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In brief

Bressan et al. report the first data release

of the Foundational Data Initiative for

Parkinson Disease (FOUNDIN-PD), which

includes a multi-layered molecular

dataset of 95 induced pluripotent stem

cell (iPSC) lines with different genetic risk

backgrounds differentiated to

dopaminergic (DA) neurons, a major

affected cell type in Parkinson disease

(PD).
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SUMMARY
The Foundational Data Initiative for Parkinson Disease (FOUNDIN-PD) is an international collaboration
producing fundamental resources for Parkinson disease (PD). FOUNDIN-PD generated a multi-layered mo-
lecular dataset in a cohort of induced pluripotent stem cell (iPSC) lines differentiated to dopaminergic (DA)
neurons, a major affected cell type in PD. The lines were derived from the Parkinson’s Progression Markers
Initiative study, which included participants with PD carrying monogenic PD variants, variants with interme-
diate effects, and variants identified by genome-wide association studies and unaffected individuals. We
generated genetic, epigenetic, regulatory, transcriptomic, and longitudinal cellular imaging data from
iPSC-derived DA neurons to understand molecular relationships between disease-associated genetic varia-
tion and proximate molecular events. These data reveal that iPSC-derived DA neurons provide a valuable
cellular context and foundational atlas for modeling PD genetic risk. We have integrated these data into a
FOUNDIN-PD data browser as a resource for understanding the molecular pathogenesis of PD.
INTRODUCTION

Our understanding of the genetic architecture of Parkinson dis-

ease (PD) has expanded considerably over the last decade. In-

vestigations of rare monogenic forms of PD and parkinsonism

have revealed multiple genes that contain disease-causing mu-
This is an open access article und
tations.1 Additionally, iterative application of genome-wide asso-

ciation studies (GWASs) in increasingly larger sample sizes have

identified 90 independent risk variants for PD, which cumula-

tively contribute to 16%–36% of the heritable risk for the dis-

ease.2 One of the main pathological hallmarks of PD is the pro-

gressive degeneration of dopaminergic (DA) neurons in the
Cell Genomics 3, 100261, March 8, 2023 1
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substantia nigra and the accumulation of alpha-synuclein protein

aggregates, known as Lewy bodies and Lewy neurites.3 Addi-

tionally, previous work has highlighted that genetic risk in PD is

likely to play a significant role in DA neurons.2,4

On a clinical level, there is large variability in age at onset and

progression across patients with both monogenic and idiopathic

PD, even in those carrying the same damaging variant. This vari-

ation is likely caused by a combination of environmental and ge-

netic factors, and while some environmental risk factors have

been identified, such as smoking and exposure to pesticides,

studying the environment remains complex.5 For this reason,

within this study, we have chosen to focus on genetic risk factors

in the context of PD. Interestingly, several genetic risk factors for

PD identified by GWASs also influence the overall risk in carriers

of LRRK2 or GBA1 mutations,6,7 which are the most common

genetic causes of PD. In addition, multiple GWAS-nominated

loci include genes implicated in monogenic forms of PD (e.g.,

SNCA and LRRK2), highlighting a clear etiologic link between

monogenic and sporadic disease. Thus, understanding the mo-

lecular mechanisms underlying known genetic risk factors and

mutations would provide actionable insights into the biology of

disease risk, onset, progression, and modifiers of disease.

While the pace of genetic discovery has increased dramati-

cally in recent years, our ability to characterize the associated

function and dysfunction of nominated genes and risk loci has

not matched this progress. Research centered on the biology

of genes that contain rare disease-causing mutations has re-

vealed important insights into the molecular mechanisms lead-

ing to disease; however, it is challenging to demonstrate how

risk loci identified by GWASs may lead to disease. This is largely

due to the complexity of these risk signals and the lack of large-

scale reference data to interpret the molecular outcomes at

these risk loci. A significant issue arises when unraveling

GWAS loci due to the complex architecture of the human

genome, meaning that modifier and risk loci identified by

GWASs generally nominate genomic regions and not specific

genes. Adding to this complexity, disease effect sizes are

modest, the cellular context is often unknown, and the genetic

mediator is generally unlikely to be protein-coding. Extensive

experimental work has provided clear insights into the molecular

consequences of these variants but has not yet shown the influ-

ence of additional risk factors on these molecular disturbances,

which is essential to understand why some carriers of these risk

factors develop disease and others do not.

Studying the biology of GWAS loci in traditional cellular and

animal models is extremely challenging due to large linkage

disequilibrium (LD) blocks resulting in many highly correlated

variants. Additionally, variants identified by GWASs are generally

non-coding, and correlating these variants to a causative gene is

difficult. Low effect sizes and uncertainty in the resulting pheno-

type further confounds the identification of adequate models.

Therefore, the large number of known and to-be-discovered

risk loci require an alternative strategy to understand the under-

lying biology. The development of human induced pluripotent

stem cell (iPSC)-based cellular models provides a unique oppor-

tunity to address the collective impact of genetic risk factors and

define the relevant cellular context for modeling these variants at

scale. It is important to note that iPSC models are unlikely to be
2 Cell Genomics 3, 100261, March 8, 2023
able to model fulminant disease processes that likely take de-

cades to develop in the context of organismal aging. However,

they may still be useful in identifying proximate molecular signa-

tures that can be captured in cells containing specific risk factors

or mutations. The collection of Parkinson’s Progression Markers

Initiative8 (PPMI; https://www.ppmi-info.org/) iPSC lines carrying

different mutations and combinations of genetic risk factors al-

lows research into the molecular consequences of the burden

of genetic risk factors in a single patient. While the PPMI iPSC

resource is not yet large enough to investigate all possible com-

binations of genetic risk and modifying factors, it can shed light

on the molecular consequences caused by different combina-

tions of the major genetic risk factors in PD. Molecular, cellular,

and genomic methods that can quantify epigenetic, regulatory,

transcriptomic, proteomic, and cellular alterations have the po-

tential to provide us with an atlas that describes coordinatedmo-

lecular and cellular changes. When such maps are generated in

cells from varied genetic backgrounds, they can reveal the con-

sequences of genetic variation on complex processes and how

these consequences are interrelated. Combining iPSC ap-

proaches with quantitative molecular assays provides the ca-

pacity to assess genes of interest and risk loci at scale within a

disease-relevant cellular context and an unprecedented oppor-

tunity for insights into the pathogenesis of PD.

In order to create this atlas, we formed the Foundational Data

Initiative for Parkinson Disease (FOUNDIN-PD; https://www.

foundinpd.org/). Here, we focused on the production of a large

series of iPSC lines, driven to a DA neuronal cell type using

standardized methods, from which a host of genetic, epigenetic,

regulatory, transcriptomic, and cellular data were collected

(Figure 1). All iPSC lines are derived from subjects within PPMI.

We describe here the production and characterization of the first

release of the FOUNDIN-PD data. We recognize that while this

first phase is larger than any other systematic iPSC study per-

formed to date in PD, it represents only a pilot. This phase of

data will most immediately be useful in examining high risk ef-

fects. As a part of this resource, we have also created a portal

for data access and analysis and provide evidence that this sys-

tem represents a relevant cellular context to investigate PD-

related risk alleles. This represents a large multi-omics iPSC-

derived DA neuron dataset, which will serve the community as

a unique resource. Lastly, we discuss the opportunities and chal-

lenges that these data have revealed for the next stages of

FOUNDIN-PD.

RESULTS

FOUNDIN-PD overview
The basis of FOUNDIN-PD is the generation of molecular read-

outs from 95 iPSC lines driven to a DA neuronal state using

consistent methods for all lines (Figure 1; Table S1). These lines

were available as a part of PPMI, a landmark longitudinal study

that has collected data from more than 1,400 individuals at 33

sites in 11 countries and contains a wealth of clinical, imaging,

and biomarker data (https://www.ppmi-info.org/). From the

PPMI iPSC collection, we included lines derived from healthy

controls (HC), patients with idiopathic PD (iPD), and individuals

carrying known disease-linked mutations (monogenic).

https://www.ppmi-info.org/
https://www.foundinpd.org/
https://www.foundinpd.org/
https://www.ppmi-info.org/


Figure 1. Graphical overview of the Foundational Data Initiative for Parkinson Disease (FOUNDIN-PD)

Classes of assays, time points, and number (n) of samples included in each assay are shown. Blue icons represent assays that are included in the initial data

release, and light blue icons represent assays that are ongoing and will be released at a later stage.
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Genome sequence data were available for all donors, thus we

were able to not only identify subjects with damaging mutations

in LRRK2 (p.G2019S, n = 25, and p.R1441G, n = 1), GBA1

(p.N370S, n = 20), and SNCA (p.A53T, n = 4) (hereafter, we refer

to these variants as LRRK2+, GBA1+, and SNCA+, respectively),

but also thosewith high and low polygenic risk scores (Figure S1;

Table S1). These 95 iPSC lines were differentiated into DA neu-

rons using a well-established protocol9 with minor modifications

(Figure 2A; protocols.io, https://doi.org/10.17504/protocols.io.

bfpzjmp6)10 and an automated robotic cell culture system.11

The differentiation protocol was previously established and vali-

dated with five in-house lines where three independent differen-
tiations produced neuron-enriched cultures with averages of

90% TUJ1+ (range: 73%–99%) and 80% MAP2+ (range: 72%–

98%) cells identified by immunocytochemistry (ICC). More than

60% (range: 56%–89%) of the differentiated cells were also pos-

itive for the DAmarker tyrosine hydroxylase (TH) (Figure S3). This

was considered a satisfactory differentiation efficiency, and,

therefore, the same protocol was applied to differentiate the 95

PPMI iPSC lines.

PPMI lines were differentiated in five batches (ranging from

10 to 30 cell lines per batch) until day 25 or 65, followed by

harvesting the cells for ICC andmolecular assays. Quantification

of MAP2+ and TH+ cells revealed that, on average, 80%
Cell Genomics 3, 100261, March 8, 2023 3
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Figure 2. Quality control and scRNA-seq on day 65

(A) Schematic overview of the differentiation protocol to dopaminergic neurons.

(B) Left: representative ICC image showing TH+ (dopamine [DA] neurons) and MAP2+ (neuron) cells co-stained with DAPI (nuclei). Scale bar: 50 mm. Right:

percentage of TH+ (DA neuron) andMAP2+ cells detected by ICC and normalized to the total number of nuclei. Data are represented as the percentage of positive

cells per 30 imaged fields. Each dot represents one cell line (n = 95).

(legend continued on next page)
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(range: 52%–93%) of the cells were converted to neurons, and

20% of the cells (range: 4%–42%) expressed TH (Figures 2B

and S2), showing a higher variability in differentiation efficiency

than the in-house iPSC lines used in protocol optimization. The

average proportion of TH+ cells in the iPSC lines, relative to all

cells in the culture, was similar when assessed by ICC with two

independent TH antibodies, and the estimate of the proportion

of MAP2+ cells, relative to all cells, was also independent of

the MAP2 antibody used (Figure S4A). To measure how robust

and reproducible the differentiation protocol was using our auto-

mated system, we included a control line in each batch as a tech-

nical replicate (n = 5). The percentage of MAP2+ and TH+ cells

obtained from the control cell line using ICC across all five differ-

entiation batches was consistent (Figure S4B), and no significant

differences in the percentage of neurons or MAP2+ and TH+

neurons between batches were identified (p > 0.2 for both).

Quantifying gene expression in FOUNDIN-PD data using
RNA sequencing
To further characterize the iPSC-derived neurons, we generated

a wealth of data types including genetic, epigenetic, regulatory,

transcriptomic, and cellular imaging data (Figure 1). To fully char-

acterize the identity of the cell types generated by the iPSC dif-

ferentiation protocol used in the present study, we performed

single-cell RNA sequencing (scRNA-seq) on the majority of the

day-65 cell lines (n = 79 with 4 control replicates, 84% of total

included iPSCs). In total, 416,216 high-quality cells were re-

tained, with an average of 5,015 cells per sample13 (range: 584

to 9,640). Cells were first clustered using an unsupervised

method (Louvain algorithm) and then annotated based on ca-

nonical cell-type markers found in the differentially expressed

genes of the cluster (Table S2; Figure S5). Seven distinct, broad

cell types were identified across all samples and are defined as

early neuron progenitors expressing RFX4, HES1, and SLIT213

(131,251 cells, 32% of total); late neuron progenitors expressing

DLK1, LGALS1, and VCAN14 (113,425 total, 27% of total); DA

neurons expressing TH, ATP1A3, ZCCHC12, MAP2, SYT1, and

SNAP2512 (96,623 total, 23% of total); immature DA neurons ex-

pressing TPH1, SLC18A1, SLC18A2, and SNAP2513 (41,267 to-

tal, 10% of total); proliferating floor plate progenitors (PFPPs) ex-

pressing HMGB2, TOP2A, and MKI6714,15 (18,984 total, 5% of

total); neuroepithelial-like cells expressing KRT19, KRT8, and

COL17A116 (8,979 total, 2% of total); and ependymal-like cells
(C) Uniform manifold approximation and projection (UMAP) illustrates cell cluster

lines). Cell types with their respective percentages are indicated.

(D) Percentage of cells and average expression level of TH, MAP2, and SNCA for

higher expression, respectively. The size of the dot is directly proportional to the p

floor plate progenitors; Prog, progenitors.

(E) Spearman’s correlation test showing high correlation of gene expression acro

brain. ODCs, oligodendrocytes; OPCs, oligodendrocyte precursor cells. See Fig

data.12

(F and G) Correlation between percentages of TH+ (Pel-Freez) and MAP2+ cells in

represents one cell line (n = 83).

(H) Cell-type percentage by cell line showing variability in differentiation efficiency

seq UMAP, and each bar represents a different cell line. In total, 83 cell lines were

control line); prodromal (n = 2); idiopathic PD (iPD; n = 29); monogenic PD (LRRK2+

orange, immature DA neurons; light blue, neuroepithelial-like cells; olive, PFPP;

dymal-like cells.
expressing MLF1, STOML3, and FOXJ115 (5,687 total, 1% of to-

tal) (Figure 2C). Overall, expression of TH,MAP2, and SNCAwas

clearly enriched in the neuronal cell types (Figure 2D).

Next, we assessed how similar the expression signatures are

of the cultured DA neurons vs. human tissue DA neurons and

also how our cultured DA neurons compare with previously pub-

lished DA neuron datasets. We compared our identified cell type

populations with public datasets from human postmortem sub-

stantia nigra12 and human iPSC-derived DA neuron subtypes us-

ing a slightly modified DA neuron differentiation protocol and a

distinct set of iPSC cell lines.13 The DA neuron population iden-

tified in our data showed the highest correlation (Spearman’s R =

0.69) with the TH+ neuron cluster found in human postmortem

substantia nigra (Figure 2E). This correlation was also identified

using dendrogram clustering of DA neurons from this study

and the TH+ neurons from human postmortem substantia nigra

(Figures S6A and S6B). The second highest correlation was

observed between our immature DA neurons and the TH+

neuronal cluster from Agarwal et al.12 (Spearman’s R = 0.67;

Figures S6A and S6B). Additionally, both immature and DA neu-

rons were highly correlated with the iPSC-derived DA neuron

subtypes (DAn1–4) identified by Fernandes and collaborators13

(Figure S6C), which were produced using a similar iPSC-to-DA

neuron differentiation protocol. Another similarity detected be-

tween both iPSC-derived neuron datasets was the expression

of serotoninergic markers in our immature DA neurons

(FOUNDIN-PD; Table S2) and the previously published DAn2.13

To validate the neuronal cell types identified by scRNA, we

compared ICC-based estimates of DA neurons (TH+ cells) and

overall neurons (MAP2+ cells) with the percentage of positive cells

obtained from scRNA-seq data. We found high correlations be-

tween the ICC and scRNA-seq data (Pearson correlation of R =

0.8562, p < 0.0001, and R = 0.8916, p < 0.0001, for TH [Pel-

Freeze] and MAP2, respectively; Figures 2F and 2G). Similar re-

sults were obtained with a second TH (Millipore) antibody (Fig-

ure S7). Although the differentiation efficiency (percentage of

each cell type) varied between cell lines (Figure 2H), no consistent

cell-type enrichment could be identified based on batch, pheno-

type, recruitment category, genetic sex, or PD-linked genotype

(GBA1+, LRRK2+, SNCA+) (Figure S8). Additionally, a very high

correlation was observed (R > 0.9) between technical replicates

(n = 4) using gene-level scRNA-seq data of the identified DA

neuron cluster (Figure S9) and total TH and MAP2 levels
s identified at day 65 (n = 416,216 single cells, n = 79 + 4 control replicate cell

each cell type. The dot color scale from blue to red corresponds to lower and

ercentage of cells expressing the gene in a given cell type. PFPP, proliferating

ss FOUNDIN-PD DA neuronal types and postmortem substantia nigra human

ure S6A for UMAP of cell types identified by using Agarwal and collaborators’

ICC and scRNA-seq (R, Pearson correlation coefficient; p < 0.0001). Each dot

across the iPSC lines. Each color represents the cell types annotated in scRNA-

included in the scRNA-seq. HC, healthy control (n = 8 plus 3 replicates of the

, GBA1+, or SNCA+; n = 41). Colors refer to clusters in (C): yellow, DA neurons;

green, late-neuron progenitors; blue, early-neuron progenitors; indigo, epen-

Cell Genomics 3, 100261, March 8, 2023 5
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Figure 3. Bulk RNA-seq and neuronal differentiation efficiency prediction

(A) Principal-component analysis (PCA) of bulk RNA-seq showing clustering by time point (days 0, 25, and 65).

(B–D) Changes in expression of neuronal (MAP2), dopaminergic (TH), and iPSC (POU5F1) genes from day 0 to 65.

(legend continued on next page)
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(Figure S4), suggesting that, while there is variability in differentia-

tion efficiency across the lines, this is likely not caused by the dif-

ferentiation protocol but may be due to inherent characteristics of

each individual line.

To assess gene expression differences across multiple time

points during differentiation, we generated bulk RNA-seq at

days 0 (n = 99), 25 (n = 98), and 65 (n = 96), with each time point

including five technical replicates of the control line. A principal-

component analysis (PCA) of bulk RNA-seq showed clear clus-

tering by time point (Figure 3A). In accordance with the

scRNA-seq data, we also observed a very high correlation

(R > 0.9) between the technical replicates in the gene-level

expression of each time point in bulk RNA-seq data

(Figures S10A–S10C). Further evaluation of the bulk RNA-seq

data across all time points showed clear transcriptional enrich-

ment signatures that correlated with neuron-like features,

including synapse assembly, neurotransmitter transport, and ac-

tion potential (Table S4) on days 25 and 65. Additionally, specific

genes of interest, such asMAP2 and TH (Figures 3B and 3C), and

GBA1, SNCA, LRRK2, and SYN1 (Figures S11A–S11D) showed

increased expression levels as cells were differentiated. Concur-

rently, iPSC-associated genes such as POU5F1 (Figure 3D),

NANOG, and TDGF1 (Figures S11E and S11F) showed signifi-

cantly reduced expression at later time points relative to day 0,

which correlated with a decrease in pathway signatures of

iPSC differentiation and growth, including somatic stem cell

population maintenance and positive regulation of cell popula-

tion proliferation (Table S5).

Next, we used the day-0 bulk RNA-seq gene expression data

to predict DA neuronal differentiation efficiency. We defined DA

neuronal differentiation efficiency as the fraction of DA neurons

in our scRNA-seq datasets at day 65 using a method similar to

that described by Jerber and collaborators.15 Using logistic

regression, ten genes were identified that had a non-zero coeffi-

cient and predicted good neuronal differentiation efficiency with

an area under the curve (AUC) of 0.93 and 0.87 accuracy (95%

confidence interval [0.78, 0.93]) (Figures S12A–S12C). Repeated

5-fold cross-validation achieved a mean AUC of 0.85 with 0.03

SD. Out of these ten genes with a non-zero coefficient, five

were significantly correlated with neuronal differentiation effi-

ciency (false discovery rate [FDR] < 1%; Figures 3E–3I and

S12D). Three (HNRNPH3, SRSF5, and HSD17B6) of these asso-

ciated genes were positively correlated with neuronal differenti-

ation efficiency. Moreover, the expression of these genes was

significantly reduced as iPSCs were differentiated to DA neurons

(adjusted p < 0.05 from day 0 to 65; Figure 3J), suggesting that

their high expression in iPSCsmay represent an increased differ-

entiation potential. Previous studies have shown SRSF5 is

associated with neuronal differentiation efficiency (R = 0.25,

adjusted p = 0.013)15 and that SRSF5 binds to pluripotency-spe-

cific transcripts and positively correlates with the cytoplasmic

mRNA levels of pluripotency-specific factors.17 Interestingly,

HNRNPH3 is also a known RNA-binding protein, suggesting
(E–I) Genes significantly correlated with neuronal differentiation efficiency. HNRN

correlation.

(J) Expression levels of genes associated with neuronal differentiation efficiency

(adjusted p < 0.05).
that regulation of RNA binding may be an important pathway

for neuronal differentiation. The remaining two associated genes

(ZSWIM8 and ARSA) were negatively correlated with neuronal

differentiation efficiency, and their overall expression was signif-

icantly increased during differentiation (adjusted p < 0.05 from

day 0 to 65; Figure 3J).

Establishing regulatory maps of iPSC-derived DA
neurons
To identify epigenetic and regulatory features of genes in iPSCs

and differentiated DA neurons, we generated DNA methylation,

assay for transposase-accessible chromatin using sequencing

(ATAC-seq; both bulk and single-cell), HiC sequencing and small

RNA-seq data across several time points. DNA methylation data

from bulk cultures were generated at days 0 (n = 97 after quality

control [QC], including five technical replicates) and 65 (n = 82 af-

ter QC, including three technical replicates). These data were

generated to assess changes in epigenetic patterns that poten-

tially regulate gene transcription. The methylation data showed

clear separation between both time points (Figure S13). Addi-

tionally, marker genes such as MAP2 and TH showed a signifi-

cant reduction in methylation from iPSCs at day 0 to DA neurons

at day 65 (Figures S14A–S14E).

ATAC-seq is a commonly used technique to assess genome-

wide chromatin accessibility. Bulk ATAC-seq was generated

from cultures at days 0 (n = 99), 25 (n = 97), and 65 (n = 94),

with each time point including the control line with five technical

replicates. As with the other assays, PCA across all samples

showed clustering of samples by time point (Figure 4A). Peak

sets merged from all samples at each time point showed an

enrichment in open chromatin near promoters (0–3,000 base

pairs [bp] from the transcription start site) and a corresponding

reduction in the proportion of peaks in distal intergenic regions

by analysis with Cistrome18 (Figure S15A). Interestingly, we

observed an increase in evolutionary sequence conservation at

merged peak sets in more differentiated cells, where the lowest

PhastCons score19 across all peak sets was at day 0 and the

highest at day 65 (Figure S15B).

To provide a cell-type-specific view of chromatin accessibility

in our differentiated cells, we generated single-cell ATAC-seq

(scATAC-seq) at day 65 for a subset of the samples (n = 27 + 2

replicates). Following quality control, 139,659 cells were re-

tained, with an average of 4,816 cells per sample (range: 944

to 11,649). We identified similar broad cell types as in the

scRNA-seq data (Figure 4B). However, the percentage of imma-

ture DA neurons and progenitor cell types was different between

the scRNA-seq and scATAC-seq datasets. Cell-type-specific

chromatin accessibility was observed at particular genes of in-

terest. For example, a distinct peak was identified at the pro-

moter of TH in bulk ATAC-seq at days 25 and 65 that, when

examined in scATAC-seq, only appeared in the DA neuron clus-

ter (Figure 4C). Overall, ATAC-seq reads were enriched at the

promoters of expressed genes, but it is important to note that
PH3, SRSF5, and HSD17B6 show positive and ZSWIM8 and ARSA negative

. All five genes are significantly differentially expressed between day 0 and 65

Cell Genomics 3, 100261, March 8, 2023 7
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Figure 4. Chromatin accessibility in iPSC-derived neurons on day 65
(A) PCA across all bulk ATAC-seq samples showing clustering by time point.

(B) UMAP of scATAC-seq data at day 65 showing the clustering of 139,659 cells (from 29 samples) and similar broad cell types as in scRNA-seq (Figure 2C).

(C) Chromatin accessibility data at the TH locus showing time point-specific peaks identified in bulk ATAC-seq at days 25 and 65 and cell-type-specific peaks in

scATAC-seq at day 65.

This figure was generated using the FOUNDIN-PD browser (https://www.foundinpd.org).
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not all genes in this region had peaks at their promoters in either

bulk or scATAC-seq, reflecting cell-type specificity. ATAC-seq is

also known to identify cell-type-specific intergenic regulatory re-

gions. Reflecting this, we observed peaks at putative regulatory

regions upstreamof TH that were restricted to the progenitor and

DA neuron populations, suggesting that these sequences may

play a role in priming TH expression. A peak identified at the pro-

moter of MAP2 in bulk ATAC-seq at days 25 and 65 also ap-

peared as a broader neuronal marker in all cell types identified

in scATAC-seq, except for the neuroepithelial-like cells, which

are a non-neuronal cell type (Figure S16).
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HiC-seq isamethodused to identify three-dimensional chromo-

some interactions (chromosome loops). These loops are known to

be involved in regulating gene transcription by enabling physical

interactionsof enhancerswith their cognate promoters.20,21 These

data can be particularly useful for linking distal risk loci/variants

with regulatory regions and genes. HiC-seq data were generated

fora subsetofbatch1atdays0 (n=9)and65 (n=8)due to the large

number of cells required as input for this assay. The HiC chromo-

some loops showed clear separation of both time points, and

marker gene MAP2 showed distinct differences in HiC loop pat-

terns (Figures S17 and S18).

https://www.foundinpd.org/


Figure 5. Automated longitudinal imaging of

dopaminergic neurons

(A) Time-lapse imaging of dopaminergic neurons

(PPMI4110) expressing synapsin-I-driven GFP.

Analysis started on day 55–56 of differentiation. One

neuron (green arrowhead) survives the entire dura-

tion of imaging. A second neuron (red arrow) dies at

96 h. Scale bar: 60 mm.

(B) Cumulative risk-of-death curves showing the

neuronal survival from all batch-1 lines over 8 days of

automated imaging.

(C) Cumulative risk-of-death curves show increased

degeneration in dopaminergic neurons differenti-

ated from GBA1 PD lines compared with healthy

control lines over 8 days of automated imaging

(****p < 0.0001; based on 891 neurons from GBA1

lines and 647 neurons from healthy control [HC]

volunteers).
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To complement the other gene expression and regulatory

data, we performed small RNA-seq to investigate various clas-

ses of small RNAs, including microRNAs (miRNAs; Piwi-interact-

ing RNAs [piRNAs], tRNA fragments) and other non-coding

RNAs less than 50 bp, which are often involved in gene silencing

and posttranscriptional regulation of gene expression. Small

RNA-seq was generated at days 0 (n = 99), 25 (n = 98), and 65

(n = 96), with each time point including the control line with five

technical replicates. Separation was seen between all time

points (Figure S19). The miRNAs that were significantly upregu-

lated between day 0 and 65 are enriched for those that are highly

expressed in tissues from the CNS when examined across 34

different tissues22 (Figure S20).

Longitudinal imaging of iPSC-derived DA neurons
To assess the relationship between the various molecular read-

outs described above and neuronal phenotypes, we performed

longitudinal imaging and single-cell analysis. Cell-based imaging

can be a valuable complementary approach to molecular ana-

lyses for characterizing phenotypes. To perform longitudinal sin-

gle-cell analysis, 10 out of 95 iPSC lines differentiated into DA

neurons (batch 1) were frozen on day 25 of differentiation. Frozen

neurons were thawed, plated in 96-well dishes, matured for an

additional 25 days, and transduced with a lentivirus to express

GFP under the control of a synapsin I (SYN1) promoter on day

50. To focus our analysis on the subpopulations of cells

perceived to be most relevant to PD, we expressed GFP from

a SYN1 promoter to restrict marker gene expression to relatively

mature neurons. Fluorescence became visible within a day of

transfection, and robotic microscopy23 was used to image cells
every 24 h for approximately 10 days. Cells

exhibiting GFP fluorescence had the char-

acteristic morphological features of rela-

tively mature DA neurons (Figure 5A). The

GFPmorphology signal was used to unam-

biguously identify individual neurons and to

track each cell from one imaging time point

until the next. Because of its ability to track

individual cells, robotic microscopy can
monitor whether and how phenotypes change over time and

obtain a cumulative measure of phenotypic endpoints that better

controls for variability and increases sensitivity of comparisons

of phenotypes between cohorts. Live neurons could be followed

throughout the duration of the experiment. Representative

neuron survival over 6 days is shown in Figure 5A. Cell death

was detected as an abrupt loss of signal, indicative of a loss of

membrane integrity (Figure 5A). In total, 2,992 cells were

analyzed across the 10 lines. The time required for complete

loss of signal (time of death) from hundreds of neurons was

analyzed with the Kaplan-Meier survival model,24 and cumula-

tive risk of death curves were generated (Figure 5B). Comparison

of lines from individuals harboring GBA1 mutations compared

with HC lines demonstrates a significantly increased risk of death

in GBA1 lines (Figure 5C).

Testing the contextual fit of iPSC-derived DA neurons
for modeling PD-related genetic risk
We identified a wide genetic risk spectrum across the iPSC lines

that we studied (Table 1; Figure S1). In addition to the contribu-

tion of genetic risk from known damaging variants in GBA1,

LRRK2, and SNCA, there is a substantial common risk element

that can be quantified by polygenic risk score, as previously

shown usingGWASs.2 One limitation of GWASs is that they often

cannot identify the causal variants, genes, or relevant cell type

for each locus without additional gene expression or functional

data. A method commonly used to infer cell-type relevance

based on GWAS statistics is multi-marker analysis of genomic

annotation (MAGMA). This method relies on the convergence

of unbiased genetic risk maps with single-cell expression data;
Cell Genomics 3, 100261, March 8, 2023 9



Figure 6. Using scRNA-seq expression data to dissect genetic risk

(A) Multi-marker analysis of genomic annotation (MAGMA) gene set enrichment based on the scRNA-seq data showed significant associations with both

dopaminergic neuron cell clusters. Colors represent the same cell types as in Figure 2C.

(B) LocusZoom plot of locus 28 with rs11950533 as the index variant. Association data are derived from the most recent PD GWAS.2

(C) Violin plot showing correlation between the genotype at rs11950533 and expression of CAMLG in the DA neuron cell cluster.

(D) LocusCompare plot of the correlation between the PD GWAS2 association results and the scRNA-seq expression quantitative trait locus (eQTL) analysis.
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the enrichment of expression of genes from risk loci in individual

cell types acts as a powerful indicator of cell-type relevance.25

Previous analysis using mouse and human brain expression

data has shown that DA neurons are a critical cellular context

for PD-related genetic risk.2,4 Analysis of the scRNA-seq expres-

sion data from this study revealed a dramatic enrichment of

expression of genes within PD-linked risk loci in the two identi-

fied DA cell types (immature andDA neurons) relative to the other

cell types (Figure 6A; Table S6). Combined with the comparisons

detailed above, these data reveal that this model resembles hu-

man brain neurons and provides a cellular context that is appro-

priate for modeling complex genetic risk in PD.

In an effort to nominate potential causal genes and molecular

mechanisms tagged by each GWAS locus, we combined whole-

genome sequencing with our scRNA-seq data in differentiated

cells to identify expression quantitative trait loci (eQTLs) in

each broadly defined cell type. Using this approach, we repli-

cated known eQTLs in theKANSL1 and LRRC37A region reflect-

ing the H1/H2 MAPT haplotypes (Figures S21A–S21D). When

exploring the eQTL results further, we specifically focused on

the 90 risk variants from the most recent GWASs in PD.2 Multiple

variants in this dataset showed significant eQTL associations in
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at least one of the defined cell types in our DA neuron scRNA-seq

(Table S7). For example, the locus with rs11950533 as the lead

variant harbors at least 25 genes (Figure 6B), and based on the

PD GWAS browser prioritization tool,26 four (CAMLG, JADE2,

TXNDC15, and SAR1B) were prioritized based on their high cor-

relation between cortical brain eQTL data27 and PDGWAS signal

(Figures S22A–S22D). In the current FOUNDIN-PD scRNA-seq

expression data, an eQTL for CAMLG was identified (Figure 6C),

which shows high correlation with the PD GWAS signal (Fig-

ure 6D). However, no eQTL signals were identified for JADE2,

SAR1B, or TXNDC15 (Figures S23A–S23C), despite all genes

being expressed in our DA neurons (Figure S24). Inspection of

the CAMLG bulk RNA-seq eQTL signal and the PD risk signal

intersection revealed that this eQTL was not detected at the

iPSCstate at day 0 but becamedetectable at day 65 (Figure S25).

This suggests that the regulatory effect signal or trajectory of

CAMLG expression may correspond with differentiation to DA

neurons. Therefore, based on FOUNDIN-PD data, CAMLG

should be prioritized further as a candidate for functional follow

up to confirm the association between CAMLG and PD risk.

PD risk and scRNA eQTL signals for DA neurons also inter-

sected with other independent PD risk loci including TBC1D5,
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PRCP,CCAR2,ARIH2, andCCDC58. In these genes, the PD risk

variant appears to be more statistically significantly associated

with expression in DA neurons when compared with other cell

types detected in the FOUNDIN-PD resource. This intersection

of disease risk and DA neuron expression effect appears to be

specific to DA neurons for TBC1D5 (Figure S26), CCAR2

(Figure 7B), and ARIH2 (Figure S27), whereas PRCP and

CCDC58 (Figures S28 and S29) and CAMLG (Figure S30)

showed signals that intersected PD risk signals in multiple cell

types. Inspection of additional FOUNDIN-PD resources such

as the single-cell ATAC peaks revealed instances of peaks that

were elevated in DA neurons compared with other cell types

and that contained (Figures 7C and 7D) variants that were in

high LD with the PD risk index variants at the locus. For

TBC1D5, CCAR2, and ARIH2, the signal intersection was more

specific to DA neurons, but, when inspecting the bulk RNA (Fig-

ure 7E) data, the signal was not present.

The FOUNDIN-PD data portal
To allow rapid and easy data access to researchers, gene- and

region-level views of data are available through a web-based

portal (https://www.foundinpd.org) integrating the multi-omics

data types (Figure 1). All users can access summary-level data

for a region (<5 Mb) or gene by registering with a single sign-in

Google account. A single-integrated view allows for visualization

of genomic data by genomic coordinates with tracks available

for scRNA-seq, scATAC-seq, bulk RNA-seq, bulk ATAC-seq,

methylation arrays, HiC-seq, and small RNA-seq, among others.

The portal is interactive, allowing the dynamic ability to view fac-

ets/partitions of data split by LRRK2/GBA1/SNCA status, sex,

and diagnosis. The tracks are responsive for dynamic zooming

and panning by touch or mouse and can be reordered or hidden

from views. Users can download data backing the graphs via

CSVs and export screen snapshots. Users who are authenti-

cated for access to individual-level data via https://www.

ppmi-info.org/ will also have the ability to visualize individual-

level data. Additional phenotypic detail is available, and users

can, for example, dynamically plot expression versus SNP geno-

type or many other variables available on subjects. The portal

contains links to several additional access points, including

PPMI-INFO for individual-level data and a GitHub site (https://

github.com/FOUNDINPD) with analysis and standard operating

procedures (SOPs). Finally, a specific single-cell view of the

data is available via an embedded cellxgene instance,29

providing uniform manifold approximation and projection

(UMAP) and PCA views. Through this interface, users can view

identified clusters, genes, and gene families across profiled

cells.

DISCUSSION

Genetic understanding of disease is the first step on the path

from biological insight and target identification to the develop-

ment of mechanistic-based treatment. However, in order to

translate genetics to biology, we require an ability to model the

influence of genetic risk in a contextually appropriate system

and to generate replicable disease-relevant readouts. The

rapidly growing number of genetic risk variants and mutations
associated with PD offers considerable challenges because

modeling tens or hundreds of genetic factors cannot be sustain-

ably achieved using traditional reductionist approaches. More-

over, this problem becomes more complex when considering

risk variants in combination. However, this expanding risk land-

scape also offers opportunities. Themore disease-linked genetic

insight that can be modeled in a system, the more complete our

understanding of disease biology will be and, as the molecular

consequences of modeling risk coalesce, the more certainty

we can have that these resulting events are disease-related.

The application of large-scale iPSC models, with robust and

reproducible molecular readouts, offers us the ability to assess

the biological consequences of genetic risk factors in a dis-

ease-appropriate cellular context.

Here, we generated genetic, epigenetic, regulatory, cellular

imaging, and transcriptomic data for 95 iPSC lines. These sam-

ples included HCs and patients with PD with fully penetrant mu-

tations in SNCA, mutations with reduced penetrance in LRRK2,

and risk variants inGBA1, as well as unaffectedmutation carriers

and individuals with iPD. Notably, there exists extensive biologic,

clinical, and imaging data on each of the subjects fromwhom the

lines were derived. Thus, the data described in the current study

can be combined and compared with data collected on these

subjects including longitudinal blood RNA-seq,30 cerebrospinal

fluid (CSF)markers,31 and clinical data.32 Althoughwe generated

very large datasets totaling over 20 terabytes of data, we have

sought to make these data available and accessible through

the deposition of processed datasets, detailed experimental

procedures, and data-processing pipelines using the website

for PPMI (https://www.ppmi-info.org/). In addition, we have

created a dynamic browser (https://www.foundinpd.org) that al-

lows users to interact with the data and to examine the features

captured by FOUNDIN-PD at loci of interest and in genetic,

phenotypic, and cellular subsets.

In characterizing the first data release from the FOUNDIN-PD

resource, we show that the large-scale differentiation process is

robust and reproducible across technical replicates but is vari-

able between lines. Molecular characterization of the differentia-

tion process and of the terminally differentiated cells revealed

transcriptional and epigenetic changes in line with neuronal

development. Further, our data reveal that, in the context of tran-

scriptional profiles, the DA neurons created here closely model

those from the adult human brain. Our work, combining previ-

ously published unbiased GWAS-derived loci with scRNA-seq

data from FOUNDIN-PD, showed that the DA neurons generated

here are an appropriate cellular context to model complex ge-

netic risk. We believe that these data will also begin to offer in-

sights into the mechanisms of disease-related loci by providing

regulatory and expression information that has not been previ-

ously available.

During the course of this resource-generating study, some

important lessons were learned. Although the differentiation of

multiple iPSC lines using a small-molecule approach produced

a highly enriched neuronal culture (up to 93% MAP2+), there

was also a variable amount of DA neurons (5%–42% TH+) and

a small percentage of non-neuronal cell types (2%). This varia-

tion was not related to batch, genetic sex, or the robustness of

the differentiation protocol, as the technical replicates showed
Cell Genomics 3, 100261, March 8, 2023 11
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Figure 7. PD risk locus, FOUNDIN-PD resources, and CCAR2 effects in dopaminergic neurons

The PD risk locus near BIN3 on chromosome 8 that intersects with an eQTL for CCAR2 in dopaminergic neurons. Tracks represent different data modalities

generated or considered in FOUNDIN-PD as different data tracks; figures generated using pyGenomeTracks.28 The left and right sides of each panel display the

same tracks where the left side is a larger region centered on the PD risk locus, and the right side only includes the interval containing the index PD risk variant for

this locus and variants in linkage disequilibrium with that index variant.

(A) GWAS risk for PD in the region. Point size denotes r2 linkage disequilibriumwith the PD index variant rs2280104 (large: r2 = 1,medium: 1 > r2R 0.8, small: r2 < 0.8).

(B) scRNA-seq eQTL data for DA neurons, immature DA (iDA) neurons, late-neuron progenitors (LNPs), early-neuron progenitors (ENPs), neuroepithelial-like

(NEL) cells, and proliferating floor plate progenitors (PFPPs).

(C) scATAC-seq peaks containing a variant in high linkage disequilibrium (r2 R 0.8) with rs2280104.

(D) scATAC-seq peaks for different cell types.

(E) Bulk RNA-seq (RNAB) eQTL results per differentiation time point for CCAR2.

(F) Bulk ATAC-seq peaks separated per differentiation time point.

(G) HiC data depicting chromatin regions connected by loops at different differentiation time points.
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a very high correlation in subsequent rounds of differentiation.

Such variability in the proportion of target cells produced by

iPSC lines have been recently reported15 and are mainly attrib-

uted to cell-intrinsic factors maintained over multiple freeze-
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thaw cycles. One of the factors driving inefficient differentiation

toward specific cell types seems to be the heterogeneity of

endogenous WNT signaling between iPSC lines,33 meaning

that efficient patterning to DA neurons is dependent on the
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concentration of the GSK3 inhibitor/WNT activator (CHIR99021)

and would need to be optimized for each iPSC line.34,35 Howev-

er, performing such optimization for all FOUNDIN iPSC lines

would have been costly and time-consuming. To minimize

such variability between iPSC cell lines, researchers developed

strategies such as the selection of well-characterized cell lines

for specific applications36,37 and large-scale collaborative pro-

jects.38 However, such strategies can only be applied to projects

developed with a small number of iPSC lines.

The inclusion of single-cell methods, which emerged into gen-

eral usage during the execution of this study, has clearly been of

great benefit to FOUNDIN-PD. These data help overcome the

cell-type heterogeneity of differentiated ‘‘mixed’’ cultures, pro-

vide a cellular context for genetic risk, and also have the capacity

to reveal transcriptomic and regulatory features specific to the

disease-relevant cellular context. Therefore, the role of bulk

RNA-seq indeed has changed. The bulk RNA-seq is now com-

plementary to the scRNA-seq data and provides certain benefits

that the single-cell data cannot, including the much higher

sequencing depth, which therefore allows investigating of

splicing events and isoforms, which can be combined with de-

convolution analysis. Overall, based on our observations thus

far, the expansion of these methods to include single-cell tran-

scriptomics combined with ATAC-seq, single-cell HiC, single-

cell chromatin immunoprecipitation methods to reveal

transcriptional factor targets, and single-cell proteomics will

add more resolution to the FOUNDIN-PD study and more dis-

ease-relevant insights. Inclusion of these single-cell data will

be a key part of the next stage of FOUNDIN-PD.

Finally, we believe that longitudinal imaging of intact cells can

complement the molecular analyses and add significantly to the

characterization of patient-derived iPSC lines and to our goal to

conduct functional genomics for PD.39 FOUNDIN-PD includes

an extensive set of molecular analyses, but we recognize that

some potentially important classes of bioactive molecules

(e.g., lipids, metabolites) and functions (e.g., electrical activity)

were not measured. For some assays, important subcellular

spatial relationships of the macromolecules are necessarily lost

during sample preparation. Imaging provides amethod of study-

ing cells as intact living systems, preserving critical components

and their spatial relationships in situ, and enabling functional

measurements relevant to PD that would be difficult to infer

from reductionist molecular analyses. As noted above, there

are inherent challenges associated with understanding how ge-

netic variants implicated in PD contribute to disease. The effect

size of individual variants is often small, making functional effects

hard to detect, and it may be the case that substantial disease

risk for an individual is conferred through the combined non-

linear effects of multiple variants. If so, combining imaging with

molecular analyses may be particularly helpful because it pro-

vides an approach to study the integrated effect of genetic var-

iants on specific cell functions relevant to disease. Finally,

imaging data are especially amenable to powerful machine-

learning types of analyses, which can be used to discover biolog-

ical insights from images that elude the human eye40 and provide

a computational framework for integrating other data types,

including types of multi-omics data produced by FOUNDIN-

PD. Indeed, next steps include multi-omics data integration to
systematically understand and identify PD-relevant pathways.

This integration provides an opportunity to investigate PD-rele-

vant biological pathways at multiple layers like the genotype,

chromatin, and transcript levels.

Limitations of the study
The efficiency and reproducibility of the DA neuron differentiation

protocol was not previously explored on the large set of iPSC

lines. Here we identified, as expected, that there is substantial

line-to-line variation. Interestingly, we were able to identify early

expression markers that correlate with the potential to generate

high levels of DA neurons in the FOUNDIN-PD cell lines; there-

fore, it is tempting to speculate that sorting iPSCs based on a

high expression of, for example, SRSF5 may improve differenti-

ation efficiency. These results are in line with a previous report

showing that expression markers detected at the iPSC stage

can robustly predict differentiation capability.15 While the emer-

gence of single-cell molecular methods relieves some concerns

regarding cellular heterogeneity, improving differentiation con-

sistency line to line would be of benefit. We acknowledge that

this dataset is underpowered to reveal all but the strongest of

mechanisms associated with complex disease risk loci. Addi-

tionally, while iPSCs are a useful model, they have limitations,

including the fact that DNA methylation signatures from the

donor are not preserved upon reprogramming, and, therefore,

they lack aging-related phenotypes, which is the biggest com-

mon risk factor for PD. While the number of lines required to

generate insights at the remaining loci will vary from risk allele

to risk allele, we believe that the next stage of FOUNDIN-PD

should include a significant increase in scale. Notably, as initia-

tives such as the Global Parkinson’s Genetics Program (GP2)

focus on diversifying the ancestral basis of our genetic under-

standing in PD,41 efforts such as FOUNDIN-PD should also pri-

oritize the generation of reference data in well-powered ances-

trally diverse systems. We also see the value in diversifying our

terminal differentiation target to include other cell types poten-

tially relevant for PD.

Conclusions
Overall, we present here the first data release of the FOUNDIN-

PD project, which includes multi-omics and imaging data on

iPSCs differentiated to DA neurons of 95 PPMI participants

harboring a range of genetic risks from fully penetrant causal mu-

tations to carriers of combinations of risk alleles identified by

GWASs. We believe the FOUNDIN-PD data will serve as a foun-

dational resource for PD research with easily accessible data

and browsers designed for basic scientists. This dataset will

help the community to better understand the mechanisms of

PD, identify new disease-relevant targets, and potentially impact

the development of novel therapeutic strategies.
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Antibodies

Rabbit anti-tyrosine hydroxylase Pel-Freez Biologicals P40101; RRID: AB_461064

Chicken anti-tyrosine hydroxylase Merck Millipore AB9702; RRID: AB_570923

Mouse anti-MAP2 Santa Cruz sc-74421; RRID:AB_1126215

Mouse anti-TUJ1 R&D MAB1195; RRID:AB_357520

Goat anti-rabbit IgG Alexa Fluor 488 Invitrogen A11008; RRID: AB_143165

Goat anti-chicken IgY Alexa Fluor 488 Invitrogen A11039; RRID: AB_2534096

Goat anti-mouse IgG Alex Fluor 594 Invitrogen A11032; RRID: AB_2534091

Hoechst 33,342 Invitrogen H3570

Bacterial and virus strains

LV-Synapsin-GFP SignaGen SL100271

Chemicals, peptides, and recombinant proteins

2-Mercaptoethanol Gibco 21985023

Accutase Gibco A1110501

B27 supplement minus vitamin A Gibco 12587010

BDNF Peprotech 450-02

CHIR99021 R&D 4423

Db-cAMP Sigma D0627

DPBS Gibco 14190169

DAPT Cayman 13197-50

DMEM/F12 Gibco 31331093

Essential 8 Flex Gibco A2858501

Essential 6 media Gibco A1516401

Fibronectin Corning 356008

FGF-b Invitrogen PHG0263

FGF-8b Peprotech 100-25-500

GDR StemCell Technologies 7174

GDNF Peprotech 450-10-500

GlutaMAX Gibco 35050038

Halt phosphatase inhibitor cocktail Thermo Scientific 78427

Halt protease inhibitor cocktail,

EDTA-Free

Thermo Scientific 78439

HEPES 1M Millipore Sigma 83264-100ML-F

Knockout DMEM/F-12 Gibco 12660012

Knockout serum replacement Gibco 10828028

Laminin Sigma L2020

L-ascorbic acid Sigma A4403

LDN193189 Cayman 11802-1

Matrigel Corning 354277

MEAA Gibco 11140050

N2 supplement Gibco 17502048

Neurobasal Medium Gibco 103049

Penicilin-streptomycin Gibco 15140122

Poly-l-ornithine (PLO) Sigma P3655

(Continued on next page)
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Continued
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Purmorphamine Cayman 1000963410

SB431542 Cayman 13031

SHH (recombinant human Sonic

Hedgehog/Shh (C24II) N-Terminus)

R&D 1845-SH

TGFb1 (recombinant human transforming

growth factor-beta 1)

Gibco PHG9214

TGFb3 (recombinant human transforming

growth factor-beta 3)

R&D 243-B3

UltraPure 0.5M EDTA Invitrogen 15575020

Y-27632 Cayman 1000558310

Critical commercial assays

EZ-96 DNA Methylation Kit Zymo Research D5003

Infinium HD methylation assay Illumina

Illumina Tagment DNA Enzyme

and Buffer Kit

Illumina 20034198

Qiaqen MinElute Reaction Cleanup Kit Qiagen 28206

SMARTer Stranded Total RNA

Sample Prep Kit- HI Mammalian

Takara Bio 634873

NEXTFLEX Small RNA v3 kit PerkinElmer NOVA-5132-05

Deposited data

All deposited datasets PPMI https://www.ppmi-info.org/

Dopaminergic differentiation protocol Protocols.IO https://doi.org/10.17504/

protocols.io.bfpzjmp6

Experimental models: Cell lines

PPMI cell lines Table S1

Oligonucleotides

Ad1_noMX and Ad2.x indexing primers Buenrostro et al. 2013

Illumina dual index primers Illumina 20025019

Software and algorithms

Neuronal survival R statistical software Arrasate and Finkbeiner 200523 Arrasate and Finkbeiner 200523

Meffil Min et al. 201842 https://rdrr.io/github/perishky/meffil/

Bowtie2 (v2.4.1) Langmead and Salzberg, 2012 https://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

MACS2 Zhang et al. 200843 https://pypi.org/project/MACS2/

Juicer Durand et al. 201644 https://github.com/aidenlab/juicer

Burrows-Wheeler Aligner Li and Durbin, 200945 https://bio-bwa.sourceforge.net/

bcl2fastq (v2.19.1.403) Illumina

cutadapt (v2.7) Martin 201146 https://cutadapt.readthedocs.io/en/stable/

STAR v2.6.1d Dobin et al. 201347 https://github.com/alexdobin/STAR

featureCounts (v1.6.4) Liao, Smyth, and Shi, 2014.48 https://rdrr.io/bioc/Rsubread/man/

featureCounts.html

DESeq2 (v1.26.0) Love, Huber,

and Anders 201449
https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

edgeR (v3.28.1) Robinson, McCarthy,

and Smyth 201050
https://bioconductor.org/packages/

release/bioc/html/edgeR.html

salmon quant v1.2.2 Patrio et al. 201751 https://github.com/COMBINE-lab/salmon

GOxploreR 1.1.0 Manjang et al. 202052 https://github.com/cran/GOxploreR

Seurat (v3.1.1) Stuart et al. 201953 https://atlas.fredhutch.org/nygc/

multimodal-pbmc/

cellranger-atac "mkfastq"

and "count software

Satpathy et al. 201954

(Continued on next page)
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Seurat (v3.2.0), Signac (v1.1.0) Stuart et al., n.d53 https://github.com/stuart-lab/signac

caret (v6.0-86) Kuhn 200855 https://topepo.github.io/caret/

glmnet (v4.0) Friedman, Hastie, and Tibshirani 201056 https://rdrr.io/cran/glmnet/

MAGMA_Celltyping (v1.0.0) de Leeuw et al. 201525 https://github.com/neurogenomics/

MAGMA_Celltyping

MatrixEQTL Shabalin 201257 https://github.com/andreyshabalin/

MatrixEQTL

LocusZoom Pruim et al. 201058 http://locuszoom.org/

LocusCompare Liu et al. 201959 http://locuscompare.com/

tensorQTL Taylor-Weiner et al. 201960 https://github.com/broadinstitute/tensorqtl

Scaden Menden et al. 202061 https://scaden.readthedocs.io/en/latest/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by Cornelis Blauwendraat

cornelis.blauwendraat@nih.gov.

Materials availability
d All iPSC lines used in this study are available upon request at https://www.ppmi-info.org/access-data-specimens/

request-cell-lines/.

d Extensive protocols and all data generated are available at https://www.ppmi-info.org/=> Access-data-specimens/Download-

data/Genetic data/FOUNDIN-PD.

Data and code availability
d All code from this study is publicly accessible and available at https://github.com/FOUNDINPD.

d All data from this study are publicly accessible and available at https://www.ppmi-info.org/.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The induced pluripotent stem cell (iPSC) lines (n = 134) used were obtained from the Parkinson’s Progression Marker Initiative (PPMI;

https://www.ppmi-info.org/). Each cell line vial was identified with an unique barcode and accompanied by a quality control certif-

icate for showing normal karyotype, pluripotency and a negative test for mycoplasma. Frozen cell line stocks were quickly thawed at

37�C,washed oncewith DMEM/F-12 (Gibco) to remove cryopreservationmedium, resuspended in Essential 8 Flex (E8) or Essential 6

(E6) media (both Gibco) supplemented with 10 mM Y-27632 and plated on matrigel (Corning)-coated plates. E8 and E6 media were

supplemented with growth factors to become equivalent in composition. Cells were kept in culture for about one month (5 passages)

to allow recovery from thawing and to obtain enough cells for differentiation and assays on day 0 (iPSC state).
Overview of PPMI iPSC lines included in FOUNDIN-PD.

Group All No mutation LRRK2+ GBA1+ SNCA+

PD (iPD and Monogenic) 56 32 13 8 3

Unaffected carrier 26 0 13 12 1

Healthy control 9 9 0 0 0

Prodromal/SWEDD 4 4 0 0 0

Total 95 45 26 20 4

LRRK2+ denotes p.G2019S (n = 25) or p.R1441G (n = 1), GBA1+ denotes: p.N370S (n = 19), p.T369M (n = 1) or p.E326K (n = 1), SNCA+ denotes:

p.A53T (n = 4). SWEDD: scans without evidence for dopaminergic deficit. Note that one individual was carrying both LRRK2 p.G2019S and GBA1

p.N370S and one individual was carrying both LRRK2 p.G2019S and GBA1 p.T369M. Given the much larger effect size on PD risk of LRRK2

p.G2019S, these lines were annotated as LRRK2+, but with a comment that they also carry a GBA1mutation. ‘‘No mutation’’ means that no reported

pathogenic mutation in GBA1, LRRK2, SNCA or any other known PD gene was identified.
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METHOD DETAILS

Sample selection and batching
Upon receiving, all cell lines were NeuroChip array genotyped62 to confirm sample origin and to assess if large genomic events

occurred during reprogramming, iPSC culture and differentiation. The data were compared to donor (blood derived) whole-genome

sequencing (WGS) to identify large genomic abnormalities. Of 134 subjects, 80 are males and 54 females. The cell line collection

included healthy controls, PD cases without mutations in PD-related genes, and affected and unaffected individuals harboring

damaging point mutations including SNCA p.A53T, LRRK2 p.G2019S, LRRK2 p.R1441G, GBA1 p.E326K, GBA1 p.T369M and

GBA1 p.N370S. Note that one iPSC line carries both LRRK2 p.G2019S and GBA1 p.N370S and another iPSC line carries both

LRRK2 p.G2019S andGBA1 p.T369M. Given the much larger effect size on PD risk of LRRK2 p.G2019S, these lines were annotated

as LRRK2+, but with a comment that they also carry a GBA1mutation. From the 134 cell lines, 95 passed QC and were selected for

DA neuron differentiation and split into five batches (Table 1). One control cell line was included in each batch as a technical replicate

(n = 5) totaling 99 samples (Table S1).

Differentiation of iPSC into dopaminergic (DA) neurons
The PPMI iPSC lines were thawed and grown on matrigel (Corning)-coated plates with Essential 8 Flex (E8, Batches 1, 2 and 3)

or Essential 6 (E6, Batches 4 and 5) media (both Gibco) for about one month (5 passages). Essential 6 medium was supplemented

with growth factors to become equivalent in composition to Essential 8. Upon reaching 70–80% confluency, iPSC lines were disso-

ciated into a single-cell suspension with Accutase (Gibco) and plated at 200,000 cells/cm2 on matrigel-coated one-well plates

(barcoded, Greiner) suitable for automated cell culture. Cells were grown until they covered the plate surface, usually 24–48 h after

single-cell plating. The time required to reach confluence was variable and dependent on the growth rate of each iPSC line. The DA

differentiation protocol was adapted from Kriks and collaborators9 with minor modifications.10 Differentiations were carried out in an

automated cell culture system11 with manual replatings on days 25 and 32 for final differentiation and immunocytochemistry (ICC),

respectively.11 Samples for assays were collected on days 0 (iPSC), 25 (mid-point) and 65 (DA neurons). For DNA assays, cells were

dissociated with Accutase, washed once with PBS and spun down at 200 g. The cell pellet was snap-frozen or processed according

to assay protocols. Most of the RNA assays required snap-frozen cells collected by scraping the plate surface with PBS or lysis

buffer. Single-cell (sc) RNA-seq and scATAC-seq assays required a single cell suspension prepared in 0.04% human serum albumin

(HSA)/PBS. All samples were stored at �80�C until further processing. For cryopreservation, day-25 DA neuron precursors were

dissociated with Accutase, washed once with neurobasal medium (Gibco), resuspended in cold Synth-a-Freeze cryopreservation

medium (Gibco) supplemented with 10 mM Y-27632 and aliquoted into barcoded cryovials (NovaStora) at 10x106 cells/ml/vial (on

ice). The cryovials were placed in CoolCell cell freezing containers (Biocision), kept overnight at �80�C and transferred to liquid

nitrogen for long term storage.

Immunocytochemistry (ICC) and image analysis
Cells were differentiated until day 65, fixed in 4%PFA, washed 33 5min in PBS and blocked in 5%goat serum/1%BSA/0.1% Triton

X-100/PBS for 1 h at room temperature (RT). Primary antibodies were applied overnight at 4�Cand included TH (Pel-Freez Biologicals

#P40101 and Merck Millipore #AB9702, both at 1:750 dilution), MAP2 (Santa Cruz #sc-74421, 1:100) and TUJ1 (R&D #MAB1195,

1:500). After incubation with primary antibodies, cells were washed 3 3 5 min in PBS. Cells were incubated with second antibodies

(AF488 and AF594, Invitrogen, 1:1000) for 2 h at RT followed by nuclear counterstaining with Hoechst 33,342 (Invitrogen, 1:8000) for

30 min at RT. Finally, cells were washed 3 3 5 min in PBS and imaged with a CellVoyager 70003(Yokogawa) confocal microscope

and 203 objective. Images were analyzed on Columbus (PerkinElmer) as described previously.11 The total number of TH (DA neuron)

and MAP2 or TUJ1 (neuron) positive cells was estimated and normalized to the total number of nuclei. Data is represented as the

percentage of positive cells per 30 fields.

Longitudinal image analysis of iPSC DA neurons
Frozen day-25 DA neuron precursors were thawed and replated at a density of approximately 450,000 cells/cm2 onto dishes coated

with 0.1 mg/ml poly-l-ornithine (PLO), 5 mg/ml laminin, and 5 mg/ml fibronectin in NB/B27 medium prepared as described 10 with the

addition of 10mM ROCKi and 100 mg/ml matrigel (Corning). The media was changed 4 h later to remove ROCKi. DA neurons were

matured in NB/B27 medium, then replated into 96-well plates on day 49. On day 50, cells were transduced with synapsin-driven

GFP via lentivirus (SignaGen), followed by a media change the next day. Cells were imaged daily from approximately day 54 through

66 using robotic microscopy, a previously described automated imaging platform.23,24 Images obtained from 8 consecutive days

were processed using custom programs in Galaxy63,64 to assemble arrays of images into montages representing each well, and

to stack montages across timepoints. Neuron survival was analyzed using a custom program written in MATLAB. Live neurons ex-

pressing GFP were selected for analysis only if they had extended processes at the first timepoint. Neurons were tracked longitudi-

nally across timepoints until death, and survival time was defined as the last timepoint a neuron was seen alive. The survival package

for R statistical software was used to construct Kaplan-Meier curves from the survival data.24 Survival functions were fitted to these

curves to derive cumulative risk-of-death curves. Statistical differences between groups were analyzed using the Cox mixed-effects

model.
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Methylation library preparation and data-processing
DNA was extracted from each timepoint using standard phenol:chloroform extraction. DNA from day 0 and day 65 underwent Bisul-

fite conversion using the EZ-96 DNA Methylation Kit (Zymo Research). Bisulfite converted DNA was then put through the standard

Infinium HD array based methylation assay (Illumina) with Illumina Infinium HumanMethylation EPIC BeadChips. Raw signal intensity

data were processed from raw idat files through a standard pipeline using Meffil.42 A number of standard quality control steps were

performed to these data prior to normalization including: sample origin confirmation based on SNP presence on array, sex concor-

dance check, methylated versus unmethylated ratio, low bead numbers, control probes quality and, finally, general outlier samples

were identified using principal component analysis and excluded. Subsequently, the quality controlled data was normalised using

quantile normalisation. The analysis pipeline can be found here: https://github.com/FOUNDINPD/METH.

Bulk ATAC sequencing library preparation, sequencing and data-processing
Bulk ATAC-seq data was generated from all batches at all timepoints. Cells at each timepoint were collected using Accutase (Gibco)

to make a single-cell suspension and 75,000 cells per sample were aliquoted for bulk ATAC-seq. Standard procedures with slight

modifications were used.65 In brief, cells were lysed (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 0.1% (v/v) NP-40), nuclei were

then spun down, resuspended in transposition buffer (TD buffer, Tn5 Transposase from the Illumina Tagment DNAEnzyme andBuffer

kit) and incubated for 30 min at 37�C. After incubation, DNA was isolated using Qiagen MinElute Reaction Cleanup Kit (Qiagen) ac-

cording to manufacturer’s recommendations. DNA was eluted in 10mL of EB buffer (10mM Tris-Cl, pH 8.5) and then frozen at�80�C.
Libraries were prepared by combining transposed DNAwith NEBNext High-Fidelity 2X PCRMasterMix (New England Biolabs) and

1.25mM indexing primers (Ad1_noMXprimer and Ad2.x indexing primer65 or IDT for Illumina dual index primers (Illumina, Nextera DNA

UD Indexes Set A Ref 20025019). Standard PCR conditions for NEBNext High-Fidelity 2X PCR Master Mix were used with 10–12

cycles completed on each library. Libraries were purified using AMPure XP (Beckman Coulter) beads with the manufacturer’s pro-

tocol for double-sided purification. Quality assessment of libraries was measured on an Agilent High Sensitivity DNA analysis chip

(Agilent) to determine average library size and concentration. The concentration of each library was verified by Qubit Fluorometric

Quantification (Thermo Scientific) before sequencing. Batch 1 libraries were sequenced at the NIH Intramural Sequencing Center

(NISC) on an Illumina NovaSeq, with 50bp paired-end (PE) reads. Batches 2–5 were sequenced at The American Genome Center

(TAGC) at the Uniformed Services University on an IlluminaNovaSeqwith 100bp PE reads. Fastq files for each sample were assessed

using FastQC (v0.11.9) and reads were aligned to GRCh38 using Bowtie2 (v2.4.1; Langmead and Salzberg, 2012) in local mode.

Reads mapping to ChrM and ChrUn were filtered out and samples with less than 20 million PE reads remaining were removed

from analysis. MACS2 was used to call peaks.43 The full analysis pipeline can be found here: https://github.com/FOUNDINPD/

ATACseq_bulk.

HiC sequencing library preparation, sequencing and data-processing
HiC sequencing data were generated from batch 1 day-0 and day-65 samples. Library preparation was performed by Phase Geno-

mics (https://phasegenomics.com/) using their standard protocol. Fastq files from each lane were merged to give each sample two

read fastqs. Fastqc was run on all sample fastq files before further analysis. The Juicer pipeline was used to obtain high resolution

contact maps and loop regions for each sample.44 Preliminary testing indicated excessive mitochondrial data in samples, so the

pipeline was altered to remove mitochondrial reads after mapping. The Juicer pipeline incorporates the Burrows-Wheeler Aligner

(BWA) to map fastqs to a reference genome.45 Loop regions in samples were detected using the HiCCUPs algorithm included in

the Juicer pipeline. These regions were saved in.bedpe files and used for further analysis. Loop region overlap was calculated be-

tween samples and with public PsychENCODE data.66 The HiCCUPSDiff tool was used to detect differential loops between day

0 and day 65. Heatmaps were generated for each sample and each chromosome to visualise chromatin interactions using the

HiCExplorer tool.67 The analysis pipeline can be found here: https://github.com/FOUNDINPD/HiC_Pipelines.

Bulk RNA sequencing library preparation, sequencing and data-processing
Bulk RNA sequencing data was generated from all batches and all timepoints. RNA was isolated using Qiagen’s ‘‘Purification of

miRNA from animal cells using the RNeasy Plus Mini Kit and RNeasy MinElute Cleanup Kit’’ using protocol 1 to purify total RNA con-

taining miRNA. Briefly, cells were lysed with Guanidine-isothiocyanate and homogenised with QIAshredder, then passed through a

gDNA Eliminator spin column. The lysate was combined with ethanol to bind RNA to the spin column while contaminants are washed

away. Samples were separated into 4 different RNA isolation protocols dependent on the sample’s cell counts (target of 1.3–4million

cells per column). Samples with 1.33–4 million cells/vial were isolated using 1 column. Samples with 4.61–7.86 million cells/vial were

isolated on 2 columns with 2.3–3.93 million cells/column. Samples with 8.17–12 million cells/vial were isolated on 3 columns with

2.72–4.0 million cells/column. Samples with 12.75–52 million cells/vial were isolated on 3 columns with 4 million cells/column and

the leftover lysate was stored. High-quality total RNA (containing miRNA) was then eluted and used for either bulk RNA sequencing

or small RNA sequencing library preparation. Libraries were prepared using the SMARTer Stranded Total RNA Sample Prep Kit - HI

Mammalian (Takara Bio USA, Inc.), which incorporates both RiboGone and SMART (Switching Mechanism At 50 end of RNA Tem-

plate) technologies to deplete nuclear rRNA and synthesise first-strand cDNA. This along with PCR amplification and AMPure Bead

Purification generates Illumina-compatible libraries. Using the total RNA stock concentration, we determined the volume needed for

1 ug RNA input. Samples were concentrated by SpeedVac or diluted with nuclease-free water to obtain a volume of 9 mL per sample.
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Addition of buffers and enzymes including RNase H, DNase I, and 10X RNase H Buffer along with three PCR reactions and a 1.8X

bead purification removed specific rRNA sequences (5S, 5.8S, 12S, 18S, and 28S). rRNA depleted RNA was fragmented at 94�C
for 3 min and immediately placed on ice. Master mix containing reverse transcriptase and an oligonucleotide was added to samples

and incubated in a preheated thermal cycler to convert RNA to single-stranded cDNA. cDNA was purified at 1X ratio with AMPure

beads. Unique dual-indexed PCR primers (allowing for multiplexing) combined with SeqAmp DNA Polymerase were added to

each first-strand cDNA. Using 12 cycles on a preheated thermal cycler, cDNA was amplified into RNAseq libraries. AMPure Bead

purification (1X), 80% ethanol wash, and elution of 34 mL with nuclease-free water generated final libraries ready for Illumina

sequencing. 2 mL of cDNA library were placed on awell plate with 2 mL Sample Buffer and analyzed on 4200 TapeStation to determine

peak range (bp). Concentration of libraries was determined by 40K, 80K dilutions on Kapa SYBR Fast qPCR (Roche). Libraries were

pooled together into 2 pools with a concentration of 60 pM. and volume of 100 mL and sequenced on an iSeq 100,300-cycle flow cell.

Libraries were normalised based on these results. Libraries were re-pooled together with a final concentration of 5000 pM and final

volume of 220 mL, concentration obtained by QuantStudio. Pool was run on a NovaSeq 6000 S1 200-cycle flow cell with a loading

concentration of 1,500 pM and volume of 100 mL with a 20% PHiX spike-in, with the following parameters: 1003 93 9 (+7 dark cy-

cles) x 100. The sequencing depth was a minimum of 30M read pairs per sample. The bcl files were demultiplexed using bcl2fastq

v2.19.1.403 (Illumina) using default parameters. Reads were trimmedwith cutadapt v2.746 to remove the first three nucleotides of the

first sequencing read (Read 1), which are derived from the template-switching oligo. Trimmed reads were aligned to the GRCh38

genome primary assembly using STAR v2.6.1d.47 Following genome alignment, reads were counted with featureCounts v1.6.4,48

(part of the subread package) using a non-redundant genome annotation combined from GENCODE 29 and LNCipedia5.268

(https://github.com/FOUNDINPD/annotation-RNA). Count data was loaded into R v3.6.3 for analysis. Normalised counts, variance

stabilising transformation, and differential expression analysis were performed usingDESeq2 v1.26.0,49 andCPMvalueswere gener-

ated using edgeR v3.28.1.50 Heatmaps were created using the pheatmap v1.0.12 package in R. Trimmed fastq files were also quasi-

mapped to the same annotation using salmon quant v1.2.2.51 In order to identify upregulated and downregulated genes from day 0 to

day 65, differentially expressed genes (defined as baseMean >100, Benjamini-Hochberg adjusted p < 0.01, and absolute value of the

log2 fold change >1) were further filtered using a general linearized model, retaining genes that have a slope >0.05 for upregulated

genes and a slope < �0.05 for downregulated genes. Gene ontology analysis was performed on these upregulated and downregu-

lated genes with GOfuncR 1.6.1, using the refine function with an FWER = 0.1, andGOxploreR 1.1.052 was used to remove redundant

GO terms Parameters used for genome alignment, annotation, and quasi-mapping are described on GitHub. The analysis pipeline

can be found here: https://github.com/FOUNDINPD/bulk_RNASeq.

Small RNA sequencing library preparation, sequencing and data-processing
Small RNA sequencing data were generated from all batches and all timepoints. RNA was isolated in the same manner as for bulk

RNA sequencing, using Qiagen’s ‘‘Purification of miRNA from animal cells using the RNeasy Plus Mini Kit and RNeasy MinElute

Cleanup Kit’’ using protocol 1. Small RNA libraries were made using the NEXTFLEX Small RNA v3 kit (PerkinElmer), followed by 30

adapter ligation and excess 30 adapter removal according to manufacturer’s protocol. Excess adapter inactivation was not per-

formed. 2 mL of the inactivation ligation buffer were usedwithout enzyme in lieu of the inactivation step. 50 adapter ligation and reverse

transcription was performed per manufacturer’s protocol. 62.5mL of cDNA, beads, and isopropanol solution was transferred instead

of 70mL to help reduce adapter dimer moving forward to PCR. Libraries of appropriate size were collected using gel purification. Pu-

rified libraries were quantified using the high sensitivity DNA kit on the Bioanalyzer (Agilent). Equimolar pools were made and

sequenced on a Hiseq 2500 at 8 pM The bcl files were demultiplexing using bcl2fastq. Small RNA sequencing reads (fastq files)

were processed using the exceRpt pipeline. The pipeline was run using the RANDOM_BARCODE_LENGTH = 4 parameter to trim

off the random 4-bp ends in NEXTFLEX sequencing data along with the Illumina (TruSeq) smallRNA adapters. All other parameters

were set to defaults. Pipeline was run using a custom transcriptome database composed of human sequences from mirBase 22,

gencode 28, piRBase and tRNAscan-SE. Following the pipeline run on each sample an R summary script (mergePipelineRuns.R)

was run which generates raw read alignment counts, RPMs and QCmetrics for all small RNA species across all samples. Expression

of small RNAs that were consistently increasing over timepoints were investigated for their expression patterns using data from a

small RNA tissue atlas22 . The analysis pipeline can be found here: https://github.com/FOUNDINPD/exceRpt_smallRNAseq.

Single-cell (ATAC and RNA) library preparation, sequencing and data-processing
Cells harvested on day 65 of differentiation were processed following the 10x Genomics single-cell (sc) RNA and ATAC sequencing

protocols to generate DNA libraries. To note, batch 1 cells processed for scRNA-seq were generated from a second run of differen-

tiation, since this assay was included later in the study. Additionally, scATAC-seq was performed only for cells from batches 4 and 5.

For scRNA-seq, the libraries comprised standard Illumina paired-end constructs which begin with P5 and end with P7. The 16bp 10X

barcodes are encoded at the start of TruSeq Read 1, while 8bp sample index sequences are incorporated as the i7 index read.

TruSeq Read 1 and Read 2 are standard Illumina sequencing primer sites used in paired-end sequencing. TruSeq Read 1 is used

to sequence 16bp 10x barcodes (cell identifier) and 12bp UMI (transcript identifier). scATAC-seq libraries compatible with Illumina

sequencing were generated by adding a P7 and a sample index via PCR. Sequencing was performed on Illumina NovaSeq. Libraries

were sequenced at a minimum depth of 20,000 read pairs per cell for scRNA-seq and 25,000 read pairs per nucleus for scATAC-seq.
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scRNA-seq

The BCL files obtained after sequencing were demultiplexed into FASTQ files using the cellranger ‘‘mkfastq’’ software and unique

molecular identifier (UMI) gene counts were calculated by cellranger ‘‘count’’ software (v3.1.0).69 UMI gene counts for each sample

were merged into a table and imported into R (v3.6.0). We used Seurat (v3.1.1)70 within the R environment for filtering, normalisation,

integration of multiple single-cell samples, unsupervised clustering, visualisation and differential expression analyses. The following

data processing was done: (1) Filtering. Cells with less than 1,000 andmore than 9,000 genes expressed (R1 count) were filtered out,

and only genes that were expressed in at least 100 cells were kept. Moreover, cells with more than 20% of counts in mitochondrial

genes were filtered out. After filtering, there were 34,960 genes in 416,216 cells; (2) Data normalisation and integration. Gene UMI

counts for each cell were normalised using the ‘‘SCTransform’’ function in Seurat. Integration of scRNA-seq data frommultiple sam-

ples was performed using top 3000 variable features and top 3 samples as reference with the highest number of cells; (3) Clustering

and visualisation. Clustering was performed using ‘‘FindClusters’’ function with default parameters except resolution was set to 0.5

and first 30 PCA dimensions were used in the construction of the shared-nearest neighbor (SNN) graph and to generate

2-dimensional embeddings for data visualisation using UMAP; (4) Differential expression analyses: We used ‘‘FindAllMarkers’’ func-

tion with default parameters and only tested genes that are detected in a minimum of 40% of cells in either of the two clusters. Genes

with an adjusted p value < 0.05were considered to be differentially expressed. The pipelines used in this study are available at https://

github.com/FOUNDINPD/FOUNDIN_scRNA.

scATAC-seq

The BCL files obtained after sequencing were demultiplexed into FASTQ files using the cellranger-atac ‘‘mkfastq’’ software and

unique molecular identifier (UMI) counts were calculated by cellranger-atac ‘‘count’’ software (v1.2.0).54 Peaks for each sample

were merged into a table and imported into R (v3.6.0). We used Seurat (v3.2.0), Signac (v1.1.0)53 and Harmony (v1.0)71 within the

R environment for filtering, normalisation, integration of multiple single-cell samples, unsupervised clustering, visualisation and pre-

dicting the cell types. The following data processing was done: (1) Filtering. We kept the cells with minimum 1,000 peaks (R1 count),

respectively and the peaks that were called in at least 100 cells. Moreover, cells with more than 20%of counts in mtDNAwere filtered

out. After filtering, there were 459,495 peaks in 139,659 cells; (2) Data normalisation and integration. Peak counts for each cell were

normalised using the ‘‘RUNTFIDF’’ function in Signac that performs term frequency-inverse document frequency normalisation fol-

lowed by SVD decomposition to generate latent semantic indexing (LSI). Integration of scATAC-seq data frommultiple samples was

performed using the ‘‘RUNHarmony’’ function with LSI reduction; (3) Clustering and visualisation. Clustering was performed using the

‘‘FindClusters’’ function with default parameters except resolution was set to 0.1 or 0.2. First 30 harmony dimensions were used to

generate 2-dimensional embeddings for data visualisation using UMAP; (4) Predicting cell types: Fragments in the genes (extended

2kb upstream) were calculated for each cell to generate a gene activity matrix and normalised the data using the ‘‘LogNormalize’’

method. Cell types were predicted using scRNA-seq data as a reference and scATAC-seq data as a query for ‘‘FindTransferAnchors’’

and ‘‘TransferData’’ functions. Prediction often results in heterogeneous cell type annotation with-in the same cluster. We assigned

the cell type to a cluster with themaximum occurrence. The neuroepithelial-like cluster was separated using 0.2 resolution. The pipe-

lines used in this study are available at https://github.com/FOUNDINPD/FOUNDIN_scATAC.

Prediction of neuronal differentiation efficiency using bulk RNA-seq data at day 0
To test the predictive value of the genic expression profile in iPSC for neuronal differentiation efficiency, we performed supervised

machine learning (logistic regression) on the DESeq2 v1.26.049 normalised count expression values for genes at day 0 and estimated

DA neurons fractions from the differentiated cell lines at day 65. DA neuron fractions were calculated from scRNA-seq data, based on

the total number of cells and the number of cells in the ‘Dopaminergic Neurons’ cluster (see the STAR Methods section for scRNA-

seq). Cell lines were classified into high (n = 62) and low (n = 21) differentiation efficiency classes based on the relative abundance of

the DA neurons at day 65; as a threshold for classification, we used first quartile value of cell percentages (Q25 = 15.7%), as it was

best separating the two observed distribution peaks of DA neuron counts across the cell lines.

To reduce possible bias in the predictive model, we used a full set of reliably expressed genes (threshold of inclusion mean nor-

malised countR50). As we did expect a significant number of genes to be highly correlated with one another in their expression, with

multitude of them being possibly relevant for prediction, and the total number of relevant features for our model is unknown, we

resolved to using elastic net regularisation approach, which combines both lasso regression (shrinking less important features

and pruning some) and ridge regression (assigns proportional coefficients to highly correlated possibly relevant features and pre-

vents model overfitting) to equal degree (alpha = 0.5) with a penalty lambda equal to 0.22. To further control for possible overfitting,

repeated (100 times) 5-fold cross-validation was performed using the ‘‘cv.glmnet’’ function. Data preprocessing and logistic regres-

sion was executed in R (v3.6.3),72 using packages caret (v6.0-86)55 for model training and glmnet (v4.0)56 for elastic net regularisation

of themodel and repeated cross-validation. As the sample size is small and imbalanced, we directly tested the relation of the resulting

predictive candidate genes’ expression to the percentage of DA neurons in each cell line.We performed Spearman’s rank correlation

test, using R package stats (v3.6.3).72 Benjamini & Hochberg procedure was used for multiple testing corrections of p value.

MAGMA to identify causative cell types
Expression gene profiles obtained from the scRNA-seq dataset were used to test for a cell type association with PD. We used the R

package MAGMA_Celltyping (v1.0.0, https://github.com/NathanSkene/MAGMA_Celltyping), which utilises MAGMA25 software
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package as a backend, to identify cell types positively associated with the common-variant genetic hits from the most recent PD

GWAS.2 LD regions were calculated using the European panel of 1000Genomes Project Phase 3.73 The cell type enrichment analysis

was performed on 5000 subsampled cells from each scRNA-seq cluster.

Single-cell expression quantitative trait loci analysis
Variants from thewhole-genome sequencing data were correlated with normalised average gene expression levels per cell cluster by

performing single-cell expression quantitative trait loci analysis. After quality control, 77 samples were included for analysis and

expression data were filtered for 0.025 average expression in all samples. Then genes were removed with zero expression in 15

or more samples resulting in expression of 1256 genes across 90 risk variants. eQTL analysis was performed using MatrixEQTL57

including variants with minor allele frequency >5% and using the following covariates: batch, sex, age of donor, GBA1, SNCA,

LRRK2, phenotype, TH + levels, MAP2+ levels, number of cells, reads per cell, total genes detected, and median UMI counts per

cell. Overlap between eQTL variants and GWAS was determined using the most recent PD GWAS.2 For GWAS loci of interest, violin

plots were generated to visualise the correlation between genotype and gene expression. Additionally, LocusZoom58 and

LocusCompare59 plots were generated to visualise correlations between GWAS signal and eQTL signal and the PD GWAS locus

browser was used for loci numbering and prioritisation.26 The analysis pipeline can be found here: https://github.com/

FOUNDINPD/SCRN_EQTL_v2. Bulk eQTL analysis was performed separately on day 0, 25, and 65 data using tensorQTL60 and

included estimated cell fractions as covariates. The estimated cell fractions were generated using the Scaden61 deconvolution

tool trained on the day 65 single-cell data.

FOUNDIN-PD browser
Architecturally, the FOUNDIN-PD portal is a single-page application (SPA) framework where a public javascript application interacts

with a secured JSON API to build the user DOMwithin the user browser. The client-side nature of the application allows for dynamic

interactions with the user with low latency and high scalability, leveraging the fact that many users will leverage modern computing

and browsing capabilities. At a granular level, the FOUNDIN-PD application is based on JavaScript ECMAScript 2016 and builds

upon Vega.js (vega.github.io; version 5.22) visualisation grammar and D3.js (https://d3js.org; version 6) for dynamic responsive

graphing. The API is within a sharded MongoDB 4.2 (https://mongodb.com) framework on a CentOS8 cloud server using an

NGINX (https://nginx.org; 1.18) proxy, NodeJS 12 middleware (https://nodejs.org), to provide a protected JSON API. API data is

secured using JSON/JWT authentication via Auth0 (https://auth0.com) and Google OAUTH 2.0 (https://oauth.net/2/) for the identi-

fication of users.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analysis details pipelines for data in these studies can be found in the STAR Methods sections and on the FOUNDIN-PD GitHub

(https://github.com/FOUNDINPD). Additionally detailed SOPs for each assay can be found at the PPMI portal (https://www.

ppmi-info.org/).
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