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Abstract: Humans respond cognitively and emotionally to the built environment. The modern
possibility of recording the neural activity of subjects during exposure to environmental situations,
using neuroscientific techniques and virtual reality, provides a promising framework for future design
and studies of the built environment. The discipline derived is termed “neuroarchitecture”. Given
neuroarchitecture’s transdisciplinary nature, it progresses needs to be reviewed in a contextualised
way, together with its precursor approaches. The present article presents a scoping review, which
maps out the broad areas on which the new discipline is based. The limitations, controversies,
benefits, impact on the professional sectors involved, and potential of neuroarchitecture and its
precursors’ approaches are critically addressed.

Keywords: neuroarchitecture; emotional design; neuroscience; architecture; built environment;
review

1. Introduction

Architecture has various effects on people. Studies have been undertaken into archi-
tectural aspects most open to objectification such as those related to structure, construction,
and installations of buildings. There exists a broad background with standards and norms,
that supports these aspects [1]. However, these are not the only factors involved. The envi-
ronment also has effects on humans at the cognitive level (understood as the processing and
appraisal of perceived information) and the emotional level (understood as the adaptive
reactions to the perceived information), which both operate through closely interrelated
systems [2]. For example, it has been found that noise and a lack of vegetation can generate
stress [3,4], and stress associated with the built environment can even negatively affect life
expectancy [5]. Studies on specific spaces have shown a variety of cognitive-emotional
impacts, such as poorer patient recoveries in hospital rooms that lack relaxing external
views of greenery [6]. Thus, the architecture has cognitive-emotional repercussions.

“Designerly ways of knowing” (distinct from the best-known scientific forms of
knowledge [7]) has been, traditionally, the main way to address the cognitive-emotional
dimension of architecture [8]. Through this way, which offers a great economy of means,
architects have explored and exploited some of the perceptual foundations of the experience
of space. However, it is particularly linked to subjective issues in decision-making [9],
whose use may result in biases [10]. This can lead to inadequate results in responding to
the users’ cognitive-emotional needs. Although many approaches have addressed this
dimension of architecture, they have not overcome some of these intrinsic limitations and,
in part, because of this, have not been adopted as practical design tools.
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Neuroscience studies the nervous system from different areas, some of which are
promising in this respect [11,12]. At a general level, the application of neuroscience to
architecture is often termed “neuroarchitecture” [13]. Although bidirectional human-space
influence, and its impact on neural activity [14], is not new, the modern recording of
experimental subjects’ neural activity during exposure to physical and simulated envi-
ronmental situations provides a framework for future design and studies. For example,
neuroarchitecture has allowed researchers to study some design variables in-depth, which
reduce the stress, previously mentioned, in hospital spaces [15]. Accordingly, the cognitive-
emotional effects of architecture have been addressed through different approaches and,
more recently, through neuroscience. This novel, complex transdisciplinary nature of
neuroarchitecture make it important to review its progress. However, although reviews
have been undertaken of the application of neuroscience to other arts, such as dance [16] to
aesthetics [17] and to architectural aesthetics [18], and more recently to compile findings
on the effects of architecture, as measured by neurophysiological recordings [19–22], the
authors’ found no previous study that reviews the application of neuroscience to architec-
ture (sometimes referred to as “built space”) to study its cognitive-emotional dimension
in a holistic and contextualised way (for which it is necessary to incorporate its precursor
approaches, in a complementary way for the vision of some authors in this respect [23]).
The objective of this article is to present a scoping review of neuroarchitecture and its
precursor approaches. This type of literature review is aimed at mapping the broad areas
in which a discipline is based.

In this sense, it is worth highlighting the shared ground between architecture, art, and
aesthetics, which means that the results of the latter two may be, in some way, transferable
to the former (for example, much of what has been studied on colour or geometry). Tackling
this type of review requires a broad and interrelated perspective, which is characteristic of
scoping reviews [24]. This is especially useful in the case of disciplines that are complex [25]
and have not previously been reviewed at this level, like neuroarchitecture.

To address this broad objective, the following sub-objectives were set: (a) to provide a
global vision of related scientific production, showing the trends of the different approaches
in terms of type and date of publication, (b) to expose the need to investigate the impact of
architecture on people, (c) to synthesise the main precursor approaches of neuroarchitecture
to study the cognitive-emotional dimension of architecture, (d) to overview the progress of
tools and methods in neuroscience and virtual reality, on which the new discipline is based,
(e) define the state of-the-art application of neuroscience to the field of art and aesthetics,
due to its similarity with architecture, and (f) to describe the main context, lines of research,
and specific results of the application of neuroscience to architecture. In addition, the
current status of the discipline is discussed. Therefore, a literature review was conducted.

2. Materials and Methods

Literature reviews examine articles to provide further knowledge about topics [26,27].
There are various types. The present work was tackled by means of a scoping review [28].
This strategy aligns with alternatives to present a broad perspective on complex issues
involving heterogeneous sources [29]. In addition, this leads to highly explanatory arti-
cles [30] that update professionals from different fields [31]. These updates of the state-
of-the-art applications are essential to support the development of the neuroarchitecture
discipline. Overall, preventative measures were taken to avoid biases, using a rigorous
and transparent protocol [32]. Denyer and Tranfield’s proposals [33] were used to struc-
ture the methodology: (1) formulation of objectives, (2) locating studies, (3) selection of
studies, (4) analysis and synthesis, and (5) the presentation of the results. All the phases
are detailed (Figure 1). The objectives of the study are described in the “Introduction” sec-
tion. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines [34] for systematic reviews were followed for the location and selection of
the studies.
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Figure 1. Expository and methodological structure, the PRISMA flow diagram, and its methods. Figure 1. Expository and methodological structure, the PRISMA flow diagram, and its methods.
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The studies were located through searches of various sources. First, the studies were
found in publishers’ electronic databases (Avery index to architectural periodicals, Cog-
prints, Elsevier, Emerald, IEEE, NDLTD, PsycINFO, PubMed/Medline, Springer, Taylor &
Francis, Urbadoc, and Wiley) and repositories (Dialnet, SciELO, Google Scholar). Second,
other reference lists exist, but they contain only redundant information, including content
already provided by the first lists searched: Academy of Neuroscience for Architecture
(https://www.anfarch.org/research/recommended-reading), Neuroscience+Architecture
(http://dilab.uos.ac.kr/neuroarch/), and International Network for Neuroaesthetics
(https://neuroaesthetics.net/books, and https://neuroaesthetics.net/papers). To keep
the data updated, all searches were carried out four times between 28 February 2012 and
19 July 2019 (see “location of studies” in Figure 1). The same search terms and criteria
were used throughout. It is worth highlighting some aspects. Regarding terminology, due
to architecture’s artistic and aesthetic impacts, the following concepts were considered:
(architecture * OR spa * OR urban * OR “town planning”) AND (neuroscien * OR percept *
OR emoti * OR cogniti * OR affect *) OR neuro?architectur *; where “*” denotes truncation
and “?” any character. Three criteria were stablished: language, publication category, and
study type. The language criterion was that the search was to be conducted in English,
Spanish, German, and Italian. This involved repeating the process with translations of the
various terms. The publication-type criterion was three-fold. The most useful sources for
literature reviews are usually peer-reviewed journals and conference papers [35]. Reference
books were added to help address sub-objectives a, b, and c. It should be noted that, within
these types of publications, no discard criteria were considered for indications of publisher
quality. Thus, the suitability of references for this review was assessed independently
throughout the selection process detailed below. The third criterion was that the studies
had to be human-based. Given that much neuroscientific research is animal-based, this
represented a significant restriction. It should be noted that, due to the temporal diversity
of the approaches involved in sub-objective c, filtering by date of publication was not
applied. The bibliographic references of the works retrieved were also reviewed. Therefore,
these references were not localised using the above terms and language criteria. The satu-
ration point was assumed to have been reached when most of the references were found to
be redundant.

The selection process followed the bibliographic search. This consisted of four sequen-
tial actions: (1) elimination of duplicates, using Excel (http://www.microsoft.com/excel)
and Mendeley (http://www.mendeley.com) software, (2) screening to evaluate relevance
of the titles, and to make the final decision on inclusion, (3) abstract evaluation, and
(4) full-text evaluation. Regarding the latter action, it should be noted that the criterion
of “not appropriate for the review’s objective” refers to information that is irrelevant or
was not considered to be of quality judging by its overall content (discarding, among other
references, a number of bachelor’s or master’s degree final projects), but was not adequately
filtered at the abstract stage. The criterion of “not original data” refers to information that
is redundant, or for which more representative information has been found in another
article by the same authors (Figure 1). All the actions were centralised, to avoid mismatches
in such a comprehensive reference base. The sequence made it possible to eliminate the
references that did not strictly contribute to achieving the review’s objectives.

Subsequently, the information selected was analysed and synthesised. Several meth-
ods are available [36]. The content analysis synthesis framework was selected due to its
ability to interpret content [37] and adapt to the heterogeneous nature of reviews [38]. Two
approaches were followed. The first is to categorise and group the information we under-
took as a “conventional content analysis”. The second is to recalculate and compare the
information we undertook as a “summative content analysis”. The conventional content
analysis was undertaken following Reference [39], which identified relevant categories.
The summative content analysis was structured in two phases. The first is through com-
piling the neurophysiological and design aspects, and the second is by grouping these
aspects. This latter analysis resulted in summary tables. Collecting the effects of different

https://www.anfarch.org/research/recommended-reading
http://dilab.uos.ac.kr/neuroarch/
https://neuroaesthetics.net/books
https://neuroaesthetics.net/papers
http://www.microsoft.com/excel
http://www.mendeley.com
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design variables can be useful for different objectives within the design and study of the
cognitive-emotional dimension of the architecture. For example, in decision-making prior
to experimental development (to consider variables that may influence the human response,
and, among other actions, to choose the appropriate sample), to guide the analysis (to
bring forward brain areas on which to focus data processing, among other actions), and
even directly in design (given that some of these questions can be understood as design
guidelines). A qualitative analysis software, Atlas.ti (https://atlasti.com), was used due to
the support it offers to reviews [40]. Three researchers, who are specialists in architecture,
behavioural sciences, and neuroscience, independently carried out analyses. The varied
profiles of the researchers helped address the heterogeneous nature of the references and
reduce the effect of possible professional deformation. The analyses were shared and
discussed until consensus was reached. This gives greater reliability to the findings [41,42].
The content obtained from the analyses, which was focused on meeting the sub-objectives,
was organised into appropriate sections.

3. Results

This section synthesises the proposed sub-objectives.

3.1. Classification of References and Their Descriptive Analysis

The process identified 612 references that fulfilled the search criteria. A total of 327,058
were originally identified, with 289,146 from electronic databases, 37,635 from repositories,
and 278 from reference lists (Table 1).

Table 1. Number of references identified in each source.

Source Type Source Number of References

Database
(N = 289.145)

Springer 259,121

NDLTD 10,962

PubMed 5609

Elsevier 3438

Taylor & Francis 3209

IEEE 2416

Avery 1949

Wiley 1523

Emerald 453

Reference Lists 278

PsvcINFO 178

Cogprints 9

Repositories
(N = 37.635)

Google Scholar 36,249

Dialnet 711

ScieLo 675

Reference lists
(N = 278)

Academy of Neuroscience for
Architecture 69

Neuroscience + Architecture 41

International Network for
Neuroaesthetics 168

Total 327,058

https://atlasti.com
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Of the 205,462 references remaining after duplicates were removed, only 520 were
included after a full-text search. In addition, 92 references were added by following a
review of the reference bibliography. Of the 612 references, 130 are books, 31 are book
chapters, 380 are journal papers, 55 are conference papers, 6 are posters, and 10 are of other
natures. Figure 2 presents the proportions chronologically.
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In terms of focus, 141 references of the 612 references explicitly examine the application
of neuroscience to architecture. The remaining 471 focus on the precursor approaches to
the cognitive-emotional study of architectural space. Two aspects are remarkable about the
neuroscience in architecture approach references. First, more references might have been
expected, but this can be explained by the relatively recent emergence of the topic. Most
were published after 2000 and the trend seems to indicate an increase in the next few years.
The second aspect focused on the high volume of recently published books. Regarding
the publication dates, only first editions were considered. In addition to references that
explicitly address the issue, the others were considered relevant because they mentioned,
or addressed topics related to, the review’s sub-objectives.

The information in the references was categorised following the previously mentioned
methodology. Each reference was able to satisfy more than one category. The categories
and sub-categories are shown in Table 2. This organisation serves as a structure for the rest
of the results section (sub-objectives b to f). In this sense, Figure 3 provides a map of the
general contents of this article.

Figure 4 provides temporal information about the sub-category references relating to
approaches of the cognitive-emotional dimension of architecture. The following should be
noted: (1) the different approaches that have addressed the human-space relationship have
enjoyed moments of greater popularity, and (2) neuroscience was applied to architecture
later than to art and aesthetics. Both aspects suggest that including all the sub-categories
helps address the issues that motivate this review.
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Table 2. Categories and sub-categories linked to the references.

Category Sub-Category

1. The impact of architecture on human beings
and directly associated research

2. Base approaches to the cognitive-emotional
dimension of architecture

2a Geometry

2b1 Space phenomenology

2b2 Geographical experience

2c1 Philosophy

2c2 Environmental psychology

2c3 Evidence-based design

3. New architectural study and practise tools

3a Neuroscience

3b Virtual reality

3c Combined neuroscientific and virtual reality
technologies

4. The cognitive-emotional dimension of
architecture through neuro-aesthetics

4a Neuroscience and psychology in art and
aesthetics

5. Neuroscience in architecture
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3.2. Holistic Framework of the Issue

This issue comprises various topics. Addressing it requires a holistic approach.
The expository sequence follows the structure shown in Table 2.

3.2.1. The Impact of Architecture on Human Beings and Directly Associated Research

The influence of architecture on human beings that acts of spatial planning have led
to the current built space [43], which is our largest artifact [44,45]. Beyond its utilitarian
character, architecture has complementary cognitive-emotional impacts [46]. Architecture
can both elicit brain activation and modulate genetic function [47]. Consequently, changes
in the environment have important impacts [48]. Its physiological and social effects should
be emphasised. At the physiological level, the consequences for human development, per-
formance, and stress are illustrative. Regarding development, a balanced environment can
improve creativity [49] and cognitive function [50]. In fact, poor environmental stimulation
affects brain development [51]. Environmental effects are not limited to growth stages.
The environmental stimulation provoked by classroom design can improve students’ per-
formance by using cold colours [52] or smaller spaces. As to stress, some environmental
elements such as noise or the absence of vegetation have been shown to have negative
consequences [3,53]. Among these impacts are poorer patient recovery [54] and shorter life
expectancy [5]. On the other hand, in line with the concept of a “healing environment” [55],
various studies have underlined the curative benefits of architecture [56]. At the social level,
it has been found that, for example, the environment can promote collectivism [57], attract
candidates for posts in organisations [58], and improve citizens’ sense of belonging [59]
and behaviour [60]. It should be noted that the impact of environmental effects depends
on the user’s sensitivity [61], and non-architectural elements may also have effects [62].

Architects have been aware of this impact [63] and that, when designing architecture,
experience is designed [64]. As Aalto noted, humanising architecture involves “a func-
tionalism much larger than the merely technical” [65]. “When I enter a space, the space
enters me and transforms me” [66]. These statements make it clear that addressing the
cognitive-emotional state of the users is a transcendental function of architecture [67,68].
Despite this, the aspects most likely to be objectified have been extensively studied, and
the cognitive-emotional dimension has been underexplored [69,70].
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The fundamental limitation of this research is that the architectural design process is
very complex [71] because the myriad of design solutions (the possible configurations of
all design variables) makes it impossible to test them all. In addition, the problems that the
design solutions try to resolve are diverse and vary over time (e.g., the individuals’ needs
from their houses can vary as they age). Although there has been extensive research into
the built environment, which indicates that a certain level of analysis is possible, archi-
tectural design is infrequently, scientifically approached. Hence, the cognitive-emotional
dimension of architecture has formed only a small part of the formative content [72], and
the implementation of the design has been mostly based on an amalgam of practices and
motivations specific to the architectural project that are part of the ”designerly ways of
knowing” [7].

With this as the main way of approaching the cognitive-emotional dimension of
architecture, more of the objectives of architectural design have shifted to more tangible
and easily quantifiable issues, such as those closely related to the constructive processes of
buildings. This has been pointed out from different perspectives: “Architecture and the
modern cities that have been built tend to be inhumane” [73]. Have we turned our space
into an economic-cosmetic product that ignores our primitive codes [74]? The importance
of the built environment cannot be underestimated. “Any future construction must be
preceded by a profound study of the relationships between spaces and feelings” [75].
In this sense, new tools that show the future of neuroarchitecture have been incorporated
into the traditional architectural spectrum [76].

3.2.2. Base Approaches to the Cognitive-Emotional Dimension of Architecture

Architectural space has been the focus of thinking and research at the cognitive-
emotional level. The concept has been addressed at different times. Therefore, knowledge
of these bases allows us to contextualise current developments in the application of neuro-
science to architecture and to understand the context of current practice [23]. This section
exposes the base approaches organized as follows: (1) geometry, (2) phenomenology of
space and geographical experience, and (3) philosophy, environmental psychology, and
evidence-based design. This classification acknowledges the relationships between the
base approaches.

Geometric Approach

Although users might not experience the exact dimensions of proportions, they will
feel the underlying harmony [77]. Architects have worked with geometric proportions to
address the cognitive-emotional dimension of architecture. Thus, the geometric approach is
a valid starting point from which to understand how architects work and establish bridges
that can lead to the development of design tools [71].

The geometric connection between the human body and architecture has histori-
cally been addressed by two fundamental approaches, known as theomorphism and
anthropomorphism. Theomorphism has existed from classical Greek architecture [78].
A well-known example is the Parthenon, fundamentally based on geometric proportions.
The cognitive-emotional effect of the Parthenon’s geometric proportions is similar to that
sought centuries later by architects, such as Palladio [79] and Le Corbusier [80], through
a series of geometric-mathematical rules. Anthropomorphism has a long tradition. Ex-
amples are found in the classical Roman world, such as temples based on the symmetry
of the human body [81], and, more recently, in the Renaissance and the Baroque periods,
where human bodies appeared in some buildings [82]. However, this architecture-body
metaphor has been subjected to different efforts to mathematise it, which shows that these
two approaches are not mutually exclusive. For example, Alberti’s attempts to humanise
space based on the geometry of the human body [83,84]. This line was exploited with
Rationalism, as opposed to speaking architecture [85], which led to works by Klint [86],
Bataille’s anthropomorphic architecture [87], the organic architecture of Zevi [88], the close
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association with daily human needs of Smithson [89], and Niemeyer’s [90] and Mollino’s
designs directed toward life actions [91].

Many of these geometric concepts are recurring. On the one hand, geometrical rela-
tionships found to be aesthetic, such as the nine-square pattern [92], or the golden section,
have been validated experimentally [93], with the latter even using virtual reality [94] and
neuroscientific bases [95]. On the other hand, the new attempts to quantify geometric
properties to capture the cognitive-emotional dimension of architecture are worthy of
mention. Among these are isovist analysis, the volume of space visible from a given point
in space [96], and the application of artificial intelligence to distinguish formal categories,
based on different features [97]. The recent mathematical-geometric analysis of architec-
tural images is also noteworthy [98–100], through its use in architectural spaces of spatial
metrics, such as edge density (number of straight and curved edges), fractal dimension
(visual complexity), entropy (randomness), and colour metrics, such as hue (the dominant
wavelength), saturation (the intensity of colour), and brightness (the darkness of colour).
Hence, the geometric approach has not been abandoned.

The Phenomenology of Space and Geographical Experience Approach

Phenomenology is the study and description of phenomena as experienced through
the senses in the first person. It is based on phenomena capable of being felt [101]. Archi-
tects have found affinities with this approach, likely because it is related to intuition.

One of the first studies into subjective space was Husserl’s exposition of his ideas
about the external world [102]. Heidegger continued with these influences in “Being and
Time” [103], addressing the spatiality of humans and the concept of “Stimmung” (or state
of mind), which is fundamental for understanding subjective space: “being impregnated by
an environment”. Some of the first explicit formulations were made by References [104,105],
focusing on vital space. Some of the advances were compiled in “Situation” [106]. Later,
the concepts of hodological space and distance including the way in which people evaluate
the routes with the preference being based on subjective and objective influences, were
introduced by Lewin [107], and developed by Sartre [108]. Bachelard [109] developed his
space poetics, a concept widely embraced in the theory of architecture, that seeks to explain
the human being’s relationship with the world through poetic images. Rasmussen [110]
presented a phenomenological vision of architecture, which exemplified the syncretism
between phenomenology and architecture. Bollnow [111] presented concepts involved
in subjective space: “[...] Unlike mathematical space, subjective space is characterised by
its lack of homogeneity”. This is because subjective space derives from the human’s rela-
tionship with space. This has led, even, to suggestions that objective space does not exist
because it is always perceived [112]. These concepts (objective space and subjective space)
have been embraced by many authors in different approaches to the cognitive-emotional
dimension of architecture. At the same time, the concepts have been developed in geo-
graphical experience [113], and have practical applications in urban planning [114]. Lynch
work [115], which shows the influence of environmental psychology on the phenomenol-
ogy of space, is representative of its beginnings [116]. More recently, Pallasmaa, influenced
by previous authors, examined the phenomenology of space in architecture [117,118] that
claimed architecture takes account of the human biological dimension. Pallasmaa’s line
here is shared with Holl and Pérez-Gómez [119,120]. The phenomenology of space has
more recently gained momentum under new approaches based on the concept of atmo-
spheres [121,122]: quasi-things, without discrete or visible limits, that exist because of our
emotional encounter with the environment [123,124]. Thus, the phenomenology of space
and geographical experience have not been neglected.

The Philosophy, Environmental Psychology, and Evidence-Based Design Approach

Psychology addresses the behaviours and mental processes involved in its experi-
ence [125]. Its focus on space is “environmental psychology” [126,127]. Environmental
psychology takes phenomenology as one of its substrates [128]. Hence, it is sometimes diffi-
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cult to distinguish them nor is it easy to discern the philosophical origins of environmental
psychology [129].

It is illustrative to consider philosophical milestones. Burke [130] presented an in-
fluential philosophical exposition on aesthetics, theorising about beauty through psy-
chophysiological concepts. Burke’s ideas attracted the attention of Kant, who identified
space and time as the mental structure of things that we know [131]. A series of works
contributed to the expansion of psychology. Among these are Zeising, who combined
geometry and psychology [132], art, physiology, and emotion linked by Friedrich Theodor
Vischer [133] and Robert Vischer [134] (who coined the term “einfühlung”: aesthetic empa-
thy, the process through which humans project their emotions onto objects), Fechner, who
combined physiology and psychology [135], Wundt [136] and Stumpf [137], who combined
psychophysiology and philosophy. Later, Wertheimer, Koffka, and Köhler (students of
Stumpf) established gestalt psychology [138]. Gestalt psychology established principles, or
laws, [139] about the organisation of scenes (Table 3). Many design professionals, including
architects, have often embraced these principles. It is noteworthy that Koffka [140] studied
the organisation of the visual field, and Köhler developed the concept of “isomorphism”
including the correlation between experience and neural activity [141] and experience
as a sensory sum [142]. At this historic point, the connections between psychology and
neuroscience were evident. Although subsequent studies may have rejected some of these
findings, some have been accepted and the works themselves have been recognised as
meritorious [143].

Table 3. Compilation of some gestalt principles.

Principle Trend

Totality The whole is different from the sum (the perception of entities depends on their context)

Dialectic Establishing entities separate from their background

Contrast The entity is better perceived if there is marked contrast with its background

Hierarchy The greater the importance of an entity, the more hierarchical its parts are

Birkhoff Entities with multiple axes are more positively perceived

Symmetry To perceive features as symmetrical, around a centre point

Multi-stability Perceiving different entities from the same ambiguous experience

Reification To assign more information to a perception than is contained in the base stimuli

Completion To perceive forms as closed when they are not

Closure To perceive closed forms as better

Continuity To integrate elements of entities if they are aligned

Good Gestalt To integrate elements of entities if they form a regular pattern

Invariance To recognise entities, regardless of transformations

Proximity Group entities based on their proximity

Similarity Group entities based on their similarities

Experience To categorise stimuli based on previous experiences

One of the advantages of environmental psychology for addressing the cognitive-
emotional dimension of architecture is its evaluation instruments. Semantic differential is
among the most used [144]. This is based on the idea that a concept can acquire meaning
when a sign (word) provokes the response associated with what it represents, which sug-
gests the existence of an underlying structure. The models of Küller [145–147] and Russell
& Mehrabian [148], which described the affective-emotional states elicited by the experi-
ence of space, should be highlighted. One of its first applications was in architecture [149].
More recently, it has been used to quantify the relative importance of different design
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variables [150]. In this respect, it should be noted that some variables, such as the presence
of vegetation and illumination, have been examined, but others, such as those focused on
spatial geometry, have been less explored (probably, in part, because of the experimental
difficulty involved in modifying them in a controlled manner). Semantic differential has
also been used in the context of Kansei engineering, which is a product development
method that translates the underlying structure into configurations of variables [151].
It has been applied in different contexts, including the architectural [152–154] and urban
planning [153,155].

A more practical application of the tools available in environmental psychology is an
evidence-based design (EBD) approach: “the process of basing decisions about the built
environment on credible research” [156]. Its origins can be found in the medical field, as an
extension of evidence-based medicine [157] to architectural design [158]. Illustrative are
the plan analyses [159] and post-occupancy evaluations [160]. Since Ulrich demonstrated
the influence of the environment on patient recovery [6], it has been widely applied in
healthcare spaces [161–166]. One of the reasons that EBD is so widely used is that it is
available for any organisation [167]. Various aspects have been studied. For example,
some aspects include reducing pain [168] and stress [169], improving rest [170], spatial
orientation [171], wandering [172], privacy and security [173], social cohesion [174], overall
well-being and satisfaction [175], and the design of children-tailored environments [176].
Table 4 compiles effects generated by different design variables, according to different
studies both in environmental psychology and EBD.

Table 4. Effects generated by variables or aspects of architectural design frequently studied in the environmental psychology
and EBD approach.

Design Variable Effect

Ceiling height

High ceilings inspire freedom, low ceilings calm [177].

High ceilings generate greater creativity and feelings of comfort [178].

Ceiling height positively affects wayfinding [179]

Presence of
vegetation

Vegetation reduces stress and anxiety [4].

In parks, pleasure increases based on tree density, and arousal with weed density [180].

Biophilia hypothesis: preference for natural forms [181,182].

Attention restoration theory: natural environments are restorative. Their restorative characteristics are
“fascination,” “being away,” “coherence,” and “compatibility” [183].

Complexity
Preference for moderate levels of complexity, similar to a savannah environment [184].

Prospect-refuge: preference for natural and built environments, which offer visual control of the
environment and places to hide [185–187].

Illumination

Colour temperature and illuminance are interrelated with comfort [188].

Natural light reduces hospital stays [189].

Light and form are interrelated: walls and ceilings influence the perception of brightness. A room appears
larger when it receives more indirect light [190].

Mood valence and cognitive performance alter based on light parameters: colour temperature with a less
negative effect on mood, improved cognitive performance, the combination of colour temperature, and
illuminance with better evaluation in mood, improved cognitive performance [191].

Emotional states affect the perception of brightness [192].

Colour

Extracted at an early stage of visual processing [193]

Wide variety of effects on aesthetic preferences [194].

Hue and saturation are related to the emotional state [195].

Warm tones have higher arousal values, and colder tones are lower [196].

Use The use to which a space is put influences its psychological evaluation [197].

Coherence In natural settings, the coherence of a setting with wooden furniture is significantly greater than a setting
with metal furniture, but significantly less than a setting without furniture [198].
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3.2.3. New Tools in Architectural Research and Practice

The base approaches, in general, have two limitations: (1) the validity of the selected
stimuli, and (2) the applicability of the evaluations. Regarding the stimuli, although repre-
sentations may be valid [199], they are limited. For example, photos and videos, frequently
used, offer little interactivity. This reduces virtual immersion [200] and impoverishes
the experience. When environmental simulation differs from reality, the results can be
distorted. Moreover, these stimuli do not allow environmental parameters to be controlled.
Regarding evaluations, self-reports are prone to bias [201], as they record only the conscious
aspects of human responses. This is important, given that most cognitive and emotional
processes occur at the unconscious level [202]. Taking these points into account, the results
must be contextualised.

Regarding new approaches to the cognitive-emotional dimension of architecture, we
try to overcome these limitations. New research tools provide: (1) artificial stimuli that are
more similar to physical, real stimuli (in the represented spaces), and (2) new, more objective
evaluations of cognitive-emotional responses. Virtual reality (VR) is frequently used to
provide stimuli. VR simulates environments in a realistic, immersive, and interactive
way [203] under controlled laboratory conditions [204]. As for evaluation, neuroscience
and its related technologies allow researchers to record and interpret human behavioural,
physiological, and neurological reactions [205], providing high levels of objectivity [206]
and continuous monitoring [207,208]. Although neuroscientific techniques have been
available for decades, their application is currently expanding.

Neuroscience

Neuroscience focuses on the brain and nervous system [209]. On the basis that normal
human brains are very similar, neuroscience has provided insights into the functioning
of the nervous system [210,211]. Resorting to the brain is starting from the root [212].
Neuroscience has different areas of expertise [213]. This has allowed its results, methodolo-
gies, and tools to also have an implication on issues directly related to other disciplines.
For example, cognitive neuroscience, behavioural neuroscience, neurophysiological neuro-
science, and sensory neuroscience shed light on perception in general [214] and on space in
particular [215]. Given neuroscience’s applicability to architecture [216], the discipline can
contribute to quantifying architecture’s impact on humans [217,218]. Thus, designs that
contribute to their users’ quality of life can be produced [219,220].

However, human nervous system studies have had few avenues to explore human
brain function. They have generally been limited to examining patients with neural
injuries or suffering from neurodegenerative diseases [221]. Studies into the effects of
neuronal injuries on art production have followed this approach [222]. For example, it has
been found that frontotemporal dementia changes musical taste [223], that damage to the
amygdala impairs the identification of sad music [224], and that damage to one hemisphere
causes spatial neglect on the opposite side in drawings [225–227]. Paradoxically, neuronal
injuries can sometimes improve artistic skills [228–230]. Due to the paucity of this form of
study, they have sometimes been considered “informative anecdotes” [17]. The clearest
conclusions have only been able to be drawn after the joint analysis of cases [231].

Neuroimaging techniques open new paths. Based on the non-invasive recording of
brain responses [232,233], they allow observation of the responses of healthy individuals
under controlled conditions. From their first applications to art, studies have made sub-
stantial progress [234,235]. These techniques are essential in the exploration of the neural
processes involved in art generation and appreciation. Various tools are used to obtain
the recordings [236] from the central (CNS), the autonomic (ANS), and the somatic (SNS)
nervous systems.

The CNS is made up of the brain and the spinal cord. The tools most commonly used to
study CNS functions in living humans are functional magnetic resonance imaging (fMRI),
electroencephalography (EEG), and magnetoencephalography (MEG). fMRI measures
neuronal activity indirectly by detecting changes in magnetic properties related to blood



Sensors 2021, 21, 2193 14 of 49

flow [237]. Although its temporal resolution is poor, fMRI yields better spatial resolution
and deep structure identification than other methods. fMRI has been used to study aspects
such as memory [238]. EEG measures electric field fluctuations due to the ionic currents
generated by neuronal activity in the brain, mainly the cortical areas because they are the
most superficial [239]. The analysis of the recordings generally involves the classification of
power spectral densities within defined frequency bands, on the basis that the brain is made
up of different networks that operate at its frequency, and the relationships between these
networks [240]. The high temporal resolution of EEG allows the analysis of stereotyped
fluctuations generated by discrete stimuli [241]. EEG has been used to study, for example,
mental workload [242]. In contrast, MEG measures the magnetic fields generated by the
ionic current [243]. Although its infrastructure has drawbacks (MEG equipment is not
wearable or portable), the skull and scalp distort the magnetic fields less than the electric.
This advantage makes MEG a powerful tool for exploring the functions of deeper cellular
structures, such as the hippocampal’s role in cognition [244]. In parallel, it is possible to
stimulate brain areas using transcranial magnetic stimulation (TMS), which is a technique
used in various fields [245].

The ANS, which is part of the peripheral nervous system, controls involuntary actions.
The tools most commonly used to study ANS function monitor electrodermal activity (EDA,
called Galvanic Skin Response, or GSR), heart rate variability (HRV), and pupillometry.
EDA measures variations in electrodermal properties, particularly electrical conductiv-
ity [246]. Sudomotor activity is related to sympathetic nervous system activity [247], so
it is appropriate for tracking arousal [248]. EDA has been used to study attention [249].
HRV measures the variation in time between heartbeats [250]. HRV measurements are
generally grouped into time-domain and frequency-domain with both having clinical and
cognitive-emotional significance [251]. It has been used to study issues such as stress [252].
Pupillometry is the measurement of the diameter of the pupil of the eye [253]. Although the
pupil diameter is directly affected by a light level, it has also been related to arousal [254]
and cognitive load [255]. While ANS activity has been considered insufficient to study the
nuances of emotion [256], it has more recently been favoured [257].

The SNS is the part of the peripheral nervous system associated with voluntary
movement. Eye tracking and electromyography (EMG) are commonly used tools. Eye
tracking is the measure of gaze movement [258]. Eye movements, to an extent, identify
the focus of our attention (voluntary and involuntary), and are influenced by cognitive-
emotional states [259]. Various metrics are used to measure eye movements, based on
the parametrization of the movements [260]. For example, eye tracking has been used
to study engagement [261]. EMG measures the electrical activity of the muscles [262].
To measure facial expressions related to emotion [263], recordings are usually made of the
corrugator supercilii [264] and the zygomaticus major [265], which are muscles strongly
influenced by emotional valence [266]. Thus, EMG has been frequently used to study basic
emotions [267]. There is, in addition, automatic image-based facial expression recognition
(facial coding). Some architectural studies have applied physical eye tracking [268–270]
and eye tracking simulated by software [271] and facial coding [272].

Given the complexity of neural activity, these tools are insufficient to fully explain it.
However, they offer information about its bases and are compatible with other approaches.
They make a contribution that, in architecture, recalls the optimism that Frampton at-
tributed to the technique to “replace the devalued motives [...] of our environment and
turn it into an authentic place” [273].

Virtual Reality

Environmental simulations are representations of actual environments [274]. There
are different types [275]. VR generates interactive real-time computer representations that
replace the visual information normally provided by the physical world and create the
feeling of “being there” [276]. It is possible, though seldom done, to create virtual repre-
sentations using other sensory channels. This type of stimulation is especially interesting.
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For example, head transfer function (a response to how a sound emitted from a point is
received after the sound arrives at the listener) is involved in how we perceive physical
and virtual environments [277]. Hapticity plays an important role in the supramodal
experience of architecture [278], and smell has important cognitive-emotional effects in
certain situations, such as stress reduction [15].

Various devices are used to reproduce VR formats. It is common to classify them
according to immersion: the degree to which the hardware isolates the user from the
physical world [279]. Thus, there are non-immersive devices, such as computer monitors,
semi-immersive devices, such as the cave automatic virtual environment (CAVE), and fully-
immersive devices, such as head-mounted displays (HMDs). Greater immersion generates
a greater sense of presence, that is, the user’s perceptual illusion of non-mediation [280,281].
Greater presence also involves the allocation of more brain resources for cognitive/motor
control [282]. Although non-immersive devices inherently offer the advantage of collab-
orative viewing [283], the majority of current interests focus on the other two types of
device and HMDs are now within reach in terms of usability and affordability [284]. This
increasing popularisation has contributed to VR being used in other fields.

In architecture, VR has given rise to an explosion of applications [285]. VR allows
us to modify variables in the same space in isolation and record human interaction with
the environment, quickly and at low cost [286]. VR, thus, is an optimal tool for evaluat-
ing human responses to architecture [287] at both behavioural and neurophysiological
levels [288,289] and even its cartographic representation [290]. For example, it has been
used to study relationships between experience and space variables [291], facilitate design
decision-making [292], and assess accessibility [293,294] and orientation inside build-
ings [295], including in emergency situations [296]. Thus, VR provides knowledge beyond
that provided by the physical world.

The interactivity inherent in VR gives rise to a fundamental aspect that should be
addressed: navigation. Two components of navigation are usually discussed: wayfinding
and travel [297]. Wayfinding is the cognitive process of establishing a route [298,299]. It
has been suggested that wayfinding performance in virtual environments is poorer than in
physical environments [300,301]. The travel component, related to the task of moving from
one point to another, has been found to be strongly affected by the navigation metaphor
used to perform the navigation. Many navigation metaphors, classified as physical or
artificial, are available. Physical metaphors are varied. For example, room-scale based
metaphors, such as real walking inside a physical space, is the most naturalistic metaphor
but is highly limited by the physical tracked area [302]. Motion-based metaphors, such
as walking-in-place, is a pseudo-naturalistic metaphor where the user performs virtual
locomotion, while remaining stationary (e.g., moving the hands), to navigate [303], or
redirected walking, known as a metaphor where users perceive they are walking while
they are unknowingly being manipulated by the virtual display, which allows navigation
in an environment larger than the physical tracked area [304]. Artificial metaphors facilitate
direct movements using joysticks, keyboards, or similar devices [305]. Among these are
teleportation-based metaphors, which allow users instantaneous movement to a selected
point [306]. There is no consensus as to which is the most appropriate [307]. Since naviga-
tion can radically condition space perception and, therefore, subsequent human responses,
it is a key aspect that needs to be considered.

However, VR does have some problems. These are generally of a technical nature,
such as the previously discussed navigation [308,309], level of detail [310], and negative
symptoms and effects [311]. In architecture, an important limitation is that, although VR
can be combined with auditory and tactile stimulation [312], the richness of the experience
is limited [313]. A simulation will always be a simulation [314], an abstraction of a complex
reality [315], and, thus, VR cannot reproduce physical environments [316]. Therefore,
studies that employ VR must be validated in physical environments [317–319]. Despite
these drawbacks, synthetic environments have been shown to elicit behavioural responses
similar to physical environments [320] and VR has its uses in various fields [321] and, in
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particular, in architecture. It is a tool for architects and cognitive scientists interested in
spatial perception and cognition.

Combined Neuroscientific and Virtual Reality Technologies

Neuroscience and VR can be combined [322]. This combination allows researchers
to develop virtual environments and record the neurophysiological and behavioural re-
sponses of experimental subjects [323–328]. It has been suggested that this combination
is more rigorous than research in physical settings using self-reports [329]. This is at-
tractive for neuropsychological research [330] and architecture [331]. Thus, combined
VR/neuroscience techniques are increasingly being used to examine the psychological [332]
and neural bases of different aspects of the human-space relationship [333]. The tech-
niques are being used in visuomotor [334] and spatial learning [335], evaluations of cog-
nitive rehabilitation [336], assessments of social situations [337], training in simulated
environments [338], quantification of sense of presence [339], and studies exploring the
neurophysiological foundations of cognitive-emotional states, such as arousal [340–343],
stress [344–347], and fear [348,349]. The combined approach allows us to evaluate the
cognitive-emotional influence of architecture from a new perspective [350].

3.2.4. The Cognitive-Emotional Dimension of Architecture Measured
through Neuro-Aesthetics

Neuroscientific and virtual reality technologies have been extensively used in exper-
iments in the related fields of art and aesthetics. They have provided a very valuable
source of results and methodologies. The discipline derived from applying neuroscience to
aesthetics has been called “neuro-aesthetics”. Neuro-aesthetic research is an example of
how technologies can contribute to the study of art [351,352] and, since architecture shares
lines of action with art and aesthetics, understanding the most illustrative innovations that
have taken place in art and aesthetics represents an important new knowledge source for
architecture [353]. However, although a certain degree of extrapolation could be presumed,
it should be noted that the current state of development of neuroarchitecture does not
yet make it possible to determine to what extent extrapolation is possible. Below, we
discuss some landmarks that have been considered of special importance and affinity
with architecture, considering contributions from different artistic contexts and, therefore,
sensory modalities.

Psychology has developed various levels of analysis over the last century [354]. Some
of these analytical levels have focused on the “objective” and “subjective” aspects that
influence the aesthetic experience [93].

Among the “objective” aspects related to the characteristics of objects are: (1) sym-
metry, (2) centre, (3) complexity, (4) order, (5) proportion, (6) colour, (7) context, and
(8) processing fluency. Table 5 presents some effects and, where appropriate, related neuro-
physiological activity (RNA) and their Brede Database WOROI (a hierarchically structured
directory of brain structures) codes. Many of these objective aspects have been approached
intuitively, from different artistic disciplines, but applying a psychological approach pro-
vides new knowledge that can be of interest both to artists and researchers. For example,
symmetry, which has been used frequently from early times in some architectural trends
and styles, has been associated with faster cognitive processing of stimuli, but also with a
certain aesthetic rigidity. Other less studied aspects are typicity [355] and semantic content,
as opposed to formal qualities [356] and style [357]. Many of these aspects are grouped
in Ramachandran and Hirstein’s [358] theory of aesthetic experience. This conceptualises
eight principles: peak shift effect, isolating single clues, perceptual grouping, contrast,
perceptual problem solving, generic viewpoint, metaphor, and symmetry.
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Table 5. Effects generated by the “objective” aspects frequently studied in psychology applied to art. The table incorporates
some points about the neuronal activities involved (the nomenclature of the sources is followed, and WOROI codes
are added).

Objective Aspect Effect/Related Neurophysiological
Activity (RNA) Appreciation WOROI

Symmetry

Symmetry and asymmetry can evoke
emotional states [359].

Between both there is a wide spectrum of
compositions [360].

General preference for symmetry [361].

In graphic patterns [362].

In faces [363,364].

Traditionally linked to beauty [365].

Various artistic currents have used this [358]. A certain tendency to break it to avoid
rigidity [366].

Detected rapidly in different
circumstances [367].

Including in art [368].

May be due to a cognitive propensity to
process [369].

RNA: sustained posterior activity,
spontaneously during its analysis [370]. 21

Centre The geometric centre of a visual work has
special importance [371].

The “colorimetric barycentre” of a painting
corresponds closely to its geometric

centre [372].

Colour

The colour of light has various influences at
neurophysiological and behavioural

levels [373].

RNA: Prefrontal cortex activity is related to
coloured objects [374]. 22

Complexity

Has great weight in aesthetic
judgement [375].

An aspect that lacks uniqueness [376], a part
of other variables.

Has been combined with aspects such as
symmetry [369].

Preference for moderate levels of complexity
[377,378].

Its effects depend on the level of adaptation
of the observer [379].

Preference in general for low fractal
dimensions, between 1.3 and 1.5 [380], and

for medium-high in architecture [381].
Affects EDA recording [382].

Order

Can improve the reading of a complex
pattern and, therefore, its aesthetic

evaluation, but a lack of complexity evokes
monotony, and complexity without order

evokes chaos [166].

Some current architectural works are proof
of this imbalance, this being one of the

reasons for the increase in written
explanations [165].

Pattern recognition as a factor with a high
impact on natural selection [383].

Visual brain understood as a
pattern-recognition device [384].

Proportion Certain ratios, such as the golden section,
generate greater preference [93].
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Table 5. Cont.

Objective Aspect Effect/Related Neurophysiological
Activity (RNA) Appreciation WOROI

Context

Important when making general perceptual
judgments [385,386].

And when making aesthetic judgements in
particular [387,388].

The representation of the context of an
object in terms of its relationships to other
objects or through a statistical summary of

the scene [389].

A rapid affective precognitive assessment
of the environment is undertaken, based on

elements of the scene [390].

RNA: memory subsystems may be altered by
context [374].

RNA: the para-hippocampal cortex
participates in contextual associations [374]. 65

RNA: the retro-splenial cortex participates in
contextual associations [391]. 310

Processing
fluency

Clear images are processed more easily [358].

Contributes to making images more
preferred [392,393].

However, to distinguish certain basic
scenes (such as indoor vs. outdoor), very

crude information might be sufficient [394].

Ambiguity is an inherent aspect of the
process, relates to openness to multiple

interpretations [395].

RNA: The left fusiform gyrus seems to
participate more in semantic processing, and
the right fusiform gyrus participates in visual

recognition [396].

133, 134

Among the “subjective” aspects, related to personal factors, are: (1) emotional state,
(2) familiarity and novelty, (3) pre-classification, and (4) others of a social nature.
Table 6 summarises some effects. These aspects complement the objective aspects, and play
an important role [397]. Subjective aspects have been addressed using different evaluation
instruments, which highlights the variety of psychological tools available for application
to art. For example, tools such as fMRI and EEG have been recently used to study the
neuro-behavioural effects of familiarity and novelty of stimuli, whose impacts on aes-
thetic judgement were already known at the psychometric level. In fact, neuroscience
is advancing rapidly [398]. Since the first event-related potentials in aesthetic judgment
studies were published in 2000, a large number focused on aesthetics in painting have
appeared [399]. Later, specific aspects of painting and other forms of artistic expression
were addressed [400]. A growing trend exists that is revealing the neurophysiological
bases of the (previously discussed) objective and subjective aspects that influence the
aesthetic experience.
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Table 6. Effects generated by the “subjective” aspects frequently studied by psychology applied to art. The table incorporates
some points about the neuronal activities involved (the nomenclature of the sources is followed, and WOROI codes
are added).

Subjective Aspect Neurobehavioural Effect/Related
Neurophysiological Activity (RNA) Sub-Effect/Appreciation WOROI

Emotional state
Affects aesthetic judgement [401].

Influences the way a work of art is
processed [402].

Tendency to memorise and associate
information consistent with the

emotional state of the subject [403].

Affects judgement of distance

Familiarity—Novelty

Affects aesthetic judgement [377,404–406].

Objects are processed more efficiently in
a familiar context [407,408].

For a work to be attractive it must be
located in a specific range of the

“novelty/familiarity” ratio [366].

RNA: the frontal lobe and the right
hemisphere participate in novelty

processing [366]
18, 707

RNA: blood-oxygen-dependent level is
reduced by repeating an image [409].

RNA: the gamma band exhibits greater
activity in the inferior-temporal,

superior-parietal, and frontal brain areas
when viewing familiar than non-familiar

objects [410].

16, 168, 18

RNA: the gamma band exhibits a
stronger increase after 250 ms of

identification of familiar objects [411].

Related to increased activity in the
gamma band in the occipital [412] and

frontal areas, when observing ambiguous
objects [413].

26, 18

Pre-classification

Previous considerations affect
aesthetic judgment.

Knowing that a work of art is a forgery
alters both familiarity and aesthetic

judgements [414].

RNA: neural activity can be modulated
by external influences, as with the
semantic labelling of scents [415].

Social: Social Status

Demonstrations of dominance or wealth
influence aesthetic judgment [416].

Related to activation of the
reward-related brain areas [417].

RNA: reward circuitry most activated by
objects associated with wealth or social

dominance [418].

RNA: Knowing the economic value of a
product increases preference and

activation of the medial OFC [419].
698
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Table 6. Cont.

Subjective Aspect Neurobehavioural Effect/Related
Neurophysiological Activity (RNA) Sub-Effect/Appreciation WOROI

Social: Culture

Modulates visual perceptual
processing [420].

Affects even basic visual aspects, such as
colour [421].

Related to artistic sensitivity [422].

Can be developed with expertise,
something for which humans are perhaps
conditioned, given that a self-rewarding

experience is elicited when a work is
recognised [423].

Significant in aesthetic judgement
[424,425].

Behavioural differences in terms of how
experts and non-experts experience

art [426].

Related to style-based processing [427].

Architectural eye tracking-based
studies [428].

RNA: expertise generates different
event-related potentials in aesthetic

judgment [429].

RNA: expertise generates different
eye-movement patterns and visual

memory [430].

RNA: expertise generates changes in
memory and perception-related

structures [431].

RNA: expertise helps to execute creative
processes faster (considering that these
involve a decrease in average arousal
measured through EDA and EMG).

Distinctions are normally made between the neurophysiological foundations of atten-
tion, judgement, and emotion [432]. Table 7 summarises some effects. Taking attention, it
has been found that visual processing occurs both in parallel and hierarchically [433], as
more complex issues are gradually solved [434]. In terms of artistic judgement, there are
two stages known as a general impression of works at around 300 ms and a deeper aesthetic
evaluation at around 600 ms [435]. Regarding emotion, aesthetics is a complex experience
that involves different affective-emotional processes that activate reward-related brain
regions [436]. Reward is understood as the positive value attributed to something [437].
Hemispheric specialisation has also received attention [438]. Some studies have seemed
to suggest that there are asymmetric functions in the brain hemispheres, and while they
might be activated by the same stimuli, they react in different ways [439]. Thus, while two
parts of the brain might be activated by the same stimuli, only one would be the final con-
troller. However, aesthetic experience involves different aspects [440], processed through
the same systems used in other areas [441]. In this sense, mirror neurons are interesting.
Mirror neurons are activated both when carrying out an action and when observing it. The
observers’ neurons “mirror” (hence, the name) the behaviour of the individual carrying
out an action, as if the observers themselves were performing it. It has been suggested that
the behaviour of mirror neurons is important to social life-linked cognitive capacities, such
as empathy [442], but also to the empathic understanding of art [443], and, therefore, in the
specific context of architecture [444].
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Table 7. Neurophysiological foundations of the aesthetic experience (the nomenclature of the sources is followed, and
WOROI codes are added).

Aspect Related Neurophysiological Activity WOROI

Attention

Stimulus location
Frontal eye field [445]. 34

Cingulate cortex [446]. 4

Attention given to
external stimuli

Rostral prefrontal cortex [447]. Plays a role in emotion regulation [448] and
memory [449]. 46

Observation

Dorsolateral prefrontal cortex [450], when stimuli deviate from expectations. 89

Inferior temporal area at around 170 ms [451] in visual art. 16

Insula [452]. 67

Judgement

General impression (at around 300 ms): greater negativity in the event-related
potentials of stimuli judged as not being beautiful ([370]. Generated by, among

others, the right lateral orbitofrontal cortex [398] and the medial rostral
prefrontal cortex [453,454].

286, 46

Deep evaluation (at around 600 ms): hemispheric lateralisation to the right-hand
side of the brain, especially positive when looking at something beautiful [370].

Prefrontal area [455]. 22

Left prefrontal dorsolateral cortex, between 400 ms and 1000 ms [455]. 90

Orbitofrontal cortex [456] and its lateral subregion [457,458] for ugly stimuli
[459]. Related to reward evaluation [460] and the taking of morality-related

decisions [461].
685, 286

Connection between the orbitofrontal cortex, anterior insula, rostral cingulate,
and ventral basal ganglia [441]; suggestive of exteroceptive and interoceptive

information comparisons.

685, 97,
363, 35

Medial orbitofrontal cortex [462].
Activated together with the perceptual area specialised in the specific stimulus

mode [454].
685

Anterior medial prefrontal cortex [463]. 55

Motor cortex [464].
While observing sculptures [452]. 214

Left parietal cortex [464] and its subdivision, known as the precuneus [465].
Concordant with the highest amplitude found in the P3 electrode [466]. 83, 171

Left cingulate sulcus, bilateral occipital poles, and fusiform gyri, with greater
activation when looking at preferred pictures [467]. 4, 26, 62

Occipito-temporal cortex [468]. 178

Right primary visual cortex [469]. 311

Anterior cingulate cortex [464]. 8

Right anterior insula [441]. 454

Right para-hippocampal cortex [470]. 132

Caudate nucleus [454], specifically the right-hand side [453]. 39

Putamen [454]. 38

Putamen and claustrum [471]. 38,181

Globus pallidus [471]. 113

Amygdala [256,471]. 36

Connection between the frontal cortex, the precuneus, and the posterior
cingulate cortex [472]. 18, 171, 5

Default mode network, showing increased activation while viewing highly
pleasing images [463].
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Table 7. Cont.

Aspect Related Neurophysiological Activity WOROI

Emotion

Orbito-frontal cortex, and its medial subdivision, in different sensorial modes.
Taste: [473]; Smell: [474]; somatosensory: [374]; vision: [464]. 685, 285

Medial temporal lobe [475]. 218

Fusiform gyri when looking at smiling faces [476]. 62

Striatum [470]. 37

Nucleus accumbens [477]. 245

Hippocampus [478]. 40

Amygdala [479]. 36

Neural activities have been identified in relation to aspects studied in psychology.
Tables 6 and 7 display some of these. The fact that the structures involved are both subcor-
tical and cortical, which are commonly associated with emotion and reason, is the basis of
romantic hypotheses about the complexity of art, and the difficulty of producing beauty, in
comparison to perceiving it. Given the close coordination between these structures [480], it
would make sense to accept that the interaction between the structures is both bottom-up
and top-down [481].

Different models establish links between studies. On the one hand, the psychological
model of Leder [482] emphasised the interdependence of emotion and aesthetic judgment
(they occur simultaneously: the first is the source of aesthetic preference, the second is
the output of affective-emotional states) and established five phases of aesthetic experi-
ence (perception, explicit classification, implicit classification, cognitive mastering, and
evaluation). On the other hand, the Chatterjee neuroscientific model [483] proposes that,
in addition to affective-emotional output, there is a decision-making process. The model
establishes five phases (processing of simple components, attention to prominent prop-
erties, attention modulation, feed-back/feed-forward processes uniting the attentional
and attributional circuits, and intervention of the emotional systems). The fundamentals
of the Chatterjee’s model have recently been contextualised in architecture [484]. Both
frameworks represent the aesthetic experience, and have been useful for interpreting later
results [485]. However, further research is needed.

3.2.5. Neuroscience in Architecture

Neuroscience is being incorporated into the study of the cognitive-emotional di-
mension of architecture [486]. Seen in retrospect, certain gestalt psychology-influenced
developments link the use of neuroscience in architecture [487]. Von Hayek’s work [488]
and Arnheim’s research [489] into the psychology of art and perception of images are
examples. Beyond gestalt, and, strictly outside art, Reference [490] made a contribution
to the application of neuroscience to behaviour by developing a theory of how complex
psychological phenomena can be produced by brain activity. Paired with his ideas, Neutra
made one of the first more explicit contemporary formulations of the incorporation of
neuroscientific knowledge into architecture [491]. He explained that architecture should
satisfy the neurological needs of its users by incorporating the research available into the
development of architectural designs. In addition, inspirational is the holistic understand-
ing of human life that Moholy-Nagy expected from architects [492]. The point at which
this knowledge began to be accessible to architects, according to some authors [493], was
with the publication of “The Embodied Mind” [494]. In this work, the authors coined the
term “neurophenomenology,” and tried to reconcile the scientific approach with experi-
ence [495]. In this sense, Einfühlung has also acquired a neuroscientific substrate in recent
years. Freedberg & Gallese [443] proposed that mirror neurons are responsible for what
certain phenomenology authors called “resonance”. In this way, neuroscience applications,
compared to base approaches, offer substantial benefits [496].
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Two lines stand out in the exploration of architecture’s bases: the design process,
and the experience of architecture [497]. The first line has been widely developed in art
in general, and has made progress in the architectural field such as in proposals on how
to incorporate the knowledge derived from neuroscience’s application to architecture
into the design process [498–500], and in studies into brain development generated by
acquired expertise [405,501]. These studies share common ground with neuro-aesthetic re-
search. Frequently examined aspects of the second line are orientation, light, and acoustics.
Orientation is part of the daily activity of most people [502]. Studies of diverse natures
have tried to explain the principles involved in wayfinding [503–505] with VR being an
effective tool [506]. These studies have direct relevance when it comes to improving nav-
igation strategies. There is a long tradition of using light for aesthetic purposes. Since
the discovery of the eye’s photoreceptive ganglion cells, and their influence on circadian
rhythms [507,508], light-centred studies have been complemented by health-focused re-
search [509]. The application of the recommendations based on the results of light-based
research could improve the experience of users, especially those with time/light challenges
(e.g., night shift workers) [510]. Regarding acoustics, there is a relationship between noise
and consequences for humans at different levels [511]. For example, studies have been
undertaken into stress recovery during exposure to sounds of a different quality [512].
Leaving aside artistic arguments, the treatment of space acoustics is of considerable impor-
tance. In addition to these aspects (orientation, etc.), studies that identify the mechanisms
of exposure to restorative environments should be highlighted [513], as should studies
into the quantification, based on neurophysiological measures, of the effects of restorative
environments in interior [514] and exterior spaces [515,516], the capture of the emotional
impact of museum experiences [517–520], the modification of recommended house design
variables [521], and works with mixed design aspects [522]. The results of some studies
appear in Table 8. Beyond the relative prominence of wayfinding studies, in this table, it
can be seen that some variables attract more attention (as do environmental psychology
and EBD). The variable contours and ornament, which is a basic architectural design aspect,
stands out. These advances show the usefulness of the neuro-architectural approach to
the cognitive-emotional dimension of architecture [523–525]. However, although neuro-
scientific research is extensive and rigorous, its application to architecture is an emerging
discipline [526,527]. Thus, there are, as yet, few practical works exclusively focused on
improving architectural design. The efforts are dispersed, and a common framework has
yet to be established.

Table 8. Neurophysiological foundations of the cognitive-emotional dimension of architecture, and the neuro-behavioural
effects generated by architectural design variables studied in the application of neuroscience to architecture.

Aspect/Variable Neurobehavioural Effect/Related Neurophysiological Activity WOROI

Wayfinding

Posterior parietal, premotor, and frontal areas, greater activation when the subject
uses an egocentric frame of reference [528]. 21, 217, 18

Occipito and temporal area, greater activation when the subject uses an allocentric
frame of reference [528]. 26, 15

Parietal zone with desynchronised alpha band, in environments where orientation
is difficult [529]. 290

Occipital area, processes visual features important for landmark recognition [530]. 26

Medial temporal area, related to allocentric representations [531]. 136

Right lingual sulcus, participates in perception of buildings [532]. 167

Posterior cingulate cortex, and occipital lobe, involved in navigation and
perception from different perspectives [533]. 5, 26

Anterior midcingulate cortex, greater activation in closed spaces, possibly
generating avoidance decisions [534]. 8
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Table 8. Cont.

Aspect/Variable Neurobehavioural Effect/Related Neurophysiological Activity WOROI

Entorhinal cortex, relating memory, and navigation data to create a cognitive map
of events [535]. 66

Retro-splenial complex retrieves landmark-related spatial and conceptual
information [530]. 310

Hippocampus, right posterior parietal, and posterodorsal medial parietal cortex,
related to the retrieval of spatial context [531]. 40, 290, 21

Right hippocampus participates in remembering locations [536]. 108

Left hippocampus participates in remembering autobiographical events [537]. 107

Hippocampus, with higher activation in the theta band, hypothetically related to
sensorimotor integration during navigation [538]. 40

Para-hippocampus codes landmark identity [530]. 65

Para-hippocampus participates in the spatial processing of scenes [539,540]. 65

Para-hippocampus responds, in general, to rectilinear features [541]. 65

Alpha band, with increased activation in occipital electrodes, is associated with
familiar streetscape images [542]. 26

Beta band, with increased activation in frontal electrodes, positively correlated
with RMS (root-mean-square) statistics and fractal dimensions [542]. 18

Alpha and beta bands indicate that the first three minutes of walking has the
greatest cognitive effects on users [543].

Theta band, with increased activation, is associated with increased navigation
performance in women and decreased navigation performance in men [544].

Theta/alpha ratio related to higher cognition and memory [158].

Stress

Middle frontal gyrus, middle and inferior temporal gyrus, insula, inferior parietal
lobe, and cuneus with higher activation in highly restorative potential

environments [513].
148, 126, 67, 183, 3

Superior frontal gyrus, precuneus, para-hippocampal gyrus, and posterior
cingulate with higher activation in low restorative potential environments [513]. 70, 171, 65, 5

Alpha band with higher activation in the frontal lobe in non-stressful
environments [514]. 18

High-beta band with higher activation in the temporal lobe in stressful
environments [514]. 15

A combination of multisensory design variables produces a synergistic effect,
which reduces stress. Measured through EDA, HRV, and EEG [15].

Illumination

White light modulates mood and sleep rhythms [545].

Spaces illuminated above 7500 K increase blood pressure [546].

Arousal differences demonstrated (measured using EEG) in spaces illuminated at
5000 K and 3000 K [547].

Blue light accelerates post-stress relaxation [548].

Direct/indirect lighting makes subjects feel cooler and more pleasant, compared to
direct lighting. It also generates more activity in electrodes F4, F8, T4, and TP7.
Under these circumstances, the theta band of the F8 electrode correlated with a

“cool” self-assessment [549].

91, 296, 130, 123

Difference between cold and neutral colour temperature, at the level of alertness,
fatigue, cognitive functioning, HRV and EDA [550].

Colour Red coloured spaces increase arousal measured through EEG metrics [551].
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Table 8. Cont.

Aspect/Variable Neurobehavioural Effect/Related Neurophysiological Activity WOROI

Contours and
ornaments

Anterior cingulate cortex, greater activation when looking at curvilinear
spaces [552]. 8

Anterior cingulate cortex with theta band, related to certain spatial
characteristics [533] 8

Frontal lobes with event-related potentials of higher positive amplitude, between
300 and 600 ms, when viewing architectural ornaments [553].Susceptible to

cultural modulation [554].
18

Curved geometric spaces are preferred over angled geometric spaces [552].

Curved geometric spaces are preferred by non-design expert subjects, and
sharp-angled spaces by expert subjects [555].

Angled geometry is not avoided, but curved geometric spaces prompt approach
(rather than avoidance) behaviours [556].

Amygdala with greater activation when viewing sharp than curved contours, and
images of landscapes and healthcare objects. However, when viewing images of
hospital interiors and exteriors, there is greater activation with curved contours. it
is hypothesised that, in stress-associated environments, curved contours may not

be desirable [557].

36

Open-office arrangements generate more physical activity, and less stress,
measured through HRV (SDNN) [558].

Thigmotaxis plays a role in spatial learning, depending on the phase [559].Human
predisposition for walls: people are thigmotactic [560].

Windows

The existence of openings can reduce stress, measured by electrocardiogram (HR,
and HRV-HF, and T-wave amplitude), and cortisol. However, this depends on the

stressor type [561].

The geometry of façades, and the lighting that passes through them into interiors,
affects physiological (at an HRV level) and psychological responses in different

ways. Among others, there is deceleration of the heart rate with irregular designs,
in comparison to blinds, because they attract greater attention [176,562].

Aesthetic judgement

Left frontal areas with more theta band activity when viewing pleasant interior
spaces [563]. 81

Fusiform face area, involved in fine-grained neural encoding of architectural
scenes [564]. 343

Theta band increased across the frontal area, in familiar and comfortable
environments [565]. 18

Alpha band increased in left-central parietal and frontal areas in pleasant
environments [565]. 83, 18

Mu band desynchronised in left motor areas, in pleasant and comfortable
environments [565]. 350

Nature

Views of nature have positive effects on emotional and physiological states [566].

Natural vistas (in videos) produce significantly higher HR than urban vistas [567].

The absence of vegetation generates a more oppressive environment, which affects
the judgment of distance and generates greater arousal measured through

EDA [568].

Similar brain patterns between positive images and open sky multisensory
simulations measured through fMRI. The latter also generate activity related to

spatial cognition and space expansion [569].
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4. Discussion

Based on the scoping review of neuroarchitecture and its precursor approaches, four
aspects of the application of neuroscience to architecture were identified: (1) limitations
of the approaches, (2) the problems in addressing the cognitive-emotional dimension of
architecture, (3) ways to solve the problems, and (4) the limitations of this work.

4.1. Limitations of the Approaches to the Study of Cognitive-Emotional Dimension of Architecture

The study of the cognitive-emotional dimension of architecture is complex. New
approaches are helping to overcome the limitations of the base approaches and to identify
data that can support the validity of design proposals. However, neither approach is
without its limitations.

The base approaches to the cognitive-emotional dimension of architecture are gener-
ally limited in relation to the environmental stimuli and the evaluation systems used. The
new approaches, to an extent, try to overcome these limitations by incorporating VR and
neuroscience. Their application to aesthetics and art provides a basis for their application
to architecture. However, the fact that art and architecture are related fields does not make
them equivalent. Thus, the extrapolation of other knowledge bases to architecture must be
undertaken with caution. These aspects are discussed below at ontological, epistemological,
and methodological levels.

At an ontological level, the limitations are derived from the perceptual breadth of the
experiences. Two deficiencies stand out: (1) the modality of the stimuli used, and (2) the
aspects studied. The first limitation involves unimodality. Previous studies have generally
focused on the visual domain [570]. Although most of the information we process is in
the visual domain [571,572], limiting the exposure to only unimodal stimuli in architecture
reduces the richness of the experience [573,574]. The second limitation fundamentally
involves beauty and pleasure. On the one hand, although beauty plays a central role in
people’s concept of aesthetics, art, and, therefore, architecture [575]. Non-beautiful works
can be art [576]. On the other hand, although pleasure may be derived from the aesthetic
or artistic experience [577], pleasurable feelings may be generated for reasons outside the
work of art or architecture. Thus, beauty and pleasure are not enough [578].

At the epistemological level, the limitations derive from the difficulty of explaining
these experiences in exclusively physiological terms. Two stand out: (1) the neurology-
experience relationship, and (2) the various influential aspects. The first limitation gen-
erates the risk of drawing invalid inferences since a brain area can be related to several
processes [579]. Emotions are especially complex in this regard [580]. The second limitation
relates to the number of aspects that influence artistic and aesthetic experiences [221].
These experiences may seem simple because they are simple to recognize, but not at a
neuro-psychological level.

At a methodological level, the limitations derive from the wide variety of stimuli and
the many ways in which works can be displayed. Two stand out: (1) procedural conflicts
and (2) technical restrictions. The first limitation involves several questions. On the one
hand, ceteris paribus logic sacrifices the complexity of the stimuli. In addition, the rigidity
of neuroimaging protocols and the laboratory context can alter results. On the other hand,
the multiple cognitive-emotional processes involved do not occur simultaneously [581],
which may misalign the causal assignment of the recordings. The second limitation relates
to the restrictions associated with neurophysiological recording technologies such as the
immobility of fMRI. Although these limitations can now be considerably addressed using
other devices, such as wearable EEG caps [582] and recordings that can be made outside
the laboratory [583–585], they must be taken into account. The limitations all contribute to
the lack of a commonly accepted methodology. In a certain way, this lack also obstructs the
understanding between different research groups and the comparability of results. While
sometimes studies might provide divergent results, it may be because they are reflecting
different components of the experience [586]. This leads to the point that the results are
also difficult to extrapolate into design guidelines for practical application in architecture.
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4.2. Problems in Addressing the Cognitive-Emotional Dimension of Architecture

In addition to the limitations discussed above (applicable to the entire domain of
art and aesthetics), there are more specific architecture-based limitations. Mainly two:
(1) it is not possible to liken architecture to the artistic-aesthetic, and (2) the experience
is not one-off. The first limitation arises from the depth of the architectural function. Ar-
chitecture tries to meet broad human needs [587]. Although architecture is one of the
“Fine Arts” [588], the artistic-aesthetic experience is only one of the components of the
cognitive-emotional dimension of architecture. The second limitation is that architecture
is an experiential continuum [589]. The transition from one space to another can condi-
tion the experience [590], with the “architectural narrative” being significant [560]. In
addition, peripheral vision is of special importance [591]. In fact, architecture could be
experienced in two ways: intellectually, through focal processing, and in terms of atmo-
sphere, through ambient processing [592]. Furthermore, architecture engages all sensory
modalities [278,593], so the visual is insufficient to describe it [96]. This is very important
in terms of the study of sensory interaction [594]. Both limitations impede the fragmenta-
tion of the cognitive-emotional dimension of architecture, which encourages the tendency
toward case studies [595]. In summary, the application of neuroscience to other fields must
be cautiously extrapolated to architecture.

The debate on the universality of art should not be forgotten [596,597]. Fundamentally,
a perspective based on objective principles might be considered [598], but differences
between individuals makes the artistic experience widely subjective [599], which is a
circumstance echoed in architecture [600]. To deploy ideas about the universality of art
requires retrospective exposition. To begin with, art has developed in parallel with human
evolution [601]. It is an exclusively human capacity apart from the structures that some
animals produce based on their genetic programming [493]. This is not a reference to
the denaturation of art [602], but to its human focus. The key point is that the brain
adapts to the environment [603], which is a process known as “neuroplasticity” [604].
Thus, our artistic (and, therefore, architectural) experience is conditioned by biological
and environmental factors [605], with the latter having a major impact [606]. Additionally,
human brains may change through pathologies (e.g., Alzheimer’s disease). Achieving
universal art or architecture may not be possible. In fact, there is less agreement when it
comes to judging artifacts than natural elements [607]. However, all humans have innately
similar brains [608,609], which allows bridges to be built between individuals, societies, and
times [610]. Therefore, some common architectural design guidelines may be developed.

4.3. Beyond the Current State: The Challenges Facing Neuroarchitecture and Its
Constituent Disciplines

Hitherto, there has been no general study of the foundations underlying the cognitive-
emotional dimension of architecture. In this sense, neuroarchitecture has potential. The new
discipline makes a contribution to an architecture that supports the cognitive-emotional
dimension [611], and does not fall into the reductionism of exclusively aspiring to provide
relaxation [92]. This might embrace the contemporary emphasis on sustainability and the
social dimension [612]. The examples are as varied as the spaces: hospitals that contribute
to healing [613], classrooms that support cognitive processes [614], work environments
that encourage collaboration [615], museums perceptually adapted to the works that
they house [583], restaurants where multisensory integration enhances the gastronomic
experience [616], and, among others, urban planning activities [617–620], where one of the
challenges lies in the diversity of groups. Designing for specific groups, including those
with specific pathologies such as dementia [621–623], involves a frontal confrontation with
design for the masses. The success of the different applications of neuroarchitecture will, in
part, depend on the ability of its constituent disciplines to overcome its inherent challenges.

User experience is the main issue in VR. Increasing the capacity of VR set-ups to gener-
ate the illusion of being in a place (characterised as “place illusion”), and the credibility of
the scenarios, to meet the viewer’s expectations (characterised as “plausibility illusion”), is



Sensors 2021, 21, 2193 28 of 49

crucial. Although there is limited understanding what affects the sense of presence, there is
consensus on two factors, known as exteroception and interoception. Exteroception factors,
which are directly related to the experimental set-up (such as interactivity), increase the
sense of presence particularly in virtual environments not designed to induce specific emo-
tions [624]. Interoception factors, defined by the content displayed, increase the presence if
the user feels emotionally affected [625]. For example, previous studies have found a strong
correlation between arousal and presence [626]. This suggests that, in neuroarchitecture,
both factors may be critical. There is a robust interdisciplinary community [627] that is
certainly helpful in meeting this challenge. Furthermore, neuroarchitecture and VR share a
synergistic relationship in which the former can help us understand and improve virtual
spaces with which we interact more.

The analysis of neurophysiological data is challenging [628]. Affective computing,
which is an interdisciplinary field based on psychology, computer science, and biomedical
engineering [629], will likely play an important role. Several studies have focused on iden-
tifying the cognitive-emotional state of subjects by using machine-learning algorithms and
by achieving high levels of accuracy [630,631]. Many neuroimaging techniques have been
used [632]. Affective computing can be transversally applied to many human behaviour
topics. Although one of the first applications of affective computing was to neuroeconomics
research due to the important relationship that has been found between emotions and
decision-making [633], there are revealing and important examples of its application to
architecture [634]. In fact, very recent applications in virtual architectural spaces have
produced encouraging results [635–637]. For neuroarchitecture, the definition of neu-
rophysiological indices in relation to the cognitive-emotional dimension of architecture
would contribute to the development of an actual architectural design tool. These would
allow the effect of the architecture on users to be measured in an easy-to-interpret way
(e.g., stress through neurophysiological measures expressed in well-defined ranges). The
fact that these indices have not yet been fully developed and made available for academic
and professional use is one of the reasons that may be holding back the growth of neu-
roarchitecture. Developed in real time, these could even contribute to adapting spaces to
emotional states [638] (for example, automatically modify the lighting of the environment
in order to respond to a stressful situation of its user). In this matter, the combination
with virtual reality could potentially present yet another facet of the synergy between
neuroimaging and virtual reality techniques. For example, by means of augmented reality
displayed on HMDs, the user could be stimulated to reduce their stress without physically
modifying variables of the environment (which could affect other users who do not meet
the same needs). Thus, neuroarchitecture would not only help to answer questions about
the cognitive-emotional dimension of architecture, but also to develop a technological layer
that supports our cognitive-emotional processes [639].

However, humans are not just neurological entities. Thus, it is not surprising that the
cognitive-emotional dimension of architecture has been approached from such different
directions. The polyhedral nature of the cognitive-emotional dimension of architecture
means that a solution can hardly be derived from one source. Although neuroscience
applied to architecture helps to answer questions about the cognitive-emotional dimension
of architecture, it does not hold all the answers. Moreover, architecture has traditionally
been based on designerly ways of knowing. The architect intuitively explores and exploits
some of its perceptual foundations. This offers an economy of means that, sometimes, is
ahead of science [640]. Thus, if the ultimate goal is to improve architecture, attention must
be paid to both the bases and execution. To do this, it will be necessary to take into account
how architects work. “Scientists and artists need to identify common ground” [641]. Only
in this way will it be possible to develop the broad and deep knowledge needed to generate
a true design tool.
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4.4. Limitations of the Work

The present study has some limitations. Fundamentally, (1) the work may be over-
exhaustive, and (2) possible significant references were not discovered. Exhaustiveness is
due to the multiple disciplines involved. Although some overlap exists, the integration
of the approaches examined offers a broad view of the issue. As for undiscovered refer-
ences, it is possible that some interesting works have not been addressed including “grey
literature” [642].

5. Conclusions

The application of neuroscience to architecture is gaining prominence. The term “neu-
roarchitecture” seems to work in a promotional sense, likely, in part, due to the tendency
to consider neuroscientific content credible [643]. However, it does not seem appropriate
at other levels such as computerised searches (mixed with neural architectural issues or
artificial intelligence), conceptual (does not do justice to neuroscience or architecture), and
technical (does not make clear if it includes works not strictly based on neurophysiological
recordings). The ease in translating the term into different languages, and the amount
of documentation generated, makes it difficult to adopt more appropriate terms, such as
“emotional architecture” or “mental architecture”.

In another vein, neuroarchitecture is often decontextualized without considering its
main precursor approaches. This creates biases about its current possibilities and future
developments and, as with social sciences [644], neuroscientific applications generate
some controversy. From some conservative points of view, accepting external guidelines
infringes on issues deeply established in the project process. Most of the changes generate
neophobic impulses, and the advent and development of neuroarchitecture may mark a
paradigm shift. However, the application of neuroscience to architecture is not intended to
reduce design to universal standards. Understanding the fundamentals on the cognitive-
emotional dimension of architecture does not make it less relevant nor will it remove
the need for architects. It will only complement their tool set, that already includes tools
(more or less used in practice), such as geometry, phenomenology, geographical experience,
philosophy, and, more recently, psychological and EBD approaches. The knowledge offered
by neuroarchitecture will help more broadly meet users’ needs. A building might not
collapse due to poor cognitive-emotional adaptation, but its users might. Although it
will take years to design projects entirely using principles and knowledge derived from
neuroscientific explorations of the built environment, today, we can take steps to improve
the human cognitive-emotional response in the built architectural environment. This
includes modifying existing spaces and improving decision-making for the design of new
spaces. The combination of advances in neuroscience and environmental simulation will
expand the impact of the new discipline. The next great architects may be those who can
embrace, without prejudice, these new possibilities. The challenge looks exciting.
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