
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Runtime Resource Management of Emerging Applications in Heterogeneous Architectures

Permalink
https://escholarship.org/uc/item/8nw7k9vs

Author
Moazzemi, Kasra

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8nw7k9vs
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Runtime Resource Management of Emerging Applications in Heterogeneous Architectures

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Engineering

by

Kasra Moazzemi

Dissertation Committee:
Professor Nikil Dutt, Chair

Professor Alex Nicolau
Professor Fadi Kurdahi

2020

© 2020 Kasra Moazzemi

DEDICATION

In memory of my Grandmother and Grandfather. Both left fingerprints of grace on my life.

ii

TABLE OF CONTENTS

Page

vi

ix

x

xi

xii

xv

LIST OF FIGURES

LIST OF TABLES

LIST OF ALGORITHMS

ACKNOWLEDGMENTS

VITA

ABSTRACT OF THE DISSERTATION

Chapter 1: Introduction 1
1.1 Challenges . 2
1.2 Key properties in dynamic resource management 3
1.3 Thesis Statement and Organizations . 3

Chapter 2: Background and Related work 5
2.1 Resources . 7
2.2 Metrics . 9
2.3 Objectives and constraints . 9
2.4 Observing and Predicting . 10
2.5 Dynamic power management . 12

2.5.1 Hardware methods . 13
2.5.2 Software methods . 16

2.6 Run-time energy efficient managers . 18
2.7 Dynamic thermal-aware management methods 20

Chapter 3: Runtime Resource Management 24
3.1 Heuristics and Optimization Methods . 25

3.1.1 Power and Energy . 25
3.1.2 Temperature . 26
3.1.3 QoS . 26
3.1.4 Reliability . 31

3.2 Machine Learning Approaches . 33
3.2.1 Offline learning methods . 34

iii

3.2.2 Online learning methods . 35
3.3 Control Theory Techniques . 36

3.3.1 Single-Input Single-Output controllers 36
3.3.2 GSC . 39
3.3.3 MIMO . 40
3.3.4 Fuzzy . 42
3.3.5 SCT . 49

523.4 Discussion .

Chapter 4: Self-Awareness experimental platforms and frameworks 55
4.1 Cyber-physical Systems-on-Chip . 55

4.1.1 Reflective System Models . 58
4.1.2 Middleware for Reflective Decision-making 59

4.2 Simulation frameworks . 60
4.2.1 MARS . 60
4.2.2 Interfaces and Policy Design . 62
4.2.3 Reflective System Model . 64
4.2.4 Policy Manager . 66
4.2.5 HAMEX . 68
4.2.6 Sniper feedback loop . 71

4.3 Hardware platforms . 72
4.3.1 ODROID . 72
4.3.2 NVIDIA JetsonTX2 . 73

Chapter 5: Adaptive runtime resource management case studies 74
5.1 Single-Input Single-Output Controllers . 74

5.1.1 Benchmark Categorization . 74
5.1.2 Evaluation . 76
5.1.3 System Identification . 77
5.1.4 Performance Analysis . 86
5.1.5 Discussion . 91

5.2 Gain scheduled controller . 94
5.2.1 Generating Linear Controllers . 95
5.2.2 Implementing Gain Scheduling . 96
5.2.3 Experiments . 97
5.2.4 Controller Design Evaluation . 98
5.2.5 Controller Implementation Evaluation 99

5.3 HESSLE-FREE a Fuzzy Controller for Heterogeneous Systems 101
5.3.1 Experimental Setup . 102
5.3.2 Evaluation Results . 106

5.4 SPECTR: On-chip Resource Management 112
5.4.1 Hierarchical System Architecture . 112
5.4.2 Experimental Case Study . 113
5.4.3 Supervisor Synthesis Process . 115
5.4.4 Experimental Evaluation . 120

iv

5.4.5 Comparison of Resource Managers 123
5.4.6 Scalability Evaluation . 127
5.4.7 Overhead Evaluation . 129

Chapter 6: Conclusions and Future Directions 131
6.1 Directions for Future Work . 132

6.1.1 Immediate extensions of this dissertation 132
6.1.2 Novel work that could build on top of this thesis 133

Bibliography 134

v

LIST OF FIGURES

Page

3.1 Abstract classification of QoS management. 27
3.2 High-level view of resource management technique using machine learning

similar to method presented in [23]. 35
3.3 Feedback loop with PI control for a first-order system 38
3.4 Modeled and observed behavior of nonlinear full-range system (a) vs. linear

operating region (b). 40
3.5 Basic 2× 2 MIMO. 41
3.6 Overview of Fuzzy control . 44
3.7 (top) Sample membership function for change-in-frequency. (bottom) Implied

fuzzy sets for two rules in DVFS example . 45
3.8 Scalability via Supervisory Control Structure. 50
3.9 Autonomy via gain scheduling in SCT. 52

4.1 CPSoC infrastructure: sensors and actuators throughout the system stack,
with support for adaptive policies that enforce a given goal (from [50]). . . . 57

4.2 Self-aware feedback loop. Policies are deployed to make action decisions toward
achieving a goal by controlling the CPSoC based on observations and self-aware
adaptation. 58

4.3 Feedback loop overview. The bottom part of the figure represents a simple
observe-decide-act loop. The top part (in blue) adds the reflection mechanism
to this loop, enabling predictions for smart decision making. 59

4.4 MARS framework overview from [155]. Different layers of the system stack
coordinate through policies to orchestrate the management of resources: sen-
sors inform policies of the system state; policies coordinate with models to
perform reflective queries, and make resource management decisions; policies
set actuators to enact changes on the system. 61

4.5 Example of a task mapping policy that queries models of OS policies for DVFS
and scheduling. 65

4.6 HAMEX simulation framework overview [149] 69
4.7 Simulation framework overview . 72
4.8 Example system overview. 73

5.1 CPU bound microbenchmark with well identified model 78
5.2 Memory bound microbenchmark model with limited tracking range 78
5.3 Barnes workload well identified model with noise 79

vi

5.4 Raytrace workload model exhibiting error in prediction 80
5.5 System identification for a 4-core system using one thread of Freqmine bench-

mark executing on one core. Model fits general flow with a static shift at the
bottom. 81

5.6 Power usage of a 4-core system while tuning Bodytrack benchmark. Top figure
represents Total power of the whole system and the rest are break down of
each core power. 83

5.7 4-core system identification for bodytrack benchmark 84
5.8 64-core system identification for bodytrack benchmark 84
5.9 Auto/Cross-correlation of residuals for 4-core and 64-cor systems. 85
5.10 Example of well-tuned controller for Water-NSQ benchmark following 7W

power reference . 87
5.11 FMM benchmark with average and customized case 88
5.12 Raytrace benchmark with average and customized case 89
5.13 4-core controller tracking 20 Watts for Swaptions benchmark. 89
5.14 Comparison of customized and worst case controller for 4-core system tracking

20 Watts for Facesim benchmark. 90
5.15 Ocean Non-Contiguous workload. System identification of uncontrollable

workloads . 91
5.16 Ocean Non-Contiguous workload. Performance analysis of uncontrollable

workloads while trying to track 7 Watts reference 91
5.17 Accuracy improvement from software controller to a faster hardware controller 93
5.18 Block diagram of GSC. 95
5.19 Comparison of GSC with Controller 1. 99
5.20 HESSLE-FREE experimental setup . 101
5.21 MIPS per Watt for CPU workloads. This value is normalized to default linux

values. 107
5.22 Tracking QoS metric (ref = 0.4) for fluidanimate benchmark with different

resource managers . 109
5.23 Total Energy consumption for CPU+GPU for tracking QoS metric (normalized

to power saver energy) . 110
5.24 Delivered FPS for Face detection . 111
5.25 Total Energy consumption for CPU (PARSEC) plus GPU (face detection) for

FPS metric . 111
5.26 SPECTR overview. 113
5.27 SPECTR implementation on the Exynos HMP with two heterogeneous quad-

core clusters. Representing a typical mobile scenario with a single foreground
application running concurrently with many background applications. 114

5.28 Synthesis process for a Supervisory Controller 116
5.29 Supervisor Synthesis Process. Figures 5.29b and 5.29d are automatically

generated by the SCT tool, and the state details are not important. 117
5.30 Measured FPS and Power of all four resource managers for three Phases of 5

seconds each, for the x264 benchmark. 124

vii

5.31 Steady-state error for all benchmarks, grouped by phase. A negative value
indicates the amount of power/QoS exceeding the reference value (bad), a
positive value indicates the amount of power saved (good) or QoS degradation
(bad). 125

5.32 Autocorrelation of residuals for identified system models of different sized
MIMO controllers. We show a single performance and power output for each
modeled system across multiple sample inputs. 128

viii

LIST OF TABLES

Page

2.1 Examples of resources . 7
2.2 DPM techniques . 13
2.3 Run-time energy efficient management techniques 20
2.4 Thermal management techniques . 23

3.1 VF Pairs for ARM A15 in Exynos 5422. 39
3.2 Major on-chip resource management approaches (∗ = partially addressed) . 53

4.1 Examples of sensors and actuators available across the system stack 63
4.2 Currently supported platforms in MARS and their sensors/actuators 67

5.1 SPLASH-2 benchmark list and their problem size 75
5.2 PARSEC benchmark list and their Application Domain [18] 76
5.3 Fit to estimation data trend with increase in number of computing cores while

executing one thread of Swaptions Benchmark on each core. 84
5.4 CPU core configuration for Nehalem-EP . 86
5.5 Comparison of average power and IPS . 94
5.6 Accuracy of the full- (Ctrl 1) and sub-range (Ctrl 2.x) controllers. 98

ix

LIST OF ALGORITHMS

Page
1 DVFS rule-base example . 47
2 Gain Scheduler Implementation . 96

x

ACKNOWLEDGMENTS

I would like to express my utmost gratitude to my adviser, Professor Nikil Dutt. Nik you not
only have been a great PhD advisor but also a fantastic mentor in life. Your guidance and
positive perspective towards contributing to society has helped me to grow as a person.

I would like to thank the rest of my dissertation committee members and mentors Professor
Alex Nicolau, Professor Fadi Kurdahi, Professor Rainer Domer and Professor Amir Rahmani
for their time, support and invaluable advice.

For my mother and father who helped me in all things great and small.

I am deeply thankful to my brother and sister for their love, continued support, and sacrifices.

I thank my friends and colleagues at UCI, who made a great impact on my life. In particular,
I thank Hamid, Majid, Hossein, Donny, Tiago, Roger, Emad and Deep for their friendship,
feedback, guidance, and collaborations

I must thank my dear friends Mahdi, Ashkan, Saman, Mohammad, Delaram, James, Hamid,
Saman, Balint, Mozafar, Amin and Zoya for their support and the good memories we have
created together

Finally, my work would not have been possible without funding from the Department of
Electrical Engineering and Computer Science and Donald Bren School of Information and
Computer Sciences as well as the NSF (grant CCF-1704859), or permission from the ACM,
IEEE, Elsevier and now publisher inc to include content from my previously published work
in [150, 178, 144, 157, 196, 195, 47, 187, 149, 151, 182].

xi

VITA

Kasra Moazzemi

EDUCATION

Doctor of Philosophy in Computer Engineering 2020
University of California, Irvine Irvine, CA

Master of Science in Computer Engineering 2014
Northeastern University Boston, MA

Bachelor of Science in Computational Sciences 2011
Shahid Beheshti University Tehran, Iran

RESEARCH EXPERIENCE

Graduate Research Assistant 2014–2020
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2014–2020
University of California, Irvine Irvine, California

xii

REFEREED JOURNAL PUBLICATIONS

HESSLE-FREE: Heterogeneous Systems Leveraging
Fuzzy Control for Runtime Resource Management

2019

ACM Transactions on Embedded Computing Systems (TECS)

On-chip dynamic resource management 2019
Foundations and Trends® in Electronic Design Automation

Design methodology for responsive and robust MIMO
control of heterogeneous multicores

2018

IEEE Transactions on Multi-Scale Computing Systems

On the feasibility of SISO control-theoretic DVFS for
power capping in CMPs

2018

Microprocessors and Microsystems

REFEREED CONFERENCE PUBLICATIONS

Spectr: Formal supervisory control and coordination for
many-core systems resource management

2018

International Conference on Architectural Support for Programming Languages and
Operating Systems

Dependability evaluation of SISO control-theoretic
power managers for processor architectures

2017

IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International
Symposium of System-on-Chip (SoC)

Gain scheduled control for nonlinear power manage-
ment in CMPs

2018

Design, Automation and Test in Europe Conference and Exhibition (DATE)

Design methodologies for enabling self-awareness in au-
tonomous systems

2018

Design, Automation and Test in Europe Conference and Exhibition (DATE)

Trends in On-Chip Dynamic Resource Management 2018
Digital System Design

xiii

The information processing factory: a paradigm for life
cycle management of dependable systems

2019

International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS)

HAMEX: heterogeneous architecture and memory ex-
ploration framework

2016

International Symposium on Rapid System Prototyping: Shortening the Path from
Specification to Prototype

xiv

ABSTRACT OF THE DISSERTATION

Runtime Resource Management of Emerging Applications in Heterogeneous Architectures

by

Kasra Moazzemi

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2020

Professor Nikil Dutt, Chair

Runtime resource management for heterogeneous computing systems is becoming more and

more complex as workloads in these platforms get increasingly more diverse and the conflicts

grow between heterogeneous architectural components and their resource demands. The goal

of these runtime resource management mechanisms is to achieve the overall system goal for

dynamic workloads while coordinating system resources in a robust and adaptive fashion.

To address the complexities in heterogeneous computing systems, state-of-the-art techniques

that use heuristics or machine learning have been proposed. On the other hand, conventional

control theory can be used for formal guarantees, but may face unmanageable complexity for

modeling system dynamics when dealing with heterogeneous computing platforms.

In this thesis, we initially analyze a variety of runtime resource management methods and

introduce a classification for these methods capturing the utilized resources and metrics. We

cover heuristic, machine learning and control theory methods used to manage resources such

as performance, power, energy, temperature, Quality-of-Service (QoS) and reliability of the

system.

In addition, we explore a variety of dynamic resource management frameworks that provide

significant gains in terms of self-optimization and self-adaptivity. This includes simulation

xv

infrastructures, hardware platforms enhanced with multi-layer management mechanisms and

corresponding software frameworks that enable management policies for these systems in an

effective and adaptive manner.

Ultimately, we address the problem of optimizing energy efficiency, power consumption,

performance and QoS in heterogeneous systems by proposing adaptive runtime policies. The

proposed methods in this thesis, take into account the constraints and requirements defined

by user, dynamic workloads and coordination between conflicting objectives.

The projects presented in this dissertation show effectiveness in responding to abrupt changes

in heterogeneous computing systems by dynamically adapting to changing application and

system behavior at runtime, and are thus able to provide significant improvement compared

to commonly used static resource management methods.

xvi

Chapter 1

Introduction

Dynamic resource management has been established as an effective technique to improve

performance, efficiency, and reliability of computer systems [177]. Adaptability of these

resource management methods becomes more important with modern multicore and many-

core systems due to diverse workloads running in parallel which exhibit dynamic behavior at

runtime. This dynamic behavior manifests itself across the homogeneous system as varying

shared resource demand, bottleneck or sometimes even conflicting goals. This issue exacerbates

when heterogeneity is applied to our computing resources similar to emerging heterogeneous

multicore processors (HMPs) or platforms using CPU, GPU and other accelerators along

side each other on a single chip.

In this context, computer architects use several approaches to perform dynamic resource

management. Machine learning methods learn the best input values for different observed

conditions. Model-based and Rule-based heuristic methods use a model or an encoded

algorithm to make decisions during runtime. Optimization methods minimize/maximize an

objective while considering certain constraints. Finally, control theoretic techniques, use their

intrinsic feedback loop to adapt to conditions.

1

In this thesis, we initially present a classification of methods used in dynamic resource

management which highlights the trend in utilization of self-adaptivity and self-awareness

concepts in designing policies for resource management of modern System on Chip (SoC)

platforms. Thereafter, we propose methods with inherent adaptivity and scalability to address

challenges of dynamic resource management in heterogeneous systems.

1.1 Challenges

The evolution in computing resources from single- to multi- and many-core platforms and

eventually to heterogeneous systems with variety of processing elements and accelerators

has opened the path for accommodating more complex and diverse set of workloads. This

manifestation of heterogeneity in architecture, applications and objectives leads to many

challenges:

• Increasing complexity in architecture:

– Higher operating frequency

– Scale up in number of cores

– Heterogeneity in computing resources

• Diverse workloads with higher order of parallelism

• There is a renewed move towards programmable architectures tuned to certain applica-

tion domains (machine learning and neural networks)

• Coordination of multiple objectives that are subject to change at runtime while satisfying

several constraints

2

1.2 Key properties in dynamic resource management

As computer architects trying to address challenges described in Section 1.1, we should

be able to answer some key questions in order to achieve desired properties for managing

resources for a modern heterogeneous system.

1. Robustness: How can we provide guarantees and perform robustness analysis?

2. Adaptation: How can controllers automatically respond to abrupt runtime changes

in objectives (e.g., changing the priority of objectives)?

3. Coordination: How do we control and coordinate (possibly conflicting) actuations

while tracking multiple objectives simultaneously (e.g., frame rate and chip power)?

4. Scalability: How can we properly design control hierarchies to manage large and

complex systems?

5. Efficiency: How can we design lightweight, yet responsive controllers?

In this thesis, we focus on exploring methods that can partially or fully address these questions.

1.3 Thesis Statement and Organizations

This dissertation explores four problems in runtime resource management of computer systems:

(1) defining system goals in policies using designer’s expertise (2) Providing formal guarantees

regarding robustness of the system (3) coordinating multiple objectives such as performance

and energy efficiency (4) adapting to application or system changes at runtime.

The rest of this dissertation is organized as follows. We position our work with related efforts

in Chapter 2. Chapter 3 dives deeper into questions discussed in Section 1.1 by presenting a

3

classification on dynamic resource management methods and discussing their pros and cons.

We present our body of work in terms of simulation, hardware and software frameworks in

Chapter 4. Chapter 5 outlines case studies done to highlight our efforts to enable adaptive in

dynamic resource management. Finally, Chapter 6 concludes this thesis.

4

Chapter 2

Background and Related work

We start with an inventory of resources that are subject to resource management. Three

sub-categories of resources can be identified according to the functionality they provide:

• Computation resources are processing elements which perform tasks.

• Communication resources are utilized by tasks to exchange information with other

tasks or the environment.

• Memory resources are used by tasks to store and retrieve data.

Resources are physical hardware blocks that can be allocated to tasks by resource management.

Allocation choices of resource management are binary: a resource is either allocated to a task

at a time or not. However, a resource may have the capacity to serve more than one task if

the hardware is provided. Each resource has a maximum capacity of tasks that it can serve

at a given time, which depends on its hardware structure. For instance, a CPU with two

ALUs could process two instructions at the same time.

Control decisions of resource management also tune the operation of resources. The operation

5

Metrics

Resources
Computing

Storage

Communication

QoS

Lifetime

Bandwidth

Power, Energy

Temperature

Figure 2.1: Capturing the relationship between resources and metrics. The upper plane
represents resources while the lower shows metrics. The allocation and usage of each resource
throws shadows into the metrics plane representing how it contributes to the operation with
respect to different metrics.

of the system can be characterized by various metrics, see Fig. 2.1. Note that metrics

characterizing one resource are typically interdependent. For example, scaling up frequency of

a computation resource results in higher power dissipation and temperate but also increases

execution speed.

Resource management controls resources by allocating tasks and tuning operation parameters.

All actions of resource management are based on the observed operation of the system, that

is metrics. By allocating and controlling resources properly, resource management steers the

system to meet objectives for optimizing some metrics. Negative consequences of over-utilizing

the system needs to be avoided, too. While aiming at meeting requirements with respects

to objective metrics, resource management takes constraints on other metrics into account.

Heuristics that aim at containing constraint metrics below or above given limits are needed

for realizing proper resource management. Note that metrics cannot be generally sorted into

groups of objectives and constraints as their role is dependent on the considered resource

management technique.

6

2.1 Resources

Resources are physical entities that can be allocated to tasks by resource management.

Control decisions of resource management also tune the operation of resources, which affects

operation of the system and hence the metrics.

Allocation choices of resource management are binary: a resource is either allocated to a task

at a time or not. However, a resource may have the capacity to serve more than one task if

the hardware is provided. Each resource has a maximum capacity of tasks that it can serve

at a given time, which depends on its hardware structure. For instance, a CPU with two

ALU could process two instructions at the same time.

Examples of resources are cores, buses, IO pins, links, and memory locations. A link between

two routers can be allocated to only one packet at any given time. As another example, a

router in a communication network can only process four packets simultaneously coming

from its four input ports. An on-chip network may be used by several tasks simultaneously

at an abstract level but each physical component such as a register, a link, or a switch-box

can serve only one or a limited number of packets at any moment. The network as a whole

can transmit many packets and it can be considered as one communication resource with a

maximum capacity of C bits/sec. Fractions of C can be allocated to individual users of the

network by resource management which initiates communication over the network but the

actual route and scheduling of the transmission is managed by the routers.

Table 2.1: Examples of resources

Category Examples
Computation resources cpu, gpu, dsp, fpga

Communication resources buses, networks, I/O pins, interrupt controllers
Memory resources main memory, cache, register file

Resources can be divided into 3 sub-categories (Table 2.1) according to the functionality they

7

provide as follows.

Computation resources are processing elements (PEs) which perform tasks. A PE can

be a General purpose GPU, a dedicated accelerator e.g., GPU and DSP, or reconfigurable

e.g., FPGA, that are able to serve different purposes. Different PE support various control

features which are to be decided by the resource management. Processing element may

support different dynamic power management (DPM) techniques, some provide hardware

knobs for tuning the precision of arithmetic computations, reconfiguration is a point of control

for reconfigurable PE. Computation resources may be managed on the core level, but are

often treated on a more abstract level as a pool of cores for particular resource management

techniques.

Communication resources are utilized by tasks to exchange information with other tasks

or the environment. Communication resources include buses, networks, IO pins, and interrupt

controllers. On-chip networks are complex resources, which are built up from several physical

blocks implementing the functionality. Those internal resources, like buffers and routers,

must be revealed for efficient resource management. Nevertheless, network-on-chips (NoC)

are also managed as a whole without considering actual hardware blocks. Communication

resources may support various control features e.g., DVFS for NoC.

Memory resources are used by tasks to store and retrieve data. Memory resources are

typically organized in a hierarchical structure. some storage resources, e.g. on-chip main

memory and off-chip memories, are under software control, while others, e.g. the cache

hierarchy, operate in a hardware-defined manner. Off-chip resources are out of the scope of this

survey. It is also noteworthy that while off-chip memory resources are under software control,

interfaces between them might involve logic beyond that control e.g., hardware-controlled

buffers and DMA facilities. DPM techniques, typically power gating, may be supported by

8

memories.

2.2 Metrics

Non-functional characteristics of the system are represented in various metrics: scales that

provide means to evaluate particular aspects of the operation of the system. The metrics

considered in this chapter are

• performance.

• power, energy, temperature.

• reliability.

• QoS.

About the connection between resources and metrics, note that metrics characterizing one

resource are typically interdependent. For example, scaling up frequency of a computation

resource results in higher power dissipation and temperate but also increases performance.

2.3 Objectives and constraints

The subjects of resource management are the resources which are directly controlled by

allocating tasks and tuning their operation. However, all actions of resource management are

based on metrics that characterize the operation of the system.

Resource management makes its allocation choices and control decisions with respect to

objectives to be accomplished. The objectives are defined as maximizing or minimizing some

9

metrics. By allocating and controlling resources properly, resource management steers the

system to meet requirements and target goals on objective metrics.

Allocation and control decisions of resource management might also have negative conse-

quences. Particularly, over-utilizing the system, leading to excessive energy consumption and

higher temperature, degrades system health and affects desired objectives negatively. While

aiming at meeting requirements with respect to objective metrics, resource management must

also take constraints on other metrics into account. Proper resource management is based

on heuristics aiming at containing some metrics below or above given limits and optimizing

others.

Note that metrics cannot be generally sorted into groups of objectives and constraints as

their role is dependent on the considered resource management technique. The surveyed

techniques are structured according to their objective metrics.

2.4 Observing and Predicting

Resource management is to optimize and contain some problem-specific characteristics of

the system, that is metrics. Decisions need to be made so that metrics exhibit a desirable

behavior in the future. Also, decisions can be made based on the current and possibly past

states of the system.

The current state of the system is observed by sensors and future behavior is predicted by

models. Note that the terms sensing and monitoring are used in literature with similar

meaning to observation here.

Sensors provide means for resource management to observe the current state of the system

as in current values of metrics. Beyond taking notice of the current state, historical data of

10

metrics can be collected over time.

We can identify physical sensors (e.g., power sensor, temperature sensor, hardware performance

counter) and cyber sensors (e.g., abstract QoS, instrumented software, logs). Example of

physical sensors can be the sensors used in SoCs that require several die temperature sensors

to be integrated in a chip to manage the performance because die temperature directly affects

leakage current level and performance of clock-based digital circuits. Cyber sensors can

provide a standard method for an application to directly communicate its performance and

goals. As an example, [133] provide a framework that allows applications to express their

performance in terms of a desired heart rate and/or a desired latency between specially

tagged heartbeats.

Models are used to predict the future behavior of the system based on collected state

information and planned control actions. Resource management uses models to evaluate

possible control actions with respect to past behavior, current state, and desired future

behavior of the system.

Models may be used explicitly or implicitly in resource managers. An explicit model is

present as a component of the resource manager and does compute its predictions whenever

required. Different models may provide different accuracy because of predicting with different

levels of details being taken into account. The more the details and accuracy, the more the

computational complexity. The trade-off between accuracy of prediction and computational

complexity is to be tuned with respect to the problem at hand.

In some cases, accurate-enough and yet relatively simple rules can be derived from abstract –

perhaps simplified or estimate – models. Resource management may use such rules directly

as part of the decision mechanism. Instead of implementing the underlying model explicitly,

the model – as well as prediction – is implicit behind the incorporated rules. Such rules are

11

called heuristics.

In order to better classify the related work to our scope of runtime resource management,

following categorization based on metrics such as power, thermal and energy is used. In

addition, in Chapter 3 we highlight some of the major efforts based on the methods utilized

in each work. A comprehensive survey of the related work can be found in [144].

2.5 Dynamic power management

Dynamic power management(DPM) techniques have been proposed decades ago. Designers

used DPM in the 90s [32] with the available run-time configurations such as scaling the

supply voltage to lower the power consumption [159]. Most opportunities to reduce power

consumption comes from non-optimal configurations in hardware and software components.

Before diving into the analysis of efforts done in this domain, it is important to make a

distinction between power-aware and low-power systems. The focus of low-power systems

design is to minimize power. On the other hand, for a power-aware system meeting power

and energy goals is a significant design consideration and in which the system modifies its

behavior based on current power/energy availability. Some power-aware design goals may

even increase power or energy consumption. Consider the case of a design for decreasing peak

power in a processor: one method to attain this goal would be to use schemes that would

intentionally delay the issue of some instructions to smooth the instruction issue distribution

and, thus, decrease the peak consumed power. However, delaying some instructions could

lead to the application being finished later than it otherwise would, therefore increasing the

energy consumption. Thus, this scheme would be a power-aware, but not a low-power, design

[222]. In the following, we mainly focus on DPM for power-aware systems based on the layer

(hardware or software) that each technique mainly resides. This categorization is summarized

12

in Table 2.2.

Table 2.2: DPM techniques

Power management Techniques

Hardware

[104]
[86] [28]

[116] [108]
[128] [123]
[29] [174]
[84] [9]

[170] [196]
[24] [179]
[163] [162]
[110] [102]
[33] [72]

[38]

Software
[121][201]
[80] [109]

[229]

2.5.1 Hardware methods

One of the main techniques used in DPM is to use the inherent properties of hardware

components to reduce power consumption. This can be achieved by reducing the voltage,

frequency or even shutting down the processing units.

DVFS and power gating

DVFS is a common method in DPM. The computing unit (or communication media) must

be augmented with hardware blocks that allow for changing the supply voltage dynamically.

This is common in recent processors. Although, the definition in [104] proved that task

allocation and scheduling optimization problems using DVFS are NP-complete, heuristics to

tune voltage and frequency are widespread because they save substantial power. However,

reducing the frequency causes a slowdown in the execution of programs with potentially

13

detrimental effects. Thus, DVFS heuristics usually trade off power savings against delay. One

of the earliest works on DVFS has been presented in [238] in which they propose a method to

manage frequency and voltage which is called the Average Rate heuristic which sets the speed

of the processor to the sum of average rate requirements of tasks in the frame. Theorems

proposed for power-delay optimization in [86] utilize an ILP problem to minimize energy

consumption under an execution time constraint. Approach approach [116] partitions each

task into time slots which enables DPM to change voltage at specific intervals. A hybrid

method is used by [108] using two algorithms consisting of an online phase, in which voltage

settings are selected to reduce energy consumption assuming that tasks complete in their

WCET. Considering that many tasks finish well before their WCET, this method uses an

online phase which adjusts the voltage settings on-the-fly to reclaim any resources released by

such tasks. A mechanism proposed by [128] performs variable-voltage scheduling via efficient

slack time re-allocation, which helps reducing the average discharge power consumption as

well as smooths the discharge power profile.

Authors of [123] focused on power-aware scheduling in mission critical embedded systems.

Their approach is incremental by solving one type of constraint at a time. First, a time-valid

schedule is constructed from a constraint graph of the task. Next, this schedule is validated

against the maximum power constraint to remove power spikes, and finally it is compared

against the minimum power constraint and tasks are reordered to reduce power gaps and

power utilization. Mechanism in [29] employed a fine-grained offline scheduling approach

that saves power by combining multiple instructions into one complex instruction with lower

power consumption, or by using low-power versions of instructions while considering task

deadlines. Authors in [174] proposed a DPM method using Markov decision processes. The

problem of DPM in such a system is formulated as a policy optimization problem and solved

using an efficient “policy iteration” algorithm. Idea of managing power of voltage islands

in SoC has been well studied [110]. In this domain, partitioning method in [72] shows the

trade-offs involved in the choice of both DVFS control scheme and method by which the

14

processor is partitioned into voltage/frequency islands and presents potential in using DVFS

for dynamic power management in CMPs. Cochran et al. [33] proposes a control technique

to make DVFS and thread packing control decisions in order to maximize performance

within a power budget using a multinominal logistic regression classifier. Das et el. [38]

proposes an approach for DVFS in smartphones, which uses reinforcement learning to explore

the trade-off between power saving opportunities using DVFS and dynamic core selection

and application’s performance at run-time. Architecture-independent imitation learning

methodology is proposed in [102] for DVFI control in many-core systems by using controllers

that leverage the structural relationships between VFIs.

Another approach [84] monitored the run-time application in order to optimize power con-

sumption by setting per core DVFS using a global system manager. Azevedo et al. [9]

employed an intra-task dynamic voltage scaling technique under compiler control using

program checkpoints. Checkpoints are generated at compile time and indicate places in the

code where the processor speed and voltage should be recalculated. These checkpoints are

used at run-time to recalculate voltage and frequency settings. To reduce the overhead of

dynamic scaling [170] introduced DVFS in operating systems. Since then, the majority of

operating systems have simple settings to benefit from DVFS even in embedded devices.

A feedback control was used by [196, 195] to manage the power consumption using DVFS

knobs.

The trend towards multi/many-core platforms requires techniques that can formally guarantee

power management of the system given a power budget. Bogdan et al. [24] proposed a

paradigm shift from power optimization based on linear models to control approaches based on

fractal-state equations. [179] developed a multi-objective DPM method that simultaneously

considers limits on the total power consumption, dynamic behaviour of workloads, processing

elements utilization, per-core power consumption, and the load on the NoC. This work uses

fine-grained voltage and frequency scaling, including near-threshold operation, and per-core

15

power gating to optimize the performance and power consumption. In addition, a disturbance

rejecter is designed that proactively slows down running applications when a new application

commences execution, to prevent sharp power budget violations. Furthermore, authors

in [47] propose a gain scheduling method to deal with non-linearity in DPM. Tilli et al.

[218] proposes a low overhead hierarchical model-predictive controller (MPC) for managing

thermally safe sprinting with predictable resprinting rate, which ensures the correct execution

of mixed-criticality tasks. A methodology for multi-clock/voltage domains is proposed by

[163, 162] by adaptively partitioning and voltage assignment using state-space feedback

control strategy to dynamically scale the operating voltage and frequency around the static

values and load balance the network traffic in the presence of workload and parameter

variations. Another approach [28] presents an On-line Distributed Reinforcement Learning

(OD-RL) based DVFS control algorithm for many-core system performance improvement

under power constraints that uses per-core reinforcement learning method for frequency

management and a control theoretic method for global power budget allocation. This method

takes advantage of fast response of the per-core reinforcement learning while making sure the

global power consumption remains under the budget using Maximize-the-Max method. Muck

et al. [157] proposes Multi-Input Multi-Output (MIMO) for controlling various actuators in

HMP in order to control both power consumption and overall system performance. SPECTR

[178] is proposed as a supervisory control approach (SCT) to manage power along side other

objectives in emerging systems. Moazzemi et al. [151] propose using fuzzy control theory for

DPM in heterogeneous systems.

2.5.2 Software methods

Software power management techniques can be categorized into two closely related areas of

research. First, different studies explored the properties of workload variations and developed

methods to identify and follow different execution behavior, commonly referred to as “phase

16

analysis”. Second, a large complementary set of research studied dynamic, on-the-fly system

management techniques that can adaptively respond to these differences in application

behavior (e.g. [85]).

Task scheduling and thread optimization

DPM mechanisms in real-time systems become more complex as the system has to meet

certain deadlines while keeping the power below a certain budget. A synthesis algorithm by

[121] uses a software-based cache partitioning and reservation technique to guarantee cache

hits for some tasks and therefore improve task schedulability. The scheduling algorithm used

in this work is Earliest Deadline First (EDF). In EDF, the task with the earliest deadline has

the highest priority. The method proposed by [201] and implemented in a kernel module,

yields power reduction by exploiting slack times, both those inherent in the system schedule

and those arising from variations of execution times. As an example, Huange et al. [80]

proposes adaptive DPM for hard real-time systems. In their work, based on real-time calculus,

event arrivals and resource services are modeled by arrival curves and service curves in the

interval domain, respectively, and an online algorithm to adaptively control the power mode

of the device is proposed, that postpones the processing of arrival events as long as possible.

In a similar spirit, many cache aware methods have been proposed, such as [109], to benefit

from software optimizations to reduce power consumed by cache and memory subsystems.

Further analysis of system-level power-aware design techniques is presented by [222] who cover

techniques ranging from the circuit and device level, to the architectural, compiler, operating

system, and networking layers. In the case of many-core systems, scalability of scheduling

algorithm becomes an important factor which [229] analyzes some of these algorithms in

terms The computational complexities of thread scheduling and global power management

techniques.

17

2.6 Run-time energy efficient managers

Although for many computer systems, reducing power will lead to reduced energy consumption

but it does not necessarily mean a resource management mechanism with the objective of

power management will deploy same policies as a resource management method with energy

efficiency goal. Energy directly relates to both power and performance. Final goal for

energy efficient management methods is to find the optimal spot in power consumption

while delivering the required performance over time. To this end, we take a closer look at

energy efficient managers in this section. Computer systems are designed to deliver peak

performance, but are often idle or used to perform tasks that do not require such performance.

Energy efficiency has become a major concern while dealing with high performance computing

systems [56, 78]. Architectural optimization to achieve a high performance with minimal

power consumption has been a common practice for emerging applications. Approach in

[175] proposed a new pipelining mechanism with selectable voltage for each pipeline stage to

minimize energy consumption. Evaluation of energy efficiency of a system can be related to

both power consumption and performance of the running application. A common metric for

the evaluation of energy efficiency is EPI, in Watt/MIPS or Joule/Instruction. Other metrics

such as Energy Delay Product (EDP), which was initially proposed by [77], and ED2P are

used also in latency performance architectures as they assign a weight to the amount of time

needed for an instruction to be processed [7].

Authors in [137] proposed task scheduling algorithms that minimize energy or minimize

power for the case when the tasks have various arrival times, deadline times, execution

times and switching activities. The relation between the operating voltages for the minimum

energy (power) assignment is determined theoretically and a polynomial time scheduling

algorithm that uses this relation is developed to minimize energy consumption. The authors

improved this method [138] by first applying the existing task scheduling algorithms [137] to

18

obtain a feasible schedule and then distribute the available slack using an iterative algorithm

that satisfies the theoretically obtained relation for minimum energy. Shafique et al. [194]

considered self-adaptive many-core systems to reduce the energy-delay2 product. To avoid

frequent allocation and de-allocation, this work enables applications to temporarily reserve

their resources and to perform local power management decisions.

Diversity and complexity in HPC systems require specific solutions for DPM, as presented by

[186] for server clusters and by [14] for cloud systems. Method in [81] targeted multimedia

applications by using both architectural adaptation and dynamic voltage scaling. Similarly,

Unsal et al. [221] proposed two complementary media-sensitive energy-saving techniques that

leverage static information. First, a compiler-controlled data remapping scheme directs scalar

accesses to a small scratchpad SRAM area. Second, a media-sensitive software-controlled

caching framework eliminates cache tags. The same authors further improve their own

results by showing that media applications are mapped more efficiently when scalar memory

accesses are redirected to a mini-cache [223]. Using the Combined Static/Dynamic scheduler

in the operating system as basis, [130] developed an Energy-Adaptive scheduler with an

energy-aware scheduling algorithm that executes tasks to achieve effective use of limited

energy by favoring low-energy and critical tasks.

Baynes et al. [12] evaluated energy consumption in various RTOS including preemptive

systems and cooperative systems. Anther approach [1] proposed real-time dynamic voltage

scaling that modify the operating system’s real-time scheduler and task management service to

provide significant energy savings while maintaining real-time deadline guarantees. Mishra et

al. [148] proposes a probabilistic graphical model-based learning system to provide accurate

online estimates of an application’s power and performance in order to optimize energy

efficiency of the system.

19

Table 2.3: Run-time energy efficient management techniques

Energy management Techniques

Mapping

[12], [1],
[221], [223],

[137],
[138],

[130], [194],
[7], [148]

Scheduling
[81], [56],
[78], [186],

[14]

2.7 Dynamic thermal-aware management methods

Delivering high performance in computation does not only come with the cost of power

consumption. Often circuits that perform at their peak suffer from thermal issues such as

overheating or faults due to thermal emergencies. Many dynamic management methods try

to avoid such conditions. On the other hand, minimizing power does not necessarily avoid

thermal issues. In many cases, concentrated power usage in a small part of the electronic

circuit can cause high a temperature on that spot leading to thermal failures although the

power usage of the whole system might not be high.

Thermal induced problems can appear in various forms. Thermal hot spots accelerate failure

mechanisms. Failure cases increase exponentially with temperature [143]. Hot spots also

cause performance loss and lead to higher leakage of power [224]. Spatial variations can cause

clock skew resulting in transient or intermittent delay faults. Finally, temporal variations

induce thermal cycling [36] that can cause violation in completion of the cycle that is large

enough to cool the component.

Thermal management techniques try to control the chip temperature. Many of the power

management methods in this chapter are concerned with temperature while focusing primarily

on overall power consumption. The goal of DTM is to address thermal hotspots or reduce

20

spatial and temporal temperature variations. Frequency scaling, DVFS, Decode Throttling,

Speculation control and cache toggling are some of the Dynamic Thermal Management

(DTM) techniques described by [26]. Authors in [44] use temperature aware scheduling

for multi-threaded processors by taking advantage of Simultaneous Multi-Threading (SMT)

unique flexibility of having multiple threads to adaptively counteract and prevent hot spots

by selectively managing the execution of available threads. Liao et al. [122] describes how

smart performance and power modeling can reduce the power leakage and limit temperature

increase which can eventually improve performance and power consumption. On the other

hand, approach [92] proposes a framework in which thermal states are controlled by stochastic

processes, i.e., partially observable semi-Markov decision processes. By using multi-objective

design optimization methods such as collaborative optimization operating temperature is

reduced.

Thermal management is an important issue in embedded systems due to limited area and

cooling methods. Utilizing on-line monitoring, [31] proposes a response mechanism using a

distributed power management algorithm for FPGA to evenly reduce and normalize power

transients and achieve a power-and thermal-aware coherent system. Ayoub et al. [8] presented

a DTM mechanism for memory subsystems which intelligently allocates workload pages to

few memory units and powers down the rest of the memory.

Thermal management became a prominent challenge in fighting the expanding dark, nonactive,

silicon areas on chip. Hajimiri et al. [66] proposed thermal-aware computation using proactive

memory-based computing to reduce the peak temperature of applications. This technique

proactively transfers the instructions with frequent operand pairs to memory. In [94] a dark

silicon aware run-time mapping method was proposed that activates and deactivates cores as

needed in order to evenly distribute power density across the chip.

Authors in [115] and [127] consider 3D stacking architectures and the thermal limitations for

such chips. The method proposed by [115] combines dynamic cache management such as

21

resource allocation, way-based power gating, and data migration with dynamic voltage and

frequency scaling of processing cores in a temperature- and energy-aware manner. Another

approach [127] proposes a thermal-aware dynamic operating system page allocation using

future access pattern to find a best performance-oriented setting of the above factors. Also,

An analytic model has been proposed to estimate the system performance considering the

memory interference, the bandwidth variation, and the throttling impact.

Thermal aware communication systems can reduce the possibility of thermal emergencies in the

system [230]. Chou et al. [30] proposed a thermal aware method for dynamic buffer allocation

for NoC systems. Zhang et al. [243] introduces a job allocation technique that minimizes

the temperature gradients among the ring filters to improve the application performance in

silicon-photonic NoCs. In the context of local temperature hotspots in a load-imbalanced

network, approach in [156] demonstrated power and thermal profiles improvement by utilizing

congestion-avoidance routing with network-level DVFS in a mm-wave small-world wireless

NoC.

Finally, we can observe a trend in industry towards utilizing machine learning [93, 166]

and neural network in power and energy management. This has been enabled by easy

access to configuration knobs such as power gating, thread scheduling and frequency scaling.

This ease of access to configuration knobs has been granted due to effectiveness of many

of the approaches we discussed in this section. Therefore, the current trends will open the

path for more complex management methods. Possible open challenges in power, energy or

thermal management might be hierarchical management schemes, adaptive control or hybrid

approaches comprised of machine learning, heuristics and control theoretic methods.

22

Table 2.4: Thermal management techniques

Thermal management Techniques

Topology-aware mapping

[143], [8],
[224],
[44],

[36], [122],
[92],

[243], [94],
[30]

Resource allocation

[26],
[203], [66],

[31],
[115], [127],
[230], [156]

23

Chapter 3

Runtime Resource Management

Dynamic resource management has been established as an effective technique to improve

reliability, efficiency, and performance of computer systems [177]. Managing shared resources

during runtime becomes more complex with modern multicores which support diverse work-

loads that exhibit varying resource demands, sometimes with conflicting limitations. This

dynamic behavior of workloads which vary across concurrent applications, creates significant

challenges for homogeneous architectures. The need for a holistic dynamic resource manage-

ment technique becomes more vital in emerging heterogeneous multicore processors (HMPs)

where heterogeneous compute units are deployed on a single chip, allowing trade-offs between

objectives such as maximizing performance and minimizing power consumption [180].

In this context, computer architects use several approaches to perform dynamic resource

management. Model-based and Rule-based heuristic methods use a model or an encoded

algorithm to make decisions during runtime. Optimization methods minimize/maximize an

objective while considering certain constraints. Machine learning methods learn the best

input values for different observed conditions. Finally, control theoretic techniques, use their

intrinsic feedback loop to adapt to conditions.

24

In the following sections, some of the note worthy efforts for each of these resource management

mechanisms will be discussed.

3.1 Heuristics and Optimization Methods

3.1.1 Power and Energy

Nowadays, computer systems design is confronted with delivering high performance while

limited with their power consumption. The diversity in the type and increasing complexity

of applications demands higher computation power. To deliver this performance, designers

have to consider the reasonable autonomy in battery-powered systems, operational cost of

cloud servers as well as reduction in the environmental impacts of power consumption.

Dynamic Power Management (DPM) and system design with the goal of energy efficiency

has been studied in details in the past decades [15]. Designers used DPM in the 90s [32]

with the available run-time configurations such as scaling the supply voltage to lower the

power consumption [159]. Run-time monitoring of application behavior lead to improved

optimization in power consumption [85]. The trend towards multi/many core platforms

required techniques that can formally guarantee power management of the system given

a power budget which is addressed in [24, 179]. On the other hand, in cases where power

consumption is not predictable at design time adaptive approaches such as [194] can be used.

For instance [80] uses an adaptive power management technique for hard real-time systems

and [94] proposes a runtime mapping for many-core systems.

25

3.1.2 Temperature

Delivering high performance does not only come with the cost of power consumption. Often

circuits that perform in their highest computation power suffer from thermal issues such as

overheating or faults due to thermal emergencies. Many dynamic management methods have

this in mind during runtime and try to avoid such conditions. Thermal induced problems

can appear in various forms such as hot spots [143], spatial variations [2] and temporal

variations [36]. The goal of dynamic thermal management (DTM) is to address thermal

hotspots or reduce spatial and temporal temperature variations. Clock frequency scaling,

DVFS, Decode Throttling, Speculation control and cache toggling are some of the DTM

techniques described in [26]. Temperature aware scheduling for multi-threaded processors can

reduce hot spots [44]. Smart performance and power modeling can reduce the power leakage

and limit temperature increase which can improve performance and power consumption [122].

Thermal management became a prominent challenge in dark silicon era [8]. Furthermore,

another approach [66] proposes a thermal-aware computation in nano scale technologies.

Mechanisms in [115, 127] consider 3-D stacking architectures and the thermal limitations for

such chips. Thermal aware communication systems can reduce the possibility of thermal

emergencies in the system [230]. The mechanism in [30] proposes a thermal aware method for

dynamic buffer allocation for network-on-chip based systems. In the same domain, authors

in [62] propose a runtime workload mapping on network-on-chip based systems considering

ripple effect of applications.

3.1.3 QoS

Quality-of-service (QoS) is a primary metric to qualitatively evaluate the system’s efficiency

in satisfying applications’ requirements. Applications from different domains have different

QoS metrics such as frame rate (multi-media) [67], latency-per-query (web search and

26

Quality-of-Service

Performance Bound

Compute, Memory, Network

Dynamic provisioning and scheduling

Priority, utility and fair allocation

Accuracy Bound

Static - testing and profiling

Dynamic - monitoring and calibration

Robust - prediction and roll back

Figure 3.1: Abstract classification of QoS management.

financial) [126], throughput (data analytics and streaming) [39], responsiveness (user centric)

[165], end-to-end latency and privacy (social media) [183], etc. Run-time QoS management

becomes necessary and challenging with i) variable workload characteristics ii) variable QoS

requirements of applications, iii) identification and translation of QoS metrics into system level

parameters for provisioning and iv) resource contention and arbitration among concurrent

applications. Meeting QoS requirements of applications are largely based on:

• the nature of computation - compute, memory and I/O intensity, streaming inputs and

batch processing

• the nature of end result - numerical, perceptive, soft and hard real-time, and user-

interaction

We abstractly classify QoS management techniques as performance-bound and/or accuracy-

bound, as shown in Figure 3.1. We present major underlying approaches and strategies for

performance bound QoS guarantees through provisioning compute, memory and network

bandwidth resources and accuracy-bound QoS through quality monitoring and control.

27

Performance Bound QoS

Performance bound QoS can be guaranteed with compute, memory, network and I/O

bandwidth provisioning with dynamic priority identification.

Compute: Allocating more and/or suitable cores, CPU time slices, exploiting core-level

asymmetry to fit application’s QoS requirements are common approaches for QoS guarantees

[168] [126] [39]. Under workload diversity, smart co-location - scheduling an optimized

combination of latency and throughput sensitive applications together, exploits under-utilized

resources to satisfy QoS of both types of appplications [140] [236] [168] [39] . All these

techniques feature user/application defined QoS metrics such as latency and throughput

bounds or dynamic identification of critical resource contending regions of code [215] and

measure QoS in terms of IPC and harmonic speed up for scheduling decisions. Monitoring

QoS based on IPC and satifying applications requirements through optimized time slice

sharing among concurrent applications is proposed in [43]. Combining a set of cores, memory

and network bandwidth into a package to provision isolated resources for applications as per

their QoS requirement is proposed in [246], to provide infrastructure as a service. All the

provisioning techniques prioritize applications based on QoS requirements and dynamically

adapt further by monitoring resource utilization upon provisioning.

Memory and Storage: With the widening compute-memory performance gap, allocating

larger cache slices and higher memory bandwidth significantly enhances performance bound

QoS metrics [214] [216] [211]. Another approach [219] introduces a computational storage

device that allows big-data applications to be processed in the storage systems instead of

moving huge amounts of data from storage units to the processing units. This drastically

improves the performance of big-data applications. Using cache partitioning to provide either

larger/sufficient cache slices is a common approach to meet QoS requirements of latency

critical applications [99] [87]. Identifying application/thread priority and scaling cache

allocation accordingly, following utilitarian principles is another strategy to improve overall

28

throughput metrics [73] [200] [214]. Optimizing for memory controller proximity [13] [211] and

allocating higher bandwidth can enhance QoS of memory intensive applications [239] [244].

All the dynamic memory provisioning techniques however require micro-architectural/OS

level extensions to identify and translate between user/application defined QoS performance

metrics to system level QoS utilization metrics [118] [119] [73].

Network and I/O: Allocating higher network and I/O bandwidth to prioritized applications

can guarantee latency and throughput QoS requirements. Existing techniques have used

customized router architecture, virtual channels, flow control and frame scheduling to provide

higher network bandwidth for dynamically identified priority applications. Classification

of network into shared resource and non-shared resource clusters to allocate non-QoS and

QoS tasks respectively through novel router architecture was proposed in [58]. Assigning

each flow into frames and intelligent scheduling globally synchronized frames to optimize for

latency is proposed in [114]. The same idea is extended by [164] with a flexible local frame

scheduling and pre-emptive flit reservation for more bandwidth for high priority applications.

Distinguishing between latency and throughput sensitivity of best effort (BE) and guaranteed

throughput (GT) to optimize their respective flow control is proposed by [41] [42]. While

BE applications are prioritized by default, priority is inverted to GT when BE applications

have used enough buffer space reflecting in a certain throughput guarantee. Assigning a fixed

bandwidth to each flow and monitoring its bandwidth utilization to prioritize and allocate

network resources to utility frames is proposed in [59]. A similar approach with hybrid

fair and elite round robin bandwidth allocation using weighed priorities is proposed in [70].

Each of these techniques dynamically determine priority of packets (originating from priority

applications) and route them first, while other low priority packets wait in the queue.

29

Accuracy Bound QoS

Approximate computing leverages inherent error resilience of applications from domains such

as machine learning, multi-media processing, streaming, data mining and analytics due to

algorithmic nature, redundant input data, and perceptive end results for performance and

energy gains [145]. However, reasoning for accuracy loss, guaranteed error bound and control

on quality of result (QoR) is crucial for viability of approximation techniques. Existing

approximation techniques use profiling, calibration and light-weight checks for nominal quality

control [112]. We divide quality assurance techniques into three categories: viz., static -

profiling, dynamic - calibration and robust - control and roll back.

Static Techniques: Profiling techniques validate results of an approximated code block

over an exhaustive set of inputs against the accurate result to derive empirical guarantees on

error [190] [202] [10]. Static techniques are as effective as the input data coverage i.e., error

bounds can be guaranteed for input sets that are pre-evaluated at profiling phase, which can

in turn be used at run-time for quality control.

Dynamic Techniques: Dynamic quality control techniques use calibration - executing

each candidate block of code over both accurate and approximate methods to determine

nature and extent of error induced at run-time [52] [202]. These approaches then either

rely on user-defined or application level accuracy requirement targets to determine whether

approximate execution is within an acceptable quality range. Some techniques use the target

accuracy requirement as a feedback to explore accuracy-performance Pareto space to configure

the extent of approximation [202] [10]. Dynamic techniques are efficient in providing empirical

and/or statistical guarantees on quality, however they require additional hardware/software

overhead for continuous monitoring and execution of both accurate and approximate versions.

Reducing sampling rate of monitoring might ignore errors induced during the un-sampled

interval.

Robust Techniques: Robust quality control techniques monitor accuracy loss at run-time

30

and can roll back for more accurate execution in case of errors induced beyond acceptable

thresholds. Robust techniques address the limitations of static techniques which can provide

guarantees only over tested inputs, and dynamic techniques which have overheads and lesser

coverage within sampled invocation. Robust techniques use predictive, online learning, light-

weight checks and monitoring strategies to compute quality loss and predict the extent of

quality loss for subsequent inputs [112] [226]. The quality loss is compared against user

defined accuracy requirements to either tone down aggressive approximation or choose a

different type of approximation technique [234] [57]. In case of unacceptable results, these

approaches roll back i.e., re-execute the candidate code blocks in accurate mode to cover for

the accuracy loss. Robust techniques include re-configuring the extent of approximation [226]

[57], re-generation of type of approximation used iteratively [235] [152] and pro-actively [212]

[112] and roll back by re-executing the code block accurately [101] [135].

3.1.4 Reliability

In the last decade, reliability has become a major issue in digital circuits [193]. The aggressive

scaling to nanoscale CMOS structures has caused a variety of reliability threats such as aging

and wear-out acceleration due to the increased power densities and consequent thermal stress,

higher susceptibility to soft errors not only in harsh environments but also at ground level,

device variability leading to timing errors and other effects, etc. This issue has been even

more exacerbated by the pervasiveness of computing systems in nowadays life spanning from

smart environments to datafarms devoted to control and support of decision processes.

Device aging and wear-out are some of the predominant reliability issues since they cause a

sensible shortening of the lifetime [90] (lifetime variation may be also quantified in 2x [98]).

Unfortunately, DTM does not suffice since aging control cannot be performed only by limiting

hotspots and temperature variations. Instead, as discussed in the literature [209, 207], it can

31

only be fully achieved by monitoring the “cumulative” degradation behavior of the aging

phenomena and accordingly managing resources in an aging-aware way for executing the

workload. Nevertheless, this strategy is particularly effective for multi-core or many-core

platforms (both homogeneous and heterogeneous ones) thanks to the availability of a large

set of “programmable” processing resources, representing a sort of redundancy, that can be

dynamically tuned and selected for the execution of the various applications composing the

workload, that is dynamically changing as well.

The first Dynamic Reliability Management (DRM) approach [209] focusing on a single

general purpose processor was proposed in 2004. After that, following also the architectural

progresses in the subsequent years, different types of platforms have been considered spanning

from the classical homogeneous multi-core architecture [35][129][63], where processing units

are connected on a single bus and with a shared memory, to the NoC-based many-core

architecture [131] [213] [103]. Recently, heterogeneous architectures [11][27][113], integrating

asymmetric processors, GPUs or custom accelerators, have been also addressed in lifetime

management. Depending on the specific architecture, the resource management approaches

act on application mapping (as in the case of many-cores architectures [213][64]), scheduling

(as in the case of shared-memory systems [35]), and/or on power-related knobs (DVFS

and per-core power gating [209][35] [129]). Another relevant aspect is that lifetime is only

one of considered parameters, thus leading in most of the approaches to a co-optimization

with performance or power/energy-consumption. In [185, 184] authors propose a hardware

sharing framework for allowing host applications to fully share FPGA-based accelerators in a

congestion-free environment.

Another relevant reliability issue in modern technologies is the high susceptibility to soft

errors of the devices. Such transient faults use to occur with a given Soft Error Rate (SER)

that is dependent also on the operating voltage/frequency levels and may be subject to

variability among the various cores of the same device [96]. Therefore, runtime resource

32

management policies [96][233][132] have been proposed to optimally distribute the workload

and tuning architectural knobs to maximize the system reliability, measured as the probability

to complete successfully current computations, together with other metrics (performance,

power consumption and lifetime).

Finally, it worth mentioning a last class of runtime resource management approaches that

prefer to integrate also fault handling in the controller at software level rather than using

classical architectural mechanisms. To give few examples, some approaches (e.g. [25]) dy-

namically replicate application execution to perform fault detection or mitigation w.r.t. both

transient and permanent faults, while other strategies (e.g. [65, 204]) schedule at runtime

software-based self testing routines to identify permanent damages.

3.2 Machine Learning Approaches

The popularity of machine learning methods has grown in the past decade. The learning

nature of these methods make them a good candidate for model prediction and resource

allocation in computer system. It should be noted that these methods mostly require a

learning phase with a large amount of measurement data to prepare the predicting algorithm

for a specific platform. Using the advance machine learning, reinforcement learning and deep

neural network methods can bring high accuracy in prediction and tuning of the architectural

parameters in case that the system conditions stay the same to the conditions captured in

training phase. The advantage of using these methods lie in the data driven identification of

relationships that can be used for tuning system configurations at runtime.

We can categorize the machine learning methods used in resource management of computer

systems based on their ability to adapt to changes over time. Data intensive and time

consuming training phase of these methods often requires a detailed analysis and tuning at

33

design time. In many cases the platform and the workloads are predetermined which gives

the designers the opportunity to train the model once at design time and during execution

use the offline model for prediction and tuning. On the other hand, online methods are

needed to learn new changes in workload behavior or environment changes and incorporate

that in the machine learning methods. These methods mostly start with a default model

trained at design time and improve them at runtime to increase the prediction accuracy and

management efficiency.

3.2.1 Offline learning methods

Machine Learning approaches [61, 22, 49, 40, 83] for runtime resource management have

gained lots of traction in the past few years, especially in management of high performance

systems and cloud servers. Specifically, machine learning techniques have been a promising

trend for modeling the complexity of interaction among different on-chip resources and the

corresponding effect on resource metrics [60]. Further, these techniques have targeted beyond

the conventional fixed single and multi- objective allocation policies, towards dynamically

varying goals [199, 91, 198].

Figure 3.2 depicts a general resource management mechanism similar to the method proposed

by [23]. This method leverages Artificial Neural Networks (ANN) to manage multiple shared

CMP resources in a coordinated fashion to achieve a high-level objective. It’s important to

note that although the major part of the training phase for machine learning approaches is

done at design time, the decision making and often backward learning for adaptation can

be done at runtime. Authors in [48] propose using machine learning for microarchitectural

adaptivity control. Approaches such as reinforcement learning have been used to design self-

optimizing memory controllers [83]. Similarly, [245] proposes a dynamic resource management

using deep reinforcement learning.

34

App 0

Resource

Metric

App 1

Resource

Metric

App 2

Resource

Metric

App 3

Resource

Metric

Dynamic

Resource

Manager

Figure 3.2: High-level view of resource management technique using machine learning similar
to method presented in [23].

3.2.2 Online learning methods

Conventional machine learning methods require extensive training to learn the correlation

between inputs and outputs of the system. In the case of a new situation at runtime which

they were not trained for, they might provide an inaccurate solution. To address this issue,

online learning methods [37, 102, 100, 79] show promising results in learning new scenarios

at runtime compared to a complete, expensive re-training of the weights and parameters.

These methods need special tailoring before deployment on embedded and real-time systems

in order to reduce their high computational overhead at runtime [82, 160]. In future, on-chip

dynamic resource management can benefit from data driven identification and high accuracy

of prediction in machine learning methods used along side lightweight heuristics or robust

control theoretic methods [147].

35

3.3 Control Theory Techniques

Dynamic resource management for many-core systems is increasingly challenging due to

the complex interactions in these systems. Integration of hundreds of cores and uncore

components running various workloads with conflicting constrains increase the pressure on

limited shared system resources. A promising and well-established approach is the use of

control-theoretic solutions based on rigorous mathematical formalisms that can provide

bounds and guarantees for system resource management [75, 227] In this context, we discuss

some of the efforts that deploy control-theoretic centric run-time management. Starting from

simple Single Input Single Output (SISO) controllers used in power management to more

complex Supervisory Control Theory (SCT) methods used in dynamic resource management

of complex computer systems.

3.3.1 Single-Input Single-Output controllers

Modern many-core platforms provide high performance but are increasingly constrained by

power dissipation. In addition, applications typically exhibit dynamic characteristics (e.g.,

memory-bound, compute-bound) throughout their execution, resulting in continual changes

in the power state of the system. It is essential to control the peak and average power based

on application behaviour in order to achieve the proper performance with minimum cost [177].

This requires thorough analysis and sophisticated power management methods to control

power and provide necessary performance for a diverse set of workloads. Some approaches

[75, 134] use analytical models to estimate the average or worst case power consumption

of the system based on frequency and voltage level of the system. These methods fail to

take into account the effects of workload and input variability during system execution.

A promising and well-established approach is the use of control-theoretic solutions based

on rigorous mathematical formalisms that can provide bounds and guarantees for system

36

power consumption. In the past, different control methods have been proposed [232, 173] for

resource management in the presence of a specific type of workload running on the system.

A majority of these methods use Single-Input Single-Output (SISO) controllers. These SISO

controllers often deploy proportional Integral (PI), proportional integral derivative (PID), or

lead-lag methods. Although these controllers theoretically provide guarantees for stability

and robustness, significant care must be taken in their practical implementation to ensure

that these properties continue to hold in the implemented designs. For instance, SISO

controller can be implemented at the various layers of the abstraction stack (e.g., application,

OS, hypervisor or hardware), resulting in different challenges and design tradeoffs: software

controllers provide ease of implementation and flexibility, while, hardware controllers provide

higher responsiveness to sensor measurements. In many cases, the controller configuration

needs to be changed to manage power for a new set of applications. Software-based controllers

provide such flexibility but are limited on response time to changes in the system, currently

in the order of milliseconds. This could pose problems when an application’s phase can

change faster than the settling time of the controller. In addition, some applications cannot

be controlled using classic static controllers and require more advanced solutions. These are

examples of many issues that demand a thorough analysis of application behaviour early

enough (e.g., at the time of system identification) and well before controller deployment.

In our study of SISO controllers, we design and deploy PI controllers for power management.

It is important to note that although derivative control law is helpful to add predictability

to the controller, stochastic variations in the system output may cause inaccuracy in the

controller. This issue becomes more severe in computer systems as they commonly have a

significant stochastic component. Therefore, for computer systems PI controllers are preferred

over PID controller [71]. PI control benefits from both integral control (zero steady-state error)

and proportional control (fast transient response). In most computer systems a first-order

PI controller provides rapid response and is sufficiently accurate [71]. Figure 3.3 depicts a

first-order feedback PI controller modeled in Z-domain. The error E(z) = R - Y(z) is the

37

KP

KI

PI Controller K(z)

System G(z)

Y(z)U(z)E(z)R(z)

Figure 3.3: Feedback loop with PI control for a first-order system

input to the controller. The control input U(z) is a sum of the proportional term KP × E(z)

and the integral term KI × (z/(z − 1))× E(z).

Equation 3.1 describes a simple discrete PI control form that can later be transformed to

transfer function. Note that to compute the current control input u(k), the controller needs

to have the current value of the error e(k) along with the past value of the error e(k-1) and

the past value of the control input u(k-1). It is this memory inherent in the PI controller that

makes it dynamic (in contrast to the static PI controller). The PI control law has the form:

u(k) = u(k − 1) + (KP +KI)e(k)−KP e(k − 1) (3.1)

It is important to note that a power management controller designed for only a specific class

of applications might not perform well in managing power for other types of workloads. The

merit of a controller is measured in terms of four properties: Accuracy, Overhead, Robustness

and Flexibility. Thus, a designer’s major concern is to evaluate how well a controller satisfies

these properties while executing different types of workloads (e.g., compute-bound or memory-

bound). The dependability evaluation presented in this work offers designers a better insight

on how to properly model (i.e., identify) their system and what kind of considerations they

38

Region Frequency Voltage
Range (MHz) (V)

1 1600 – 2000 1.25
2 1300 – 1500 1.10
3 900 – 1200 1.00
4 200 – 800 0.90

Table 3.1: VF Pairs for ARM A15 in Exynos 5422.

need to take into account when designing controllers for processors.

3.3.2 GSC

Ideally, control-theoretic solutions should provide formal guarantees, be simple enough for

runtime implementation, and handle nonlinear system behavior. Static linear feedback

controllers can provide robustness and stability guarantees with simple implementations,

while adaptive controllers modify the control law at runtime to adapt to the discrepancies

between the expected and the actual system behavior. However, modifying the controller at

runtime is a costly operation that also invalidates the formal guarantees provided at design

time.

In this section we describe a novel nonlinear DVFS power management approach using a

well-established and lightweight adaptive control theoretic technique called Gain Scheduling.

We describe the methodology for integrating multiple linear models within a single controller

implementation in order to estimate nonlinear behavior of DVFS for CMPs.

Selecting the control input and measured output of a DVFS controller is straightforward.

Frequency is the knob available to the user in software, and power is the metric of interest.

A SISO controller is a natural solution, with the entire CMP composing the system under

control. For system identification we generate test waveforms from applications and use

statistical black-box methods based on System Identification Theory [125, 124] for isolating

the deterministic and stochastic components of the system to build the model.

39

5 10 15 20 25

Time

-4

-2

0

2
Simulated model
Measured output

(a) Power for full frequency range.

12 14 16 18

Time

-0.5

0

0.5
Simulated model
Measured output

(b) Power for 200–800 MHz.

Figure 3.4: Modeled and observed behavior of nonlinear full-range system (a) vs. linear
operating region (b).

Figure 3.4a shows a comparison of a simulated model output vs. the measured output over

the entire frequency range of our CMP. It is evident that there are ranges for which the

estimated behavior differs from that of the actual system behavior. We know that voltage

has a nonlinear effect on dynamic power (P = CV 2f). The nonlinear relationship between

frequency and voltage pairs through the range of operating frequencies amplifies this effect

(Table 3.1). Table 3.1 lists all valid VF pairs for the CMP, in which there are only four

different voltage levels [47]. Figure 3.4b shows the measured vs. modeled output when the

system is defined by a single operating region grouped by frequencies that operate at the

same voltage level.

3.3.3 MIMO

Control theoretic approaches for resource management (e.g., [227, 75, 64, 95]) provide formal

guarantees for achieving robustness and stability, particularly in the presence of workload

variability.

Multiple-Input-Multiple-Output (MIMO) controllers have proven to be effective for coordi-

nating management of multiple goals in unicore processors [172] and HMPs [157]. Consider

the MIMO controller in Figure 3.5 that controls a system with two control inputs and two

40

Figure 3.5: Basic 2× 2 MIMO.

interdependent measured outputs. Picking actuators and measurement metrics that result in

behavior that can be estimated linearly is an important aspect of designing a stable controller

[97].

MIMO control for coordinated resource management [172, 171] has generalized management

of multiple controllers or objectives for a single-core processor. Consider the MIMO con-

troller in Figure 3.5 that controls a system with two control inputs and two interdependent

measured outputs. The MIMO is implemented using a Linear Quadratic Gaussian (LQG)

controller [205]:

x(t+ 1) = A× x(t) +B × u(t) (3.2)

y(t) = C × x(t) +D × u(t) (3.3)

where x,y, and u are vectors representing the system state, the measured outputs, and the

control inputs, respectively. Coefficient matrices A, B, C, and D capture the system behavior,

and their values are obtained through system identification. Matrix sizes are determined by

both the number of inputs and outputs of the controller as well as the order of the controller.

The MIMO design process consists of: 1) defining the system to be controlled by specifying

inputs and outputs; 2) using experimental data to identify the system model; 3) designing

41

and tuning the controller based on the system model; and 4) analyzing and validating the

robustness and stability of the designed controller.

In this thesis we focus mostly on steps (1) and (2). Once the controlled system is defined, the

first step in system identification is generating test waveforms from training applications in

order to create a system model. For complex systems it is more common and feasible to use

statistical or black-box methods based on System Identification Theory [125] for isolating the

deterministic and stochastic components of the system to build the model. Given an order,

the model estimation generates the A, B, C, and D matrices (Equation 3.2, 3.3). The order

dictates the dimension of the model (i.e., size of the state space), which is typically a trade-off

between accuracy and complexity. Once the model is created, it is cross-validated using a

different data set and the model uncertainty is assessed using Robust Stability Analysis [125].

The higher the uncertainty guardband, the more robust is the model and therefore the

generated controller.

Picking actuators and measurement metrics that result in behavior that can be estimated

linearly is one of the most important aspects of designing a stable controller [97]. Reducing

model uncertainty is crucial for the stability of a controller: perturbations due to model

uncertainty can destabilize a system; if system identification is completed successfully, the

remaining steps in controller design are trivial.

3.3.4 Fuzzy

A fuzzy controller can be viewed as an artificial decision maker that operates in a closed-loop

system in real time. Figure 3.6 depicts a simple fuzzy controller in the context of feedback

control. As shown in this figure, system output is sensed and represented by y which is

compared against the references set by the designer or the user r. This difference is fed to

the fuzzy controller to decide system input(s) u (i.e., control output(s)) to guide the system

42

towards the desired goals. The fuzzy controller consists of four main components: (1) the

fuzzification component that interprets the inputs to be matched with the rules, (2) the rule

base which is a set of rules that defines the knowledge on how to control the system in different

situations, (3) the inference mechanism which matches the rules with the current situation

and determines the fuzzy set for control outputs, and (4) the defuzzification component which

converts the output of the inference to actual actuator values 1.

Before describing each component in detail, we cover the terminology used in fuzzy control.

To specify rules in the rule-base, an expert uses a linguistic description. These descriptions

are usually in the form of condition → action. In this description, linguistic variables are

used to describe fuzzy system inputs and outputs, and exist in one-to-one correspondence

with numeric variables. For example, QoS-error is a linguistic variable corresponding to the

numeric variable for the change in FPS. A linguistic variable takes on linguistic values such

as positive-large and negative-large. Such variables indicate, among other information, the

direction and magnitude of a variable. To better elaborate on the design components of a

fuzzy controller, we use a simple DVFS example for single core power management. This is

a simple and classic control problem for which many efficient techniques already exist such

as a simple PID controller or a regression model. However, we use this example simply to

illustrate the design and basic mechanics of a fuzzy control system. Here, y denotes the

power consumption of the core (in Watts), and u is the frequency of the core (in MHz). We

will use r to denote the desired power of the processor. The goal is to track this target

power reference either specified by the system design manual or imposed by a higher system

objective.

1We limit our description of fuzzy control to cover the basis of practical control applications. We encourage
the avid reader to find a more detailed analysis of fuzzy logic, sets, and systems to consult [106][105][247].

43

System+
-

u yr e

F
uz

zi
fi

ca
tio

n

Inference
Mechanism

D
ef

uz
zi

fi
ca

tio
nRule base

Figure 3.6: Overview of Fuzzy control

Fuzzification

The role of the fuzzification interface is to convert controller inputs into information that

can be easily used to process, activate, and apply rules. Fuzzification can be simply defined

as the mapping process between an obtained value for an input variable (e.g., IPS value,

QoS metrics, execution time) to its numeric value defined in the corresponding membership

function (MF). Membership function values can be interpreted as the encoding of the fuzzy

controller numeric input values. The encoded information is then used in the fuzzy inference

process. Depending on the application and the designer’s preference, many different choices of

membership functions are possible. Membership functions (e.g., trapezoid-shaped, Gaussian-

shaped, Sharp peak Skewed triangle, etc.) quantify the meaning of the linguistic statements

that experts used in defining the rules in the rule base [167].

In our DVFS example, we use e(t) = r(t) − y(t) as the input to the fuzzy controller which

denotes the error between the reference power and the current power value. As e(t) takes on

a value of, for example, 100mW at t = 2 (e(2) = 0.1W), linguistic variables assume “linguistic

values.” That is, the values that linguistic variables take on over time change dynamically.

Suppose for the DVFS example that error and change-in-frequency take on the following

values (negativeLarge, negativeSmall, zero/hold, positiveSmall, and positivelarge). Top part of

Figure 3.7 shows membership function for change-in-frequency with corresponding values as

a sample. This membership function can be used in the next steps to process and determine

44

0-1-2-3 1 2 3

NegativeLarge

0-1-2-3 1 2 3

NegativeLarge NegativeSmall
zero

positiveSmall positiveLarge
1

Output Variable “change-in-frequency”

0-1-2-3 1 2 30-1-2-3 1 2 3

NegativeSmall
zero

1

Figure 3.7: (top) Sample membership function for change-in-frequency. (bottom) Implied
fuzzy sets for two rules in DVFS example

the output of the fuzzy control or simply decide how much frequency needs to be changed to

achieve the target reference. We define similar functions for error in power with an adjusted

range. Note that we mainly use triangles and skewed triangles for membership functions in

this work due to its low computation overhead.

Rule base

Construction of the rule base is where the experience and domain knowledge of experts

prove to be beneficial. A deep understanding of the target system dynamics can increase the

success of the designed controllers in the deployment process. In this step, values for input

and output variable are described. Expert’s knowledge alongside the above quantification is

then used to specify a set of rules on how to control the system. Fuzzy rules are expressed in

terms of linguistic variables. It is important to note that these rules are defined in a way

that is easy to understand and interpret by humans. At this point, designer does not need to

45

focus on details of control parameters and can simply define the rule structure of the control

process. This comes from the raised abstraction level in the rule base definition that simply

specifies the general idea on how to control a process. Although this might appear to be

different from designers utilizing heuristics, this difference is one of the strong points of fuzzy

control as these rules are defined in a clear and understandable way which can be subject to

test and improvement.

For instance, in our DVFS example if the power consumption is just slightly higher than our

target, we want to reduce the frequency a bit to reduce the core power. This can simply be

added as a rule that says ”if power error is a small positive value then change the frequency

by a negative and small value” (equivalent to rule 4 in pseudocode 1). In the field of fuzzy

control, there has been a vast body of work on how to automatically tune fine parameters

of controller after the initial rule base structure has been defined by the expert designer

[88, 45, 237]. In addition, fuzzy control provides multiple analytical methodologies (e.g., The

Lyapunov Method, Absolute Stability, and the Circle Criterion [4]) for stability analysis that

can analyze the deployed heuristics. Pseudocode 1 shows a sample rule-base for the DVFS

example. The intuition behind the rules is simple, assuming the frequency variations change

power consumption, based on the error, the fuzzy inference decide on the number of steps in

the change of frequency. To summarize, the rule base keeps a record of linguistic variables,

values, and their associated member functions in addition to the set of all the rules. These

rules have the general format of conditional statements making them easy to understand

and computationally lightweight, for example, when compared to the matrix algebra used in

state-space based MIMO control.

Fuzzy Inference

In the inference mechanism component, the expert’s decision making is emulated by inter-

preting and applying knowledge about how best to control the plant. This mechanism is also

46

Algorithm 1 DVFS rule-base example

Input: error: difference between the current power and the target power
Outputs: change-in-frequency: actuation to the next frequency
(1) if error is negativeLarge then change-in-frequency is positiveLarge
(2) if error is negativeSmall then change-in-frequency is positiveSmall
(3) if error is zero then change-in-frequency is zero
(4) if error is positiveSmall then change-in-frequency is negativeSmall
(5) if error is positiveLarge then change-in-frequency is negativeLarge

often called fuzzy inference or inference engine. The inference comprises of two steps. In the

first step, the current situation is determined based on the comparison of the premises of all

the rules and control inputs. Note that, in this matching process, more than one rule can

be applied to a situation. Based on the membership functions and the control inputs, we

determine the certainty that each rule applies. This simply means the rules that are more

relevant to the current status of the system will have a stronger influence on the inference

conclusion. This certainty is denoted by µpremise of that rule. To perform inference, each of

the applied rules must first be quantified by extracting the value of each fuzzy controller

input terms present in that rule and then applying the fuzzy logic (and/or) operation on

them. Usually minimum or product operations can be used here which will lead to a fact

for the rules that include multiple input statements, we can be no more certain about the

conjunction of two or more statements than we are about the individual terms that make

them up. In our example we only have one input stat, if power consumption is not close to

the target reference, the matching decides the certainty of rules such as the ones that starts

with negativeLarge and negativeSmall values for error in power. If we get a small negative

value between zero and one for the error rules 2 and 3 will be picked in the matching process

where rule 2 states ” error is negativeSmall then change-in-frequency is positiveSmall” and

rule 3 is defined as ”if error is zero then change-in-frequency is zero”.

The second step involves determining the controller actions or the conclusion process. Every

rule that can be applied to the current situation in the control system has a corresponding

47

action which defines a controller action or a conclusion. Based on the number of active rules

in each situation, there can be one or more conclusions with different levels of certainty.

The conclusions are characterized by a fuzzy set that represents the certainty that the control

inputs had in the matching process. Next, we consider each conclusion separately to determine

what is the action recommended by the associated rule. Bottom part of Figure 3.7 shows an

example that the implied fuzzy sets of the inference that matched with rules (2) and (3). We

can see that certainty of the rule (3) (µpremise = 0.75) is higher compared to the second rule

(µpremise = 0.25) which means that conclusion of this rule will have a stronger influence on

the inference conclusion. Based on this we define the conclusion of each rule as:

µ(2) (u) = min {0.25, µnegsmall (u)} (3.4)

µ(3) (u) = min {0.75, µzero (u)} (3.5)

In the next step, every recommendation from all the rules are combined to calculate the final

controller action value.

Defuzzification

Defuzzification component operates on the implied fuzzy sets produced by the inference

mechanism and combines their effects to provide the “most certain” controller output [167].

Basically, Defuzzification is the process of converting the degrees of membership of output

linguistic variables within their linguistic terms into crisp numerical values. There are various

defuzzification methods that can be used to find these numeric values such as Center of

48

Gravity (COG), Center of Area (CoA), Modified Center of Area (mCoA), Center of Maximum

(CoM), Mean of Maximum (MoM), Center of Sums (CoS) [210]. If one considers fuzzification

as an ”encoding” process, defuzzification can be seen as a ”decoding” mechanism for the

fuzzy set(s) obtained from the inference engine to generate numeric values.

Finally, going back to our example, we decode the result of the inference step from something

such as a fuzzy set of negativeSmall and zero change-in-frequency (Equations 3.4, 3.5). We

use COG defuzzification mechanisms to find the crisp output for change-in-frequency (e.g.,

decrease in current frequency by 100 MHz if possible). Note that we can have another input to

the fuzzy controller that checks the current frequency and makes sure that change-in-frequency

will not lead to an out of range frequency value. We can also do this as part of post processing

or a filter after the controller. Adding gains before and after the controller is also a common

practice to tune the effect of the control decision on the system.

3.3.5 SCT

Supervisory control utilizes modular decomposition to mitigate the complexity of control

problems, enabling automatic control of many individual controllers or control loops. Super-

visory control theory (SCT) [181] benefits from formal synthesis methods to define principal

control properties for controllability and observability. The emphasis on formal methods in

addition to modularity leads to hierarchical consistency and non-conflicting properties.

Scalability via Supervisory Control

SCT solves complex synthesis problems by breaking them into small-scale sub-problems,

known as modular synthesis. The results of modular synthesis characterize the conditions

under which decomposition is effective. In particular, results identify whether a valid

49

decomposition exists. A decomposition is valid if the solutions to sub-problems combine to

solve the original problem, and the resulting composite supervisors are non-blocking and

minimally restrictive. Decomposition also adds robustness to the design because nonlinearities

in the supervisor do not directly affect the system dynamics.

Figure 3.8 illustrates how a supervisory control structure can hierarchically manage control

loops. As shown in the figure, supervision is vertically decomposed into tasks performed at

different levels of abstraction [217]. The supervisory controller is designed to control the

high-level plant model Phi, which represents an abstraction of the system. The plant is the

pre-existing system that does not (without the aid of a controller or a supervisor) meet the

given specifications. Information channel Infhi provides information about the updates in the

high-level model to the supervisory controller, and the supervisory controller uses the Conhi

channel to control this model. However, due to the fact that Phi is an abstract model, the

controlling channel Conhi is only a virtual channel. In other words, the control decisions of

the supervisory controller will be implemented by controlling the low-level controller(s) Clo

through commands transmitted via the communication channel Comhi lo. Consequently, the

low-level controller(s) Clo can control one or multiple subsystems using the Conlo channel and

gather information via the observation channel Inflo. The changes in the low-level plant Plo

can trigger updates in the state of the high-level model Phi through the information channel

Inflo

Conlo

Comhi_lo

Infhi

Conhi

Inflo_hi

Supervisory

Controller (Chi)

High-level

Plant Model (Phi)

Low-level

Controller (Clo)
Plant (Plo)

Figure 3.8: Scalability via Supervisory Control Structure.

50

Inflo hi. These updates would reflect the results of low-level controller Clo’s controlling actions.

The scheme of Figure 3.8 describes the division of supervision into high-level management

and low-level operational supervision. Virtual control exercised via the Conhi high-level

control channel can be implemented via Comhi lo to adaptively coordinate the low-level

controllers, for example by adjusting their operating modes according to the system goal.

The important requirement of this hierarchical control scheme is control consistency and

hierarchical consistency between the high-level model and the low-level plant, as defined in

the standard Ramadge-Wonham control mechanism [217]. For a detailed description of SCT,

we refer the reader to [181, 188, 16, 217].

Autonomy via Supervisory Control

Supervisory controllers are preferable to adaptive (self-tuning) controllers for complex system

control due to their ability to integrate logic with continuous dynamics. Specifically,

supervisory control has two key properties: i) rapid adaptation in response to abrupt changes

in management policy [74], and ii) low computational complexity by computing control

parameters for different policies offline. New policies and their corresponding parameters

can be added to the supervisor on demand (e.g., by upgrading the firmware or OS), rendering

online learning-based self-tuning methods, e.g., least-squares estimation [6], unnecessary.

Figure 3.9 depicts the two mechanisms that enable SCT-based management via low-level

controllers: gain scheduling and dynamic references. Gain scheduling is a nonlinear

control technique that uses a set of linear controllers predesigned for different operating regions.

Gain scheduling enables the appropriate linear controller based on runtime observations [117].

Scheduling is implemented by switching between sets of control parameters, i.e., A1→A2,

B1→B2, C1→C2, and D1→D2 in Equations 3.2 and 3.3. In this case, the controller gains are

the values of the control parameters A, B, C, and D. Gains are useful to change objectives at

runtime in response to abrupt and sudden changes in management policy. In LQG controllers,

51

Supervisory Controller

Plant

Gains 1

Controller

Gains N

User/Application level policies

System
variables

Control
inputs

Measured outputs

Selected Gains

Ref

+_

Figure 3.9: Autonomy via gain scheduling in SCT.

this is done by changing priorities of outputs using the Q and R matrices. This is what

we call the Hierarchical Control structure, in which local controllers solve specified tasks

while the higher-level supervisory controller coordinates the global objective function. In this

structure, the supervisory controller receives information from the plant (e.g., the presence of

a thermal emergency) or the user/application (e.g., new QoS reference value), and steers the

system towards the desired policy using its design logic and high-level model. Thanks to its

top-level perspective, the supervisor can update reference values for each low-level controller

to either optimize for a certain goal (e.g., getting to the optimum energy-efficient point) or

manage resource allocation (e.g., allocating power budget to different cores).

3.4 Discussion

To summarize the coverage of existing on-chip resource management methods studied in this

work we use Table 4.2. Some heuristic approaches (Row A) focus on efficiency (3) and

coordination (4), but fail to provide formal guarantees and autonomy to the system. On the

52

Table 3.2: Major on-chip resource management approaches (∗ = partially addressed)

Methods 1.
R

ob
u
st

n
es

s

2.
F

or
m

al
is

m

3.
E

ffi
ci

en
cy

4.
C

o
or

d
in

at
io

n

5.
A

u
to

n
om

y

6.
S
ca

la
b
il
it

y

A Heuristic methods X X
B.1 Offline Machine Learning methods X X X ?
B.2 Online Machine Learning methods X X X ? ?
C.1 SISO Control Theory X X X
C.2 MIMO Control Theory X X X X
C.3 Fuzzy Control Theory ? ? X X ? ?
C.4 Supervisory Control Theory X X X X X X

other hand, machine learning methods (Row B) lack robustness against corner cases. Online

machine learning methods that can learn during runtime can provide better autonomy to

response to abrupt runtime changes in objectives. Single-Input-Single-Output (SISO) control

theoretic approaches (Row C.1) provide means to address robustness (1), formalism (2)

and efficiency (3), while lacking the ability to concurrently coordinate and control multiple

objectives in a non-conflicting manner. Recently-proposed Multiple-Input-Multiple-Output

(MIMO) control (Row C.2) enables coordination (4), addressing attributes (1) to (4).

However, MIMO control lacks autonomy (5) and scalability (6) for complex systems. In

addition, to take advantage of benefits of heuristic methods and robustness and formalism

of control theory, fuzzy control theoretic methods (Row C.3) have been proposed for runtime

resource management of heterogeneous systems. In order to address these six key challenges

in dynamic resource management of complex many-core system, Supervisory Control Theory

(Row C.4) has been proposed as a scalable (5) and autonomous (6).

We are seeing an increasing number of complex cyber-physical systems (CPS) deployed for

various applications, such as road-traffic control involving communicating autonomous cars

and infrastructure, or smart grids controlling energy delivery down to the individual device.

53

These distributed applications follow common design objectives, such as energy-efficiency,

and require guarantees for high availability, real-time or safety. In this context, autonomy

is crucial: multiple system goals varying over time need to be adaptively managed and

objectives holistically coordinated. By empowering future CPS with self-awareness, these

systems promise to dynamically adapt, learn, and manage unforeseen changes [89].

In the next two chapters we are going to explore self-Awareness for Systems-On-Chip. First,

on we are going to explore frameworks that enables sef-adaptivity and self-optimization

including simulation, software frameworks and hardware platforms. Thereafter, we will

describe some of the case-study projects that demonstrates the significant gains achieved by

utilizing self-awareness in managing SoCs.

54

Chapter 4

Self-Awareness experimental

platforms and frameworks

Computational self-awareness is the ability of a computing system to recognize its own

state, possible actions and the result of these actions on itself, its operational goals, and its

environment, thereby empowering the system to become autonomous [89]. Computational self-

awareness in itself is not a new field, but rather a unification of subjects studied disjointly in

various fields including control systems, artificial intelligence, autonomic computing, software

engineering, among others, and how such research can be applied toward building computer

systems with varying degrees of self-awareness in order to accomplish a task [107].

4.1 Cyber-physical Systems-on-Chip

Battery-powered devices are the most ubiquitous computers in the world. Users of battery-

powered devices expect support for various high performance applications running on same

device, potentially at the same time. Applications range from interactive maps and navigation,

55

to web browsers and email clients. In order to meet performance demands by users utilizing

complex workloads, increasingly powerful hardware platforms are being deployed in battery-

powered devices. Systems-on-chip (SoCs) integrate potentially hundreds of (heterogeneous)

cores and uncore components on a single chip, constrained by a limited amount of system

resources (e.g., power, interconnects), are required to support diverse workload characteristics

with conflicting constraints and demands, with increasing pressure on shared system resources

from data-intensive workloads. These platforms include a number of configurable knobs

throughout the system stack and with different scope that allow for a tradeoff between power

and performance, e.g., dynamic voltage and frequency scaling (DVFS), power gating, idle cycle

injection. These knobs can be set and modified at runtime based on the workload demands

and system constraints. Heterogeneous manycore processors (HMPs) have extended this

principle of dynamic power-performance tradeoffs by incorporating single-ISA, architecturally

differentiated cores on a single processor, with each of the cores containing a number of

independent tradeoff knobs. All of these configurable knobs allow for a huge range of potential

tradeoff. With such a large number of possible configurations, SoCs require intelligent runtime

management in order to achieve system goals for complex workloads. Additionally, the knobs

may be interdependent, so the decisions must be coordinated.

56

Figure 4.1: CPSoC infrastructure: sensors and actuators throughout the system stack, with
support for adaptive policies that enforce a given goal (from [50]).

Cyber-physical systems-on-chip (CPSoC) [191] provide an infrastructure for system introspec-

tion and reflective behavior, which is the foundation for computational self-awareness. Figure

4.1 shows the infrastructure of a sensor-actuator rich platform, integrated with decision-

making entities that observe system state through virtual and physical sensors at various layers

in order to set the system configuration through actuators. The actuations are determined by

policies that enforce the overall application goals while considering system constraints. Such

an infrastructure can deploy reactive policies through the traditional Observe, Decide and Act

(ODA) feedback loop, as well as proactive policies through the augmented self-aware feedback

loop. Figure 4.2 shows how the traditional ODA loop is augmented with reflection to provide

self-aware adaptation. In this chapter we explore the use of computational self-awareness to

address challenges of adaptive resource management in cyber-physical systems-on-chip1.

1Throughout the remainder of this chapter we use SoC as an umbrella term that includes CPSoC.

57

Decide

+−
Act

GoalGoal
Observe

Self-aware
Adaptation

Figure 4.2: Self-aware feedback loop. Policies are deployed to make action decisions toward
achieving a goal by controlling the CPSoC based on observations and self-aware adaptation.

4.1.1 Reflective System Models

Traditionally, resource managers deploy an ODA feedback loop (lower half (in black) of

Figure 4.3) to manage systems at runtime. However, recent works [46, 208] have shown that

a runtime model of the system can better manage the unpredictable nature of workloads.

Reflection can be defined as the capability of a system to reason about itself and act upon this

information [206]. A reflective system can achieve this by maintaining a representation of

itself (i.e., a self-model) within the underlying system, which is used for reasoning. Reflection

is a key property of self-awareness. Reflection enables decisions to be made based on both past

observations, as well as predictions made from past observations. Reflection and prediction

involve two types of models: (1) a self-model of the subsystem(s) under control, and (2) models

of other policies that may impact the decision-making process. Predictions consider future

actions, or events that may occur before the next decision, enabling ”what-if” exploration of

alternatives. Such actions may be triggered by other policies invoked more frequently than

the decision loop. The top half of Figure 4.3 (in blue) shows prediction enabled through

reflection that can be utilized in the decision making process of a feedback loop. The main

goal of the predictive model is to estimate system behavior based on potential actuation

decisions as well as system dynamics.

58

Controller
Decide

Predict

System—
Act

Target

T
ar

ge
t

Observe

Reflection

Figure 4.3: Feedback loop overview. The bottom part of the figure represents a simple
observe-decide-act loop. The top part (in blue) adds the reflection mechanism to this loop,
enabling predictions for smart decision making.

4.1.2 Middleware for Reflective Decision-making

The increasing heterogeneity in a platform’s resource types and the interactions between

resources pose challenges for coordinated model-based decision making in the face of dynamic

workloads. Self-awareness properties address these challenges for emerging SoC platforms

through reflective resource managers. Reflective resource managers build a model of the

system which represents the software organization or the architecture of the target platform.

Resource managers can use reflective models to anticipate the effects of changing the system

configuration at runtime. However, with SoC computing platform architectures evolving

rapidly, porting the self-aware decision logic across different hardware platforms is challenging,

requiring resource managers to update their models and platform-specific interfaces. To

address this problem, we propose MARS (Middleware for Adaptive and Reflective Systems), a

cross-layer and multi-platform framework that allows users to easily create resource managers

by composing system models and resource management policies in a flexible and coordinated

manner.

59

4.2 Simulation frameworks

4.2.1 MARS

Figure 4.4 shows an overview of the MARS framework (shaded), with Sensors and Actuators

interfacing across multiple layers of the system stack: Applications, Linux kernel, and HW

Platform. The components of MARS are explained next.

1. Sensors and actuators: The sensed data consists of performance counters (e.g.

instructions executed, cache misses, etc.) and other sensory information (e.g. power,

temperature, etc.). The collected data is used to assess the current system state

and to characterize workloads. Any updates to the system configuration (e.g., CPU

core frequency, GPU frequency, memory controller frequency, task-to-core mapping)

happens through system knobs. Actuators allow system configuration changes to

optimize operating point or control trade-offs.

2. Resource Management Policies: are platform agnostic user-level daemons imple-

mented in MARS using supported sensors, actuators and reflective system models.

3. Reflective system model is used by the policies to make informed decisions. The

reflective model has the following subcomponents:

(a) Models of policies implemented by the underlying OS kernel used for coordinating

decisions made within MARS with decisions made by the OS.

(b) Models of user policies, that are automatically instantiated from any policy defined

within MARS.

(c) The baseline performance/power model. This model takes as input the predicted

actuations generated from the policy models and produces predicted sensed data.

60

4. The policy manager is responsible for reconfiguring the system by adding, removing,

or swapping policies to better achieve the current system goal.

Figure 4.4: MARS framework overview from [155]. Different layers of the system stack
coordinate through policies to orchestrate the management of resources: sensors inform
policies of the system state; policies coordinate with models to perform reflective queries, and
make resource management decisions; policies set actuators to enact changes on the system.

MARS is implemented in the C++ language following an object-oriented paradigm and works

on hardware (e.g., Odroid-XU3, Nvidia Jetson TX2), simulated (e.g., gem5), and trace-based

offline [154] platforms. The framework is open source and available online.2 While the

current version of MARS targets energy-efficient heterogeneous SoCs, we believe the MARS

framework can be ported to a wider range of systems (e.g., webservers, high-performance

clusters) to support self-aware resource management.

Self-adaptive software can be defined as “software that evaluates its own behavior and changes

behavior when the evaluation indicates that it is not accomplishing what the software is

intended to do, or when better functionality or performance is possible”[111]. In this work,

we do not address self-adaptive systems directly, as these systems encompass many high-level

concepts such as self-configuration, self-healing, self-awareness, self-optimization, and others,

2Code repository at https://github.com/duttresearchgroup/MARS.

61

also referred to as self-∗[189] (see [51] for a comprehensive review self-adaptivity for SoCs).

However, an infrastructure for system introspection and reflective behavior is an important

building block for such systems.

Figure 4.4 shows an overview of the MARS framework (shaded), with Sensors and Actuators

interfacing across multiple layers of the system stack: Applications, Linux kernel, and HMP

HW Platform. On-chip resource management requires modeling and runtime policies for

these different layers of the system stack. Resource management decisions must be made

for each layer, and the frequency at which decisions are made may vary within or between

layers. Coordinating multiple resource management policies is challenging, and that challenge

compounds when developers are required to design portable policies for multiple platforms.

We have developed MARS – Middleware for Adaptive and Reflective Systems – to address

these challenges.

4.2.2 Interfaces and Policy Design

We first look into how MARS provides a generic user-level sensing/actuation interface that

allows for portable policy design. Table 4.1 provides a list of common sensors and actuators

available at each level of the system stack.

Sensors

Sensor data may consist of physical or virtual performance counters (e.g., instructions

executed, cache hits), or other sensory information (e.g., power, temperature). Sensor data

assesses the current state of the system and also characterizes the workload. All sensors

expose a virtual interface for communication with the resource manager. To implement the

interface, MARS utilizes function templates to provide a generic sense function that returns

62

the specified sensed metric. Different versions of the function can be implemented for each

platform, resource, and sensor-type combination. The function’s template parameter specifies

the proper function implementation to obtain the requested sensed data. This separates the

platform-specific implementation from the user-level policies.

Level Actuators (A) Sensors (S)

Application Degree of parallelism, algorith-
mic choice

Performance, Quality-of-
Service

Kernel Task-to-core mapping, task
priority, memory allocation

CPU time, utilization, con-
text switch counters, open file,
number of tasks

Hardware Voltage/frequency scaling,
clock gating, power gating,
cache sizing

Performance counters (e.g.,
cache misses, instructions
executed, branch miss-
predictions, etc), power,
reliability, critical path delay
degradation

Table 4.1: Examples of sensors and actuators available across the system stack

Actuators

Adjustments to system configuration at runtime happens through actuators. Actuators range

from application-level choices (e.g., degree of parallelism), to kernel-level choices (e.g., task-

to-core mapping), to hardware-level choices (e.g., core operating frequency). The actuate

function sets a new value for a system actuator using a virtual interface. Similarly to sense,

actuate is implemented with function templates so that unique versions may be provided

for each platform, resource, and actuator combination. Given the new actuation value, the

function’s template parameter selects the proper function implementation to perform the

requested actuation action. Two additional related functions are provided: actuationVal

returns the current actuation value set and actuationRanges returns the valid range of

actuation values for the specified resource. actuate functions are implemented on top of

standard Linux system calls and modules. For instance, we use CPU affinity system calls to

63

control task-to-core mappings, and cpufreq to control core frequencies.

Policies

Policies contain the decision-making logic which controls the system resources at runtime.

Management policies implement the ODA and refelction loops for the resource(s) under

control. In MARS, users can define resource management policies by creating a subclass of

Policy.

All policies make use of generic sensing and actuation interfaces sense and actuate. At the

user-level, all policies share access to the common set of sensors. For each policy, sensor data

is aggregated during the sensing window (i.e., the time period between policy invocations)

defined for the policy. MARS uses ioctl system calls to setup the sensing windows for each

registered policy function. The policy functions are executed at the end of each sensing

window in separate threads that uses blocking ioctl calls to synchronize with the kernel

module. The kernel module automatically aggregates sensed data on a per-window basis

and stores the information in shared memory, so that it can be read directly by sense calls

with low overhead. This means any number of sensing windows (i.e., policies) executing at

different window lengths can access the same sensors concurrently, and still measure the

appropriate value for their window length.

4.2.3 Reflective System Model

Previously, we described a scenario where multiple policies operate at different sensing window

lengths, or epochs. We now illustrate how MARS uses a reflective system model to make

self-aware decisions.

To understand the reflection mechanism in MARS, consider the resource manager shown

64

in Figure 4.5 that shows a sample task mapping policy interacting with DVFS (Dynamic

Voltage and Frequency Scaling) and scheduler policy models. At the finest time granularity,

we have the operating system scheduler, whose goal is to select a task to execute on a given

core. A new decision must be made whenever a new task is created, a tasks finishes, a task’s

quantum expires, an interrupt is raised, etc., leading to a time-frame between decisions on

the order of microseconds. At a coarser time granularity we have the DVFS policy, which

typically executes periodically (10-100 milliseconds) to analyze the system load and select an

appropriate operating frequency. At the coarsest time granularity (100-1000 of milliseconds),

the task mapping policy runs periodically to define a new task-to-core assignment. Migrating

a task from one core to another has significantly more overhead than changing the CPU

frequency in a typical HMP [241]. MARS allows users to coordinate among different policies

through policy models, regardless of varying time granularity.

Task Mapping
Policy

DVFS
Model

Scheduler
Model

HW
Model

What if a
task is

migrated?

1

What if the
frequency
changes?

2

What if the
schedule
changes?

3

- Per-
f/Power
- Load
- Fre-
quency

- Per-
f/Power
- Load

- Per-
f/Power

Figure 4.5: Example of a task mapping policy that queries models of OS policies for DVFS
and scheduling.

In order to make an informed task mapping decision, for instance, the policy must consider

the effects of its decision on the behavior of the underlying DVFS and scheduling policies.

Furthermore, the invocation period of actuations dictates how complex the decision making

logic can be. For instance, a scheduling decision must be made in the sub-microsecond

range in order not to disrupt the system. Task-to-core mapping, on the other hand, is

done comparatively infrequently, and affects the system performance over a long timespan.

Therefore, the overhead of using complex models to make such decisions can be mitigated by

the potential benefits of an informed decision.

65

The components within the reflective system model interact in a hierarchy defined by the

dependencies of the actuations performed in the system. For instance, Figure 4.5 illustrates

the scenario within MARS for our example. Workload models assume each core can run

multiple tasks and there is no formal or explicit dependency between threads. Before the task

mapping policy decides to migrate a task, it (1) queries the reflective model asking: what

will be the performance of task A if it is migrated? (2) The DVFS governor policy model

executes (without actuating) in order to predict the resulting core frequency provided the

hypothetical task mapping. (3) This information is passed on to the performance/power

model which predicts the task performance. Architecture models define the architectural

characteristics of the target platform including instruction-set architecture (ISA), number

of cores, core types, etc. Finally, the predicted metrics are used by the policy to make the

decision, which is passed to the actuator through the actuation interface.

Analogous to the actuate/sense functions described previously, MARS provides the tryActuate

and senseIf set of functions necessary issuing queries to the reflective models:

• tryActuate: Using the same syntax as actuate, this function updates the underlying

models used to predict the next system state given the new actuation value. It does

not set the actual actuation value. A tryActuationVal analogous to actuationVal is

also provided.

• senseIf: this function has the same semantics as sense, but returns predicted sensed

information for the next sensing window, given a new actuation set by tryActuate.

4.2.4 Policy Manager

A user-defined subclass of PolicyManager is responsible for composing policies and models

together. The purpose of the policy manager is to provide resource management autonomy

66

Table 4.2: Currently supported platforms in MARS and their sensors/actuators

Implementation Platform Architecture Sensors Actuators

ODROID Hardware ARMv7-
A

All ARM Performance
Monitoring Unit (PMU)
counters (e.g., cache
misses, instructions
executed, branch misspre-
dictions, etc.,), Power
sensors for CPU clusters

Voltage/frequency scaling
for CPU, Task-to-core
mapping, Temperature
sensor

NVIDIA
Jetson-
TX2

Hardware ARMv8-
A

ARM PMU counters,
GPU performance
counters, CPU Power,
Memory Power, GPU
Power, WiFi Power

Voltage/frequency scaling
for CPU clusters, GPU
frequency scaling, Task-
to-core mapping mapping

Gem5 Simulation ∗ ARM PMU counters Frequency scaling

Offline
simulator Simulation ∗ Sensors which are present

in the trace
Switch across different
traces of execution

in response to changing system goals or execution scenarios, as well as coordinate multiple

dependent policies and their objectives. For instance, consider modern smartphones. These

devices typically operate in two scenarios: 1) the device is plugged to an external power

source; 2) the device is powered by battery. In the case of (1), policies can simply focus on

maximizing applications’ quality of service (QoS), while for (2), QoS should be balanced

with energy efficiency. A third scenario in which the battery charge is critically low is also

possible. In this case, policies should focus on minimizing power consumption so the device

can continue to operate. Furthermore, direct intervention from the user may cause additional

unpredictable scenario changes. Creating a single policy that is able to manage all these

scenarios and goals can lead to a overly complex and possibly inefficient implementation.

Instead, one may develop multiple policies optimized for specific cases, and have a high-level

manager dynamically select the most appropriate policy to apply throughout runtime.

67

4.2.5 HAMEX

With the diverse application demand in embedded and even high end IOT domains, hetero-

geneous systems are becoming popular more than ever. Heterogeneity in these systems is

manifested in many different parts. It can show itself in computational units; for example

heterogeneous processors that accommodate different types of CPU cores or in architectures

with various accelerators such as GPU that can perform high throughput computation.

Heterogeneity also appears in different interconnect and memory modules, particularly with

the availability of many new memory technologies (e.g., NVM, HMC, etc.). Figure 4.6 depicts

a general picture of a heterogeneous computer architecture composed of heterogeneous CPUs,

GPUs, accelerators and memories. Although many existing tools are available to explore and

design each component of Figure 4.6, there is lack of a framework that enables designers

to explore rapidly the combined system ensemble of heterogeneous CPUs, GPUs, memories

and interconnects. This section presents HAMEX, a Heterogeneous Architecture and Mem-

ory EXploration framework that addresses this need and empowers designers to perform

rapid Design Space Exploration (DSE) of alternative heterogeneous system architectural

configurations which covers the CPU, GPU, memory and interconnect dimensions.

HAMEX DSE FRAMEWORK

The following section explains the overall structure and role of individual components of our

HAMEX design space exploration (DSE) framework. HAMEX accepts an input specification

file that determines the characteristics of architecture components. In addition to properties

of memory subsystem, this file includes high level information about the type and number of

CPU and GPU units and their caches.

We integrated cycle accurate Gem5 [21] CPU simulator and Multi2Sim [220] GPU simulator

for modeling these computational units. Figure 4.6 shows general view of the HAMEX

68

Figure 4.6: HAMEX simulation framework overview [149]

framework. Components defined in the input specification file can have multiple sets of

options to enable design space exploration. The output of HAMEX will be generated by

the memory exploration component integrated with DRAMSpec and DRAMPower [228]

which includes metrics related to bus contention, performance and power of memory modules

examined.

Model configuration

CPU simulation: We use Gem5 [21] as our CPU simulator. Gem5 is a cycle accurate

micro-architectural simulator which provides simulation for many ISAs. This includes in-order

and out-of-order cores from different ISAs that are highly configurable regarding the micro-

architectural parameters such as pipeline stages, load/store queue entries and reorder buffer

entries. This tool also provides flexible configurations for caches, memories and interconnects.

Gem5 has two simulation modes: Full System (FS) and System-call Emulation (SE). FS mode

simulates a complete system with devices and operating system. FS mode is particularly

69

useful for designers that want to analyze effects of OS scheduling on their applications

performance. In SE mode, system services are provided by the simulator hence it only needs

a statically linked user-space program.

GPU simulation: For simulating general purpose parallel workloads, the Multi2Sim [220]

GPU simulator is selected and integrated in our HAMEX framework. For this purpose, GPU

and dependent modules architectural characteristics are extracted from the input specification

file and fed into the simulator. This specification file determines the type and number of

compute units in the GPU and their properties such as frequency, wave fronts and optional

pipeline details. In addition, designers may specify the cache and main memory architecture

used in GPU memory hierarchy. Multi2Sim requires a series of networks and ports to connect

compute units, caches and memory modules, all of which are generated by the HAMEX

architecture manager (block B in Figure 4.6). In order to fully model a GPU execution flow,

an emulated CPU is added to simulation to start the command queue and transfer the input

to GPU unit.

Architecture manager

At this point in the flow of HAMEX, both CPU and GPU workloads have been simulated on

their corresponding components and their memory traces have been captured. As shown in

block (B) of Figure 4.6, the architecture manager in addition to CPU and GPU traces, receives

memory features such as type, size and bandwidth of memory from the input specification

file. Using this information, the manager invokes memory exploration component comprised

of DRAMSpec integrated with Gem5 memory and protocol buffer traffic generator. The

designers have the option to specify a configuration to modify trace replay. For example the

architecture manager can add delays to the start of one of the workloads or add priority

to one of the compute units, then generate the improved trace for traffic generator units.

Interconnect used in memory exploration also can be configured for different width, coherency,

70

frontend and response latency, frequency, etc.

Memory System

One of the merits of our HAMEX framework is the ability to do extensive exploration on

memory systems used in heterogeneous architectures. HAMEX supports two common early

design space exploration use cases: 1) comparing common or new memory families, and 2)

evaluating emerging new memory families.

Comparing memory components: The memory component and its interconnect used in

HAMEX framework is modeled in Gem5 classic memory system integrated with DRAMSpec

and DRAMPower for estimating performance and power metrics. There are many DRAM

memory modules such as DDR3, LPDDR3, GDDR5,WideIO, etc. already modeled in this

environment. This wide variety of available of the shelf components can provide designers

with more design choices to explore at early stages of design.

4.2.6 Sniper feedback loop

For processor architectural simulation, we use the Sniper [69] simulator which provides

micro-architectural details of power and performance of variety of processors. This archi-

tectural simulator enables evaluation of single-core and multi-core processors with different

communication mechanisms such as bus and Network-on-Chip (NoC). A series of additions

was made to this simulator in order to enable run time closed-loop power capping which are

discussed in the rest of this section.

71

Figure 4.7: Simulation framework overview

Framework Overview

In our work, in order to enable run time power capping using PI controllers, a mechanism

called “Global manager” is added to this simulator to manage the DVFS settings at run-time

based on computer system response to application behavior. Figure 4.7 represents overview

of this framework. By default, the global manager is invoked every 2.5 ms (common software

controller epoch) to obtain the state of the computational cores and determine the next

level for their frequency. In addition, MCPAT [120] is used to capture and estimate power

consumption.

4.3 Hardware platforms

In order to validate the applicability of the proposed resource management methods in this

thesis it would be vital to evaluate these methods on actual hardware platforms that are

commonly available in market.

4.3.1 ODROID

Figure 4.8 shows the ODROID 8-core big.LITTLE Exynos 5422 HMP platform executing a set

of representative applications on top of Linux or Android, thereby emulating the background

72

Figure 4.8: Example system overview.

noise in real platforms. This abstraction shows the sensors and actuators available for the

8-core HMP. This platform has an on-chip GPU as well along side the HMP. This platform

provides the opportunity for runtime resource management using DVFS and idle core setting

while measuring power and IPS.

4.3.2 NVIDIA JetsonTX2

In some of our studies in Chapter 5, we use the NVIDIA Jetson TX2 development board [34],

which contains an HMP and a NVIDIA GPU. HMP contains a quad-core ARM Cortex A57

cluster and a dual-core NVIDIA Denver cluster. Similar to Cortex A57 cores, Denver cores

implement ARMv8 instruction set and are designed as a processor with 7-way superscalar

execution pipeline. The GPU is powered by NVIDIA Pascal CUDA cores. This platform

enables us to consider multiple scenarios that are common in mobile devices where CPU runs

multiple tasks (possibly one foreground with QoS requirements and others in background)

and in full system scenarios GPU is executing a highly parallel kernel concurrently.

73

Chapter 5

Adaptive runtime resource

management case studies

In this chapter we go dive deeper in some of the projects included in this thesis that show

case usage of self-adaptivity in runtime resource management.

5.1 Single-Input Single-Output Controllers

5.1.1 Benchmark Categorization

Two sets of workloads have been utilized in our work in order to make a comprehensive

study of capabilities of SISO controllers for power capping regarding the wide variety of

applications behavior. There have been many efforts to construct benchmark suites that

can comprehensively represent real world software execution. For example, SPEC [169]

workloads include different high performance computing applications. ALPBench [136] is

a suite of multimedia workloads. Minebench [158] includes benchmarks for Data Mining

74

Workload Domain Problem size
Barnes High-Performance 32768 particles

Ocean-Contiguous High-Performance 1024*1024 matrix
Ocean Non-contiguous High-Performance 1024*1024 matrix

FMM High-Performance 32768 particles
Radiosity Graphics room
Raytrace Graphics Car -m64

Water-NSQ High-Performance 2197 Molecules
Water-SP High-Performance 2197 Molecules
Volrend Graphics head

Table 5.1: SPLASH-2 benchmark list and their problem size

Workloads. In the recent years comprehensive benchmark suites like SPLASH2 [231] and

PARSEC [19] gained a lot of attention as they cover many domains and in addition they

scale well for multi-core systems. In our studies we use these two benchmark suites (PARSEC

and SPLASH-2) and provide a detailed analysis on the effects of application behavior on

controllability of the system. In addition, a set of micro-benchmarks are devised to stress

various parts of a system that are further explained in discussion section.

SPLASH2

The SPLASH-2 suite is one of the most widely used collections of multithreaded work-

loads [231]. Table 5.1 represents a detailed description of workloads included in this bench-

mark suite. Parallel machines were not as common as nowadays and were mostly used for

scientific objectives when SPLASH-2 benchmark suite was released. This fact is reflected in

high performance nature of the workloads included in SPLASH-2 benchmarks.

PARSEC

PARSEC as one of the emerging multi-threaded benchmark sets contains applications that

have been designed to take advantage of multiprocessor computers with shared memory [19].

Applications included in the benchmark suite are composed of programs from a wide range of

75

Workload Application Domain Parallelization
Blackscholes Financial Analysis Data-parallel
Bodytrack Computer Vision Pipeline
Canneal Engineering Data-parallel
Dedup Enterprise Storage Pipeline

Facesim Animation Data-parallel
Ferret Similarity Search Pipeline

Fluidanimate Animation Data-parallel
Freqmine Data Mining Data-parallel
Raytrace Visualization Data-parallel

Streamcluster Data Mining Data-parallel
Swaptions Financial Analysis Data-parallel

Vips Media Processing Data-parallel
X264 Media Processing Pipeline

Table 5.2: PARSEC benchmark list and their Application Domain [18]

application domains (e.g., engineering, machine learning, storage, finance, Etc.) in order to

capture the increasingly diverse ways in which computers are used. Containing applications

with different parallel programming models that are geared toward common CMPs, brings

out the possibility of using PARSEC benchmark suite to test the performance of a diverse

set of computer systems including embedded systems.

5.1.2 Evaluation

In this section, we evaluate two often-neglected important aspects in the design of a controller:

System Identification and Performance Analysis [195, 196]. For system identification,

we show examples of both well identified systems and poorly modeled systems with some

hints about what kind of behavior in the model may result in imprecise controller design.

These evaluations are done for both single-core systems and CMPs with demonstration of

effect of increasing number of cores. This can be valuable for cases where a controller must be

implemented in hardware and changing its configuration is costly. For performance analysis,

we evaluate various types of controllers for SPLASH2 and PARSEC workloads and highlight

the pros and cons of each method. In addition, the trend of controlling behavior is analyzed

76

for multithreaded applications running on different size of CMPs. Furthermore, as part of our

evaluation we categorize the workloads based on measurement of their power consumption

and instruction per second (IPS) and then analyze the settling time (all time measurements

done by epoch units), maximum overshoot and controllability of each class of application.

5.1.3 System Identification

After defining the controlled system, the first step would be to generate test wave forms from

training applications for system identification [124]. Ideal training applications represent the

behavior of applications to be executed on the real system [125]. A test waveform contains

a series of samples for controller inputs and outputs for a training application, and should

exercise as many input permutations as possible. Once the training data is collected, the

model can be created. During this stage, the system dynamics is exercised often by applying

a staircase waveform to the control input (e.g., operating frequency). Such staircase would

stimulate system behavior in response to various levels of control input. In our work, we

change CPU frequency from 1 GHz to 3.3 GHz with steps of 100 MHz. In this method,

training sets use varying frequency (e.g., a set of out-of-phase staircase signals for the control

inputs) in order to isolate the deterministic and stochastic aspects of the system. Voltage

level is assumed to be fixed in this simulation. This model is then evaluated to predict the

expected data from the identified system. Abnormal behavior from this model can raise a

flag that the controller to be designed from this model might be inaccurate. In our work, we

used Matlab’s system identification toolbox for this process [141]. Below, we showcase some

of these scenarios.

Figures 5.1 and 5.2 demonstrate positive and negative examples that designers have to look

for in system identification phase. These two figures show the result of system identification

of two hand-tuned workloads. More precisely, they show how well a model can predict the

77

Figure 5.1: CPU bound microbenchmark with well identified model

Figure 5.2: Memory bound microbenchmark model with limited tracking range

system’s output running an application when operating frequency is changed in a staircase

form over time. Figure 5.1 shows that the predicted model for a performance regulated

benchmark that closely fits the measured model. On the other hand, Figure 5.2 shows a

memory bound benchmark that lacks the ability to fit into the expected model. Although the

controller changes the frequency levels, this change does not have a clear correlation to system

output due to the system stalling for memory accesses instead of executing instructions for a

majority of simulation cycles.

78

Figure 5.3: Barnes workload well identified model with noise

Single-Core Models

Next, we investigate a selected set of models that show a series of stochastic behavior that

can manifest in the system identification stage. System identification results shown in this

section are performed for a single core processor running one thread of each benchmark.

Majority of these benchmarks are selected from SPLASH-2 benchmark suite to isolate the

effect of off-chip memory accesses. Section 5.1.3 focuses on system identification for CMP

models that mostly utilizes PARSEC benchmarks optimized for these architectures.

Figure 5.3 shows a part of the Barnes workload that closely fit the expected model while

demonstrating spikes at certain points of time. These spikes can be the result of a change

in the workload execution behavior which is common in many real-time applications. As

the duration of these spikes are very short and the model can rapidly respond to such

changes, they are considered as the stochastic part of the system dynamics which should be

isolated from the deterministic part, and would not cause any issue in the performance of the

system. In contrast, Figure 5.4 demonstrates part of an identified model for the Raytrace

workload that exhibit a long period of underestimation. There are restrictions (such as level

of aggressiveness and transient state) that can be applied during controller design stage which

can mitigate these abnormal conditions, motivating the need to consider these issues upfront.

79

Figure 5.4: Raytrace workload model exhibiting error in prediction

CMP Models

After identifying models for single-core processors, we aim to identify models for CMP systems.

This change expands the exploration space for controller design. On one side, exceeding

number of cores can be a challenge for system identification phase and controller design

process. On the other hand, the multithreaded behavior of applications over different cores

can add a large noise when controlling the whole system complex with solely one SISO

controller. To address some of the mentioned challenges we study the capability of SISO

controllers in power capping of CMPs with following scenarios for the system identification

phase:

• We demonstrate a single threaded application running on a multi-core processor.

One core is executing the application thread and other cores simply have idle power

consumption. The goal of this experiment would be to see the static effect of idle cores

on system identification.

• We analyze the power model for CMPs using DVFS. We demonstrate the variety of

dynamic power changes on a 4-core processor based on run-time behavior of each

application thread. In addition, we evaluate the accumulated total power for the whole

80

Figure 5.5: System identification for a 4-core system using one thread of Freqmine benchmark
executing on one core. Model fits general flow with a static shift at the bottom.

system in respect to power consumption of each core and platform communication

mechanism.

• We assess the system identification capability for CMP systems with low number of

homogeneous cores.

• We illustrate the trend of increase in inaccuracy of system identification stage as the

number of cores grows larger.

The first transition from a single-core processor to a multi-core processor system identification

model is extending the architecture while keeping the same configuration for the software

execution. This would reveal some of the key points to look after in design process of

a controller for the multi-core systems. In order to evaluate this case, we evaluate same

benchmarks on a 4-core platform while restricting the number of threads to one. Figure 5.5

shows the result of system identification for Freqmine benchmark. While the application is

running on only one of the four cores, the other cores consume power in their idle state. This

constant power usage would manifest itself with slight shift at the bottom of each staircase

period. If the model can fit the general trend, this shift can easily be eliminated in control

design step.

81

Furthermore, we take a look at general power actuations during black-box system identification

for a 4-core multi-processor. Figure 5.6 shows power measurement while execution of

Bodytrack benchmark on a homogeneous 4-core system. Top part of Figure 5.6 shows the

staircase model of total power of the whole system that shows a good response to changes in

system frequency. This model is able to rapidly recover from spikes and slopes that are caused

by application stochastic behavior on each individual core. Four bottom system identification

models in Figure 5.6 show individual core response to frequency changes. We can observe

that each core depending on the running a thread shows unique run-time behavior but at the

end we are concerned with aggregated total power model.

Next step is to analyze how well this model can fit the predicted model. Figure 5.7 demon-

strates the system identification of the 4-core system that we have seen previously using

Bodytrack benchmark. This model shows a promising trend for design of a SISO controller

for the 4-core CMP. Majority of PARSEC benchmarks show similar results for system identi-

fication stage using a 4-core system. We were curious to see if it is possible to identify larger

systems for an accurate control design. We extended the simulated architecture to a 64-core

network on chip system. Figure 5.8 shows system identification for 64 thread of the same

benchmark application (Bodytrack) on the 64-core platform. It can be easily inferred from

Figure 5.8 that this model cannot be easily identified and the controller designed from this

model might lead to unresponsive system.

To demonstrate the trend of decrease in accuracy of system identification, we picked one of

the benchmarks (Swaptions) that showed well-fitted model for 4-core platform for further

evaluation. We extended the simulation to 8, 16 and 32 cores to see the fit to model trend.

Table 5.3 shows the decrease in the ability to fit the predicted model while increasing the

number of processing cores. The two important notes from system identification stage is to

evaluate the responsiveness of the controller to control inputs and grasp a better understanding

of stochastic and deterministic behavior of application.

82

50 100 150 200 250 300 350 400 450 500
Time

0

10

20

30

P
ow

er
Total Power

100 200 300 400 500
0

5

10

Core 1

100 200 300 400 500

0

5

10

Core 2

100 200 300 400 500
0

5

10

Core 3

100 200 300 400 500
0

5

10

Core 4

Figure 5.6: Power usage of a 4-core system while tuning Bodytrack benchmark. Top figure
represents Total power of the whole system and the rest are break down of each core power.

To give better insight regarding the decrease in accuracy of system identification when moving

form small number of cores (4-cores) to a platform with large number of cores (64-cores) a

cross-validation of residuals has been done. Figure 5.9 demonstrates both cross-correlation and

autocorrelation evaluation for bodytrack benchmark. Residual is the stochastic component

(e.g., disturbance, noise, etc.) of the system output, which is not supposed to be included

in the model. When validating the model, the model output is compared to noisy system

outputs. Therefore we expect the residual to be pure noise. To verify this, the residual is

analyzed for correlation. If there is no correlation between the residual and itself or any

83

Figure 5.7: 4-core system identification for bodytrack benchmark

Figure 5.8: 64-core system identification for bodytrack benchmark

inputs, the model is accurate enough. Confidence can be used to specify a range. In this work,

commonly used 99 percent boundaries have been set for the confidence. A confidence level is

the probability with which the true output will fall into the range of confidence boundaries.

After an estimated system dynamics is produced using system identification techniques, it is

cross-validated using different data sets. Cross-correlation is a standard method of estimating

the degree to which two series are correlated. In our case, cross-correlation (bottom part of

Benchmark 4-cores 8-cores 16-cores 32-cores
Fit to estimation 78.99% 40.7% 9.529% 3.004%

Table 5.3: Fit to estimation data trend with increase in number of computing cores while
executing one thread of Swaptions Benchmark on each core.

84

Figure 5.9: Auto/Cross-correlation of residuals for 4-core and 64-cor systems.

Figure 5.9) is evaluated for power as the output of the system based on the frequency as the

input of the identified system. We can observe that the 4-core system model can retain in

the confidence boundaries while the larger system model is outside these boundaries for all

samples. The cross-correlation is similar in nature to the convolution of two functions. In an

autocorrelation, which is the cross-correlation of a signal with itself, there will always be a

peak at a lag of zero. The top part of Figure 5.9 compares auto-correlation of residuals for

these two systems. Similar to the previous part, only the 4-core system identification can stay

in the boundaries. These results show controllers for a system with large number of cores are

often infeasible to design due to the lack of a sufficiently accurate system dynamics model.

85

5.1.4 Performance Analysis

After the system identification stage, controller design is performed by using the Matlab PI

tuner [142]. Typically there are three ways that designers choose to design a controller for

a computer system. The first set of methods take a statistical average of metrics gathered

from system identification phase to represent the general case. The second scenario involves

designing a controller for a system that runs predefined workloads (i.e., application specific)

such as a smart watch or industrial plant machines. In this case, designers have the opportunity

to tune the controller based on the application at hand for better accuracy. Table 5.4 shows

these workload specific control parameters (i.e., gains) used to control the system running each

benchmark (i.e., optimal application specific parameters extracted from Matlab). Finally, the

third scenario uses a worst case configuration that performs conservatively for all benchmarks

and is more robust against disturbances, however suffers from slow settling time. It should

be mentioned that despite all these methods and vast variety in off-the-shelf controllers,

there are some applications that cannot be controlled with a simple SISO controller and that

would either require more advanced controllers (e.g., non-linear, adaptive, self-tuning) or

different/more configuration knobs. We describe these scenarios in Subsection 5.1.4.

Workload KP KI Multithreaded KP KI

Barnes 114 229 Blackscholes 10.08 20.17
Ocean-Contiguous 156 226 Bodytrack 12.50 25.10

FMM 114 229 Facesim 8.7 5.4
Radiosity 184 369 Ferret 23.2 46.4
Raytrace 244 247 Fluidanimate 20.17 40.35

Water-NSQ 139 228 Freqmine 68.1 136.01
Water-SP 175 250 Swaptions 39.1 40.2
Volrend 141 282 X264 137.1 47.85
Average 180 240 Average 38.86 45.18

Table 5.4: CPU core configuration for Nehalem-EP

86

Figure 5.10: Example of well-tuned controller for Water-NSQ benchmark following 7W power
reference

Customized case

For many systems using control-theoretic power managers, we may have design time knowledge

regarding the workloads to be executed. This enables control designers to customize the

power manager based on these pre-defined applications. System identification and controller

design stages are performed individually on each application. Table 5.4 shows these workload

specific KP and KI configurations. Figure 5.10 shows proper behavior of the Water nsq

benchmark in tracking the 7 Watts power reference. Ability to track a specific reference

would be essential later on when DVFS manager wants to set a power reference to optimize

energy efficiency. Examples from multithreaded applications are discussed in Section 5.1.4.

We observe similar trends for all other workloads except the two benchmarks discussed in

Section 5.1.4.

Average and worst case

Many general-purpose systems do not have the flexibility to accommodate customized

controllers either due to variety of system workloads or because the controller cannot be

easily reconfigured. In these situations, designers choose a representative configuration that

can meet their requirements. Here two commonly reported control strategies use a statistical

87

Figure 5.11: FMM benchmark with average and customized case

average case of predicted applications [146] or use a worst case scenario that can respond

with slower speed but which provide larger margins of guarantees.

As an example for the average case, Figure 5.11 shows the difference between the customized

controller and average case controller for the FMM benchmark in tracking the 7 Watts

power reference. Both cases can keep the power close to the reference but the customized

controller minimizes the tracking error with minimal deviations from the reference, while the

average controller oscillates over the power reference. This is due to the fact that fine-grain

step of the average case controller is larger than what this workload requires. For the worst

case, Figure 5.12 shows the comparison between the customized case and worst case for the

Raytrace workload. As expected, the worst case scenario has slower settling time due to

smaller steps (smallest KP and KI) but after reaching 7 Watts, it can reliably follow the

power reference.

CMP Controllers

Nowadays, most of computer systems including embedded systems utilize Chip Multi-

Processors (CMPs) or Heterogeneous Multi-Processors (HMPs). The advantage of using

multiple cores on a single die is that these multiprocessors become available commodity for

88

Figure 5.12: Raytrace benchmark with average and customized case

Figure 5.13: 4-core controller tracking 20 Watts for Swaptions benchmark.

parallel applications. In comparison to majority of SPLASH-2 benchmarks evaluated in pre-

vious section which are designed for high performance computers, PARSEC applications are

optimized to take advantage of CMPs. Table 5.4 specifies the customized control parameters

for some of these benchmarks.

To show some of the selected controllers designed for CMPs, we identify all PARSEC

benchmarks for a 4-core system using bus communication and share memories. Insights

from system identification phase were presented in Section 5.1.3. Here, we select some of

these applications for control design using methods discussed in the beginning of Section5.1.4.

Figure5.13 shows power reference tracking (20 Watts) for a customized controller for Swaptions

benchmark running on a 4-core system. As shown here the SISO controller designed from a

89

Figure 5.14: Comparison of customized and worst case controller for 4-core system tracking
20 Watts for Facesim benchmark.

well-identified model has no trouble controlling the total power of a 4-core system.

Figure 5.14 compares two controllers designed for Facesim benchmarks. First controller is a

custom designed controller for this benchmark which shows rapid conversion to 20 Watts

power reference with low overshoot. Second controller is a worst case controller that follows

the same trend but slower and more sluggish. Also there is a bigger overshoot and steady-state

error.

Corner cases

So far we evaluated both dynamic and static methods to design and deploy a PI controller

for power capping. Using lessons learned from these evaluations, designers can choose the

suitable method for their system. However, it is important to note that the appropriateness

and feasibility of these methods depend on the system being controllable. The controllability

property guarantees that the controller can always keep the plant within a set of boundaries

around the reference. In other words, if the controller is not provided with proper means

(actuators or configuration knobs), it would be unable to reach the desired reference. Fig-

ures 5.15 and 5.16 show the system identification, and controller deployment phases of the

90

Figure 5.15: Ocean Non-Contiguous workload. System identification of uncontrollable
workloads

Figure 5.16: Ocean Non-Contiguous workload. Performance analysis of uncontrollable
workloads while trying to track 7 Watts reference

system running Ocean benchmark. Both implementations of Ocean benchmark (contiguous

and non-contiguous) show similar behavior. These applications are not controllable using

solely DVFS actuation. In the following section, we analyze these benchmarks in more details

to elaborate of the reasons behind their abnormal behavior.

5.1.5 Discussion

In this section, we discuss the reliability and performance of SISO controllers in power

capping of different class of workloads based on the evaluations done in the previous section.

Performance analysis done on the deployed controllers showed stability for majority of the

workloads for single-core and 4-core CMPs. In addition, hand tuned controllers were able to

meet the second set of requirements which are maximum 30% overshoot and settling time

91

less than 150ms. In some cases, controllers using the statistical average were not able to meet

the overshoot requirements. The reason for more frequent power overshoots in average case

is that it does not have the fine grain tuning that some of the workloads require. Although

the worst case configuration was not as rapid as the customized controllers, overall it proved

to be a reliable controller. Therefore, for scenarios where the computer system is designed

to execute an application with similar computing characteristics, the average case can be a

valid candidate; and for systems sensitive to changes in power levels that can tolerate some

degree of performance overhead, worst case controllers can be deployed.

In our experiments, we observed few benchmarks that exhibited abnormal behavior in tracking

power references with high standard deviation. Figure 5.16 shows the behavior of one of

these benchmarks. Our first reasoning behind this behavior was that slow response time of

a software controller is longer than the periods of time that these workloads change their

application phases. This can cause a late response (change in frequency) to a phase that is

already passed which can exacerbate the current power state. In order to check this issue

we moved our software SISO controller mechanism to the hardware level with 10× faster

sampling and DVFS epochs (from 2.5ms to around 0.25ms). Contrary to our expectations,

the experiment showed that a faster controller did not have much improvement on these

cases. Although we were able to capture power violations at an earlier stage, the responses of

our controllers were not able to mitigate this issue. Figure 5.17 shows controller accuracy

improvement when migrating from software controllers to hardware controllers. For most of

controllable benchmarks, faster hardware controller shows small (less one percent) increase

in accuracy but for the corner cases this faster response causes ripple effect and reduction in

accuracy.

Our next solution to this issue was to investigate these benchmarks in more detail. We looked

at a few measurable metrics and what stood out was the average power consumption. The

results in Table 5.5 shows the average power consumption of each benchmark in SPLASH-

92

Figure 5.17: Accuracy improvement from software controller to a faster hardware controller

2 benchmark suite while tracking 7-Watt power reference. As we can see, only the two

irregular benchmarks (Ocean-Contiguous and Ocean Non-contiguous) have the average power

consumption higher than 7 Watts which results in many power violations. Taking into account

the inability to track the power reference and the high average power indicated that there

might be a barrier that prevents the application behavior to rapidly follow changes in the

CPU frequency. At this stage, these two benchmarks were suspected to be memory-bound

compared to the rest of the workloads that are CPU-bound. In order to verify this hypothesis,

we measured the instruction per second (IPS) of all similar high performance workloads in

our benchmark set and tailored the two microbenchmarks that stress CPU and memory

modules. The average IPS gathered from each workload is reported in Table 5.5. We could

clearly observe that IPS for irregular workloads were far less than the other workloads in the

SPLASH2 benchmark suite. Memory-bound microbenchmarks exhibited similar behavior

with an average power higher than reference power and an IPS less than one half of other

benchmarks’ average IPS. This experiment validated the theory that the abnormal behavior

of the two Ocean benchmarks is due to their high volume of memory accesses which prevents

the changes in CPU frequency to have a direct effect on power reference. In order to enable

controller to respond better to memory-bound applications, we have increased the order of

93

the controller three times. Our evaluations show, compared to first order controllers, second,

third and fourth order controllers had [-2, 2] percent difference in controller performance

which is neither sufficient nor computationally effective. Such cases either require more

advanced controllers (e.g., MIMO adaptive, self-tuning) or different/more configuration knobs

such as memory bandwidth that can effect the system’s power more efficiently.

Workload Average power (Watts) IPS
Barnes 6.3289 2.21E+09

Ocean-Contiguous 7.8306 1.07E+09
Ocean Non-contiguous 7.5408 1.36E+09

FMM 6.9943 3.55E+09
Radiosity 6.7472 2.82E+09
Raytrace 6.4023 2.71E+09

Water-NSQ 6.9931 3.14E+09
Water-SP 6.9846 2.97E+09
Volrend 6.7491 3.30E+09

Compute-bound ubench 6.7207 4.18E+09
Memory-bound ubench 7.1668 1.18E+09

Table 5.5: Comparison of average power and IPS

5.2 Gain scheduled controller

In this section, we outline our process for designing gain scheduled nonlinear controllers for a

CMP.1

In addition, we outline our process for designing gain scheduled nonlinear controllers for

a CMP. As a demonstrative case study, we target the ODROID-XU3 platform [68] which

contains an ARM big.LITTLE based Exynos 5422 Octa-core SoC that has heterogeneous

multi-processing (HMP) cores. The Exynos platform contains an HMP with two 4-core

clusters: the big cluster provides high-performance out-of-order cores, while the little cluster

provides low-power in-order cores. For the purpose of our study, we disable the little cluster

1Details to confirm and formalize popular notions regarding gain scheduled design can be found in [197].

94

Controller
Target

System

Gains 1

Gain Scheduler

Gains N
Scheduling

Variables

Control

Input

Measured outputs

Controller Parameters

Ref

+_

Figure 5.18: Block diagram of GSC.

(due to its linear behavior) and use only the big cores to emulate a uniform nonlinear CMP2.

5.2.1 Generating Linear Controllers

We generate a PI controller separately for each operating region using the system models

and MATLAB’s Control System toolbox. This is a straightforward process for a simple

off-the-shelf PI controller.

In the next step, the designed controller is evaluated against disturbance and uncertainties

in order to ensure it remains stable at a defined confidence level. Unaccounted elements,

modeling limitations, and environmental effects are estimated as model uncertainty in order

to check the disturbance rejection of the controller. In our case, we can confirm our controller

is robust enough to reject the disturbance from workload variation.

Each controller we designed for an operating region is defined by its control parameters

KP and KI which are stored in the gain scheduler (Figure 5.18). In the gain scheduler, we

incorporate logic to determine which gains to provide the controller when invoked.

2We refer to this as the Exynos CMP or CMP throughout.

95

5.2.2 Implementing Gain Scheduling

The gain scheduler enables us to adapt to nonlinear behavior (Figure 5.18) by combining

multiple linear controllers. It stores predefined controller gains and is responsible for providing

the most appropriate gains based on the operating region in which the system currently

resides each time the controller is invoked.

Algorithm 2 Gain Scheduler Implementation
Input: f : frequency, scheduling variable
Outputs: KPn

, KIn , offsetn: updated controller parameters;
Variables: refprev, refnext: power reference values for previous and next control periods;
Constants: Region[N]: operating regions, defined by mutually exclusive range of frequencies; KP [N],
KI [N], offset[N]: stored controller parameters for each operating region; KPG

, KIG , offsetG: controller
parameters for full-range linear controller;

1: if refnext! = refprev then
2: KPn

= KPG

3: KIn = KIG

4: offsetn = offsetG
5: return
6: else
7: for i = 1 to N do
8: if Region[i].contains(f) then
9: KPn = KP [i]

10: KIn = KI [i]
11: offsetn = offset[i]
12: return
13: end if
14: end for
15: end if

The scheduling variable is the variable used to define operating regions. For our controller,

the scheduling variable is frequency as it is simpler to implement in software and has a direct

VF mapping (Table 3.1). Our gain scheduler implements lightweight logic that determines

the set of gains based on the system’s operating frequency (scheduling variable). Algorithm 2

shows the logic implemented in our gain scheduler with N operating regions where f is the

scheduling variable and KP and KI are the controller parameters. In addition to the KP

and KI controller parameters, there is also an offset. The offset is the mean actuation

value for the operating region, and is necessary for providing the control input for the next

control period. Algorithm 2 accounts for the transitions between operating regions (lines 1-6)

96

by applying a full-range linear controller. This method is utilized as the sets of gains for a

particular operating region perform poorly outside of that region.

5.2.3 Experiments

Our goal is to evaluate our nonlinear GSC with respect to the state-of-the-art linear controller

in terms of both theoretical and observed ability to track power goals on a CMP. Our

evaluation is done using the Exynos CMP running Ubuntu Linux.3 We consider a typical

mobile scenario in which one or more multi-threaded applications execute concurrently across

the CMP.

Controller Configurations: We designed two DVFS controllers for power management of

the CMP: 1) a linear controller that estimates the transfer function similarly to [75, 146];

and our proposed 2) GSC. The GSC contains three operating regions (Table 5.6). We

combine the two smallest adjacent Regions, 1 and 2 (Table 3.1), to create Controller 2.1.

Controllers are provided a single power reference for the whole system. The control input is

frequency, and the measured output is power, applied to the entire CMP.

Implementation: The controller is implemented as a Linux userspace process that executes

in parallel with the applications. Power is calculated using the on-board current and voltage

sensors present on the ODROID board. Power measurements and controller invocation are

performed periodically every 50ms.

Workloads: We developed a custom micro-benchmark used for system identification. The

micro-benchmark consists of a sequence of independent multiply-accumulate operations

yielding varied instruction-level parallelism. This allows us to model a wide range of behavior

in system outputs given changes in the controllable inputs. We test our controllers using three

PARSEC benchmarks: bodytrack, streamcluster, and x264. For each case, we execute

3Ubuntu 16.04.2 LTS and Linux kernel 3.10.105

97

Ctrl 1 Ctrl 2.1 Ctrl 2.2 Ctrl 2.3
Freq. Range 200 – 1800 1300 – 1800 900 – 1200 200 – 800
Stable X X X X
Accuracy
(MSE)

0.1748 0.03089 0.0005382 0.0003701

Table 5.6: Accuracy of the full- (Ctrl 1) and sub-range (Ctrl 2.x) controllers.

one multithreaded application instance of the benchmark with four threads, resulting in a

fully-loaded CMP. We empirically select three references that we alternate between during

execution. ref1 is 3.5W, the highest reference and a reasonable power envelope for a mobile

SoC. This represents a high-performance mode that maximizes performance under a power

budget. ref2 is 0.5W, the lowest reference and represents a reduced budget in response to

a thermal event. ref3 is 1.5W, a middling reference that could represent the result of an

optimizer that maximizes energy efficiency. These references are not necessarily trackable for

all workloads, but should span at least three different operating regions for each workload.

For each case, the applications run for a total of 65s. After the first 5s (warm-up period) the

controllers are set to ref1 for 20s, then changed to ref2 for 20s, and to ref3 for the remaining

20s.

5.2.4 Controller Design Evaluation

We used a first-order system, with a target crossover frequency of 0.32. This resulted in a

simple controller providing the fastest settling time with no overshoot. Models are generated

with a stability focus and uncertainty guardbands of 30%.

All systems are stable according to Robust Stability Analysis. By design all overshoot values

are 0. The settling times of Controllers 2.2 and 2.3 are comparably low at 5 control periods.

Controller 2.1 (the most nonlinear operating region) and Controller 1 are slightly higher at 8-9

control periods. The ideal controllers are all very similar in terms of stability, settling time,

and overshoot. The primary difference between them is in terms of accuracy. Controllers

98

bodytrack
scluster

x264

Benchmark

0

100

200
T

ot
al

 P
 o

ve
r

re
f.

(W
)

C1
GSC

(a) Total power over ref.

bodytrack
scluster

x264

Benchmark

0

100

200

T
ot

al
 P

 u
nd

er
 r

ef
. (

W
)

C1
GSC

(b) Total power under ref.

bodytrack
scluster

x264

Benchmark

0

250

500

ac

tu
at

io
ns

C1
C1b
GSC

(c) Total actuations

bodytrack
scluster

x264

Benchmark

0

250

500
S

et
tli

ng
 ti

m
e

(m
s)

C1
GSC

(d) Average response time

Figure 5.19: Comparison of GSC with Controller 1.

2.1-2.3 achieve an order of magnitude better accuracy than Controller 1 (Table 5.6). This

means that the region controllers are equally as responsive as the full-range model in achieving

a target value while achieving the value more accurately.

5.2.5 Controller Implementation Evaluation

We now evaluate the effectiveness of our nonlinear control approach implemented in software

on the Exynos CMP for multithreaded mobile workloads. Traditional SASO control analysis

gives us a way to compare the controllers in theory, but the system-level effects of those

99

metrics are not directly relatable. Therefore, we will compare the runtime behavior of the

software controllers using a slightly modified set of metrics: power over target, power under

target, number of actuations, and response time. These metrics are shown in Figure 5.19.

The power over target is the total amount of measured power exceeding the reference power

throughout execution (Fig. 5.19a). This is the area under the output and above the reference.

It represents the amount of power wasted due to inaccuracy, and can also represent unsafe

execution above a power cap. Our GSC is able to achieve 12% less power over target than

the linear controller for x264 and streamcluster. bodytrack is the most dynamic workload

and results in the noisiest power output. In this case the GSC only improves the power over

target by 1% compared to the linear controller.

The power under target is the total amount of measured power falling short of the reference

power throughout execution (Fig. 5.19b). This is the area under the reference and above the

output. A lower value translates to improved performance (i.e. lower is better). Similarly to

the power over target, our GSC is able to reduce power under target by 12% for x264 and

streamcluster, and 1% for bodytrack.

The number of actuations is simply a count of how many times the frequency changes

throughout execution, and is a measure of overhead (Fig. 5.19c). The GSC’s actuation

overhead is lower than the linear controller for bodytrack, streamcluster, and x264 by 8%,

1%, and 4% respectively. This is expected, as the controller’s resistance to actuation is related

to the crossover frequency specified at design time. For the same crossover frequency, the

GSC benefits are primarily in the accuracy (power over/under target) and response (settling)

time. To illustrate this tradeoff, we performed the same experiments for a full-range linear

controller with a target crossover frequency of 0.8 (Controller 1b). We arrived at this value

empirically: Controller 1b achieves comparable accuracy to the GSC. However, GSC reduces

the actuation overhead by 29% for all workloads compared to Controller 1b.

100

The response time is the average settling time when the target power changes, indicating

the controller’s ability to respond quickly to changes (Fig. 5.19d). Figure 5.19d shows the

average response time for each workload for both controllers. The GSC is able to improve the

response time over Controller 1 by more than 50% in each case. The GSC’s overall average

response time is 182ms, which is less than 4 control periods.

The implementation overhead of the GSC w.r.t. the linear controller is negligible: it requires

a single execution of Algorithm 2 upon each invocation, and storage for a KP , KI , and

offset value for each operating region. Although workload disturbance plays a significant

role in determining the magnitude in imporovement of a nonlinear GSC over a state-of-the-art

linear controller, a clear trend exists, and these advantages would increase with the modeled

system’s degree of nonlinearity.

5.3 HESSLE-FREE a Fuzzy Controller for Heteroge-

neous Systems

Figure 5.20 shows an overview of our case study. We use the NVIDIA Jetson TX2 development

board [34], which contains an HMP and a NVIDIA GPU. HMP contains a quad-core ARM

Cortex A57 cluster and a dual-core NVIDIA Denver cluster. Similar to Cortex A57 cores,

QoS Applications Non-QoS
Applications

HESSLE-FREE

System Sensors

System Actuators

Denver A57 TX2 GPU

GPU Workload

System Actuators

System Sensors System Sensors

HMP

Freq Freq Freq

IPS IPS Power
IPS

cores

Figure 5.20: HESSLE-FREE experimental setup

101

Denver cores implement ARMv8 instruction set and are designed as a processor with 7-way

superscalar execution pipeline. The GPU is powered by NVIDIA Pascal CUDA cores. We

consider multiple scenarios that are common in mobile devices where CPU runs multiple

tasks (possibly one foreground with QoS requirements and others in background) and in full

system scenarios GPU is executing a highly parallel kernel concurrently.

We use the following two scenarios to demonstrate how HESSLE-FREE can handle different

system goals: i) Optimize Energy consumption under dynamic application behavior. Here we

execute workloads on CPU cores to demonstrate HESSLE-FREE’s ability to dynamically

optimize energy. ii) In a full system scenario, the CPU and GPU simultaneously execute

their workloads, while HESSLE-FREE optimizes the user metric frames per second delivered

by the GPU or QoS metric delivered by the CPU, as well as the power consumption of the

entire system.

5.3.1 Experimental Setup

As described in Section 5.3 we use the JetsonTX2 platform for our evaluations. The controllers

used in our experiments are implemented as Linux userspace daemons that execute in the

background with the applications. CPU and GPU runtime power are separately measured

on-board alongside current and voltage using sensors present on the JetsonTX2 development

board. Power measurements are made at the same time increments as performance metrics

are gathered. Controller invocation is performed periodically every 200ms. In terms of

overhead, the framework runtime on average adds 1.8% to the execution time for accessing

PMU registers. A lightweight kernel module is used to collect instruction and cycle counters

from ARM’s Performance Monitor Unit (PMU) on each CPU. For GPU performance metric

measurements, NVIDIA provides CUDA Profiling Tools Interface (CUPTI) library which

includes API for attaching callback functions to GPU kernels. The callback functions enable

102

measuring GPU metrics in application run-time. To avoid modifying target applications, we

put necessary CUPTI functions into a shared library which is pre-loaded (LD PRELOAD)

to attach the callbacks when the application begins. This non-intrusive GPU profiling is

hooked to our runtime resource management framework to capture the kernel information

with low-overhead on the execution of the workload which in average adds 2.2% to GPU

kernel executions. This delay is a fraction of imposed overhead by NVIDIA’s native profiler

(nvprof).

Evaluated Workloads

We use the PARSEC benchmark suite [20] to evaluate the performance of the resource

managers. To better represent a real-world scenario where every element of a CPU/GPU

system is involved in the computation, we select a face detection algorithm for the GPU

workload. we used the implementation in [240] as a standalone application, which is easily

portable to an embedded environment, based on the Viola-Jones face detection framework

[225] with three GPU kernels for compute-intensive part and some CPU computation for pre-

and post-processing of the frame. This application has a frame-per-second (FPS) requirement

which can be an objective for the controller. Our target platform is a modern heterogeneous

platform that can execute various multi-threaded application simultaneously on HMP while

concurrently running massively parallel kernels on the GPU. Depending on user preference

and system state on any point of time, priorities of runtime system might change which will

update the objective of the resource management mechanism. We will demonstrate three

scenarios in Section 5.2.3 to show the ease and efficiency of HESSLE-FREE in adapting to

various objectives.

103

Manager Configurations

HESSLE-FREE provides a framework to efficiently design, implement, deploy and tune

fuzzy controllers. This framework comprises of three main components: (1) Design and

initial evaluation for the controller, (2) Mapping and optimization of the controllers for

portable deployment, (3) Middleware that accommodates the controller and provides APIs

for monitoring and actuating configuration settings of the system in various software and

hardware layers. In our evaluations, we use Matlab for design and initial test of the resource

manager approaches. Fuzzy controllers can be designed using Matlab’s fuzzy designer as

Mamdani (linguistic) or with neuro fuzzy designer as Sugeno-type controllers with singleton

consequents which leads to a simple yet efficient controller with low computational overhead.

For defuzzification, we use the centriod method. For each of our experiments with unique

objectives, number of membership functions for each input and output range from 3 to 7 and

deployed number of rules in the rule base did not exceed one hundred. The design process in

HESSLE-FREE starts with the designer defining inputs and outputs of the system and their

corresponding number of membership functions. Next, structure of the rule base is defined

using linguistic variables. From here, the designer has the option to check the sanity of the

inference system, simulate the system based on experimental data gathered from the target

platform or use adaptive neuro-fuzzy toolbox to tune rule base and membership functions

parameters. Subtractive clustering [192] provided by this toolbox may be used as a rapid

one-pass algorithm in this process for estimating the number of rule clusters and the cluster

centers in the rule base. The cluster estimates obtained from this function can be used to

reduce the size of the rule base and consequently the runtime overhead of the matching and

inference process. After initial test and evaluation, each controller is ported into fuzzylite

library [176] for an optimized implementation. The resulting controller is integrated with

our middleware. We have devised this component to be easily portable to platforms running

Linux operating system while providing customizable APIs for accessing system metrics (IPS,

104

power, utilization, etc.) and changing the configuration knobs (e.g., DVFS settings, number

of cores, task mapping, etc.).

In order to design a valid MIMO controller for each scenario, a system model is created

using Matlab System Identification Toolbox [141] by generating test waveforms from training

applications. A common practice to build a model for complex systems is to use black-box

methods based on System Identification Theory [125] for isolating the deterministic and

stochastic components. Then, these controllers are tuned using Matlab’s Simulink toolbox.

Afterwards, they are deployed on the target system for experiments using test workloads. A

detailed report on MIMO design can be found in [171]. Considering the large design space

of configuration settings and impacting factors in our evaluations that involve both CPU

and GPU applications, system identification requires fine tuning and repeated evaluations to

ensure the extracted model can appropriately reflect the target platform.

MIMO’s complexity: To depict a picture regarding exponential growth of MIMO con-

trollers runtime complexity we use the number of required matrix multiplications depending

on order and size of the system. For a simple second order MIMO controller with two

inputs and outputs approximately 300 operations are needed. Increase in order of the same

controller to 4th and 8th order controller will result in 1500 and 10000 operations. If instead

of the order, size of the system grows to 4 inputs and outputs, number of required runtime

operations will reach 15000. For a bigger 8x8 system this number exceeds 200000 operations

per decision making. In some cases, runtime overhead of MIMO controllers for such large

complex systems can put a burden on the runtime framework. NVIDIA Performance modes

and resource management governs are pre-loaded into the operating system that is ported

specifically for jetson platform. Based on the target evaluation some of which are used in the

appropriate scenario experiments.

105

5.3.2 Evaluation Results

We now demonstrate the advantages of fuzzy control in runtime resource management with

optimization objectives along side system goals that might require certain guarantees. Our

goal is to evaluate our HESSLE-FREE with respect to the state-of-the-art control theory

controllers in terms of both ability to capture the system’s dynamics and achieve the system’s

objectives. In order to make a fair comparison, we start with a simple multi-core system and

work our way towards a more complex heterogeneous system. In this manner we are able to

highlight the challenges faced by MIMO controller design for complex system dynamics, while

showing the ease of using HESSLE-FREE. In addition, the efficacy of HESSLE-FREE is

compared against a correspondent MIMO controller and state-of-the-art algorithms towards

a certain objective. We show the capability of HESSLE-FREE towards achieving various

system’s objectives in order to demonstrate ease in design and flexibility of fuzzy controllers.

Uniform Multi-core

In this part, we demonstrate the inherent optimization of fuzzy controller compared to conven-

tional controllers by evaluating the efficacy of our approach for system energy minimization

of a quad-core CPU. We use million instructions per second (MIPS) per Watt to represent

energy consumption of this ARM A57 multi-core at runtime. MIMO has shown to be effective

in tracking power and performance references for such systems with low-level of heterogeneity

[157]. However, when the optimization happens at run-time in reaction to the dynamic

behavior of the application, traditional MIMO faces challenges. Fuzzy control enables the

embedding of optimization algorithms inside the control mechanism, which in turn naturally

allows the system to react to this dynamic behavior.

Figure 5.21 shows the normalized MIPS per Watt for CPU workloads. We evaluate HESSLE-

FREE in comparison to a MIMO controller and a NVIDIA performance model designed for

106

 0

 1

 2

 3

 4

blackscholes

bodytrack

facesim
ferret

fuidanimate

freqmine
streamcluster

avg

E
n
e
rg
y
 E
ff
c
ie
n
c
y

Benchmarks

mimo
fuzzy

nvp energy
baseline

Figure 5.21: MIPS per Watt for CPU workloads. This value is normalized to default linux
values.

energy efficient execution on Jetson TX2 platform. The actuations in the system are the

number of active cores and core frequency. The intuition behind the designer’s expertise

used in design of this fuzzy controller is to adjust the computation power of the system to

the dynamic behavior of the application. This will allow the fuzzy controller to increase the

frequency and active cores as long as it adds to performance of the system in a meaningful

manner and reduce the computation power to avoid energy waste while the performance is

bounded either by memory access or disturbance of background applications. Alteration of

frequency settings has a much smaller threshold compared to change in number of active

cores. This threshold is extracted through experimental evaluations done in the initial phase

of the fuzzy controller design. Overall, HESSLE-FREE demonstrates efficiency in managing

the system’s objectives. On average, fuzzy controller shows improvements of 81.3% over the

Linux governor, 37.7% over the MIMO controller, and 20.0% over NVIDIA’s state-of-the-art

energy efficient governor.

CPU-GPU Resource Management

To evaluate the efficacy of HESSLE-FREE with respect to MIMO solutions, we perform

two experiments on a full system exercising both the CPU clusters (executing PARSEC

benchmarks) and the GPU (executing the Face detection application). We perform our

full system evaluations comparing HESSLE-FREE with MIMO controller and a variety

107

of Linux governors (interactive, ondemand, performance oriented, power saving). Each of

these governors targets a certain objective in the system like maximizing performance or

minimizing power consumption. For each of the experiments we perform system identification

and control design process for MIMO controller. Target references are obtained through

Sensors and actuators are fixed for each experiment. MATLAB System Identification toolbox

also recommends a suitable order for the system. If possible, we pick the order with the best

accuracy. However, the order of a controller model determines how observed output history

is stored in the model, and directly impacts both the controller size and complexity. We

begin with smaller size of the system (2 inputs x 2 outputs) where efficient MIMO controller

is feasible and show the decrease in system identification accuracy and controller design

efficiency when the number of the inputs (e.g, frequency knobs) and target outputs (e.g,

QoS metric, power consumption) grows. During our full system experiments, We evaluated

that for higher numbers of systems inputs (e.g, frequency and number of active cores in

each cluster) and outputs (e.g, simultaneous FPS and QoS metrics with each units power

consumption) with heterogeneous compute units the complexity of the system grows to the

point that the system dynamics cannot be captured in the system identification phase with

acceptable accuracy and also Matlab can only provide very large orders for MIMO controllers

that cannot be computed at runtime. However, HESSLE-FREE without the need for system

model was able to achieve system goals using expertise knowledge and tuning. Here, we

report on the cases that MIMO control design was possible.

QoS focused

In this experiment, we use a QoS metric to evaluate the progress of the CPU foreground

application. This is done by the Heartbeats API [53] monitor to measure QoS. By periodically

issuing heartbeats, the application informs the system about its current performance. The user

provides a performance reference value using the Heartbeats API. Figure 5.22 shows tracking

108

REF 0.4

 0

 0.2

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30
Tr

ac
ki

ng
(Q

oS
)

Time(s)
ondemand

performance

interactive

powersave

HESSLE-FREE

MIMO

Figure 5.22: Tracking QoS metric (ref = 0.4) for fluidanimate benchmark with different
resource managers

of QoS value by different resource management mechanisms for fluidanimate benchmark

and target reference of 0.4. In this scenario, one foreground QoS application is running

while there are many non-QoS applications are running in the background both on CPU

and GPU. The goal of the resource manager is to keep the heart beats (QoS metric) in the

specified range (0.2 - 0.6) by the application while consuming minimum power. Because of

the heterogeneity in the CPU clusters MIMO controller has a hard time following the target

reference while fuzzy controller is able to meet the QoS in a steady manner using minimum

energy compared to other resource managers. Expertise used in this experiment for fuzzy

controller was to not only consider the error from reference QoS but also the speed of change

in measured Heartbeats. Meanwhile, as we reach and pass the target reference, we reduce

the frequency of the compute unit incrementally to the extent that QoS drops to half point

of target reference and lower boundary. Moving forward, CPU frequency is increased to the

point that we exceed target reference again. Figure 5.23 shows the comparison of energy

consumption of each resource manager. HESSLE-FREE achieves and tracks the QoS metric

while being in average 26%, 46%, 43%, 66% and 65% more energy efficient than MIMO

controller, interactive ondemand, performance and power oriented governors, respectively.

This is due to the designer expertise incorporated in the fuzzy controllers that favors energy

efficient cores actuations and only increases frequency for high-performance cores when higher

QoS is needed.

109

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

bodytrack

canneal
facesim

ferret
fluidanimate

freqmine
streamcluster

swaptions

vips average

N
o
rm

a
liz

e
d

 E
n
e
rg

y
 (

J)

Benchmarks
HESSLE-FREE

MIMO

interactive

ondemand

performance

powersave

Figure 5.23: Total Energy consumption for CPU+GPU for tracking QoS metric (normalized
to power saver energy)

FPS focused

In this experiment our target metric is to meet our desired FPS while consuming the minimum

power required. Target FPS is defined as 30 frames per second for our platform with threshold

of ±5 frames. We capture the number of frames processed in each measuring window. In

order to stress test the management policy, we execute the PARSEC benchmarks on the

CPU cluster in parallel with the face detection GPU workloads. The rationale for this mix is

that the CPU workloads can demonstrate dynamic phasic behavior (e.g., compute-bound,

memory-bound) that can affect the GPU performance and consequently the FPS of the

system. Figure 5.24 shows the FPS tracking for each resource manager for the facesim CPU

benchmark. The rest of workloads follow a similar trend where: i) the performance oriented

governor provides high FPS with no regard to power consumption, ii) the ondemand and

interactive governor provides moderate performance based on application demand which

sometimes results in high power consumption of CPU units, iii) the power saving governor

executes in the lowest configuration of each compute unit without any regard to the system

status, iv) MIMO generally tracks FPS but abrupt changes to power consumption can cause

deviation from the target reference, and v) our HESSLE-FREE fuzzy controller is able to

110

REF 30

 0

 10

 20

 40

 50

 60

 70

 0 5 10 15 20 25
Tr

ac
ki

ng
(F

PS
)

Time(s)
interactive

performance

ondemand

powersave

HESSLE-FREE

MIMO

Figure 5.24: Delivered FPS for Face detection

 0
 0.25

 0.5
 0.75

 1
 1.25

 1.5
 1.75

 2
 2.25

 2.5
 2.75

 3

blackscholes

bodytrack

canneal
facesim

ferret
fluidanimate

freqmine
streamcluster

swaptions

vips average

N
o
rm

a
liz

e
d

 E
n
e
rg

y
 (

J)

Benchmarks
fuzzy

mimo

interactive

ondemand

performance

powersave

Figure 5.25: Total Energy consumption for CPU (PARSEC) plus GPU (face detection) for
FPS metric

follow the reference FPS while minimizing energy consumption. The intuition behind fuzzy

rules is to observe the error in FPS and take actions according to value of this error to set

the configuration knobs. As the error gets closer to the target FPS, GPU frequency change

slows down. Meanwhile, we try to minimize the energy consumption of the entire platform

by reducing the energy consumption of the CPU cores while avoiding any drops in FPS

measurement. Also, In the case that increase in GPU frequency shows no improvement

in a consecutive windows, we increase the CPU cores frequency. This is done to reduce

the frame pre-processing bottleneck. Figure 5.25 shows the energy consumption of CPU

clusters executing PARSEC benchmarks plus GPU cores executing face detection through this

experiment. HESSLE-FREE’s fuzzy governor is able to achieve the desired objective tracking

the system’s FPS while in average preserving 9% more energy than MIMO controllers.

111

5.4 SPECTR: On-chip Resource Management

We present SPECTR’s supervisory control architecture (Section 5.4.1), describe an experi-

mental case study demonstrating the design and verification of SPECTR on the Exynos HMP

platform (Section 5.4.2), and outline SPECTR’s control synthesis process (Section 5.4.3).

5.4.1 Hierarchical System Architecture

Figure 5.26 depicts a high-level view of SPECTR for many-core system resource management.

Either the user or the system software may specify Variable Goals and Policies. The

Supervisory Controller aims to meet system goals by managing the low-level controllers.

High-level decisions are made based on the feedback given by the High-level Plant Model,

which provides an abstraction of the entire system. Various types of Classic Controllers, such

as PID or state-space controllers, can be used to implement each low-level controller based

on the target of each subsystem. The flexibility to incorporate any pre-verified off-the-shelf

controllers without the need for system-wide verification is essential for the modularity of this

approach. The supervisor provides parameters such as output references or gain values to

each low-level controller during runtime according to the system policy. Low-level controller

subsystems update the high-level model to maintain global system state, and potentially

trigger the supervisory controller to take action. The high-level model can be designed in

various fashions (e.g., rule-based or estimator-based [188][74][153]) to track the system state

and provide the supervisor with guidelines. We illustrate the steps for designing a supervisory

controller using the following experimental case study in which SCT is deployed on a real

HMP platform, and we then outline the entire design flow from modeling of the high-level

plant to generating the supervisory controller.

112

Classic

Controller 1

Classic

Controller 2

Classic

Controller N

P
h

y
s

ic
a

l

 P
la

n
t

Con_lo1

Inf_lo1

Refs1

Con_lo2

Inf_lo2

Con_los

Inf_los

In
f_

lo
_

h
i

High-level Plant

Model

Con_hi

Inf_hi

L
e

a
f

C
o

n
tr

o
ll
e

rs

S
y
s

te
m

 e
v

e
n

ts

Selected

Gains1 Refs2 Refss

Selected

Gains2

Selected

Gainss

Supervisory

Controller

Sub-plant 1 Sub-plant 2 Sub-plant N

Variable Goals and PoliciesUser inputs

SPECTR

Figure 5.26: SPECTR overview.

5.4.2 Experimental Case Study

Figure 5.27 shows an overview of our experimental setup. We target the Exynos platform

[68], which contains an HMP with two quad-core clusters: the Big core cluster provides

high-performance out-of-order cores, while the Little core cluster provides low-power in-order

cores. Memory is shared across all cores, so application threads can transparently execute on

any core in any cluster. We consider a typical mobile scenario in which a single foreground

application (the QoS application) is running concurrently with many background applications

(the Non-QoS applications). This mimics a typical mobile use-case in which gaming or media

processing is performed in the foreground in conjunction with background email or social

media syncs.

The system goals are twofold: i) meet the QoS requirement of the foreground application

while minimizing its energy consumption; and ii) ensure the total system power always

remains below the Thermal Design Power (TDP).

113

Figure 5.27: SPECTR implementation on the Exynos HMP with two heterogeneous quad-core
clusters. Representing a typical mobile scenario with a single foreground application running
concurrently with many background applications.

The subsystems are the two heterogeneous quad-core (Big and Little) clusters. Each

cluster has two actuators: one actuator to set the operating frequency (Fnext) and associated

voltage of the cluster; and one to set the number of active cores (ACnext) on the cluster.

We measure the power consumption (Pcurr) of each cluster, and simultaneously monitor the

QoS performance (QoScurr) of the designated application to compare it to the required QoS

(QoSref).
4

Supervisory control commands guide the low-level MIMO controllers in Figure 5.27 to

determine the number of active cores and the core operating frequency within each cluster.

Supervisory control minimizes the system-wide power consumption while maintaining

QoS. In our scenario, the QoS application runs only on the Big cluster, and the supervisor

4The Exynos platform provides only per-cluster power sensors and DVFS; hence our use of cluster-level
sensors and actuators.

114

determines whether and how to adjust the cluster’s power budget based on QoS measurements.

Gain scheduling is used to switch the priority objective of the low-level controllers. We

define two sets of gains for this case-study: 1) QoS-based gains are tuned to ensure that the

QoS application can meet the performance reference value, and 2) Power-based gains are

tuned to limit the power consumption while possibly sacrificing some performance if the

system is exceeding the power budget threshold.

5.4.3 Supervisor Synthesis Process

The supervisory controller is responsible for coordinating the low-level controllers shown

in Figure 5.27. The supervisory control synthesis, illustrated on Figure 5.28, follows five

steps [16]:

1. Develop high-level Plant Model (P) as a discrete-event dynamic system.

2. Develop Intended Behavior Specification of the plant (SP) (i.e., desired control behavior).

3. Perform Synthesis of the Supervisor (S) from the plant model and behavioral specifica-

tions.

4. Perform Nonblocking Property Checks to remove any logical/blocking conflicts.

5. Perform Controllability Property Checks to ensure that the supervisor meets controlla-

bility properties.

In this part, we discuss each step of modeling, specification, synthesis and verification of the

supervisory controller. All steps are automated by the Supremica SCT tool-set [3]. For ease

of visualization, we show the automaton generated by Supremica in each step. We integrate

the two goals described in Section 5.4.2 for the system in Figure 5.27. We ensure autonomy

115

of the system to meet the QoS requirements while the total power remains within the defined

boundaries by using gain scheduling.

Plant Model

Any physical plant G can be described using an infinite number of attributes, while the plant

model P can capture only a finite number of attributes. Therefore, we begin by capturing the

platform’s most relevant characteristics (power consumption and QoS in our study) to build

a plant model. Given the formal underpinnings of SCT, we exploit automata theory [76] to

automatically generate the plant model from simpler models of its constituent subsystems

(i.e., sub-plants).

Now, consider an automaton A defined as a 5-tuple

A = 〈QA,ΣA, δA, iA,MA〉, where QA is the set of states, ΣA is the set of events consumed by

A, δA : QA × ΣA → QA is the state transition function, iA is the initial state and MA is the

set of final states. The synchronous composition of two automata A and B, A||B, is then

defined as [139]:

SSPP

Verified

Synthesized

Supervisor

(SVerified)

Plant

Model

Intended

Behavior

Specification

Synthesis

Nonblocking

Property

Checks

Controllability

Property

Checks

1 2 3 4 5

Figure 5.28: Synthesis process for a Supervisory Controller

116

Switchgains

S0

S2

S1

SwitchGains

decreaseCriticalPower

controlPower

decreaseBigPower

QoSmet

critical

powerSafeQoSNotMet

powerSafeQoSMet

increaseBigPower

QoSnotMet1

safePower

critical

(a) Models for Big cluster:
Top: QoS management,
Bottom: Power Capping.

S2.SwitchGains

S1.SwitchGains

SwitchGains.S0

S1.S0

SwitchGains

S2.S0

controlPower

QoSnotMet

critical

increaseBigPower

powerSafeQoSNotMet

QoSmet

decreaseCriticalPower

decreaseCriticalPower

QoSnotMet

decreaseBigPower

critical

controlPower
powerSafeQoSMet

decreaseBigPower

critical

powerSafeQoSMet

critical

decreaseCriticalPower

safePower

controlPower

QoSmet

powerSafeQoSNotMet

safePower

safePower

increaseBigPower

(b) Automatically gen-
erated
Big cluster plant P us-
ing
the || operator on two
models described in
Fig. 5.29a.

Threshold

SwitchGains

UnderCapping

AboveCapping

bellowTarget

switchQoS

decreaseCriticalPower

maintain

safePower

switchPower

aboveTarget

critical

(c) Example of in-
tended
behavior Specifica-
tion SP .
Red cross indicates
forbidden state.

S7

S2

S4

Stable
S5

S0

SwitchGains

P0

P1

S3

S6

S1

increaseLittlePower

increaseBigPower

powerSafeQoSNotMet2

critical

powerSafeQoSMet2

QoSmet

powerSafeQoSMet1

critical

decreaseBigPower
increaseBigPower

powerSafeQoSNotMet2

QoSmet

critical

powerSafeQoSMet2

QoSmet

powerSafeQoSMet1

powerSafeQoSMet2

critical

powerSafeQoSMet1 powerSafeQoSNotMet1

QoSmet

decreaseLittlePower

QoSmet

powerSafeQoSNotMet1

decreaseCriticalPower2

decreaseCriticalPower1

safePower

powerSafeQoSNotMet2

QoSnotMet

QoSnotMet

safePowercritical

increaseLittlePower

powerSafeQoSNotMet1

safeEval

controlPower

QoSnotMet

increaseLittlePower

QoSnotMet

QoSmet

decreaseBigPower

QoSnotMet

QoSnotMet
Power capping

Gain scheduling

Ideal state

(d) Synthesized supervisor S
generated
from plant model and specifi-
cation using
the Supremica tool [3].
Checked for non-
blocking and controllability
properties.

Figure 5.29: Supervisor Synthesis Process. Figures 5.29b and 5.29d are automatically
generated by the SCT tool, and the state details are not important.

A ‖ B = 〈QA ×QB ,ΣA ∪ ΣB , δ, iA · iB ,MA ×MB〉, with

QA ×QB = {qA · qB |qA ∈ Qa, qB ∈ QB}

δ(qA · qB , e) =



δA(qA, e) · δB(qB , e) if δA(qA, e) and δB(qB , e)defined

δA(qA, e) · qB ifδA(qA, e) defined and e /∈ ΣB

qA · δB(qB , e) if e /∈ ΣA and δB(qB , e) defined

undefined otherwise

Synchronous composition (operator ||) synchronizes the operations of two automata such that

common events are synchronized but private events are not affected by the other automaton.

This preserves the main characteristics of each automaton while including their interactions

that affect the whole plant.

Figure 5.29a shows two simple examples for the Big cluster automata (examplifying two of

many possible ways to define our systems control solution). In states S1 and S2 of the top

automaton, we prioritize QoS: the power reference is updated to meet the QoS reference in

a power-efficient manner. Upon detection of a power budget violation, a critical signal is

117

generated. The signal results in a transition to the SwitchGains state where power-driven

gains replace the performance-driven gains. This updates the low-level controller’s priority

objective from QoS to power. The supervisor also has the opportunity to enforce a reduced

power reference have depending on the severity of the situation (S0 in bottom automaton of

Figure 5.29a). Once the power of the Big cluster returns to a safe region, gains are switched

back to prioritize QoS. We can make suitable plant models in a similar manner for the

Little cluster and its interaction with the whole system. Figure 5.29b shows the synchronous

composition of the two Big cluster plant models and specifies all possible interactions for

these two automata. In this model, all states are accessible and all events are accepted.5

However, such complete freedom might not be desirable for the system. We now describe the

specification that restricts this model to fit the intended behaviour of the system.

Intended Behavior Specification

While the plant model sets the physical boundaries for all possible actions, the specification

defines the accepted (i.e., ideal) and forbidden states through restrictions on the behavior of

the plant model. These restrictions are then transformed into a formal description for the

synthesis process.

Figure 5.29c shows a sample specification for the Big cluster in our case study. The plant model

shown in Figure 5.29b has no limitations on exceeding the power budget; our specification

prevents exceeding the power budget for no more than three control intervals (i.e., Threshold

state is a forbidden state6). Similarly, we can limit the chip power consumption using a

specification that restricts the sum of the power budgets of both clusters to be below a safe

threshold defined by thermal design power (TDP). In our case study, we use a three-band

(i.e., uncapping threshold, capping target and above capping threshold) algorithm similar to

5Accepted states are shown with solid dark circles.
6A red cross identifies a forbidden state.

118

[54] for making power capping decisions. While we are below the first threshold (uncapping

threshold), controllers focus on meeting their QoS requirements. When we exceed this

threshold, gain scheduling ensures that we remain in the capping target region.

Synthesis

Once we have a plant model and a formal specification of intended behavior, a synthesis

algorithm is guaranteed to generate a correct controller [55]. Hence, a correct plant P and

specification SP are crucial to synthesize a supervisory controller S such that the closed-loop

system fulfills the specification SP . Figure 5.29d shows an example supervisor that was

automatically synthesized for the Exynos platform using the Supremica tool, given as input

the plant model and the intended behavioral specification capturing desired outcomes and

restricting undesired behavior (e.g., Figure 5.29c). Note that the models built for plant P and

the intended behavior specification SP are design artifacts, and only the final synthesized and

verified supervisor Sverified is implemented in the system. We now describe the verification of

additional properties for ensuring correctness of the entire supervisory controller.

Non-blocking and Controllability Property Checks

We must ensure that the synthesized supervisor is both non-blocking and controllable.

The non-blocking property guarantees that some accepted states (e.g., the ideal state shown

in Figure 5.29d) can always be reached, so that at least one of the tasks can always be

completed. On the other hand, the controllability property guarantees that the supervisor can

always keep the plant within the boundaries set by the specification. In our example, there

is one accepted (i.e., ideal) state that satisfies the QoS requirement while maintaining the

power consumption under the limit. The SCT tool ensures that in the generated supervisor

(Figure 5.29d) there is a path to this accepted state from every other valid state. In addition,

119

the plant model is pruned by the specification to make it adhere to desired behavior. The

closed-loop system will never reach a state such that an uncontrollable event causes it to

violate the specification. These two properties are provided by two different algorithms: the

trimming algorithm [55] provides the non-blocking property, and the extension algorithm

[74] provides the controllability property. However, these two algorithms interfere with each

other, with trimming possibly impairing controllability, and vice versa. Therefore, the two

algorithms must be run successively and iteratively, until they return the same result.

Uncontrollable states. The search for the largest controllable sub-automaton of the

specification begins with identifying the uncontrollable states. Subsequently, any state that

reaches an uncontrollable state via an uncontrollable event is identified. This forms the basis

for the algorithms that construct a controller given a specification and a plant.

Non-blocking. The supervisory controller is non-blocking if the closed-loop system is always

able to reach some marked state (i.e., Ideal state shown in Figure 5.29d). In order to find a

lean non-blocking supervisor, we must find the set of accessible states. It is desirable to find

the largest possible sub-automaton that has this property.

5.4.4 Experimental Evaluation

We compare SPECTR with three alternative resource managers. The first two managers

use two uncoordinated 2×2 MIMOs, one for each cluster: MM-Pow uses power-oriented

gains, and MM-Perf uses performance-oriented gains. These fixed MIMO controllers act as

representatives of a state-of-the-art solution, as presented in [172], one prioritizing power

and the other prioritizing performance. The third manager consists of a single full-system

controller (FS): a system-wide 4×2 MIMO with individual control inputs for each cluster.

FS uses power-oriented gains and its measured outputs are chip power and QoS. This single

system-wide MIMO acts as a representative for [242], maximizing performance under a power

120

cap.

We analyze an execution scenario that consists of three different phases of execution:

1. Safe Phase: In this phase, only the QoS application executes (with an achievable QoS

reference within the TDP). The goal is to meet QoS and minimize power consumption.

2. Emergency Phase: In this phase, the QoS reference remains the same as that in the

Safe Phase while the power envelope is reduced (emulating a thermal emergency). The

goal is to adapt to the change in reference power while maintaining QoS (if possible).

3. Workload Disturbance Phase: In this phase, the power envelope returns to TDP and

background tasks are added (to induce interference from other tasks). The goal is to

meet the QoS reference value without exceeding the power envelope.

This execution scenario with three different phases allows us to evaluate how SPECTR

compares with state-of-the-art resource managers when facing workload variation and system-

wide changes in state (e.g., thermal emergency) and goals.

Evaluated resource manager configurations. We generate stable low-level controllers

for each resource manager using the Matlab System Identification Toolbox [141].7 We use the

Control Effort Cost matrix (R) to prioritize changing clock frequency over number of cores

at a ratio of 2:1, as frequency is a finer-grained and lower-overhead actuator than core count.

We generate training data by executing an in-house microbenchmark and varying control

inputs in the format of a staircase test (i.e., a sine wave), both with single-input variation

and all-input variation. The micro-benchmark consists of a sequence of independent multiply-

accumulate operations performed over both sequentially and randomly accessed memory

locations, thus yielding various levels of instruction-level and memory-level parallelism. The

7We generate the models with a stability focus. All systems are stable according to Robust Stability
Analysis. We use Uncertainty Guardbands of 50% for QoS and 30% for power, as in [172].

121

range of exercised behavior resembles or exceeds the variation we expect to see in typical

mobile workloads, which is the target application domain of our case studies.

Experimental setup. We perform our evaluations on the ARM big.LITTLE [5] based

Exynos SoC (ODROID-XU3 board [68]) as described in our case study (Figure 5.27). We

implement a Linux userspace daemon process that invokes the low-level controllers every

50ms. When evaluating SPECTR, the daemon invokes the supervisor every 100ms. We use

ARM’s Performance Monitor Unit (PMU) and per-cluster power sensors for the performance

and power measurements required by the resource managers. The userspace daemon also

implements the Heartbeats API [53] monitor to measure QoS. By periodically issuing heart-

beats, the application informs the system about its current performance. The user provides a

performance reference value using the Heartbeats API.

To evaluate the resource managers, we use the following benchmarks from the PARSEC

benchmark suite [17] as QoS applications (i.e., the applications that issue heartbeats to the

controller): x264, bodytrack, canneal, and streamcluster. The selected applications con-

sist of the most CPU-bound along with the most cache-bound PARSEC benchmarks, providing

varied responses to change in resource allocation. Speedups from 3.2X (streamcluster)

to 4.5X (x264) are observed with the maximum resource allocation values compared to

the minimum. We also use one of four machine-learning workloads as our QoS application:

k-means, KNN, least squares, and linear regression. These four workloads provide a

wide range of data-intensive use cases. For all experiments, each QoS application uses four

threads. The background (non-QoS) tasks used in the third execution phase are single-

threaded microbenchmarks, and have no runtime restrictions, i.e., the Linux scheduler can

freely migrate them between and within clusters.

122

5.4.5 Comparison of Resource Managers

For brevity, we focus our discussion on the x264 benchmark results. Other results are

summarized at the end of this section. We use heartbeats to measure the frames per second

(FPS) as our QoS metric. Figure 5.30 shows the measured FPS and power for x264 with

respect to their reference values over the course of execution for all of the resource management

controllers.

x264 Benchmark

To show the energy efficiency of SPECTR, we study the Safe Phase. The Safe Phase consists

of the first 5 seconds of execution during which only the QoS application executes on the Big

cluster. In this phase, all controllers are able to achieve the FPS reference value within the

power envelope. Figures 5.31a and 5.31b show the average steady-state error (%) of QoS

and power respectively for each resource manager in Phase 1. Steady-state error is used to

define accuracy in feedback control systems [71]. Steady-state error values are calculated

as reference −measured output. Negative values indicate that the power/QoS exceeds

the reference value, positive values indicate power savings or failure to meet QoS. We make

two key observations. First, both MM-Perf and SPECTR reduce power consumption by

25% (Fig. 5.31b) while maintaining FPS within 10% (Fig. 5.31a) of the reference value. The

MM-Perf controller operates efficiently because the reference FPS value is achievable within

the TDP threshold. The SPECTR controller similarly operates efficiently: it is able to

recognize that the FPS is achievable within TDP and, as a result, lower the reference power.

Second, the FS and MM-Pow controllers unnecessarily exceed the reference FPS value and,

as a result, consume excessive power. This is because these controllers prioritize meeting the

power reference value, consuming the entire available power budget to maximize performance.

To show SPECTR’s ability to adapt to a sudden change in operating constraints, we study

123

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

20
30
40
50
60
70
80
90

FPS

Measured FPS
Reference FPS

(a) MM-Pow FPS

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Pow
er

(W
)

Ref. phase 1

Ref. phase 2

Ref. phase 3

Measured Power
Reference Power

(b) MM-Pow Power

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

20
30
40
50
60
70
80
90

FPS

Measured FPS
Reference FPS

(c) MM-Perf FPS

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Pow
er

(W
)

Ref. phase 1

Ref. phase 2

Ref. phase 3

Measured Power
Reference Power

(d) MM-Perf Power

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

20
30
40
50
60
70
80
90

FPS

Measured FPS
Reference FPS

(e) FS FPS

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Pow
er

(W
)

Ref. phase 1

Ref. phase 2

Ref. phase 3

Measured Power
Reference Power

(f) FS Power

(g) SPECTR FPS

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Pow
er

(W
)

Ref. phase 1

Ref. phase 2

Ref. phase 3

Measured Power
Reference Power

(h) SPECTR Power

Figure 5.30: Measured FPS and Power of all four resource managers for three Phases of 5
seconds each, for the x264 benchmark.

the Emergency Phase. The Emergency Phase of execution emulates a thermal emergency,

during which, the TDP is lowered to ensure that the system operates in a safe state. This

occurs during the second 5-second period of execution in Figure 5.30. We observe that

all controllers are able to react to the change in power reference value and maintain QoS.

However, compared to the other controllers, FS has a sluggish reaction (Figure 5.30f) to

the change in power reference, despite the fact that it is designed to prioritize tracking the

power output. Settling time is a property used to quantify responsiveness of feedback control

systems [71]. Settling time is the time it takes to reach sufficiently close to the steady-state

value after the reference values are set. The average settling time for the power output of FS

is 2.07 seconds, while SPECTR has an average settling time of 1.28 seconds. The larger size

of the state-space (x(t) matrix in Equation 3.2 and 3.3) and the higher number of control

inputs in the 4×2 FS compared to those of 2×2 controllers in SPECTR is the reason for the

124

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

−50
−40
−30
−20
−10

0
10
20
30
40

Qo
S

st
ea

dy
-s

ta
te

 e
rro

r (
%

)
FS MM-Perf MM-Pow SPECTR

(a) QoS steady-state error in Phase 1.

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

−50
−40
−30
−20
−10

0
10
20
30
40

Po
we

r s
te

ad
y-

st
at

e
er

ro
r (

%
)

(b) Power steady-state error in Phase 1.

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

−50
−40
−30
−20
−10

0
10
20
30
40

Qo
S

st
ea

dy
-s

ta
te

 e
rro

r (
%

)

(c) QoS steady-state error in Phase 2.

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

−50
−40
−30
−20
−10

0
10
20
30
40

Po
we

r s
te

ad
y-

st
at

e
er

ro
r (

%
)

(d) Power steady-state error in Phase 2.

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

−50
−40
−30
−20
−10

0
10
20
30
40

Qo
S

st
ea

dy
-s

ta
te

 e
rro

r (
%

)

(e) QoS steady-state error in Phase 3.

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

−50
−40
−30
−20
−10

0
10
20
30
40

Po
we

r s
te

ad
y-

st
at

e
er

ro
r (

%
)

(f) Power steady-state error in Phase 3.

Figure 5.31: Steady-state error for all benchmarks, grouped by phase. A negative value
indicates the amount of power/QoS exceeding the reference value (bad), a positive value
indicates the amount of power saved (good) or QoS degradation (bad).

slow settling time of FS. This is also the reason why SISO controllers are generally faster

that MIMOs [71].

To show SPECTR’s ability to adapt to workload disturbance and changing system goals, we

study the Workload Disturbance Phase. The Workload Disturbance Phase occurs in seconds

10-15 of execution in Figure 5.30. In this phase, 1) the QoS reference value and the power

envelope return to the same values as in Phase 1, and 2) we introduce disturbance in the

form of background tasks. As a result of the workload disturbance, the QoS reference is not

achievable within the TDP. We make two observations regarding the steady-state error in

125

Figures 5.31e and 5.31f. First, SPECTR behaves similarly to MM-Pow, even though in Phase

1 it behaved similarly to MM-Perf. The SPECTR supervisor is able to recognize the change

in execution scenario and constraints, and adapt its priorities appropriately. In this case,

SPECTR achieves much higher FPS than all controllers except MM-Perf (Fig. 5.31e), while

obeying the TDP limit (Fig. 5.31f). Second, both FS and MM-Pow operate at the TDP limit,

but achieve a significantly lower FPS than the reference value. MM-Perf comes within ˜5%

of the reference FPS (Fig. 5.31e) while exceeding the TDP by more than 30% (Fig. 5.31f),

which is undesirable.

Other Benchmarks

We perform the same experiments for PARSEC benchmarks bodytrack, canneal, streamcluster,

as well as machine-learning benchmarks k-means, KNN, least squares, and linear regression.

For these workloads, we use the generic heartbeat rate (HB) directly as the QoS metric, as FPS

is not an appropriate metric. Figures 5.31a, 5.31c, and 5.31e show the average steady-state

error (%) of QoS for Phases 1, 2, and 3 respectively. Figures 5.31b, 5.31d, and 5.31f show the

average steady-state error (%) of power for Phases 1, 2, and 3 respectively. We summarize the

observations for the additional experiments with respect to x264 for the three phases. In the

Safe Phase, the behavior of bodytrack, streamcluster, k-means, KNN, least squares, and

linear regression is similar to that of x264 (Figures 5.31a and 5.31b). canneal follows

the same pattern with respect to power as all other benchmarks (Fig. 5.31b). canneal’s

QoS steady-state error is the only difference in behavior we observe in Phase 1. None of the

managers are able to meet the QoS reference value for canneal in Phase 1 (Fig. 5.31a). This

is due to the fact that the phase of canneal captured in the experiment primarily consists

of serialized input processing, so the number of idle cores has reduced affect on QoS. In

the Emergency Phase, our observations from x264 hold for nearly all benchmarks regarding

response to change in power reference value, achieving less than 10% power steady-state

126

error (Fig. 5.31d). The only exceptions are canneal and k-means: the MM-Perf manager is

unable to react to change in TDP for canneal and k-means. The MM-Perf manager lacks a

supervisory coordinator and prioritizes performance, and was unable to find a configuration

for canneal and k-means that satisfied the QoS reference value within TDP. In the Workload

Disturbance Phase, SPECTR, FS, and MM-Pow all achieve near-reference power (Fig. 5.31f).

As expected, MM-Perf violates the TDP in all cases, but always achieves the highest QoS

(Fig. 5.31e).

We conclude that SPECTR is effective at (1) efficiently meeting multiple system objectives

when it is possible to do so, (2) appropriately balancing multiple conflicting objectives, and

(3) quickly responding to sudden and unpredictable changes in constraints due to workload

or system state.

5.4.6 Scalability Evaluation

To evaluate the scalability of SPECTR with respect to single or nested MIMO solutions, we

compare the identified models for controlled systems of different sizes. After an estimated

system dynamics is produced using system identification techniques, it is cross-validated

using different data sets. The common practice is to assess the model by analyzing residual

auto-correlation [171]. Residual is the stochastic component (e.g., disturbance, noise, etc.)

of the system output, which is not supposed to be included in the model. When validating

the model, the model output is compared to noisy system outputs. Therefore we expect the

residual to be pure noise. To verify this, the residual is analyzed for correlation. If there is

no correlation between the residual and itself or any inputs, the model is accurate enough.

Confidence can be used to specify a range. A confidence level is the probability with which

the true output will fall into a range called a confidence interval. The confidence interval

provides a range of values that is likely to contain the population parameter of interest [161].

127

A confidence level of 99% results in a confidence interval that spans three standard deviations.

In our case, a higher confidence level means more confidence in where the true output will lie,

and a model output within the confidence interval indicates that the deterministic component

of the model output will be near the true output.

-20 -10 0 10 20
Samples

-0.1

0

0.1

C
o
n
fi
d
e
n
c
e

Autocorrelation of residuals for Big IPS

Confidence interval Sample model

(a) 2×2 system model for the Big cluster
controller of SPECTR, total IPS output.

-20 -10 0 10 20
Samples

-0.04
-0.02

0
0.02
0.04

C
o
n
fi
d
e
n
c
e

Autocorrelation of residuals for Big Power

Confidence interval Sample model

(b) 2×2 system model for the Big clus-
ter controller of SPECTR, total power
output.

-20 -10 0 10 20
Samples

-0.1

0

0.1

0.2

C
on

fid
en

ce

Autocorrelation of residuals for IPS

Confidence interval Sample model

(c) 4×2 system model for the FS con-
troller, total IPS output.

-20 -10 0 10 20
Samples

-0.05

0

0.05

0.1

C
on

fid
en

ce

Autocorrelation of residuals for Power

Confidence interval Sample model

(d) 4×2 system model for the FS con-
troller, total power output.

-20 -10 0 10 20
Samples

-0.2

0

0.2

0.4

C
on

fid
en

ce

Autocorrelation of residuals for IPS

Confdence interval Sample model

(e) 10×10 system model for a large-
system controller , single-core IPS out-
put.

-20 -10 0 10 20
Samples

-0.1

0

0.1

0.2

C
on

fid
en

ce

Autocorrelation of residuals for Big Power

Confidence interval Sample model

(f) 10×10 system model for a large-
system controller, Big cluster power out-
put.

Figure 5.32: Autocorrelation of residuals for identified system models of different sized MIMO
controllers. We show a single performance and power output for each modeled system across
multiple sample inputs.

128

Figure 5.32 compares the autocorrelation of residuals for instructions per second (IPS) and

power of three systems: 1) 2×2 Big cluster MIMO used in SPECTR, 2) 4×2 MM-Pow, and

3) 10×10 controller that represents a large system. The 2×2 controller for the Little cluster

shows similar behavior to the 2×2 controller for the Big cluster in Figure 5.32a. MM-Perf

controller shows similar behavior to MM-Pow in Figure 5.32c.

The two main properties desired while checking the autocorrelation of residuals are for the

controller to: 1) stay inside the confidence interval, and 2) avoid sharp peaks and drops. While

the 2×2 controller stays within the confidence interval for IPS and power (Figure 5.32a,5.32b),

the 4×2 controller exhibits sharp peaks that violate the confidence interval for multiple

sample inputs (Figure 5.32c,5.32d). The controller for the large 10×10 system has difficulty

staying within the confidence interval, especially for IPS (Figure 5.32e,5.32f). Controllers for

large MIMO systems with more complex behavior are not only slower in terms of settling

time, but also often infeasible to design due to the lack of a sufficiently accurate system

dynamics model.

We conclude that SPECTR supports scalability for resource management that classical

controllers do not. Classical controllers cannot accurately model large systems. SPECTR

solves this issue by deploying many simple controllers for decomposed subsystems, and

coordinating them with a high-level supervisor.

5.4.7 Overhead Evaluation

To show the overhead of the low-level MIMO controllers, we study their execution time. We

measure the MIMO controller execution time to be 2.5ms, on average, over 30 seconds. The

MIMO controller is invoked every 50ms resulting in a 5% overhead, which is experienced

by all evaluated controllers. We measure the runtime of the supervisor to be 30µs, which

is negligible even with respect to the MIMO controller execution time. The supervisor is

129

invoked less frequently than the MIMO controllers (2× the period in our case), executes in

parallel to the workload and MIMO controllers, and simply evaluates the system state in

order to determine if the MIMO controller gains need changing. State changes that result in

interventions on the low-level controllers occur only due to system-wide changes in the state

(e.g., thermal emergency) or goals (e.g., change in performance reference value or execution

mode), which are infrequent. When the supervisor needs to change the MIMO gains, it

simply points the coefficient matrices to a different set of stored values. In our case study, we

have two sets of gains (QoS and power oriented) that are generated when the controllers are

designed and stored during system initialization. Changing the coefficient arrays at runtime

takes effect immediately, and has no additional overhead.

To show the overhead of SPECTR’s supervisory controller, we compare the total execution

time of identical workloads with and without SPECTR. With respect to the preemption

overhead due to globally managing resources, Linux’s HMP scheduler typically maps SCT

threads to a core on the low-power Little cluster. Therefore, the SCT threads are executed

without preempting the QoS application, which always executes on the Big cluster. We

verify the overall impact of the control system overhead by running the benchmarks on two

different systems: i) a vanilla Linux setup8 and ii) vanilla Linux with SPECTR running in

the background. For (ii), SPECTR controllers perform all the required computations but do

not change the system knobs (thus only the SPECTR overhead affects the system). When

comparing the QoS of the applications across multiple runs, we verify a negligible average

difference of 0.1% between the two systems.

We conclude that the benefits of SPECTR come at a negligible performance overhead.

8Ubuntu 16.04.2 LTS and Linux kernel 3.10.105 (https://dn.odroid.com/5422/ODROID-XU3/Ubuntu/).

130

Chapter 6

Conclusions and Future Directions

This dissertation addresses runtime policies for dynamic resource management in heteroge-

neous systems. First, we proposed a classification for dynamic resource management based

on allocation choices and control decisions. We surveyed heuristics, machine learning and

control theoretic methods used in tuning architectural parameters in computer systems.

Our early work demonstrates using SISO for power capping presents an initial case study

for using control theory managers in order to manage runtime metrics in computer systems

and pitfalls in regards to abrupt changes in application dynamics. Based on these findings

we focus on adding adaptive policies that can respond to system dynamics in a rapid and

response fashion.

The HESSLE-FREE project presents a novel method for benefiting from Fuzzy Control

Theory in simplifying complex system identification of heterogeneous systems and increasing

the efficiency of runtime management mechanism by utilizing designer’s expertise. HESSLE-

FREE leverages fuzzy control theory to combine heuristic approaches with the strengths of

classic control theory to efficiently manage complex heterogeneous systems with a variety of

system objectives.

131

In the SPECTR project, we develop a hierarchical supervisory control mechanism for resource

management in heterogeneous many-core systems. SPECTR combines the strengths of

classic control theory with state-of-the-art heuristic approaches to efficiently manage complex

systems with multiple goals in a hierarchical manner. SPECTR leverages formal Supervisory

Control Theoretic techniques, such as gain scheduling, to achieve autonomy for individual

distributed controllers and scalability for the entire system, while satisfying higher-level

system goals.

6.1 Directions for Future Work

Contributions of this thesis can only cover a certain area in resource management and can be

further expanded by future work. Some can be immediate extensions to this dissertation that

are easily reachable and some may require additional effort for future researchers. Hopefully,

following ideas will give some insight to next generation of PhD students.

6.1.1 Immediate extensions of this dissertation

In order to highlight the possible challenges for emerging systems, a representative real world

application is required that has interaction with majority of the system components. To this

effort an autonomous driving framework is under implementation. This framework includes

object detection and lane detection. Further analysis of power, temperature, performance

(end to end delay) and QoS (frame per second) and possible optimizations may be required.

Additionally, more software components such as localization, steering and control modules

can be added into this framework.

132

6.1.2 Novel work that could build on top of this thesis

With advancements in modern systems, using online machine learning methods alongside

other workloads has become possible. Therefore, exploring hybrid management using machine

learning and control theory is now a promising avenue. Namely, neuro-fuzzy can facilitate

parameter tuning in fuzzy management that can enable online adaptation of fuzzy management

or even fuzzy supervisors. In addition, SCT can be proven useful managing light-weight

online learning methods such as Q-learning.

Finally, future efforts can be focused towards expanding the reach of management mechanism

by adding sensing/actuation mechanisms in components such as domain specific accelera-

tors and memory subsystem. This may require novel resource management methods that

involve understanding of the behaviour of the system based on memory access patterns and

optimization of the overall system.

133

Bibliography

[1] A. Acquaviva, L. Benini, and B. Riccó. Energy characterization of embedded real-time
operating systems. SIGARCH Comput. Archit. News, pages 13–18, 2001.

[2] A. H. Ajami, K. Banerjee, and M. Pedram. Analysis of substrate thermal gradient
effects on optimal buffer insertion. In ICCAD, ICCAD ’01, 2001.

[3] K. Akesson, M. Fabian, H. Flordal, and R. Malik. Supremica - an integrated environment
for verification, synthesis and simulation of discrete event systems. In International
Workshop on Discrete Event Systems, 2006.

[4] J. Aracil and F. Gordillo. Stability Issues in Fuzzy Control. Studies in Fuzziness and
Soft Computing. Physica-Verlag HD, 2000.

[5] ARM. big.LITTLE Technology: The Future of Mobile. Technical report, 2013.

[6] K. J. Astrom and B. Wittenmark. Adaptive Control. Addison-Wesley, 1995.

[7] K. M. Attia, M. A. El-Hosseini, and H. A. Ali. Dynamic power management techniques
in multi-core architectures: A survey study. Ain Shams Engineering Journal, pages
445–456, 2017.

[8] R. Ayoub, K. R. Indukuri, and T. S. Rosing. Energy efficient proactive thermal
management in memory subsystem. In ISLPED, 2010.

[9] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum, and A. Nicolau.
Profile-based dynamic voltage scheduling using program checkpoints. In Proceedings
2002 Design, Automation and Test in Europe Conference and Exhibition, pages 168–175,
2002.

[10] W. Baek and T. M. Chilimbi. Green : A Framework for Supporting Energy-Conscious
Programming using Controlled Approximation. pages 198–209, 2010.

[11] A. Baldassari, C. Bolchini, and A. Miele. A dynamic reliability management framework
for heterogeneous multicore systems. In Proc. of International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–6, 2017.

[12] K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout, C. Smit, T. Zhang, and
B. Jacob. The performance and energy consumption of embedded real-time operating
systems. IEEE Transactions on Computers, pages 1454–1469, 2003.

134

[13] N. Beckmann, P.-A. Tsai, and D. Sanchez. Scaling distributed cache hierarchies through
computation and data co-scheduling. In High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on, pages 538–550. IEEE, 2015.

[14] A. Beloglazov and R. Buyya. Energy efficient resource management in virtualized cloud
data centers. In 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, pages 826–831, 2010.

[15] L. Benini, A. Bogliolo, G. A. Paleologo, and G. D. Micheli. Policy optimization
for dynamic power management. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 1999.

[16] M. W. Bertil A. Brandin and B. Benhabib. Discrete Event System Supervisory Control
Applied to the Management of Manufacturing Workcells. In Computer-Aided Production
Engineering, C. Venkatesh and J.A. McGeough, eds. (Amsterdam: Elsevier), 1991.

[17] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,
2011.

[18] C. Bienia, S. Kumar, and K. Li. Parsec vs. splash-2: A quantitative comparison of two
multithreaded benchmark suites on chip-multiprocessors. pages 47 – 56, 10 2008.

[19] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite: Characteri-
zation and architectural implications. In 2008 International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 72–81, Oct 2008.

[20] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite. In PACT,
page 72, New York, New York, USA, 2008. ACM Press.

[21] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, et al. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 2011.

[22] R. Bitirgen and et al. Coordinated Management of Multiple Interacting Resources in
Chip Multiprocessors: A Machine Learning Approach. In MICRO, 2008.

[23] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated management of multiple
interacting resources in chip multiprocessors: A machine learning approach. In 2008
41st IEEE/ACM International Symposium on Microarchitecture, 2008.

[24] P. Bogdan, R. Marculescu, and S. Jain. Dynamic power management for multidomain
system-on-chip platforms: An optimal control approach. ACM Trans. Des. Autom.
Electron. Syst., pages 46:1–46:20, 2013.

[25] C. Bolchini, M. Carminati, and A. Miele. Self-adaptive fault tolerance in multi-/many-
core systems. Journal of Electronic Testing, 29(2):159–175, Apr 2013.

[26] D. Brooks and M. Martonosi. Dynamic thermal management for high-performance
microprocessors. In HPCA, 2001.

135

[27] X. Chen, Y. Wang, Y. Liang, Y. Xie, and H. Yang. Run-time technique for simultaneous
aging and power optimization in GPGPUs. In Proc. Design Automation Conference
(DAC), pages 1–6, 2014.

[28] Z. Chen and D. Marculescu. Distributed reinforcement learning for power limited many-
core system performance optimization. In Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition, DATE ’15, 2015.

[29] S.-T. Cheng, C.-M. Chen, and J.-W. Hwang. Low-power design for real-time systems. In
Proceedings of ICICS, 1997 International Conference on Information, Communications
and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless
Multimedia Communications (Cat., pages 1746–1750 vol.3, 1997.

[30] C. T. Chou, Y. P. Lin, K. Y. Chiang, and K. C. Chen. Dynamic buffer allocation for
thermal-aware 3d network-on-chip systems. In ICCE-TW, 2017.

[31] I. Christoforakis, O. Tomoutzoglou, D. Bakoyiannis, and G. Kornaros. Dithering-based
power and thermal management on fpga-based multi-core embedded systems. In 2015
IEEE 13th International Conference on Embedded and Ubiquitous Computing, pages
173–177, 2015.

[32] E.-Y. Chung, L. Benini, A. Bogliolo, and G. D. Micheli. Dynamic power management
for nonstationary service requests. In DATE, 1999.

[33] R. Cochran and et al. Pack & cap: Adaptive dvfs and thread packing under power
caps. In MICRO, 2011.

[34] N. Corporation. Nvidia jetson tx2 embedded module. 2017.

[35] A. Coskun, R. Strong, D. Tullsen, and T. S. Rosing. Evaluating the impact of job
scheduling and power management on processor lifetime for chip multiprocessors. In
Proc. Int. Conf. Measurement and Modeling of Computer Systems, pages 169–180, 2009.

[36] A. K. Coskun, T. S. Rosing, and K. Whisnant. Temperature aware task scheduling in
mpsocs. In 2007 Design, Automation Test in Europe Conference Exhibition, 2007.

[37] L. Costero, A. Iranfar, M. Zapater, F. D. Igual, K. Olcoz, and D. Atienza. Mamut:
Multi-agent reinforcement learning for efficient real-time multi-user video transcoding.
In 2019 Design, Automation Test in Europe Conference Exhibition (DATE), 2019.

[38] A. Das, M. J. Walker, A. Hansson, B. M. Al-Hashimi, and G. V. Merrett. Hardware-
software interaction for run-time power optimization: A case study of embedded linux
on multicore smartphones. In 2015 IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED), 2015.

[39] C. Delimitrou and C. Kozyrakis. Paragon: Qos-aware scheduling for heterogeneous
datacenters. In ASPLOS, 2013.

136

[40] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and qos-aware cluster
management. In ASPLOS, 2014.

[41] J. Diemer and R. Ernst. Back suction: Service guarantees for latency-sensitive on-chip
networks. In Proceedings of the 2010 Fourth ACM/IEEE International Symposium
on Networks-on-Chip, NOCS ’10, pages 155–162, Washington, DC, USA, 2010. IEEE
Computer Society.

[42] J. Diemer, R. Ernst, and M. Kauschke. Efficient throughput-guarantees for latency-
sensitive networks-on-chip. In Design Automation Conference (ASP-DAC), 2010 15th
Asia and South Pacific, pages 529–534. IEEE, 2010.

[43] Y. Ding, P. Yedlapalli, and M. Kandemir. Qos aware dynamic time-slice tuning. In
Workload Characterization (IISWC), 2014 IEEE International Symposium on. IEEE,
2014.

[44] J. Donald and M. Martonosi. Leveraging simultaneous multithreading for adaptive
thermal control. 2005.

[45] Dong Hwa Kim. Parameter tuning of fuzzy neural networks by immune algorithm. In
2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International
Conference on Fuzzy Systems. FUZZ-IEEE’02. Proceedings (Cat. No.02CH37291), 2002.

[46] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt. Sparta: Runtime task allocation for
energy efficient heterogeneous many-cores. In CODES, 2016.

[47] B. Donyanavard, A. M. Rahmani, T. Muck, K. Moazemmi, and N. Dutt. Gain scheduled
control for nonlinear power management in cmps. In 2018 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 921–924, 2018.

[48] C. Dubach, T. M. Jones, and E. V. Bonilla. Dynamic Microarchitectural Adaptation
Using Machine Learning. In TACO, 2013.

[49] C. Dubach, T. M. Jones, E. V. Bonilla, and M. F. P. O’Boyle. A Predictive Model for
Dynamic Microarchitectural Adaptivity Control. In MICRO, 2010.

[50] N. Dutt, A. Jantsch, and S. Sarma. Self-aware cyber-physical systems-on-chip. In
2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
46–50, Nov 2015.

[51] N. Dutt, A. Jantsch, and S. Sarma. Toward Smart Embedded Systems: A Self-
aware System-on-Chip (SoC) Perspective. ACM Transactions on Embedded Computing
Systems, 15, 2016.

[52] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural Acceleration for
General-Purpose Approximate Programs. In Proceedings of IEEE/ACM International
Symposium on Microarchitecture, MICRO ’12, pages 449–460. Ieee, Dec. 2012.

137

[53] H. et al. A generalized software framework for accurate and efficient management of
performance goals. In EMSOFT, 2013.

[54] Q. W. et al. Dynamo: Facebook’s data center-wide power management system. In
ISCA, 2016.

[55] M. Fabian and A. Hellgren. Desco — a Tool for Education and Control of Discrete
Event Systems. Springer US, 2000.

[56] R. Ge, X. Feng, S. Song, H. C. Chang, D. Li, and K. W. Cameron. Powerpack: Energy
profiling and analysis of high-performance systems and applications. IEEE Transactions
on Parallel and Distributed Systems, pages 658–671, 2010.

[57] B. Grigorian, N. Farahpour, and G. Reinman. Brainiac: Bringing reliable accuracy
into neurally-implemented approximate computing. In High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International Symposium on, pages 615–626.
IEEE, 2015.

[58] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Kilo-noc: A heterogeneous network-
on-chip architecture for scalability and service guarantees. In Proceedings of the 38th
Annual International Symposium on Computer Architecture, ISCA ’11, pages 401–412,
New York, NY, USA, 2011. ACM.

[59] B. Grot, S. W. Keckler, and O. Mutlu. Preemptive virtual clock: A flexible, efficient,
and cost-effective qos scheme for networks-on-chip. In Proceedings of the 42Nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 42, pages 268–279,
New York, NY, USA, 2009. ACM.

[60] U. Gupta, M. Babu, R. Ayoub, M. Kishinevsky, F. Paterna, and U. Y. Ogras. Staff:
online learning with stabilized adaptive forgetting factor and feature selection algorithm.
In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6.
IEEE, 2018.

[61] U. Gupta, J. Campbell, U. Y. Ogras, R. Ayoub, M. Kishinevsky, F. Paterna, and
S. Gumussoy. Adaptive performance prediction for integrated GPUs. In ICCAD, 2016.

[62] M.-H. Haghbayan, A. Kanduri, A.-M. Rahmani, P. Liljeberg, A. Jantsch, and H. Ten-
hunen. MapPro: Proactive Runtime Mapping for Dynamic Workloads by Quantifying
Ripple Effect of Applications on Networks-on-Chip. In NOCS, 2015.

[63] M. H. Haghbayan, A. Miele, A. M. Rahmani, P. Liljeberg, and H. Tenhunen. A
lifetime-aware runtime mapping approach for many-core systems in the dark silicon era.
In Proc. Conf. on Design, Automation & Test in Europe (DATE), pages 854–857, 2016.

[64] M. H. Haghbayan, A. Miele, A. M. Rahmani, P. Liljeberg, and H. Tenhunen.
Performance/Reliability-Aware Resource Management for Many-Cores in Dark Silicon
Era. IEEE Trans. on Computers, 66(9):1599–1612, Sept 2017.

138

[65] M. H. Haghbayan, A. M. Rahmani, A. Miele, M. Fattah, J. Plosila, P. Liljeberg,
and H. Tenhunen. A power-aware approach for online test scheduling in many-core
architectures. IEEE Transactions on Computers, 65(3):730–743, March 2016.

[66] H. Hajimiri, M. A. Qathrady, and P. Mishra. Proactive thermal management using
memory based computing. In NANOARCH, 2013.

[67] J. Hamers and L. Eeckhout. Scenario-based resource prediction for qos-aware media
processing. Computer, 2010.

[68] Hardkernel. ODROID-XU. Technical report, 2016.

[69] W. Heirman, A. Isaev, and I. Hur. Sniper: Simulation-based instruction-level statistics
for optimizing software on future architectures. In Proceedings of the 3rd International
Conference on Exascale Applications and Software, EASC ’15, page 29–31, GBR, 2015.
University of Edinburgh.

[70] J. Heißwolf, R. König, and J. Becker. A scalable noc router design providing qos
support using weighted round robin scheduling. In Parallel and Distributed Processing
with Applications (ISPA), 2012 IEEE 10th International Symposium on, pages 625–632.
IEEE, 2012.

[71] J. L. Hellerstein and et al. Feedback Control of Computing Systems. John Wiley &
Sons, 2004.

[72] S. Herbert and D. Marculescu. Analysis of dynamic voltage/frequency scaling in chip-
multiprocessors. In Proceedings of the 2007 international symposium on Low power
electronics and design (ISLPED ’07), 2007.

[73] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal, and R. Iyer.
Cache qos: From concept to reality in the intel® xeon® processor e5-2600 v3 product
family. In High Performance Computer Architecture (HPCA), 2016 IEEE International
Symposium on, pages 657–668. IEEE, 2016.

[74] J. P. Hespanha. Tutorial on supervisory control. Lecture Notes for the workshop
Control using Logic and Switching for the 40th Conf. on Decision and Contr., Orlando,
Florida.

[75] H. Hoffmann and et al. Dynamic Knobs for Responsive Power-aware Computing. In
ASPLOS, 2011.

[76] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation.

[77] M. Horowitz, T. Indermaur, and R. Gonzalez. Low-power digital design. In Proceedings
of 1994 IEEE Symposium on Low Power Electronics, pages 8–11, 1994.

[78] C.-H. Hsu and W.-C. Feng. A power-aware run-time system for high-performance
computing. In Proceedings of the ACM/IEEE Supercomputing Conference, 2005.

139

[79] J. Hu, W. Peng, and C. Chung. Reinforcement learning for hevc/h.265 intra-frame rate
control. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS),
2018.

[80] K. Huang, L. Santinelli, J. J. Chen, L. Thiele, and G. C. Buttazzo. Adaptive dynamic
power management for hard real-time systems. In RTSS, 2009.

[81] C. J. Hughes, J. Srinivasan, and S. V. Adve. Saving energy with architectural and
frequency adaptations for multimedia applications. In Proceedings. 34th ACM/IEEE
International Symposium on Microarchitecture. MICRO-34, pages 250–261, 2001.

[82] C. Imes, S. Hofmeyr, and H. Hoffmann. Energy-efficient application resource scheduling
using machine learning classifiers. In Proceedings of the 47th International Conference
on Parallel Processing, ICPP 2018, 2018.

[83] E. Ipek, O. Mutlu, J. F. Mart́ınez, and R. Caruana. Self-Optimizing Memory Controllers:
A Reinforcement Learning Approach. In ISCA, 2008.

[84] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi. An Analysis of
Efficient Multi-Core Global Power Management Policies: Maximizing Performance for
a Given Power Budget. In MICRO, 2006.

[85] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase monitoring and prediction
on real systems with application to dynamic power management. In MICRO, 2006.

[86] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable
voltage processors. In Proceedings. 1998 International Symposium on Low Power
Electronics and Design (IEEE Cat. No.98TH8379), pages 197–202, 1998.

[87] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. Hsu, and
S. Reinhardt. Qos policies and architecture for cache/memory in cmp platforms. In
Proceedings of the 2007 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’07, pages 25–36, New York, NY,
USA, 2007. ACM.

[88] J. R. Jang. Anfis: adaptive-network-based fuzzy inference system. IEEE Transactions
on Systems, Man, and Cybernetics, 1993.

[89] A. Jantsch, N. Dutt, and A. M. Rahmani. Self-awareness in systems on chip– a survey.
IEEE Design Test, 34(6):8–26, Dec 2017.

[90] JEDEC Solid State Tech. Ass. Failure mechanisms and models for semiconductor
devices. JEDEC Publication JEP122G, 2010.

[91] B. K. Joardar, R. G. Kim, J. R. Doppa, P. P. Pande, D. Marculescu, and R. Marculescu.
Learning-based application-agnostic 3d noc design for heterogeneous manycore systems.
IEEE Transactions on Computers, 2018.

140

[92] H. Jung and M. Pedram. Stochastic dynamic thermal management: A markovian
decision-based approach. In 2006 International Conference on Computer Design, pages
452–457, 2006.

[93] Kaggle Inc. The State of Data Science and Machine Learning. https://www.kaggle.
com/surveys/2017, 2017. Accessed: 2018-08-08.

[94] A. Kanduri, M. H. Haghbayan, A. M. Rahmani, P. Liljeberg, A. Jantsch, and H. Ten-
hunen. Dark silicon aware runtime mapping for many-core systems: A patterning
approach. In 2015 33rd IEEE International Conference on Computer Design (ICCD),
2015.

[95] A. Kanduri, M. H. Haghbayan, A. M. Rahmani, M. Shafique, P. Liljeberg, and
A. Jantsch. dBoost: Thermal Aware Performance Boosting through Dark Silicon
Patterning. IEEE Transactions on Computers, 2018.

[96] N. Kapadia and S. Pasricha. Varsha: Variation and reliability-aware application
scheduling with adaptive parallelism in the dark-silicon era. In 2015 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1060–1065, March 2015.

[97] C. Karamanolis and et al. Designing Controllable Computer Systems. In HOTOS,
2005.

[98] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge. Multi-Mechanism Reliability Modeling
and Management in Dynamic Systems. Trans. on VLSI Systems, 16(4):476–487, 2008.

[99] H. Kasture and D. Sanchez. Ubik: Efficient cache sharing with strict qos for latency-
critical workloads. In Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’14, pages
729–742, New York, NY, USA, 2014. ACM.

[100] U. A. Khan and B. Rinner. Online learning of timeout policies for dynamic power
management. ACM Trans. Embed. Comput. Syst., 13(4), Mar. 2014.

[101] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke. Rumba: An online quality
management system for approximate computing. In Computer Architecture (ISCA),
2015 ACM/IEEE 42nd Annual International Symposium on, pages 554–566. IEEE,
2015.

[102] R. G. Kim, W. Choi, Z. Chen, J. R. Doppa, P. P. Pande, D. Marculescu, and R. Mar-
culescu. Imitation learning for dynamic vfi control in large-scale manycore systems.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017.

[103] T. Kim, X. Huang, H. B. Chen, V. Sukharev, and S. X. D. Tan. Learning-based
dynamic reliability management for dark silicon processor considering EM effects. In
Proc. Conf. on Design, Automation & Test in Europe (DATE), pages 463–468, 2016.

141

https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017

[104] D. Kirovski and M. Potkonjak. System-level synthesis of low-power hard real-time
systems. In Proceedings of the 34th Annual Design Automation Conference, DAC ’97,
pages 697–702, 1997.

[105] G. J. Klir and T. A. Folge. Fuzzy Sets, Uncertainty and Information. Prentice-Hall,
Englewood Cliffs, NJ, USA, 1988.

[106] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-
Hall, Englewood Cliffs, NJ, USA, 1995.

[107] S. Kounev, P. Lewis, K. L. Bellman, N. Bencomo, J. Camara, A. Diaconescu, L. Esterle,
K. Geihs, H. Giese, S. Götz, P. Inverardi, J. O. Kephart, and A. Zisman. The Notion
of Self-aware Computing. Springer International Publishing, Cham, 2017.

[108] C. M. Krishna and Y. H. Lee. Voltage-clock-scaling adaptive scheduling techniques for
low power in hard real-time systems. In Proceedings Sixth IEEE Real-Time Technology
and Applications Symposium. RTAS 2000, pages 156–165, 2000.

[109] C. Kulkarni, F. Catthoor, and H. D. Man. Code transformations for low power caching
in embedded multimedia processors. In Proceedings of the First Merged International
Parallel Processing Symposium and Symposium on Parallel and Distributed Processing,
pages 292–297, 1998.

[110] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout, S. W. Gould, and J. M.
Cohn. Managing power and performance for system-on-chip designs using voltage
islands. In IEEE/ACM International Conference on Computer Aided Design, 2002.
ICCAD 2002., 2002.

[111] R. Laddaga. Active Software. In Proceedings of the First International Workshop on
Self-adaptive Software, IWSAS’ 2000, Secaucus, NJ, USA, 2000. Springer-Verlag New
York, Inc.

[112] M. A. Laurenzano, P. Hill, M. Samadi, S. Mahlke, J. Mars, and L. Tang. Input
responsiveness: Using canary inputs to dynamically steer approximation. In Proceed-
ings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’16, pages 161–176, New York, NY, USA, 2016. ACM.

[113] H. Lee, M. Shafique, and M. A. A. Faruque. Aging-aware Workload Management on
Embedded GPU Under Process Variation. IEEE Trans. on Computers, PP(99):1–1,
2018.

[114] J. W. Lee, M. C. Ng, and K. Asanovic. Globally-synchronized frames for guaranteed
quality-of-service in on-chip networks. In Proceedings of the 35th Annual International
Symposium on Computer Architecture, ISCA ’08, pages 89–100, Washington, DC, USA,
2008. IEEE Computer Society.

[115] S. Lee, K. Kang, and C. M. Kyung. Runtime thermal management for 3-d chip-
multiprocessors with hybrid sram/mram l2 cache. TVLSI, 2015.

142

[116] S. Lee and T. Sakurai. Run-time voltage hopping for low-power real-time systems. In
Proceedings 37th Design Automation Conference, pages 806–809, 2000.

[117] D. Leith and W. Leithead. Survey of gain-scheduling analysis and design. In Interna-
tional Journal of Control, 2000.

[118] B. Li, L.-S. Peh, L. Zhao, and R. Iyer. Dynamic qos management for chip multiprocessors.
ACM Trans. Archit. Code Optim., 9(3):17:1–17:29, Oct. 2012.

[119] B. Li, L. Zhao, R. Iyer, L.-S. Peh, M. Leddige, M. Espig, S. E. Lee, and D. Newell.
Coqos: Coordinating qos-aware shared resources in noc-based socs. Journal of Parallel
and Distributed Computing, 71(5):700–713, 2011.

[120] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.
Mcpat: An integrated power, area, and timing modeling framework for multicore and
manycore architectures. In 2009 42nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 469–480, Dec 2009.

[121] Y. Li and W. Wolf. A task-level hierarchical memory model for system synthesis of
multiprocessors. In Proceedings of the 34th Annual Design Automation Conference,
DAC ’97, pages 153–156, 1997.

[122] W. Liao, L. He, and K. M. Lepak. Temperature and supply voltage aware performance
and power modeling at microarchitecture level. TCAD, 2005.

[123] J. Liu, P. H. Chou, N. Bagherzadeh, and F. Kurdahi. Power-aware scheduling under
timing constraints for mission-critical embedded systems. In Proceedings of the 38th
Design Automation Conference (IEEE Cat. No.01CH37232), pages 840–845, 2001.

[124] L. Ljung. Black-box models from input-output measurements. In I2MTC, 2001.

[125] L. Ljung. System Identification : Theory for the User. Prentice Hall PTR, 1999.

[126] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis. Towards energy
proportionality for large-scale latency-critical workloads. In ISCA, Piscataway, NJ,
USA, 2014.

[127] W. H. Lo, K. z. Liang, and T. Hwang. Thermal-aware dynamic page allocation policy
by future access patterns for hybrid memory cube (hmc). In DATE, 2016.

[128] J. Luo and N. K. Jha. Battery-aware static scheduling for distributed real-time
embedded systems. In Proceedings of the 38th Design Automation Conference (IEEE
Cat. No.01CH37232), pages 444–449, 2001.

[129] K. Ma and X. Wang. PGCapping: Exploiting Power Gating for Power Capping and
Core Lifetime Balancing in CMPs. In Proc. Int. Conf. on Parallel Architectures and
Compilation Techniques (PACT), pages 13–22, 2012.

143

[130] T. C. L. Ma and K. G. Shin. A user-customizable energy-adaptive combined static/dy-
namic scheduler for mobile applications. In Proceedings 21st IEEE Real-Time Systems
Symposium, pages 227–236, 2000.

[131] Y. Ma, T. Chantem, R. P. Dick, and X. S. Hu. Improving System-Level Lifetime
Reliability of Multicore Soft Real-Time Systems. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 25(6):1895–1905, June 2017.

[132] Y. Ma, T. Chantem, R. P. Dick, S. Wang, and X. S. Hu. An on-line framework
for improving reliability of real-time systems on x201c;big-little x201d; type mpsocs.
In Design, Automation Test in Europe Conference Exhibition (DATE), 2017, pages
446–451, March 2017.

[133] M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal, and A. Leva. Controlling
software applications via resource allocation within the heartbeats framework. In CDC,
2010.

[134] D. Mahajan and et al. Towards statistical guarantees in controlling quality tradeoffs
for approximate acceleration. In ISCA, 2016.

[135] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Esmaeilzadeh. Towards
statistical guarantees in controlling quality tradeoffs for approximate acceleration. In
Proceedings of the 43rd International Symposium on Computer Architecture, ISCA ’16,
pages 66–77, Piscataway, NJ, USA, 2016. IEEE Press.

[136] Man-Lap Li, R. Sasanka, S. V. Adve, Yen-Kuang Chen, and E. Debes. The alpbench
benchmark suite for complex multimedia applications. In IEEE International. 2005
Proceedings of the IEEE Workload Characterization Symposium, 2005., pages 34–45,
Oct 2005.

[137] A. Manzak and C. Chakrabarti. Variable voltage task scheduling for minimizing energy
or minimizing power. In 2000 IEEE International Conference on Acoustics, Speech,
and Signal Processing. Proceedings (Cat. No.00CH37100), pages 3239–3242 vol.6, 2000.

[138] A. Manzak and C. Chakrabarti. Variable voltage task scheduling algorithms for
minimizing energy. In Low Power Electronics and Design, International Symposium
on, 2001., pages 279–282, 2001.

[139] F. Maraninchi. Operational and compositional semantics of synchronous automaton
compositions. In CONCUR, 1992.

[140] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-up: Increasing
utilization in modern warehouse scale computers via sensible co-locations. In MICRO,
2011.

[141] MathWorks. System Identification Toolbox. Technical report, 2017.

[142] MathWorks. System PID tuner Toolbox. Technical report, 2017.

144

[143] M. Meterelliyoz, H. Mahmoodi, and K. Roy. A leakage control system for thermal
stability during burn-in test. In ITC, 2005.

[144] A. Miele, A. Kanduri, K. Moazzemi, D. Juhász, A. R. Rahmani, N. Dutt, P. Liljeberg,
and A. Jantsch. On-chip dynamic resource management. Foundations and Trends® in
Electronic Design Automation, 13(1-2):1–144, 2019.

[145] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of service profiling.
volume 1, pages 25–34, 2010.

[146] A. K. Mishra and et al. CPM in CMPs: Coordinated Power Management in Chip-
Multiprocessors. In SC, 2010.

[147] N. Mishra, C. Imes, J. D. Lafferty, and H. Hoffmann. Caloree: Learning control for
predictable latency and low energy. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’18, 2018.

[148] N. Mishra, H. Zhang, J. D. Lafferty, and H. Hoffmann. A probabilistic graphical model-
based approach for minimizing energy under performance constraints. In Proceedings
of the Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, 2015.

[149] K. Moazzemi, C. Hsieh, and N. Dutt. Hamex: heterogeneous architecture and memory
exploration framework. In 2016 International Symposium on Rapid System Prototyping
(RSP), pages 1–7, 2016.

[150] K. Moazzemi, A. Kanduri, D. Juhász, A. Miele, A. M. Rahmani, P. Liljeberg, A. Jantsch,
and N. Dutt. Trends in on-chip dynamic resource management. In 2018 21st Euromicro
Conference on Digital System Design (DSD), pages 62–69, 2018.

[151] K. Moazzemi, B. Maity, S. Yi, A. M. Rahmani, and N. Dutt. Hessle-free:
¡u¿he¡/u¿terogeneou¡u¿s¡/u¿ ¡u¿s¡/u¿ystems ¡u¿le¡/u¿veraging ¡u¿f¡/u¿uzzy control for
¡u¿r¡/u¿untim¡u¿e¡/u¿ resourc¡u¿e¡/u¿ management. ACM Trans. Embed. Comput.
Syst., 18(5s), Oct. 2019.

[152] T. Moreau, F. Augusto, P. Howe, A. Alaghi, and L. Ceze. Exploiting quality-energy
tradeoffs with arbitrary quantization: special session paper. In Proceedings of the
Twelfth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis Companion, page 30. ACM, 2017.

[153] A. S. Morse. Control using logic-based switching. Springer London, 1997.

[154] T. Mück, B. Donyanavard, and N. Dutt. Poiicym: Rapid prototyping of resource
management policies for hmps. In Proceedings of the 28th International Symposium on
Rapid System Prototyping: Shortening the Path from Specification to Prototype, RSP
’17, pages 23–29, New York, NY, USA, 2017. ACM.

145

[155] T. R. Mück. Reflective On-Chip Resource Management Policies for Energy-Efficient
Heterogeneous Multiprocessors. PhD thesis, University of California, Irvine, USA, 2018.

[156] J. Murray, R. Kim, P. Wettin, P. P. Pande, and B. Shirazi. Performance evaluation of
congestion-aware routing with dvfs on a millimeter-wave small-world wireless noc. J.
Emerg. Technol. Comput. Syst., 11(2), Nov. 2014.

[157] T. Mück, B. Donyanavard, K. Moazzemi, A. M. Rahmani, A. Jantsch, and N. Dutt. De-
sign methodology for responsive and rrobust mimo control of heterogeneous multicores.
IEEE TMSCS, 2018.

[158] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choudhary. Minebench:
A benchmark suite for data mining workloads. In 2006 IEEE International Symposium
on Workload Characterization, pages 182–188, Oct 2006.

[159] L. S. Nielsen, C. Niessen, J. Sparso, and K. van Berkel. Low-power operation using
self-timed circuits and adaptive scaling of the supply voltage. TVLSI, 1994.

[160] M. Niknafs, I. Ukhov, P. Eles, and Z. Peng. Runtime resource management with
workload prediction. In Proceedings of the 56th Annual Design Automation Conference
2019, DAC ’19, 2019.

[161] NIST. Engineering Statistics Handbook. Technical report, 2012.

[162] U. Y. Ogras, R. Marculescu, and D. Marculescu. Variation-adaptive feedback control
for networks-on-chip with multiple clock domains. In 2008 45th ACM/IEEE Design
Automation Conference, 2008.

[163] U. Y. Ogras, R. Marculescu, D. Marculescu, and E. G. Jung. Design and management
of voltage-frequency island partitioned networks-on-chip. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2009.

[164] J. Ouyang and Y. Xie. Loft: A high performance network-on-chip providing quality-
of-service support. In Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM
International Symposium on, pages 409–420. IEEE, 2010.

[165] M. P. Papazoglou and D. Georgakopoulos. Introduction: Service-oriented computing.
Commun. ACM, 46(10):24–28, Oct. 2003.

[166] R. Parloff. Why deep learning is suddenly changing your life. Fortune, 2016.

[167] K. M. Passino and S. Yurkovich. Fuzzy Control. Addison-Wesley, 1997.

[168] V. Petrucci, M. A. Laurenzano, J. Doherty, Y. Zhang, D. Mosse, J. Mars, and L. Tang.
Octopus-man: Qos-driven task management for heterogeneous multicores in warehouse-
scale computers. In HPCA, 2015.

[169] A. Phansalkar, A. Joshi, and L. K. John. Analysis of redundancy and application
balance in the spec cpu2006 benchmark suite. SIGARCH Comput. Archit. News,
35(2):412–423, June 2007.

146

[170] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded
operating systems. In Proceedings of the Eighteenth ACM Symposium on Operating
Systems Principles, SOSP ’01, pages 89–102, 2001.

[171] R. Pothukuchi and et al. A Guide to Design MIMO Controllers for Architectures.
http://iacoma.cs.uiuc.edu/iacoma-papers/mimoTR.pdf, 2016.

[172] R. P. Pothukuchi and et al. Using Multiple Input, Multiple Output Formal Control to
Maximize Resource Efficiency in Architectures. In ISCA, 2016.

[173] Q. Wu, P. Juang, M. Martonosi, D. W. Clark. Formal Online Methods for Voltage/Fre-
quency Control in Multiple Clock Domain Microprocessors. In ASPLOS, 2004.

[174] Q. Qiu and M. Pedram. Dynamic power management based on continuous-time markov
decision processes. In Proceedings 1999 Design Automation Conference (Cat. No.
99CH36361), pages 555–561, 1999.

[175] G. Qu, D. Kirovski, M. Potkonjak, and M. B. Srivastava. Energy minimization of
system pipelines using multiple voltages. In Circuits and Systems, 1999. ISCAS ’99.
Proceedings of the 1999 IEEE International Symposium on, pages 362–365 vol.1, 1999.

[176] J. Rada-Vilela. The fuzzylite libraries for fuzzy logic control, 2018.

[177] A. Rahmani, P. Liljeberg, A. Hemani, A. Jantsch, and H. Tenhunen. The Dark Side of
Silicon. Springer, 2016.

[178] A. M. Rahmani, B. Donyanavard, T. Mück, K. Moazzemi, A. Jantsch, O. Mutlu, and
N. Dutt. Spectr: Formal supervisory control and coordination for many-core systems
resource management. In ASPLOS, 2018.

[179] A. M. Rahmani, M. H. Haghbayan, A. Kanduri, A. Y. Weldezion, P. Liljeberg, J. Plosila,
A. Jantsch, and H. Tenhunen. Dynamic power management for many-core platforms
in the dark silicon era: A multi-objective control approach. In 2015 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED), 2015.

[180] A. M. Rahmani, A. Jantsch, and N. Dutt. HDGM: Hierarchical Dynamic Goal Man-
agement for Many-Core Resource Allocation. In ESL, 2017.

[181] P. Ramadge and W. Wonham. The control of discrete event systems. Proceedings of
the IEEE, 1989.

[182] E. A. Rambo, T. Kadeed, R. Ernst, M. Seo, F. Kurdahi, B. Donyanavard, C. B. de Melo,
B. Maity, K. Moazzemi, K. Stewart, S. Yi, A. M. Rahmani, N. Dutt, F. Maurer, N. A.
Vu Doan, A. Surhonne, T. Wild, and A. Herkersdorf. The information processing factory:
A paradigm for life cycle management of dependable systems. In 2019 International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pages 1–10, 2019.

147

[183] P. Ranganathan and N. Jouppi. Enterprise it trends and implications for architecture
research. In HPCA, pages 253–256. IEEE, 2005.

[184] S. Rezaei, E. Bozorgzadeh, and K. Kim. Ultrashare: Fpga-based dynamic accelerator
sharing and allocation. In 2019 International Conference on ReConFigurable Computing
and FPGAs (ReConFig), pages 1–5, 2019.

[185] S. Rezaei, K. Kim, and E. B. Scalable multi-queue data transfer scheme for fpga-based
multi-accelerators. In 2018 IEEE 36th International Conference on Computer Design
(ICCD), pages 374–380. IEEE, 2018.

[186] C. Rusu, A. Ferreira, C. Scordino, and A. Watson. Energy-efficient real-time het-
erogeneous server clusters. In 12th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’06), pages 418–428, 2006.

[187] A. Sadighi, B. Donyanavard, T. Kadeed, K. Moazzemi, T. Mück, A. Nassar, A. M.
Rahmani, T. Wild, N. Dutt, R. Ernst, A. Herkersdorf, and F. Kurdahi. Design
methodologies for enabling self-awareness in autonomous systems. In 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 1532–1537, 2018.

[188] M. H. Safanov. Focusing on the knowable: Controller invalidation and learning. Springer
London, 1997.

[189] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and Research Chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems, 4, 2009.

[190] M. Samadi, J. Lee, and D. Jamshidi. Sage: Self-tuning approximation for graphics
engines. 2013.

[191] S. Sarma, N. Dutt, P. Gupta, A. Nicolau, and N. Venkatasubramanian. On-chip
self-awareness using cyberphysical-systems-on-chip (cpsoc). In Proceedings of the
2014 International Conference on Hardware/Software Codesign and System Synthesis,
CODES ’14, pages 22:1–22:3, New York, NY, USA, 2014. ACM.

[192] Seema Chopra, R. Mitra, and Vijay Kumar. Identification of rules using subtractive
clustering with application to fuzzy controllers. In Proceedings of 2004 International
Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), 2004.

[193] Semiconductor Industry Association et al. International Technology Roadmap for
Semiconductors. http://www.itrs2.net/, 2011.

[194] M. Shafique, B. Vogel, and J. Henkel. Self-adaptive hybrid dynamic power management
for many-core systems. In DATE, 2013.

[195] S. Shahhosseini, K. Moazzemi, A. M. Rahmani, and N. Dutt. On the feasibility of siso
control-theoretic dvfs for power capping in cmps. Microprocessors and Microsystems,
63:249 – 258, 2018.

148

[196] S. Shahosseini, K. Moazzemi, A. M. Rahmani, and N. Dutt. Dependability evaluation
of siso control-theoretic power managers for processor architectures. In 2017 IEEE
Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International
Symposium of System-on-Chip (SoC), 2017.

[197] J. S. Shamma and M. Athans. Analysis of gain scheduled control for nonlinear plants.
IEEE Transactions on Automatic Control, 1990.

[198] E. Shamsa, A. Kanduri, A. M. Rahmani, P. Liljeberg, A. Jantsch, and N. Dutt. Goal
formulation: Abstracting dynamic objectives for efficient on-chip resource allocation.
In 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and
International Symposium of System-on-Chip (SoC), pages 1–4. IEEE, 2018.

[199] E. Shamsa, A. Kanduri, A. M. Rahmani, P. Liljeberg, A. Jantsch, and N. Dutt. Goal-
driven autonomy for efficient on-chip resource management: Transforming objectives to
goals. In Proc. of Conf. on Design, Automation Test in Europe (DATE). IEEE, 2019.

[200] A. Sharifi, S. Srikantaiah, A. K. Mishra, M. Kandemir, and C. R. Das. Mete: Meeting
end-to-end qos in multicores through system-wide resource management. SIGMETRICS
Perform. Eval. Rev., 39(1):13–24, June 2011.

[201] Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard real-time
systems. In Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361),
pages 134–139, 1999.

[202] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard. Managing performance vs.
accuracy trade-offs with loop perforation. pages 124–134, 2011.

[203] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan.
Temperature-aware microarchitecture. In 30th Annual International Symposium on
Computer Architecture, 2003. Proceedings., pages 2–13, 2003.

[204] M. A. Skitsas, C. A. Nicopoulos, and M. K. Michael. Exploring system availability
during software-based self-testing of multi-core cpus. Journal of Electronic Testing,
34(1):67–81, Feb 2018.

[205] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and Design.
John Wiley & Sons, 2005.

[206] B. C. Smith. Reflection and Semantics in a Procedural Programming Language. Phd,
MIT, 1982.

[207] W. J. Song, S. Mukhopadhyay, and S. Yalamanchili. Managing performance-reliability
tradeoffs in multicore processors. In IEEE International Reliability Physics Symposium,
pages 3C.1.1–3C.1.7, 2015.

[208] V. Spiliopoulos, S. Kaxiras, and G. Keramidas. Green governors: A framework for
continuously adaptive dvfs. In Proceedings of the 2011 International Green Computing
Conference and Workshops, IGCC ’11, pages 1–8, Washington, DC, USA, 2011. IEEE
Computer Society.

149

[209] J. Srinivasan, S. Adve, P. Bose, and J.A.Rivers. The Case for Lifetime Reliability-Aware
Microprocessors. In Proc. Int. Symp. on Computer Architecture, pages 276–287, 2004.

[210] J. T. Starczewski. Defuzzification of Uncertain Fuzzy Sets. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[211] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu. The application slow-
down model: Quantifying and controlling the impact of inter-application interference at
shared caches and main memory. In Proceedings of the 48th International Symposium
on Microarchitecture, MICRO-48, pages 62–75, New York, NY, USA, 2015. ACM.

[212] X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali. Proactive control of approximate
programs. In Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’16, pages
607–621, New York, NY, USA, 2016. ACM.

[213] J. Sun, R. Lysecky, K. Shankar, A. Kodi, A. Louri, and J. Roveda. Workload Assignment
Considering NBTI Degradation in Multicore Systems. Journal Emerg. Technol. Comput.
Syst., 10(1):4:1–4:22, Jan. 2014.

[214] H. Sung, J. Min, S. Ha, and H. Eom. Ombm: Optimized memory bandwidth manage-
ment for ensuring qos and high server utilization. In Foundations and Applications of
Self* Systems (FAS* W), 2017 IEEE 2nd International Workshops on, pages 269–276.
IEEE, 2017.

[215] L. Tang, J. Mars, and M. L. Soffa. Compiling for niceness: Mitigating contention for
qos in warehouse scale computers. In Proceedings of the Tenth International Symposium
on Code Generation and Optimization, CGO ’12, pages 1–12, New York, NY, USA,
2012. ACM.

[216] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. The impact of memory
subsystem resource sharing on datacenter applications. In ACM SIGARCH Computer
Architecture News, volume 39, pages 283–294. ACM, 2011.

[217] J. Thistle. Supervisory control of discrete event systems. In Mathematical and Computer
Modelling, 1996.

[218] A. Tilli, A. Bartolini, M. Cacciari, and L. Benini. Guaranteed computational resprinting
via model-predictive control. ACM Trans. Embed. Comput. Syst., 2015.

[219] M. Torabzadehkashi, S. Rezaei, A. HeydariGorji, H. Bobarshad, V. Alves, and
N. Bagherzadeh. Computational storage: an efficient and scalable platform for big data
and hpc applications. Journal of Big Data, 6(1):100, 2019.

[220] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2sim: A simulation framework
for cpu-gpu computing. In Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, PACT ’12, page 335–344, New York, NY,
USA, 2012. Association for Computing Machinery.

150

[221] O. S. Unsal, R. Ashok, I. Koren, C. M. Krishna, and C. A. Moritz. Cool-cache
for hot multimedia. In Proceedings. 34th ACM/IEEE International Symposium on
Microarchitecture. MICRO-34, pages 274–283, 2001.

[222] O. S. Unsal and I. Koren. System-level power-aware design techniques in real-time
systems. Proceedings of the IEEE, pages 1055–1069, 2003.

[223] O. S. Unsal, I. Koren, C. M. Krishna, and C. A. Moritz. The minimax cache: an
energy-efficient framework for media processors. In Proceedings Eighth International
Symposium on High Performance Computer Architecture, pages 131–140, 2002.

[224] A. Vassighi and M. Sachdev. Thermal runaway in integrated circuits. IEEE Transactions
on Device and Materials Reliability, 2006.

[225] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In CVPR, Dec 2001.

[226] T. Wang, Q. Zhang, and Q. Xu. Approxqa: a unified quality assurance framework for
approximate computing. In Proceedings of the Conference on Design, Automation &
Test in Europe, pages 254–257. European Design and Automation Association, 2017.

[227] Y. Wang, K. Ma, and X. Wang. Temperature-constrained Power Control for Chip
Multiprocessors with Online Model Estimation. In ISCA, 2009.

[228] C. Weis, A. Mutaal, O. Naji, M. Jung, A. Hansson, and N. Wehn. Dramspec: A
high-level dram timing, power and area exploration tool. Int. J. Parallel Program.,
45(6):1566–1591, Dec. 2017.

[229] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker. Scalable thread scheduling
and global power management for heterogeneous many-core architectures. In 2010
19th International Conference on Parallel Architectures and Compilation Techniques
(PACT), 2010.

[230] M. Wolf, S. Bhattacharyya, J. Florence, and A. E. Sapio. Power and thermal modeling
for communication systems. In SiPS, 2016.

[231] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2 programs:
Characterization and methodological considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, ISCA ’95, page 24–36, New York,
NY, USA, 1995. Association for Computing Machinery.

[232] Q. Wu and et al. Formal control techniques for power-performance management. IEEE
Micro, 2005.

[233] Y. Xiang and S. Pasricha. Soft and hard reliability-aware scheduling for multicore em-
bedded systems with energy harvesting. IEEE Transactions on Multi-Scale Computing
Systems, 1(4):220–235, Oct 2015.

151

[234] C. Xu, X. Wu, W. Yin, Q. Xu, N. Jing, X. Liang, and L. Jiang. On quality trade-off
control for approximate computing using iterative training. In Proceedings of the 54th
Annual Design Automation Conference 2017, DAC ’17, pages 52:1–52:6, New York, NY,
USA, 2017. ACM.

[235] C. Xu, X. Wu, W. Yin, Q. Xu, N. Jing, X. Liang, and L. Jiang. On quality trade-off
control for approximate computing using iterative training. In Proceedings of the 54th
Annual Design Automation Conference 2017, DAC ’17, pages 52:1–52:6, New York, NY,
USA, 2017. ACM.

[236] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux: Precise online qos management
for increased utilization in warehouse scale computers. In ISCA.

[237] Z. Yang, L. Li, and B. Liu. Auto-tuning method of fuzzy pid controller parameter
based on self-learning system. In 2014 11th International Conference on Fuzzy Systems
and Knowledge Discovery (FSKD), 2014.

[238] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. In
Proceedings of IEEE 36th Annual Foundations of Computer Science, pages 374–382,
1995.

[239] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: A dynamic cache partitioning system
using page coloring. In Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation, PACT ’14, pages 381–392, New York, NY, USA, 2014.
ACM.

[240] S. Yi, I. Yoon, C. Oh, and Y. Yi. Real-time integrated face detection and recognition
on embedded GPGPUs. In ESTIMedia, 2014.

[241] K. Yu. big.LITTLE Switchers. In 2012 Korea Linux Forum, 2012.

[242] H. Zhang and et al. Maximizing Performance Under a Power Cap: A Comparison of
Hardware, Software, and Hybrid Techniques. In ASPLOS, 2016.

[243] T. Zhang, J. L. Abellán, A. Joshi, and A. K. Coskun. Thermal management of manycore
systems with silicon-photonic networks. In 2014 Design, Automation Test in Europe
Conference Exhibition (DATE), 2014.

[244] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page coloring-based multicore
cache management. In Proceedings of the 4th ACM European conference on Computer
systems, pages 89–102. ACM, 2009.

[245] Y. Zhang, J. Yao, and H. Guan. Intelligent cloud resource management with deep
reinforcement learning. IEEE Cloud Computing, 2017.

[246] Y. Zhou, H. Hoffmann, and D. Wentzlaff. Cash: Supporting iaas customers with a
sub-core configurable architecture. In Proceedings of the 43rd International Symposium
on Computer Architecture, ISCA ’16, pages 682–694, Piscataway, NJ, USA, 2016. IEEE
Press.

152

[247] H. J. Zimmerman. Fuzzy Set Theory–and Its Applications. Kluwer Academic Press,
Boston, MA, USA, 1991.

153

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Challenges
	Key properties in dynamic resource management
	Thesis Statement and Organizations

	Background and Related work
	Resources
	Metrics
	Objectives and constraints
	Observing and Predicting
	Dynamic power management
	Hardware methods
	Software methods

	Run-time energy efficient managers
	Dynamic thermal-aware management methods

	Runtime Resource Management
	Heuristics and Optimization Methods
	Power and Energy
	Temperature
	QoS
	Reliability

	Machine Learning Approaches
	Offline learning methods
	Online learning methods

	Control Theory Techniques
	Single-Input Single-Output controllers
	GSC
	MIMO
	Fuzzy
	SCT

	Discussion

	Self-Awareness experimental platforms and frameworks
	Cyber-physical Systems-on-Chip
	Reflective System Models
	Middleware for Reflective Decision-making

	Simulation frameworks
	MARS
	Interfaces and Policy Design
	Reflective System Model
	Policy Manager
	HAMEX
	Sniper feedback loop

	Hardware platforms
	ODROID
	NVIDIA JetsonTX2

	Adaptive runtime resource management case studies
	Single-Input Single-Output Controllers
	Benchmark Categorization
	Evaluation
	System Identification
	Performance Analysis
	Discussion

	Gain scheduled controller
	Generating Linear Controllers
	Implementing Gain Scheduling
	Experiments
	Controller Design Evaluation
	Controller Implementation Evaluation

	HESSLE-FREE a Fuzzy Controller for Heterogeneous Systems
	Experimental Setup
	Evaluation Results

	SPECTR: On-chip Resource Management
	Hierarchical System Architecture
	Experimental Case Study
	Supervisor Synthesis Process
	Experimental Evaluation
	Comparison of Resource Managers
	Scalability Evaluation
	Overhead Evaluation

	Conclusions and Future Directions
	Directions for Future Work
	Immediate extensions of this dissertation
	Novel work that could build on top of this thesis

	Bibliography

