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Abstract In this technical brief, a simple concise derivation of the Gibbs-Appell equa-

tions for the dynamics of a constrained rigid body is presented.

Keywords Gibbs-Appell equations · Constraints · Constraints forces · Constraint

moments

1 Introduction

Since their introduction in the early 20th century, the Gibbs-Appell equations have

proven to be a remarkably popular and influential method to formulate the equations

of motion of constrained rigid bodies (see, e.g., [1,2] for applications to robotics).

In particular, when the coordinates and quasi-velocities are chosen appropriately, the

resulting equations of motion are reactionless - even if the constraints on the system

are non-holonomic.

Although derivations of the Gibbs-Appell equations using several methods, includ-

ing Gauss’s Principle of Least Constraint, can be found in the literature (see [3,4,

5,6,7], their treatments of constraint forces and constraint moments are not trans-

parent. Indeed, a discussion of why the Gibbs-Appell equations are equivalent to the

Newton-Euler balance laws for constrained rigid bodies is surprisingly absent from the

literature. In this brief note, we provide such a demonstration with the help of a recent

treatment in [8] of constraint forces and constraint moments. Our developments are

also applicable to Kane’s equations of motion [9] but we do not pursue this matter in

the interests of brevity.
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2 Background and Notation

In this paper, we will follow the notation used in [10]. Referring to Figure 1, the motion

of a material point X on a rigid body can be described relative to the motion of the

center of mass X̄:

x = Q
(

X− X̄
)

+ x̄. (1)

Here, Q = Q(t) is the rotation tensor of the rigid body, x is the position vector of

X, and x̄ is the position vector of X̄ in the present configuration of the rigid body at

time t. The vectors X and X̄ are the respective position vectors of X and X̄ in a fixed

reference configuration of the rigid body. The rotation tensor can be used to define a

body-fixed basis {e1, e2, e3}: ei = QEi where i = 1, 2, 3 and {E1,E2,E3} is a fixed

right-handed Cartesian basis for E3.
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Fig. 1: Schematic of the present configuration of the rigid body. In this figure, a

constraint force Fc = λfA acts at the material point XA and a constraint moment

Mc = λhA.

Equation (1) can be differentiated to yield an equation relating the velocities of any

pair of material points XB and XC , say, on a rigid body: vB − vC = ω × (xB − xC).

Here, ω is the angular velocity vector of the rigid body: ω×a = Q̇QTa for any vector

a. That is, ω is the axial vector of Q̇QT . We assume that the rigid body has a mass

m and a moment of inertia tensor J relative to the center of mass.

In the sequel, we assume that a set of coordinates
(

q1, . . . , q6
)

have been chosen to

parameterize the motion of the system. A set of quasi-velocities are also defined:

v
K =

6
∑

L=1

AKLq̇
K + g

K
. (2)

where AKL and gK are functions of q1, . . . , q6 and t. The matrix [AKL] is assumed to

be invertible. For any function f = f
(

q1, . . . , q6, v1, . . . v6, t
)

:

ḟ =

6
∑

K=1

∂f

∂qK
q̇
K +

∂f

∂vK
v̇
K +

∂f

∂t
, (3)
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Thus,

∂ḟ

∂v̇K
=

∂f

∂vK
. (4)

A velocity vector vB and the angular velocity ω are vector-valued examples of the

function f :

∂v̇B

∂v̇K
=
∂vB

∂vK
,

∂ω̇

∂v̇K
=

∂ω

∂vK
. (5)

For completeness, we note that ∂xB

∂vK
= 0, ∂J

∂vK
= 0, and ∂Q

∂vK
= 0.

3 The Newton-Euler and Gibbs Appell Equations of Motion

The Gibbs-Appell function for the rigid body is defined as follows (see, e.g., [3,6]):

S =
1

2

∫

P

v̇ · v̇ρdv

=
1

2
m ˙̄v · ˙̄v +

1

2
(ω̇ · (Jω̇) + 2 (ω × Jω) · ω̇) , (6)

where v̄ = ˙̄x is the velocity vector of X̄, ρ is the mass density of the rigid body, and

dv is the volume element for the region of space P ∈ E
3 occupied by the body in

its present configuration. The function S can be expressed as a function of q1, . . . , q6,

v1, . . . , v6, and v̇1, . . . , v̇6.

The balance laws for the rigid body are

m ˙̄v = F,
d

dt
(Jω) = Jω̇ + ω × (Jω) = M, (7)

where F is the resultant force acting on the body at X̄ and M is the resultant moment

relative to X̄ acting on the rigid body.

In the absence of constraints, we can differentiate S with respect to a generalized

acceleration, use the identities (5), and invoke the balance laws (7) to show that

∂S

∂v̇K
= m ˙̄v ·

∂ ˙̄v

∂v̇K
+ (Jω̇ + ω × Jω) ·

∂ω̇

∂v̇K

= RK , (K = 1, . . . , 6) , (8)

where the generalized force RK is

RK = F ·
∂v̄

∂vK
+M ·

∂ω

∂vK
. (9)

Thus, as is the case with Lagrange’s equations of motion, the Gibbs-Appell equations,

∂S

∂v̇K
= RK , (10)

are equivalent to linear combinations of the components of F = m ˙̄v and M = ˙
Jω.

Discussions of special cases, including Euler’s equations, can be found in [3,6].
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4 The Generalized Force RK

Suppose that a system of R forces FΓ each acting at a point XΓ and a moment MP

act on the rigid body. Then,

F =

R
∑

Γ=1

FΓ acting at X̄,

M = MP +

R
∑

Γ=1

(xΓ − x̄)× FΓ . (11)

As vΓ = v̄ + ω × (xΓ − x̄), it can be shown that

FΓ ·
∂vΓ

∂vK
= FΓ ·

∂v̄

∂vK
+ ((xΓ − x̄)× FΓ ) ·

∂ω

∂vK
. (12)

Consequently, with the help of (9), the generalized force RK can be shown to have the

following equivalent representation:

RK = MP ·
∂ω

∂vK
+

R
∑

Γ=1

FΓ ·
∂vΓ

∂vK
. (13)

The contributions of individual force and moments to the generalized forces RK can

be easily identified using this representation.

5 Lagrange’s Prescription for the Constraint Force and Constraint

Moment

In rigid body dynamics, kinematic constraints can be expressed in a canonical form

πA = 0, where

πA = fA · vA + hA · ω + eA. (14)

Here, vA = ẋA is the velocity vector of a material point XA on the body and the

functions fA, hA, and eA depend on Q, x̄ and t. For example, if a rigid body is rolling

with one point XP in contact with a fixed surface or is free to rotate about a fixed point

XP then the rigid body is subject to three constraints: vP ·Ek = 0 where k = 1, 2, 3.

Following [8,10] and referring to Figure 1, we define Lagrange’s prescription for the

constraint force Fc and the constraint Mc as

Fc = λ
∂πA
∂vA

= λfA acting at the point XA,

Mc = λ
∂πA
∂ω

= λhA, (15)

where λ is a function which is determined by the equations of motion. The extensive set

of examples in [8,10] demonstrate that the prescription (15) is equivalent to the pre-

scription used in analytical mechanics and presumes the absence of dynamic Coulomb

friction.
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6 The Gibbs-Appell Equations in the Presence of Constraints

We now suppose that the rigid body is subject to a constraint πA = 0. As is standard

in applications, we choose one of the quasi-velocities so the constraint function πA can

be expressed in a very simple manner:

πA = v
6 − fA, (16)

We can impose the constraint v6 = fA on S and compute a constrained Gibbs-Appell

function S̃:

S̃ = S
(

q
1
, . . . , q

6
, v

1
, . . . v

5
, v

6 = fA, v̇
1
, . . . v̇

5
, v̇

6 = ḟA

)

. (17)

It is important to observe that

∂S̃

∂v̇K
=

∂S

∂v̇K

∣

∣

∣

v6=fA,v̇6=ḟA
, (K = 1, . . . , 5) ,

∂S̃

∂v̇6
= 0 6=

∂S

∂v̇6

∣

∣

∣

v6=fA,v̇6=ḟA
. (18)

These results have parallels in computing Lagrange’s equations of motion also (see,

e.g., [10, Chapter 3]).

A second consequence of the choice (16) pertains to the generalized forces RK .

First, we observe that

δ
6

K =
∂πA

∂vK
= fA ·

∂vA

∂vK
+ hA ·

∂ω

∂vK
, (19)

where δLK = 1 if L = K and is otherwise 0 is the Kronecker delta. Thus, after appealing

to (13), (14), and (15), we will find that Fc and Mc will only contribute to one of the

Gibbs-Appell equations:

Mc ·
∂ω

∂vK
+ Fc ·

∂vA

∂vK
= λ

(

hA ·
∂ω

∂vK
+ fA ·

∂vA

∂vK

)

= λ
∂πA

∂vK

= λδ
6

K , (20)

Consequently, if one seeks to find the reactionless form of the equations of motion, then

it suffices to use S̃:

∂S̃

∂v̇K
= RK , (K = 1, . . . , 5) . (21)

These are the Gibbs-Appell equations emphasized in the literature. If needed, S is

computed and the Gibbs-Appell equation of motion ∂S
∂v̇6 = R6 used to compute λ.

It is straightforward to extend the derivation of the Gibbs-Appell equations from

the Newton-Euler balance laws we have just presented to the case of multiple con-

straints and (with the help of material in [10, Section 11.8]) to the case of systems of

particles and rigid bodies.
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7 An Illustrative Example

As an example, we consider a cylinder moving on a smooth horizontal surface shown

in Figure 2. There are two constraints on the motion of the cylinder. First, its center

of mass remains in a horizontal plane. Second, the cylinder does not rotate into the

plane. Thus,

v̄ · E3 = 0, ω · h = 0, (22)

where the unit vector h = e3×E3. The cylinder has a mass m and a moment of inertia

tensor

J = Jt (I− e3 ⊗ e3) + Jae3 ⊗ e3. (23)

Imposing constraints and using the fact that E3 ⊥ e3 for this system, we find that

ω = Ω3E3 + ω3e3, ω̇ = Ω̇3E3 + ω̇3e3 −Ω3ω3h,

v̄ = ẋE1 + ẏE2. (24)

For this problem, we choose

u
1 = ẋ, u

2 = ẏ, u
3 = Ω3,

u
4 = ω3, u

5 = ż, u
6 = ω · h. (25)

g
O

X̄E1

E2

E3

Fc

Mc

h = e3 × E3
e3

Fig. 2: A circular cylinder sliding on a smooth horizontal surface.

The constrained Gibbs-Appell function S̃ is computed with the help of (6):

S̃ =
m

2

(

ẍ
2 + ÿ

2

)

+
1

2

(

Jaω̇
2
3 + JtΩ̇

2
3 + (2Ja − Jt)ω

2
3Ω

2
3

)

. (26)

The resultant force and resultant moment relative to X̄ acting on the system are

obtained by applying Lagrange’s prescription twice:

F = (λ1 −mg)E3 acting at X̄, M = λ2h. (27)
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As mentioned in [11], the constraint moment λ2h can be interpreted as the moment

relative to X̄ of the distribution of normal forces along the line of contact of the cylinder

and the plane and the normal force λ1E3 can be interpreted as the resultant of the

normal forces.

With the help of (13), we find that F and M will not contribute to the first four

Gibbs-Appell equations:

∂S̃

∂ẍ
= mẍ = 0,

∂S̃

∂ÿ
= mÿ = 0,

∂S̃

∂Ω̇3

= JtΩ̇3 = 0,
∂S̃

∂ω̇3
= Jaω̇3 = 0. (28)

As expected, these equations of motion imply that the center of mass moves at constant

speed in a straight line and the angular speeds Ω3 and ω3 of the cylinder are constant.

However, ω̇ = −ω3Ω3h is not necessarily constant.

While (28) determine x̄(t), to determine Q(t) of the cylinder, a set of 3-2-3 (ψ, θ,

φ) Euler angles can be defined where θ = 90◦. Thus, ω = Ω3E3 + ω3e3 = ψ̇E3 + φ̇e3
and the equations ψ̇ = Ω3 and φ̇ = ω3 are integrated to determine Q(t).

The conclusions we have drawn on the motion of the cylinder are in complete agree-

ment with those that can be inferred by formulating and analyzing Lagrange’s equa-

tions of motion for this problem. Referring to [10,11] for the corresponding analysis, a

set of Euler angles are required to establish these equations. The resulting Lagrange’s

equations of motion provide a set of four second-order differential equations for x, y,

and two Euler angles to determine the motion of the cylinder.

Conflict of Interests Statement

The authors report no conflicts of interest.

Data Availability Statement

No data, models, or codes were generated or used for this paper.

References

1. Marghitu, D. B., and Cojocaru, D., 2016. “Gibbs-Appell equations of motion
for a three link robot with MATLAB”. In Advances in Robot Design and In-
telligent Control, T. Borangiu, ed., Springer International Publishing, pp. 317–325.
doi:10.1007/978-3-319-21290-6_32.

2. Mata, V., Provenzano, S., and Cuadrado, J. L., 2002. “Inverse dynamic prob-
lem in robots using Gibbs-Appell equations”. Robotica, 20(1), pp. 59–67.
doi:10.1017/S0263574701003502.

3. Baruh, H., 1999. Analytical Dynamics. McGraw-Hill, Boston.
4. Desloge, E. A., 1988. “The Gibbs–Appell equations of motion”. American Journal of

Physics, 56(9), pp. 841–846. doi:10.1119/1.15463.
5. Greenwood, D. T., 2003. Advanced Dynamics. Cambridge University Press, Cambridge.

doi:10.1017/CBO9780511800207.
6. Pars, L. A., 1979. A Treatise on Analytical Dynamics. Ox Bow Press, Woodbridge, CT.

http://dx.doi.org/10.1007/978-3-319-21290-6_32
http://dx.doi.org/10.1017/S0263574701003502
http://dx.doi.org/10.1119/1.15463
http://dx.doi.org/10.1017/CBO9780511800207


8

7. Udwadia, F. E., and Kalaba, R. E., 1998. “The explicit Gibbs-Appell equation and
generalized inverse forms”. Quarterly of Applied Mathematics, 56(2), pp. 277–288.
doi:10.1090/qam/1622570.

8. O’Reilly, O. M., and Srinivasa, A. R., 2014. “A simple treatment of constraint forces and
constraint moments in the dynamics of rigid bodies”. ASME Applied Mechanics Reviews,
67(1), pp. 014801–014801–8. doi:10.1115/1.4028099.

9. Kane, T. R., and Levinson, D. A., 1985. Dynamics: Theory and Applications. McGraw-
Hill, New York.

10. O’Reilly, O. M., 2020. Intermediate Dynamics for Engineers: Newton-Euler

and Lagrangian Mechanics, second ed. Cambridge University Press, Cambridge.
doi:10.1017/9781108644297.

11. O’Reilly, O. M., 2007. “The dual Euler basis: Constraints, potentials, and Lagrange’s
equations in rigid body dynamics”. ASME Journal of Applied Mechanics, 74(2), pp. 256–
258. doi:10.1115/1.2190231.

http://dx.doi.org/10.1090/qam/1622570
http://dx.doi.org/10.1115/1.4028099
http://dx.doi.org/10.1017/9781108644297
http://dx.doi.org/10.1115/1.2190231

	Introduction
	Background and Notation
	The Newton-Euler and Gibbs Appell Equations of Motion
	The Generalized Force RK
	Lagrange's Prescription for the Constraint Force and Constraint Moment
	The Gibbs-Appell Equations in the Presence of Constraints
	An Illustrative Example



