis accords with research on skill acquisition by Renkl, Atkinson, and colleagues 

under the ACT-R framework (e.g., Atkinson, Derry, Renkl, & Worthham, 2000; Kalyuga, Ayres, 

Chandler and Sweller 2003; Renkl, Atkinson & Grobe, 2004), in which passive study of 

examples is valuable early in training. Much of this work focused on procedural problem solving 

domains, for which a smooth transition (fading) from study of worked-out examples to problem 

solving may be ideal. Initial passive presentations can reduce cognitive load early in training 

when it is highest by not having to engage in decision-making processes, resulting in fewer 

unproductive learning events (Renkl and Atkinson 2003; Renkl, Atkinson, Maier, & Staley, 

2002). Active learning, in contrast, forces guessing at the start, which might lead to cognitive 

overload. Wrong guesses or hypotheses may also tend to linger and impede later learning. In 
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addition, being forced to produce responses without knowing much may be frustrating, 

undercutting motivation in some learners.  

Most potential advantages of passive exposure can be realized by using passive trials 

only at the start of learning. Initial passive study in PL might focus learners’ attention on specific 

features that define each category and in turn support the acquisition of the category 

representation. As the learning progresses, active learning can support discriminative processes 

needed for correct classification. Active learning after an initial stage may be especially valuable 

in an adaptive framework. We sought to test this hypothesis in two real-world, complex PL 

domains.  

Overview of Experiments 1 and 2 

In Experiments 1 and 2, we asked: (1) Does the active classification experience enhance 

structure recognition? (2) Does the combination of passive exposure and active classification 

improve training efficiency?  

In Experiment 1, we trained undergraduates to classify seven diagnostic patterns in 

electrocardiography. In Experiment 2, we trained Amazon Mechanical Turk workers to identify 

the transformations in graphs and equations of Sine and Exponential functions. In each 

experiment, we created three versions of the PALM involving: (1) only active classification to 

the underlying diagnostic pattern, (2) only passive presentations of the correct classifications, (3) 

initial passive presentations followed by active classifications (passive-active condition). The 

active and passive-active conditions involved classification with feedback and were adaptive to 

the learner’s performance, and the passive training involved study of the correct interpretations 

and was not adaptive. To compare learning across conditions, we examined participants’ ability 

to correctly and quickly classify novel instances into trained categories of diagnostic patterns. All 



	
   25	
  

active trials used an adaptive learning system – the ARTS (Adaptive Response-Time-based 

Sequencing) system (Mettler & Kellman, 2014).  

 

Experiment 1 

METHOD 

Participants 

90 undergraduate students (mean age = 19.75, 68 Female) from University of California, 

Los Angeles participated in this experiment for research credits. Of the 90 participants, we 

removed 3 participants from the active condition and their yokes from the passive condition 

because: one participant in the active condition self-reported to be “not at all engaged” with the 

module, one participant in the passive condition dropped out of the study after the Primer, and 

one pair because both participants did not return for the delayed test. We also removed 3 

participants in the passive-active condition for different reasons: one reported to not having read 

the primer, one took notes during the primer and studied it before the delayed test, and one was 

not fluent in English and claimed to have had trouble understanding the primer. Of the 81 

participants, 69 (23 in each condition) completed their assigned modules (either by reaching 

learning criteria or were yoked to those who did) within the time allotted.  

Design 

There were three between-subject training conditions to which participants were 

randomly assigned: (1) active PALM in which all learning trials were interactive, adaptive and 

with feedback, (2) passive PALM in which all learning trials were static and contained the 

correct descriptions and labels, and (3) passive-active PALM which contained a subset of passive 

trials prior to the active PALM. 
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Materials 

The training consisted of two phases: a brief primer to ECG interpretation (same for all 

conditions) and the PALM phase with either active, passive, or passive-active task formats.  

Primer. The primer consisted of a series of PowerPoint slides consisting of a brief 

explanation of the 12 ECG leads, how to measure widths and heights on the grid, and one 

example of a typical ECG trace for each heart pattern. In each example, the relevant features 

were marked and described, similar to samples provided in textbooks. No other information 

about the heart anatomy, physiology, or other basics of ECG interpretation was provided in the 

primer. Appendix A.1 contains sample primer slides. 

Quiz. The primer quiz asked participants to match the descriptions of the diagnostic 

features to each of the seven heart patterns shown on the primer. This was to ensure that 

participants were familiar with the diagnostic features of each heart pattern. Appendix A.2 

contains this quiz. 

  PALMs. The materials for PALMs consisted of 250 unique 12-lead ECG traces from real 

patients, with 26 - 46 unique traces for each of seven categorical diagnostic patterns. The seven 

patterns were: Normal, Acute Anterior ST Segment Elevation Myocardial Infarction, Acute 

Inferior ST Segment Elevation Myocardial Infarction, Right Bundle Branch Block, Left Axis 

Deviation, Right Axis Deviation, Old Inferior Myocardial Infarction. The following list contains 

the diagnostic features of each heart pattern: 

1) Normal: no abnormalities 

2) Anterior STEMI (Acute Anterior ST Segment Elevation Myocardial Infarction): ST 

elevation > 2 mm in two consecutive V1-V3 leads 
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3) Inferior STEMI (Acute Inferior ST Segment Elevation Myocardial Infarction): ST 

elevation >1 mm in II, III and aVF with ST depression > 1 mm in leads I and aVL 

4) RBBB (Right Bundle Branch Block): QRS ≥	
 0.12s and rsR' or rSR’ (i.e. "rabbit ears") in 

V1 & V2; deep reciprocal S waves in left lateral leads 

5) LAD (Left Axis Deviation): R net positive in I and net negative in II and aVF 

6) RAD (Right Axis Deviation): QRS in I is negative and aVF is positive, or QRS is evenly 

divided in I with III more positive than aVF 

7) Old Inferior MI (Old Inferior Myocardial Infarction): Significant Q’s (0.04 sec & > ¼ the 

height of R) in at least two of II, III, and aVF; no ST elevation 

In the active PALM, on each trial, participants chose among seven choices the diagnostic 

category for a given ECG trace. Figure 1.1a shows an example trial. Accuracy and speed were 

continually tracked; trial feedback was given after each response and block feedback was given 

after every 12 trials. The trial feedback played a sound corresponding to the correctness of the 

response, and displayed the correct answer, and response time when correct. It also marked 

relevant features on the ECG, along with a brief description of those features as seen in the 

primer. Block feedback provided mean accuracy and speed by block and percentage of 

categories completed. Feedback screens were not timed. Figure 1.1b shows an example feedback 

screen following an incorrect response. Categories were adaptively sequenced based on both 

accuracy and response times as according to the ARTS sequencing algorithm (see Mettler & 

Kellman, 2014). Categories were dropped (retired) from the training set after reaching learning 

criteria (i.e., correctly identified consecutively in 4 out of 4 presentations, each in under 15 

seconds). Participants completed the module when they had retired all 7 categories.  
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Figure 1.1. (a) Sample active classification trial; (b) Feedback provided when incorrect 

 

In the passive PALM, each trial was the same as the correct trial feedback screen for the 

active group (Figure 1.2). The correct label, the relevant features and their descriptions were 

provided, and participants were asked to pay attention and to study each correct diagnosis. The 

passive condition thus did not have classification feedback and was not adaptive. To equate the 

total number of trials across two groups, we yoked each participant in the passive training 

condition to the total number of trials seen by another participant in the active training condition. 

To determine how many items per category to show, we used the average proportions of trials 

per category that a pilot group of active participants needed to complete the module. These 

proportions were similar across active participants, so we used the same proportions for all 

passive participants. The duration of each passive trial was 13 seconds, determined from the 

average amount of time it took pilot participants in the active group to respond and view the trial 

feedback. After 13 seconds, the screen cleared. To keep the participants engaged and to equate 

the existence of a motor response with the active condition, participants had to click on a Next 

button to see the next trial, and there was a sound played to signal the beginning of each trial. 

There was an untimed break every 12 trials. 
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Figure 1.2. Sample passive trial. 

 

In the passive-active PALM, participants viewed a set of 14 passive trials (two examples 

from each category) as in the passive condition, in random order, before moving on to the 

adaptive active classification trials for which participants received the same feedback and 

learning criteria as those in the active classification condition. All three PALMs used the same 

pool of ECGs. 

The active and passive-active groups received adaptive training and learned toward 

learning criterion, while the passive group received one-to-one yokes of the number of trials and 

durations per trials for the active group to reach learning criterion. Thus the passive group did 

not receive adaptive training.  

Assessments. Three assessments, each consisting of 14 new ECG’s (two from each 

category), were used in counterbalanced order as pretest, posttest, and delayed test. None of the 

ECGs used in the assessments appeared in the PALM. Each assessment trial presented an ECG 

and seven answer choices (Figure 1.1a). No feedback was given after each trial. 

Survey. The survey asked about their prior knowledge of ECG reading, levels of 

engagement and enjoyment of the training experience, judgment of learning and memory, 
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amount of sleep they had the night before, four questions to assess their intrinsic theory of 

intelligence (from Chiu, Hong, & Dweck, 1997), demographics information (age, gender, college 

year and major, English fluency), and general comments about their experience in the study. 

Appendix B.1 contains the full survey. The sequence of questions was the same for all 

participants.  

Procedure 

Figure 1.3 displays the procedure of this study. Participants were given 20 minutes to 

study the primer followed by a quiz on which they were asked to match the descriptions of the 

diagnostic features to each of the seven heart patterns shown on the primer. They checked their 

answers afterward.  

 

Figure 1.3. Experiment 1 procedure. 

 

After the quiz, participants took the pretest and were randomly assigned to learn with the 

active, passive, or passive-active PALM. When participants finished the module (or after the 2-

hour time allotted), they completed the immediate posttest and a survey. Participants returned for 

the delayed-posttest one week later. 

Overview of Analyses and Expected Results 

Adaptive learning technology aims to bring learners to a learning goal, so to assess 

condition differences, we compare performance of learners who completed their assigned 
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PALMs. Thus, we analyzed performance from those in the active (and their passive yokes) and 

the passive-active groups who reached learning criteria during the time allotted. It is important, 

however, to consider performance from all participants who have attempted the module and 

compare their completion rate, to understand how training conditions differentially bring learners 

to mastery criteria. We report data from participants who completed the PALM in the main text 

and report the data from all participants in Appendix C.1. Generally, the same patterns of results 

were found when we included all participants who did not reach learning criteria. It is likely that 

given more time, the remaining participants would also have reached learning criteria. 

Participants in the active group on average retired 87.3% and the passive-active 89.9% of 

the categories. Four participants from each condition did not complete the assigned modules (out 

of 81, 23 per condition did).   

Based on prior work, we expected all PALMs to produce robust improvements in 

classification. We hypothesized that the passive-active group would produce the best results. 

Because we used learning to criterion, our primary measure was learning efficiency, defined as 

accuracy gain from pretest to posttest divided by the number of training trials invested. We 

expected the active group to have greater improvements in accuracy and/or response time (for 

correct answers - RTc) than the passive group. At pretest, participants showed slight differences 

in pretest accuracy between conditions. Though these differences were not statistically 

significant at α = 0.05, pretest accuracy could influence the amount of posttest gained from the 

training. Thus, aside from using analysis of variance (ANOVA) to confirm condition differences 

on raw scores, we also ran analysis of covariance (ANCOVA) on accuracy gain, fluent accuracy 

gain, and efficiency with pretest performance as a covariate. This allowed us to control for the 

effect pretest had on the posttest gains. All assumptions for ANCOVA were met for each 
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dependent variable: (1) independence of the covariate and the treatment effect (the pretest were 

not different across groups), F(2,88) < 2, p’s > .10, (2) and (2) homogeneity of regression slopes 

(the correlation between pretest and the posttest gains were roughly equal across conditions), 

F(2,75) < 1, p’s > .10. 

Yoking by number of trials was not perfect for 5 pairs of participants; however, we 

retained them in the analyses because (1) removing them did not change the results, and (2) total 

trials and training times were similar between the active and passive groups. The three groups 

did not differ on quiz performance or any other measures not reported here.  

 

RESULTS 

Efficiency 

 

Figure 1.4. Efficiency (a) by trial and (b) by time. Error bars are ± 1 standard error. 

Efficiency by Trials 
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Figure 1.4a gives efficiency as computed by trials. A 2 phase (pre-post, pre-delayed) x 3 

condition (active, passive, passive-active) ANCOVA with pretest accuracy as a covariate 

confirmed that after controlling for the effect of pretest accuracy, there was a reliable main effect 

of condition, F(2, 65) = 7.19, p < .01, η2
p = .18. There were no reliable differences between 

active and passive-active groups in the mean efficiency (t(44) = 1.13, p = .26), but both the 

active and passive-active groups had better efficiency than the passive group with medium to 

large effect sizes (.002 and .003 vs. .001, respectively, t(44) = 2.05, p = .045, d = .62, and t(44) = 

3.00, p = .004, d = 1.01). The drop in efficiency from immediate posttest to delayed test was 

marginally reliable, F(1, 65) = 3.31, p = .07, η2
p = .05. There was no phase x condition 

interaction, F(2,65) = .04, p = .96, η2
p = .001. 

Pretest accuracy was significantly related to efficiency scores, F(1, 65) = 29.28, p < .001, 

η2 = .31, with pretest accuracy negatively correlated with both pre-post efficiency, r(69) = -.42, p 

< .001 and pre-delayed post efficiency, r(69) = -.50, p < .001. This suggested that pretest 

variations were largely due to chance. Thus, we also analyzed efficiency uncorrected for pretest 

variations (post- or delayed test accuracy/number of trials). Across both post and delayed tests, 

the passive-active condition outperformed the active condition with a medium effect size (.005 

versus .004, respectively), t(44) = 2.03, p = .048, d = .58. Passive-active robustly outperformed 

passive with a large effect size, t(44) = 3.83, p < .001, d = 1.12. Active and passive did not differ 

reliably in overall efficiency uncorrected for pretest scores, t(44) = 1.56, p = .13. 

Efficiency by Time 

Figure 1.4b shows the efficiency as computed by time. Time efficiency showed the same 

patterns of results, with one exception. Unlike trial efficiency where there was no difference 

between the active and passive conditions on efficiency uncorrected for pretest variations, the 
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active condition produced higher time efficiency than passive with a large effect size, t(44) = 

2.73, p = .009, d = .82. More details of these analyses are in Appendix C.2. 

Accuracy 

Figure 1.5a shows the mean accuracy by conditions. As expected, participants from all 

conditions produced strong learning gains. A 3 phase (pre, post, delayed test) x 3 condition 

ANOVA on accuracy confirmed a main effect of phase, F(2,132) = 104.49, p < .001, η2
p = .62. 

Across all conditions, participants produced strong learning gains from pretest to immediate 

posttest (29% to 64%, t(68) = 13.89, p < .001, d = 2.20) and to delayed test (48%, t(68) = 7.08, p 

< .001, d = 1.17) with large and very large effect sizes. There was also reliable forgetting 

between immediate posttest and delayed test, t(68) = 7.38, p < .001, d = .97.  

There were also differences in overall accuracy as a function of condition, F(2,66) = 4.61, 

p < .05, η2
p

 = .12. The passive-active condition outperformed both the active and passive 

conditions on overall accuracy with medium effect sizes, t(44) = 2.64, p = .02, d = .78, and t(44) 

= 2.15, p = .04, d = .62, respectively. Active and passive did not differ reliably, t(44) = 1.23, p = 

.22. There was a marginally significant phase x condition interaction, F(4,132) = 1.99, p < .10, 

η2
p

 = .06. There were no condition differences at pretest (p’s > .10), but the passive-active group 

outperformed the passive group at both posttests (70% vs. 57%), t(44) = 2.37, p < .05, d = .70, 

and delayed test (50% vs. 39%), t(44) = 2.75, p < .01, d = .82, with medium-large effect sizes. 

The active group did not differ reliably from the passive group at immediate posttest, t(44) = 

1.48, p = .15, but had marginally higher delayed test accuracy than the passive group with a 

medium effect size, t(44) = 1.73, p = .09, d = .51. The passive-active group had numerically 

higher means than active at immediate posttest and delayed test, but these differences were not 
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statistically reliable at immediate posttest, t(44) = 1.22, p = .23 or at delayed test, t(44) = 1.59, p 

= .12. 

 

 

Figure 1.5. Mean (a) accuracy and (b) fluent accuracy. Error bars are ± 1 standard error. 

Accuracy Gain 

The pattern of condition differences was slightly different with accuracy gains. The 

active and passive-active conditions produced higher gains than the passive condition with 

medium effect sizes, t(44) = 2.18, p = .04, d = .64, and t(44) = 2.41, p = .02, d = .71, 

respectively. There were no reliable differences in accuracy gains between the passive-active and 

active conditions, t(44) = .21, p = .84, and no significant interactions, p’s > .10.  

Fluency 

Figure 1.5b displays the fluent accuracy by condition. Fluent accuracy showed the same 

pattern as accuracy. The passive-active group tended to show higher overall fluent accuracy than 
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both the active (43% vs. 38%), t(44) = 2.33, p = .03, d = .69, and passive groups (43% vs. 38%), 

t(44) = 2.23, p = .03, d = .66, with medium effect sizes. Interestingly, active also outperformed 

passive on overall fluent accuracy gain. This was marginally significant but had a medium effect 

size, t(44) = 1.72, p = .09, d = .51. There were no other reliable condition differences. Appendix 

C.2 contains more details of these analyses. 

Progression of Learning 

Because we wanted to examine the benefit of passive training trials prior to the active 

classification trials in the training, we compared accuracy between the passive-active and active 

conditions during the course of training. Participants varied in the total number of trials needed 

for reaching learning criteria, so we also compared their accuracies by quartiles of the training. 

Figure 1.6a shows the mean accuracy during the training over the 4 quartiles and Figure 1.6b 

over the first 12 training blocks. The passive-active group was reliably more accurate during the 

training than the active group, with a large effect size, t(44) = 3.84, p < .001, d = 1.13. This held 

true across all four quartiles with medium-large effect sizes, t(44) > 2.21, p = .02 to .03, d = .77 

to .89. Interestingly, this superiority of the passive-active group over active group did not appear 

until the 4th training block, t(52) = 2.95, p = .005, d = .80. These two groups had similar RTc 

and fluent accuracy, p’s > .10.  

As a result, the passive-active condition required 30 fewer trials to reach learning criteria 

than the active condition, t(44) = 2.19, p = .03, d = .65. They also spent about 6 minutes less than 

the active condition (38 minutes vs. 44 minutes) but this difference was not statistically reliable, 

t(44) = 1.45, p = .15, d = .43. There were no differences in trials or time between the active and 

passive conditions, p’s > .20. Table 1.1 contains the descriptive statistics from the training for 

each condition.  
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Figure 1.6. Mean accuracy in the training (a) by quartiles and (b) by blocks. Note that many 

participants did not experience all 12 blocks of training while some did and more to reach 

learning criteria. Each block contained 12 trials. The passive-active group received 14 passive 

trials in block 1. Error bars are ± 1 standard error. 

 

Condition 

Trials 

Completed 

Minutes on 

Training 

Training 

Accuracy  

Training 

RTc  

Training Fluent 

Accuracy  

Active 167.5 (11.8) 43.96 (3.37) .49 (.02) 7.58 (.38) .46 (.02) 

Passive-Active 137.8 (6.7) 37.73 (2.68) .57 (.01) 8.10 (.48) .52 (.01) 

Passive 159.7 (8.6) 47.91 (2.40) - -  

Table 1.1. Training means by condition. Standard errors are in parentheses. 

Self-Report Ratings and Judgment of Memory  

On the survey, we asked participants to self-report “How enjoyable the training as a 

whole, on a scale from 1-6 (1 = not at all enjoyable, 6 = very enjoyable)”. Our groups differed 

marginally in how enjoyable they rated the training, F(2,61) = 2.51, p < .10. The passive-active 
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PALM was found to be more enjoyable (M = 4.55, SD = 1.23) than the passive PALM (M = 

3.76, SD = 1.22), t(47) = 2.01, p = .05, d = .64, and marginally more enjoyable than the active 

PALM (M = 3.90, SD = 1.14), t(46) = 1.74, p = .09, d = .55, both with medium effect sizes. 

There was no difference between the active and passive groups, t(40) = .39, p > .70. Those in the 

passive-active group also self-reported to be more highly motivated and engaged during the 

module (on a scale from 1-6, 1 = not at all, 6 = very much, M = 4.90, SD = .72) than the active 

(M = 4.38, SD = 1.02) and the passive groups (M = 3.95, SD = 1.36), t(39) = 1.87, p = .07, d = 

.59, and t(39) = 2.77, p = .008, d = .87, with medium to large effect sizes. There was no 

difference between the active and passive groups, t(40) =  1.15, p = .26. 

The passive-active group also gave marginally higher ratings to “On a scale from 1-6 (1 = 

not at all, 6 = very much), how helpful was the training module?” than the passive group with a 

medium effect size (M = 4.67, SD = 1.16, vs. passive-active, M = 5.25, SD = .72), t(39) = 1.93, p 

= .06, d = .60, but not higher than the active group (M = 4.90, SD = 5.25), p > .10. There was no 

difference between the active and passive groups, t(40) < 1, p = .45. There were no other group 

differences on the remaining survey items, p’s > .10. 

 

DISCUSSION 

The passive-active condition in this study, consisting of initial passive exposure, followed 

by active adaptive learning, produced better learning and transfer than active and passive 

learning for the same amount of time. It was also more enjoyable than the passive condition and 

marginally so than the active condition. Passive-active outperformed active adaptive learning on 

comparisons during the course of learning (Figure 1.5), as well as in accuracies and efficiencies 

uncorrected for what were likely random pretest variations across groups. Effect sizes for 
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learning differences between passive-active and active ranged from around .6 to .8, which are 

medium to large effect sizes.  

The initial passive exposure speeds learning relative to starting with active classification, 

despite there was similar number of learning trials in the passive portion and the first active trial 

block. In the first few training blocks, the abrupt change from passive to active introduced 

similar error rates as those in the active group. However, from about the 4th block on, those in 

the passive-active group made fewer errors. These gains appear to be preserved through the 

course of learning and in posttests.  

Active did not differ from passive on raw accuracy and fluency, but active produced 

higher accuracy gain, fluent accuracy gain, and efficiency (corrected for pretest variations) than 

the passive condition. The active condition in this experiment, as well as the active part of the 

passive-active condition, utilized the ARTS adaptive learning algorithm previously found to be 

highly effective in earlier work. The passive-active condition here appears to enhance a learning 

approach that has been previously shown to outperform classic adaptive learning systems and a 

number of presentation schemes in adaptive PL (Mettler & Kellman, 2014).  

 

Experiment 2 

The purpose of Experiment 2 was to examine the generalizability of the advantage of 

passive-active training task with a different learning domain involving transformations of Sine 

and Exponential functions and with a different, more diverse sample of participants. This use of 

a new learning domain and a different subject sample represents a robust test of the learning 

principles. If passive-active is an effective training in general, we should be able to replicate the 
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effect in Experiment 2. If the effects of Experiment 1 were specific to the learning domain, then 

Experiment 2 may not show the same effects. 

 

METHOD 

Participants 

75 Amazon Mechanical Turk workers4 (36 Female, mean age = 34.34, SD = 10.24) from 

the United States who have passed Algebra 2 or an equivalent course (i.e., College Algebra) 

completed the study online from their own computers. Each received $13 in remuneration. 

Appendix D.1 contains a summary of other demographic information. 

Design 

There were three between-subject training conditions: (1) active classifications of 

graphed functions and their symbolic expressions, (2) passive exposures to the correct mappings 

only, (3) a combination of a set of passive trials containing the correct mappings, followed by 

active classifications (passive-active). 

Materials  

Instruction Check. Because participants self-administered the study, care was taken to 

ensure that they have read and understood the instructions before moving on to each phase. 

Following each set of instructions, there were 3-5 multiple-choice instruction check questions. 

Participants had to answer all instruction questions correctly before moving on, and were able to 

review the instructions after each incorrect try.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 There were initially 98 MTurk workers who participated in the study, 16 of whom (9 from active, 3 from passive, 
and 4 from passive-active) withdrew from the study during the training, and 5 did not return for the delayed test (1 
from active, 1 from passive, and 3 from passive-active), 2 had response times under 2 seconds on the post or delayed 
test (1 from passive, 1 from passive-active). The analyses were carried out with 75 participants who have completed 
all phases of the study.  
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PALMs. In all three PALMs, participants were asked to map (and/or to study the correct 

mappings) between graphs and equations of Sine and Exponential functions. The AlgGeo 

PALMs focused on the following transformations of Sine and (natural) Exponential functions 

from the canonical functions y = sin(x) and y = ex or exp(x).  

1) X-shifting: e.g., y = sin(x + 4), y = exp(x - 4) 

2) Y-shifting: e.g., y = sin(x) + 4, y = exp(x) - 4 

3) X-scaling:  e.g., y = sin(x / 4), y = exp(4x) 

4) Y-scaling: e.g., y = 4sin(x), y = exp(x) / 4 

These four transformations make up the four categories for training in each function 

family, making a total of 8 categories to be trained. Each of the transformation had 2 subtypes to 

account for the direction of the transformation. For example, the x-shifting category contains 2 

subcategories: x-shifting to the left (e.g., y = sin(x + 4)) and x-shifting to the right (e.g., y = sin(x 

– 4)). Thus, each function family had 8 subcategories of transformation. There were 4-9 unique 

instances for each transformation subtypes, making a total of 119 functions used in the training5. 

In the active classification condition, participants practiced making active classifications 

with short mapping trials. On each trial, they were presented with a graph of a single function in 

blue and four equations, and were asked to pick from four equations the one that best matches 

the given graph. When the target was a Sine graph, all answer options contained only Sine 

functions, similarly for when the target was an Exponential function. On each trial, the module 

randomly selected 3 distractors from among the set of 7 possible alternatives (these together with 

the target represented 8 total subcategories for each function family), so that the second subtype 

of each transformation was one of the seven-distractor alternatives. All of the answer choices 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 The compression subtypes included only 4 instances. This was because when the graphs within the compression 
subtypes were similarly scaled, they were very difficult to tell apart (e.g., y = sin(x)/8 and y = sin(x)/9). In later 
studies, we corrected for this issue by rescaling the graphs and added them back into the stimuli pool. 
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always involved the same quantities (e.g., if the target involves a shift or scale by 2 units, all 

distractor choices involve a transformation by 2 units). Figure 2.1a shows a sample active trial. 

Accuracy and speed were continually tracked. After each response, there was sound and 

visual feedback to report whether the response was correct, and the speed of the response when 

correct. At feedback, the given graph was replaced with its contrastive version, in which the 

basic function (y = sin(x) or y = exp(x), as applicable) was added to the graph as a dotted gray 

line. Figure 2.1b shows a sample feedback screen. Each trial timed out after 30 seconds; at that 

point the screen cleared and participants were prompted to click Next to see the next trial. The 

trial feedback screen was not timed, so participants had an unlimited amount of time to view 

each trial feedback. 

 

Figure 2.1. (a) Sample active trial and (b) its feedback. 
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A block feedback appeared after every 12 trials to provide the average block-by-block 

accuracy and RTc performance. This was an opportunity to take a break should the participant 

wanted it. When participants reached the preset learning criteria for each category (3 out of the 

last 3 trials of a category correct and each under 15 seconds), they gained mastery levels toward 

the completion of the module. This mastery feedback also appeared at block feedback as 

percentage completed to allow participants to view their cumulative progress in the PALMs. The 

module ended when participants complete all mastery levels.  

 

Figure 2.2. Sample passive trial. 

 

In the passive training condition, on each trial a contrastive graph and its equation were 

shown as static images on the screen. This was the same display as the trial feedback screen 

(after a correct answer) as seen in the active condition, but here participants were asked to pay 

attention to figure out how to translate between the representations shown. Figures 2.2 shows a 

sample passive trial. There was a sound to signal the start of a trial. The duration of each trial 
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was 14 seconds, the average amount of time it took for a pilot group of 15 active participants to 

make their choices and viewed the feedback. Participants were not asked to make a choice on 

each trial and thus did not receive feedback. After 14 seconds, the screen cleared, and 

participants were asked to click Next to continue on to the next trial. There were 171 trials in the 

passive training. This was the average number of trials it took for active participants to complete 

the training module. We also controlled for the difficulty of the categories by matching the 

proportion of trials from each category to the proportions seen in the active condition. 

In the passive-active training condition, participants first received a set of 16 passive 

trials (2 examples from each category, 1 per subcategory), similar to those seen in the passive 

training condition, before participating in active classification trials. The passive trials were 

randomly presented, each for 14 seconds, in the same way as in the passive condition. In the 

active portion of the training, this group received the same feedback and completion criteria as 

those in the active classification condition. The duration of the training for those in the active 

classification condition and those in the passive-active condition depended on their performance 

during the modules. 

Assessments 

Three different versions of the assessment were given to participants in counterbalanced 

order as pretest, posttest and delayed test. The full list of assessment items is in the Appendix E. 

We modeled the question types after those used in Silva & Kellman (1999). Each question was 

presented in a similar multiple-choice format used in the training, with a graph and four 

equations as answer choices. There were 28 questions, divided into 4 types: 

1) 8 Trained Items (TI). These were 4 Sine items and 4 Exponential items seen in the 

module. All transformation subtypes were represented.  
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2) 8 Trained Functions, Novel Items (TF/NI): These were new instances of trained 

transformations (4 Sine, 4 Exponential) involving different quantities than the ones seen 

in the training (i.e., the training used quantities from 2-10, and TF/NI items involved 

quantities 20, 30, and 40; e.g., y = sin(20x)). All transformation subtypes were 

represented. 

3) 8 Untrained Functions (UF): These involved 4 Cosine and 4 Logarithmic functions, one 

for each trained transformation subtypes. All transformation subtypes were represented. 

4) 4 Combination Functions (CF): These consisted of more complex combination functions, 

2 of which involved a combination of Sine and Exponential functions (e.g., y = sin(x) + 

exp(x)), and the other 2 were combinations of transformations from one trained function 

family (e.g., y = 3sin(x + 3)). 

Practice Questions. Each assessment (pretest, posttest, delayed test) was preceded by two 

practice questions to familiarize participants with the question format6. The practice questions 

(one Sine, one Exponential) were identical across all three versions of the assessment. These 

were designed to look like the rest of the assessment questions. Participants were not told that 

these were practice questions, and there were no feedback after each question, thus the 

assessment questions seamlessly followed suit.  

Survey. To maximize the validity of our accuracy and response time measures, we asked 

participants to report honestly at the surveys their levels of engagement during the experiment, 

enjoyment of the training experience, whether they have sought outside help, what other 

activities they engaged in while participating in the experiment, whether they took breaks and 

what they did during the breaks, and of course, whether they had technical difficulties. The 

survey also contained questions about demographic information, their prior knowledge of the 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

6 A pilot study showed that participants tended to timeout on the first question on the assessment. 
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materials, the amount of sleep they had the night before, a 4-item scale on their feelings of math 

anxiety toward math adapted from the Student Beliefs about Mathematics Survey (Kaya, 2008), 

the same four theory of intelligence items from Experiment 1, and some questions regarding 

their metacognitive judgments of their learning and prediction of their memory a week later. The 

full list of questions is in the Appendix B.2. The sequence of questions was the same for all 

participants. 

Procedure 

The experiment was web-based, and participants logged in from their own devices. They 

were instructed not take notes and to not consult outside resources nor to ask anyone for help at 

anytime during the study. All participants were told that the purpose of the experiment was to 

assess the effectiveness of this particular training program, and that they would be asked to 

engage in a training module to learn to map among Sine and Exponential graphs and equations, 

and that they would be tested on them afterward.  

Figure 2.3 shows the procedure of the study. To complete the experiment, participants 

must qualify from the pretest – those who scored higher than 45% correctly on the pretest 

(averaged from all 28 trials) were deemed ineligible for the study. No feedback was provided 

after each pretest question. After the pretest, if they were eligible, participants had a 6-hour 

window to complete the training, the immediate posttest and the survey. We used a condition-

balancing algorithm to assign eligible participants into three training conditions based on their 

pretest accuracy to ensure similar overall pretest accuracy and equal distribution of participants 

across conditions7. They were given 6 hours to complete the training, take the immediate 

posttest, and fill out the survey. A week after the immediate posttest, participants took the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 This assignment algorithm was not available when the ECG experiments were conducted. 
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delayed test and completed another survey. They received instructions for the delayed test via 

email the day before.  

 

Figure 2.3. Procedure of Experiment 2 

Overview of Analyses and Expected Results 

We collected posttest data only from participants who have completed the training 

modules, thus we do not report results from everyone who had attempted the module and did not 

finish and from participants who did not return for the delayed test. We collected data until we 

acquired equal number of participants in each condition, after excluding those who self-reported 

to have sought help anytime during the one-week duration of the study, and from those who 

reported to have experienced distractions and technical difficulties.  

We report these results for all assessment item types together and separately for each item 

type. Similar to the previous experiment, we report analyses from a 3 phase (pretest, posttest, 

delayed test) x 3 condition (active, passive, passive-active) mixed ANOVAs on raw accuracy 

and fluent accuracy. While we successfully equated the overall pretest accuracies across groups, 

they were slightly different on some assessment trial types. Whenever appropriate in the 

following analyses, we also conducted a 2 phase (pre-post, pre-delayed test) x 3 condition 

(active, passive, passive-active) mixed ANCOVA on efficiency, accuracy gain, and fluency gain. 

All assumptions were met. 
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Since improvement in information extraction can theoretically produce both near and far 

transfer to cases of familiar and more complex functions, we expected to see overall posttest 

gains from all training conditions. In terms of condition differences, we expected to replicate 

Experiment 1’s finding that passive exposure to multiple varied instances can improve 

participants’ ability to discover relevant relations and enhance learning and retention when 

followed by active classification training. We expected the passive-active condition to yield 

better efficiency scores than the active condition, and to outperform the active and passive 

conditions on transfer and retention. 

RESULTS 

Efficiency 

Efficiency by Trial 

Figure 2.4a displays the efficiency by total number of trials completed. A 2 phase x 3 

condition ANCOVA with pretest accuracy as the covariate confirmed a main effect of condition, 

F(2,71) = 4.35, p = .02, η2
p = .11, and no phase x condition interaction, F(2,71) = .11, p > .20. 

The passive-active condition (M = .0017, SD = .0015) produced higher overall trial efficiency 

than the passive condition with a medium effect size (M = .0008, SD = .0007), t(48) = 2.87, p = 

.006, d = .76. This difference was reliable at both phases (pre-post: t(48) = 2.71, p = .009, d = 

.73, and pre-delayed, t(48) = 2.87, p = .006, d = .77). Passive-active also had numerically higher 

overall trial efficiency than active (M = .0012, SD = .0012), but this difference was not 

statistically significant, t(48) = 1.50, p = .14. However, planned comparisons showed that even 

though passive-active did not differ from active at pre-post trial efficiency, t(48) = 1.09, p = .28, 

passive-active had marginally higher pre-delayed trial efficiency than active with a medium 

effect size, t(48) = 1.69, p = .097, d = .50. There was a reliable difference between the active and 
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passive groups on overall trial efficiency, t(48) = 1.31, p = .20. This held at both pre-post, t(48) = 

1.19, p = .24, and pre-delayed, t(48) = 1.06, p = .29, phases. 

 

  

Figure 2.4. Efficiency (a) by trial and (b) by time. Error bars are ± 1 standard error. 

 

There was no significant main effect of phase, F(1,72) = 17.85, p < .001, η2
p = .20, 

confirming that after controlling for variations at pretest accuracy, pre-post trial efficiency was 

not reliably different from pre-delayed trial efficiency. There was no phase x pretest interaction, 

F(1, 71) < 1, p > .20, and there was a marginal main effect of pretest accuracy, F(1,71) = 3.02, p 

= .09, η2
p = .04, but the correlations between pretest accuracy and pre-post trial efficiency, r(75) 

= -.14, p = .22, and with pre-delayed trial efficiency, r(75) = -.19, p = .11, were not statistically 

reliable.   
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By Assessment Item Types 

The patterns of condition differences on trial efficiencies varied slightly by item type.  On 

trained items (TI), both the passive-active (M = .0022, SD = .0023) and the active (M = .0017, 

SD = .0021) conditions produced higher overall TI efficiency than the passive (M = .0007, SD = 

.0013) condition with medium effect sizes, t(48) = 2.71, p = .009, d = .80, and t(48) = 1.98, p = 

.05, d = .57, respectively. There were no reliable differences between the passive-active and the 

active conditions on the overall TI efficiency, t(48) = .75, p = .46, both at pre-post, t(48) = .23, p 

= .82, and at pre-delayed, t(48) = 1.07, p = .29, phases. 

On novel items of trained functions (TF/NI), the passive-active condition (M = .0021, SD 

= .0020) surpassed the passive condition on overall trial efficiency (M = .0006, SD = .0011) with 

a large effect size, t(48) = 3.28, p = .002, d = .95, and also had marginally higher efficiency than 

the active condition (M = .0011, SD = .0020) with a medium effect size, t(48) = 1.81, p = .08, d = 

.53. The difference between passive-active and active was not statistically significant at pre-post, 

t(48) = .97, p = .34, but it was statistically reliable at pre-delayed phase with a medium effect 

size (.0019 vs. .0005, respectively), t(48) = 2.26, p = .03, d = .65.  

There were no condition differences on untrained functions (UF) and combination 

functions (CF), t(48) < 1, p’s > .20. More details of these results are in Appendix D.2. 

Efficiency by time 

 Figure 2.4b displays the efficiency by total time invested. Unlike trial efficiency, both the 

passive-active condition (M = .007, SD = .005) and the active condition (M = .005, SD = .005) 

produced higher overall time efficiency than the passive condition (M = .003, SD = .002) with 

medium and large effect sizes, t(48) = 3.57, p = .001, d = .99, and t(48) = 2.06, p = .04, d = .58, 

respectively. There was no reliable difference between the passive-active and active conditions 
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on overall time efficiency, t(48) = 1.39, p = .17, at pre-post, t(48) = 1.02, p = .31, nor at pre-

delayed, t(48) = 1.44, p = .16, phases. 

By Assessment Item Type 

 On TI time efficiency, passive-active (M = .0083, SD = .0089) did better than passive (M 

= .0026, SD = .0043) with a large effect size, t(48) = 2.88,p = .006, d = .82, but did not differ 

from active (M = .0083, SD = .0097), t(47) < 1, p > .20. Passive-active was not different from 

active at both pre-post and pre-delayed phases, t(47) < 1, p’s > .20. The active group had higher 

overall TI time efficiency than passive, t(48) = 2.68, p = .01, d = .76, which was reliable at pre-

post, t(48) = 3.35, p = .002, d = .95, but not at pre-delayed phase, t(48) = 1.46, p = .15, d = .42. 

On TF/NI, the passive-active group had marginally higher efficiency than the active 

group with a medium effect size (.008 vs. .005), t(48) = 1.74, p = .09, d = .50. Their difference 

was not reliable at pre-post, t(48) < 1, p > .20, but was reliable at pre-delayed phase, t(48) = 2.09, 

p = .04, d = .58. The difference between the active group and passive group on overall TF/NI 

time efficiency was marginally significant and with a small effect size (.0046 vs. .0021, 

respectively), t(48) = 1.68, p < .10, d = .48. This was significant at pre-post with a large effect 

size (.0075 vs. .0027), t(48) = 3.08, p = .003, d = .88, but not at pre-delayed phase (.0018 vs. 

.0016), t(48) < 1, p > .20.  

There were no condition differences on trial efficiencies when measured with UF and CF, 

t(48) < 1, p’s > .20. Additional details of these analyses may be found in Appendix D.2. 

 

Accuracy 

All Items 

Figure 2.5a shows the mean accuracy on all assessment items. As we expected, across all 

conditions, PALM training led to strong overall improvement and retention. A 3 phase x 3 
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condition ANOVA confirmed a main effect of phase, F(2,144) = 71.00, p < .001, η2
p = .50. 

Across all conditions, there were reliable improvements from pretest (M = .32, SD = .07) to 

immediate posttest with very large effect sizes (M = .51, SD = .15), t(74) = 11.38, p < .001, d = 

1.62. There was a reliable drop from immediate posttest to delayed test (M = .43, SD = .15), t(74) 

= 4.97, p < .001, d = .53, but a substantial amount was retained, relative to pretest, a week later, 

t(74) = 7.09, p < .001, d = .94. The improvement from pretest to delayed test held for all item 

types (see Appendix D.2 for more details of these analyses). 

 

Figure 2.5. Mean (a) accuracy and (b) fluent accuracy on all assessment items.  

Error bars are ± 1 standard error. 

 

There was no reliable overall main effect of condition, F(2,72) = 1.51, p = .23, η2
p = .04, 

and no phase x condition interaction, F(4,144) = 1.01, p = .40, η2
p = .03. Planned comparisons 

showed that passive-active had marginally higher accuracy at delayed test than passive with a 

medium effect size, t(48) = 1.75, p = .09, d = .50, but there was no reliable difference at 
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immediate posttest, t(48) = 1.44, p = .16. The passive-active group had numerically higher 

accuracy than active, but these differences were not reliable at immediate posttest nor at delayed 

test, t(48) < 1.3, p’s > .20. There were no reliable differences between active and passive at any 

phases, t(48) < 1, p > .20.  

By Assessment Item Type 

Condition differences were more apparent on trained items (TI) and trained functions, 

novel items (TF/NI). Figure 2.6a displays the mean accuracy on TI, and Figure 2.7a displays the 

mean accuracy on TF/NI. All conditions produced large and enduring improvements on TI and 

TF/NI from pretest to immediate posttest and from pretest to delayed test, with some reliable 

forgetting between immediate posttest and delayed test, p’s < .01.  

 
Figure 2.6. Mean (a) accuracy and (b) fluent accuracy on Trained Items (TI).  

Error bars are ± 1 standard error. 

 



	
   54	
  

For trained items (TI), the passive-active group did better than the active group on overall 

accuracy (.46 vs. .39), t(48) = 2.12, p = .04, d = .61. The difference was not statistically reliable 

at immediate posttest (.59 vs. .54, t(48) < 1, p > .20), but it was marginally reliable at delayed 

test (.48 vs .37), t(48) = 1.86, p = .07, d = .53. The passive-active group also did better than the 

passive group on overall accuracy with a medium effect size (.46 vs. .38), t(48) = 2.25, p = .03, d 

= .64. This difference was marginal at immediate posttest (.59 vs. .48), t(48) = 1.92, p = .06, d = 

.54, and significant at delayed test (.48 vs. .36), t(48) = 2.22, p = .03, d = .63. The active and 

passive groups did not differ at either posttests, t(48) < 1.1, p > .20.  

In terms of TI accuracy gains, passive-active had numerically higher overall accuracy 

gain than passive, but the difference was not statistically significant overall, t(48) = 1.66, p = .10, 

d = .47, on pre-post gain, t(48) = 1.47, p = .15, nor on pre-delayed test gain, t(48) = 1.60, p = .12. 

Passive-active did not differ from active overall, on pre-post gain, nor on pre-delayed gain, t(48) 

< 1, p’s > .20. Similarly, active did not differ from passive overall, on pre-post gain, nor on pre-

delayed gain, t(48) < 1.5, p’s > .10. Participants had similar accuracies for Sine and Exponential 

TI. The same patterns of result were found for both function families, but the condition 

differences were more pronounced with Exponential TI. Appendix D.2 contains more details of 

these analyses.  

For novel items of trained functions (TF/NI), there were no reliable differences among 

conditions at pretest, posttest, nor delayed test, t(48) < 1.7, p > .10, but notable condition 

differences were found in terms of TF/NI accuracy gain. Passive-active had higher overall gain 

than passive with a medium effect size (.23 vs. .11), t(48) = 2.42, p = .02, d = .68, as seen from 

pre to posttest, t(48) = 2.11, p = .04, d = .60 and from pre to delayed test, t(48) = 2.04, p = .047, 

d = .58. Passive-active also had numerically higher accuracy gain on TF/NI than active, but only 
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marginally significantly so on pre-delayed gain with a medium effect size, t(48) = 1.84, p = .07, 

d = .52. Their difference on the overall gain and on pre-post gain was not reliable, t(48) = 1.45, p 

= .15 overall, and t(48) < 1, p > .20 on pre-post gain. Similarly, active did not differ from passive 

overall, t(48) < 1, p > .20, on pre-post gain, t(48) = 1.34, p = .19, nor on pre-delayed gain, t(48) < 

1, p > .20. Interestingly, these condition differences were driven by the same differences on 

Exponential TF/NI items. There were no condition differences on Sine TF/NI. 

 

Figure 2.7. Mean (a) accuracy and (b) fluency on Trained Function, Novel Items (TF/NI).  

Error bars are ± 1 standard error. 

 

The only notable condition differences on untrained functions (UF) were that the passive-

active condition had marginally higher accuracy than the active condition at immediate posttest 

(.51 vs. .40), t(48) = 1.98, p = .05, d = .56, but this difference did not appear at delayed test (.47 

vs. .42), t(48) < 1, p > .20, nor in terms of UF accuracy gains, t(48) < 1.2, p > .20. Also, the 
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passive condition had marginally higher pre-post UF accuracy gain than active (.22 vs. .10), t(48) 

= 1.82, p = .08, d = .43, but not on pre-delayed UF gain, t(48) < 1, p > .20. There were no 

reliable condition differences on combination functions (CF), t(48) < 1.6, p > .16. 

Interesting, all three group showed reliable pre-delayed test improvements (but not pre-

post) on UF with medium effect sizes, p’s < .02, d = .57 to .61. Pre-post learning gains on CF 

were reliable for the passive-active and passive groups, but not pre-delayed gains, p’s > .20. 

Appendix D.2 contains more details of these analyses.  

 

Fluency 

All Items 

 Figure 2.5b shows the fluent accuracy by condition. Like raw accuracy, overall there 

were strong improvements from pretest to immediate posttest that sustained to delayed test, and a 

small drop in performance between immediate posttest and delayed test, p’s < .001. Unlike raw 

accuracy, there were no condition differences on overall fluent accuracy. 

By Assessment Item Types 

Fluent accuracy on trained items (TI; Figure 2.6b) show similar pattern as raw accuracy 

on TI. The advantage of passive-active over active was only marginally significant and had a 

small effect size, t(48) = 1.71, p = .09, d = .42. This difference was not reliable at immediate 

posttest, t(48) = .48, p > .20, nor at delayed test, t(48) = 1.47, p = .15. Passive-active was better 

than passive overall, t(48) = 2.14, p = .04, d = .61. This difference was marginally significant but 

with medium effect sizes at immediate posttest, t(48) = 1.99, p = .05, d = .56, and at delayed test, 

t(48) = 1.94, p = .06, d = .55. 
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On trained functions, novel items (TF/NI; Figure 2.7b), unlike raw accuracy, there were 

no reliable condition differences, p’s > .10.  

Interestingly, and unlike raw accuracy, there were marginally reliable condition 

differences on overall untrained functions (UF) fluent accuracy, F(2,72) = 2.44, p = .09, η2
p = 

.06. The passive-active group (M = .40, SD = .08) had higher overall UF score than the active 

group with a medium effect size, t(48) = 2.26, p = .03, d = .66, and marginally higher than the 

passive group with a small effect size, t(48) = 1.75, p = .09, d = .49. There was no difference 

between the active (M = .34, SD = .10) and passive groups (M = .35, SD = .12), p > .20. 

There were no reliable condition differences on combination function (CF) items, p’s > 

.20. 

Progression of Learning 

The active and passive-active conditions did not differ on accuracy during in the training, 

but they differed on overall fluent accuracy, t(48) = 2.01, p = .05, d = .59. Table 2.1 shows the 

mean proportion of accurate and fluent accurate scores on active trials from the active and 

passive-active trainings.  

Table 2.1. Training means by condition. Standard errors are in parentheses. 

By Quartile 

Figure 2.8 shows the mean accuracy and fluent accuracy by quartiles and by blocks. In 

terms of accuracy, the condition differences did not reach statistical significance in a 4 quartile x 

Condition 

Trials  

Completed 

Minutes on 

Training 

Training 

Accuracy 

Training  

Fluent Accuracy 

Active 171.2 (16.2) 31.5 (2.53) .41 (.02) .38 (.02) 

Passive 171.4 (1.2) 51.9 (2.67) -- -- 

Passive-Active 150.0 (13.6) 33.1 (2.67) .45 (.02) .43 (.02) 
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2 condition (active and passive-active) ANOVA, F(1,48) = 2.13, p = .15, η2
p = .04. There was a 

main effect of phase, F(3,144) = 21.34, p < .001, η2
p = .31, reflecting a steady increase in 

accuracies during the training modules. There were similar mean accuracies during the first two 

quartiles, p > .10. This was likely a reflection of the adaptive retirement feature of the modules. 

As soon as the learner reached learning criterion for a particular category, items from that 

category dropped out from the module to focus the remaining training time on the remaining 

categories. This also explained why accuracy on the module did not reach 100%. Accuracy 

improved from the second to the 3rd quartile (M = .38, SD = .11 to M = .45, SD = .15), t(49) = 

3.40, p < .01, d = .53, and from the third to the fourth quartile (M = .53, SD = .16), t(49) = 3.66, p 

< .01, d = .52. There was no quartile x condition interaction, F(3,144) = .63, p > .10, η2
p = .01.  

Fluent accuracy showed the same pattern of accuracy improvements, except that there 

was also a main effect of condition, F(1,48) = 4.10, p < .05, η2
p = .08. The passive-active 

condition (M = .43, SD = .08) tended to have higher fluent accuracy throughout the training than 

the active condition (M = .38, SD = .08).  

By Blocks 

The advantage of the passive-active over active could be seen at block 2 (their first block 

in the active classification portion). This effect had a medium effect size in terms of accuracy, 

t(48) = 2.59, p = .01, d = .73, and a large effect size in terms of fluent accuracy, t(48) = 2.83, p = 

.01, d = .80. 
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Figure 2.8. Mean (a) accuracy and (b) fluent accuracy during the training, by quartiles (top) and 

by blocks (bottom). Error bars are ± 1 standard error. 

 

As a result, the passive-active group took about 20 fewer trials (including both passive 

and active trials) to reach learning criteria (M = 150, SD = 67.94) than the active group (M = 171, 

SD = 81.02). However, this difference did not reach statistical significance, t(48) = 1.00, p > .10. 

These two groups also did not differ on the total training duration, p > .10. The passive training, 

however, took almost 20 minutes longer in the training than the active condition. Each passive 

trial only lasted 14 seconds, but participants in the passive training seemed to take a few seconds 

longer on each trial on average before continuing on to the next trial.   
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Self-Reported Measures 

There were no condition differences on any of the self-reported ratings. Participants 

generally were quite engaged and motivated (M = 5.32, SD = .93), and found the training 

modules to be fairly enjoyable (M = 3.96, SD = 1.49), and helpful (M = 4.11, SD = 1.30). All 

questions were on a 1-6 scale, with 1 being “Not at all”, and 6 being “Very much”. They self-

reported not knowing much about Sine and Exponential functions prior to the study (M = 2.05, 

SD = 1.00) but they were conservative in their rating of their knowledge immediately after the 

study (M = 3.32, SD = 1.22) and a week later (M = 2.55, SD = 1.12). They also did not have 

strong confidence on their performance on the delayed test (M = 3.00, SD = 1.19). 

 

DISCUSSION 

All training conditions produced durable improvements in accuracy and fluency on TI 

and TF/NI, and UF at a delay. Overall, the passive-active condition produced higher training 

efficiency measured both by trials and by time invested than the passive condition. Passive-

active had higher efficiencies than the active training only when they were calculated with TF/NI 

accuracy gain. The active condition was also more efficient than the passive condition on trial 

efficiency when calculated with TI accuracy gain, and on time efficiency. Overall there were no 

differences in accuracy between these two conditions, but those in the passive training tended to 

spend slightly longer on each trial before moving on to the next. It should be noted that there the 

actual viewing duration per trial were similar between active and passive conditions. Each 

passive trial timed out after 14 seconds, at which point the graph was cleared from the screen. 

The benefit of passive-active was particularly robust on overall TI accuracy, and on TF/NI 

accuracy gain (though only at the pre-delayed gain when compared to the active condition).  The 

passive-active group was not reliably more accurate but had greater fluent accuracy than the 
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active condition. Effect sizes for condition differences ranged from medium to large effect sizes. 

There were no condition differences on the enjoyability and helpfulness ratings. One 

possible reason was that for our Amazon Mechanical Turk participants, this study was relatively 

more interesting despite being longer and more cognitively demanding compared to the many 

other surveys they were used to. When asked to leave comments about the study, participants 

across conditions generally thought the study was “difficult but fun and interesting”. 

 

GENERAL DISCUSSION 

The benefits of passive-active training generally held across two very different learning 

domains. In Experiment 1, having just two instances per category shown passively prior to 

undertaking the active classification task dramatically elevated performance during the training 

module and at assessments, particularly on transfer items never seen in the training. The 

advantage of passive-active over just passive training was robust across all measures. Passive-

active training also led to better transfer performance than active. It was also more efficient than 

active when we assumed that pretest variations were due to chance. This advantage of passive-

active training over just active classification and just passive exposure was most apparent at the 

one-week delay. Active also proved to be more efficient than passive when we corrected for 

pretest variations, and to be more effective than passive for transfer to new instances at a delay.  

In Experiment 2, we replicated the benefit of passive-active and active for enhancing 

efficiencies over the passive condition. The difference in overall efficiencies between passive-

active and active was not reliable, except when considered for TF/NI accuracy gains. This is still 

noteworthy, as the ability to transfer what was learned to new instances of the learned categories 

is an important goal for training. In some cases, passive-active showed reliably better learning 

than active, such as on Exponential TI and TF/NI accuracy at a delay.  
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Despite some nuances in our findings, the overall pattern supported the benefit of 

passive-active over passive, and in most cases, passive-active was generally more effective and 

efficient than active, as active was more so than passive in some cases. We concluded that a brief 

passive study as a primer to active classification could be a potent method for improving 

accuracy and efficiency in adaptive perceptual learning. 

Theoretical Implications 

The advantages of passive-active learning have several possible explanations. Consistent 

with work on cognitive load and worked examples (e.g., Renkl et al., 2004), initial 

familiarization with category exemplars may allow relevant structure to be learned without 

imposing the additional task demands of active responding. Moreover, passive and active 

learning may complement each other in focusing attention on within-category similarities and 

between-category contrasts respectively (e.g., Carvalho & Goldstone, 2014). The initial passive 

study provides an opportunity for learners to understand the specific features or relations that 

define each category, which supported the discrimination process in active classification. Other 

specific advantages of passive exposure at the start of learning may include avoiding initial 

errors and persistence of incorrect guesses, as well as averting frustration that may arise in active 

learning from having to guess initially. Taken together, the combination of passive and active 

practice may enhance learners’ ability to pick up on the relevant structures earlier on, so that the 

remaining practice could support improvements in fluency. As a result, passive-active training 

effectively produced changes in perceptual processes needed for durable learning.  In both 

experiments, the benefits of passive-active were found mainly after a long retention interval, 

rather at immediate posttest. A signature perceptual learning effect is little decay over time 

(Kellman et al., 2009). This is consistent with other work showing little decay as a result of 
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perceptual learning (Kellman et al., 2009; Krasne et al., under review). There was very little drop 

after a delay for categories learned fluently. This result provides evidence of the benefits of 

response times in mastery criteria (Mettler, Massey, & Kellman, 2011). It is also similar to other 

studies showing that retention interval has been shown to moderate the benefit of learning 

techniques. For example, practice testing and spacing both have larger effects after longer versus 

shorter retention intervals (for reviews, see Dunlosky, Rawson, Marsh, Nathan, & Willingham, 

2013). 

Both Experiments 1 and 2 showed benefits of passive exposure alone for perceptual 

learning. Because of the nature of the two different learning domains, the design of the passive 

tasks differed. This may have led to differences in what was learned from the passive trials. In 

Experiment 1, aside from the category label, each diagnostic feature was described and marked 

on the ECG. The mark-ups were provided, but the features may not have been apparent 

immediately to the learners, as the benefit of passive-active over active on the active 

classification task did not appear until block 4 in the training. This suggested that only after 

classification practice with multiple instances that participants began to recognize the feature 

variations. In Experiment 2, on the other hand, there were no category labels nor descriptions of 

the category (such as “the graph belongs to the “x-shifting” category because the function was 

shifted to the right by 4 units”). Instead, participants were shown the matching equation (e.g., y = 

sin(x – 4)). This passive task produced an immediate advantage for passive-active at block 2. 

One possibility is the passive trials in this case involved more inferential learning during which 

the learners had to infer for themselves the diagnostic patterns, which effectively enhanced their 

active classification learning later on.  

In both cases, passive exposure proved to be effective to guide attention to the relevant 
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features and relations for effective transfer in some cases as active classification at delayed tests. 

Although the nominal task during learning in the passive condition and the active classification 

test were not identical (i.e., students in the passive group were explicitly told which heart pattern 

was illustrated during learning versus having to classify ECG patterns), the passive learning task 

afforded practice with seeing how the features could be mapped onto aspects of novel traces. 

These findings are consistent with prior work on category learning by observation, that when 

provided with the category label, learners have to infer for themselves the diagnostic features, 

and doing so can enhance the extraction of the particular relational structure, within-category 

correlations (e.g., Yamauchi & Markman, 2000; Chin-Parker & Ross, 2002; Levering & Kurtz, 

2015) that are effective for supporting later classification tasks.  

Active classification in most cases produced higher accuracy gain and efficiency than 

passive exposure. One may argue that this is in accordance to the transfer-appropriate-processing 

framework (Morris, Bransford, and Franks, 1977), such that memory is enhanced to the extent 

that the cognitive processes engaged during the learning overlap with those engaged during the 

assessment task. There is a possibility that the functional overlap between the learning task and 

the final test may have benefited the active and passive-active groups in ways other than 

enhancing the overlap of conceptual processes (e.g., although the particular items included in the 

novel classification task had not been seen earlier, learners in the active group may still have 

benefited from overall familiarity with a task that involved active classifications of examples). 

With that said, other literatures have shown that task overlap per se does not always confer 

benefits for subsequent performance. For example, Karpicke and Blunt (2011) demonstrated that 

retrieval practice was more effective than concept mapping practice for enhancing performance 

on a subsequent concept mapping test, and Paas and Van Merriënboer (1994) demonstrated that 
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studying worked examples of geometry problems was more effective than solving geometry 

problems for enhancing performance on a subsequent problem-solving test. In the current 

experiments, the advantage of passive-active over active was evident, despite participants in both 

conditions have reached the same learning criteria on the classification task, suggesting that what 

was learned was better extraction of relevant information from novel stimuli, rather than mere 

overlap of task requirements. 

Practical Implications 

This work has clear practical implications. Incorporating passive-active training is an 

easily implemented technique that is likely to improve learning technology. It also proved to be 

efficient and enjoyable for learners, especially when compared to the passive training in ECG 

interpretation training. 

One striking finding from Experiment 1 was that the primer had very limited effect on 

learning. The primer was modeled after textbook instruction. It prepared undergraduates to 

benefit from the ECG PALMs, but it was clearly not sufficient for producing highly accurate or 

fluent interpretation of heart patterns (e.g., accuracy levels after the primer averaged around 30% 

(pretest accuracy in Figure 1.5). The common assumption of classroom instruction is if a lecture 

has been delivered clearly, or if an example or two has been worked in detail, then an attentive, 

earnest student should absorb the relevant concepts. Yet, many students year after year seem 

resistant to absorbing the basics of scientific or mathematical concepts, and even fewer can apply 

these productively in problem solving. Recent studies assessing the severity of ECG 

interpretation errors have reported that upwards of 33% of interpretations of medical 

professionals and residents contained errors of major importance in clinical settings (Mele, 2008; 

see also Krasne, Stevens, Kellman & Neimann, under review). These difficulties may seem 
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baffling from the perspective of conventional instruction, but they are understandable (and to be 

expected) from the perspective of perceptual learning. The emphasis in declarative knowledge, 

the stating of facts and concepts, ignoring how experts can classify problems but they often are 

unable to convey their insight in how they solved the problem verbally.  

The learning domains tested here involved complex presentations with many varying 

information, some relevant and some irrelevant. A graph of a function, for example, contains 

crucial information in terms of the shape of a function, scaling, etc. These information may seem 

obvious to a teacher, but a novice does not intuit immediately what are the relevant and 

irrelevant features of the representation. In the case of ECG, consider a cardiologist instructing 

her students on how to distinguish between right bundle branch block and anterior STEMI by 

looking for the elevation in ST segments versus a broad QRS complex. This information can 

guide students to know what features to look for, but doesn’t guarantee that students can see 

them when given a new ECG to consider. These perceptual features require many hours (or even 

months or years) of training to develop (Wood, Batt, Appelboam, Harris & Wilson, 2013; 

Salerno, Alguire, & Waxman, 2003; Mele, 2008), and the ability to fluently recognize them 

when they are relevant requires perceptual training by witnessing systematically varying cases 

(Goldstone, Landy, & Brunel, 2011; Kellman & Massey, 2013). The descriptions from our 

primer did not directly alter the internal workings of perceptual processes, but were nonetheless 

useful for focusing one’s attention on different aspects of a tracing. 

Perceptual learning processes advance when students makes rapid classifications of 

varying instances and receive feedback, especially following some passive exposure to the 

correct classifications. The present results confirm the importance of perceptual learning 
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interventions as a valuable complement to declarative and procedural components of instruction 

(Kellman & Massey, 2013). 

Limitations and Future Directions 

While our results suggest that participants retained a great amount at delayed test, they 

had also forgotten some of what they had learned after a week delay. Accuracy of classification 

at posttests alone, however, may not accurately reflect how much they remembered. It could be 

that participants could well differentiate between the ECG patterns but they had forgotten the 

label associated with each pattern. Future studies can incorporate a matching task at posttests to 

parse apart perceptual learning effects from memory of labels.  

Renkl et al. (2000) suggested that a possible reason why the passive-active group learned 

more is that initial passive trials reduce cognitive load in the beginning of training. While our 

data supports this finding, we did not test another mixed condition where the passive trials take 

place at some other time in the study session, thus our data cannot speak to the benefits of when 

the passive trials happen or how much passive exposure is helpful; just that having a mix is 

better. For example, it is possible that having a mixture of both trial types helps learners encode 

different properties of the categories and if an active-passive group existed no differences would 

be found between that and passive-active. We have not addressed the extent to which the passive 

trials support performance on the active trials. How many passive exposures are optimal, and 

what is the relationship between the optimal number of exposures and the complexity of the 

learning domain? Additional research is needed to further understand and optimally utilize the 

passive-active synergy.  

We have not perfectly controlled for the amount of motor response between the active 

and passive conditions. Active participants made two responses per trial, one to select an answer 
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and another to go to the next trial, whereas the passive participants only made one response per 

trial – to go to the next trial. These two could be equated by having the passive group clicking on 

the correct response. However, the level of engagement and motivation were not self-reported to 

be different between the active and passive condition in either experiments. 

The passive groups in both experiments spent slightly longer time overall in the training 

modules, despite not actually having the information presented longer compared to the active 

groups. This likely reflected the general response to passive exposure training. One way to better 

equate the two conditions in time and trials is to give passive participants the exact same 

sequence and duration per trial as their active yoke. It is unlikely, however, that the pattern of 

results would change.  

Furthermore, ECG interpretation was new learning for all participants, while recognition 

of Sine and Exponential transformations was a refresher for some. Although the literature on the 

expertise-reversal effect has shown a reversal effect occurs when level of prior knowledge 

interacts with the effectiveness of different instructional techniques (Kalyuga, 2007), where 

studying worked examples passively may be more effective than solving problems for novices in 

a domain, but the reverse is true for learners with a moderate amount of problem-solving 

knowledge in the domain (Kalyuga & Sweller, 2004), our result showed that the benefits of 

passive-active training generally held regardless of the level of novelty of the domains. This 

could be because most of our participants did not have high prior knowledge. More research is 

needed to understand whether the combination of passive and active classification produce 

similar learning gains and efficiency when learners already have high prior knowledge. 
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CONCLUSION 

Passive presentations of category exemplars can act synergistically with active adaptive 

learning to elevate perceptual learning, transfer, and retention while decreasing training time. 

These effects were robust across two different complex real-world learning domains. 

  



	
   70	
  

CHAPTER 5  

Contrastive Comparison 

 

INTRODUCTION 

In her seminal book on perceptual learning, Eleanor Gibson (1969) placed particular 

emphasis on the idea that perceptual learning - as the process of differentiation, selection, and 

extraction of information - depends on the opportunity for stimulus comparison. In particular, 

she pointed out that “learning of differential properties should be facilitated by providing 

examples of contrasts along a dimension so as to define and assist isolation of the critical 

variable property” (Gibson, 1969, p. 99). Those differential properties are the distinctive 

features, the “relational contrasts” that distinguish one category of things from another. The 

opportunity to contrast instances that differ in structures should provide a good condition for 

differentiation learning, by allowing the learner to isolate the relevant features for distinguishing 

between things from the irrelevant ones (Gibson, 1969). Indeed, this theory has garnered much 

support in recent years. 

When the features and relations within one stimulus are systematically matched to 

features and relations in the other stimulus (“aligned”), the similarities and differences across 

instances are made salient, allowing learners to pick out the distinguishing features and relations 

that both define a category and separate it from others (e.g., Markman & Gentner, 1997; Gentner 

& Gunn, 2001; Gentner, 2010). This comparison procedure can engage perceptual learning 

processes, leading to discovery of distinguishing features and or structural invariance, and to 

selective and fluent extraction of information in any particular domain (Gibson, 1969; Kellman, 

Massey & Son, 2009). Indeed, providing contrastive representations (i.e., comparing stimuli 
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belonging to different categories) for comparison has been found to help in discrimination 

learning for multiple domains involving perceptual learning such as radiology (e.g., Kok, Bruin, 

Robben, & van Merriënboer, 2012), cytopathology (Evered, Walker, Watt, & Perham, 2013), 

mathematics (e.g., Rittle-Johnson & Star, 2009), and ECG interpretation (Art, Brooks, & Eva, 

2007), as well as in related learning contexts such as analogical reasoning (e.g., Holyoak, 2005; 

Gentner, 1983), category learning (Andrews, Livingston, & Kurtz, 2011; Ankowsky, Vlach, & 

Sandhofer, 2012), and schema acquisition (Gick & Paterson, 1992). 

 This raises an interesting possibility that by aligning the instances to-be-classified with 

another instance for contrast, the juxtaposition may make explicit the relevant information for 

discriminating between categories in PALMs. For example, one may guess that for ECG 

interpretation, the best contrasting example may be a tracing that shows no abnormalities (i.e., a 

normal ECG), so that when the normal features on both the normal tracing and the abnormal 

tracing are aligned to each other, the diagnostic features for abnormality can become the main 

difference between the two tracings. This saliency would influence visual attention and thus may 

make it easier for students to discriminate diagnostic-related information from irrelevant 

information. Alternatively, in graphical transformation learning, allowing students to contrast the 

canonical function with the transformed function may help them recognize the type of 

transformation that had occurred.  

Is training with contrastive comparison always good? There is evidence suggesting that 

the benefit of contrastive comparison is dependent on task specifics such as feature variation and 

category structure (Ankowski, Vlach, & Sandhofer, 2012; Kok, Bruin, Robben, & van 

Merrienboer, 2012), which aspects of problem being compared (Rittle- Johnson & Star, 2009), 

learners’ prior knowledge (Rittle-Johnson, Star, & Durkin, 2009), and experience of pretraining 
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(Braithwaite & Goldstone, 2014). For example, Kok et al. (2012) examined the effectiveness of 

training with and without contrastive examples on participants’ ability to discriminate among 12 

radiological appearances of lung and heart diseases on chest radiographs. They asked half of 

their medical student participants to compare diseased radiographs with images showing no 

abnormalities (normal images), while the other half only compared radiographs of patients with 

the same disease. Students who compared with normal images outperformed those who did not 

compare with normal images, but interestingly, this effect was found only for “focal diseases” 

that require attention to only one part of the image (such as a location of a specific mass or 

lesion) but not for diffuse diseases that require attention to be directed to various parts of the 

image (i.e., because the disease affects most of the chest). It is therefore possible that comparison 

has a stronger effect on discriminating information indicating focal diseases than on 

discriminating information indicating diffuse diseases. As Kok et al. (2012) remarked, “And 

when everything stands out, it does not stand out any more!” Contrastive experience can direct 

attention to the relevant information, making a focal disease standout, but for diffuse diseases, 

the whole image should become more salient. Consequently, attention is not directed to a 

specific location and discrimination of relevant information is not facilitated.  

ECG interpretation is one typical domain in which there is a lot of information available 

and correct diagnoses require attention to multiple parts of the image rather than a specific 

location (Wood, Batt, Appelboam, Harris, & Wilson, 2013). Wood et al. (2013) has shown with 

visual search that expert cardiologists make a global or holistic assessment of the tracing, before 

locating the critical leads and quickly making the diagnosis. Even after they have already located 

the critical leads, they also cross-reference certain segments across leads. For example, they 

cross-referenced ST segments of inferior leads (left side of ECG) with the chest leads (right side 
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of the ECG), presumably to confirm that there were ST elevations compared with other leads and 

to look for reciprocal changes in the other leads. Given this “diffuse” nature of ECG 

interpretation, it is unclear whether comparison of contrastive examples would be effective.  

Furthermore, in ECGs, there are variations in both the relevant and irrelevant leads. 

Ankowski, Vlach and Sandhofer (2012) have shown that the benefit of contrast is limited when 

categories have members that share few common features relevant for category membership and 

have many variations in features that are irrelevant for category membership. It is more effective 

when categories have members with many common features and variation in irrelevant features. 

The rationale was, when examples vary in multiple dimensions – including the diagnostic 

dimensions – they may provide too much overall variation to discover the relevant contrast. 

Detecting the relevant features for categorization may require aligning common features between 

simultaneously view representations (e.g., Gentner, 2005). This may be a difficult task for 

novices; when they view examples that differ in both the relevant target dimensions and in 

irrelevant dimensions, there may be too many similarities and differences to facilitate the type of 

alignment that leads to effective categorization.  

Prior knowledge also plays a role in the effectiveness of contrastive comparisons. 

Contrastive comparisons have been shown to be effective at supporting learning for those with 

moderate prior knowledge (Rittle-Johnson & Star, 2007), but for those with low prior 

knowledge, the benefit is limited. Rittle-Johnson et al. (2009) studied students’ procedural 

knowledge and flexibility in the equation solving task, and found the benefit of simultaneous 

comparison relative to sequential study of the same examples with middle-school students who 

varied in their prior knowledge of algebraic equation, but that students with low prior knowledge 

benefited more from sequential presentations. For those with moderate prior knowledge, one 



	
   74	
  

possible reason for this advantage is the reduced memory constraints as compared to sequential 

presentation. This allows these learners to more effectively compare the two objects and extract 

the relevant information (Andrews, Livingston, & Kurtz, 2011). However, when learners have 

little prior knowledge, it is difficult to align unfamiliar examples because this unfamiliarity 

makes it hard for them to recognize which aspects to which they should attend (Gentner et al., 

2003; Rittle-Johnson et al., 2009; Schwartz & Bransford, 1998).  

Prior to comparing the similarities and differences between examples, the learner also 

needs to interpret each example to understand the importance of similarity and differences 

between examples. For novices, such a task can easily overload their working memory, as they 

must deal with many elements of information at once. In contrast, learners with more experience 

in a domain can use their existing knowledge structures to interpret and complete the task with 

better ease.  Even though these studies by Rittle-Johnson, Star, and colleagues had students 

contrast alternative solution methods for the same problem and compare different problem types 

solved with the same solution method (isomorphic problems) with procedural solving knowledge 

as a goal of learning, similar principles may apply to perceptual classification learning. 

How about when the category structure doesn’t involve as much variations in the relevant 

and irrelevant features? In the math domain, Silva & Kellman (1999, unpublished data) 

manipulated the usage of contrastive instances during training and feedback for learning 

graphical transformations. They gave participants a fixed set of training trials (without learning 

to criterion). In each trial, participants matched graphs with equations that vary in their 

transformations from a canonical trigonometric function. They presented contrastive graphs, in 

which both the canonical function (e.g., y = sin(x)) and the function to-be-classified (e.g., y = 

2sin(x)) were superimposed. In this way, they hoped to highlight the particular pattern 
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transformations relating the basic function to its variants.  

When participants saw contrastive graphs during the learning trials and as feedback, they 

were better than the no-training control group on their ability to transfer their knowledge to 

correctly match complex combination functions like y = cos(x) * log(x) or y = sin(x) – exp(–x) to 

the appropriate graphs.  However, contrastive graphs were not always helpful. Participants who 

studied only with contrastive graphs were not able to transfer their knowledge from one function 

family to another related one (i.e., those who studied Sine and Exponential functions were not 

able to classify Cosine and Logarithmic functions). The learners may become too dependent on 

the graphical exposure of the canonical function to be able to classify its variations. 

Despite some intricacies, Silva & Kellman’s findings suggested that while the 

comparison process can boost learners’ extraction of relevant transformations in the learning set, 

allowing them to flexibly transfer what they learn to more complex situations, there might also 

be a negative effect on transfer when training only with contrastive instances. 

Overview of Experiments 3 and 4 

In Experiments 3 and 4, we began our examination of how we might capture the benefit 

of comparison for discrimination while minimizing participants’ over-reliance on having a 

canonical instance available for contrast. We introduced a training condition in which 

participants received an equal mixture of contrastive and non-contrastive (single) learning 

instances.  

There were some important differences in the way the contrastive experiences were 

presented in these two experiments. In Experiment 3, the contrastive presentation aligned a 

normal ECG half and an abnormal ECG half side-by-side. In Experiment 4, similar to Silva & 

Kellman (1999), the contrastive presentation presented a canonical function superimposed on the 
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same graph with its variant (e.g., y = sin(x) and y = 2sin(x) on the same graph). In Experiment 3, 

Normal was one of the categories to be learned, thus the contrastive normal ECGs varied 

throughout the training. In Experiment 4, the canonical functions were either y = sin(x) or y = 

exp(x) on each trial. These differences were inherent to the learning domain, and they allowed us 

to study the generalizability of the effect of contrastive presentations across domains.  

In both domains, the contrastive presentation may prompt the learner to search for 

similarities and differences that explain how each specific instance diverges from the 

normal/canonical one. If this improves recognition of patterns in the transformations, it should be 

reflected in the transfer measures. However, the effectiveness of the contrastive experience may 

be dependent on the kind of discriminations to be learned and the learners’ prior knowledge. The 

diagnostic features from ECGs are relatively more diffuse, whereas the graphical transformation 

the features are relatively more rule-based. Our ECG participants were novices to ECG 

interpretation, and most of our AlgGeo participants had some prior exposure but had forgotten 

much of the materials. In both experiments, we expected the contrastive-only experiences to be 

relatively less effective for learning than the single and mixed trainings, as the contrastive-only 

training might encourage participants to become over-reliant on the contrastive presentation, 

and/or present too much information to be helpful. The mixed condition, on the other hand, may 

alleviated some of these negative effects, and it may also bring about a change in practice that 

could produce a desirable difficulty for learners (e.g., Bjork, 1994, McDaniel & Butler, 2012) by 

forcing them to engage in deeper processing across training instances. This could make the 

learning process more difficult (and perhaps less efficient) but could thus lead to better learning 

outcomes. Thus, we hypothesized that training with some juxtaposition of learning instances can 

enhance the discovery of salient features to improve structure recognition in transfer situations.  
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Experiment 3 

METHOD 

Participants 

Participants were 122 undergraduates from UCLA who have not had any prior ECG 

training (89 Female, mean age  = 20.69). We analyzed and reported results from 90 of those 

participants who reached learning criteria (64 Female, mean age = 20.45). 

Design 

Participants were randomly assigned into one of three training conditions: single, 

contrastive, and mixed.  

Materials 

We used only ECG halves in this experiment rather than the full 12-lead ECGs. From the 

original 250 ECG traces, there were 250 half-ECGs from the left side of the tracings, and 250 

half-ECGs from the right side of the tracings. This was possible because the heart patterns we 

chose did not require participants to view the entire 12-lead ECG to make a classification. Each 

ECG contained sufficient diagnostic information in either the left half or the right half 

(depending on the particular diagnosis; e.g., the right half for LAD and RAD, left half for 

Anterior STEMI).  

We distinguished between two types of training trials: single and contrastive. The single 

trial contained a single half-ECG and the same 7 answer options as those in Experiment 1. The 

contrastive trial contained 2 half-ECGs (from the same side): a single half-ECG to-be-classified 

and a Normal half-ECG for contrast, and 7 answer options. To indicate which half was which, in 

both trial types, if the to-be-classified ECG was a left half of an ECG (Left-ECG), it always 

appeared on the left side of the screen, and if it was a right half of an ECG (Right-ECG), it 
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always appeared on the right side of the screen. The more informative half for each pattern was 

always used as the to-be-classified ECGs. There was also a pink stripe marking on the left of 

each Left-ECG and on the right of each Right-ECG to indicate which side it originally came 

from. On contrastive trials, the Normal half-ECG always came from the same side of the to-be-

classified half-ECG, so that there were either two Left-ECGs or two Right-ECGs on each 

contrastive trial. The Normal half-ECGs were randomly selected from the Normal category on 

each contrastive trial. Figure 3.1 shows a sample single trial and its feedback, and Figure 3.2 

shows a sample contrastive trial and its feedback. All PALMs used the same pool of ECGs. 

 

Figure 3.1. (a) Sample single trial and (b) its feedback 

 

Figure 3.2. (a) Sample contrastive trial and (b) its feedback 
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Procedure 

The procedure was the same as that used in Experiment 1, except the three different 

training conditions.   

Training 

In the single condition, participants received only single trials. In the contrastive 

condition, participants received only contrastive trials. In the mixed condition, participants 

received an equal mixture of single and contrastive trials. These trials were randomly selected on 

each trial. All three conditions shared the learning criteria as used in Experiment 1 (4/4 

consecutive correct answers for each heart pattern, each under 15 seconds). 

Assessments 

Assessments were the same as those used in Experiment 1.  

Overview of Analyses and Expected Results 

The three groups did not differ on quiz performance or any survey measures. They 

differed slightly in module completion rate (79% of the single group, 75% of the contrastive 

group, and 68% of the mixed group completed within the allotted time). Here we report results 

from the first 30 participants in each condition who have reached learning criterion. The same 

general patterns of results were found when we included all participants who have attempted the 

modules. Appendix F.1 contains results from all participants. All assumptions for ANCOVA 

were met for all dependent variables: (1) independence of the covariate and the treatment effect, 

F’s < 1, p’s > .05; and (2) homogeneity of regression slopes (the correlation between pretest and 

the posttest gains were roughly equal across conditions), F’s < 1, p’s < .05. 

Similar to Experiment 1, because participants were trained toward learning criteria, we 

expected substantial learning gain and retention from all three training conditions. We expected 
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the mixed and single conditions to outperform the contrastive condition on transfer, and as for 

the difference between mixed and single conditions, if there are advantages to having 50% 

contrastive trials, then the mixed condition should enhance learning and retention better than the 

single condition. Along the same line, in terms of efficiencies, if contrastive displays make it 

easier for learners to recognize relevancies, those in the contrastive and mixed conditions should 

complete the module faster than those in the single condition. However, the mixed presentations 

could introduce a desirable difficulty, so that learners might require more time or effort in the 

mixed condition, but may acquire the biggest gain in transfer scores. 

An alternative possibility was that the contrastive displays pose a cognitive load issue for 

novices, which may eliminate the benefit of contrastive comparisons. If this were the case, we 

would expect the single condition to outperform the contrastive and mixed conditions on all 

measures.  

 

RESULTS 

Efficiency 

Figure 3.3a shows the efficiencies as computed by trials and Figure 3.3b as computed by 

time. The single and mixed conditions outperformed the contrastive condition on both measures 

of efficiency. This observation was confirmed by the analyses. 

 Efficiency by Trials 

A 2 phase (pre-post, pre-delayed) x 3 conditions (single, contrastive, mixed) ANCOVA 

with pretest accuracy as the covariate showed a marginally significant phase x condition 

interaction, F(2,86) = 2.39, p = .097, η2
p = .05. There were no condition differences on pre-post 

efficiency, but on pre-delayed efficiency, the single (M = .0023, SD = .0021) and mixed (M = 
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.0017, SD = .0014) conditions produced greater and marginally greater efficiency than the 

contrastive condition with medium effect sizes (M = .0009, SD = .0018), t(58) = 2.84, p = .006, d 

= .73, and t(58) = 1.97, p = .05, d = .51, respectively. The single and mixed conditions did not 

differ on pre-post trial efficiency, t(58) = 1.52, p = .13, or on pre-delayed trial efficiency, t(58) = 

1.33, p = .19. There were no other condition differences, and no main effect of phase, p’s > .10.  

There was a main effect of the covariate on time efficiencies, F(1,86) = 8.71, p = .004, 

η2
p = .09. Pretest accuracy did not correlate with the pre-post trial efficiency, r(90) = -.16, p = 

.15, but it did correlate strongly with the pre-delayed trial efficiency, r(90) = -.49, p < .001. The 

same pattern of condition differences was found when analyzed without correcting for pretest 

variations. 

  

Figure 3.3. Training efficiencies (a) by trial and (b) by time. Error bars are ± 1 standard error. 
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Efficiency by Time 

Efficiency by time showed identical patterns.  While there was no differences among 

condition on pre-post efficiency, both the single (M = .008, SD = .007) and mixed (M = .006, SD 

= .005) conditions produced greater pre-delayed efficiency than the contrastive condition (M = 

.003, SD = .006) with medium effect sizes, t(58) = 3.11, p = .003, d = .80, and t(58) = 2.34, p = 

.02, d = .60, respectively. The single and mixed conditions did not differ on pre-delayed time 

efficiency, t(58) = 1.16, p = .25. 

 

Accuracy 

Figure 3.4a shows accuracy by condition. All three conditions produced strong learning 

gains and transfer to novel instances at immediate posttest, and long-term retention seen at a one-

week delay, F(2,174) = 141.13, p < .001, η2
p = .62. Across all conditions, immediate posttest 

accuracy (M = .60, SD = .15) and delayed test accuracy (M = .47, SD = .15) were significantly 

greater than pretest with very large and large effect sizes (M = .29, SD = .14), t(89) = 16.25, p < 

.001, d = 2.17, and t(58) = 8.92, p < .001, d = 1.23, respectively. The drop from immediate 

posttest to delayed test was also statistically significant, t(89) = 7.22, p < .001, d = .87.  

Accuracy results shared the same pattern of condition differences as efficiency. The 

single and the mixed conditions produced overall better retention after the delay than the 

contrastive condition, F(4,174) = 3.75, p =.006, η2
p = .08. At pretest and immediate posttest, 

there were no differences across conditions (mean ranged .27 – 32 at pretest, and .58 - .62 at 

immediate posttest), t(58) < 1.1, p’s > .20. However, at delayed test, the single condition (M = 

.52, SD = .13) outperformed the contrastive condition with a medium effect size (M = .41, SD = 

.18), t(58) = 2.79, p = .007, d = .70. The mixed condition (M = .49, SD = .13) also performed 

marginally higher than the contrastive condition at delayed test, also with a medium effect size, 
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t(58) = 1.97, p = .05, d = .51. Single and mixed did not differ at delayed test, t(58) < 1, p > .20. 

There was no other effect, p’s > .10.  

 

Figure 3.4. (a) accuracy and (b) fluent accuracy in Experiment 3.  

Error bars are ± 1 standard error. 

Accuracy Gain 

Accuracy gain showed the same pattern. There were no condition differences in pre-post 

gain, t(58) < 1.1, p > .20, but both the single (M = .25, SD = .18) and mixed (M = .21, SD = .16) 

conditions produced significantly greater pre-delayed gain than the contrastive condition with 

medium to large effect sizes (M = .09, SD = .21), t(58) = 3.13, p = .003, d = .82, and t(58) = 2.39, 

p = .02, d = .64, respectively. Single and mixed did not differ on pre-delayed test gain, t(58) < 1, 

p > .20.  

Fluency 

Figure 3.4b shows the mean fluent accuracy by condition. The pattern was similar to that 

of accuracy, with the exception that the mixed condition was not reliably better than the 
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contrastive condition at delayed test, t(58) = 1.40, p = .17. The single condition had higher fluent 

accuracy than the contrastive condition at delayed test, t(58) = 2.08, p = .04, d = .51. In terms of 

pre-delayed fluency gain, both of the single and mixed conditions were reliably better than 

contrastive with medium effect sizes, t(58) = 2.72, p = .009, d = .70, and t(58) = 2.20, p = .032, d 

= .62, respectively. The single and mixed conditions did not differ on any fluency measures, t(58) 

< 1, p > .20. There were no condition differences in RTc, p’s > .10. Appendix F.2 contains more 

details of these analyses. 

 

Progression of Learning 

Table 3.1 displays the training means by conditions. There were no reliable differences 

between conditions on the number of trials and amount of time spent on the training module, nor 

on accuracy and fluent accuracy (p’s > .10). Thus, differences on efficiency were driven by 

differences in accuracy gain.  

 

Conditions 

Trials 

Completed 

Minutes on 

Training 

Training 

Accuracy 

Training Fluent 

Accuracy Training RTc 

Single 136.0 (10.58) 36.8 (2.42) .57 (.02) .52 (.02) 7.85 (.37) 

Contrastive 139.9 (10.42) 36.8 (13.61) .56 (.02) .49 (.02) 8.95 (.39) 

Mixed 141.0 (9.06) 39.6 (2.61) .54 (.02) .49 (.02) 8.40 (.34) 

    - Single trials 70.3 (4.69)  .55 (.02) .51 (.02) 7.57 (.31) 

    - Contrastive trials 70.7 (4.66)  .53 (.02) .46 (.01) 9.28 (.40) 

Table 3.1. Training means by condition (standard errors in parentheses). Performance on single 

and contrastive trials in the mixed condition are shown separately. 
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Interestingly, however, there were significant differences in RTc between the contrastive 

and single training trials (Figure 3.5). A 4 quartile x 3 condition on RTc confirmed a marginally 

significant main effect of condition, F(2,87) = 2.74, p = .07, η2
p = .06. The contrastive condition 

spent about a second longer per correct trial on average (M = 8.87 seconds, SD = 2.12) than the 

single condition (M = 7.72 seconds, SD = 2.00), t(58) = 2.15, p = .04, d = .56. This was 

consistent across the first three quartiles. At the 1st quartile, contrastive condition took 11.50 

seconds on average (SD = 3.04) for each correct answer compared to the single condition taking 

9.6 seconds (SD = 2.92), t(58) = 2.43, p = .02, d = .64. This was apparent at the first two blocks 

of the training with medium effect sizes, t(56) = 2.35, p = .02, d = .62, and t(58) = 2.07, p = .04, 

d = .548. This RTc difference between the contrastive and single condition were marginally 

significant throughout the 2nd and 3rd quartiles with a medium effect size, t(58) = 1.94, p = .06, d 

= .50, and t(58) = 2.05, p = .05, d = .53, respectively, and did not persist in the last quartile of the 

training, t(58) = 1.23, p > .10.    

The mixed group provided a within-subject comparison, and indeed, they also spent 

longer to get each question correctly on contrastive trials (M = 9.28 seconds, SD = 2.21) than on 

single trials on average (M = 7.57 seconds, SD = 1.71), t(29) = 7.49, p < .001, d = .87. The 

difference in processing time was small and marginally significant in the 1st quartile (11.16 

seconds on contrastive trials vs. 9.91 seconds on single trials), t(29) = 1.96, p = .06, d = .40, but 

was larger and persisted throughout the later 3 quartiles with medium to large effect sizes, t(29) 

> 4.81, p < .001, d = .66 to .92. 

The mixed group took similar amount of time on correct contrastive trials as the 

contrastive group and similar amount of time on correct single trials as the single group, p’s > 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 Note the difference in degrees of freedom. This was because at block 1, there were participants who did not any 

questions correctly. 
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.10. The contrastive condition did not differ from the mixed condition and the mixed condition 

did not differ from the single condition on overall RTc, p’s > .10. 

 

Figure 3.5. RTc by training quartiles. Error bars are ± 1 standard error. 

 

Survey Data 

Interestingly, participants seemed to favor the contrastive experiences. One-way 

ANOVAs9 confirmed a main effect of condition on enjoyability ratings, F(2,86) = 3.78, p = .03. 

The mixed (M = 4.38, SD = 1.18) and contrastive (M = 4.37, SD = 1.22) conditions were 

considered to be significantly more enjoyable than the single condition (M = 3.57, SD = 1.50) 

with medium effect sizes, t(57) = 2.31, p = .02, d = .59, and t(58) = 2.27, p = .03, d = .60. There 

were no differences between the contrastive and mixed conditions, p > .10.  

Participants in the mixed condition (M = 4.45, SD = 1.18) and the contrastive condition 

rated the primer to be more helpful than those in the single condition (M = 3.60, SD = 1.40), 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 Survey data from one participant in the mixed condition was not recorded properly, so the following analyses were 
conducted with 89 participants. 
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t(57) = 2.51, p < .02, d = .66, and t(57) = 1.89, p = .06 (marginal), d = .48, respectively. The 

mixed group (M = 5.10, SD = .92) also rated their module to be marginally more helpful than the 

single group (M = 4.70, SD = 1.51), t(57) = 1.94, p = .06, d = .50, and themselves to be 

marginally more engaged and motivated in the training (M = 4.90, SD = 1.15), than the single 

group (M = 4.30, SD = 1.54), t(57) = 1.69, p = .096, d = .44. These differences had small to 

medium effect sizes. The contrastive group did not differ from the other two on these survey 

responses, p’s > .10. 

On a metacognitive survey question, we described the condition manipulation and asked 

participants to predict the posttest performance among conditions. Interestingly, most 

participants (43.3%, or 39 of the 90 participants) and more than half of the single group (16/30) 

chose the contrastive training. 22.2% (20 out of 90) chose the mixed condition, and another 

22.2% chose the single condition, and the remaining 12.2% (11 out of 90) thought all three 

conditions would be equally effective. The three groups did not differ on any other self-rating 

measures, p’s > .10. 

 

DISCUSSION 

The three conditions produced equal learning gains and efficiencies at immediate 

posttest, but the single and mixed conditions produced better performance than the contrastive 

condition at delayed test.   

Prior research suggested that contrasting examples with the normal/canonical patterns 

should help learners discriminate diagnostic features from irrelevant features (Gentner & Gunn, 

2001), resulting in better mental representation of the diagnostic category. Notably, however, 

training with only contrastive examples proved to be a disadvantage in this study. Although the 

contrastive condition did equally well as the single and mixed conditions at immediate posttest, 
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its disadvantage was prominent at delayed test, when the contrastive group experienced more 

forgetting.  

Interestingly, during the training, participants in the contrastive condition needed more 

time to reach the correct answers. Those in the mixed condition also took longer on contrastive 

trials than single trials. A positive interpretation of this result might be that contrasts facilitated 

additional processing and enhanced learning. However, the learning data do not support this 

interpretation. A less positive account is that contrastive trials may have provided too much 

information on the screen to be useful. Participants may not have tried to compare and contrast 

as much as we had expected them to. Indeed, participants have spontaneously reported that they 

did not paying attention to the Normal ECG after some time into the module. Because the ECG 

halves appeared on different sides of the screen depending on the relevant features they 

contained, the extra second needed on contrastive trials may simply to figure out which ECG 

was to be classified and which was the Normal ECG, not to scan across the images to find 

similarities and differences. This may have been the case for most participants, as supported by 

similar response times on correct answers in the last training quartile compared to the single 

condition. This suggested that while the contrastive trials provided more information to be 

processed, it was not necessarily engaging learners in a way that would be helpful for retention. 

The mixed condition did not show a learning advantage over the single condition.  

ECG interpretation is a typical domain in which novices tend to attend to information 

based on conspicuity than on relevance, even if this conspicuous information is not relevant 

(Wood et al., 2013). The disadvantage of the contrastive condition is consistent with the finding 

from Kok et al. (2013), which suggested that for domains like ECG in which the relevant 

information is “diffuse” throughout the image and there are likely too many similarities and 
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differences that may be difficult for novices to parse.  In these instances, comparisons of 

contrasts are unlikely to be helpful (Kok et al., 2013). Furthermore, our participants had low 

prior knowledge of ECG - even after the primer, they averaged less than 30% at pretest. With 

little prior knowledge, it could have been difficult for them to know what to look for, where and 

how to look for them (Gentner, Loewenstein, & Thompson, 2003; Rittle-Johnson, Star, & 

Durkin, 2009; Schwartz & Bransford, 1998). Thus, comparison may be too overwhelming to 

significantly improve learning. This finding is also consistent with findings from the classic 

research on aptitude–treatment interactions (Snow, 1992) and more recent research on expertise 

reversal effects (see Kalyuga, 2007, for a review), which suggested that students with low prior 

knowledge benefited more from sequential presentations (that were similar to that seen in the 

single condition, Rittle-Johnson et al., 2009).  

The single and mixed conditions did not differ reliably on any measures, except that 

participants in the mixed condition rated their training experiences to be more enjoyable, 

engaging, and the module to be more helpful than the single condition. Mixing the two trial types 

may not have led to better accuracy or efficiency at a delay than the single condition, but the 

combination of trial types (or perhaps the presence of the contrastive trials) produced enough 

variation that allowed the training to be perceived as more enjoyable, engaging, and helpful. In 

general, participants preferred having the contrastive training experience and thought that it was 

marginally more enjoyable for learning than the single training, yet, our findings showed that 

having only contrastive trials comparisons was damaging for learning. This is consistent with 

research on metacognitive illusions of learning (e.g., Bjork 1994; Castel, McCabe, & Roediger, 

2007).  
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Experiment 4 

In this experiment, we asked, do the same disadvantages of contrastive comparisons apply to 

graphical transformation learning? 

METHOD 

Participants 

 72 Amazon Mechanical Turk workers (38 Female, mean age = 31.81, SD = 9.42) 

completed all parts of the study for monetary compensation. The eligibility requirements were 

identical to that used in Experiment 2. Please see Appendix G for more demographic information. 

Design  

Participants were randomly assigned into one of three training modules based on their 

pretest accuracy (similar to Experiment 2). The three training modules were identical in every 

way except for the type of graphs shown on each trial: (1) only single graphs, (2) only 

contrastive graphs, and (2) a random equal mixture of the two (mixed).  

Materials 

Training 

 Graphs were presented either as simple or as contrastive displays. The simple version of 

the graph consisted of just to-be-classified function, such as y = sin(2x), displayed as a thick blue 

line. Each contrastive graph contained both the to-be-classified function (i.e., y = sin(2x)), 

displayed as a thick blue line, and the canonical function (i.e., y = sin(x)), displayed as a 

superimposed dotted gray line. Figures 4.1a and b show a sample contrastive trial and its 

feedback. Contrastive graphs were used as feedback on single trials. 
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Figure 4.1. (a) Sample contrastive trial and (b) its feedback.  

 

There were two other changes to the materials used in Experiment 2: (1) We added more 

graphs to equate the variations among categories so that there were 9 examples per 

transformation subtype, creating a total of 144 single graphs and 144 contrastive graphs; (2) 

Each learning trial in these modules contained a graph and 8 answer choices representing 8 

transformation subtypes for each function family (rather than just 4 answer choices). This was to 

better estimate participants’ ability to discriminate between the different transformation 

subtypes. 

Assessments 

The assessment questions were the same sets of 28 questions as those used in Experiment 

2. However, unlike Experiment 2, the trained items (TI), trained fuctions, novel items (TF/NI), 
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and untrained function (UF) items presented 8 answer choices. The combination function (CF) 

items remained the same as used in Experiment 2 with 4 answer choices each.  

Procedure 

The procedure was identical to those used in Experiment 2. 

In the single module, each trial presented a single graph and 8 answer choices. After each 

response, the graph is replaced with its contrastive version. In the contrastive module, each trial 

presented a contrastive graph, including those used as feedback. In the mixed module, trials 

containing simple and contrastive graphs were randomly interleaved, and the feedback always 

showed the contrastive version. All participants learned toward the same learning criteria (3/3 

correct per transformation type, each in under 15 seconds). 

Overview of Analysis and Expected Results 

Similar with Experiment 2, we only collected and analyzed data from participants who 

have completed all phases of the study (N = 24 per condition), all of whom did not experience 

technical difficulties and did not self-report to have looked up the materials at any point during 

the study. There were 16 others in the single condition, 18 in the contrastive condition, and 24 in 

the mixed condition who started their PALM but dropped out during the module. 

We expected the same results as those in Experiment 3. Specifically, we expected the 

single and mixed conditions to perform better than the contrastive condition. We also expected to 

replicate findings from Silva & Kellman (1999) that contrastive practice may reduce transfer 

performance on certain types of transfer classifications. The mixed condition, on the other hand, 

may provide the benefits of contrastive experience while preventing learners from becoming 

over-reliant on always having the canonical function available for contrast (as seen earlier with 

Silva & Kellman, unpublished data). Therefore, the mixed condition could produce robust gains 
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on both near and remote transfer test items when compared to participants in the contrastive 

condition.  

 

RESULTS 

Efficiency 

Efficiency by Trial 

Figure 4.2a displays the overall trial efficiency by condition. The contrastive condition 

had numerically lower trial efficiencies than the single and mixed conditions, but the differences 

were not statistically significant, t(58) = 1.49, p = .14 and t(58) = 1.45, p = .15, respectively. 

There were no other reliable condition differences on the overall trial efficiency, t(58) < 1, p’s > 

.20.  

By Assessment Item Types 

When calculated with accuracy gain on trained items (TI), the only notable condition 

effect was that the single condition’s pre-delayed TI efficiency was marginally higher than that 

of the contrastive condition (M = .0013, SD = .0016 vs. M = .0006, SD = .0011, respectively), 

t(46) = 1.66, p = .10, d = .48. Also, when calculated with accuracy gain on untrained functions 

(UF), the single condition was marginally more efficient than the contrastive condition (M = 

.0010, SD = .0014 vs. M = .0002, SD = .0013, t(46) = 2.00, p = .05, d = .58). There were no other 

condition differences on other item type, t(58) < 1.3, p’s > .20. 

Efficiency by Time 

Figure 4.2b displays the time efficiency by condition. Time efficiency showed a slightly 

different pattern, but there were no reliable condition differences, except when considered with 

novel items of trained functions (TF/NI) accuracy. In terms of TF/NI time efficiency, the mixed 

condition (M = .0015, SD = .0014) did better than the single condition (M = .0012, SD = .0015) 
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with a small effect size, t(46) = 2.06, p < .05, d = .47. There were no other condition differences, 

p’s > .10. Appendix H contains more detailed analyses. 

 

Figure 4.2. Efficiency (a) by trial and (b) by time for all items. Error bars are ± 1 standard error. 

 

Accuracy 

All Items 

Figure 4.3a shows the mean overall accuracy on the assessments by condition. There was 

a main effect of phase, F(2,138) = 78.04, p < .001, η2
p = .53. Across conditions, participants 

showed robust improvements on all items from pretest to immediate posttest (21% to 39%), t(71) 

= 10.52, p < .001, d = 1.51, and from pretest to delayed test (21% to 36%), t(71) = 9.12, p < .001, 

d = 1.21. There was a small 3% drop between immediate posttest and delayed test, t(71) = 2.38, 

p < .05, d = .22. The gain between pretest and delayed test was reliable for all item types (see 

Appendix H for more details of these analyses). 
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Figure 4.3. Mean (a) accuracy and (b) fluent accuracy on all assessment items.  

Error bars are ± 1 standard error. 

 

There were no main effect of condition and no phase x condition interaction, p’s > .10. 

Our planned comparisons, however, confirmed that at immediate posttest, the single (M = .41, 

SD = .13) and mixed groups (M = .42, SD = .15) scored marginally higher than the contrastive 

group (M = .35, SD = .14) with small-medium effect sizes, t(46) = 1.77, p = .08, d = .51, and 

t(46) = 1.71, p = .10, d = .49, respectively. At delayed test, single also had marginally higher 

accuracy (M = .39, SD = .13) than contrastive (M = .33, SD = .11), t(46) = 1.67, p = .10, d = .48, 

but the effect was small. There were no other differences across conditions, p’s > .10. Accuracy 

gain confirmed the same patterns.  
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By Assessment Item Types 

Figure 4.4a shows the average trained items (TI) accuracy by condition. On TI, there was 

a marginal main effect of condition, F(2,69) = 2.81, p = .07, η2
p = .08, with the single condition 

doing better overall than the contrastive condition, t(46) = 2.36, p = .02, d = .68. This was driven 

by condition differences on Sine TI, t(46) = 2.38, p < .05, d = .68, less so on Exponential TI 

items, p > .10. There were no other condition differences, p’s > .10. However, all three 

conditions showed robust improvements from pretest to immediate posttest, and from pretest to 

delayed test on TI, ranging from medium to very large effect sizes, t(23) > 3.31, p’s < .001, d = 

.68 to 1.72. A summary of these analyses is shown in Table H.1 in Appendix H.  

 

Figure 4.4. Mean (a) accuracy and (b) fluent accuracy on Trained Items.  

Error bars are ± 1 standard error. 

Figure 4.5a shows the mean accuracy on novel items of trained functions (TF/NI) by 

condition. At immediate posttest, the mixed condition (M = .48, SD = .19) did marginally better 
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than the contrastive condition with a small effect size (M = .38, SD = .19), t(46) = 1.91, p = .06, 

d = .47, but not at delayed test, p > .10. All three conditions showed strong learning gains from 

pretest to immediate posttest, and from pretest to delayed test, with medium to very large effect 

sizes, t(23) > 3.15, p < .01, d = .64 to 1.42. This was driven by condition differences on 

Exponential TF/NI; at immediate posttest, both the mixed and single conditions outperformed the 

contrastive condition with medium effect sizes, t(46) = 2.29, p = .03, d = .66, and t(46) = 2.62, p 

= .01, d = .76, respectively. However, there were no condition differences at delayed test, and no 

other condition differences, t(46) < 1, p’s > .20. On Sine TF/NI, the mixed condition had 

numerically higher delayed test means than both the contrastive and single at immediate posttest 

and delayed test, but the differences were not reliable, t(46) < 1, p > .20 at immediate posttest, 

and t(46) < 1.6, p’s = .12 at delayed test. Figure 4.6 shows the mean accuracy on Exponential 

TF/NI and on Sine TF/NI items.  

 

Figure 4.5. Mean (a) accuracy and (b) fluent accuracy on Trained Functions, Novel Items.  

Error bars are ± 1 standard error. 
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Figure 4.6. Mean accuracy on (a) Exponential TF/NI and (b) Sine TF/NI items.  

Error bars are ± 1 standard error.  

 

Figure 4.7a shows the average untrained functions (UF) accuracy by condition. On UF 

items, the single condition exhibited marginally higher learning gain than the contrastive 

condition with medium effect size, t(46) = 1.98, p = .05, d = .52. Interestingly, the single and 

mixed conditions showed reliable pre-post and pre-delayed improvements on UF accuracy with 

medium to large effect sizes, but the contrastive condition did not (pre-post: single: t(23) = 3.84, 

p < .01, d = .99; mixed: t(23) = 3.18, p < .01, d = .95; contrastive: t(23) = 1.62, p = .12; Pre-

delayed: single: t(23) = 4.74, p < .001, d = 1.09; mixed: t(23) = 1.90, p = .07, d = .55; 

contrastive: t(23) = 1.59, p = .13).  
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Figure 4.7. Mean (a) accuracy and (b) fluency on Untrained Functions. 

Error bars are ± 1 standard error. 

 

 Figure 4.8. Mean (a) accuracy and (b) fluent accuracy on Combination Functions.  

Error bars are ± 1 standard error. 
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 Figure 4.8a shows the average combination functions (CF) accuracy by condition. There 

were no condition differences on CF, p’s > .10. Interestingly, the mixed condition was the only 

condition with marginal improvement from pretest to immediate posttest, t(23) = 1.99, p = .06, d 

= .39, and significant improvement from pretest to delayed test with medium effect sizes, t(23) = 

2.50, p = .02, d = .67. Appendix H contains more details of these analyses. 

 

Fluency 

Figure 4.3b shows the mean fluent accuracy on all assessment items. Similar to accuracy 

results, the single condition did better than the contrastive condition overall with a medium 

effect size, t(46) = 2.14, p = .04, d = .62. The mixed condition also did marginally better than the 

contrastive condition, but the difference was of a small effect size, t(46) = 1.66, p = .10, d = .48.  

Figures 4.4b, 4.5b, 4.7b, and 4.8b show the fluent accuracy on each assessment item 

type. In terms of fluent accuracy by item types, the only condition difference was on TI, when 

the single condition reliably perform better overall than the contrastive condition with a medium 

effect size, t(46) = 2.16, p = .04, d = .62. More details of these analyses are in Appendix H. 

 

Progression of Learning 

Table 4.1 shows the training performance by condition. The mixed group spent about 11 

less minutes than the single group on the training, but there were no reliable condition 

differences on the total time spent on the training, nor on the number of learning trials, p’s > .10. 

There was no condition differences on training accuracy, F(2,69) = 4.14, p = .02, η2
p = 

.11, but there was a marginal main effect of condition on training RTc, F(2,69) = 2.53, p = .09, 

η2
p = .07. Figure 4.9 shows the average RTc by training quartiles. Both the contrastive and single 

groups tended to take about a second longer to get each question correctly than the mixed group, 
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t(46) = 2.21, p = .03, d = .64, and t(46) = 1.85, p = .07, d = .54, respectively. The difference 

between the single and mixed conditions was marginally significant, and these differences were 

just about 1-2 seconds long, but both had medium effect sizes. The difference between the 

contrastive group and the mixed group appeared in the first two quartiles into the training, t(46) = 

2.22, p = .03, d = .67, and t(46) = 2.34, p = .02, d = .64, but not during the latter two quartiles. 

The single group, on the other hand, started with similar RTc as the mixed group but ended up 

taking marginally longer on the 3rd quartile and significantly longer on the 4th quartile, both 

with medium effect sizes, t(46) = 1.77, p = .08, d = .51, t(46) = 2.10, p = .04, d = .61, 

respectively. This was generally true even when we compared RTc by trial type (i.e., compare 

just contrastive trials of the mixed group with the contrastive group). The contrastive and single 

conditions did not differ on RTc on any quartiles, p’s > .10. 

There were no condition differences on fluent accuracies during the training, F(2,69) = 

.54, p > .10. Within the mixed condition, there were no differences in raw accuracy, RTc, nor 

fluent accuracy among the contrastive and single trials, p’s > .10.  

Table 4.1. Training means across conditions. Standard errors are in parentheses. 

 

Condition Total Trials 

Minutes on 

Training 

Training 

Accuracy 

Training 

RTc 

Training 

Fluency 

Single  260.33 (26.13) 59.96 (6.05) 0.32 (.02) 6.39 (.49) .30 (.02) 

Contrastive  248.92 (29.56) 53.08 (10.08) 0.34 (.02) 6.66 (.52) .32 (.02) 

Mixed 211.21 (18.62) 48.83 (6.11) 0.31 (.02) 5.29 (.34) .30 (.02) 

- Single 124.96 (15.07)  0.32 (.02) 5.32 (.31) .31 (.02) 

- Contrastive 126.67 (14.88)  0.31 (.02) 5.29 (.37) .30 (.02) 
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Figure 4.9. Mean RTc by training quartiles. Error bars are ± 1 standard error. 

 

Survey Questions 

There were no condition differences on any of the survey responses, p’s > .10. In general, 

participants found the training modules to be moderately enjoyable (M = 3.28, SD = .63) and 

helpful (M = 3.42, SD = 1.47). They reported to be quite motivated and engaged in the study (M 

= 5.17, SD = 1.08). On the metacognitive questions, on a scale from 1-6 (1 = “not at all”, 6 = 

“very well”), they rated their prior knowledge of Sine and Exponential functions to be 1.93 (SD 

= .95) before the training and 3.17 (SD = 1.13) after the training, and 2.22 (SD = 1.15) at delayed 

test. On the same scale, we asked, “How much do you think you will remember a week from 

now”, participants predicted that they would forget a lot of the materials learned, giving an 

average rating of 2.69 (SD = 1.13). They also judged the delayed test to be difficult (M = 5.22, 

SD = .91), but that they were highly motivated to do well (M = 5.35, SD = .91). 
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Interestingly, participants generally did not do well on description items at both 

immediate posttest and delayed test, in which we asked them to choose from a set of 8 possible 

answers, to describe the transformation shown in 4 equations. At immediate posttest, they scored 

an average of 35% correct (SD = 26%, or 1.42 questions correctly out of 4), and at delayed test 

30% correct (SD = 23%, or 1.19 questions correctly out of 4).   

 

DISCUSSION 

Experiment 4 further confirmed the idea that a brief period of training designed to foster 

perceptual learning can improve learners’ abilities to classify graphs of mathematical functions. 

Participants were better at the end of training than at the beginning, and this improvement 

transferred to new instances of familiar and unfamiliar function families. Transfer to new 

instances was, once more, evidence for the fact that learning in this task was not about 

memorization of exemplars during training. PALMs in general promoted better extraction of 

patterns and transformations that can be applied to new function families. 

The three conditions did not differ on overall training efficiency, but when considered by 

item type, the single condition was more efficient than the contrastive condition on TI (marginal) 

and UF trial efficiencies. The mixed condition was better than the contrastive condition on TF/NI 

time efficiency. These differences had small to medium effect sizes.  

In terms of accuracy, the single condition was reliably better than the contrastive 

condition on overall accuracy gain. This held for TI, and marginally so on Exponential TF/NI 

and UF accuracy gain.  The mixed condition in some cases also did better than the contrastive 

condition, reliably so only at posttests when all items were combined and separately on TF/NI 

immediate posttest. There were no reliable accuracy differences between the single and the 

mixed conditions.  
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The condition differences were sparse in terms of fluency. The only reliable differences 

on fluent accuracy were between the single and the contrastive conditions on the overall fluent 

accuracy gain and on overall TI fluent accuracy gain (marginally so on average TI fluent 

accuracy gain). The mixed condition was marginally better than the contrastive condition on 

overall fluent accuracy gain.  

The single and mixed conditions led to transfer to untrained functions, but the contrastive 

condition did not, and the mixed condition was the only one that led to transfer to combination 

functions. Taken together, despite the nuances in the results, we can conclude that in general, the 

contrastive condition was not as effective as the other two conditions for transfer. It was also less 

efficient in some cases than the single condition. The mixed condition produced similar transfer 

and retention as the single on transfer and retention, but in some cases had better time efficiency. 

The disadvantage of training with only contrastive examples was apparent immediately 

after the training. Even though they expected to be tested on graphs without the canonical 

function present, the exclusive and constant use of these graphs, which contained both the 

canonical function and its variation, may have led participants to develop a different learning 

and/or performing strategy. It was possible that these participants were learning to classify 

graphs based almost exclusively on a comparison between the basic function and its variation, 

rather than based on aspects of the to-be-classified function by itself. That is, they may have 

developed a strategy of classifying y = sin(2x) based on how it related to y = sin(x) rather than 

based on other important aspects of the to-be-classified function (i.e., the point where the 

function intersects the axes). As a result, they became dependent on the graphical exposure of the 

canonical function to be able to classify its variations. This theory is consistent with participants’ 
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self-reports10, that they used the “reference line” during the training, but felt lost without it 

during the posttests. For example, one contrastive participant wrote “During the training I 

learned how to compare the two lines and I finally noticed some sort of pattern when I compared 

the lines. The posttest was hard because I didn't have the dotted line to compare it to, so I felt 

like I was guessing a lot more.” It seems, then, that the contrastive graphs may be more useful 

when given as feedback only (single condition), and may make participants too dependent on 

them when used during the active classification task as well (contrastive condition). 

Furthermore, the contrastive group was still able to improve on TI and TF/NI items, but 

not UF items. This finding replicated results from Silva & Kellman (1999, unpublished data), in 

which they provided participants with either contrastive graphs as both the to-be-classified graph 

and the feedback (same as our contrastive condition) or single graphs as the to-be-classified 

graph and contrastive graphs as feedback (same as our single condition). They found that overall, 

training with contrastive graphs fostered learning on trained functions but not to untrained 

functions. Even though the canonical functions were not presented in the TI and TF/NI 

assessment items, by the time subjects received this posttest they already had a very strongly 

activated representation of the studied canonical functions. Thus, they could probably rely on 

their memory representations of the familiar basic functions to perform in the TF/NI. This 

strategy could not be used in the UF because the unfamiliar canonical functions were not seen 

during training, and consequently subjects did not develop strong active memory representations 

of them.  

Remarkably, the mixed condition was the only condition with successful transfer to all 

item types, including the CF items. CF items involve two function families combined in each 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 In response to “What were your strategies during the training? Are they different from your strategies in the 

posttest? If so, how?” 
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graph, which must be compared and integrated if they are to be correctly classified. It is possible 

that a mixed practice with single and contrastive graphs allowed participants to benefit from a 

comparative strategy from contrastive trials and the challenge of having a mixture of trial types 

developed in them a more flexible representation of each transformations, in a way that the 

single condition could not.  

Another advantage of the mixed condition was that it was equally efficient in terms of 

trials as the single condition, and was more time efficient than the single condition in some cases. 

Despite having lower accuracy during the training, the mixed group spent less time on each 

question than the other two groups. As a result, they took 11 minutes less than the single group, 

yet did equally well as the single group on transfer and retention. The mixed practice may have 

discouraged participants from dwelling as long on contrastive trials presumably because they 

knew they had to not be reliant on the contrastive examples. Having variations during training 

also may play a role in enhancing speed of processing on single trials. More research is needed to 

understand whether or not this was the case. 

Interestingly, there were some intricacies in differences across conditions on Sine versus 

Exponential functions. The single condition did better than the contrastive condition on Sine TI 

(but not Exponential TI), and on Exponential TF/NI accuracy gain (but not Sine TF/NI). A closer 

look revealed that in general, the gains in performance on Sine were better preserved than 

performance on Exponential functions. Despite differences at the immediate posttest, after a 

week, there were no condition differences on Exponential TI and TF/NI. It is unclear why this 

was the case, but one possibility is that it is generally easier to recognize the transformations on 

Sine functions than on Exponential functions. At pretest, participants tended to show higher 

accuracy on Sine items (M = .21, SD = .15) than on Exponential items (M = .17, SD = .13) 
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though with a small effect size, t(71) = 2.12, p = .04, d = .29. Because the learning gains on Sine 

were better preserved, the advantage of single over contrastive was easily seen with Sine TI. 

However, perhaps because of the relative ease of Sine functions, participants generally did not 

find transfer to Sine TF/NI to be too difficult. 

In summary, contrary to prior research showing the benefits of contrastive comparisons, 

we found that pure contrastive training was not as good as training with some or no contrastive 

learning trials. When given as a to-be-classified graph, contrastive graphs may have led 

participants to classify the variations mostly as compared to the canonical functions. This may 

have harmed their performance when having to classify graphs that did not contain the canonical 

functions and graphs that involved different canonical functions and more complex combination 

functions. On the other hand, when contrastive graphs were used only during feedback (single 

condition), they seemed to have fostered near transfer to both familiar and unfamiliar function 

families, but did not facilitate far transfer to the combination functions. Mixed practice provided 

the best of all conditions: it allowed for retention and transfer to all assessment items while doing 

so in an efficient manner. 

 

GENERAL DISCUSSION 

The contrastive experience was different between the two experiments (side-by-side 

contrast in Experiment 3, vs. overlapped in Experiment 4), yet across two very different 

domains, we found a consistent pattern: training with only contrastive comparisons can be 

detrimental for learning, and training with a mixture of contrastive and single trials was generally 

equivalent to training with the single condition. 
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There were however, some differences in the patterns of results between the two 

experiments. In Experiment 3, the contrastive condition did equally well as the other two 

conditions at immediate posttest, so that its disadvantages only occurred at delayed test. In 

Experiment 4, in some cases, the contrastive condition produced lower performance even at 

immediate posttest, which persisted at delayed test (except on TF/NI items). One potential 

explanation is based on the different nature of the contrastive experience across the two domains. 

The contrastive graphs may have become a crutch that when removed at the immediate posttest, 

participants were not able to apply what they have learned without it. In the case of ECG, 

participants may have simply ignored the Normal ECG altogether. If so, because participants 

successfully reaching learning criteria, it should be of little surprise that their performance on the 

immediate posttest was the same across all three training conditions, but that the exclusively 

contrastive experience could not produce robust learning for long-term retention.  

A similar explanation may be provided for another difference between the two 

experiments regarding the benefit of the mixed condition on efficiency. In Experiment 4, the 

mixed condition proved to be more time efficient than the single condition in some cases, but it 

was not the case with ECG in Experiment 3. Having the contrastive graph overlapped with the 

to-be-classified graph was a helpful guide to the relevant transformation, which could potentially 

shorten training time. Having a Normal ECG on one side of the screen presented participants 

with more information to be processed, which could elongate training time without enhancing 

learning. 

 In both experiments, the mixed condition was not better than the single condition on 

accuracy and fluency overall. Why was this the case? One possibility is the contrastive 

environment provided was not particularly conducive to discrimination learning. The contrastive 
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display was available for participants, but it was provided passively, such that participants were 

never explicitly asked to compare cases in any of the experiments. Participants had an active task 

on all contrastive trials, but the task did not require them to look at two displays and decide, 

“Which is an example of category X?” Nevertheless, the results are surprising in that some 

published data on comparisons show learning effects in situations not dissimilar to the present 

procedures, without requiring a forced-choice identification (e.g., Rittle-Johnson & Star, 2009).  

A second possible non-optimal feature of comparisons here is that because all of the possible 

category labels were present, there was no guidance as to what the relevant features were that 

should be compared and contrasted. Whether comparison aids learning may be depend on details 

of how the learners are engaged with the comparison.     

Some prior research has suggested that guidance toward comparisons is often needed to 

maximize the benefit of comparisons. For example, participants were explicitly told to think 

about similarities between cases (e.g., Gick & Holyoak, 1983; Gentner et al., 2003; Loewenstein, 

Thompson, Gentner, 1999), describe similarities and differences (Rittle-Johnson & Star, 2009), 

or answer a question that directly refers two cases at the same time (Rittle-Johnson & Star, 

2007). There is also evidence that explicit instructions to make comparisons and contrast are 

useful for ECG interpretation (Ark, Brooks, & Eva, 2007). Ark et al. (2007) trained 

undergraduates with just 4 examples of each of 8 categories of ECG diagnoses. They provided 

participants with a list of key features for each diagnoses, had students practice identifying the 

relevant features with corrective feedback. They varied whether or not participants received 

explicit instructions to contrast the examples from the diagnostic category being learned with a 

normal ECG and with another confusable diagnostic category. Another manipulation was prior 

to the posttests, participants were either explicitly told to look for similarities and differences and 
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to use the feature list to make each diagnosis, or simply told use whatever strategy that comes 

naturally to them. On both the immediate and delayed tests, they found that explicit instruction to 

compare and contrast produced higher performance than non-contrastive training and those who 

were reminded to compare on the posttests did better on those who were not11. Similarly, in the 

classic analogical reasoning study using the Dunker Radiation problem (Gick & Holyoak, 1980), 

after studying an isomorphic problem and its solution, they were given a new, isomorphic 

problem to solve. Without explicit hints, participants were very unlikely to recognize that the 

similarities in problem structure between the two isomorphic problems. However, when they 

were prompted to make comparisons across the two isomorphic problems, they were able to 

generalize the solution to the new radiation problem (Catrambone & Holyoak, 1989; Gick & 

Holyoak, 1983).  

 The current studies cohere with these results. Comparison is not inherently good for 

promoting learning and transfer, rather its effects may depend on whether it supports the 

processing of relevant features and relations that are essential for perceptual learning. This 

research is consistent with other studies showing the effect of comparison being limited by the 

type of category to be learned (characterized by diffuse vs. localized) features; by the learners’ 

prior knowledge; always having a contrastive experience may cause the learners to become too 

dependent on having the representation and their representations are fixed in a way that isn’t best 

for transfer; by the amount of guidance provided; and the similarity of examples and how they 

are presented (e.g., Lee, Betts, Anderson, 2015). These findings are important, suggesting that it 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 The feature list containing the key features for each diagnosis was also available for participants at testing. These 
findings would have provided support for the importance of comparisons in ECG interpretation learning, but the 
contrastive training condition had more time in the training than those in the non-contrastive condition so time 
differences in the training confounded their findings. Furthermore, it is unclear how much of what was learned was 
simply due to memorization versus perceptual learning because there were few instances during the training, and 
participants performed much better on previously seen ECG than new ECG at delayed test. 
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is not the case that any contrastive presentation structure encourages facilitates discovery of 

relevant features or patterns. Rather, having either too many opportunities for comparison or too 

much information available for comparison may actually be detrimental. The results also support 

the interpretation that comparison is not a learning mechanism, but rather a procedure (or, more 

correctly, a variety of procedures), which can sometimes facilitate perceptual learning (Kellman, 

Massey & Son, 2010).  

Further Questions 

 We can relate these findings to those of the Experiments 1 and 2, which showed that 

studying passive presentations was not enough for learning, but that a combination of early 

passive study and active classification practice was more beneficial. This suggests that perhaps a 

more gradual fading method from contrastive to single would have worked better for the mixed 

condition, where the contrastive experience occurs first, followed by the single condition. This 

may be particularly effective in the case of graphical transformation. The initial contrastive 

condition may guide participants to the differences between the two functions for identifying the 

transformation. 

It is possible that our results would have been improved by additional procedures that 

directed attention toward the comparison making process. Prior research has often involved 

additional efforts to optimize the benefit of comparisons. We may be able to maximize the 

benefit of comparisons when comparison opportunities are provided more selectively, and in a 

way that we can more directly (even implicitly) guide participants’ attention to the relevant 

features. One possibility is to present the comparisons adaptively, only when they are needed, 

and to modify the question-answer format so that participants must directly engage in the 
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comparison process in order to answer the question. We explored this possibility in the next two 

experiments. 

 

CONCLUSION 

These experiments showed that training with only contrastive opportunities can be 

detrimental for learning and retention, but left open the possibility that some contrastive 

opportunities can be helpful for transfer and efficiency. 

 

  



	
   113	
  

CHAPTER 6 

Adaptive Comparison 

 

INTRODUCTION 

Comparisons can be useful, but what kind of comparison is useful? When? And for 

whom? In much of learning literature, the benefits of comparisons are found when the same 

comparisons apply to all learners. 

Not all comparisons share the same benefits. Comparing multiple members of the same 

category (i.e., within-category comparison) provides information about category characteristics, 

while contrasting a category member against a non-category member (i.e., between-category 

comparison, or “contrast”) provides information about “category boundaries”, or the information 

about what distinguishes category members from non-members. Indeed, Hammer, Hertz, 

Hochstein, and Weinshall (2009) found different benefits when comparisons are made across 

two exemplars from the same category versus across two exemplars from two different 

categories. Between-category comparisons are often very helpful in that they may decisively 

indicate the relevant dimensions. This is especially true for minimal contrasts. When two 

different-category exemplars are similar in most of their properties, the only differentiating 

dimension must be relevant for the classification task. On the other hand, comparisons of same-

category exemplars can reveal the irrelevant dimensions. When two same-category exemplars 

are similar in some of their properties, the characteristic differing between the two exemplars are 

necessarily irrelevant (Hammer et al., 2009; Gentner & Markman, 1994). We cannot make 

judgments on the remaining shared features, however, because they may or may not be relevant. 

Many studies have explored the benefit of within-category and between-category 



	
   114	
  

comparisons separately (e.g., Kotovsky & Gentner, 1996; Namy & Gentner, 2002; Andrews et 

al., 2005; Hampton, Estes, & Simmons, 2005; Kalish & Lawson, 2007; Kurtz & Boukrina, 

2004), but only a few have shown success with combining between-category and within-

category comparison opportunities in the training (e.g., Ankowski, Vlach, & Sandhofer, 2012; 

Weitnauer, Carvalho, Goldstone, & Ritter, 2014; Hammer et al., 2009). Both types are 

comparisons are important; when both within and between-category comparisons are presented 

appropriately, they have the potential to optimize the extraction of features and relations that 

define a category and distinguish it from others. In Experiments 5 and 6, we examined one way 

to harness adaptive methods to show between- and within-category comparisons when learners 

need them most.   

How do we know when learners need which type of comparison? One of the few 

examples we could find that adapted comparison training to the individual was from Siegel & 

Misselt (1984). They gave participants adaptive feedback and discrimination training based on 

the type of mistakes each learner made while identifying English-Japanese word pairs. On each 

trial, learners were asked to type the Japanese word that corresponded to a given English word. 

When they typed a response that was not an answer to another item in the drill list, the adaptive 

feedback showed a message with the correct answer. When the learner typed a response that was 

an answer to another item in the drill list, they called this “discrimination error”, and the adaptive 

feedback consisted of both the answer to the word in question and the English correspondence 

for the word that they typed.  

This “discrimination error” could also trigger follow-up discrimination training. In the 

discrimination training, the missed item and item with which it was confused were presented 

simultaneously, to allow for comparison of their similarities and differences. Siegel & Misselt 
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found that this adaptive feedback with discrimination training was significantly more effective at 

helping students memorize the word pairs than other forms of feedback studied (not adaptive, or 

without discrimination training). 

Though this study addressed the memorization of word pairs, the potential benefits of 

adapting comparisons and discrimination training are present in the context of perceptual 

category learning. In this study, rather than presenting a paired-comparison after each error, we 

distinguished between two forms of classification errors by looking at participants’ pattern of 

error, and triggered either between-category comparison or within-category comparison based on 

those error patterns.  

One of those patterns was similar to what Siegel & Misselt called “discrimination error”; 

when learners chose category B twice in a row when the answer was category A, we inferred that 

participants may have had trouble detecting the relevant characteristics that distinguish between 

those two categories.  They were then presented with between-category discrimination practice 

between instances of A and B to highlight those relevant dimensions. The other pattern of error 

was when participants chose an instance of category B and another of C on two separate trials 

when the answer was A.  From this, we inferred that they have had trouble seeing what 

constituted category A, so we presented within-category comparisons of two A instances to 

highlight the relevant dimensions of A and its irrelevant variations. 

In Experiments 5 and 6, we asked, how can we tailor paired-comparisons to learners’ 

need to maximize training efficiency? We used each learner’s pattern of error to trigger either 

between-category comparisons or within-category comparisons. The goal was to test whether 

adaptive comparison can improve training efficiency without sacrificing transfer and retention. 

In both experiments, we distinguished between two types of trials within each PALM: the active 
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classification trials (adaptive learning, AL) seen in previous experiments, and comparison trials, 

referring to the between- and within-category comparisons triggered by participants’ responses. 

As a control for the mere presence of comparison trials, we also tested a group who received 

comparisons about equally often as those in the adaptive comparison condition, but where the 

comparisons were not triggered by or related to error patterns. 

 

Experiment 5 

METHOD 

Participants  

108 undergraduates (mean age = 22.33; 70 female) without prior knowledge of ECG 

interpretation from University of California, Los Angeles participated for course credit.  

Design 

Participants were randomly assigned into one of three training conditions: (1) baseline 

adaptive learning with classification trials only (AL), (2) adaptive learning with classification 

trials and adaptive comparisons (AL/AC), (3) adaptive learning with classification trials and non-

adaptive comparisons (AL/NC).  

Materials  

The materials were the same as those used in Experiment 3.  

 We added two types of comparison trials: between-category comparison (AB trials) and 

within-category comparison (AA trials). The AB displays consisted of a side-by-side 

representation of two ECG halves from (the same side of) two different categories of heart 

patterns. The within-category (AA) displays consisted of a side-by-side representation of two 

ECG halves from (the same side of) the same category of heart patterns. Thus, one of those two 
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halves may have contained no relevant information for a particular heart pattern. For example, in 

a AB trial comparing between LAD and Anterior STEMI (LAD being the target category), 

participants could have seen the left-hand tracing, which were relevant to LAD on one side, and 

the left-hand tracings of Anterior STEMI on the other (relevant tracings for Anterior STEMI are 

the ones on the right-hand side).  

Procedure 

The procedure was identical to that used in Experiment 3. The AL PALM was identical to 

that of the single PALM from Experiment 3. 

In the AL/AC PALM, participants received the same adaptive learning paradigm with 

classification trials as those in the AL PALM, with the addition of comparison trials triggered by 

their error patterns. When participants made a consistent miss, by choosing 2 out of 3 instances 

one wrong category label (e.g., both times chose Inferior STEMI when the answer was Anterior 

STEMI), they were given an AB trial, on which Inferior STEMI and Anterior STEMI were 

presented side-by-side. When instead, participants chose two different categories when the 

answer was another (e.g., chose Inferior STEMI and RBBB on two different instances when the 

answer for both was Anterior STEMI), they were presented with an AA trial in which two 

Anterior STEMI halves were presented on the screen. The PALM kept track of the past 3 

instances of each category, so patterns with no or one intervening correct response could have 

triggered a comparison trial. When presented with an AB or AA trial, participants were asked to 

pick all of the applicable ECG halves that show a given heart pattern (e.g., “Anterior STEMI is 

the main diagnoses of which of these ECG traces”) and were provided with three answer 

choices: Left, Right and Both. Thus, in AB trials, “Left” or “Right” was the correct answer. In 

AA trials, “Both” was correct.  Figure 5.1 shows a sample AA trial and Figure 5.2 shows the 
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feedback screen of a sample AB trial. Participants returned to an AL trial immediately after each 

comparison trial. 

 

Figure 5.1. A sample AA trial. 

 

Figure 5.2. Sample feedback screen of an AB trial. 
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The AL/NC PALM group received the same adaptive learning paradigm with 

classification trials as well as comparison trials that were triggered by a pattern of error. 

Crucially, however, the type of comparison trials and the categories presented for comparison 

were selected at random. Thus, it was possible that after a classification trial on RBBB, 

participants could have received an AB trial showing Anterior STEMI and Left Axis Deviation. 

The total number of comparison trials and the ratio of AB and AA trials (30:70) were matched 

between the AL/AC and AL/NC conditions. The ratio of AB and AA trials was determined with a 

pilot group of AL/AC participants.  

All three conditions used the same learning criteria as used in the previous experiments.  

Performance on comparison trials did not count toward retirement. 

Overview of Analyses and Expected Results  

The three groups did not differ on quiz performance or any survey measures. Different 

training conditions resulted in different rates of completion. The comparison conditions, 

particularly the AL/NC, were much more difficult for participants to complete within the time 

allotted than the AL condition. Only 55% of those in the AL/NC condition compared to 83% in 

the AL condition and 69% in the AL/AC condition completed their assigned PALMs. Similar to 

prior experiments, we stopped data collection when we had equal number of participants who 

reached learning criteria in each condition. In the following section, we report analyses for 

participants who completed the PALMs, and report the results from all participants in Appendix 

I.1. The same general patterns of results were found with both samples. All statistical 

assumptions were met. 

Based on prior studies, we expected all PALMs to produce robust classification learning 

and transfer to new ECGs. We were also interested in whether comparison trials can improve 
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training efficiency without sacrificing learning and retention. To compare trial efficiency, we 

took into account the total number of training trials completed, including both AL and 

comparison trials (efficiency = posttest gains in accuracy divided by the total training trials 

invested). An important comparison of efficiency measures was between the AL/AC condition 

and the baseline AL condition. Because each comparison trial was considered a learning trial, it 

was possible that the AL/AC condition would require more trials (and time) to complete the 

module than those in the AL condition. However, it may also be possible that because adaptive 

comparisons directly targeted what the learners need, learners may acquire mastery levels faster 

than those in the other conditions and produce better efficiency than the AL condition. Because 

the AL/NC condition did not tailor comparisons to each learner’s error pattern, we expected this 

group to require more trials (or time) than in the AL/AC condition to learn the discriminations 

needed for mastery because they could waste trials (or time) reviewing what they have recently 

learned. Thus, we expected the AL/AC condition to be more efficient than the AL/NC condition. 

In terms of accuracy and fluent accuracy, if the AL/AC condition could indeed target the 

discriminations that learners have difficulty with, participants would learn the transformations 

sooner than the AL/NC (and perhaps also the AL) condition; they would develop greater fluency 

in processing those relations and perhaps pick up on even higher-order relations, allowing them 

to perform better on transfer measures. Furthermore, if any AB and AA comparison is good for 

learning relevant relations, we would find the AL/NC condition to outperform the AL condition 

on transfer. 
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RESULTS 

Efficiency 
Efficiency by Trial 

Figure 5.3a shows the efficiency by total trials by condition. A 2 phase (pre-post, pre-

delayed) x condition ANCOVA on trial efficiency with pretest accuracy as the covariate 

confirmed a main effect of condition, F(2, 68) = 2.84, p = .07, η2
p = .08. After controlling for the 

effect of the pretest, the AL/AC condition (M = .003, SD = .001) produced overall higher trial 

efficiency than the AL/NC condition with a medium effect size (M = .002, SD = .001), t(46) = 

2.47, p = .02, d = .70, and marginally higher than the AL condition with a small effect size (M = 

.002, SD = .001), t(46) = 1.74, p = .09, d = .48. The AL/NC and AL conditions did not differ on 

the overall trial efficiency, t(46) < 1, p > .20. 

The benefit of the AL/AC was most apparent at delayed test, when AL/AC had higher pre-

delayed trial efficiency than AL with a medium effect size (.0023 vs. .0013, t(46) = 2.28, p = .03, 

d = .67). There was no difference between these two conditions on pre-post trial efficiency, t(46) 

< 1, p > .20. AL/AC had higher trial efficiencies than AL/NC on both pre-post (.0030 vs. .0021, 

t(46) = 2.17, p = .04, d = .63) and pre-delayed efficiencies (.0023 vs. .0014,  t(46) = 2.30, p = 

.03, d = .6712) with medium effect sizes. AL/NC did not differ from AL at either test phases, t(46) 

< 1, p’s > .20. 

There was a significant main effect of phase, F(1, 68) = 13.44, p < .001, η2
p = .17. The 

immediate posttest trial efficiency (M = .003, SD = .002) was significantly higher than the 

delayed test trial efficiency (M = .002, SD = .001). There was also a main effect of pretest, F(1, 

68) = 15.99, p < .001, η2
p = .19. The pretest accuracy negative correlated with the immediate 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12 These differences between AL/AC and AL/NC were not reliable when we ignore pretest variations, assuming that 
they were due to chance. However, pretest may not have been entirely random, considering that the AL/NC 
condition was considerably harder for participants to finish in time, and AL/NC had slightly higher pretest accuracy, 
suggesting that those who did may have been higher performing. 
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posttest trial efficiency, r(72) = -.47, p < .001, and the delayed test trial efficiency, r(72) = -.35, p 

= .003. There were no significant phase x pretest and phase x condition interactions, p’s > .10.  

 

Figure 5.3. Mean efficiency (a) by trial and (b) by time. 

 

Efficiency by Time 

Figure 5.3b shows the time efficiency by condition. Time efficiency demonstrated a 

similar pattern as trial efficiency. There was higher overall time efficiency with AL/AC than 

AL/NC with large effect size (.009 vs. .006), t(46) = 2.84, p = .007, d = .82. AL/AC did better 

than AL/NC on both pre-post, t(46) = 2.36, p = .02, d = .69 and pre-delayed time efficiency, t(46) 

= 2.65, p = .01, d = .76. AL/AC and AL did not differ on overall time efficiency, t(46) = 1.21, p > 

.20, but AL/AC was marginally superior than AL on pre-delayed time efficiency with a medium 
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effect size (.0082 vs. 0052,  t(46) = 1.84, p = .07, d = .5413, but not on the pre-post trial 

efficiency, t(46) < 1, p > .20). AL did not differ from AL/NC on overall time efficiency, t(46) = 

1.12, p > .20, but did marginally better than AL/NC on pre-post time efficiency, t(46) = 1.71, p = 

.10, d = .49, and not on pre-delayed time efficiency, t(46) < 1, p > .20.  

 

Accuracy 

Figure 5.4a shows the mean accuracy on the assessments by condition. Accuracy at 

pretest was highest for the AL/NC group (34%, compared to 28% from the other two groups). 

This suggested that those who reached mastery criteria with this module were generally higher 

performing. This confirmed the difficulty of mastering the training module with non-adaptive 

comparisons. These condition differences at pretest, however, were not statistically reliable (p’s 

> .10).  

Participants from all three conditions generally showed strong learning gains and 

retention, F(2, 138) = 145.85, p < .001, η2
p = .68, from pretest (M = .30, SD = .15) to immediate 

posttest (M = .67, SD = .13), t(71) = 15.86,  p < .001, d = 2.68, and from pretest to delayed test 

(M = .54, SD = .17), t(71) = 10.25, p < .001, d = 1.52, with very large effect sizes. Accuracy also 

dropped significantly from immediate posttest to delayed test, t(71) = 6.61, p < .001, d = .85.  

There was a statistically significant main effect of condition, F(2, 69) = 3.67, p = .03, η2
p 

= .10. Both the AL/AC condition (M = .52, SD = .10) and the AL/NC condition (M = .53, SD = 

.09) produced significantly higher overall accuracy than the AL condition (M = .46, SD = .11), 

t(46) = 2.15, p = .04, d = .62, and t(46) = 2.44, p = .02, d = .70, respectively, with medium effect 

sizes. The AL/AC and AL/NC conditions did not reliably differ in overall accuracy, t(46) < 1, p > 

.20. There was no significant phase x condition interaction, p’s > .10. 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13 This difference between the AL/AC and AL conditions was not reliable when we ignored pretest variations. 
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Planned comparisons showed that the condition differences were only robust at delayed 

test, but not at immediate posttest (t(46) < 1.4, p’s > .16. At delayed test, AL/AC and AL/NC did 

significantly better than AL (.59 and .57 vs. .46, t(46) = 2.66, p = .01, d = .77, and  t(46) = 2.34, p 

= .02, d = .68, respectively). 

 

Figure 5.4. Mean (a) accuracy and (b) fluent accuracy. 

 

Accuracy Gain 

Analyses with accuracy gain confirmed that the AL/AC condition produced marginally 

higher overall accuracy gains than the AL condition (.36 vs. .27, t(46) = 1.72, p = .09, d = .50). 

This difference was robust only on pre-delayed accuracy gain (.31 vs. .18, respectively), t(46) = 

2.34, p = .02, d = .68, and not on pre-post accuracy gain, t(46) < 1, p > .20. AL/AC had 

numerically higher accuracy gain than the AL/NC condition overall and particularly on pre-
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delayed gain, but this was not a reliable effect on overall gain, t(46) = 1.52, p = .14, on pre-post 

gain, t(46) < 1, p > .20, nor on pre-delayed gain,  t(46) = 1.45, p = .15.  

 

Fluency 

Figure 5.4b shows the mean fluent accuracy by condition. The patterns of fluent accuracy 

were similar to that of raw accuracy. The 3 phase x 3 condition ANOVA confirmed a marginal 

main effect of condition on overall fluency score, F(2, 69) = 3.04, p = .06, η2
p = .08. The AL/AC 

condition produced higher overall fluency score (M = .44, SD = .08) than the AL condition (M = 

.38, SD = .11), t(46) = 2.32, p = .03, d = .67. The AL/NC condition (M = .42, SD = .09) also 

scored higher than the AL, but the difference was not statistically reliable, t(46) = 1.55, p = .13. 

There was no difference between the two comparison conditions, t(46) < 1, p > .20. 

There was also a marginal interaction of phase x condition on fluent accuracy, F(4, 138) 

= 1.98, p = .10, η2
p = .05. At pretest and immediate posttest, there were no differences across 

conditions (t(46) < 1, p’s > .20), but notably, at delayed test, the AL/AC condition had 

significantly higher and the AL/NC condition had marginally higher fluent accuracy than the AL 

condition with large and medium effect sizes (.53 and .48 vs. .38, t(46) = 2.99, p = .004, d = .86, 

and t(46) = 1.97, p = .06, d = .57, respectively). AL/AC and AL/NC did not differ on their delayed 

test fluent accuracy, t(46) = 1.21, p > .20. 

In terms of fluent accuracy gain, the only notable condition difference was that AL/AC 

did marginally better than the AL condition on overall fluent accuracy gain with a medium effect 

size (.38 vs. .31, t(46) = 1.75, p = .08, d = .51) and also on pre-delayed fluency gain (.44 vs. .38,  

t(46) = 2.32, p = .03, d = .67). They did not differ on pre-post fluency gain, t(46) < 1, p > .20, 

and there were no other reliable condition differences, t(46) < 1, p > .20.  
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Progression of Learning 

Table 5.1 contains the descriptive statistics from the training for each condition. There 

were no condition differences in the total number of trials spent, the total amount of time spent, 

nor on RTc during the training, p’s > .10. However, there were significant differences among 

conditions on the total number of AL trials needed to reach learning criteria, F(2, 69) = 5.42, p = 

.007. Both the AL/AC and AL/NC conditions required fewer AL classification trials to reach 

learning criteria than the AL condition (119.54 and 131.42 vs. 154.46 trials, respectively) with 

large and medium effect sizes, t(46) = 3.15, p = .003, d = .91 and t(46) = 2.04, p = .047, d = .59, 

respectively. There were no differences between the AL/AC and AL/NC conditions on the number 

of comparison trials completed, p > .10.  

Figure 5.5a shows the mean accuracy on AL trials by quartiles in the training. In terms of 

accuracy, the AL/AC group had marginally higher AL accuracy during the training than the AL 

condition with a medium effect size, t(46) = 1.87, p = .07, d = .54. This held only during the first 

training quartiles of AL trials, t(46) = 1.93, p = .06, d = .56, which was also a marginal effect. 

AL/NC also had numerically higher overall AL accuracy than AL, but the difference was not 

statistically reliable (.57 vs. .53, t(46) = 1.53, p = .13). There was no difference between the 

AL/AC and AL/NC conditions, t(46) < 1, p > .20. 

Figure 5.5b shows the mean fluent accuracy on AL trials by quartiles in the training. In 

terms of fluent accuracy on AL trials, the AL/AC did significantly better and AL/NC did 

marginally better than AL with medium effect sizes, t(46) = 2.46, p = .02, d = .71, and t(46) = 

1.87, p = .07, d = .54, respectively. The difference between AL/AC and AL was marginally 

reliable only on the 1st training quartile, t(46) = 1.93, p = .06, d = .56, and not on later quartiles, 

p’s > .10. AL/NC had higher fluent accuracy than AL on the 2nd and 3rd quartiles, t(46) > 1.71, p = 
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.06 to .09, d = .50 to .56, but not on the 1st or 4th quartiles, p’s > .10. There were no differences 

between the AL/AC and AL/NC conditions on AA and AB comparison accuracies, t(46) < 1, p > 

.20 and t(46) = 1.37, p = .18. Appendix I.2 contains more details of these analyses. 

 

 

Figure 5.5. Mean (a) accuracy and (b) fluent accuracy on AL trials by quartiles in the training. 

 

Condition 

Minutes 

on 

Training 

AL 

trials  

Comparison 

trials  

AA 

trials  

AB 

trials  

AL 

accuracy 

AA 

accuracy 

AB 

accuracy 

AL 
40.67  

(2.72) 

154.46 

(8.73) 

-- -- -- .53 (.02)     

AL/AC 

 

42.50 

(2.80) 

119.54 

(6.86) 

36.79  

(4.31) 

25.71  

(3.24) 

11.08  

(1.31) 

.58 (.02) .71 (.03) .52 (.04) 

AL/NC 

 

47.33  

(2.91) 

131.42 

(7.16) 

41.38  

(4.94) 

27.79  

(3.22) 

13.58  

(1.96) 

 .57 (.02) .72 (.03) .62 (.05) 

 

Table 5.1. Training means in Experiment 5. Standard errors are in parentheses. 
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Survey Responses 

There were no group differences on any survey questions, p’s > .10. On a scale from 1-6 

(1 = not at all, 6 = very much), participants self-reported to be engaged (M = 4.79, SD = .98), 

found the modules to be fairly enjoyable (M = 3.94, SD = 1.21) and quite helpful (M = 5.29, SD 

= .80). They also thought they learned a lot from the training (M = 5.22, SD = .84).  

 

DISCUSSION 

As expected, all three training conditions produced strong learning gains, transfer and 

retention. Training with adaptively triggered paired-comparisons boosted trial and time 

efficiency. The AL/AC condition also performed better than AL/NC on overall accuracy, and 

better than AL at delayed test, suggesting that training with adaptively triggered paired-

comparisons in general enhanced learning and retention. There was no difference between 

AL/NC and AL in terms of accuracy, but AL/NC had better fluent accuracy at the delayed test 

than AL. This was true for fluency on AL trials during the training as well, suggesting that 

training with comparisons may in general be beneficial.  Taken together, training with adaptive 

comparisons proved to be the most effective for producing overall learning gains while being 

efficient.    

The effect of comparison in this experiments differed slightly from that in Experiment 3, 

which showed the downfall of training with only contrastive instances. In Experiment 3, we 

showed participants 2 ECG halves and asked them to diagnose one of them with 7 answer 

choices. The AL/AC and AL/NC comparisons differed from this contrastive experience in two 

important ways. First, there were fewer opportunities for paired-comparisons; second, we 

provided participants with a diagnostic category label, and asked participants to choose the ECG 

halves that belonged to that diagnostic category. In doing so, rather than leaving it up to the 
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participants to figure out what features to compare, we implicitly guided participants to look for 

the relevant features that were specific to the target diagnostic category. This seemed to be a 

successful approach. The comparison trials in this experiments (even when they were not 

adaptive to learner error) elevated fluent accuracy during the training and transfer at the delayed 

test, above that of the baseline adaptive classification learning condition. This suggested that the 

combination of between- and within-category comparisons proved to be a potent ingredient for 

an effective training. 

  Another important finding of this experiment was that the benefits of comparison do not 

rest merely on some set combination of between- and within-category comparisons. Even with a 

similar total number of comparison trials with the same ratio of between- and within-category 

comparisons, the AL/NC condition was less efficient than the AL/AC condition. Furthermore, it 

was particularly difficult for participants to reach learning criteria in this condition, confirming 

the futility of the non-adaptive comparison trials. By tailoring the comparison experiences to 

participants’ patterns of errors, we were able to better target their misunderstandings to result in 

enhanced learning and retention. The AL/AC group achieved the highest learning gains and 

retention, while doing so with the good efficiency, even when measured with the total number of 

trials completed in the training. It was possible that when customized to learners’ needs, the 

comparison experiences guided their attention to the relevant features important for 

classification, and with practice with within-category comparisons, they learned to extract the 

relevant features for each category amidst the feature variations to develop a more flexible 

structural representation for each category.  

In the AL/AC condition, many more AA trials were triggered than AB trials, suggesting 

that most of the time, participants were not confused between two categories, rather, they had 
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trouble knowing what determined one. As the training progressed, they experienced more 

consistent errors, which triggered more AB trials. Performance on adaptive comparison trials did 

not count toward module completion, but their presence enhanced performance on AL trials. 

To the best of our knowledge, this was the first study that has attempted to adaptively 

trigger within- and between-category comparisons based on learner error. There are potentially 

better ways to adapt the training to learner error, but this experiment opened an exciting avenue 

that adaptive comparison together with adaptive active classification practice can enhance the 

effectiveness and efficiency of learning in general and PALMs in particular. To examine the 

generality of this finding, we looked to replicate these benefits of adaptive comparison training 

with the mathematics domains. 

 

Experiment 6 

In this experiment, we asked, do comparisons enhance perceptual learning of mathematical 

transformations? Do adaptive comparison support better training efficiency? 

 

METHOD 

Participants 

72 participants (40 female, mean age = 32.25) who have passed Algebra 2 or an 

equivalent course from Amazon Mechanical Turk completed the study. Appendix J contains 

more demographic data. 

Design 

Participants were randomly assigned into one of three training conditions: (1) baseline 

adaptive learning with classification trials only (AL), (2) adaptive learning with classification 



	
   131	
  

trials and adaptive comparisons (AL/AC), (3) adaptive learning with classification trials and non-

adaptive comparisons (AL/NC).  

Materials 

All materials were identical to Experiment 4. The AL condition was the single condition 

from Experiment 3. We added to it between-category comparison (AB) and within-category 

comparison (AA) trials. 

AB displays presented two graphs shown side-by-side, showing two single graphs from 

two different transformation subcategories. Recall that there were 4 categories of 

transformations, each with two subcategories indicating the direction of the transformation. 

Figure 6.1 shows a sample AB trial in which the target function is y = exp(x) - 2 from the y-

shifting downward, and the other function is y = exp(x) + 2 from the y-shifting upward 

subcategory. AA displays also contained two graphs presented side-by-side, except that the two 

plotted functions belong to the same transformation subcategory. Figure 6.2 shows a sample AA 

trial in which the two main functions are y = sin(x + 10) and y = sin(x + 6), both from the x-

shifting leftward subcategory. Each comparison trial provided an equation, “Which graph best 

matches this equation”, and two answer choices “Left” and “Right” underneath each graph. After 

each response, the graphs were replaced with their contrastive versions, on which the gray, 

dotted canonical function was added. 
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Figure 6.1. A sample AB trial 

 

 

Figure 6.2. Feedback of a sample AA trial 
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Survey 

In this survey, for exploratory purposes we added 4 multiple-choice questions, each 

asking participants to describe the transformation seen in a particular equation. Appendix A 

contains these questions. Perceptual learning does not develop separately from declarative 

knowledge (Kellman & Massey, 2013), and one possibility is comparison practice may highlight 

similarities and differences of transformations in a way that facilitates the development of 

declarative knowledge.  

Procedure 

The procedure was identical to that used in Experiment 414. In the AL/AC and AL/NC 

condition, each participant’s pattern of errors triggered either an AB or an AA comparison trial. 

In the AL/AC condition, the type of comparison triggered was based on errors made at the 

subcategory level. When participants twice in a row chose instances of one consistent wrong 

category, they were given an AB trial. For example, when the target subcategory was y-shifting-

upward, and a participant picked twice (out of 3 times) y-shifting downward (e.g., y = exp(x) + 

2) in one trial and y = exp(x) + 4 in another), they received an AB trial showing a y-shifting 

upward graph and a y-shifting downward graph (e.g., y = exp(x) - 2) and y = exp(x) + 3, 

respectively). The instances from each subcategory were selected at random. Participants were 

asked to identify, by indicating “left” or “right”, the function that matches a given equation (e.g., 

“y = exp(x) - 2)”).  

In the same training condition, when participants incorrectly chose two instances from 

two different subcategories for the target subcategory, they saw an AA trial. For example, when 

the target category was x-scaling with expansion, and participants in one trial picked an x-

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14 Experiment 4 and 6 were conducted at the exact same time. The single condition from Experiment 5 is 

presented here as the AL condition in Experiment 6.   
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shifting function (e.g., y = sin(x + 2)) and in another picked a y-shifting function (e.g., y = 2 + 

sin(x)), they were shown two instances of x-scaling with expansion (e.g., y = sin(2x) and y = 

sin(3x)). They were asked to choose among the plotted function the one that matches a given 

equation (e.g., “y = sin(2x)”). Accuracy feedback was provided after each of these comparison 

trials, and the graphs were replaced with their respective contrastive version. The PALM kept 

track of the past 3 instances of each category, so patterns with no or one intervening correct 

response could have triggered a comparison trial. The performance on these trials did not 

contribute toward the learning criteria. Participants returned to an AL trial immediately after 

each comparison trial.  

The AL/NC group received the same adaptive learning paradigm with adaptive 

classification trials, and the comparison trials were also triggered by a pattern of error. Crucially, 

however, the type of comparison trials and the subcategories presented for comparison were 

selected at random. Thus, it was possible that after a classification trial on y-shifting-upward, 

participants could have received an AB trial showing y-scaling-expansion and x-scaling-

expansion. The total number of comparison trials and the ratio of AB and AA trials (33:67) were 

matched between the AL/AC and AL/NC conditions. The ratio of AB and AA trials was 

determined from pilot data.  

Overview of Analyses and Expected Results 

Similar with Experiment 4, we only collected and analyzed data from participants who 

have completed all phases of the study (N = 24 per condition), all of whom did not experience 

technical difficulties and did not self-report to have looked up the materials at any point during 

the study. There were 16 others in the AL condition, 23 in the AL/AC condition, and 13 in the 

AL/NC condition who started the PALM but dropped out before reaching learning criteria. 
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Based on prior studies, we expected strong improvements from pretest to immediate 

posttest and high maintenance of learning at delayed test. Similar to Experiment 5, we 

considered both AL and comparison trials toward the calculation of trial efficiency scores. To 

determine whether comparison trials reduce the number of AL trials needed for achieving 

learning criteria, we also compared efficiency with just the AL trials completed. We expected the 

comparison trials, particularly adaptive comparisons, to support training efficiency, by enhancing 

transfer accuracy at posttests and/or by lowering the total number of trials needed achieve 

learning criteria.  

 

RESULTS 

Efficiency 

Efficiency by Trials  

Figure 6.3a displays the efficiency by total trial for each condition. A 2 phase (pre-post, 

pre-delayed) x 3 condition (AL/AC, AL/NC, AL) ANCOVA with pretest accuracy as the covariate 

showed neither significant main effects nor interactions, F’s < 2, p’s > .10. Overall, the AL/AC 

condition led to marginally greater trial efficiency than AL/NC (.0015 vs. .0010, t(46) = 1.86, p = 

.07, d = .54. There was no other condition differences on overall trial efficiency (AL/AC vs. AL, 

t(46) = 1.34, p = .19; AL/NC vs. AL, t(46) < 1,  p > .20). 

Other planned pairwise comparison showed that the only notable effect was that the 

AL/AC produced higher efficiency than AL/NC at delayed test with a medium effect size (.0013 

vs. .0008, respectively), t(46) = 2.02, p = .049, d = .58. There were no other condition differences 

on pre-post and pre-delayed efficiency, t(46) < 1.5, p’s > .15. 

We also examined the efficiency with just AL trials (accuracy gain divided by total 

number of AL trials), which confirmed a main effect of condition, F(2,69) = 4.35, p = .02, η2
p = 
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.11. The AL/AC had reliably higher AL efficiency than the AL condition overall, t(46) = 2.73, p = 

.009, d = .64, suggesting that the comparison trials were effective for reducing the number of AL 

trials needed. This held with large and medium effect sizes for pre-post AL efficiency, t(46) = 

2.73, p = .009, d = .80, and pre-delayed AL efficiency, t(46) = 2.40, p = .02, d = .62, 

respectively. Not just any kind of comparisons was helpful at the delay, however. AL/NC did 

marginally better than AL on pre-post AL efficiency, t(46) = 1.74, p = .09, d = .54, but there was 

no difference between these two conditions on pre-delayed AL efficiency, t(46) < 1, p > .20, nor 

on overall AL efficiency, t(46) = 1.36, p = .18. Furthermore, the AL/AC condition did not do 

better than the AL/NC on pre-post AL efficiency, t(46) = 1.29, p > .20, but it was marginally 

better on pre-delayed, t(46) = 1.81, p = .08, d = .53, and overall efficiency, t(46) = 1.67, p = .10, 

d = .52. 

Figure 6.3. Efficiency (a) by total trial and (b) by time. 
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By Assessment Item Types 

The only assessment type for which there were reliable condition differences was novel 

items of trained function (TF/NI) items. The 2 phase (pre-post, pre-delayed) x 3 condition 

(AL/AC, AL/NC, AL) ANCOVA with pretest TF/NI accuracy as the covariate confirmed a 

marginally significant main effect of condition, F(2,68) = 2.45, p = .09, η2
p = .07. The AL/AC 

condition had marginally overall higher trial efficiency than the AL/NC condition (.0014 vs. 

.0009, t(46) = 1.83, p = .07, d = .53). This difference was significant at delayed test (.0028 vs. 

.0016, t(46) = 2.46,  p = .02, d = .68) and marginal at immediate posttest (.0034 vs. .0022, t(46) = 

1.85, p = .07, d = .55). AL/AC did not differ reliably from AL, t(46) < 1, p’s > .20, and AL/NC did 

not differ reliably from AL, t(46) < 1.4, p’s > .18. Appendix J provides more details of these 

results.  

Efficiency by Time 

Figure 6.3b displays the time efficiency by condition. The only condition differences in 

time efficiencies occurred at immediate posttest. At immediate posttest, both AL/AC and AL/NC 

had marginally higher time efficiency than AL, t(46) = 1.71, p = .09, d = .53, and t(46) = 1.81, p 

= .08, d = .49, respectively. There were no differences in time efficiency at delayed test, t(46) < 

1, p’s > .20.  

By Assessment Item Types 

There were no notable condition differences in time efficiency for each item type, t(46) < 

1.4, p’s > .17. However, and interestingly, on combination function (CF) items, both the AL/AC 

and AL/NC had higher overall CF time efficiency than AL with medium and large effect sizes 

(.0045 and .0039 vs. -.0008, t(46) = 2.32, p = .03, d = .67, and t(46) = 2.83, p = .007, d = .82, 
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respectively. At pre-post, the effect of AL/AC over AL was marginal (.0026 vs. -.0019), t(46) = 

2.01, p = .05, d = .58, and the effect of AL/NC was significant (.0035 vs. -.0019), t(46) = 2.49, p 

= .02, d = .72. At pre-delayed, both AL/AC and AL/NC were reliably greater than AL with 

medium effect sizes (.0063 and .0043 vs. .0003), t(46) = 2.26, p = .03, d = .65, and t(46) = 2.50, 

p = .02, d = .72, respectively. The differences between AL/AC and AL/NC were not statistically 

significant, t(46) < 1, p > .20. Figure 6.4 shows the average CF time efficiency by condition. 

 

Figure 6.4. Mean time efficiency by condition for combination function (CF) items. 

Accuracy 

All Items 

Figure 6.5a shows the mean accuracy on all items. A 3 phase (pre, post, delayed) x 3 

condition (AL/AC, AL/NC, AL) ANOVA confirmed that participants from all three conditions 

experienced large improvements that persisted a week later even on items that were never shown 

in the training with a main effect of phase, F(2,138) = 150.73, p < .001, η2
p = .69. The 

improvement from pretest to immediate posttest and to delayed test had very large effect sizes, 
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t(71) = 16.29, p < .001, d = 2.10, and t(71) = 16.29, p < .001, d =  1.81, respectively. There was 

some forgetting between the immediate and delayed test with a small effect size, t(71) = 3.28, p 

< .01, d = .38. 

 

Figure 6.5. Mean (a) accuracy and (b) fluent accuracy on all items. 

As we expected, there was also a marginal main effect of condition, F(2,69) = 2.92, p = 

.06, η2
p = .08. The AL/AC group had greater overall accuracy (M = .40, SD = .09) than the AL 

group (M = .34, SD = .10), t(46) = 2.36, p < .05, d = .68, and there were no reliable differences 

between AL/AC and AL/NC (M = .37, SD = .09), t(46) = 1.07, p > .20, nor between AL/NC and 

AL, t(46) = 1.36, p = .18. There was no phase x condition interaction, F(4,138) = 1.77, p = .14. 

Planned comparisons showed that there were no reliable condition differences at pretest, 

t(46) < 1, p > .20. At immediate posttest, AL/AC did significantly better than AL (.52 vs. .41), 

t(46) = 2.72, p = .009, d = .78). AL/NC did marginally better than AL (.48 vs. .41), t(46) = 1.74, p 

= .09, d = .50. At delayed test, AL/AC also outperformed AL (.46 vs. 39), t(46) = 2.19, p = .03, d 
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= .63, but there was no reliable difference between AL/NC and AL (.41 vs. .39), t(46) < 1, p > 

.20. AL/AC did not differ reliably from AL/NC on either immediate posttest, t(46) < 1, p > .20 or 

delayed test, t(46) = 1.46, p = .15.  

Accuracy gain 

Accuracy gains showed the same pattern. Adaptive comparisons led to greater learning 

gain in the AL/AC condition than the AL condition with a medium effect size (.27 vs. .19), t(46) 

= 2.57, p = .01, d = .74. This difference was statistically reliable at immediate pre-post gain (.29 

vs. .20), t(46) = 2.51, p = .02, d = .72, and was marginally reliable at pre-delayed gain (.24 vs. 

.18), t(46) = 1.98, p = .05, d = .57. There were no differences between AL/AC and AL/NC, t(46) = 

1.44, p = .16, and between AL/NC and AL, t(46) < 1, p > .20.  

By Assessment Item Types 

Figure 6.6a shows the mean accuracy on trained items (TI). AL/AC led to higher overall 

TI accuracy than AL (.43 vs. .35), t(46) = 2.61, p = .01, d = .75. This difference held at 

immediate posttest (.63 vs. .48), t(46) = 2.61, p = .01, d = .75, but was not reliable at delayed 

test, t(46) = 1.33, p = .19. In effect, AL/AC had marginally higher pre-post TI accuracy gain than 

AL, t(46) = 1.70, p = .096, but not higher pre-delayed TI accuracy gain, t(46) < 1, p > .20.  

AL/NC also led to marginally greater overall TI accuracy than AL (.41 vs. 35), and t(46) = 

2.02, p = .05, d = .58, but this may be partly driven by AL/NC having marginally higher pretest 

TI accuracy than AL (.22 vs. .16), t(46) = 1.79, p = .08, d = .52. The difference did not hold 

reliably at either posttests, t(46) = 1.64, p = .11, or delayed test, t(46) < 1, p > .20. As a result, in 

terms of TI accuracy gain, there were no differences between AL/NC and AL, t(46) < 1, p < .20. 

There were no differences between AL/AC and AL/NC on TI and TI gain, t(46) < 1.1, p > .20. 
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This pattern was found for both Exponential TI and Sine TI, except that the difference between 

AL/NC and AL on overall Exponential TI was not statistically reliable, t(46) = 1.32,  p = .19.  

 

Figure 6.6. Mean (a) accuracy and (b) fluent accuracy on trained items. 

 

On trained functions, novel items (TF/NI), transfer ability was particularly strong for 

those in the AL/AC group, F(2,69) = 5.79, p = .005, η2
p = .14. They performed better overall than 

both the AL, t(46) = 3.47, p = .001, d = 1.00, and the AL/NC groups, t(46) = 2.29, p = .03, d = 

.66. In terms of TF/NI accuracy gain, AL/AC did marginally better than AL on pre-post, t(46) = 

1.80, p = .08, d = .52, but not better on pre-delayed gain or on overall gain, t(46) < 1, p’s > .20. 

AL/AC did not have higher pre-post nor pre-delayed accuracy gain than AL/NC, t(46) < 1.6, p’s > 

.13, but they had marginally higher overall accuracy gain, t(46) = 1.75, p = .09, d = .51. There 

was no reliable difference between AL/NC and AL, t(46) = 1.02, p > .20. Figure 6.7a shows the 

average TF/NI by condition. This pattern was similar for Exponential and Sine TF/NI, except 



	
   142	
  

that AL/AC did not differ from AL/NC on Sine TF/NI, t(46) < 1, p > .20. Appendix J contains 

more details of these analyses. 

 

Figure 6.7. Mean (a) accuracy and (b) fluent accuracy on Trained Functions, Novel Items. 

 

There were no condition differences on untrained function (UF) items, t(46) < 1.4, p’s > 

.18, except that AL/AC had marginally higher overall UF accuracy than AL/NC (.32 vs. .26), 

t(46) = 1.66, p = .10, d = .48. Interestingly, however, there were condition differences on Cosine 

items but not on Logarithmic items. Figure 6.8a shows the mean accuracy on Cosine items, and 

Figure 6.8b shows the mean accuracy on Logarithm items. On Cosine items, the AL/AC 

condition did better than the AL condition, 43% vs. 31%, t(46) = 2.21, p < .05, d = .64, and than 

the AL/NC condition, 43% vs. 34%, t(46) = 1.74, p = .09, d = .50, both with medium effect sizes. 

There was no reliable difference between the AL and the AL/NC condition, t(46) < 1, p > .20.  
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There were no condition differences on Logarithmic items, t(46) < 1.2, p > .20, but 

interestingly, participants in the AL/AC and AL/NC groups showed reliable learning gain from 

pretest to delayed test on Logarithmic items, t(46) = 2.22, p = .04, d = .45, and t(46) = 2.90, p = 

.01, d = .59, respectively. This was not found with the AL group, t(46) = 1.52, p = .14. More 

details of these analyses are in Appendix J.  

 

Figure 6.8. Mean accuracy on (a) Cosine and (b) Logarithmic UF items. 

On combination function (CF) items, the AL/NC marginally outperformed AL/AC on 

overall accuracy, t(46) = 2.01, p = .05, d = .60. This is the only instance when AL/NC did better 

than AL/AC. However, this may partly be due to AL/NC having numerically (but not reliably) 

higher pretest CF at the start than AL/AC, t(46) = 1.64, p = .11, and higher immediate posttest, 

t(46) = 2.08, p = .04, d = .67, but there were no condition differences at delay test, nor on any 

accuracy gain measures, t(46) < 1, p > .20. But both types of training with comparisons led to 

greater accuracy gain on combination functions than the AL training, with marginal significance 
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but medium effect sizes (AL/AC vs. AL, t(46) = 1.87, p = .07, d = .54, AL/NC vs. AL, t(46) = 

1.73, p = .09, d = .50).  Figure 6.8 shows the CF accuracy by condition. 

Interestingly, the comparison conditions AL/AC and AL/NC produced significant learning 

gains from pretest to delayed test, t(46) = 3.92, p < .001, d = .80, and t(46) = 2.84, p = .01, d = , 

but the AL condition did not, t(46) = 1.27, p > .20. 

 

Figure 6.9. Mean (a) accuracy and (b) fluent accuracy on combination function items. 

 

Fluency 

Figure 6.5b shows the mean fluent accuracy on all items. Fluent accuracy showed similar 

patterns of condition differences as accuracy. The AL/AC condition led to greater performance 

than the AL condition on overall fluent accuracy (.40 vs. .34), t(46) = 2.37, p = .02, d = .69, and 

also on fluent accuracy gain (.27 vs. .19), t(46) = 2.52, p = .02, d = .73. The AL/AC and AL/NC 

did not differ on overall fluent accuracy (.40 vs. .37), t(46) = 1.36, p = .18, nor on overall fluent 
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accuracy gain (.27 vs. .22), t(46) < 1, p > .20. Similarly, AL/NC did not differ from AL on overall 

fluent accuracy, t(46) = 1.08, p > .20, nor fluent accuracy gain, t(46) = 1.42, p = .16.  

On trained items (TI; Figure 6.6b), both AL/AC and AL/NC had marginally higher overall 

fluent accuracy than AL with medium effect sizes (.37 and .37 vs. .31), t(46) = 1.91, p = .06, d = 

.55, and t(46) = 1.87, p = .07, d = .54, respectively. On novel items of trained functions (TF/NI; 

Figure 6.7b), AL/AC had higher overall TF/NI fluent accuracy than AL with a large effect size 

(.40 vs. .32), t(46) = 2.84, p = .007, d = .82. AL/NC only did better than AL at immediate posttest, 

t(46) = 2.19, p = .03, d = .64, and not at delayed test, t(46) < 1, p > .20. There were no notable 

differences among conditions on untrained functions (UF), t(46) < 1, p’s > .20. Lastly, on 

combination functions (CF; Figure 6.9b), both AL/NC and AL had overall higher fluent accuracy 

than AL/AC (39% and .38% vs. 27%), t(46) = 2.31, p = .03, d = .67, and t(46) = 2.21, p = .03, d = 

.64, respectively. This was likely because the AL and AL/NC groups started out with higher 

fluent accuracy on these items than the AL/AC group (38% and 31% vs. 22%, respectively, t(46) 

= 2.20, p = .03, d = .63 and t(46) = 1.49, p > .10). There was no difference between AL/NC and 

AL, and no condition differences on CF fluent accuracy gain, t(46) < 1, p’s > .20, . There were no 

other reliable condition differences on these item types, p’s > .10. Appendix J contains more 

details of these analyses. 

 

Progression of Learning 

Table 6.1 contains the training means by condition. Conditions did not differ in the total 

number of trials nor in the amount of time needed for reaching learning criteria, p’s > .10. 

Although adaptive comparison practice did not reduce the total number of training trials, it 

reduced the number of AL trials needed to reach learning criteria. There was a significant 
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difference in the number of AL trials to complete the module between the AL/AC and the AL 

condition (185.83 vs. 260.33 trials, respectively), t(46) = 2.12, p = .03, d = .64. There were no 

reliable differences between the other conditions on the number AL trials needed for completion, 

p’s > .10. 

 

Condition 

Minutes on 

Training 

AL 

trials  

AA 

trials  

AB 

trials  

AL 

accuracy 

AA 

accuracy 

AB 

accuracy 

AL 

 

40.67  

(2.72) 

154.5 

(8.73) -- -- 

.53 

(.02)   

AL/AC 

 

42.50  

(2.80) 

119.5 

(6.86) 

25.71 

(3.24) 

11.08 

(1.31) 

.58 

(.02) 

.71  

(.03) 

.52  

(.04) 

AL/NC 

 

47.33  

(2.91) 

131.4 

(7.16) 

27.79 

(3.22) 

13.58 

(1.96) 

.57 

(.02) 

.72  

(.03) 

.62  

(.05) 

 

Table 6.1. Training means by condition. Standard errors are in parentheses. 

 

Overall there were condition differences on accuracy of AL trials, F(2,69) = 6.19, p = 

.003. The AL/AC group had overall higher accuracy on AL trials than both AL and AL/NC groups 

with large and medium effect sizes (42% vs. 32% and 36%, respectively, t(46) = 3.14, p = .003, 

d = .91, and t(46) = 2.07, p = .045, d = .60, respectively). These differences, however, may be 

due to a speed-accuracy trade-off. The AL/AC group took longer to reach the correct answers on 

AL trials than both the AL and AL/NC groups with medium effect sizes (8.33 seconds vs. 6.39 

seconds and 6.46 seconds, t(46) = 2.44, p = .02, d = .60, and t(46) = 2.52, p = .02, d = .73, 

respectively).  
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Figure 6.10. Mean accuracy, RTc, and fluent accuracy on AL trials (a) by quartiles and (b) by 

blocks in the training. Each block had 12 total trials (AL and comparison trials). Note that 

because only performance on AL trials is plotted, most blocks in AL/AC and AL/NC had fewer 

than 12 AL trials. Because everyone was trained toward learning criteria, not all participants 

completed 12 blocks (some had more, some had fewer). 



	
   148	
  

Figure 6.10 shows the accuracy, RTc, and fluent accuracy by quartiles and by blocks on 

AL trials. AL/AC had higher accuracy than AL across all four quartiles in the training, and AL/AC 

also was generally slower than AL across all four quartiles in the training, with medium to large 

effect sizes, t(46) > 1.84, p = .02 to .07, d = .53 to .81. We also examined these differences in 

terms of blocks and found that at Block 1, AL/AC did not differ from AL, p > .10, but AL/AC 

already had higher RTc (10.67 seconds vs. 8.10 seconds, t(46) = 1.98, p = .05, d = .57.  

The AL/AC group did not differ from AL/NC in accuracy during the first 2 quartiles, but 

they did better than the AL/NC group during the latter two, t(46) = 1.84, p = .07, d = .53, and 

t(46) = 2.52, p = .02, d = .73, for the 3rd and 4th quartiles, respectively. AL/AC also took longer 

than AL/NC to get each question correct on the 1st, 3rd, and 4th quartiles, t(46) > 1.75, p = .01 to 

.09, d = .51 to .79. There were no differences between these two conditions on fluent accuracy in 

any quartiles, p’s > .10. Taken together, the lack of differences in accuracy and RTc earlier on in 

the training suggested that condition effects were due to the training. However, the AL/AC group 

generally spent longer on each trial, suggesting that some of the effects seen during the training 

may be due to individual differences in overall speed. Appendix J contains more details of these 

analyses. 

When this progress of learning was evaluated in terms of fluent accuracy, both AL/AC 

and AL/NC had higher fluent accuracy than AL (36% and 34% vs. 30%, t(46) = 2.39, p = .02, d = 

.69 and t(46) = 1.84, p = .07, d = .53, respectively). There was no reliable difference between 

AL/NC and AL/AC, p > .10. 
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Survey Questions 

Metacognitive Questions 

There were no condition differences on questions in the survey, p’s > .05, with one 

exception. Participants differed in their judgments of how much they would remember at delayed 

test, F(2,69) = 4.35, p < .05. Both groups trained with comparisons judged that they would 

remember more at delayed test than the AL condition. These differences were reliable (out of 6, 

AL/AC (M = 3.54, SD = 1.35) vs. AL (M = 2.54, SD = 1.14), t(46) = 2.77, p < .01, d = .80, and 

the difference between AL/NC and AL was marginally significant, AL/NC (M = 3.17, SD = 1.05) 

vs. AL, t(46) = 1.98, p = .05, d = .57. 

Describe the Transformation Items 

These 4 questions asked participants to select the correct description of 4 types of 

transformations used in the training given an equation and its canonical function (i.e., From y = 

sin(x), how do we get y = sin(x + 2)?). Appendix B.2 contains the survey questions. Figure 6.11 

shows the mean accuracy on these items. Interesting, most people did not do well on this task 

despite having reached learning criteria, confirming the intuitive, implicit aspects of perceptual 

learning. Notably, the two comparison conditions did indeed do better than the AL condition at 

delayed test. There were condition differences on the immediate posttest description accuracy, 

F(2,69) = 3.16, p = .049, and delayed test description accuracy, F(2,69) = 3.39, p = .04. AL/AC 

had higher accuracy than AL at immediate posttest (54% vs. 33%), t(46) = 2.56, p = .01, d = .74 

and at delayed test (45% vs. 28%), t(46) = 2.35, p = .02, d = .68. AL/NC did not do reliably better 

than AL at immediate posttest, t(46) = 1.62, p = .11, but AL/NC was reliably better than AL at 

delayed test (42% vs. 28%), t(46) = 2.07, p = .04, d = .60. There were no reliable differences 

between the two comparison conditions at post and delayed tests, t(46) < 1, p’s > .20. 
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Figure 6.11. Accuracy on describe the transformation survey items. 

 

DISCUSSION 

As expected, and similar to prior studies, all PALM training conditions produced large 

and persistent learning gains, even on untrained items and untrained function families. In terms 

of our efficiency measure, the AL/AC condition outperformed AL/NC only at the delayed test. 

While the AL/AC training was not found to be more efficient than the AL training, it did reduce 

the total number of AL trials needed to reach learning criteria. There was some evidence that the 

AL/AC and AL/NC conditions were more efficient in terms of time than the AL condition, but this 

was a marginally significant effect found only at immediate posttest. Interestingly, however, both 

AL/AC and AL/NC were found to be reliably more time efficient than AL on combination 

function (CF) items.  

In terms of accuracy, adaptive comparison trials greatly enhanced transfer accuracy over 

the no-comparison AL condition. AL/AC outperformed AL on all-items accuracy, particularly on 

trained items (TI), trained functions but novel items (TF/NI), Cosine untrained function (UF) 
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items, and even marginally so with combination function (CF) learning gains. The advantage of 

AL/NC over AL was limited; the only differences were marginally significant at TI, which were 

mainly driven by higher immediate posttest on Sine TI, and on CF learning gain.  

It was notable that training with comparisons allowed participants to successfully transfer 

their learning to correctly classify combination functions, which were considerably more difficult 

than the items seen in the training. This was consistent with finding from Experiment 4, in which 

the mixed training with both contrastive comparisons and single/AL trials boosted participants’ 

ability to transfer to combination function, confirming the benefit of comparison experiences.  

The comparison trials in this experiment differed from those in Experiment 4 in 

important ways, and they led to stronger learning gains. In this experiment, comparisons were 

provided selectively.  Rather than merely presenting the contrastive graphs and assuming that 

participants would engage in the comparison between the canonical function and the to-be-

classified function, here we presented participants with two single graphs, showing either two of 

the type of transformation or of different types, and reserved the contrastive graphs for the 

feedback. Each comparison trial contained only two answer choices, and participants were asked 

to choose one of the graphs that matched a given equation. In doing so, we provided participants 

an opportunity to align the examples, but also directly (though implicitly) guided their attention 

to the similarities and differences between the two graphs to identify the features that were 

common (within-category comparison) or different (between-category comparison).  

For example, seeing one graph showing y = sin(x) + 4 and another y = sin(x) + 2 side by 

side (in an AA trial), and being asked, “which one is y = sin(x) + 4?” may guide the learner to 

see that both functions cross the x-axis at the same point, but that one is higher up on the y-axis, 

at y = 4 versus y = 2. This should provide a major clue that y = sin(x) + a involves an upward 
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shift on the y-axis by a units. Similarly, in an AB trial, one can imagine the same question but 

this time the second graph is y = sin(x + 4). One may guess that one crossing the y-axis and 

another is identical, except that it is higher up on the y-axis at y = 4 should provide a significant 

clue that sin(x) + 2 indicate an upward shift on the y-axis.  In a between-category comparison, 

one can imagine the same question but this time the second graph could be y = sin(x + 4) where 

the graph is shifted to the left by 4 units. Seeing that the two graphs are of equal size (without 

compression or expansion), but that one is shifted upward by 4 units, should lead the learner to 

knowing that one of the graphs involves a y-shifting transformation and the other involve some 

x-shifting. The trial feedback should be particularly informative in these cases, where having two 

contrastive graphs side-by-side can also highlight the differences between transformation types. 

These kinds of comparisons were notably different from that provided by a contrastive graph 

from Experiment 4, on which a canonical function was overlapped with the transformed 

function. In some cases, it may be more obvious which transformation was applied with 

contrastive graphs, such as those involving y-shifting. However, when it came to other 

transformation such as x-shifting, it was much less obvious what the transformation was and how 

much was the shift on the x-axis. As a result, training with comparisons in this experiment 

proved to be more effective than the baseline adaptive classification learning without any 

comparison trials.  

These findings have educationally important implication regarding the effect of 

comparison. Although comparing multiple cases is considered as a high-quality instructional 

method (NCTM, 2000), comparison does not always guarantee better learning. To promote 

learning, what matters is not simply whether students compare examples but how they compare 

them, when, and what is being compared. Our research suggests that comparisons should be 
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designed to engage learners in the comparison process to extract the relevant structures for 

classifications, and that they address each individual’s mistakes and confusions during the 

learning. 

 Furthermore, performance on the descriptive questions on the survey was generally low. 

This confirmed the notion that what is learned in perceptual learning is generally implicit. 

Interestingly, comparison practice enhanced learners’ ability to verbally describe the learned 

transformations. One possibility is the comparison practice also engaged learners with 

declarative reasoning (e.g., “both of these were shifted upward”) by spontaneously encourage 

description of the similarities and differences. This is consistent with prior evidence that people 

learn more when they were asked to explicitly compare (e.g., Gick & Holyoak, 1983; Gentner et 

al., 2003; Rittle-Johnson & Star, 2009). It is unlikely that the benefits of comparison are 

moderated by language (e.g. Hendrickson, Kachergis, Gureckis, Goldstone, 2010), but 

comparison practice may facilitate verbalization of the patterns. This is an exciting finding, 

suggesting that comparison practice may support both perceptual learning and declarative 

learning. Being able to classify patterns is important, but one should also be proficient in 

communicating their knowledge. Further research is needed to explore how comparisons may 

support explicit pattern recognition knowledge. 

 

GENERAL DISCUSSION 

Our findings confirmed that well-designed comparison practice can boost learners’ 

extraction of the relevant patterns in the learning set, and allow them to flexibly transfer what 

they learn to more complex situations. In two very different domains, we found clear benefits of 

adaptive comparisons for pattern recognition learning and retention upon PALM completion. In 

both experiments, we found evidence supporting the superiority of AL/AC for learning and 
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transfer over AL alone, and that in terms of efficiency, it mattered that the comparisons were 

adaptive to learners’ needs. The AL/AC condition was more efficient with both trials and time 

over the AL/NC condition in Experiment 5, and was more efficient in terms of trials at a delay 

over AL/NC in Experiment 6.  

AL/AC was not always more effective than AL/NC, but there were some evidence 

suggesting that adaptive comparisons can produce higher learning gains on transfer items than 

non-adaptive comparisons. For example, the AL/AC had higher overall accuracy than AL/NC in 

Experiment 5, and in Experiment 6, AL/AC was more effective for producing TF/NI transfer (and 

marginally so for transfer to Cosine UF items). This benefit of adaptive comparison trials was 

noteworthy given that when participants completed the modules, they had already demonstrated 

mastery with the classification task. Yet, those who received adaptive comparison trials during 

practice seemed to have more flexible representations of the underlying structures for more 

effective transfer. It could be that because adaptive comparisons targeted the discriminations that 

learners have difficulty with, participants were able to learn the discriminations they need for 

mastery without wasting trials (or time) practicing with comparisons they did not have trouble 

with, which allowed them to develop greater fluency in processing those relations and perform 

better on transfer measures.  

Between-category comparison may allow for picking out distinguishing features that 

separate the categories; within-category comparisons may support the pickup of the regularities 

that hold among members of each category. Prior studies have shown that the category structure 

and the level of feature variations determine the effectiveness of each type of paired-comparisons 

(e.g., Higgins & Ross, 2011; Ankowski, Vlach, and Sandhofer, 2012), such that within-category 

comparisons are more effective when category learning requires abstraction of the underlying 
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structure from many varying surface features, and that between-category comparisons are good 

for when the category structure is closely tied to the surface features. We combined the two types 

of comparisons in an adaptive paradigm, and tested with two very different domains involving 

different types of category structures; one arguably involves more variations in surface features 

than the other. We found that the benefit of adaptive comparisons held across these two different 

learning domains with different category structures.  

This research has exciting theoretical and practical implications for understanding general 

learning mechanisms and for improving instruction in educational settings. Theoretically, these 

findings add to our understanding of the benefit of comparisons in learning. To the best of our 

knowledge, this was the first attempt to personalize the type of comparison to each learner’s 

errors. Our paradigm proved effective two diverse domains, suggesting that we have tapped into 

a general learning mechanism that is important for enhancing learning, retention and efficiency 

of the training.  

Much more research is needed to determine an optimal adaptive method. For example, 

participants only had one comparison trial each time it was triggered, and performance on those 

trials did not count toward learning criteria. Future studies may explore the potential additive 

effect of enabling a “mini” learning criterion on the comparison trials. For example, the 

comparison trials may be triggered the same way, but the learner must answer them correctly 

before exiting the comparison block and returning to the active classification trials. In this way, 

participants must show sufficient grasp of the similarities and differences among the problem 

instances before returning to the training. 

Furthermore, this method is easily implemented from the point of view of an instructional 

designer. Other methods that use between- and within-category comparisons require the 
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instructor to know ahead of time the specific confusions or misunderstandings that students may 

have. The current adaptive comparison paradigm does this online. It is likely true that much of 

the time, students experience similar confusions, but this may not always be the case. This 

method, coupled with the existing adaptive learning paradigm, proved to be a potent combination 

that works across domains. 

 

CONCLUSION 

Not all comparisons reinforce perceptual learning, but adaptive comparisons paired with 

adaptive classification practice can produce durable learning gain and effective transfer, while 

doing so in an efficient way.  
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CHAPTER 7 

Concluding Remarks 

Summary 

In six experiments, we examined several general learning principles at the nexus of 

perceptual learning and adaptive learning to accelerate aspects of learning that are difficult to 

address with traditional instruction. We did so in two different learning domains: ECG 

interpretation and mathematical transformations. We confirmed with a diverse sample of 

participants with different levels of interest and familiarity with the materials, that PALMs 

conferred genuine advances in learning while requiring modest training time (less than an hour 

for ECG and within a few hours for mathematics). While there were some nuances in the 

benefits of these variables for transfer and retention, when combining perceptual learning 

principles with adaptive learning technology, we found three robust principles:  

1. That the combination of passive and active classification training was robustly more 

effective and efficient than training with only passive exposures  

2. That training with only contrastive comparisons can limit learning and transfer 

3. That the addition of adaptive comparisons to adaptive active classification training can 

enhance perceptual learning in an efficient way  

Implications 

This dissertation has exciting theoretical and practical implications for understanding 

general learning mechanisms and for improving instruction in educational settings. Our work 

builds upon this powerful yet natural ability of the human perceptual system to grow in its ability 

to isolate relevant detail, suppress irrelevancy, and pick up progressively deeper structure, as a 

result of appropriate kinds of learning experiences. This ability to see patterns can grow into 
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astonishing levels of sophistication, and is the cornerstone of advanced performance in many 

domains, such as science and mathematics, chess, aviation, and medicine. While our knowledge 

of the role of perceptual learning advances, we must account for and nurture students’ natural 

tendency for perceptual learning. These experiments have focused on accelerating perceptual 

learning and enhancing adaptive learning to support transfer of learning to novel situations, to 

ensure that training has stable and lasting effect, and to do so in a more efficient way than ever 

before. 

Theoretically, findings from this dissertation advance our understanding of the synergy of 

passive and active presentations, the benefit of comparisons in learning, and how to best 

personalize comparisons for each individual. By examining each of these effects in two separate 

domains, we have began to uncover general learning principles that bring about effective and 

efficient perceptual learning across domains.  

Practically, our findings can inform instructional designs (in terms of task formats, 

feedback displays, and personalized instruction) that shape students’ perceptual processes so they 

can more efficiently and effectively process patterns, to apply their knowledge of facts and 

procedures to new situations. More research is needed to optimize the design and impact of 

PALMs, and to determine how best to integrate PALMs with traditional learning formats. While 

we perhaps can’t make experts, we can provide optimal learning conditions and opportunities for 

students to achieve expertise with less time and effort than ever before.  
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APPENDIX A 

A.1. Sample Primer Slides  
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A.2. Primer Quiz 
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APPENDIX B 

B.1. Survey Questions for ECG Experiments 1, 3, 5 

This survey was given to participants following the immediate posttest.  

General Questions about the Training 
These questions help us understand how effective the training was for you so we can find ways to 
improve it. All responses will be kept anonymous and confidential. Please respond honestly. 
 
1. How enjoyable was the training as a whole? (On a scale from 1-6, 1 = Not at all enjoyable, 6 

= very enjoyable) 
2. How much did you learn from today’s session? (1 = Nothing, 6 = A lot) 
3. How much of what you learn today do you think you will remember a week from now?  (1 = 

Nothing, 6 = All of it) 
4. Which of these heart patterns will you be able to identify a week from now? 

a. Normal 
b. Anterior STEMI 
c. Inferior STEMI 
d. Right Bundle Branch Block 
e. Left Axis Deviation 
f. Right Axis Deviation 
g. Old Inferior MI 
h. None of these 

5. Which of these heart patterns were the most difficult to identify? 
a. Normal 
b. Anterior STEMI 
c. Inferior STEMI 
d. Right Bundle Branch Block 
e. Left Axis Deviation 
f. Right Axis Deviation 
g. Old Inferior MI 
h. None of these 

6. How helpful were the primer powerpoint slides? (1 = Not at all helpful, 6 = Extremely 
helpful) 

7. How can we improve the primer? 
8. How helpful was the training module (1 = Not at all helpful, 6 = Extremely helpful) 
9. How motivated and engaged were you during the training? (1 = Not at all, 6 = Very much so) 
10. How can we improve the training module? 

a. How can we improve the design of the module and the user experience? Ex. Buttons, 
Feedback, sounds, layout, graphics, loading speed, etc. 

11. What prior experience do you have with interpreting ECGs? (if any) 
12. What are your interests and background in the medical field? Are you thinking of pursuing a 

medical degree? What general or specific interests do you have in heart functioning or 
reading ECGs? 

13. How many hours of sleep did you have last night? 
a. Less than 4 hours 
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b. 4-6 hours 
c. 6-8 hours 
d. More than 8 hours 

14. Any comments about your experience in today's session? What can we improve on? Did you 
experience any technical difficulties? Did we make any error in the training or in the 
assessments? 

 
Theory of Intelligence Survey (from Chiu, Hong, & Dweck, 1997) 
Please indicate how much you agree with the following statements on a scale from 1-6 (1 = 
strongly disagree, 6 = strongly agree): 
1. You have a certain amount of intelligence and you really cannot do much to change it. 
2. Your intelligence is something about you that you cannot change very much. 
3. You can learn new things, but you cannot really change your basic intelligence. 
4. To be honest, you can't really change how intelligent you are. 
 
 
Demographic Questionnaire 
These questions are for demographic purposes. Your responses will be kept anonymous and 
confidential. Please respond honestly. 
1. What is your age? 
2. What is your gender? 
3. What is your year in college? 

a. Freshman 
b. Sophomore 
c. Junior 
d. Senior 
e. Graduate Student 
f. Other: ______ 

4. What is your major? 
5. How fluent are you in English? (1 = Not at all fluent, 5 = Near native or Native) 
6. Which of the following apply to you? Please select all that apply.  

a. I took a gap year (or multiple gap years) before college 
b. I am a transfer student 
c. I consider myself an older adult/mature student 
d. I am an international student 
e. I am an immigrant or refugee 
f. My parent(s) is/are immigrant(s) or refugee(s) 
g. I am a first-generation college student 
h. None of these apply to me 

 
(Experiment 4 ONLY) In this study, we compare the effectiveness among three versions of the 
training module. They only differ in how the questions appear on the screen. Which version do 
you think would produce the highest posttest score? 
a. Version 1: Each question shows an unknown ECG and asks you to classify it. 
b. Version 2: Each question shows 2 ECGs (one Normal and one unknown), and asks you 
about the unknown ECG. 
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c. Version 3: An equal mixture of Version 1 and Version 2. 
d. They are equally effective. 
 
 

B.2 Survey Questions for AlgGeo Experiments 2, 4, 6 

There were two surveys. Survey 1 was given after the immediate posttest, and Survey 2 was 
given after the delayed test.  
 
SURVEY 1  
These questions help us understand your experience in the training so we can find ways to 
improve it. All responses will be kept anonymous. Please respond honestly. Your answers will 
not affect payment. 
 
1. How enjoyable was the training? (1 = Not at all, 6 = Very much) 
2. How helpful was the training? (1 = Not at all helpful, 6 = Extremely helpful) 
3. How motivated and engaged were you during the training? (1 = Not at all, 6 = Very much so) 
4. What else were you doing during the study? This is important because we want to know 

whether your speed on each question was an accurate measurement of how fast you were. If 
you were not doing anything else, please write NOTHING. 

5. How well did you know about Sine and Exponential transformations BEFORE this training? 
(1 = Not at all, 6 = Very well) 

6. How well do you feel you know about Sine and Exponential transformations NOW? (1 = Not 
at all, 6 = Very well) 

7. Which were the most difficult type of transformation to recognize? Select up to 5. 
a. sin(x +- 2) 
b. sin(x) +- 2 
c. sin(x */ 2) 
d. sin(x) */ 2 
e. exp(x +- 2) 
f. exp(x) +- 2 
g. exp(x */2) 
h. exp(x) */ 2 
i. All of them were equally difficult 

8. How much of what you learned today will you remember a week from now? (1 = Not at all, 6 
= All of it) 

9. What were your strategies during the training? Are they different from your strategies in the 
posttest? If so, how? 

10. How can we improve the training module? 
11. Did you experience any technical difficulty? If so, please describe. 
12. Did you consult any outside resources to help you with the materials at any point during the 

study? (ex: use a calculator, ask someone for help, looked up the answers, etc.). If YES, 
please indicate the resource(s) you used. If NO, please write NO. 

13. Did you take breaks during the study? If so, please share what you did during the break(s). 
We look for things that may affect your learning, such as, did you take a nap? a walk? had a 
snack? etc. 
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14. Any other comments about the training or your experience in this study so far? 
 

Describe the transformations (Experiment 6 ONLY) 
1. From y = sin(x), how do we get y = sin(x + 2)? 

a. Shift to the left 2 units 
b. Shift to the right 2 units 
c. Shift upward 2 units 
d. Shift downward 2 units 
e. Expand horizontally 2 times 
f. Compress horizontally 2 times 
g. Expand vertically 2 times 
h. Compress vertically 2 times 

2. From y = sin(x), how do we get y = sin(x) / 2? (Same answer choice as above) 
3. From y = exp(x), how do we get y = exp(2x)? (Same answer choice as above) 
4. From y = exp(x), how do we get y = exp(x) - 2? (Same answer choice as above) 

 
Theory of Intelligence Survey (same as survey used in ECG) 
 
Student Beliefs about Mathematics Survey (Modified from Kaya, 2008) 
How true are these statements to you?  
1. “I like math.” (1 = Not at all true, 4 = Very true) 
2. "I learn math by understanding the underlying logical principles, not by memorizing rules." 
(1 = Not at all true, 4 = Very true) 
3. "I feel nervous when I do math because I think it's too hard" (1 = Almost never, 4 = Almost 
all of the time) 
 
Demographic Questionnaire 
These questions are for demographic purposes. Your responses will be kept anonymous and 
confidential. Please respond honestly. 
1. What is your age? 
2. What is your gender? 
3. Which US state do you live in? 
4. What is your job? 
5. How much math knowledge does your current job require? (1 = None, 6 = It’s all math!) 
6. When was the last time you took a math class or a class that involved a lot of math? 

a. Currently 
b. Within a year 
c. 1 to 2 years ago 
d. More than 2 years ago 

7. What was the last math class (or a class that involved a lot of math) that you took? 
8. What is the highest degree or level of school you have completed?  

a. Up to 8th grade 
b. Some high school, no diploma 
c. High school 
d. Some college 
e. Trade/technical/vocational training 
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f. Bachelor's degree 
g. Graduate or professional degree 
h. Prefer not to answer 

9. How fluent are you in English? (1 = Not at all fluent, 5 = Near native or Native) 
10. What is your ethnicity or race? Select all that apply 

a. White 
b. Hispanic or Latino/a 
c. Black or African American 
d. Native American/Alaska Native 
e. Asian/Pacific Islander 
f. Prefer not to say 
g. Other: _____  

11. How many hours of sleep did you have last night? 
a. Less than 4 hours 
b. 4-6 hours 
c. 6-8 hours 
d. More than 8 hours 

12. Why did you decide to do this study? Select all that apply 
a. The pay is good 
b. It seems fun or interesting 
c. I like to contribute to research 
d. I wanted to learn some math 

 
 
SURVEY 2 
These questions help us understand your experience to better evaluate the effectiveness of the 
training. All responses will be kept anonymous and confidential. Please read each question 
carefully and respond honestly. Your responses will not affect payment. 
 

1. How did you find the delayed test questions today? (1 = Extremely easy, 6 = Extremely hard) 
2. How motivated were you to get each question correctly and quickly in this assessment? (1 = 

Not at all, 6 = Very much so) 
3. How well do you think you know about Sine and Exponential transformations now? (1 = Not 

at all, 6 = Very well) 
4. How well do you think you know about Cosine and Log transformations now? (1 = Not at 

all, 6 = Very well) 
5. What was your strategy during the delayed test? 
6. What else were you doing during the study? This is important because we want to know 

whether your speed on each question was an accurate measurement of how fast you were. If 
you were not doing anything else, please write NOTHING. 

a. If you answered "YES" in the previous question, please explain what you did. 
7. Did you experience any technical difficulty? If so, please describe. 
8. Did you review, study, or look up the materials covered in this study during this past week? 

If YES, please indicate how. If NO, please write NO. 
9. Did you consult any outside resources to help you with the materials at any point during this 

Part 2 of the study? If YES, please indicate the resource(s) you used. If NO, please write NO. 
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10. How many hours of sleep did you have last night? 
a. Less than 4 hours 
b. 4-6 hours 
c. 6-8 hours 
d. More than 8 hours 

 
Describe the transformations (Experiment 6 ONLY) – Same as in Survey 1 
 
Any other comments? 
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APPENDIX C 
 

C.1. Experiment 1 – Results from All Participants 

 

Here we report data from 81 undergraduates (61 Female, age mean = 19.78) who 

participated in the Experiment 1, of whom 67 completed the modules. All assumptions were met.  

Trial Efficiency 

After controlling for the effect of pretest accuracy, the 2 phase (pre-post, pre-delayed) x 3 

condition (active, passive, passive-active) ANCOVA on trial efficiency confirmed main effects 

of condition on efficiency, F(2, 77) = 6.10, p < .01, η2
p = .14. There were no differences between 

the active and passive conditions on either efficiency scores (p’s > .05), nor between the active 

and the passive-active conditions (p’s > .05), but the passive-active condition was significantly 

more efficient than the passive condition on both the pre-post efficiency score, M = .003 vs. .002, 

respectively, t(52) = 2.68, p < .05, d = .73, and the pre-delayed post efficiency score, .002 vs. 

.001, respectively, t(52) = 2.58, p < .05, d = .70. 

The main effect of phase was marginally significant, F(1, 77) = 2.83, p = .10, η2
p = .04, 

reflecting the drop in accuracy from immediate posttest to delayed test seen in most participants. 

The pre-post efficiency (M = .002, SD = .002) was marginally higher than the delayed test 

efficiency (M = .001, SD = .002), paired-t(80) = 6.88, p < .001, d = .69. 

The covariate, pretest accuracy, was significantly related to the efficiency scores, F(1,77) 

= 24.66, p < .001, η2
p = .24. Predictably, pretest accuracy is strongly and negatively correlated 

with the pre-post efficiency, r(81) = -.35, p <.001, as well as pre-delayed post efficiency, r(81) = 

-.48, p < .001. 

Figure C.1a shows the average accuracy at each test phase, and Figure C.1b shows the 

trial efficiency by condition. As expected, participants showed substantial learning gains from 
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pretest to immediate posttest and retained much of their learning at delayed test, regardless of 

condition. Participants were able to interpret ECGs they had never seen before and to do so with 

improved speed. The passive-active condition produced the greatest learning gain with the 

fewest training trials. The active condition also produced greater learning gains than the passive 

condition. Table C.1 contains the descriptive statistics from the training for each condition.  

 

Figure C.1. (a) Trial efficiency and (b) Accuracy by conditions. Error bars ± 1SE. 

Accuracy 

 Accuracy Gain. We analyzed accuracy gains (posttests minus pretest) in a 2 phase (pre-

post, pre-delayed) x 3 condition (active, passive, passive-active) repeated-measures ANCOVA 

with pretest accuracy as the covariate. The covariate, pretest accuracy, was significantly related 
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to the posttest gains, F(1,77) = 35.42, p < .001, η2
p = .32. Indeed, better pretests predicted less 

improvement at immediate posttest, r = -.38, p < .001, and delayed test, r = -.52, p < .001, 

suggesting that pretest variations were largely due to chance. After controlling for the effect of 

the pretest, there was a reliable effect of condition, F(2, 77) = 4.24, p < .05, η2
p = .10. The active 

and passive-active conditions produced higher gains than the passive condition (27% and 30% 

vs. 18%; t(52) = 1.75, p = .09, d = .48, t(52) = 2.31, p < .05, d = .63, respectively. There were no 

reliable differences in accuracy gains between the passive-active and active conditions and no 

significant interactions (p’s > .10).  

There was a statistically significant main effect of phase, F(1, 77) = 5.49, p < .05, η2
p = 

.07. The pre-post accuracy gain was reliably higher than the pre-delayed gain (34% vs. 16%, 

respectively, d = .83).  

 Raw Accuracy. We also compared raw accuracy across groups. A 3 phase (pre, post, 

delayed test) x 3 condition ANOVA confirmed a main effect of condition, F(2,78) = 3.90, p = 

.02, η2
p = .09. The passive-active condition outperformed both the active, t(52) = 2.56, p = .01, d 

= .70, and passive conditions, t(52) = 2.41, p = .02, d = .67, on overall accuracy. Active and 

passive did not differ reliably, p > .10. There was no significant phase x condition interaction, p 

> .10.  

Response Times 

Generally, participants became faster at arriving at the correct answers at immediate 

posttest and delayed test. However, there were no reliable effects of condition or phase (pre-post 

vs. pre-delayed post), p’s > .05.  
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Progression of Learning 

Table C.1 shows the average training performance by condition. Figure C.2 shows the 

average accuracy over the first 17 training blocks for the active and passive-active conditions. 

The passive-active group performed consistently better than the active group, t(52) = 2.96, p < 

.001, d = .80, after 3 blocks, t(52) = 2.95, p < .01, d = .80. This result suggests that initial 

passive exposure speeds learning relative to starting with active classification, despite the similar 

number of learning trials in the passive portion and the first active trial block. In the first few 

blocks, the abrupt change from passive to active introduced similar error rates as those in the 

active condition. However, after the first few blocks, as we expected, those in the passive-active 

group made fewer errors, presumably because the initial passive learning freed them from the 

performance demands, and they could concentrate on deepening their understanding of the 

categories. These gains appeared to be preserved through the course of learning and in posttests.  

 

Table C.1. Average training performance across the three experimental groups (Standard errors 

in parentheses). Both passive and active trials were included in total trials completed for the 

passive-active condition.  

 

  Condition 
Total Trials 
Completed 

Minutes on 
Training 

Training 
Accuracy  

Percent 
Mastery 

Proportion 
reached 100% 
mastery 

Active 167.52 (11.82) 43.96 (3.37) .49 (.02) 87.3 (6.12) 23/27 

Passive-active 137.78 (6.69) 37.70 (2.68) .57 (.02) 89.9 (4.94) 23/27 

Passive 159.74 (8.64) 47.91 (2.40) -- -- -- 
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Figure C.2. Mean accuracy across training blocks. The passive-active group received 14 passive 

trials at block 1. 

 

Self-Report Ratings  

On the survey, participants differed marginally in how they responded to “How enjoyable 

was the training as a whole, on a scale from 1-6 (1 = not at all enjoyable, 6 = very enjoyable)”15, 

F(2,70) = 2.99, p = .057, η2 = .08. The passive-active PALM was found to be reliably more 

enjoyable (M = 4.42, SD = 1.25) than both the passive PALM (M = 3.72, SD = 1.17), t(47) = 

2.01, p = .05, d = .58, and the active PALM (M = 3.58, SD = 1.38), t(46) = 2.19, p < .05, d = 

.64. 

Interestingly, participants in the passive training condition gave themselves marginally 

higher ratings to “On a scale from 1-6 (1 = nothing, 6 = all of it), how much of what you learn 

today do you think you will remember a week from now” (Passive, M = 3.68, SD = .69, vs. 

passive-active, M = 3.25, SD = 1.03, t(47) = 1.72, p = .092, d = .49, and vs. active, M = 3.25, SD 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15 The survey was implemented shortly after data collection began, so we did not have responses from the first 8 participants. 
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= 1.07, t(47) = 1.68, p = .10, d = .48). This observation is consistent with research on the illusion 

of competency in judgments of learning (Castel, McCabe, Roediger, 2007). Without having to 

select answers and receive feedback during the training, the passive group experienced an easier 

time during the training, which likely led to the misbelief that they would have better memory of 

the materials on the delayed test. Active classification practice then, may also support effective 

self-regulated learning.  

When asked, “Which heart pattern(s) were the most difficult to identify?” (participants 

were allowed to pick up to 4 or to choose “All 7 patterns were equally difficult”), most 

participants rated Normal to be most difficult (41/81 participants), Followed by LAD (38/81), 

OldInfMI (36/81), RAD (32/81) and InfSTEMI (30/81), and least difficult were AntSTEMI 

(16/81) and RBBB (10/81). They gave the opposite pattern of responses to, “Which heart 

pattern(s) will you remember a week from now?” Most people indicated that they would 

remember RBBB (67/73) and Anterior STEMI (51/73), followed by Inferior STEMI (40/73), 

RAD (39/73), OldInfMI (38/73), LAD (31/73), and Normal (20/73). 

We also asked participants to respond to a theory of intelligence short survey, and to a 

question about their educational hardship. Having a growth mindset and having had prior 

educational hardship may contribute to participants’ likelihood to persevere in the module. We 

averaged participants’ six-point Likert scale across the four theory of intelligence statements. We 

categorized participants as either “fixed” or “growth” theorists, as has been the practice in the 

prior literature (e.g., Blackwell, Trzesniewski, & Dweck, 2007; Miele & Molden, 2010), and 

refer to this variable as categorical theory of intelligence: Those scoring an average above 3.5 

were classified as fixed theorists, while those scoring an average below 3.5 were classified as 

growth theorists. 65.5% of the participants had a growth mindset. There were no differences 



	
   174	
  

between the mindset groups on any of the dependent variables (p’s > .05). There were also no 

correlations between having had experienced common educational hardships and any of the 

dependent variables (p’s > .05). 

 

C.2. Experiment 1 - Extra Analyses and Detailed Results 

These analyses were from data of participants who have reached learning criterion. 

Efficiency by Time 

After controlling for the effect of pretest accuracy, there was a reliable main effect of 

condition, F(2, 65) = 10.04, p < .001, η2
p = .24. There were no reliable differences between 

active and passive-active groups in the average efficiency (p = .11), but both of the active and 

passive-active groups had better efficiency than the passive group with medium to large effect 

sizes (.007 and .010 vs. .004, respectively, t(44) = 2.34, p < .05, d = .69, and t(44) = 4.41, p < 

.001, d = 1.01. The drop in efficiency from immediate posttest to delayed test was also reliable, 

F(1, 65) = 4.12, p < .05, η2
p = .06. There was no phase x condition interaction, F(2,65) = .87, p = 

.87, η2
p = .004. Pretest accuracy was also significantly related to time efficiency scores, F(1, 65) 

= 26.58, p < .001, η2
p = .29, with pretest accuracy negatively correlated with both pre-post 

efficiency, r(69) = -.37, p < .001 and pre-delayed post efficiency, r(69) = -.52, p < .001. 

 We also analyzed time efficiency uncorrected for pretest variations. Across both 

posttests, the passive-active condition outperformed the active condition with medium and large 

effect sizes (.019 vs. .014 and .011, t(44) = 2.15, p < .05, d = .62, and t(44) = 4.41, p < .001, d = 

1.30, respectively). Although there was no difference between the active and passive condition 
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on trial efficiency, the active condition produced higher time efficiency uncorrected for pretest 

accuracy with a large effect size, t(44) = 2.73, p < .01, d = .82. 

Fluent Accuracy 

Across conditions, the improvements in fluent accuracy had very large effect sizes 

(pretest to immediate posttest: 19% to 57%, t(68) = 15.98, p < .001, d = 2.63, and pretest to 

delayed test, 19% to 42%, t(68) = 9.89, p < .001, d = 1.65). The drop between immediate posttest 

and delayed test was also reliable, t(68) = 7.47, p < .001, d = .92.  

Response Times on Correct Answers (RTc) 

Generally, participants became faster at arriving at the correct answers at immediate 

posttest and delayed test. As participants improved in accuracy, they also improved in speed. At 

pretest, participants took about 12.07 seconds per correct response, and at immediate posttest 

8.91 seconds and delayed test 8.90 seconds (pre vs. post, t(68) = 6.60, p < .001, d = 1.00, and pre 

vs. delayed, t(68) = 6.59, p < .001, d = .98).  There were no reliable effects of condition or of 

phase on RTc gain, p’s > .05.  
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APPENDIX D 

D.1. Experiment 2 - Demographic Data 

We lost survey data from one participant, so the following survey data were based on 74 

participants rather than 75.  

Location 

Participants came from 34 US states.  

Math Background 

Most participants have not had recently taken a mathematics class or a class with a heavy 

emphasis on mathematics such as physics. The majority (88%) has had the last math class over 2 

years ago, 5.3% 1-2 years ago, 4% within a year ago, and only 1.3% are currently in a math 

class. 

In response to “How much math is involved in your current job on a scale from 1-6 (1 = 

not at all, 6 = it’s all math)”, 96% of participants chose 1-4, indicating that their jobs did not 

require much math.  

Education Level 

 40% Bachelor’s degree, 34.7% some college, 13.3% has a graduate or professional 

degree, 5.3% has a high school degree, 4% has trade, technical, or vocational training degree, 

and 1.33% has some high school (no high school diploma). 

Ethnicity 
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78% White, 6% Asian/Pacific Islander, 4% Hispanic or Latino/a, 4% Black or African 

American, 6% Mixed, 2% did not report. 

English Fluency 

 On a scale from 1-5, 1 = not at all fluent, 5 = native or near native, 95.9% of participants 

rated 5, the other 4.1% rated 4. 

Reason for Participation 

 Participants could select more than one reason: 55/75 participants chose “The pay is 

good”, 53/75 chose “It seems fun or interesting”, 31/75 chose “I wanted to learn some math” and 

a math refresher, 35/75 chose “I like to contribute to research”. 

Attitude about Mathematics 

Not central to the study was a short scale of participants’ general attitude about 

mathematics. These questions appear in the Appendix B.2. We reverse-coded participants’ 

response to this statement "I learn math by understanding the underlying logical principles, not 

by memorizing rules," and averaged their ratings on the 3 questions. The average rating was 2.79 

(SD = .70). Higher ratings suggest a more positive attitude toward math. As we expected, the 

higher the rating, the better participants performed on the immediate posttest, r(74) = .43, p 

<.001. This was true for all of the assessment types: r(74) = .49, p < .001 for trained items (TI), 

r(74) = .28, p < .05 for trained functions, novel items (TF/NI), r(74) = .24, p < .05 for untrained 

functions (UF) and r(74) = .22, p = .06 for combination functions (CF). This in turn meant higher 

pre-post accuracy gain, r(74) = .37, p < .01, and higher pre-post efficiency scores calculated by 

trial, r(74) = .41, p < .001, and by time, r(74) = .36, p < .01.  
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Positive math attitudes only marginally correlated with delayed test accuracy, r(74) = .23, 

p = .05, and significantly correlated with the trained items (TI) accuracy, r(74) = .20, p = .09. 

Higher attitude score also was correlated with the accuracy and fluent accuracy during 

the training for those in the active and passive-active conditions, r(49) = .29, p < .05 for 

accuracy, and r(49) = .35, p < .05 for fluent accuracy. It was also marginally negatively 

correlated to the total number of training trials completed, r(49) = -.26, p = .07. 

 

D.2. Experiment 2 – Details of Reported Results 

Efficiency by Trial 

Trained Items (TI) 

The 2 phase x 3 condition ANCOVA confirmed a significant main effect of condition, 

F(2,71) = 5.09, p = .009, η2
p = .13. Both the passive-active (M = .0022, SD = .0023) and the 

active (M = .0017, SD = .0021) conditions produced higher efficiency than the passive (M = 

.0007, SD = .0013) condition with medium effect sizes, t(48) =2.71, p = .009, d = .80, and t(48) 

= 1.98, p = .05, d = .57, respectively. There were no differences between the passive-active and 

the active conditions, p > .10, and no phase x condition interaction, p’s > .10. 

There was no main effect of phase, F(1,71) = .03, p > .10. This reflected good retention 

on trained items after a week delay. The pretest TI correlated strongly and negatively with the 

pre-post trial efficiency, r(75) = -.35, p < .01, and with the pre-delayed trial efficiency on the 

same items, r(75) = -.49, p < .01, suggesting that variations at pretest were likely due to chance. 

Trained Functions/Novel Items (TF/NI) 
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After controlling for differences in pretest TF/NI accuracy, a 2 x 3 ANCOVA with 

pretest TF/NI as the covariate confirmed a main effect of condition, F(2,71) = 4.39, p = .02, η2
p = 

.11. Indeed, the passive-active group (M = .0021, SD = .0020) surpassed the passive group (M = 

.0006, SD = .0011) on TF/NI trial efficiency with a large effect size, t(48) = 3.28, p = .002, d = 

.95. The passive-active group also had marginally higher efficiency than the active group (M = 

.0011, SD = .0020) with a medium effect size, t(48) = 1.81, p = .08, d = .53. There were no main 

effect of phase and phase x condition interaction, p’s > .10.  

There was a main effect of pretest TF/NI accuracy, F(1,71) = 22.56, p <.001, η2
p = .24. 

The pretest TF/NI accuracy strongly and negatively correlated with both the pre-post TF/NI trial 

efficiency, r(75) = -.38, p < .001, and the pre-delayed TF/NI trial efficiency, r(75) = -.52, p < 

.001. 

Untrained Functions (UF) 

There were no condition nor phase differences in trial efficiencies, p’s > .10.   

Combination Functions (CF) 

There were no condition nor phase differences in trial efficiencies, p’s > .10. 

Efficiency by Time 

Overall 

The 2x3 ANOVA confirmed a main effect of phase, F(1,72) = 18.41, p < .001, η2
p = .20. 

This reflected how most participants performed higher on the immediate posttest than after a 

one-week delay. The pre-post trial efficiency (M = .006, SD = .006) was reliably higher than the 
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pre-delayed efficiency but with a small effect size (M = .0036, SD = .005), t(74) = 4.32, p < .001, 

d = .45. 

There was a main effect of condition, F(2,72) = 5.74, p < .01, η2
p = .14. Both the passive-

active condition (M = .007, SD = .005) and the active condition (M = .005, SD = .005) produced 

higher time efficiency than the passive condition (M = .003, SD = .002) with medium and large 

effect sizes, t(48) = 3.57, p = .001, d = .99, and t(48) = 2.06, p = .04, d = .58, respectively. There 

was no phase x condition interaction, F(2,72) = .47, p < .10, η2
p = .01. 

Trained Items 

Time efficiency on TI showed the same pattern as when calculated with trial efficiency. 

After controlling for the differences in pretest TF/NI accuracy, there was no main effect of 

phase, p > .10, but there was a main effect of condition, F(2,71) = 5.64, p = .005, η2
p = .14, and 

no phase x condition interaction, p > .10. Both of the passive-active (M = .008, SD = .009) and 

the active (M = .008, SD = .01) groups produced higher efficiency than the passive group (M = 

.003, SD = .004), t(48) = 2.88, p = .006, d = .81, and t(48) = 2.68, p = .01, d = .76, respectively. 

There was no difference between the passive-active and the active condition, p > .10.   

Trained Functions, Novel Items 

After controlling for the differences in pretest TF/NI accuracy, there was a main effect of 

condition, F(2,71) = 6.13, p = .004, η2
p = .15. Indeed, the passive-active group (M = .008, SD = 

.007) surpassed the passive group (M = .002, SD = .003) on TF/NI trial efficiency with a large 

effect size, t(48) = 3.86, p < .001, d = 1.10. The passive-active group also had marginally higher 

efficiency than the active group (M = .005, SD = .007), with medium effect size, t(48) = 1.74, p = 

.09, d = .50. Interestingly, the active group also had marginally higher efficiency than the passive 
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group, thought with a small effect size, t(48) = 1.68, p < .10, d = .48. This was not found with 

trial efficiency. There were no main effect of phase and no phase x condition interaction, p’s > 

.10. 

There was a main effect of pretest TF/NI accuracy, F(1,71) = 25.27, p < .001, η2
p = .26. 

The pretest TF/NI accuracy strongly and negatively correlated with both the pre-post TF/NI trial 

efficiency, r(75) = -.35, p < .01, and the pre-delayed TF/NI trial efficiency, r(75) = -.51, p < 

.001. 

 Untrained Functions  

After controlling for the differences in pretest UF accuracy, although there were 

marginally significant main effect of phase, F(1,71) = 3.24, p = .08, η2
p = .04 and a significant 

main effect of condition, F(2,71) = 3.83, p = .03, η2
p = .10, there were no reliable differences 

between any of the three conditions, p’s > .10. There was no phase x condition interaction, p > 

.10. 

There was a main effect of pretest TF/NI accuracy, F(1,71) = 40.80, p < .001, η2
p = .37. 

The pretest TF/NI accuracy strongly and negatively correlated with both the pre-post TF/NI trial 

efficiency, r(75) = -.51, p < .001, and the pre-delayed TF/NI trial efficiency, r(75) = -.41, p < 

.001. 

Combination Functions 

There were no condition nor phase differences, p’s > .10. 

Accuracy 

Trained Items (TI) 
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Exponential TI 

Raw Accuracy. All groups showed strong learning gains and retention on Exponential 

TIs, F(2,144) = 32.14, p < .001, η2
p = .31. There was a marginally significant main effect of 

condition, F(2,72) = 3.05, p = .05, η2
p = .01. The passive-active group (M = .47, SD = .16) did 

better than both the active, t(48) = 2.15, p = .04, d = .59, and the passive groups (t(48) = 2.18, p 

= .03, d = .65, on Exponential TI, with medium effect sizes. Active (M = .37, SD = .18) did not 

differ from passive (M = .37, SD = .15), p > .10, and there was no phase x condition interaction, 

F(2,144) = 1.45, p = .22, η2
p = .04.  

Accuracy gain. There was a marginally significant phase x condition interaction, F(1, 71) 

= 2.83, p = .07, η2
p = .07. The passive-active group (M = .20, SD = .38) did marginally better 

than the active group (M = .05, SD = .25) on the pre-delayed test gain, t(48) = 1.67, p = .10, d = 

.47. There were no other condition differences on Exponential TI accuracy gains, p’s > .10. 

Sine TI 

Raw Accuracy. Although all groups showed strong learning gains and retention with Sine 

TI, but there were no group differences in learning gains on Sine TI (p > .10), no phase x 

condition interaction, F(2,144) = 1.81, p = .13, η2
p = .05, and no main effect of condition, 

F(2,72) = 1.18, p = .31, η2
p = .03. 

Accuracy gain. There was a marginal main effect of condition on accuracy gains, F(2,71) 

= 2.68, p = .08, η2
p = .07. Both the active (M = .23, SD = .31) and the passive-active conditions 

(M = .22, SD = .26) outperformed the passive condition (M = .05, SD = .25), t(48) = 2.28, p = 

.03, d = .64, and t(48) = 2.45, p = .02, d =.67. There was no reliable difference between the 

passive-active and active conditions, p > .10. 
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Trained Functions (TF/NIs) 

Sine TF/NI 

Figure D.1a shows the mean accuracy on Sine TF/NI. There were no condition 

differences on Sine TF/NI accuracy at any phase, p’s > .10, but across conditions, participants 

improved significantly on Sine TF/NI items, F(2,144) = 12.78, p < .001, η2
p = .15, from pretest 

(M = .44, SD = .22) to immediate posttest (M = .62, SD = .24), t(74) = 5.28, p < .001, d = .78, 

and to delayed test (M = .55, SD = .24), t(74) = 2.81, p < .01, d = .48. The difference between 

immediate posttest and delayed test was also statistically significant but with a small effect size, 

t(74) = 2.20, p < .05, d = .29.  

Exponential TF/NI 

Figure D.2a shows the mean accuracy on Exponential TF/NI. Similarly, regardless of 

condition, participants improved significantly on Exponential TF/NI items after the training, 

F(2,144) = 28.83, p < .001, η2
p = .29, from pretest (M = .31, SD = .20) to immediate posttest (M 

= .54, SD = .24), t(74) = 7.15, p < .001, d = 1.04, and to delayed test (M = .45, SD = .25), t(74) = 

4.02, p < .001, d = .62. The difference between immediate posttest and delayed test had a small 

effect size, t(74) = 3.15, p < .01, d = .37.   
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 Figure D.1. Average (a) accuracy and (b) fluent accuracy on Sine TF/NI items. 

 

 Figure D.2. Average (a) accuracy and (b) fluent accuracy on Exponential TF/NI items. 
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Unlike Sine TF/NI, however, there was a significant phase x condition interaction, 

F(4,144) = 4.94, p = .001, η2
p = .12. At pretest, there were condition differences: the passive 

group (M = .34, SD = .20) and the active group (M = .36, SD = .21) started out higher than the 

passive-active groups (M = .23, SD = .18), t(48) = 2.41, p = .02, d = .58, and t(48) = 2.01, p = 

.046, d = .66, respectively. Interestingly, however, at immediate posttest, the active (M = .63, SD 

= .18) produced significantly higher and the passive-active (M = .57, SD = .23) groups produced 

marginally higher accuracy than the passive group (M = .43, SD = .29), t(48) = 2.91, p = .005, d 

= .83, and t(48) = 1.87, p = .07, d = .53, respectively. At delayed test, the passive-active group 

(M = .52, SD = .23) had numerically higher accuracy than the passive group (M = .39, SD = .32), 

but the difference was small and marginally significant, t(48) = 1.67, p = .10, d = .47. There were 

no other differences between the other conditions, p’s > .10, and no main effect of condition, 

F(2, 72) = 1.64, p = .20, η2
p = .04.  

Untrained Functions (UFs) 

Figure D.3a shows the accuracy on UF items. Even though participants were trained on 

Sine and Exponential transformations, they were able to transfer what they have learned to 

Cosine and Logarithmic functions, regardless of their training condition. This was confirmed by 

a 3 x 3 ANOVA on UF accuracy. There was a main effect of phase, F(2,144) = 19.89, p < .001, 

η2
p = .22. Participants improved from pretest (M = .29, SD = .15) to immediate posttest (M = .46, 

SD = .19), t(74) = 5.76, p < .001, d = .99, and to delayed test (M = .43, SD = .20), t(74) = 5.22, p 

< .001, d = .79. Both of these mean differences were with large effect sizes. Interestingly, there 

was no reliable drop in accuracy on these untrained functions a week later, p > .10. These were 

no condition differences and no a phase x condition interaction, p’s > .10. The 2 x 3 ANCOVA 

confirmed the same patterns.  
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 Figure D.3. Average (a) accuracy and (b) fluent accuracy on Untrained Function items. 

Combination Functions (CF) 

Figure D.4a shows the average accuracy on CF. Similarly, participants were able to 

transfer what they have learned to CF. There was a main effect of phase, F(2,144) = 4.14, p < 

.05, η2
p = .05. Even on CF, participants from all conditions improved from pretest (M = .32, SD = 

.21) to immediate posttest (M = .43, SD = .28), t(74) = 2.59, p = .01, d = .44, and to delayed test 

(M = .39, SD = .24), t(74) = 1.78, p = .08, d = .31, without a reliable drop in accuracy a week 

later, p > .10. There were no main effect of condition nor phase x condition interaction, p’s > .10.  

The ANCOVA on posttest gains showed the same effects. There was a main effect of 

pretest accuracy, F(1,71) = 123.58, p < .001, η2
p = .64. The pretest accuracy strongly and 

negatively correlated with the pre-post gain, r(75) = -.71, p < .001, and with the pre-delayed 
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gain, r(75) = -.72, p < .001. There were no main effect of phase, no main effect of condition, nor 

a phase x condition interaction, p’s > .10.  

 

 Figure D.4. Average (a) accuracy and (b) fluent accuracy on Combination Function 

items. 

 

Table D.1 provides a summary of the dependent t-test statistics that examined learning 

gains within each condition, broken down by assessment item type. Note that all conditions 

improved from pretest to immediate posttest, and from pretest to delayed test overall (on all 

items combined), and on trained items (TI). All conditions improved from pretest to immediate 

posttest on trained functions, novel items (TF/NI), but not from pretest to delayed test.  
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Table D.1. Summary of accuracy gains by assessment item type. Degrees of freedom (df) = 24 

for all comparisons. P-value: *** denotes p < .001, ** denotes p < .01, * denotes p < .05,  + 

denotes p < .10, and ns means not significant, p > .10. 

Fluent Accuracy 

Trained Items (TI) 

Fluent Accuracy. Participants showed strong learning gains, F(2,144) = 38.90, p < .001, 

η2
p = .35. Improvement from pretest (M = .26, SD = .13) to immediate posttest (M = .49, SD = 

.20) was robust, t(74) = 9.29, p < .001, d = 1.36, so was the improvement from pretest to delayed 

  Active Passive-active Passive 
  t(df) p d t(df) p d t(df) p d 
All Items Pre-Post 5.30 *** 1.06 7.89 *** 1.58 6.80 *** 1.36 
 Pre-Delayed 3.90 *** 0.78 5.15 *** 1.03 3.24 *** 0.65 
TI Pre-Post 7.27 *** 1.45 6.83 *** 1.37 3.76 ** 0.75 
 Pre-Delayed 2.26 * 0.45 3.34 ** 0.67 1.71 + 0.34 
Sine TI Pre-Post 4.30 *** 0.86 4.53 *** 0.91 2.39 * 0.48 
 Pre-Delayed 2.12 * 0.42 2.78 * 0.56 0.50 ns  
Exp TI Pre-Post 6.00 *** 1.20 4.62 *** 0.92 3.72 ** 0.74 
 Pre-Delayed 1.00 ns  2.69 * 0.54 2.80 * 0.56 
TF/NI Pre-Post 4.99 *** 1.00 6.48 *** 1.30 3.47 *** 0.69 
 Pre-Delayed 1.78 + 0.36 4.98 *** 1.00 1.62 ns  
Sine TF/NI Pre-Post 2.28 * 0.46 3.84 *** 0.77 3.48 *** 0.70 
 Pre-Delayed 1.31 ns  2.11 * 0.42 1.59 ns  
Exp TF/NI Pre-Post 5.42 *** 1.08 6.83 *** 1.37 1.52 ns   
 Pre-Delayed 1.50 ns  5.07 *** 1.01 0.82 ns  
UF Pre-Post 1.67 ns  3.44 *** 0.69 6.42 *** 1.28 
 Pre-Delayed 2.83 * 0.57 3.05 * 0.61 3.04 * 0.61 
Cos Pre-Post 1.97 + 0.39 4.06 *** 0.81 5.32 *** 1.06 
 Pre-Delayed 1.41 ns  3.13 * 0.62 2.49 * 0.50 
Log Pre-Post 0.35 ns   0.69 ns   2.92 * 0.58 
 Pre-Delayed 2.17 * 0.43 1.11 ns  1.70 + 0.34 
CF Pre-Post 0.13 ns   2.32 * 0.46 2.03 * 0.41 
  Pre-Delayed 1.16 ns   1.00 ns  0.91 ns   
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test (M = .36, SD = .20), t(74) = 3.63, p > .01, d = .59. The drop between immediate posttest and 

delayed test was also reliable, t(74) = 4.97, p > .001, d = .65.  

There was a marginally significant main effect of condition, F(2,72) = 2.57, p = .08, η2
p = 

.07. The active (M = .36, SD = .12) and passive (M = .34, SD = .13) groups did not differ, p > 

.10, but the passive-active group (M = .41, SD = .12) produced higher overall TI score than the 

passive group, t(48) = 2.14, p = .04, d = .56, and marginally higher than the active group, t(48) = 

1.71, p = .09, d = .42. There was no phase x condition interaction, p > .10.  

Fluent Accuracy Gain. The 2 phase x 3 condition ANCOVA also showed a marginally 

significant main effect of condition, F(2, 71) = 2.49, p = .09, η2
p = .07. There were no main 

effect of phase and no interactions, p’s >  .10. 

Similar to accuracy, the condition differences were driven by differences in Exponential 

TI. There was no differences among conditions on Sine TI, but there was a marginally significant 

main effect of condition on Exponential TI, F(2,72) = 3.04, p = .05, η2
p = .08. Indeed, the 

passive-active condition (M = .42, SD = .14) had higher overall fluency on Exponential TI than 

both the passive condition (M = .33, SD = .16), t(48) = 2.25, p = .03, d = .60, and the active 

condition (M = .33, SD = .18), t(48) = 2.15, p = .04, d = .56. There was no difference between 

the active and passive conditions, p > .10. There were no phase x condition interaction on 

Exponential TI, p > .10, and no reliable condition differences in fluency gains, p’s > .10. 

Trained Functions, Novel Items (TF/NI) 

Fluent Accuracy. Across all groups, participants showed strong and persistent learning 

gains on TF/NI, but there were no condition differences. The 3 phase x 3 condition ANOVA 

supported this finding. There was a main effect of phase on TF/NI score, F(2,144) = 31.62, p < 
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.001, η2
p = .31. Across all three groups, participants had reliable improvements from pretest (M = 

.34, SD = .16) to immediate posttest (M = .54, SD = .20), t(74) = 7.55, p < .001, d = 1.10, and to 

delayed test (M = .47, SD = .18), t(74) = 5.05, p > .001, d = .76. The drop between post to 

delayed test was small but reliable, t(74) = 2.93, p > .01, d = .37. There were no main effect of 

condition and no phase x condition interaction, p’s > .10.   

Fluent Accuracy Gain. The 2 phase x 3 condition ANCOVA also showed little 

forgetting between immediate posttest and delayed test, and no differences in conditions in terms 

of the amount gained. There were no main effect of phase, F(1,71) = .24, p = .63, η2
p = .003, nor 

of condition, F(2, 71) = 1.38, p = .26, η2
p = .04, and no interactions, p’s  > .10.  

The patterns of results were different between Sine and Exponential TF/NI (Figures D.1b 

and D.2b). There was no condition differences on Sine TF/NI items, p’s > .10, but on 

Exponential TF/NI items, the 3 phase x 3 condition ANOVA confirmed a phase x condition 

interaction, F(4,144) = 3.13, p = .02, η2
p = .08, and no main effect of condition, p > .10. At 

pretest, there were already condition differences on Exponential TF/NI, with both the passive 

group starting out marginally higher and active group significantly higher than the passive-active 

group (29%, 30% and 19%, respectively), t(48) = 1.79, p = .08, d = .51, and t(48) = 2.27, p = .03, 

d = .65, respectively. These differences were of medium effect sizes. At immediate posttest, the 

active and passive-active groups in turn did better than the passive group (57% and 53% versus 

40%, t(48) = 2.43, p = .02, d = .69, and t(48) = 1.66, p = .10, d = .47, respectively). There were 

no condition differences at delayed test, p’s > .10.  

Untrained Functions (UF) 



	
   191	
  

Fluent Accuracy. Figure D.3b shows the fluent accuracy on UF by condition. 

Participants from all three groups also improved in fluency on UF items. The 3 phase x 3 

condition ANOVA showed a main effect of phase, F(2,144) = 12.55, p < .001, η2
p = .15. The 

gain from pretest (M = .29, SD = .15) to immediate posttest (M = .41, SD = .19) was reliable, 

t(74) = 4.42, p < .001, d = .70, so was the gain from pretest to delayed test (M = .41, SD = .19), 

t(74) = 4.79, p < .001, d = .70, with no loss between post and delayed test, t(74) = .11, p = .92. 

Interestingly, there was a marginally significant main effect of condition, F(2,72) = 2.44, p = .09, 

η2
p = .06. There was no difference between the active (M = .34, SD = .10) and passive conditions 

(M = .35, SD = .12), on overall UF score, p > .10, but the passive-active group (M = .40, SD = 

.08) produced higher overall UF score than the active group, t(48) = 2.26, p = .03, d = .66, and 

marginally higher than the passive group, t(48) = 1.75, p = .09, d = .49. There was no phase x 

condition interaction, p > .10.  

Fluent Accuracy Gain. There were no effects of condition nor phase x condition 

interaction on the fluency gain, p’s > .10. 

Combination Functions (CF) 

Figure D.3b shows the fluent accuracy on CF by condition. There were no significant 

effects, p’s > .10. 

Response Times on Correct Answers (RTc) 

Across all conditions, participants had very small and marginally significant 

improvements on RTc, F(2,144) = 2.51, p = .09, η2
p = .03, but pairwise comparisons did not 

confirm statistically significant differences. Participants needed about 7.51 seconds per correct 

answer at pretest (SD = 3.26), took 8.13 seconds (SD = 2.84) at immediate posttest, and 7.39 



	
   192	
  

seconds (SD = 2.99) at delayed test. There were also no main effect of condition nor phase x 

condition interaction, p’s  > .10. 
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APPENDIX E 
 

Full List of Assessment Items used in Experiments 2, 4, 6 

 

Item 
Type Sub-category Version A Version B Version C 

1 TI Sine x-shift right y = Sin(x - 3) y = Sin(x - 2) y = Sin(x - 4) 
2 TI Sine x-scale compression y = Sin(3x) y = Sin(4x) y = Sin(2x) 
3 TI Sine y-shift up y = Sin(x) + 2 y = Sin(x) + 4 y = Sin(x) + 3 
4 TI Sine y-scale expansion y = Sin(x) / 4 y = Sin(x) / 3 y = Sin(x) / 2 
5 TI Exponential x-shift left y = Exp(x + 4) y = Exp(x + 3) y = Exp(x + 2) 
6 TI Exponential x-scale expansion y = Exp(x / 2) y = Exp(x / 4) y = Exp(x / 3) 
7 TI Exponential y-shift down y = Exp(x) - 3 y = Exp(x) - 2 y = Exp(x) - 4 
8 TI Exponential y-scale compression y = 2 * Exp(x) y = 3 * Exp(x) y = 4 * Exp(x) 
9 TF/NI Sine x-shift left y = Sin(x + 30) y = Sin(x + 40) y = Sin(x + 20) 
10 TF/NI Sine y-scale compression y = 40 * Sin(x) y = 20 * Sin(x) y = 30 * Sin(x) 
11 TF/NI Sine y-shift down y = Sin(x) - 20 y = Sin(x) - 30 y = Sin(x) - 40 
12 TF/NI Sine x-scale expansion y = Sin(x / 30) y = Sin(x / 40) y = Sin(x / 20) 
13 TF/NI Exponential x-shift right y = Exp(x - 40) y = Exp(x - 20) y = Exp(x - 30) 
14 TF/NI Exponential y-scale expansion y = Exp(x) / 20 y = Exp(x) / 30 y = Exp(x) / 40 
15 TF/NI Exponential y-shift up y = Exp(x) + 30 y = Exp(x) + 40 y = Exp(x) + 20 
16 TF/NI Exponential x-scale compression y = Exp(40x) y = Exp(20x) y = Exp(30x) 
17 UF Cos x-scale compression y = Cos(4x) y = Cos(2x) y = Cos(3x) 
18 UF Cos y-scale expansion y = Cos(x) / 2 y = Cos(x) / 3 y = Cos(x) / 4 
19 UF Cos y-shift up y = Cos(x) + 3 y = Cos(x) + 4 y = Cos(x) + 2 
20 UF Cos x-shift right y = Cos(x - 4) y = Cos(x - 2) y = Cos(x - 3) 
21 UF Log y-scale compression y = 2 * Log(x) y = 3 * Log(x) y = 4 * Log(x) 
22 UF Log x-scale expansion y = Log(x / 4) y = Log(x / 2) y = Log(x / 3) 
23 UF Los y-shift down y = Log(x) - 2 y = Log(x) - 3 y = Log(x) - 4 
24 UF Log x-shift left y = Log(x + 3) y = Log(x + 4) y = Log(x + 2) 

25 CF 
Exponential x-scale compression 
and y-shift up y = Exp(4x) + 4 y = Exp(3x) + 3 y = Exp(2x) + 2 

26 CF 
Basic Sine and Exponential y-shift 
up y = Sin(x) + Exp(x) + 3 y = Sin(x) + Exp(x) + 2 y = Sin(x) + Exp(x) + 4 

27 CF 
Sine y-scale compression and x-
shift left y = 2 * Sin(x + 2) y = 4 * Sin(x + 4) y = 3 * Sin(x + 3) 

28 CF Basic Sine and basic Exponential y = Sin(x) + Exp(x) y = Sin(x) + Exp(x) y = Sin(x) + Exp(x) 
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APPENDIX F 
 

F.1. Experiment 3 - Results from All Participants 

Since we had unequal number of participants in each condition (N = 122, 90 female), the 

following analyses were conducted with weighted means. All assumptions were met. 

Efficiency 

Efficiency by Trials 

A 2 phase (pre-post, pre-delayed) x 3 conditions (single, contrastive, mixed) ANCOVA 

on the efficiency scores calculated by trials invested in the training, with pretest accuracy as the 

covariate, confirmed a significant phase x condition interaction, F(2,118) = 3.83, p = .025, η2
p = 

.06. There were no condition differences on pre-post efficiency, but on pre-delayed efficiency, 

the single condition (M = .002, SD = .002) significantly and the mixed condition (M = .001, SD = 

.001) marginally outperformed the contrastive condition (M = .001, SD = .002), t(76) = 2.45, p = 

.02, d = .73, and t(82) = 1.94, p = .06, d = .51. The mixed and single conditions did not differ on 

trial efficiencies, p’s > .10. There were no other effects, p’s > .10. 

There was a main effect of pretest, F(1,118) = 8.87, p = .004, η2
p = .07. Pretest accuracy 

did not correlate with pre-post efficiency by trial, r(122) = -.13, p = .17, but the higher the 

pretest, the lower the pre-delayed efficiency, r(122) = -.44, p < .001.  

Efficiency by Time 

 A 2 phase (pre-post, pre-delayed) x 3 conditions (single, contrastive, mixed) ANCOVA 

on the efficiency scores calculated by minutes invested in the training, with pretest accuracy as 

the covariate revealed a marginally significant main effect of phase, F(1,118) = 3.72, p = .06, η2
p 

= .03. The pre-post time efficiency (M = .008, SD = .006) was significantly higher than the pre-
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delayed efficiency (M = .004, SD = .006). There was no main effect of condition, p > .10, but 

there was a significant phase x condition interaction, F(2, 118) = 5.29, p < .01, η2
p = .08. There 

were no condition differences on immediate posttest efficiency (p’s > .05) but on delayed test 

efficiency, the single condition (M = .007, SD = .007) and the mixed condition (M = .005, SD = 

.005) gave higher delayed efficiency than the contrastive condition (M = .002, SD = .005), t(80) 

= 1.28, p = .002, d = .80, and t(82) = 2.45, p = .016, d = .60. 

There was also a main effect of pretest on the dependent variables, F(1,118) = 17.78, p < 

.001, η2
p = .13. Pretest accuracy correlated strongly with pre-post efficiency by time, r(122) = -

.26, p < .01, and to pre-delayed efficiency by time, r(122) = -.43, p <.001. 

Accuracy 

A 3 phase (pre, post, delayed) x 3 conditions (single, contrastive, mixed) ANOVA 

confirmed a main effect of phase, F(2, 238) = 156.13, p < .001, η2
p = .57. In general, regardless 

of condition, participants improved from pretest (M = .27, SD = .18) to immediate posttest (M = 

.55, SD = .17), t(121) = -16.99, p < .001, d = 1.84, and from pretest to delayed test (M = .43, SD 

= .16), t(121) = 9.32, p <.001, d = 1.09. The drop from immediate posttest to delayed test was 

also statistically significant, t(121) = 8.04, p < .001, d = .73. 

There was an interaction of phase x condition, F(4, 238) = 3.96, p < .01, η2
p = .06. There 

were no condition differences at pretest and at immediate posttest (p’s > .10), but at delayed test, 

the single group (M = .48, SD = .15) and the mixed group (M = .45, SD = .15) retained much 

more of what they have learned than the contrastive group (M = .37, SD = .18), t(76) = 2.89, p = 

.005, d = .66, and t(82) = 2.22, p = .03, d = .48. There was no main effect of condition, F(2,119) 

= .49, p = .61, η2
p = .008. 

Accuracy Gain 
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A 2 phase (pre-post, pre-delayed) x 3 conditions (single, contrastive, mixed) ANCOVA 

with pretest accuracy as the covariate showed a marginal main effect of condition, F(2, 118) = 

2.33, p = .10, η2
p = .04. Overall, both the single group (M = .25, SD = .19) and the mixed group 

(M = .25, SD = .15) produced higher learning gain than the contrastive group (M = .17, SD = 

.17), t(76) = 2.08, p < .05, d = .44, and t(80) = 2.15, p < .05, d = .50 . 

There was also a phase x condition interaction, F(2,118) = 5.03, p < .01, η2
p = .08. There 

were no condition differences in pre-posttest gain, p > .10, but in terms of pre-delayed test gain, 

the single group (M = .22, SD = .19) and the mixed group (M = .19, SD = .17) outperformed the 

contrastive group (M = .08, SD = .20), t(76) = 3.24, p = .002, d = .72, and t(82) = 2.61, p = .01, d 

= .59, respectively. There was no difference between the single and the mixed group, p > .10, 

and no phase x pretest interaction, F(1,118) = 1.17, p > .10, η2
p = .01. 

There was a main effect of the pretest, F(1, 118) = 225.88, p < .001, η2
p = .34. Pretest 

accuracy correlated strongly with pre-post, r(122) = -.48, p < .001, and pre-delayed learning 

gain, r(122) = -.57, p < .001. There was a main effect of phase, F(1,118) = 7.71, p < .01, η2
p = 

.06. The gain from pre-post test (M = .28, SD = .19) was significantly higher than the gain from 

pre-delayed test (M = .16, SD = .19).  

Response times on correct answers 

A 3 phase x 3 condition ANOVA confirmed a main effect of phase, F(2, 238)= 44.11, p 

<.001, η2
p = .27. All three groups improved in the time needed to reach accurate responses from 

pretest (M = 12.15, SD = 8.24) and immediate posttest (M = 8.53, SD = 2.80), t(121) = 8.18, p 

<.001, d = .59, and to delayed test (M = 8.41, SD = 3.18), t(121) = 6.63, p < .001, d = .60. The 

speed gain from pretest to immediate posttest was perfectly preserved at delayed test a week later 

(post vs. delayed test, t(121) = 1.05, p >.10. There were no phase x condition interaction 
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F(4,238) = .09, p > .10, η2
p = .001, nor main effect of condition, F(2,119) = .29, p > .10, η2

p = 

.005. 

Fluent Accuracy 

There was a main effect of phase, F(2,238) = 210.86, p <. 001, η2
p = .64. In general, 

participants improved significantly from pretest (M = .18, SD = .12) to immediate posttest (M = 

.50, SD = .18), t(121) = 19.47, p < .001, d = 2.09, and to delayed (M = .37, SD = .16), t(121) = 

12.05, p <.001, d = 1.34. The difference between post and delayed test was also statistically 

significant, t(121) = 8.24, p <.001, d = .76. 

 There was no main effect of condition, p > .10, but there was a phase x condition 

interaction, F(4,238) = 3.33, p = .01, η2
p = .05. There were no condition differences at pretest and 

immediate posttest, but at delayed test, the single (M = .41, SD = .17) group was able to 

remember much of the learned information and apply them to new instances at delayed test than 

the contrastive condition (M  = .33, SD = .17), t(76) = 2.13, p = .04, d = .47. There were no other 

reliable differences at delayed test, p > .10. 

Fluency Accuracy Gain 

A 2 phase x 3 condition ANCOVA with pretest score being the covariate showed a main 

effect of pretest score, F(1,118) = 23.03, p <.001, η2
p = .16. Pretest negatively correlated with 

pre-post gain, r(122) = -.30, p < .01, and with pre-delayed gain, r(122) = -.45, p < .001. There 

was a main effect of phase, F(1,118) = 10.84, p < .001, η2
p = .08. The gain from pretest to 

immediate posttest scores (M = .31, SD = .18) was statistically higher than the gain from pretest 

to delayed test (M = .19, SD = .17), t(121) = 8.24, d = .69. There was no main effect of 

condition, p > .10, but there was a phase x condition interaction, F(2, 118) = 3.12, p < .05, η2
p = 

.05. In terms of pre-delayed score gain, single (M = .25, SD = .18) and mixed (M = .21, SD = .15) 
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did better than contrastive (M= .12, SD = .17), t(76) = 3.20, p = .002, d =.74 , and t(82) = 2.48, p 

= .05, d = .56, respectively. There were no condition differences at pre-post score, and no phase 

x pretest interaction, p’s > .10. 

Progression of Learning 

Table F.1 shows the training means for all participants and separately for participants 

who have reached learning criteria (i.e., completed the modules). There were no discerning 

condition differences in training accuracies. The mixed condition started out with lower accuracy 

numerically than the other condition, but pairwise comparisons did not confirm any reliable 

differences across blocks (or quartiles), p’s > .05.  

Table F.1. Training means of all participants (top half) and of participants who have completed 

the training modules (bottom half). Standard errors are in parentheses. 

 

 Conditions 
Trials 
Completed 

Minutes 
on 
Module 

Training 
Accuracy 

Percent 
Mastery  

Training 
Fluency 

Blocks 
completed 

All  
(N = 122) 

Single 
(N = 38) 

142.4  
(9.5) 

40.76 
(2.46) 

.53 (.02) .87 (.05)  11.86 (.79) 

Contrastive  
(N = 40) 

146.6  
(9.4) 

44.10 
(2.63) 

.50 (.02) .81 (.06)  12.21 (.78) 

Mixed 
(N = 44) 

148.2  
(7.9) 

43.62 
(2.06) 

.48 (.02) .75 (.06)  12.03 (.59) 

        

Completed 
(N = 90, 
30 per 
condition) 

Single 
136.00 
(10.58) 

36.83 
(2.42) 

.57 (.02) 1.00 .52 (.02) 11.33 (.88) 

Contrastive 
139.90 
(10.42) 

36.83 
(13.61) 

.56 (.02) 1.00 .49 (.02) 11.75 (.76) 

Mixed 
140.97 
(9.06) 

39.60 
(2.61) 

.54 (.02) 1.00 .49 (.02) 11.66 (.87) 

 -Single trials 
70.30  
(4.69) 

 .55 (.02)  .51 (.02)  

 
-Contrastive 
trials 

70.70  
(4.66) 

 .53 (.02)  .46 (.01)  
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Survey 
There were no condition differences on participants’ self-ratings of how enjoyable the 

training was, how motivated and engaged participants were, how much they have learned, how 

much they will remember a week from now, nor on the level of helpfulness of the training 

module, p’s > .05. However, there was a main effect of condition on how helpful participants 

found the primer to be, F(2,118) = 4.09, p = .02. This was driven by differences between the 

contrastive and single group, and between the mixed and single group. Both of the contrastive 

(M = 4.05, SD = 1.11) and mixed (M = 4.23, SD = 1.29) groups rated the primer to be higher in 

helpfulness than the single training group (M = 3.47, SD = 1.29), t(76) = 2.12, p = .04, d = .48, 

and t(79) = 2.65, p = .01, d = .59, respectively. The difference between the mixed and single 

groups was not statistically significant, p > .05. 

Dweck Theory of intelligence questions 

We averaged the responses over 4 theory of intelligence items, the higher the rating, the 

more the participant endorsed a fixed mindset. This did not correlate with percent mastery, 

training accuracy or efficiency. Interestingly, this correlated with the pretest accuracy, suggesting 

that those with higher fixed mindset ratings performed better on the pretest (but only the pretest), 

r(121) = .22, p = .01. As a result, fixed theorists were more likely to have a lower pre-post 

accuracy gain, r(121) = -.29, p = .002, and pre-delayed test accuracy r(121) = -.17, p = .06. 

Those with higher fixed ratings were also more likely to rate themselves lower on how much 

they learned r(121) = -.20, p = .025 and marginally more likely to give lower rating to how 

helpful the module was, r(121) = -.16, p = .08. 
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F.2. Experiment 3 - Extra Analyses and Detailed Results 

Of those who started the modules but did not finish, 16 were in the single condition, 18 in the 

contrastive condition, and 24 in the mixed condition. Table F.1 shows the mean training 

performance from the participants who did not finish. 

 

Condition Learning 

Accuracy 

Minutes 

Spent 

Trials 

completed 

Pretest 

accuracy 

Percent 

Mastery 

Single .16 (.01) 89.2 (28.8) 390 (123.1) .15 (.02) .24 

Contrastive .16 (.01) 109.4 (59.49) 267 (72.9) .14 (.02) .09 

Mixed .16 (.01) 58.58 (13.16) 209.5 (39.2) .19 (.02) .16 

Table F.1. Training means of participants who dropped out during the training. 

 

The following analyses were conducted on data from participants who have reached 

learning criteria. 

Time Efficiency 

A 3 phase x 3 condition ANOVA on time efficiency confirmed a main effect of phase, 

F(1, 86) = 6.40, p = .01, η2
p = .07, such that the pre-post efficiency (M = .009, SD = .006) was 

higher than the pre-delayed efficiency (M = .006, SD = .006). There was also a phase x condition 

interaction, F(2, 86) = 5.28, p = .007, η2
p = .11. While there was no differences in condition on 

pre-post efficiency, both the single (M = .008, SD = .007) and mixed (M = .006, SD = .005) 

conditions produced greater pre-delayed gain than the contrastive condition (M = .003, SD = 

.006) with medium effect sizes, t(58) = 3.11, p = .003, d = .80; t(58) = 2.34, p = .02, d = .60, 

respectively. There were no other effects, p’s > .10.  
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The pretest strongly predicted the training efficiency, F(1, 86) = 26.39, p < .001, η2
p = 

.24, such that the lower the pretest accuracy, the greater the pre-post efficiency, r(90) = -.40, p < 

.001, and the pre-delayed efficiency, r(90) = -.51, p < .001.  

Accuracy  

The 2 phase (pre-post, pre-delayed) x 3 condition ANCOVA with pretest accuracy as the 

covariate supported a main effect of phase, F(1,86) = 11.15, p = .001, η2
p = .12, reflecting a 

reliable drop in memory between the pre-post gain (M = .31, SD = .18) and the pre-delayed gain 

(M = .18, SD = .20). There was also a significant interaction effect of phase x condition, F(2, 86) 

= 4.95, p = .009, η2
p = .103. There were no condition differences in pre-post gain, however, both 

the single (M = .25, SD = .18) and mixed (M = .21, SD = .16) conditions produced greater pre-

delayed gain than the contrastive condition (M = .09, SD = .21), t(58) = 3.13, p = .003, d = .82; 

t(58) = 2.39, p = .02, d = .64, respectively. There was no interaction of phase x pretest, F(1,86) < 

1, p > .10, nor main effect of condition, F(2, 86) = 1.98, p > .10, η2
p = .04. 

Pretest accuracy reliably predicted posttest gains, F(1,86) = 81.36, p < .001, η2
p = .49. 

The lower the pretest, the higher the gain at immediate posttest, r(90) = -.63, p < .001, and at 

delayed test, r(90) = -.63, p < .001. 

Response Times on Correct Answers 

Participants in all three conditions had very similar response times on correct answers, 

p’s > .10. There were no main effect of condition nor a phase x condition interaction, p’s > .10, 

but participants improved dramatically in the time required for correct answers following the 

training, F(2, 174) = 51.86, p < .001, η2
p = .37. At pretest, they needed an average of 12.16 

seconds (SD = 4.83) and improved by nearly 46% at immediate posttest (M = 7.86, SD = 2.18), 

t(89) = 9.28, p < .001, d = 1.15, and much of this speed gain was maintained at delayed test (M = 
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8.72, SD = 3.12), pre vs. delayed test: t(89) = 6.45, p < .001, d = .85. The difference between 

immediate posttest and delayed test was statistically significant but with a small effect size, t(89) 

= 2.90, p < .01, d = .32.  

Fluent Accuracy 

The pattern of learning gains was similar with that shown by accuracy. Both of the single 

and mixed conditions produced stronger pre-delayed learning gain, suggesting that single trials 

were important for long-term retention. The mixed condition did not differ from the contrastive 

condition at delayed test.  

A 3 phase (pre, post, delayed) x 3 conditions ANOVA confirmed these observations. 

There was a main effect of phase, F(2, 174) = 213.32, p < .001, η2
p = .71. All conditions 

produced reliable learning gain in fluent accuracy from pretest (M = .20, SD = .12) to immediate 

posttest (M = .55, SD = .15), t(89) = 21.25, p < .001, d = 2.58, and to delayed test (M = .41, SD = 

.15), t(89) = 11.77, p < .001, d = 1.55, though there was a reliable drop between post and delayed 

test as well, t(89) = 7.74, p < .001, d = .93. There was a phase x condition interaction, F(4,174) = 

2.92, p = .023, η2
p = .06. At delayed test, the single condition performed better (M = .45, SD = 

.15) than the contrastive condition (M = .37, SD = .17), t(58) = 2.08, p = .04, d = .50. This 

difference was not statistically significant between the mixed (M = .42, SD = .12) and the 

contrastive condition, t(58) = 1.3, p = .17, d = .34. There was no difference between mixed and 

single, p > .10, and no main effect of condition, p > .10. 

Fluent Accuracy Gain  

A 2 phase (pre-post, pre-delayed) x 3 conditions (single, contrastive, mixed) ANCOVA 

with pretest fluent accuracy as the covariate confirmed a significant main effect of pretest score, 

F(1,86) = 37.48, p < .001, η2
p = .30, such that the pretest score reliably and negatively predicted 
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both the pre-post score gain, r(90) = -.46, p < .001 and the pre-delayed score gain, r(90) = -.51, p 

< .001. There was also a significant main effect of phase, F(1, 86) = 12.54, p = .001, η2
p = .13, 

reflecting the drop between pre-post gain (M = .36, SD = .16) and the pre-delayed gain (M = .22 , 

SD = .17). Interestingly, there was a marginally significant interaction of phase x condition, 

F(2,86) = 2.96, p = .06, η2
p = .06.  While the three groups did not differ at immediate posttest 

gain (p’s > .10), in terms of pre-delayed test gain, the single training condition (M = .27, SD = 

.18) and the mixed condition (M = .24, SD = .14) performed significantly better than the 

contrastive condition (M = .14, SD = .18), t(58) = 2.72, p = .009, d = .72, and t(58) = 2.20, p = 

.03, d = .62 , respectively. There were no other condition differences, p’s > .10, and no other 

effects, p’s > .10.  

Progression of Learning 

Accuracy  

Figures F.1a and F.1b show the average accuracy and fluency, respectively, by training 

quartiles for each condition. Overall there were no discerning differences in training performance 

among the three conditions. A 4 quartile x 3 condition ANOVA confirmed these findings. The 

presence of the Normal ECG half did not enhance accuracy on contrastive items than the other 

two conditions, p > .10.  The mixed condition provided a within-subject comparison of the single 

versus contrastive trials, and there was no difference in accuracy between the single and the 

contrastive trials, p > .10. All three groups produced consistent and steady increases in accuracy 

throughout the training, F(3,261) = 153.58, p < .001, η2
p = .64, from 39% (SD = 12.64) at the 1st 

quartile to 69% (SD = 11.76) at the 4th quartile, t(89) > 5.02, p < .001, d = .51 to 1.13. 

Fluency Accuracy 
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There were no differences across conditions on the fluent accuracy, F(2,87) = 1.48, p > 

.10.  

 

Figure F.1. Average (a) accuracy and (b) fluent accuracy during the training. 

 

Theory of intelligence questions 

We averaged the responses over 4 theory of intelligence items. This did not correlate with 

percent mastery, training accuracy or efficiency. Interestingly, this correlated with the pretest 

accuracy, suggesting that those with higher fixed mindset ratings performed better on the pretest 

(but only the pretest), r(89) = .26, p = .01. As a result, fixed theorists were more likely to have a 

lower pre-post accuracy gain, r(89) = -.28, p = .008, and marginally lower pre-delayed test 

accuracy gain, r(89) = -.18, p = .09. Those with higher fixed ratings were also more likely to rate 

themselves lower on how much they learned, r(89) = -.27, p = .01 and marginally lower on how 

helpful the module was, r(89) = -.20, p = .06. 
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APPENDIX G 
Experiments 4 & 6 - Demographic Data 

We report demographic data for these experiments together because they were ran at the same 

time (N = 120). 

Age 

Age ranged 18-60, with the majority (71%) between 23-35; mean age = 32.01, SD = 9.25. 

Location 

Participants came from 39 US states.  

Ethnicity 

 80% White, 8.3% Asian/Pacific Islander, 4.2% Black or African American, 2.5% 

Hispanic or Latino/a, 4.2% Mixed, and the rest did not say. 

 Math background 

The majority (81.7%) reported that their last math class was more than 2 years ago, 8.3% 

1-2 years ago, 4.2% within a year ago, and 5.8% were taking a math class at the time of the 

study. 

In response to “How much math is involved in your current job on a scale from 1-6 (1 = 

not at all, 6 = it’s all math!)”, 72.5% of participants chose 1-3 indicating that their jobs do not 

require much math. 19.2% chose 4, and only 8.3% chose 4 and 5. 

Education 

In terms of the highest educational level achieved, 32.5% of participants had some 

college, 31.7% had a Bachelor’s degree, 18.3% had a graduate or professional degree, 8.3% had 

a high school diploma, 6.7% had trade/technical/vocational training, and .8% (1 person) had 

some high school but no diploma. The rest (1.7%) did not provide a response. 
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English Fluency 

 On a scale from 1-5, with 5 being native/near-native, 97.5% of participants chose 5, and 

the rest chose 4. 

Theory of Intelligence and Math Attitude 

We averaged the responses over 4 theory of intelligence questions, and recoded the 

averaged responses below 3.5 (midpoint) as growth theorists, and above 3.5 as fixed theorists (M 

= 3.06, SD = 1.55). 42.5% of our participants were fixed theorists, and 57.5% were growth 

theorists.  

Expectedly, those with a growth mindset tended to have a more positive attitude toward 

math (M = 2.80, SD = .81), r(120) = -.30, p = .001. Interestingly, however, those with a more 

fixed mindset were more likely to do better on “Describe the transformations” items at delayed 

test, r(120) = .22, p = .02.  
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APPENDIX H 

Experiment 4 Extra Analyses and Detailed Results 

 
Accuracy 

Accuracy gain 

The ANCOVA with pretest as a covariate confirmed an overall difference in accuracy 

between conditions. The main effect condition did not reach statistical significance but had a 

moderate effect size, F(2,68) = 2.33, p = .11, η2
p = .06. The single condition showed stronger 

overall accuracy gain than the contrastive condition (19% vs. 12%, respectively, t(46) = 2.09, p 

= .04, d = .60), and the mixed condition also showed marginally stronger gain than the 

contrastive condition (19% vs. 12%, respectively, t(46) = 1.65, p = .10, d = .48.), both with 

medium effect sizes. At immediate posttest, both single (M = .2, SD = .13) and mixed (M = .21, 

SD = .15) were marginally better than contrastive (M = .13, SD = .15), t(46) = 1.88, p = .07, d = 

.54, and t(46) = 1.84, p = .07, d = .53, respectively. At delayed test, the single condition did 

marginally better than the contrastive with a medium effect size (M = .18, SD = .11, and M = .11, 

SD = .13, respectively), t(46) = 1.87, p = .07, d = .54. There was no reliable difference between 

the mixed and contrastive conditions at delayed test, p > .10. 

There was also a main effect of the pretest on the accuracy gain, F(1,68) = 11.50, p < .01, 

η2
p = .15. The higher the pretest, the smaller the learning gain at immediate posttest, r(72) = -.36, 

p < .001, and at delayed test, r(72) = -.33, p < .001. 

Trained Items (TI) 

Raw accuracy 

All conditions produced strong learning, F(2,138) = 54.32, p < .001, η2
p = .44. Across 

modules, training boosted accuracy on TI from pretest to immediate posttest (16% to 42%, t(71) 
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= 10.24, p < .001, d = 1.57), and from pretest to delayed test (16% to 34%, t(71) = 6.77, p < .001, 

d = 1.09). This was true for all conditions from pretest to immediate posttest (single: t(23) = 

8.43, p < .001, d = 2.13; contrastive: t(23) = 5.08, p < .001, d = 1.18; mixed: t(23) = 4.93, p < 

.001, d = 1.51) and from pretest to delayed test (single: t(23) = 5.17, p < .001, d = 1.44; 

contrastive: t(23) = 3.31, p < .01, d = .80; mixed: t(23) = 3.50, p < .01, d = 1.05). Table H.1 

summarizes these findings for each condition by item types. There was also an overall drop 

between immediate posttest and delayed test, t(71) = 3.31, p < .01, d = .43.  

There was a marginal main effect of condition, F(2,69) = 2.81, p = .07, η2
p = .08, with the 

single condition doing better overall than the contrastive condition, t(46) = 2.36, p = .02, d = .68. 

This was driven by condition differences on Sine TI, t(46) = 2.38, p < .05, d = .68, but not 

Exponential TI items, p > .10.  

At pretest, there were no condition differences, p’s > .10, but at both post and delayed 

test, the single condition had higher accuracy on TI than the contrastive condition (immediate 

posttest: t(46) = 2.08, p = .04, d = .60, and delayed test, t(46) = 2.62, p = .01, d = .76, with 

medium effect sizes). The mixed condition also had higher accuracy than the contrastive 

condition, but this difference did not reach statistical significance and had a small effect size, 

t(46) = 1.61, p = .11, d = .47. There were no other condition differences at post and delayed tests, 

p’s > .10. 

Accuracy gain 

The difference between single and contrastive conditions was also apparent in terms of 

accuracy gain, t(46) = 2.55, p < .05, d = .74. This was apparent in terms of pre-post gain, t(46) = 

2.04, p = .05 (marginal), d = .59, and pre-delayed gains, t(46) = 2.23, p = .03, d = .65. Similarly, 
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this was found only on Sine TI, t(46) = 2.27, p < .05, d = .65, and not Exponential TI. There were 

no other condition differences in accuracy gain, p’s > .10.  

There was a main effect of pretest, F(1,68) = 31.35, p < .001, η2
p = .32, and no main 

effect of phase nor any interactions, p’s > .10. 

 

 

 
Single Contrastive Mixed 

Item Type Phase T(df) p d t p d t p d 
All items Pre-Post 7.63 *** 1.56 4.31 *** 0.88 6.79 *** 1.39 
  Pre-Delayed 7.56 *** 1.54 4.07 *** 0.83 4.89 *** 1.00 
TI Pre-Post 8.43 *** 1.72 5.08 *** 1.04 4.93 *** 1.01 
  Pre-Delayed 5.17 *** 1.06 3.31 ** 0.68 3.50 ** 0.71 
Sine TI Pre-Post 4.90 *** 1.00 3.00 ** 0.61 3.39 ** 0.69 
  Pre-Delayed 5.94 *** 1.21 2.32 * 0.47 1.97 + 0.40 
Exponential TI Pre-Post 6.04 *** 1.23 3.63 ** 0.74 4.94 *** 1.01 
  Pre-Delayed 2.67 * 0.54 3.11 ** 0.64 3.82 *** 0.78 
TF/NI Pre-Post 4.95 *** 1.01 3.15 ** 0.64 6.94 *** 1.42 
  Pre-Delayed 4.34 *** 0.89 3.99 *** 0.81 5.04 *** 1.03 
Sine TF/NI Pre-Post 2.29 * 0.47 2.48 * 0.51 4.24 *** 0.86 
  Pre-Delayed 2.23 * 0.45 3.47 ** 0.71 4.51 *** 0.92 
Exponential 
TF/NI Pre-Post 6.09 *** 1.24 3.08 * 0.63 6.08 *** 1.24 
  Pre-Delayed 3.94 *** 0.80 2.56 * 0.52 3.29 ** 0.67 
UF Pre-Post 3.84 *** 0.78 1.62 ns 

 
3.18 ** 0.65 

  Pre-Delayed 4.74 *** 0.97 1.59 ns   1.90 + 0.39 
Cosine Pre-Post 4.05 *** 0.83 1.44 ns 

 
3.50 ** 0.71 

  Pre-Delayed 5.79 *** 1.18 1.19 ns   2.51 * 0.51 
Logarithmic Pre-Post 1.93 + 0.39 0.89 ns 

 
1.44 ns 

   Pre-Delayed 1.62 ns   0.78 ns   0.20 ns   
CF Pre-Post 0.38 ns 

 
0.34 ns 

 
1.99 + 0.41 

  Pre-Delayed 1.43 ns   1.25 ns   2.50 * 0.51 
Table H.1. Summary of accuracy gains by assessment item type. Degrees of freedom (df) = 23 

for all comparisons. P-value: *** denotes p < .001, ** denotes p < .01, * denotes p < .05,  + 

denotes p < .10, and ns means not significant, p > .10. 
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Trained Functions, Novel Items (TF/NI) 

Raw accuracy 

Participants across conditions also improved on the TF/NI after the training and were 

able to retain what they learned a week later, F(2,138) = 48.04, p < .001, η2
p = .41. The 

differences between pretest and each of the posttests were statistically significant, t(71) = 8.29, p 

< .001, d = 1.33, and t(71) = 7.78, p < .001, d = 1.16, and the drop between post and delayed test 

was not significant, t(71) = 1.29, p > .10. This was true for all conditions. All conditions 

improved from pretest to immediate posttest (single: t(23) = 4.95, p < .001, d = 1.49; contrastive: 

t(23) = 3.15, p < .01, d = 1.93; mixed: t(23) = 6.94, p < .001, d = 1.57) and from pretest to 

delayed test (single: t(23) = 4.34, p < .001, d = 1.21; contrastive: t(23) = 3.99, p < .01, d = 1.01; 

mixed: t(23) = 5.04, p < .001, d = 1.22). 

There were no main effect of condition and no phase x condition interaction, p’s > .10. 

Planned comparisons showed that at immediate posttest, the mixed condition (M = .48, SD = .19) 

did marginally better than the contrastive condition (M = .38, SD = .19), t(46) = 1.91, p = .06, d 

= .47, but not at delayed test, p > .10. There were no differences between the single and 

contrastive conditions and between the single and mixed conditions, p’s > .10. 

Accuracy gain 

There were no main effects nor interaction, except for the main effect of pretest, F(1,68) 

= 1.63, p < .001, η2
p = .40, such that the pretest was strongly and negatively correlated with the 

pre-post accuracy gain, r(72) = -.60, p < .001, and pre-delayed accuracy gain, r(72) = -.53, p < 

.001.  

Exponential TF/NI 
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Interestingly, there were condition differences on Exponential TF/NI.  In terms of raw 

accuracy, at immediate posttest, both the mixed and single conditions outperformed the 

contrastive condition (single versus contrastive, t(46) = 2.62, p = .01, d = .76, and mixed versus 

contrastive, t(46) = 2.29, p = .03, d = .66. However, there were no condition differences at 

delayed test. In terms of overall accuracy gain, the single condition did marginally better than the 

contrastive condition on Exponential TF/NI gain, t(46) = 1.97, p = .06, d = .57. 

Sine TF/NI 

The mixed condition did better numerically than the single and contrastive conditions at 

delayed test (50% vs. 40% and 40%, respectively), but the differences were not reliable (p’s = 

.12). 

Untrained Functions (UF)  

Raw accuracy 

There was no condition differences nor interaction, p’s > .10. Even though participants 

were trained on Sine and Exponentials, they were able to improve on their ability to recognize 

the transformation on Cosine and Logarithmic functions from pretest to immediate posttest, t(71) 

= 4.96, p < .001, d = .78, and delayed test, t(71) = 4.53, p < .001, d = .71, and remarkably, with 

great retention after a week, t(71) = 1.37, p > .10. 

Interestingly, the single and mixed conditions showed improvements from pretest to 

immediate posttest, but not the contrastive condition (single: t(23) = 3.84, p < .01, d = .99; 

contrastive: p > .10; mixed: t(23) = 3.18, p < .01, d = .95) and from pretest to delayed test 

(single: t(23) = 4.74, p < .001, d = 1.09; contrastive: p > .10; mixed: t(23) = 1.90, p = .07, d = 

.55). 

 Accuracy gain 
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The single condition exhibited marginally higher learning gain than the contrastive 

condition with medium effect size, t(46) = 1.98, p = .05, d = .52. There was also a main effect of 

pretest, F(1,68) = 27.40, p < .001, η2
p = .29, and no other significant effects, p’s > .10. 

Combination Functions (CF) 

Raw accuracy 

All conditions showed improvements on combination functions, F(2,138) = 2.93, p < .03, 

η2
p = .05. Interestingly, there was no reliable difference between pretest and immediate posttest, 

t(72) < 1, p > .10, but the gain between pretest and delayed test was reliable, t(71) = 2.95, p < 

.01, d = .43, and marginally so for the gain between immediate posttest and delayed test, t(71) = 

1.96, p = .05, d = .35. There were no main effect of condition nor phase x condition interaction, 

p’s  > .10.   

Interesting, the mixed condition was the only one with improvements from pretest to 

immediate posttest (t(23) = 1.99, p = .06, d = .39) and from pretest to delayed test (t(23) = 2.50, p 

= .02, d = .67). 

Accuracy gain. There were no significant effects, p’s > .10. 

 

Fluent Accuracy 

Analyses with fluent accuracy showed the same patterns of results as accuracy. All three 

conditions showed strong overall improvements, particularly on TI and TF/NI items. The mixed 

and single conditions improved on UF, but not the contrastive condition. The mixed condition 

was the only one with improvements on Combination items.  

All items 

Fluent Accuracy 
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Figure 4.3b (in main text) displays the average fluent accuracy on all items. Similar to 

the accuracy measure, the 3 phase x 3 condition ANOVA showed a main effect of phase, 

F(2,138) = 78.54, p < .001, η2
p = .53. Participants from all conditions showed strong fluency gain 

between pretest to immediate posttest (21% - 39%), t(71) = 10.53, p < .001, d = 1.51, and to 

delayed test (21% - 36%), t(71) = 9.18, p < .001, d = 1.28. There was a small drop between 

immediate posttest and delayed test, t(71) = 2.34, p < .05, d = .21. There was no main effect of 

condition nor phase x condition interaction on scores, p’s > .10. 

 Fluent Accuracy Gain 

The 2 phase (pre-post, pre-delayed) x 3 condition ANCOVA with pretest fluent accuracy 

as the covariate showed a marginally significant main effect of condition, F(2,68) = 2.37, p = 

.10, η2
p = .07. The single condition did better than the contrastive condition with a medium effect 

size, t(46) = 2.14, p = .04, d = .62. The mixed condition also did marginally better than the 

contrastive condition, but the difference was of a small effect size, t(46) = 1.66, p = .10, d = .48. 

There were no other condition differences, p’s > .10. 

TI 

Raw scores 

Figure 4.4b displays the average fluent accuracy on TIs. There was a main effect of 

phase, F(2,138) = 56.13, p < .001, η2
p = .45. The differences between pretest and immediate 

posttest, t(71) = 10.25, p < .001, d = 1.61 and between pretest and delayed test, t(71) = 7.82, p < 

.001, d = 1.21, had large to very large effect sizes. The difference between post and delayed test 

was also reliable, t(71) = 2.82, p < .01, d = .39. The main effect of condition was shy from 

significance, F(2,69) = 2.29, p = .11, η2
p = .06. The single condition, however, did reliably 
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perform better than the contrastive condition with a medium effect size, t(46) = 2.16, p < .05, d = 

.62. There was no other effects, p’s > .10. 

Fluent Accuracy Gain 

There was a marginal main effect of condition, F(2,68) = 2.59, p = .08, η2
p = .07, with the 

single condition performing marginally better overall than the contrastive condition, t(46) = 1.88, 

p = .07, d = .54. There was also a marginally significant main effect of phase, reflecting a drop in 

fluent accuracy that did not appear with accuracy gain, F(1, 68) = 3.06, p = .09, η2
p = .04. There 

was a main effect of pretest, F(1,68) = 23.27, p < .001, η2
p = .26. 

TF/NI 

Raw scores 

Figure 4.5b displays the average fluent accuracy on TF/NI items. There was a main effect 

of phase, F(2,138) = 55.02, p < .001, η2
p = .44, with participants improving a large amount from 

pretest to immediate posttest, t(71) = 9.56, p < .001, d = 1.44, from pretest to delayed test, t(71) = 

7.93, p < .001, d = 1.24, and no forgetting between post and delayed test, t(71) = 1.28, p > .10. 

There was no other significant effects, p’s > .10. The same patterns were seen with Sine and 

Exponential TF/NI items.  

There was a marginally significant main effect of condition for Sine TF/NI, F(2,68) = 

2.69, p = .08, η2
p = .07, but no significant pairwise differences were found, p’s > .10. There were 

no condition differences on Exponential TF/NI items, p’s > .10. 

Fluent Accuracy Gain 

There were no significant effects, p’s > .10. 

UF 

Raw scores 
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Figure 4.7b displays the average fluent accuracy on UF items. Similarly, there was a 

main effect of phase, F(2,138) = 55.02, p < .001, η2
p = .44, with large and very large effect sizes 

for improvements between pretest and immediate posttest, t(71) = 9.56, p < .001, d = 1.44, and 

pretest and delayed test, t(71) = 7.93, p < .001, d = 1.24, with no forgetting between immediate 

posttest and delayed test, t(71) = 1.28, p > .10. There were no main effect of condition and no 

phase x condition interaction, p’s > .10. 

Fluent Accuracy Gain. There were no significant effects, p’s > .10. 

Combination Items (CF) 

Raw scores 

Figure 4.8b displays the average fluent accuracy on CF. There was a main effect of 

phase, F(2,138) = 3.92, p < .05, η2
p = .05. The pretest did not differ reliably from the immediate 

posttest, p > .10, but it did differ from the delayed test, t(71) = 2.32, p < .05, d = .35. The gain 

from immediate posttest and delayed test was also statistically reliable, though with a small 

effect size, t(71) = 2.64, p < .05, d = .38. There were no other significant effects, p’s > .10. 

  

Fluent Accuracy Gain. There were no significant effects, p’s > .10. 

 

Progression of Learning 

Accuracy by Quartiles 

Figure H.1a shows the mean accuracy by training quartiles. All three groups showed 

steady and reliable improvements from one quartile to the next, F(3,207) = 102.08, p < .001, η2
p 

= 60. The learning gain was modest and marginally significant between the 1st and 2nd quartiles 

(M = .24, SD = .10 to M = .26, SD = .13), t(71) = 2.01, p = .05, d = .21, but there were greater 
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and statistically significant improvements in later quartiles (M = .34, SD = .14 in the 3rd quartile 

and M = .46, SD = .12 in the 4th quartile), t(71) = 5.42, p < .001, d = .57 and t(71) = 8.56, p < 

.001, d = .93, respectively. 

In terms of condition differences, there were no main effect of condition nor quartile x 

condition interaction, p’s > .10. At the 1st quartile, the contrastive group had slightly higher 

accuracy than single (M = .26, SD = .13 vs. M = .21, SD = .09, t(46) = 1.68, p = .10, d = .45), but 

there were no differences in later quartiles, nor between the other conditions, p’s > .10. There 

were no other differences among conditions, p’s > .10, nor among the contrastive and single 

trials within the mixed condition, p’s > .10. 

 

Figure H.1. Training (a) accuracy (b) fluent accuracy by quartiles. 

 

Response Times on Correct Answers (RTc) by Quartiles 

Figure 4.9 shows the mean RTc by training quartiles All three groups also showed steady 

improvements in the RTc across training quartiles, F(3,207) = 22.06, p < .001, η2
p = .24. 

Participants started out requiring about 7.32 seconds to get reach question correctly (SD = .34) in 

the 1st quartile, and only needed 5.14 seconds (SD = .28) on the 4th quartile. The gain between 
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the 1st and 2nd quartiles was reliable with a small effect size, t(71) = 3.68, p < .001, d = .31, and 

so was the gain between 3rd and 4th quartiles, t(71) = 4.48, p < .001, d = .39, but not between the 

2nd and 3rd quartiles, p > .10.  

Interestingly, the contrastive group took longer than the mixed group (on contrastive 

trials) initially (1st quartile: M = 8.40, SD = 2.86 for contrastive vs. M = 6.67, SD = 2.92 for 

mixed), t(46) = 2.07, p = .04, d = .60; they caught up in later quartiles. The single group, on the 

other hand, started with the same RTc but ended up taking marginally longer in the 4th quartile 

than the mixed group (on single trials only, M = 4.44, SD = 2.00 for single, and M = 5.75, SD = 

2.60 for mixed), t(46) = 1.95, p = .06, d = .56. The mixed practice may encouraged participants to 

not dwell as long on contrastive trials, and may play a role in enhancing speed of processing on 

single trials. The contrastive and single conditions did not differ on RTc on any quartiles, p’s > 

.10. 

Fluent Accuracy by Quartiles 

Figure H.1b shows the mean accuracy by training quartiles. At the 1st quartile, mixed (M 

= .23, SD = .08) did marginally better than single (M = .19, SD = .08), t(46) = 1.79, p = .08, d = 

.53, but there were no differences at other quartiles, and no other condition differences in fluent 

accuracy by quartiles, p’s > .10. 
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APPENDIX I 

I.1. Experiment 5 - Results from All Participants 

Since we had unequal number of participants in each condition (N = 122, 90 female), the 

following analyses were conducted with weighted means. All assumptions were met. 

Efficiency 

Efficiency By trials 

A 2 phase (pre-post, pre-delayed) x condition on trial efficiency with pretest accuracy as 

the covariate showed a significant main effect of pretest, F(1,104) = 8.26, p < .01, η2
p = .07. The 

pretest accuracy negatively correlated with both the pre-post trial efficiency, r(108) = -.27, p 

<.01, and pre-delayed trial efficiency, r(108) = -.24, p = .01. The lower the performance at 

pretest, the higher the training efficiency. 

There was a significant main effect of phase, F(1,104) = 14.319, p < .001, η2
p = .12. The 

pre-post efficiency (M = .002, SD = .002) was reliably higher than the pre-delayed efficiency (M 

= .001, SD = .001).  

There was a marginally significant phase x condition interaction, F(2,104) = 2.96, p = 

.056, η2
p = .05. The AL/AC condition (M = .003, SD = .002) was marginally more efficient than 

the AL/NC condition (M = .002, SD = .001) at immediate posttest, t(77) = 1.92, p = .06, d = .43. 

There were no other differences across conditions in pre-post and pre-delayed efficiencies, p’s > 

.10. There were no significant main effect of condition and no phase x pretest accuracy 

interaction, p’s > .10. 

Efficiency By time 

The 2 x 3 condition ANCOVA on time efficiency with pretest accuracy as the covariate 

confirmed a significant main effect of pretest, F(1, 104) = 6.48, p < .05, η2
p = .06. Pretest 
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accuracy was negatively correlated with the pre-post time efficiency, r(108) = -.24, p < .05, and 

with pre-delayed time efficiency, r(108) = -.22, p < .05.  

There was a significant main effect of phase, F(1, 104) = 15.66, p < .001, η2
p = .13. The 

pre-post time efficiency (M = .008, SD = .006) was significantly greater than the pre-delayed 

time efficiency (M = .005, SD = .005). 

There was no significant main effect of condition and no phase x pretest interaction, p’s > 

.10, but there was a significant phase x condition interaction, F(2, 104) = 3.18, p < .05, η2
p = .06. 

The AL/AC condition (M = .009, SD = .006) proved to be more efficient than the AL/NC 

condition (M = .006, SD = .004) at immediate posttest, t(77) = 2.16, p = .03, d = .48, and 

marginally so at delayed test (AL/AC M = .006, SD = .005, AL/NC M = .004, SD = .004), t(77) = 

1.73, p = .09, d = .39. The AL condition (M = .009, SD = .006) was also more efficient than the 

AL/NC condition at immediate posttest, t(71) = 2.10, p = .039, d = .49, but not at delayed test, p 

> .05. There were no other differences across conditions at immediate posttest and delayed test, 

p’s > .05.  

Accuracy 

A 3 phase (pretest, posttest, delayed test) x 3 conditions repeated-measures ANOVA 

supported a significant main effect of phase, F(2, 210) = 180.46, p < .001, η2
p = .63, and no 

significant main effect of condition, F(2,105) = .89, p = .41, η2
p = .02, nor a phase x condition 

interaction, F(4, 210) = 1.3, p = .27, η2
p = .02.  

Accuracy gain 

 A 2 phase (pre-post, pre-delayed) x 3 condition (AL, AL/AC, AL/NC) repeated-measures 

ANCOVAs with pretest accuracy as the covariate confirmed the same results. There was a main 

effect of phase, F(1, 104) = 58.71, p < .001, η2
p = .36. Regardless of condition, all participants 
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were able to transfer what they have learned to new instances at posttests, 26% at pretest to 60% 

at posttest, t(107) = 17.79, p < .001, d = 2.14, and at delayed test (49%), t(107) = 11.66, p < 

.001, d = 1.34. They also forgot a significant amount after a week of no practice, t(107) = 7.57, p 

< .001, d = .65. There was a significant main effect of pretest, F(1, 104) = 42.94, p < .001, η2
p = 

.29, suggesting that the covariate was significantly related to the posttest gains. Indeed, the better 

participants did at pretest, the less learning gain was found at immediate posttest (r(108) = -.53, p 

< .001) and delayed test (r(108) = - .45, p < .001). There were no statistically significant main 

effect of condition, F(2, 104) = 1.02, p = .37, η2
p = .02, nor phase x pretest interaction, F(1, 104) 

= 1.29, p = .27, η2
p = .01, and no phase x condition interaction, F(2, 104) = 2.27, p = .11, η2

p = 

.04. 

Response Times on Correct Answers 

There were no differences among groups on RTc, but all three groups showed strong 

improvements on the time needed to arrive at the correct answers. The speed gain at posttest was 

sustained over a one week delayed for all participants.  

A 3 phase (pretest, posttest, delayed-test) x 3 conditions (AL, AL/AC, AL/NC) ANOVA 

on RTc confirmed these observations. There was a statistically significant main effect of phase, 

F(2, 210) =36.16, p < .001, η2
p = .25, and no other significant effects (p’s > .10). Participants 

improved from an average of 12.30 seconds per correct classification at pretest (SD = 4.59) to 

only 8.88 seconds at immediate posttest (SD = 2.83), t(107) = 7.36, p < .001, d = .90, to 9.34 

seconds at delayed test (SD = 2.75), t(107) = 6.23, p < .001, d = .78. The difference between 

immediate posttest and delayed test RTc was not statistically significant, t(107) = 1.48, p > .10.   

Fluent Accuracy 
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Similar to accuracy, when we consider only correct answers within 15 seconds, the same 

pattern applies: The AL group produced similar immediate posttest learning gain as the 

comparison groups, but showed a dramatic drop at delayed test. 

 A 3 phase (pretest, posttest, delayed-test) x 3 conditions (AL, AL/AC, AL/NC) ANOVA 

on fluent accuracy confirmed the patterns. There was a main effect of phase, F(2, 210) = 214.57, 

p < .001, η2
p = .67. Overall, participants from all conditions improved drastically in fluency from 

pretest (M = .17, SD = .11) to immediate posttest (M = .53, SD = .18), t(107) = 19.54, p < .001, d 

= 1.47, and to delayed test (M = .42, SD = .18), t(107) =  14.57, p < .001, d = 1.69. Their scores 

also dropped reliably from immediate posttest to delayed test, t(107) = 6.55, p < .001, d = .65. 

There were no significant main effect of condition and phase x condition interaction, p’s > .10. 

Fluent Accuracy Gain 

A 2 phase (pre-posttest, pre-delayed test) x 3 condition (AL, AL/AC, AL/NC) repeated-

measures ANCOVAs with pretest fluent accuracy as the covariate confirmed the same pattern. 

There was a main effect of pretest fluent accuracy, F(1, 104) = 24.43, p < .001, η2
p = .19. Pretest 

score was highly and negatively correlated with the pre-post gain, r(108) = -.43, p < .001, and 

with the pre-delayed test gain, r(108) = -.32, p = .001, suggesting that the lower scorers at pretest 

benefited the most at posttests.   

There was a main effect of phase, F(1, 104) = 25.06, p < .001, η2
p = .19. The pre-posttest 

gain (M = .36, SD = .19) was significantly higher than the pre-delayed test gain (M = .25, SD = 

.18), t(107) = 6.51, p < .001, d = .61. There was no significant main effect of condition and no 

phase x pretest interaction, p’s > .10.  

Unlike the results from completed participants, there was a marginally significant phase x 

condition interaction, F(2, 104) = 2.41, p = .09, η2
p = .04. There were no reliable condition 
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differences in pre-post fluency gain, but when the AL/AC condition (M = .28, SD = .17) showed 

marginally stronger pre-delayed fluency gain than the AL condition (M = .20, SD = .19), t(62) = 

1.80, p = .08, d = .45. There were no other significant differences between condition, p’s > .05. 

Progression of Learning 

Training Trials  

 The AL/AC and AL/NC groups received similar total number of trials in the training as 

the AL group (Table I.1). A more careful look suggests that although comparison practice did not 

reduce the total number of training trials, they may have reduced the number of classification 

trials needed for the noticeable accuracy gains (Table I.1). This was confirmed by an analysis of 

variance (ANOVA) on the number of classification trials for all participants, F(2, 105) = 3.57, p 

< .05.  The AL condition experienced more active classification trials than those in the AL/AC 

condition (158.00 vs. 127.80 trials), t(62) = 2.36, p = .02, d = .59, and than those in the AL/NC 

condition (158.00 vs. 134.32 trials), t(62) = 2.34, p = .02, d = .55. There was no reliable 

difference between the AL/AC and AL/NC conditions on the number of active trials seen, p > .05.  

 However, the three groups differed on the amount of time spent on the module, F(2, 105) 

= 4.97, p < .01. The AL/NC condition took longer on average than the AL condition (54.68 vs. 

43.59 minutes), t(71) = 3.24, p = .002, d = .79. There were no other condition differences in time 

spent on module, p > .10. 

 Groups did not differ on AL accuracy nor AL RTc, p’s > .10. However, one-way 

ANOVA showed a marginal main effect of condition on AL fluent accuracy, F(2,69) = 2.92, p = 

.06. AL/AC had higher and AL/NC had marginally higher overall score than the AL condition (.53 

and .52 vs. .48, respectively, t(46) = 2.46, p = .02, d = .71, and t(46) = 1.87, p = .07, d = .54. 

AL/AC and AL/NC did not differ, p > .10. 
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Condition 

Categories 
Retired  
(out of 7) 

Minutes 
on 
Module 

AL 
trials  

AA 
trials  

AB 
trials  

AL 
accuracy 

AA 
accuracy 

AB 
accuracy 

All participants (N = 108) 

AL 6.07 43.59 158.00  -- .51 (.02)   



    
	
  

224	
  

  

 

Table I.1. Training means of all participants (top half) and of participants who have completed 

the training modules (bottom half). Standard errors are in parentheses. 

(N = 29) (.42) (2.26) (8.30) 

AL/AC 

(N = 35) 

5.20 

(.48) 

49.11 

(2.67) 

127.80 

(9.41) 

35.57 

(5.64) 

14.77 

(2.23) 
.48 (.02) 

.71 (.02) .48 (.04) 

AL/NC 

(N = 44) 

4.75 

(.42) 

54.68 

(2.35) 

134.32 

(6.13) 

37.52 

(3.35) 

17.02 

(1.58) 
.50 (.02) 

.70 (.02) .58 (.03) 

Completed participants (N = 72) 

AL 

(N = 24) 

7 40.67 

(2.72) 

154.46 

(8.73) 

-- -- .53 (.02)   

AL/AC 

(N = 24) 

7 42.50 

(2.80) 

119.54 

(6.86) 

25.71 

(3.24) 

11.08  

(1.31) 

.58 (.02) .71 (.03) .52 (.04) 

AL/NC 

(N = 24) 

7 47.33 

(2.91) 

131.42 

(7.16) 

27.79 

(3.22) 

13.58  

(1.96) 

 .57 (.02) .72 (.03) .62 (.05) 
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I.2. EXPERIMENT 5 - EXTRA ANALYSES 

Response Times on Correct Answers 

There were no differences among groups on RTc, p’s >. 10, but all three groups showed 

strong improvements on the time needed to arrive at the correct answers. The speed gain at 

posttest was sustained over a one week delay. A 3 phase (pretest, posttest, delayed test) x 3 

conditions (AL, AL/AC, AL/NC) ANOVA on RTc confirmed these observations. There was a 

statistically significant main effect of phase, F(2, 138) =36.17, p < .001, η2
p = .34, and no other 

significant effects (p > .10). Participants improved from an average of 12.53 seconds per correct 

classification at pretest (SD = 4.51) to only 8.71 seconds at immediate posttest (SD = 2.24), t(71) 

= 7.35, p < .001, d = 1.07, to 9.52 seconds at delayed test (SD = 2.61), t(71) = 5.55, p <.001, d = 

.81. The small increase from immediate posttest to delayed test was statistically significant but 

with a small effect size, t(71) = 2.52, p = .01, d = .33.  

Fluent Accuracy 

A 3 phase (pretest, posttest, delayed test) x 3 conditions (AL, AL/AC, AL/NC) ANOVA on 

fluent accuracy confirmed a significant main effect of phase, F(2, 138) = 197.94, p < .001, η2
p = 

.74. Overall, participants improved dramatically in fluent accuracy from pretest (M = .19, SD = 

.01) to immediate posttest, (M = .59, SD = .01), t(71) = 20.27, p < .001, d = 3.25, and to delayed 

test (M = .46, SD = .02), t(71) = 13.12, p < .001, d = 1.88. The drop from immediate posttest to 

delayed test was also reliable, t(72) = 5.90, p < .001, d = .86 . 

There was a marginal main effect of condition on overall fluent accuracy, F(2, 69) = 

3.04, p = .06, η2
p = .08. The AL/AC condition produced higher overall fluent accuracy (M = .44, 

SD = .08) than the AL condition (M = .38, SD = .11), t(46) = 2.32, p = .03, d = .67. The AL/NC 

condition (M = .42, SD = .09) also scored higher than the AL, but the difference was not 
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statistically reliable, p > .10. There was no difference between the two comparison conditions, p 

> .10. 

Unlike accuracy, there was also a marginal interaction of phase x condition, F(4, 138) = 

1.98, p = .10, η2
p = .05. At pretest and immediate posttest, there were no differences across 

conditions (p’s > .10). However, and most notably, at delayed test, the AL/AC condition (M = 

.53, SD = .16) produced higher and the AL/NC condition (M = .48, SD = .15) marginally higher 

fluent accuracy than the AL condition with large and medium effect sizes (M = .38, SD = .18), 

t(46) = 2.99, p = .004, d = .86, and t(46) = 1.97, p = .06, d = .57, respectively. The AL/AC and 

AL/NC groups did not differ on their delayed test fluent accuracy, p > .10. 

Fluent Accuracy Gain 

A 2 phase (pre-post, pre-delayed-post) x 3 condition (AL, AL/AC, AL/NC) repeated-

measures ANCOVAs with pretest fluent accuracy as the covariate confirmed the findings above. 

There was a significant main effect of pretest fluent accuracy, F(1, 68) = 44.52, p < .001, η2
p = 

.40. The lower the pretest score, the higher the pre-post fluency gain, r(72) = -.63, p < .001, and 

the higher the pre-delayed fluency gain, r(72) = -.39, p = .001.  

After controlling for the effect of the pretest, there was a significant main effect of phase, 

F(1, 68) = 20.05, p < .001, η2
p = .23. The pre-post fluency gain (M = .41, SD = .17) was 

statistically significantly greater than the gain from pretest to delayed test gain (M = .28, SD = 

.18), suggesting overall forgetting after a week. There was also a significant main effect of 

condition, F(2, 68) = 3.38, p = .04, η2
p = .09. This was driven by overall difference between the 

AL/AC (M = .44, SD = .08) and the AL condition (M = .38, SD = .11), t(46) = 2.32, p = .03, d = 

.67. The other conditions did not differ reliably overall, p > .10. There were no phase x pretest 

and phase x condition interactions, p’s > .10. 
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APPENDIX J 

J.1. Extra Analyses and Detailed Results for Experiment 6 

Accuracy 

Table J.1 shows the summary of learning gain results on each item type within each condition. 

For each item type, we showed the pairwise dependent t-test statistics to assess learning gains 

between pretest and immediate posttest, and pretest to delayed test. Interestingly, all conditions 

showed strong learning gains on TI, TF/NI, and even UF. However, AL/AC and AL/NC produced 

learning gains on Logarithmic UF and on CF at delayed test, but AL did not.  

  
AL AL/AC AL/NC 

Item Type Phase t p d t p d t p d 
All items Pre-Post 7.63 *** 1.56 11.90 *** 2.43 9.57 *** 1.95 

 
Pre-Delayed 7.60 *** 1.55 10.87 *** 2.22 5.86 *** 1.20 

TI Pre-Post 8.14 *** 1.66 9.64 *** 1.97 7.34 *** 1.50 

 
Pre-Delayed 5.06 *** 1.03 6.31 *** 1.29 4.83 *** 0.99 

Sine TI Pre-Post 4.61 *** 0.94 7.45 *** 1.52 4.43 *** 0.90 

 
Pre-Delayed 5.35 *** 1.09 5.01 *** 1.02 2.48 * 0.51 

Exponential TI Pre-Post 5.27 *** 1.08 6.79 *** 1.39 5.89 *** 1.20 

 
Pre-Delayed 2.64 * 0.54 3.65 ** 0.75 4.29 *** 0.88 

TF/NI Pre-Post 5.38 *** 1.10 9.34 *** 1.91 7.70 *** 1.57 

 
Pre-Delayed 4.60 *** 0.94 5.24 *** 1.07 3.56 ** 0.73 

Sine TF/NI Pre-Post 2.41 * 0.49 5.56 *** 1.13 3.30 ** 0.67 

 
Pre-Delayed 2.36 * 0.48 3.29 ** 0.67 1.62 ns 0.33 

Exponential TF/NI Pre-Post 6.08 * 1.24 9.93 *** 2.03 6.22 *** 1.27 

 
Pre-Delayed 3.92 *** 0.80 5.56 *** 1.13 3.29 ** 0.67 

UF Pre-Post 3.84 *** 0.78 5.38 *** 1.10 5.17 *** 1.05 

 
Pre-Delayed 4.76 *** 0.97 4.33 *** 0.88 4.59 *** 0.94 

Cosine Pre-Post 4.41 *** 0.90 6.97 *** 1.42 5.35 *** 1.09 

 
Pre-Delayed 5.47 *** 1.12 4.66 *** 0.95 4.34 *** 0.89 

Logarithmic Pre-Post 1.50 ns 
 

1.37 ns 
 

2.46 * 0.50 

 
Pre-Delayed 1.52 ns 

 
2.22 * 0.45 2.90 * 0.59 

CF Pre-Post 0.64 ns 
 

1.44 ns 
 

2.07 + 0.42 

 
Pre-Delayed 1.27 ns 

 
3.92 *** 0.80 2.84 * 0.58 
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Table J.1. Summary of accuracy gain analyses. For the p columns, *** indicates p < .001, ** 

indicates p < .01, * indicates p < .05, + indicates p < .10, ns indicates p > .10.  

Trained Items (TI) 

Raw accuracy 

A 3 phase x 3 condition ANOVA on TI accuracy showed a main effect of phase, F(2, 

138) = 100.82, p < .001, η2
p = .59. All conditions led to strong and persisting learning gains on 

trained items (pre vs. immediate posttest, t(71) = 14.47, p < .001, d = 2.14, pre vs. delayed test, 

t(71) = 9.47, p < .001, d = 1.52). This was the case for all conditions (Table J.1). All conditions 

improved from pretest to immediate posttest and from pretest to delayed test, p’s < .001, d’s = 

.99 to 1.97. There was also a reliable drop in accuracy from post to delayed test, t(71) = 4.67, p < 

.001, d = .65. 

 There was a main effect of condition, F(2,69) = 3.52, p < .05, η2
p = .09. Both of the 

comparison conditions led to greater overall TI accuracy than the AL condition (43% from 

AL/AC vs. 35% from AL, t(46) = 2.61, p < .05, d = .75, and 41% from AL/NC vs. AL, t(46) = 

2.02, p = .05, d =  .58. There was no phase x condition interaction, F(4,138) = .73, p > .10. 

Accuracy gain 

The average accuracy gain was numerically higher for the AL/AC condition (35%) than 

25% from the AL condition and 31% from the AL/NC condition, though the main effect was just 

marginally significant, F(2,68) = 2.34, p = .10, η2
p = .06, and the pairwise t-tests showed no 

reliable differences among the three conditions, p’s > .10. The greater the pretest TI, the smaller 

the learning gain at immediate posttest, r(72) = -.32, p < .01, and at delayed test, r(72) = -.49, p < 

.001. The difference between the immediate posttest gain and delayed test gain was not 

statistically significant, F(1,68) = 2.10, p > .15, confirming the notable retention over the one 
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week delay. There was no phase x condition interaction, nor phase x pretest accuracy interaction, 

p’s > .10. 

The patterns were slightly different between Exponential items and Sine items. In both 

cases, AL/AC triumphed. Figures J.1a and b show the average accuracy on Sine and Exponential 

TIs. 

 

Figure J.1. Mean accuracy of (a) Sine trained items and (b) Exponential trained items 

Sine TI 

Raw accuracy. There was again a main effect of phase, F(2,138) = 50.06, p <.001, η2
p = 

.42. The drop from immediate posttest to delayed test was modest, t(71) = 2.57, p < .05, d = .36, 

and there was large gains from pretest to immediate posttest, t(71) = 9.34, p < .001, d = 1.38, and 

to delayed test, t(71) = 7.23, p < .001, d = 1.13. There was a marginal phase x condition 

interaction, F(2,138) = 2.13, p = .08, η2
p = .06, but the main effect of condition did not reach 

statistical significance, F(2,69) = 2.15, p = .13, η2
p = .06. There were no condition differences at 

pretest, p’s >.10, but at immediate posttest, both of the comparison conditions did numerically 
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better than the AL condition (64% from AL/AC and 43% from AL, t(46) = 2.74, p < .10 

(marginal), d = .79, and 59% from AL/NC vs. AL, t(46) = 2.12, p < .05, d = .61. There was no 

difference between the two comparison conditions, p > .10. 

 Accuracy gain. Similarly, the 2 x 3 ANCOVA with pretest Sine TI accuracy as the 

covariate confirmed an marginal phase x condition interaction, F(2,68) = 2.83, p = .07, η2
p = .08, 

and no main effect of condition, p > .10. There was also no main effect of phase, or phase x 

pretest Sine TI interaction, p’s > .10. The AL/AC condition had higher pre-post gain on Sine TI 

than the AL condition, t(46) = 2.24, p < .05, d = .65, but there were no other condition 

differences on pre-post nor pre-delayed gain, p’s >.10. Again, the pretest predicted immediate 

posttest gain, r(72) = -.44, p < .001, and delayed test gain, r(72) = -.60, p < .001, as shown by a 

main effect of pretest, F(1,68) = 40.36, p < .001, η2
p = .37. 

Exponential TI 

Raw accuracy. There was a marginal main effect of condition, F(2,69) = 2.84, p = .07, 

η2
p = .08. There was larger gain by AL/AC (43%) than AL (34%), t(46) = 2.31, p < .05, d = .67. 

There were no reliable differences between AL/AC and AL/NC, and between AL/NC and AL, p’s 

> .10. Improvements were found across all conditions, F(2,138) = 56.01, p < .001, η2
p = .45. 

There was a drop from immediate posttest to delayed test, t(71) = 4.43, p < .001, d = .67, but the 

learning gain from pretest to immediate posttest was reliable, t(71) = 10.92, p < .001, d = 1.90, 

and so was the gain from pretest to delayed test, t(71) = 6.10, p < .001, d = 1.09. There was no 

phase x condition interaction, p > .10. 

 Accuracy Gain. The 2 x 3 ANCOVA with pretest Exponential TI accuracy as the 

covariate confirmed the drop in learning gain from the immediate posttest to the delayed test, 

F(1,68) = 6.21, p < .05, η2
p = .08, but the main effect of condition did not reach statistical 
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significance, F(1,68) = 2.32, p = .11, η2
p = .06. There were no phase x pretest and no phase x 

condition interactions, p’s > .10. As with other measures, the pretest Exponential TI performance 

negatively correlated with both the posttests, r(72) = -.60, p < .001, and delayed test Exponential 

TI, r(72) = -.64, p < .001. 

Trained Functions/Novel Items (TF/NI) 

Raw accuracy 

Across conditions, participants robustly transferred their learning to new instances of 

trained transformations, F(2, 138) = 70.65, p < .001, η2
p = .54 (pre vs. posttest, t(71) = 12.05, p < 

.001, d = 1.74, pre vs. delayed test, t(71) = 7.61, p < .001, d = 1.22, and post vs. delayed test, 

t(71) = 4.95, p < .001, d = .63).  

This was the case for all conditions. All conditions improved from pretest to immediate 

posttest and from pretest to delayed test, p’s < .01, d’s = .73 to 1.91. 

This transfer ability was particularly strong for those in the AL/AC group, F(2,69) = 5.79, 

p < .01, η2
p = .14. They performed better overall than both the AL, t(46) = 3.47, p < .01, d = 1.00, 

and the AL/NC groups, t(46) = 2.29, p < .05, d = .66. There was no condition difference between 

the AL/NC and AL, p > .10, and no phase x condition interaction, p > .10. 

Accuracy gain  

The 2 x 3 ANCOVA with pretest TF/NI as the covariate confirmed the condition 

differences in overall learning gain, F(2,68) = 5.87, p <.01, η2
p = .15. Pairwise t-tests were not 

statistically reliable, but the 8% difference between AL/AC and AL/NC was marginally 

significant with a medium effect size, t(46) = 1.75, p = .09, d = .51. The lower the pretest TF/NI, 

the higher the learning gain at immediate posttest, r(72) = -.51, p < .001, and at delayed test, 
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r(72) = -.68, p < .001. There was no main effect of phase, suggesting little learning loss between 

immediate and delayed test, p > .10, and no interactions, p’s > .10. 

 These patterns were similar for both Exponential and Sine TF/NIs. Figures J.2a and b 

show the average accuracy on Sine and Exponential TF/NI items. 

Exponential TF/NI 

Raw Accuracy. There was a main effect of phase, F(2,138) = 78.39, p < .001, η2
p = .53. 

Regardless of conditions, there were strong improvements from pretest (19%) to immediate 

posttest (59%), t(71) = 12.39, p < .001, d = 1.86, and to delayed test (43%), t(71) = 7.27, p < 

.001, d = 1.11. The drop between immediate posttest and delayed test was reliable, t(71) = 5.24, 

p < .001, d = .63. There was a main effect of condition, F(2,69) = 4.23, p < .05, η2
p = .11. The 

AL/AC group did better than AL (48% vs. 36%, t(46) = 2.62, p < .05, d = .76), and also better 

than AL/NC (38%, t(46) = 2.40, p < .05, d = .69). There was no phase x condition interaction, p > 

.10. 

Accuracy gain. The drop in accuracy between immediate posttest and delayed test gain 

was confirmed with a main effect of phase, F(1,68) = 6.21, p < .05, η2
p = .08. Pretest Exponential 

TF/NI strongly predicted immediate posttest and delayed test, F(1,68) = 81.00, p < .001, η2
p = 

.54. The smaller the pretest, the greater the gain at immediate posttest, r(72) = -.46, p < .001, and 

delayed test, r(72) = -.46, p < .001. The main effect of condition did not reach statistical 

significance, F(2,68) = 2.32, p = .11, η2
p = .06, and there were no interactions, p’s > .10. 

 Sine TF/NI 

Raw Accuracy. Similarly, all groups had strong improvements across learning phase, 

F(1,138) = 20.76, p < .001, η2
p = .23. Participants scored 25% at pretest and 49% at immediate 

posttest, t(71) = 6.15, p < .001, d = .92, and remembered much of what they have learned at 
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delayed test with 42%, t(71) = 4.16, p < .001, d = .72. They forgot a small, albeit reliable amount 

between immediate posttest and delayed test, F(71) = 2.06, p < .05, d = .30. There was a main 

effect of condition, F(2,69) = 3.12, p = .05, η2
p = .08. AL/AC did better than AL (44% vs. 35%), 

t(46) = 2.49, p < .05, d = .72, and there were no other condition differences, p’s > .10, and no 

phase x condition interaction, p > .10. 

 Accuracy gain. A 2 phase x 3 condition ANOVA on the accuracy gain confirmed a main 

effect of phase, F(1,69) = 4.24, p = .04, η2
p = .06, but there was no main effect of condition nor 

phase x condition interaction, p’s > 

.10.   

Figure J.2. Mean accuracy of (a) Sine and (b) Exponential trained functions, novel items 

 

Untrained Functions (UF) 

Raw accuracy 

Figure J.3 shows the average accuracy on UF items. Training on Sine and Exponential 

functions also led to strong and long-lasting improvements on Cosine and Logarithmic functions, 



    
	
  

234	
  

but there were no differences among conditions on the amount of UF gained. The 3 phase x 3 

condition ANOVA confirmed a main effect of phase, F(2,139) = 41.60, p < .001, η2
p = .38. 

There was an 18% gain from pretest to immediate posttest, t(71) = 8.31, p < .001, d = 1.13, and 

19% gain from pretest to delayed test, t(71) = 7.88, p < .001, d = 1.18. What was learned was 

retained a week later. The immediate posttest and delayed test UF accuracies did not differ from 

each other, p > .10.  

This was the case for all conditions. All conditions improved from pretest to immediate 

posttest and from pretest to delayed test, p’s < .01, d = .78 to 1.10. 

The AL/AC group had higher average UF accuracy (32%) than both the AL/NC (26%) and 

the AL (27%) groups, but the main effect of condition was not statistically significant, p > .10. 

There was also no phase x condition interaction, p > .10.  

 

Figure J.3. Mean accuracy of untrained function items 

 

Accuracy gain 
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A 2 phase x 3 condition ANCOVA confirmed that the lower the pretest UF accuracy, the 

higher the learning gain at immediate posttest, r(72) = -.36, p < .01, and delayed test, r(72) = -

.46, p < .001. There were also no differences in accuracy gains at post and delayed test, no 

differences across condition in accuracy gains, and no phase x condition interaction, p’s > .10.  

Interestingly, there were condition differences on Cosine items but not on Logarithmic 

items. Figure J.4 shows the average accuracy on Cosine and on Logarithm items.   

 

Figure J.4. Mean accuracy of (a) Cosine and (b) Logarithm untrained function items 

 

 Cosine 

Raw accuracy. There was a marginally significant main effect of condition, F(2,69) = 

3.03, p = .06, η2
p = .08. The AL/AC condition did better than the AL condition, 43% vs. 31%, 

t(46) = 2.21, p < .05, d = .64, and marginally than the AL/NC condition, 43% vs. 34%, t(46) = 

1.74, p = .09, d = .50, both with medium effect sizes. There was no difference between the AL 
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and the AL/NC condition, p > .10. As above, there was a main effect of phase, F(2,138) = 51.06, 

p < .001, η2
p = .43, and no phase x condition interaction, F(4,138) = .66, p > .10. There was 

strong learning gain from pretest to immediate posttest, 19% to 45%, t(71) = 9.31, p < .001, d = 

1.21, and to delayed test (44%), t(71) = 8.37, p < .001, d = 1.15, with no decay between 

immediate posttest and delayed test, t(71) = .59, p > .10. This learning gain was found with all 

conditions as seen in Table J.1, p’s < .001, d = .89 to 1.42.  

Accuracy gain. There was no difference in the pre-post than the pre-delayed gain, 

confirming long-lasting learning gain, F(1,68) < 1, p > .10. There was a marginally significant 

main effect of condition on the overall gain, F(2,68) = 2.57, p = .08, η2
p = .07, but no reliable 

condition differences, p’s > .10. There was a main effect of pretest on the learning gain, with 

pretest correlating highly with the immediate posttest gain, r(72) = -.42, p < .001, and  delayed 

test gain, r(72) = -.48, p < .001. 

 Logarithm  

Raw accuracy. There was a main effect of phase, F(2,138) = 8.31, p < .001, η2
p = .11. 

Similar to Exponential items, across conditions, participants improved from pretest to immediate 

posttest, 14% to 23%, t(71) = 3.28, p < .01, d = .51, and from pretest to delayed test (26%), t(71) 

= 3.90, p < .001, d = .62 , with no decay (but a small numerical gain) after a week, t(71) = .92, p 

> .10. There was no main effect of condition and no phase x condition interaction, p’s > .10. 

Interestingly, only the AL/AC and AL/NC conditions showed improvements on Logarithmic 

items, but only at delayed test (Table J.1), p’s < .05, d = .45 and .59, respectively. 

 Accuracy gain. Similarly there was a strong correlation between pretest and immediate 

posttest, r(71) = -.52, p < .001, and delayed test, r(72) = -.46, p < .001. There were no main 

effect of condition nor interactions, p’s > .10.  
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Combination Functions (CF)  

Raw accuracy 

Figure 6.9 (in main text) shows the average accuracy on CF. Remarkably, all three 

trainings also led to improvements on CF, F(2,138) = 10.26, p < .001, η2
p = .13. The gain from 

pretest to immediate posttest was modest (6%) and not reliable, t(71) = 1.63, p = .11, d = .27, but 

the gain from pretest to delayed test was a good 17%, t(71) = 4.79, p < .001, d = .70. 

Interestingly, this gain from immediate posttest to delayed test was reliable, t(71)= 2.77, p < .01, 

d = .39. This was the same pattern seen in Experiment 4.  

Interestingly, similar to the mixed condition from Experiment 4, training with comparison 

trials led to improvements on CF. The AL/AC did not produce a reliable learning gain from 

pretest to immediate posttest, p > .10, but the learning gain from pretest to delayed test was one 

of large effect size, t(23) = 3.92, p < .001, d = .80. The AL/NC condition all conditions improved 

marginally on CF from both pretest to immediate posttest, t(23) = 2.07, p = .05, d = .42, and 

from pretest to delayed test, t(23) = 2.84, p = .01, d = .58, with small-medium effect sizes. The 

AL condition did not show any improvements form pretest to immediate posttest, nor from 

pretest to delayed test, p’s > .10. 

The main effect of condition was not statistically significant, F(2,69) = 2.20, p = .12, η2
p 

= .06, and there was no phase x condition interaction, F(4,138) = 1.58, p > .10, η2
p = .04. 

Accuracy gain 

The 2 phase x 3 condition ANCOVA with pretest CF accuracy as a covariate confirmed a 

marginal main effect of condition, F(2,68) = 2.34, p = .10, η2
p = .06. Both of the trainings with 

comparisons led to greater accuracy gain on CF than the AL training, with marginal significance 
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but medium effect sizes (AL/AC vs. AL, t(46) = 1.87, p = .07, d = .54, AL/NC vs. AL, t(46) = 

1.73, p = .09, d = .50). Across conditions, the immediate posttest gain did not differ from the 

delayed test gain, p > .10, and there was no phase x condition interaction, p > .10. There was no 

difference in pre-post and pre-delayed learning gain, p > .10. The accuracy at pretest could 

reliably predict learning gain, F(1,68) = 67.99, p < .001, η2
p = .50, and there was a marginally 

significant phase x pretest accuracy interaction, F(1,68) = 3.66, p = .06, η2
p = .05. The lower the 

accuracy at pretest, the higher the learning gain at immediate posttest, r(72) = -.66, p < .001, and 

delayed test, r(72) = -.58, p < .001.  

 
Fluency Accuracy 

Fluency scores show very similar patterns as accuracy results. Figures 6.2b – 6.9b show the 

fluent accuracy means. 

Trained Items (TI) 

Figure 6.6b shows the average fluent accuracy on TIs. There was a main effect of phase, 

F(2,138) = 84.78, p < .001, η2
p

 = .55, showing large learning gain from pretest to immediate 

posttest (17% vs. 50%), t(71) = 13.76, p < .001, d = 2.14, and to delayed test (17% vs. 38%), 

t(71) = 8.67, p < .001, d = 1.40. The difference between post and delayed test was also reliable, 

t(71) = 4.46, p < .001, d = .71.  

There was a main effect of condition, F(2,69) = 2.49, p = .09, η2
p = .07. The AL/AC 

condition (M = .37, SD = .09) had overall marginally higher fluent accuracy than the AL 

condition (M = .31, SD = .11), t(46) = 1.91, p = .06, d = .55. The AL/NC condition (M = .37, SD 

= .10) also did marginally better than the AL condition, t(46) = 1.87, p = .07, d = .54. There was 
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no difference between the two comparison conditions, p > .10, and no phase x condition 

interaction, p > .10. 

Fluent Accuracy Gain 

There was a main effect of phase, F(1,68) = 4.67, p = .03, η2
p = .06, reflecting a drop from 

immediate posttest to delayed test. There was no main effect of condition, F(2,68) = 1.56, p > 

.10, η2
p = .04, and no interactions, p’s > .10. 

These were no differences among conditions on fluent accuracy when considering Sine 

TI and Exponential TI separately, p’s > .10.  

Trained Functions, Novel Items (TF/NI) 

Figure 6.5b shows the average fluent accuracy on TF/NI items. All conditions were able 

to apply what they have learned fluently to TF/NI items. There was a main effect of phase, 

F(2,138) = 89.97, p < .001, η2
p

 = .57. All groups showed strong improvements from pretest to 

immediate posttest (17% vs. 49%), t(71) = 12.70, p < .001, d = 1.86, and to delayed test (17% vs. 

40%), t(71) = 9.00, p < .001, d = 1.45. The change from post and delayed tests was also reliable, 

t(71) = 3.98, p < .001, d = .55. There was a main effect of condition, F(2,69) = 3.43, p = .04, η2
p 

= .09. The AL/AC condition (M = .40, SD = .09) had overall higher fluent accuracy than the AL 

condition (M = .32, SD = .09), t(46) = 2.84, p = .007, d = .82. There were no other condition 

differences, p’s > .10. 

 There was a marginal phase x condition interaction, F(4,138) = 2.01, p = .09, η2
p = .06. 

There were no condition differences at pretest, p’s > .10, but at immediate posttest, both of the 

AL/AC and AL/NC conditions did better than the AL condition (AL/AC vs. AL, t(46) = 3.45, p = 

.001, d = 1.00; AL/NC vs. AL, t(46) = 2.19, p = .03, d =.64). However, there were no differences 

at delayed test, p’s > .10. 
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Fluent Accuracy Gain 

There was a main effect of condition, F(2,68) = 4.45, p < .05, η2
p = .12. The AL/AC did 

marginally better overall than the AL condition, t(46) = 1.80, p = .08, d = .52. There were no 

other condition differences, p’s > .10, and no main effect of phase and no interactions, p’s > .05.  

There was a main effect of pretest, F(1,68) = 61.42, p < .001, η2
p = .48. Lower pretest 

predicts higher immediate posttest, r(72) = -.49, p < .001, and higher delayed test, r(72) = -.67, p 

< .001. 

Interestingly, these condition differences were more obvious with Sine TF/NI than 

Exponential TF/NI items.  

Sine TF/NI 

Fluent Accuracy. There was a main effect of phase, F(2,138) = 25.85, p < .001 η2
p = .27, 

and a marginal main effect of condition, F(2,69) = 2.68, p = .08, η2
p = .07, and no phase x 

condition interaction, p > .10. All three groups improved on Sine TF/NI from pretest to 

immediate posttest, t(71) = 6.84, p < .001, d = 1.00, and from pretest to delayed test, t(71) = 5.14, 

p < .001, d = .84, with no forgetting between post and delayed test, p > .10. AL/AC did better 

than AL (M = .40, SD = .13 versus M = .32, SD = .12, respectively), t(46) = 2.22, p = .03, d = .64. 

There was no other condition differences, p’s > .10.  

Fluent Accuracy Gains. There was a main effect of condition, F(2,68) = 4.62, p = .01, η2
p 

= .12, and a main effect of pretest Sine TF/NI score, F(1,68) = 146.90, p < .001, η2
p = .68, and no 

other effects, p’s > .10. However, none of the pairwise comparisons among conditions were 

statistically reliable, p’s > .10. 

Exponential TF/NI 
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Fluent Accuracy. There was just a main effect of phase, F(2,138) = 71.13, p < .001, η2
p = 

.51, and no other effects, p’s > .10. All three groups improved from pretest to immediate posttest, 

t(71) = 11.90, p < .001, d = 1.86, and pretest to delayed test, t(71) = 7.30, p < .001, d = 1.16, with 

some forgetting between post and delayed test, t(71) = 4.33, p < .001, d = .55. 

Fluent Accuracy Gains. There was just a main effect of phase, F(1,68) = 9.64, p = .003, 

η2
p = .12, and a main effect of pretest Exponential TF/NI score, F(1,68) = 32.94, p < .001, η2

p = 

.33, and no other effects. 

UF 

Raw scores 

Figure J.3b shows the average fluent accuracy on UF items. There was a main effect of 

phase, F(2,138) = 44.83, p < .001, η2
p = .39. The learning gains had large effect sizes: pretest to 

immediate posttest (14% - 31%), t(71) = 8.42, p < .001, d = 1.19, and pretest to delayed test 

(14% - 33%), t(71) = 8.16, p < .001, d = 1.28. There was no drop in score between post and 

delayed test, t(71) = .71, p = .48, and no main effect of condition nor phase x condition 

interaction, p’s > .10. 

Score gain 

There was no main effects nor interactions, p > .10. The same patterns were found with 

both Cosine and Logarithm functions. 

Combination Functions (CF) 

Raw scores 

Figure 6.9b shows the average fluent accuracy on Combination items. There was a main 

effect of phase, F(2,138) = 12.56, p < .001, η2
p = .15. Interestingly, although there was no 

significant gain between pretest and immediate posttest, t(71) = .28, p = .78, d = .04, there was a 
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gain between pretest and delayed test, t(71) = 4.08, p < .001, d = .59, and between immediate 

posttest and delayed test, t(71) = .45, p < .001, d = .63, both with medium effect sizes.  

There was a main effect of condition, F(2,69) = 3.26, p < .05, η2
p = .09. AL/NC had 

overall higher accuracy than AL/AC (39% vs. 27%), t(46) = 2.31, p = .03, d = .67, and AL higher 

than AL/AC (38% vs. 27%), t(46) = 2.21, p = .03, d = .64. This was likely because the AL and 

AL/NC groups started out with higher accuracy on these items than the AL/AC group (38% and 

31% vs. 22%, respectively, t(46) = 2.20, p = .03, d = .63 and t(46) = 1.49, p > .10) There was no 

difference between AL/NC and AL, p > .10. There was no phase x condition interaction, p > .10. 

Interestingly, the AL condition showed no improvement from pretest to immediate 

posttest, and pretest to delayed test, p > .10, but both AL/AC and AL/NC showed reliable gains 

from pretest to delayed test with medium effect sizes, p’s < .05, d = .55 and .61.  

Score gain 

There was a marginally significant main effect of phase, F(1,68) = 4.00, p = .05, η2
p = 

.06, and no other effects, p’s > .10. 

 
Progression of Learning 

By Quartiles 

Figure 6.10 show the average accuracy, RTc, and fluent accuracy by quartile and by 

block, only on AL trials. Across all four quartiles, the AL/AC condition produced higher 

accuracy than the AL condition, with medium to large effect sizes, t(46) > 1.84, p = .02 to .07, d 

= .53 to .81. Interestingly, however, this seemed to have resulted from a speed-accuracy trade-

off. The AL/AC condition consistently look longer to reach the correct answers on all four 

quartiles than the AL condition with medium effect sizes, t(46) > 1.84, p = .03 to .05, d = .53 to 
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.61. The AL/AC condition also did better than the AL condition in terms of score, but only 

reliably or marginally reliably so in the 1st , 2nd, and 4th quartiles, t(46) > 1.96, p = .03 to .06,  d = 

.58 to .71.  

AL/AC did not differ from AL/NC in accuracy in the first 2 quartiles, but they did 

marginally better than AL/NC in the latter two, t(46) = 1.84,  p = .07, d = .53, and t(46) = 2.52, p 

= .02, d = .73, for the 3rd and 4th quartiles, respectively. AL/AC also look longer (or marginally 

longer) on RTc than AL/NC on the 1st, 3rd, and 4th quartiles, t(46) > 1.75, p = .01 to .09, d = .51 

to .79. There were no differences between these two conditions on scores in any quartiles, p’s > 

.10. 

Between the AL/NC and AL conditions, AL/NC did better (and marginally better) on 

accuracy and score than AL on the 1st and 2nd quartile, t(46) > 1.80, p = .04 to .08, d = .52 to .62, 

but that advantage disappeared in the 3rd and 4th quartiles, p’s > .10. There were no differences 

on RTc, p > .10. 

 
By Blocks 

These condition differences seemed apparent even during the first few blocks into the 

training. Figure 6.10 shows these data by block. Because only AL trials are plotted, the AL/NC 

and AL/AC groups had fewer than 12 trials per block. At block 1, the AL/AC and AL/NC did not 

differ from AL in accuracy, p’s  > .10, but the AL/AC already had marginally higher RTc than AL 

and significantly higher than AL/NC (10.67 seconds vs. 8.10 seconds and 7.99 seconds, t(46) = 

1.98, p = .05, d = .57 and t(46) = 2.29, p = .03, d = .66, respectively). This pattern held when we 

considered RT generally (RT on both correct and incorrect trials). At block 1, AL/AC generally 

took marginally longer than AL (M = 10.67, SD = 3.99 vs. M = 8.10 seconds, SD = 4.93, 
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respectively), t(46) = 1.98, p = .05, d = .57 and significantly longer than AL/NC (M = 7.99, SD = 

2.96), t(46) = 2.29, p = .03, d = .76.  

 We also analyzed the accuracy (not RTc because there were very few accurate items) 

during the first 4 AL trials in Block 1, and found no statistical differences in accuracy among the 

conditions, p’s > .10. AL/AC had higher RT (M = 11.54, SD = 6.10) than AL/NC (M = 8.64, SD = 

3.91), t(46) = 1.96, p = .06, d = .57, but not higher than AL, p > .10. Taken together, the lack of 

differences in accuracy and RTc earlier on in the training suggested that condition effects were 

due to the training. However, the AL/AC group generally spent longer on each trial, suggesting 

that some of the effects seen during the training may be due to individual differences in overall 

speed.  
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