UC Irvine UC Irvine Electronic Theses and Dissertations

Title

Highly Active Heterogeneous Catalysts for Carbon Dioxide Reduction to Value-Added Chemicals

Permalink https://escholarship.org/uc/item/8p00b4d7

Author Kim, Sunkyu

Publication Date

2021

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA, IRVINE

Highly Active Heterogeneous Catalysts for Carbon Dioxide Reduction to Value-Added Chemicals

DISSERTATION

submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Chemical and Biomolecular Engineering

by

Sunkyu Kim

Dissertation Committee: Assistant Professor Erdem Sasmaz, Chair Professor Plamen Atanassov Professor Ali Mohraz

Chapter 1 © 2019 Elsevier Portion of Chapter 2 Reproduced with permission from ACS Catalysis, submitted for publication. Unpublished work copyright 2021 American Chemical Society All other materials © 2021 Sunkyu Kim

DEDICATION

То

my loving parents, sister, and friends

in recognition of their worth

TABLE OF CONTENTS

Page

LIST OF FIGURES	v
LIST OF TABLES	viii
ACKNOWLEDGEMENTS	х
VITA	xi
ABSTRACT OF THE DISSERTATION	xii
INTRODUCTION	1
 CHAPTER 1: Nanotubular Yolk–Shell Catalysts for Tri-Reforming of Methane Introduction Experimental Methods Catalyst synthesis Catalyst synthesis Characterization TRM activity I.3 Results and Discussion Characterization of fresh catalysts Characterization of spent catalysts Characterization of spent catalysts Seffect of yolk size under reducing conditions Seffect of yolk size under oxidizing conditions 	3 6 6 7 9 10 10 22 24 28 32 33
 CHAPTER 2: Yolk-Shell Single-Atom Alloy Catalysts for Low-Temperature Dry Reforming of Methane 2.1 Introduction 2.2 Experimental Methods 2.2.1 Catalyst preparation 2.2.2 Characterization 1.2.3 DRM activity 2.3 Results 2.3.1 Catalysts characterization 2.3.2 Activity measurements 2.3.3 XAS analysis in different Pt loadings 2.3.4 Kinetic studies 2.3.5 Carbon deposition 2.3.6 <i>ln situ</i> and <i>operando</i> DRIFTS 2.4 Discussion 	35 35 37 37 38 40 42 42 55 59 71 75 79 84

2.5 Conclusions	86
CHAPTER 3: Direct CO ₂ Hydrogenation to Light Olefins over Tandem Catalyst	88
3.1 Introduction	88
3.2 Experimental Methods	91
3.2.1 Catalyst preparation	91
3.2.2 Characterization	92
3.2.3 Catalyst evaluation	93
3.3 Results and Discussion	94
3.3.1 Characterization of catalysts	94
3.3.2 Activity measurements	107
3.3.3 Characterization of spent catalysts	112
2.3.4 Carbon deposition	74
3.4 Conclusions	119
SUMMARY AND FUTURE WORK	121
REFERENCES	124

LIST OF FIGURES

		Page
Figure 1	Global carbon emissions from fossil fuels	1
Figure 1.1	Schematic illustration of the nanotubular multi-yolk-shell structure	5
Figure 1.2	TEM images of nanotubular multi-yolk-shell catalysts	11
Figure 1.3	TEM images of Ni@SiO ₂	12
Figure 1.4	EDX elemental mapping images	13
Figure 1.5	SEM images of NiCe@SiO ₂ ^C	14
Figure 1.6	XRD patterns of NiCe@SiO ₂ ^A , NiCe@SiO ₂ ^C , and NiCe/SiO ₂ ^{WI}	14
Figure 1.7	XRD patterns after H ₂ reduction	16
Figure 1.8	N2 adsorption-desorption isotherms	17
Figure 1.9	H ₂ -TPR profiles of Ni@SiO ₂ , Ni/SiO ₂ ^{WI} , and Ce/SiO ₂ ^{WI}	18
Figure 1.10	H2-TPR profiles of NiCe@SiO2 ^A , NiCe@SiO2 ^C , and NiCe/SiO2 ^{WI}	18
Figure 1.11	XPS spectra of reduced NiCe@SiO2 ^A , NiCe@SiO2 ^C , and NiCe/SiO2 ^{WI}	21
Figure 1.12	CO_2 and CH_4 conversions in O/M ratios of (a) 1.1 and (b) 1.0	22
Figure 1.13	$\rm H_2$ and CO yields and $\rm H_2/CO$ ratio in O/M ratios of (a) 1.1 and (b) 1.0	23
Figure 1.14	CO_2 and CH_4 conversions in O/M ratio of 1.25	23
Figure 1.15	XRD patterns of spent catalysts in O/M ratios of (a) 1.1 and (b) 1.0	24
Figure 1.16	TEM images of spent catalysts in O/M ratio of 1.1	25
Figure 1.17	TEM image of spent catalysts in O/M ratio of 1.25	25
Figure 1.18	XRD pattern during the deactivation process at O/M ratio of 1.1	26
Figure 1.19	(a) Raman spectra and (b) TGA profiles of spent catalysts	27
Figure 1.20	CO_2 and CH_4 conversions in O/M ratio of 0.85	29
Figure 1.21	XRD patterns of spent catalysts in O/M ratio of 0.85	29
Figure 2.1	TEM images of reduced Pt ^{0.25} -NiCe@SiO ₂ catalyst	42
Figure 2.2	TEM images of reduced Pt ^{0.25} -NiCe@SiO ₂ catalyst	43
Figure 2.3	EDX elemental mapping images of reduced Pt ^{0.25} -NiCe@SiO ₂	44

Figure 2.4	EDX spectrum for reduced Pt ^{0.25} -NiCe@SiO ₂	45
Figure 2.5	TEM images of reduced Pt ^{0.25} -NiCe/SiO ₂ ^{WI}	45
Figure 2.6	EDX elemental mapping images of reduced Pt ^{0.25} -NiCe/SiO ₂ ^{WI}	46
Figure 2.7	TEM images of reduced Pt ^{0.25} -NiCe/SiO ₂ ^{WI}	46
Figure 2.8	XRD patterns of yolk-shell and impregnated catalysts	47
Figure 2.9	XRD patterns of fresh, reduced, and spent catalysts	47
Figure 2.10	XRD pattern of fresh Pt ¹ -NiCe/SiO ₂ ^{WI}	48
Figure 2.11	(a) Ni 2p and (b) Ce 3d XPS spectra of reduced catalysts	50
Figure 2.12	XPS spectrum of Pt ^{0.25} -NiCe@SiO ₂ in the Pt 4f region	51
Figure 2.13	H ₂ -TPR profiles for yolk–shell and impregnated catalysts	52
Figure 2.14	H2-TPR profiles	52
Figure 2.15	H2-TPR profiles	54
Figure 2.16	CO_2 and CH_4 conversions of yolk–shell and impregnated catalysts	56
Figure 2.17	CO_2 and CH_4 conversions mass transport resistance measurements	56
Figure 2.18	CO ₂ and CH ₄ conversion rates	58
Figure 2.19	AC-HAADF-STEM images of fresh catalysts	61
Figure 2.20	TEM images of fresh (a) Pt ^{0.5} -NiCe@SiO ₂ and (b) Pt ¹ -NiCe@SiO ₂	60
Figure 2.21	EDX elemental mapping images of fresh Pt ¹ -NiCe@SiO ₂	56
Figure 2.22	XANES spectra at Pt L_3 -edge for catalysts	61
Figure 2.23	EXAFS spectra at Pt L_3 -edge for fresh catalysts	63
Figure 2.24	AC-HAADF-STEM images of reduced Pt ^{0.25} -NiCe@SiO ₂	64
Figure 2.25	AC-HAADF-STEM images of reduced Pt1-NiCe@SiO2	65
Figure 2.26	XANES spectra for reduced catalysts	66
Figure 2.27	AC-HAADF-STEM images of fresh Pt ^{0.25} -NiCe@SiO ₂	67
Figure 2.28	EXAFS spectra at Pt L ₃ -edge for reduced catalysts	68
Figure 2.29	Wavelet transform (WT) for the EXAFS signals	69
Figure 2.30	Long-term stability of the catalysts	70
Figure 2.31	CO ₂ and CH ₄ conversion of Pt ^{0.25} -NiCe@SiO ₂ at 750 °C	71

Figure 2.32	Reaction rates as a function of the partial pressures	72
Figure 2.33	Arrhenius plots for reaction rates on Pt ^{0.25} -NiCe@SiO ₂	73
Figure 2.34	Characterization for spent catalysts	74
Figure 2.35	XRD pattern of spent Pt ^{0.25} -NiCe/SiO ₂ ^{WI}	75
Figure 2.36	AC-HAADF-STEM images of spent Pt ^{0.25} -NiCe@SiO ₂	78
Figure 2.37	EXAFS spectra at Pt L ₃ -edge for spent Pt ^{0.25} -NiCe@SiO ₂	79
Figure 2.38	Time-resolved in situ DRIFTS spectra	80
Figure 2.39	Operando DRIFTS spectra	82
Figure 2.40	DRIFTS spectra of Ni/SiO ₂ ^{WI} and Pt ^{0.25} /SiO ₂ ^{WI}	83
Figure 2.41	Reaction mechanism for DRM on yolk-shell SAA catalyst	84
Figure 3.1	HRTEM and EDX elemental mapping images	95
Figure 3.2	XRD patterns, N_2 adsorption–desorption isotherms, and Raman spectra	96
Figure 3.3	Pore size distribution diagrams	98
Figure 3.4	H ₂ -TPR profiles of In ₂ O ₃ /YSZ, In ₂ O ₃ /ZrO ₂ , and their bare supports	99
Figure 3.5	H ₂ -TPR profile of pure In ₂ O ₃	100
Figure 3.6	(a) H ₂ -TPD and (b) CO ₂ -TPD profiles	101
Figure 3.7	(a) 0 1s, (b) In 3d, and (c) Zr 3d XPS spectra	102
Figure 3.8	SEM and TEM images of SAPO-34	104
Figure 3.9	XRD patterns of nano-sized SAPO-34 and commercial SAPO-34	105
Figure 3.10	N ₂ adsorption–desorption isotherms of SAPO-34	105
Figure 3.11	CO ₂ conversion, selectivity, and light olefins yield	107
Figure 3.12	CO $_2$ conversion, product selectivity, and light olefins yield at 420 °C	110
Figure 3.13	(a) TGA profiles and (b) XRD patterns of spent catalysts	112
Figure 3.14	$C_3^=/C_2$ product ratio during 45 h of reaction at 420 °C	113
Figure 3.15	(a) In 3d and (b) Zr 3d XPS spectra of spent catalysts	115
Figure 3.16	(a) 0 1s, (b) In 3d, and (b) Zr 3d XPS spectra of spent catalysts	116
Figure 3.17	XPS spectra of spent catalysts at 320 °C	117
Figure 3.18	CO ₂ conversion, product selectivity, and light olefins yield	118

LIST OF TABLES

		Page
Table 1.1	Textural properties of NiCe@SiO2 ^A , NiCe@SiO2 ^C , and NiCe/SiO2 ^{WI}	15
Table 1.2	H ₂ uptake during H ₂ -TPR experiments	19
Table 1.3	Physicochemical properties of the catalysts	20
Table 2.1	Crystallite size and lattice constant	49
Table 2.2	H ₂ uptake and Ni dispersion measured	53
Table 2.3	H ₂ uptake during H ₂ -TPR experiments	55
Table 2.4	Metallic content of catalysts	55
Table 2.5	H_2 and CO yield and H_2 /CO ratio under DRM	59
Table 2.6	Structural parameters obtained from the EXAFS fittings	63
Table 2.7	Linear combination fitting (LCF) results of the XANES spectra	67
Table 2.8	Structural parameters obtained from the EXAFS fittings	68
Table 2.9	Apparent activation energies for Pt ^{0.25} -NiCe@SiO ₂	73
Table 2.10	Deposited carbon amount and I_D/I_G ratios	76
Table 2.11	Crystallite size for fresh and spent catalysts	78
Table 2.12	Structural parameters obtained from the EXAFS fittings	79
Table 3.1	Crystallite size of In2O3/YSZ, In_2O_3/ZrO_2 , and their bare supports	97
Table 3.2	Textural properties of In_2O_3/YSZ , In_2O_3/ZrO_2 , and their bare supports	98
Table 3.3	H ₂ uptake measured by H ₂ chemisorption	97
Table 3.4	Relative surface concentration of oxygen species	103
Table 3.5	Relative surface chemical concentration without SAPO-34	104
Table 3.6	Textural properties of SAPO-34	106
Table 3.7	Catalytic performance in CO_2 hydrogenation	108
Table 3.8	Catalytic performance in CO_2 hydrogenation at 45 h TOS	111
Table 3.9	Crystallite size and lattice constant for spent catalysts	114
Table 3.10	Relative surface concentration of oxygen species of catalysts	115

ACKNOWLEDGEMENTS

I would like to express the deepest appreciation to my committee chair, Assistant Professor Erdem Sasmaz, who has continually been supportive of my success in regard to research and scholarship. Without his guidance and invaluable advice, this dissertation would not have been possible.

I would also like to thank my committee members, Professor Plamen Atanassov and Professor Ali Mohraz for serving on my dissertation committee and their valuable time. I remain thankful for them who have helped me reach my goal throughout the time of study here.

I thank the Elsevier for permission to include Chapter One of my dissertation, which was originally published in *Applied Catalysis B: Environmental*. I thank Professor Jochen Lauterbach, Dr. Michael J. Lance, Nicole Cordonnier, and Bradie S. Crandall as the co-author listed in this publication for co-working. I also thank American Chemical Society for permission to include portion of Chapter two of my dissertation, which was originally submitted in *ACS Catalysis*.

VITA

Sunkyu Kim

- 2014 B.S. in Chemical Engineering, Inha University, South Korea
- 2016 M.S. in Chemical Engineering, Inha University, South Korea
- 2021 Ph.D. in Chemical and Biomolecular Engineering, University of California, Irvine, USA

FIELD OF STUDY

Heterogeneous Catalysis and Reaction Engineering

ABSTRACT OF THE DISSERTATION

Highly Active Heterogeneous Catalysts for Carbon Dioxide Reduction to Value-Added Chemicals

by

Sunkyu Kim

Doctor of Philosophy in Chemical and Biomolecular Engineering University of California, Irvine, 2021 Assistant Professor Erdem Sasmaz, Chair

Carbon dioxide (CO₂) utilization is indispensable to reduce high atmospheric CO₂ concentration, attributing to global warming and ocean acidification. Reduction of CO₂ into high value-added chemicals and fuels is a promising process to mitigate CO₂ emissions and opens possibilities to have carbon-based energy production with net-zero carbon emissions. CO₂ is the most oxidized form of carbon and thermodynamically stable. To effectively reduce CO₂, nanotubular yolk-shell catalysts for methane reforming, and tandem catalysts for direct CO₂ hydrogenation to light olefins were developed. In the former process, Ni yolks encapsulated with SiO₂ shell demonstrated excellent stability with a high resistance to carbon deposition in the confined morphology due to the efficient CO desorption. Forming Pt–Ni single-atom alloys on the yolks pushed the catalyst operating temperature down to 500 °C and further improved the catalyst stability due to the enhanced Ni reducibility. In the latter process, indium oxide supported on zirconia and SAPO-34 zeolite were operated as a tandem catalyst to produce a high light olefins selectivity by shifting the reaction equilibrium to the right for the CO₂ to methanol conversion. Zirconia promoted with yttria (YSZ) inhibited the reduction and hydroxylation of active indium sites. The improved oxygen vacancy formation in YSZ and strong metal– support interaction between indium oxide and YSZ resulted in stable light olefins production. These discoveries can be adopted to the current power generation and manufacturing processes to utilize CO₂ emissions to produce high value-added chemicals with net-zero carbon emissions.

INTRODUCTION

Serious climate change arising from the large amount of greenhouse gas (GHG) emissions by anthropogenic activities should be hindered by mitigating the emissions. Many efforts contributed from global institutions have emphasized that limiting the temperature increase below 2 °C by 2050 is required to slow down the climate change.¹ At the same time, the need for valuable chemical resources has been exponentially grown by human civilization in the modern times, and the global energy consumption is projected to rise by 50% between 2020 and 2050.² While the renewable energy consumption is expected to suppress the fossil-based energy consumption by 2050, the global natural gas and liquid fuel consumption are expected to rise by 40% and 20%, respectively. Therefore, it is imperative to develop the process to convert cheap and abundant sources into high value-added chemicals and fuels to solve both environmental concerns and meet the growing energy demand at the same time. GHG emissions have been continuously increasing over the decades, with CO₂ being the primary GHG, accounting for 82%, followed by methane (CH₄), composing 10% by human activities. The combustion of fossil fuels for electricity generation remains the largest source of CO₂ emissions in the US.^{3–5} Figure 1 shows global carbon emissions from fossil fuels since 1900, and CO₂ emissions have increased

Figure 1. Global carbon emissions from fossil fuels

by more than 100% since 1970. The CO_2 emissions are related to energy consumption and economic growth, and they need to be controlled to mitigate their effect on climate change.⁶

The main climate change mitigation can be employed by decarbonization techniques through renewable energy, carbon capture and storage, or switching to low-carbon fuels.⁷ The CO₂ gas captured or separated from fossil fuels-based processes can be utilized in the production of chemicals and fuels by introduction of alternative energy sources.⁸ Although transforming CO₂ as the direct carbon source to chemicals and fuels cannot eliminate carbons over the complete life cycles, it can produce more environmental production, which also can solve the high energy demand in modern society. Transition to a low-carbon such as natural gas can be a promising approach to realize a net-zero carbon economy and environmental sustainability. Natural gas contains CH₄ which can be converted to hydrogen (H₂) with thermal processes through methane reforming.^{9,10} The H₂ created by the methane reforming can be implanted to other reactions such as reverse water-gas shift (RWGS) or CO₂ hydrogenation in order to produce high value-added chemicals such as methanol, light olefins, and diesel.¹¹ Therefore, efficient and selective catalysts in an integrated reactor with a minimum of energy cost need to be developed to produce targeted products and realize a low carbon economy.

CHAPTER 1

Nanotubular Yolk–Shell Catalysts for Tri-Reforming of Methane

1.1 Introduction

Many concepts have been explored to utilize CO_2 as a feedstock including hydrogenation, reforming, mineralization, photoreduction, electroreduction, co-polymerization and bio-catalytic conversion.^{12–15} Among them, synthesis gas (syngas, a mixture gas of H₂ and carbon monoxide) production through the application of reforming is proposed to be a valuable technology, which can be developed in the midterm by using novel catalytic routes to break C–O bonds and convert CO_2 to valuable chemicals.^{12,16,17} Tri-reforming of methane (TRM) is a unique process that can be applied to utilize CO_2 emissions directly from a combustion source using natural gas as the primary reactant.^{10,18–20} It has been reported that fossil fuel-fired power plants integrated with the TRM process could reduce CO_2 emissions by up to 85%.²¹ TRM involves synergetic combination of dry reforming of methane (DRM, (1.1)), steam reforming of methane (SRM, (1.2)), and partial oxidation of methane (POM, (1.3)) as shown in the following reactions:

$CH_4 + CO_2 \rightarrow 2CO + 2H_2$	$\Delta H^{o} = +247.3 \text{ kJ} \cdot \text{mol}^{-1}$	(1.1)
$CH_4 + H_2O \rightarrow CO + 3H_2$	$\Delta H^{o} = +206.3 \text{ kJ} \cdot \text{mol}^{-1}$	(1.2)
$CH_4 + (1/2)O_2 \rightarrow CO + 2H_2$	$\Delta \mathrm{H}^{\mathrm{o}} = -35.6 \mathrm{kJ} \cdot \mathrm{mol}^{-1}$	(1.3)

In TRM, the CO₂ in the flue gas can be converted to syngas by DRM. DRM produces a H_2/CO molar ratio of 1, which can potentially be used for the production of liquid hydrocarbons and oxygenates.²² Although DRM has the advantage of utilizing CO₂ as an oxidizer, it is a highly endothermic reaction, and it needs a pure CO₂ stream with suffering from carbon deposition

leading to catalyst deactivation.^{23–25} Coupling DRM with SRM and POM can provide the advantage of adjusting the H₂/CO molar ratios produced between 1 and 2.5, desired for the Fischer–Tropsch, methanol, and dimethyl ether synthesis.^{26–30} Incorporation of H₂O and O₂ as an oxidizer into the feed stream can eliminate carbon deposition and reduce energy needs through POM.^{31,32} The synergetic combination of three reactions in TRM eliminates the need for preseparate CO₂, which can further decrease the energy consumption and cost of operation.

Nickel (Ni)-based catalysts are widely studied for TRM as they have a low cost compared to noble metals and show high activity at 750 °C.^{10,18,20,33,34} The addition of promoters to the Nibased catalysts can further increase the activity and stability of the material by strengthening the metal–support interaction, providing high oxygen storage capacity and creating strong basic sites for CO₂ activation.³⁵⁻³⁷ Ni structures supported or promoted with ceria (CeO₂) can improve the TRM activity, as CeO₂ can store and release oxygen reversibly due to its oxygen vacancies and reversible valence redox property (Ce³⁺/Ce⁴⁺).^{38,39} In addition to the promoters, the effect of CeO₂-based supports on TRM activity has been investigated, in which small Ni particle sizes on CeO₂-based supports are reported to be beneficial for stable activity.^{40,41} In these earlier studies, the effect of promoters or order of metal impregnation on the TRM activity has been examined. However, the interaction among active Ni, promoter, and support, and the effect of particle size on the TRM activity has not been identified.

Catalyst morphologies with unique physical and chemical properties, i.e., core/yolk-shell structures have been investigated in reforming reactions and shown to have high resistance to carbon deposition and sintering due to the confinement effect and enhanced metal-support interaction.^{42–51} Compared to the core–shell, the yolk–shell structures (Figure 1.1) contain a void space between the core metals and the outer shell materials which can provide additional properties to the material. The unique nanoreactor environment of the yolk-shell can facilitate chemical storage and confinement of the reactants, intermediates, and products. The cavity between the yolk and shell provides not only high exposed active areas but also a homogenous environment for catalysis.^{52–56} Few papers have been published on the core/volk–shell catalysts for DRM and POM. These studies emphasize that shell thickness, yolk size, pore size and porosity can influence the activity and stability of core/yolk-shell catalysts for DRM.⁵⁷⁻⁵⁹ In addition, core-shell catalysts promoted with La and Ce can further improve the stability of the catalyst by reducing the surface carbon growth in DRM and POM.^{52,60} To date, there is only one study reported the activity of a Ni@SiO₂ core-shell catalyst under various feed stream concentrations in TRM. In this study, formation of a core-shell structure is inconclusive and the

Figure 1.1. Schematic illustration of the core–shell, yolk–shell, and nanotubular multi–yolk–shell structures.

effect of Ni particle size on the TRM activity at various oxidizer to methane feed ratios could not be understood.⁶¹

It is important to note that TRM can be operated at different oxidizer ($CO_2 + H_2O + O_2$) to methane (O/M) feed ratios. Variations in CH₄ concentration in the feed stream can dramatically influence the catalyst performance for TRM. Generally, a catalyst for TRM should be able to exhibit high carbon resistance under reducing conditions ($O/M \le 1$), while re-oxidation of active metallic Ni to NiO should be hindered under oxidizing conditions (O/M > 1).^{61,62} Most of the studies involving core/yolk–shell structures were performed under DRM conditions, and the effects of catalyst morphology and Ni–promoter interaction on the TRM activity at various O/M feed ratios have not been investigated. In this work, we have evaluated the TRM activity and stability of nanotubular NiCe@SiO₂ multi–yolk–shell catalysts at different O/M feed ratios and identified the influence of yolk size and Ni–Ce interaction on the catalytic performance. To the best of our knowledge, this is the first study reporting the effect of morphology on the activity of the yolk–shell structured catalysts at various O/M feed ratios under TRM.

1.2 Experimental Methods

1.2.1 Catalyst synthesis

The nanotubular NiCe@SiO₂ multi–yolk–shell catalyst was synthesized by reverse microemulsion method, and the chemical reagents were used as purchased without any further purification. The solution containing 0.2 M nickel nitrate hexahydrate (Ni(NO₃)₂· $6H_2O$, 98%, Alfa Aesar) and 0.05 M cerium nitrate hexahydrate (Ce(NO₃)₃· $6H_2O$, 99%, Sigma Aldrich) in 4

ml of deionized (DI) water was added dropwise to the microemulsion dissolved in 0.17–0.26 M 1-hexadecyl trimethyl ammonium bromide (CTAB) (CH₃(CH₂)₁₅N(CH₃)₃Br, 98%, Alfa Aesar) in 15 ml of 1-butanol (CH₃(CH₂)₃OH, anhydrous, 99.8%, Sigma Aldrich) and 80 ml of cyclohexane (C₆H₁₂, 99%, Alfa Aesar) mixture. After stirring the solution for 1 h, the transparent microemulsion solution was heated up to 70 °C in an oil bath, and 0.7 ml of hydrazine (N₂H₄, anhydrous, 98%, Sigma Aldrich) with 0.5 M sodium hydroxide (NaOH, Fisher Chemical) in 1.5 ml DI was added to the solution dropwise, followed by further stirring for 40 min. The solution was cooled down to room temperature and aged for another 2 h under stirring. Finally, 1.5 ml of tetraethyl orthosilicate (TEOS) (Si(OC₂H₅)₄, 99% Sigma Aldrich) was added to the solution dropwise, and after 1 h, 1.5 ml of ammonium hydroxide solution (NH₄OH, 28% NH₃, Alfa Aesar) was added to the solution dropwise. The final solution was aged for 1 day for hydrolysis and condensation of the silica precursor. The solution was washed with ethanol and separated by centrifuging. The washed sample was dried at 100 °C overnight, and then calcined in static air at 500 °C for 4 h with a ramping rate of 5 °C min⁻¹. Different yolk sizes and tube diameters can be obtained by controlling the water to surfactant (CTAB) molar ratio. A low water/CTAB ratio leads to larger yolk size with a shorter tube diameter, and a high water/CTAB ratio forms a smaller yolk size with a longer tube diameter. NiCe@SiO₂^A, NiCe@SiO₂^B, and NiCe@SiO₂^C catalysts were prepared in a water to CTAB ratio of 12.6, 15.8, and 18.9, respectively. For comparison, conventional NiCe/SiO₂^{WI} was synthesized by a wet impregnation method. 0.02 M $Ni(NO_3)_2 \cdot 6H_2O$, 0.005 M Ce(NO₃)₃ $\cdot 6H_2O$, and 0.5 g of fumed silica (SiO₂, Sigma Aldrich) were mixed in 50 ml ethanol (C_2H_6O , anhydrous, Fisher Chemical). The whole mixture was stirred overnight, and the material was dried at 100 °C overnight, followed by calcination at 500 °C in stagnant air for 4 h with a ramping temperature rate of 5 $^{\circ}$ C min⁻¹.

1.2.2 Characterization

Field emission scanning electron microscopy (FESEM, Zeiss Ultra plus) and transmission electron microscopy (TEM, Hitachi H8000) images were obtained to investigate the morphology of the catalysts. Histogram distributions of yolk size were generated by analyzing TEM images, and 100 yolks were used for each distribution. The elemental mapping of the catalysts was collected using a scanning transmission electron microscope (STEM, FEI Talos F200X). The weight percent of Ni and Ce in the samples was analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES, Optima 2000 DV). Powder X-ray diffraction (XRD) patterns of the catalysts were obtained by using a Rigaku MiniFlex II with CuKa source radiation ($\alpha = 1.5406$) for 20 range of 10°–80° with a step rate of 2° min⁻¹. The crystallite size of the components was calculated using the Scherrer equation from the peaks at the (111) phase of each chemical element. The specific surface area of the sample was measured using a Micromeritics ASAP 2020. The samples were degassed at 300 °C for 7 h to remove the moisture prior to the measurements. Hydrogen temperature programmed reduction (H_2 -TPR) was performed using a Micromeritics AutoChem II to identify the interaction between active species and supports and determine the reducibility of the catalysts. First, 50 mg of catalyst was heated up to 300 °C and held for 1 h under He flow to eliminate moisture and contaminants, and then cooled down to 30 °C. After the preparation step, the temperature of the catalyst was increased from 30 °C to 900 °C at a ramping rate of 10 °C min⁻¹ in a 10% H₂/Ar mixture, and the H₂ consumption was monitored by a thermal conductivity detector (TCD). The amount of H_2 reduced was calibrated by using CuO. H₂ pulse chemisorption experiments were performed with the same apparatus as H₂-TPR to determine the dispersion of Ni. First, 100 mg of catalyst was reduced under 10% H₂/Ar at 600 °C for 5 h. Then the catalyst was purged at 610 °C for 1 h and

cooled down to 35 °C under He flow. H₂ pulse chemisorption was conducted at 35 °C in 10% H₂/Ar with 8 min intervals. The oxidation states of the elements presented in catalysts were determined by X-ray photoelectron spectroscopy (XPS) with a Kratos Axis Ultra DLD using AlK α radiation, and the binding energy was calibrated to the signal of C 1s at 284.8 eV. The spectra were obtained after the samples were reduced in H₂ at 600 °C for 1 h. Thermogravimetric analysis (TGA) was employed using a TGA-50 Shimadzu to determine carbon deposition on the spent catalyst. The sample weight loss was characterized under air flow from 30 °C to 900 °C with a ramping temperature of 10 °C min⁻¹. Raman spectra were obtained using an XploRA PLUS system from Horiba in the backscattering configuration at a 638 nm wavelength to determine the nature of carbon formed on the spent catalyst.

1.2.3 TRM activity

The performance of the catalyst for TRM was tested in a fixed-bed reactor at atmospheric pressure. 75 mg of the catalyst was placed between quartz wool in a quartz reactor with an inner diameter of 7 mm. Water was injected into an evaporator via a peristaltic pump and mixed with the reaction gases. The reaction gases (CH₄, CO₂, O₂, and N₂) were introduced to the evaporator via mass flow controllers. The reactor was placed in a furnace and the temperature of the catalyst was measured by a K-type thermocouple placed inside the catalyst bed. The effluent gases were passed through a condenser in which water vapor was removed, and their concentration was measured with a gas chromatograph (GC) using TCD. Prior to the reaction, all catalysts were reduced at 600 °C for 1 h with 25% H₂ balanced with N₂. Following the reduction, the catalysts were heated up to a reaction temperature of 750 °C under N₂ flow. The TRM reaction was carried out for 20 h in a gas hourly space velocity (GHSV) of 60,000 ml g⁻¹ h⁻¹ at different O/M feed ratios including 0.85 (CH₄ : CO₂ : H₂O : O₂ = 2.59 : 1 : 1 : 0.2), 1 (CH₄ : CO₂ : H₂O : O₂ =

9

$$2.2:1:1:0.2$$
), 1.1 (CH₄: CO₂: H₂O: O₂ = $2:1:1:0.2$) and 1.25 (CH₄: CO₂: H₂O: O₂ =

1.76 : 1 : 1 : 0.2). The catalytic activity was calculated using the following equations:

Conversion (%) =
$$\frac{F_{\text{react,in}} - F_{\text{react,out}}}{F_{\text{react,in}}} \times 100$$
 (1.4)

$$H_2 \text{ yield (\%)} = \frac{F_{H2,out}}{2F_{CH4,in} + F_{H20,in}} \times 100$$
 (1.5)

CO yield (%) =
$$\frac{F_{CO,out}}{F_{CO2,in} + F_{CH4,in}} \times 100$$
 (1.6)

$$H_2/CO ratio = \frac{F_{H2,out}}{F_{CO,out}}$$
(1.7)

where F is the molar flow rate of the reagent species measured at the inlet and outlet of the reactor. The reproducibility of the catalytic activity for all experiments is within $\pm 5\%$.

1.3 Results and Discussion

1.3.1 Characterization of fresh catalysts

Figure 1.2a–c show TEM images of nanotubular NiCe@SiO₂^A, NiCe@SiO₂^B, and NiCe@SiO₂^C multi–yolk–shell catalysts synthesized in a solution containing water/CTAB molar ratios of 12.6, 15.8, and 18.9, respectively. The yolk nanoparticles of each catalyst are shown to be dispersed uniformly with a mean size of 32.9 nm, 23.7 nm, and 20.0 nm for NiCe@SiO₂^A, NiCe@SiO₂^B, and NiCe@SiO₂^C, respectively. The yolks of NiCe@SiO₂^A, NiCe@SiO₂^B, and NiCe@SiO₂^C are encapsulated by SiO₂ with an average tube diameter of 41.8 nm, 243.0 nm, and 275.0 nm, respectively. The nanotubular multi–yolk–shell structure prepared at a high concentration of CTAB, i.e. NiCe@SiO₂^A, consists of larger yolks with a smaller diameter tube, whereas the nanotubular multi–yolk–shell structure synthesized at a low concentration of CTAB,

Figure 1.2. TEM images of nanotubular multi–yolk–shell catalysts synthesized in different water to CTAB ratios of (a) 12.6 (NiCe@SiO₂^A), (b) 15.8 (NiCe@SiO₂^B), and (c) 18.9 (NiCe@SiO₂^C) solution. The inset graph shows yolk size distribution. (d) TEM image of NiCe/SiO₂^{WI} synthesized by wet impregnation.

i.e. NiCe@SiO₂^C, has smaller yolks within a larger diameter tube. Compared to the nanotubular multi–yolk–shell structured catalysts, conventional NiCe/SiO₂^{WI} synthesized by wet impregnation method does not show any specific morphology (Figure 1.2d). It is important to note that Ce species are necessary to generate nanotube morphology. For instance, it is observed that Ni@SiO₂ without Ce forms a spherical yolk–shell structure rather than a nanotubular structure when similar amounts of Ni exist as in NiCe@SiO₂ (Figure 1.3). This is because the nanotube formation and elongation is limited by the amount of gas released during the synthesis, in which Ce ions produce double amount of N₂ in comparison to Ni ions during reduction with hydrazine in the synthesis step.⁶³

Figure 1.3. TEM images of Ni@SiO₂ synthesized without Ce promoter.

As shown in Figure 1.4, the elemental mapping of STEM images of the NiCe@SiO₂^A and NiCe@SiO₂^C confirm that the yolks are composed of Ni species surrounded by an outer shell consisting of only SiO₂. As shown in Figure 1.4a, accumulation of Ce on larger Ni yolks in NiCe@SiO₂^A is more pronounced than that in NiCe@SiO₂^C with smaller yolks. Ce is found to be more dispersed throughout the catalysts, yet it is mostly accumulated on the Ni yolks indicating the possible Ni–Ce interaction. It is important to note that characteristic X-ray signals detected for Ce in the energy dispersive X-ray (EDX) spectra is low compared to Ni and Si. Although most of the Ce components are inside the nanotube structures, Ce pixels observed outside the nanotubes are possibly due to the low signal-to-noise ratio. The contrast change of Si between the edges and inner parts of the nanotube indicates that the SiO₂ shell has a cylindrical tube

Figure 1.4. EDX elemental mapping images of (a) NiCe@SiO₂^A and (b) NiCe@SiO₂^C (Ni: green, Ce: yellow, Si: magenta, and O: blue).

morphology with the presence of interstitial voids. Both the TEM and STEM images cannot definitively confirm whether the nanotubes are capped at each end. However, the overview SEM images of NiCe@SiO₂^C, shown in Figure 1.5, confirm that the tube structure is hollow on the inside, and both Ni and Ce particles are attached to the inner walls of the hollow tube.

The XRD measurements of the synthesized NiCe@SiO₂^A, NiCe@SiO₂^C, and NiCe/SiO₂^{WI} are shown in Figure 1.6. All three catalysts show NiO and CeO₂ diffraction patterns with an amorphous SiO₂ structure. The peaks at 2-theta of 37.66°, 43.69°, and 63.24° are

Figure 1.5. SEM images of NiCe@SiO₂^C.

identified as NiO, and the other peaks at 29.20°, 33.74° , 48.10° , 56.92° , and 75.74° belong to the cubic CeO₂ structure. The broad peak at 21.26° indicates the formation of amorphous SiO₂

Figure 1.6. XRD patterns of NiCe@SiO $_2^A$, NiCe@SiO $_2^C$, and NiCe/SiO $_2^{WI}$.

shells. Based on the XRD patterns, the NiCe@SiO₂^A catalyst shows the largest NiO crystallite size of 18.3 nm, followed by 16.2 nm for NiCe@SiO₂^C and 14.3 nm for NiCe/SiO₂^{WI} (Table 1.1).

Catalysts	Crystallite size $(nm)^a$		Surface area	Metal loading (wt%) ^c	
	NiO	CeO ₂	$(m^2 g^{-1})^b$	Ni	Ce
NiCe@SiO ₂ ^A	18.3 ± 0.2	6.7 ± 1.3	400.3	8.2	5.2
NiCe@SiO ₂ ^C	16.2 ± 0.8	8.5 ± 1.1	366.9	7.5	5.3
NiCe@SiO2 ^{WI}	14.3 ± 0.5	4.3 ± 0.3	486.0	7.2	4.6

Table 1.1. Textural properties of NiCe@SiO₂^A, NiCe@SiO₂^C, and NiCe/SiO₂^{WI}.

^{*a*}Calculated according to the Scherrer equation applied to (111) phase. ^{*b*}BET surface area. ^{*c*}Measured by ICP-OES analysis.

The crystallite sizes of CeO₂ for the NiCe@SiO₂^A, NiCe@SiO₂^C and NiCe/SiO₂^{WI} catalysts are found to be 6.7 nm, 8.5 nm, and 4.3 nm, respectively. NiCe/SiO₂^{WI} has the lowest CeO₂ crystallite size suggesting that ceria has higher dispersion and larger amount of oxygen vacancies than NiCe@SiO₂^A followed by NiCe@SiO₂^{C,64} The average yolk size of NiCe@SiO₂^A measured by TEM (32.9 nm) is much larger than the NiO crystallite size calculated by XRD (18.3 nm) indicating that the yolks in NiCe@SiO₂^A are possibly formed with grain. On the other hand, the average yolk size of NiCe@SiO₂^C by TEM (20.0 nm) matches reasonably well with the NiO crystallite size (16.2 nm). Figure 1.7 represents the XRD diffraction patterns of NiCe@SiO₂^A, NiCe@SiO₂^C, and NiCe/SiO₂^{WI} after one hour of H₂ reduction at 600 °C. The peaks at 2-theta of 45.08°, 52.4°, and 76.84 correspond to metallic Ni phase. The NiO phase is not detected, indicating that NiO was fully reduced to metallic Ni in all catalysts. The Ni crystallite size of NiCe/SiO₂^{WI} has the smallest value of 10.4 nm followed by 12.2 nm for NiCe@SiO₂^A and 14.9 nm for NiCe@SiO₂^C. The crystalline CeO₂ peaks get broader after the reduction, suggesting that

Figure 1.7. XRD patterns of NiCe@SiO₂^A, NiCe@SiO₂^C, and NiCe/SiO₂^{WI} after H₂ reduction at 600 °C for 1 h.

the phase transition of crystalline CeO_2 into Ce_2O_3 has been initiated. For NiCe/SiO₂^{WI}, no CeO₂ peaks are observed due to the formation of highly dispersed CeO_x particles.⁶⁵

The textural properties of the catalysts such as specific surface area and metal weight percentages are presented in Table 1.1. The NiCe@SiO₂^A catalyst with smaller tube diameter provides larger surface area than the NiCe@SiO₂^C catalyst, while the NiCe/SiO₂^{WI} catalyst has the highest surface area of 486.0 m² g⁻¹ among three catalysts. The weight percentages of Ni and Ce are measured to be in between 7.2–8. 2 wt% and 4.6–5.3 wt% by ICP-OES in all three catalysts, respectively. The nitrogen adsorption-desorption isotherms of the NiCe@SiO₂^A, NiCe@SiO₂^C, and NiCe/SiO₂^{WI} catalysts are shown in Figure 1.8. The isotherms of NiCe@SiO₂^A and NiCe@SiO₂^C show type IV isotherm with H3 hysteresis, while NiCe/SiO₂^{WI} has a type IV isotherm with H2 hysteresis. Both H2 and H3 hysteresis indicate that all three catalysts have a porous structure. However, isotherms of type IV with H3 hysteresis can be

Figure 1.8. N₂ adsorption-desorption isotherms of NiCe@SiO₂^A, NiCe@SiO₂^C, and NiCe/SiO₂^{WI}.

found in a hierarchical porous structure consisting of mesopores and macropores, which is consistent with the morphology of the nanotubular multi–yolk–shell structure.⁶⁶

H₂-TPR experiments are conducted to determine the reducibility of the synthesized catalysts and interaction between the active sites and support. The H₂-TPR profiles of the Ni@SiO₂, Ni/SiO₂^{WI}, and Ce/SiO₂^{WI} catalysts were also analyzed to elucidate the effect of the Ce promoter (Figure 1.9). As shown in Figure 1.10, three temperature regions are found to exist for the NiCe@SiO₂^A, NiCe@SiO₂^C, and NiCe/SiO₂^{WI} catalysts. The first H₂ consumption peak of α at temperatures between 215 °C and 400 °C is attributed to the combination of two reduction peaks of bulk NiO and aggregated NiO particles interacting more with the oxygen vacancies of CeO₂, in which the latter is expected to be at lower temperatures as oxygen vacancies improve the reducibility of NiO.^{36,49,67} Compared to Ni@SiO₂ (Figure 1.9), the α peak in the Ce promoted catalysts shifts to a lower temperature (311 °C) for NiCe@SiO₂^A and a higher temperature (333 °C) for NiCe@SiO₂^C. This can be explained by the yolk size effect and the formation of oxygen vacancies in the CeO₂ lattice, as smaller yolks have less Ni–Ce

Figure 1.9. H₂-TPR profiles of Ni@SiO₂, Ni/SiO₂^{WI}, and Ce/SiO₂^{WI}.

interaction and are harder to be reduced than the catalyst with larger yolks.⁶⁸ The H₂ consumption peak of β in the medium temperature region is associated with the dispersed Ni species interacting with CeO₂.⁶⁹ Formation of the β peak at slightly higher temperatures than the bulk NiO one has been observed by several other researchers.^{36,68} It is possible that dispersed Ni particles might have stronger interaction with SiO₂ support, which can shift the Ni–Ce reduction

Figure 1.10. H₂-TPR profiles of NiCe@SiO₂^A, NiCe@SiO₂^C, and NiCe/SiO₂^{WI}.

peaks to a higher temperature than the bulk NiO one.^{52,68} In the case of NiCe/SiO₂^{WI}, the α peak consists of NiO particles interacting more with the surface oxygen vacancies of CeO₂, and the NiO reduction peak observed at 352 °C on Ni/SiO₂^{WI} (Figure 1.9) shifts to 386 °C after Ce promotion due to an enhanced NiO–SiO₂ interaction. The H₂ consumption peak of γ at temperatures above 400 °C is assigned to the NiO particles strongly bonded to the SiO₂ support. The broad γ peak for nanotubular multi–yolk–shell catalysts is located in a higher temperature region compared to the impregnated catalyst. This indicates that NiO–SiO₂ interaction in NiCe@SiO₂ is stronger than that in NiCe/SiO₂^{WI} due to the encapsulation of Ni and Ce yolks by mesoporous SiO₂.^{44,70} The H₂ uptake of the nanotubular multi–yolk–shell and impregnated catalysts are compared with the actual Ni amount loaded on the catalyst, as shown in Table 1.2.

Table 1.2. H_2 uptake during H_2 -TPR experiments for NiCe@SiO₂^A, NiCe@SiO₂^C, and NiCe/SiO₂^{WI}.

Catalyst	Overall Ni	H	H ₂ uptake (mmol)		
Cuturyst	$(mmol)^a$	α	β	γ	54 P
NiCe@SiO ₂ ^A	0.070	0.084	0.013	0.019	6.5
NiCe@SiO ₂ ^C	0.064	0.056	0.008	0.013	7.0
NiCe@SiO ₂ ^{WI}	0.053	0.017	0.055	0.003	0.3

^aMeasured by ICP-OES analysis.

The overall H₂ consumption is much larger than the theoretical amount of Ni on all three catalysts due to the lattice oxygen reduction of CeO₂ by hydrogen spillover on Ni.^{36,69} The H₂ uptake ratio of α/β for the nanotubular NiCe@SiO₂ multi–yolk–shell catalyst is approximately 20 times higher than that of NiCe/SiO₂^{WI} indicating that most of H₂ is consumed by the bulk NiO and aggregated NiO particles interacting with CeO₂. Compared to NiCe@SiO₂^C, the higher overall H₂ consumption observed on NiCe@SiO₂^A indicates that larger yolks are easily reduced due to the formation of more oxygen vacancies in the CeO₂ lattice.

The Ni particle size and dispersion estimated from the H_2 chemisorption measurements is presented in Table 1.3. For nanotubular NiCe@SiO₂ multi-yolk-shell catalysts, Ni particle size is over 290 nm and much larger than the Ni size observed in TEM and XRD. The large particle size obtained for all catalysts from H₂ chemisorption does not represent the actual Ni particle size, indicating that Ni sites are not available to react with H₂. This difference can be explained by the lack of Ni sites for H₂ chemisorption due to the strong Ni–Ce interaction and partially embedded Ni particles in the SiO₂ support.^{55,56,59} The effect of latter on Ni particle size has more pronounced in the nanotubular multi-yolk-shell catalysts compared to the impregnated catalyst, leading to a much larger Ni particle size. As shown in the H₂-TPR experiments (Figure 1.10), the γ reduction peak is located at a high temperature for the nanotubular multi-yolk-shell catalysts indicating a strong NiO-SiO₂ interaction. Ni dispersion has also been calculated through H₂ chemisorption measurements. As shown in Table 1.3, The NiCe/SiO₂^{WI} exhibits the highest Ni dispersion of 1.71%, followed by 0.35% and 0.31% for NiCe@SiO₂^C and NiCe@SiO₂^A, respectively. Ni dispersions have previously been reported in the range of 0.12–0.27% for Ni based core/yolk-shell structures, which are in consistent with our work.^{59,71} The higher Ni dispersion observed on NiCe/SiO₂^{WI} compared to the nanotubular multi–yolk–shell catalysts is consistent with the smaller Ni particle size and higher surface area measured on the NiCe/SiO2^{WI} catalyst. It is important to note that Ni dispersion on the core/yolk-shell structure in which the

Table 1.3. Physicochemical properties of NiCe@SiO ₂ ^{-7} , NiCe@SiO ₂ ^{-7} , and NiCe/SiO ₂	$O_2^{w_1}$
---	-------------

Catalysts	$Ce^{3+}/(Ce^{3+}+Ce^{4+})(\%)^a$	Ni particle size $(nm)^b$	Ni dispersion $(\%)^b$
NiCe@SiO ₂ ^A	61.6	327.3	0.31
NiCe@SiO ₂ ^C	36.1	292.4	0.35
NiCe@SiO ₂ ^{WI}	62.9	59.1	1.71

^aObtained from XPS deconvolution. ^bCalculated based on H₂ chemisorption.

active metal is encapsulated by a support can be influenced by the shell material and strong metal–support interaction.⁵⁹

Analysis of the core level XPS spectra of Ni and Ce species shows consistent results with the H₂-TPR measurement. As shown in Figure 1.11a, the Ni 2p core level spectra of the reduced NiCe@SiO₂^A, NiCe@SiO₂^C, and NiCe/SiO₂^{WI} catalysts have characteristic metallic Ni peaks of Ni 2p_{3/2} (852.2 eV) and Ni 2p_{1/2} (869.5 eV) accompanied by shake-up structures.^{41,52} Figure 1.11b shows the Ce 3d core level XPS spectra of the reduced samples. The Ce core level spectra can be deconvoluted into multiple peaks for Ce $3d_{5/2}$ (v) and Ce $3d_{3/2}$ (u). The v and v'' bands are attributed to Ce⁴⁺, whereas v₀ and v' bands are assigned to Ce³⁺. The other bands (v''' and u''') available for Ce could not be detected due to the low signal-to-noise ratio. The relative Ce³⁺ concentration on the catalyst is calculated by the ratio of integrated Ce³⁺ peaks to the total Ce³⁺ and Ce⁴⁺ peaks (Ce³⁺/(Ce³⁺+Ce⁴⁺)). It has been found that NiCe/SiO₂^{WI} has the highest Ce³⁺ concentration of 62.9% followed by 61.6% and 36.1% for NiCe@SiO₂^A and NiCe@SiO₂^C, respectively (Table 1.3). This shows that more oxygen vacancies formed in the CeO₂ lattice by the dispersed NiO particles in NiCe/SiO₂^{WI} and aggregated NiO yolks in NiCe@SiO₂^A.

Figure 1.11. (a) Ni 2p and (b) Ce 3d XPS spectra of reduced NiCe@SiO₂^A, NiCe@SiO₂^C, and NiCe/SiO₂^{WI}.
1.3.2 TRM activity

The experiments for TRM were carried out at different O/M feed ratios to determine the activity and stability of the nanotubular multi–yolk–shell and impregnated catalysts. Figure 1.12a,b illustrate CO₂ and CH₄ conversions at 750 °C at O/M feed ratios of 1.1 and 1.0, respectively. As shown in Figure 1.12a, NiCe@SiO₂^A and NiCe/SiO₂^{WI} have comparable CO₂ conversions of 75% and 72%, and CH₄ conversions of 79% and 78% at O/M ratio of 1.1, respectively. NiCe@SiO₂^A and NiCe/SiO₂^{WI} present H₂ and CO yields of 75% and 77%, and 79% and 72% with the same H₂/CO ratio of 1.7, respectively (Figure 1.13). Both catalysts keep their activities stable over the 20 h period of reaction. In contrast, NiCe@SiO₂^C shows an initial CO₂ and CH₄ conversions of 69% and 71%, respectively, yet both CO₂ and CH₄ conversions drop to below 5% within about 5 h. TRM activity of NiCe@SiO₂^A with larger yolks was further tested at a higher O/M feed ratio of 1.25 to examine the catalytic activity and potential deactivation of the catalyst (Figure 1.14). The result shows that the NiCe@SiO₂^A catalyst still presents a stable activity with conversions of 67% and 84% for CO₂ and CH₄, respectively. As the O/M feed ratio decreases to 1.0, the catalysts show distinctive behavior compared to those

Figure 1.12. CO₂ and CH₄ conversions of (A) NiCe@SiO₂^A, (C) NiCe@SiO₂^C, and (WI) NiCe/SiO₂^{WI} catalysts in O/M ratios of (a) 1.1 and (b) 1.0 feed stream at 750 °C.

Figure 1.13. H₂ and CO yields and H₂/CO ratio of (A) NiCe@SiO₂^A, (C) NiCe@SiO₂^C, (WI) NiCe/SiO₂^{WI} in O/M ratios of (a) 1.1 and (b) 1.0 feed stream at 750 °C.

Figure 1.14. CO₂ and CH₄ conversions of NiCe@SiO₂^A in O/M ratio of 1.25 feed stream at 750 °C.

tested at the O/M feed ratio of 1.1. As shown in Figure 1.12b, NiCe@SiO₂^A and NiCe@SiO₂^C

have CO₂ conversions of 66% and 50%, and CH₄ conversions of 67% and 58%, respectively. For NiCe@SiO₂^A, these conversions correspond to the H₂ and CO yields of 68% and 64% with a H₂/CO ratio of 1.8 (Figure 1.13). The conventional NiCe/SiO₂^{WI} starts with similar conversion as the nanotubular multi–yolk–shell catalysts, however, the conversions plummet after about 1 h (Figure 1.12b). The fast deactivation of NiCe/SiO₂^{WI} can be attributed to severe carbon formation, which has blocked the catalyst bed. The higher resistance to carbon deposition for the nanotubular multi–yolk–shell catalyst than impregnated catalyst might come from the strong metal–support interaction due to confinement effect.⁷² Both lower conversion and yield measured under reducing condition (O/M = 1.0) than oxidizing condition (O/M = 1.1) can be explained by the side reactions (reactions (8–10) and (12)) which facilitate carbon deposition.⁷³ Most of the carbon can be deposited on the catalyst by methane cracking reaction (8) at 750 °C, leading to the increase in H₂/CO ratio.⁶¹

1.3.3 Characterization of spent catalysts

Figure 1.15a,b show the XRD spectra of the spent catalysts after TRM at the O/M feed ratio of 1.1 and 1.0, respectively. The XRD measurements performed on the spent catalysts after

Figure 1.15. XRD patterns of spent NiCe@SiO₂^A, NiCe@SiO₂^C, and NiCe/SiO₂^{WI} after 20 h of TRM in O/M ratios of (a) 1.1 and (b) 1.0 feed stream at 750 °C.

Figure 1.16. TEM images of spent (a) NiCe@SiO₂^A and (b) NiCe@SiO₂^C after 20 h of TRM in O/M ratio of 1.1 feed stream at 750 °C.

the TRM at the O/M feed ratio of 1.1 indicate that the reduced metallic Ni ($2\theta = 44.7^{\circ}$, 52.0° , and 76.6°) and amorphous SiO₂ shell maintained its phase in the NiCe@SiO₂^A and NiCe/SiO₂^{WI} catalysts (Figure 1.15a). No CeO₂ peaks are observed on NiCe@SiO₂^A and NiCe/SiO₂^{WI} after the reaction because crystalline CeO₂ phase turned into the amorphous phase in the presence of H₂ at temperatures above 600 °C.^{65,74,75} Despite the change of Ni and Ce phases during the reaction, the TEM image of the spent NiCe@SiO₂^A shows that the morphology of the nanotubular multi– yolk–shell is preserved without collapsing, as shown in Figure 1.16a. Further testing of NiCe@SiO₂^A at a higher O/M feed ratio of 1.25 also shows that higher oxidizer concentration in the feed stream does not influence the NiCe@SiO₂^A catalyst morphology (Figure 1.17). The mean yolk size of the spent catalyst (32.7 nm) is similar to the size of the fresh catalyst (32.9

Figure 1.17. TEM image of spent NiCe@SiO₂^A after 20 h of TRM in O/M ratio of 1.25 feed stream at 750 °C. Inset graph shows yolk size distribution.

nm). These results show that yolks are not likely to sinter during the reaction due to the strong interaction between the metal yolk and the silica shell.^{76,77} However, in the case of NiCe@SiO₂^C, crystalline phases of NiO, CeO₂ and SiO₂ are observed for the spent catalyst due to re-oxidation at O/M ratio of 1.1 during the TRM (Figure 1.15a). The deactivation of NiCe@SiO₂^C is likely caused by oxidation of the active metallic Ni, followed by destruction of the nanotubular multi– yolk–shell structure (Figure 1.16b). Figure 1.18 shows the diffraction pattern of NiCe@SiO₂^C analyzed during the deactivation process. Both metallic Ni and Ni²⁺ phases are detected after 3 h of TRM, indicating that fully reduced Ni phase starts to be oxidized to the NiO phase at high O/M feed ratio, leading to the deactivation of the catalyst. It is important to note that a high amount of oxidizing species in the feed stream can still lead to the formation of carbon on the NiCe@SiO₂^A (Figure 1.15a). Our results suggest that carbon deposition on the spent NiCe@SiO₂^A is not high enough to affect the stability of the catalyst.

Figure 1.18. XRD pattern of NiCe@SiO₂^C during the deactivation process at O/M ratio of 1.1 at 750 °C.

The XRD spectra of the spent catalysts after TRM at the O/M feed ratio of 1.0 show that all three catalysts have metallic Ni peaks along with wide amorphous SiO₂ peak, as shown in Figure 1.15b. Similarly, CeO₂ turns to the amorphous phase and its diffraction peaks are not observed on all three spent catalysts after the reaction. The spent NiCe/SiO₂^{WI} catalyst has much stronger intensity for carbon peak at 26.6° than NiCe@SiO₂^A, while no carbon peak is detected for NiCe@SiO₂^C after 20 h of the TRM reaction. These results suggest that the nanotubular multi-yolk-shell catalyst with smaller yolks presents high resistance to carbon deposition providing longer stability for TRM at the O/M feed ratio of 1.0. Raman spectra of the spent NiCe@SiO₂^A, NiCe@SiO₂^C, and NiCe/SiO₂^{WI} catalysts after the reaction at O/M feed ratio of 1.0 were collected to determine the nature of carbon formed on the spent catalyst. As shown in Figure 1.19a, both the spent NiCe@SiO₂^A and NiCe/SiO₂^{WI} catalysts have carbon formations, in agreement with the XRD measurement, while carbon peaks are barely seen for NiCe@SiO₂^C after 20 h of TRM. The two bands observed at 1331.8 cm⁻¹ and 1581.9 cm⁻¹ on the spent NiCe@SiO₂^A and NiCe/SiO₂^{WI} catalysts can be ascribed to carbon sp² bonds in which the first peak is assigned to the D band with defects or amorphous carbon, while the second peak belongs

Figure 1.19. (a) Raman spectra and (b) TGA profiles of spent NiCe@SiO₂^A, NiCe@SiO₂^C, and NiCe/SiO₂^{WI} after the TRM reaction in O/M ratio of 1.0 feed stream at 750 °C.

to the G band with ordered graphite structure ⁵². TGA was performed to quantify the amount of carbon deposited on the spent catalysts after the reaction. As shown in Figure 1.19b, the weight of the spent nanotubular multi-yolk-shell catalysts slightly increases starting from 260 °C due to oxidation of the catalyst. The sample weight loss occurs at temperatures between 450 °C and 650 °C for NiCe@SiO₂^A and NiCe/SiO₂^{WI} due to the gasification of the carbon formed during the TRM reaction. The deposited carbon amount is calculated to be 0.16 mg g_{cat}^{-1} and 0.20 mg g_{cat}^{-1} for NiCe@SiO₂^A and NiCe/SiO₂^{WI}, respectively. In consistent with the XRD and Raman analysis, the weight of NiCe@SiO₂^C remains constant at temperatures between 450 °C and 900 °C, indicating that carbon species are not likely to form on the catalyst during 20 h of TRM. The high resistance to carbon deposition of nanotubular NiCe@SiO2 multi-yolk-shell catalysts can be possibly due to the strong binding of active Ni species to SiO₂, as illustrated in the H₂-TPR data. It is also possible that the unique morphology of the nanotubular multi-yolk-shell structures does not allow carbon to be deposited on the active sites due to the confinement effect. Despite the unique morphology of the nanotubular multi-yolk-shell catalysts, the XRD, Raman, and TGA results confirm that carbon can still form on larger yolks (NiCe@SiO₂^A), while smaller volks (NiCe@SiO₂^C) exhibit higher resistance to carbon deposition at the O/M ratio of 1.0 feed stream.

1.3.4 Effect of yolk size under reducing conditions

To understand the effect of yolk size on TRM activity, NiCe@SiO₂^B with a mean yolk size between NiCe@SiO₂^A and NiCe@SiO₂^C was synthesized, and three nanotubular multi– yolk–shell catalysts were evaluated at much higher methane concentration with an O/M feed ratio of 0.85. As shown in Figure 1.20, NiCe@SiO₂^C with a mean yolk size of 20.0 nm still presents a stable activity with CO₂ and CH₄ conversions of 73% and 61%, respectively.

Figure 1.20. CO_2 and CH_4 conversions of (A) NiCe@SiO₂^A, (B) NiCe@SiO₂^B, and (C) NiCe@SiO₂^C in O/M ratio of 0.85 feed stream at 750 °C.

However, the NiCe@SiO₂^A catalyst with the largest yolks deactivates within 2 h by carbon formation. NiCe@SiO₂^B with a mean yolk size of 23.7 nm shows slightly longer stability than NiCe@SiO₂^A, but the catalyst also loses its activity in 4 h due to the blockage of the catalyst bed by carbon formation. As shown in Figure 1.21, carbon peaks in XRD are detected for both of the

Figure 1.21. XRD patterns of spent NiCe@SiO₂^A and NiCe@SiO₂^C after TRM reaction in O/M ratio of 0.85 feed stream at 750 °C.

spent NiCe@SiO₂^A and NiCe@SiO₂^C catalysts, but NiCe@SiO₂^A with larger yolks have stronger carbon peak intensity than NiCe@SiO₂^C with smaller yolks after the reaction with the O/M feed ratio of 0.85. Throughout the three nanotubular multi–yolk–shell catalysts tested, NiCe@SiO₂^C exhibits the most stable activity at both O/M ratio of 1.0 and 0.85 due to the fast carbon removal reaction, whereas the other catalysts with mean yolk size larger than 20.0 nm (NiCe@SiO₂^A and NiCe@SiO₂^B) deactivate at high CH₄ concentration feed streams.

$$CH_4 \rightarrow C + 2H_2$$
 $\Delta H^o = +74.9 \text{ kJ} \cdot \text{mol}^{-1}$ (1.8)

$$CO + H_2 \leftrightarrow C + H_2O \qquad \Delta H^\circ = -131.3 \text{ kJ} \cdot \text{mol}^{-1}$$
 (1.9)

$$2CO \leftrightarrow C + CO_2 \qquad \Delta H^{\circ} = -172.5 \text{ kJ} \cdot \text{mol}^{-1} \qquad (1.10)$$

$$C + O_2 \rightarrow CO_2$$
 $\Delta H^{\circ} = -394 \text{ kJ} \cdot \text{mol}^{-1}$ (1.11)

$$2CeO_2 + C \leftrightarrow Ce_2O_3 + CO \tag{1.12}$$

$$2\text{CeO}_2 + \text{Ni} \leftrightarrow \text{Ce}_2\text{O}_3 + \text{NiO}$$
(1.13)

During the TRM reaction, carbon formation can occur via the following reactions: methane cracking (1.8), reduction of CO (1.9), and the Boudouard reaction (1.10). At the same time, the deposited carbon can be removed by the reverse reactions of (1.9) and (1.10), and the forward reaction of (1.11), in which carbon reacts with H_2O , CO_2 and O_2 , respectively. While these reactions occur simultaneously on the catalyst, carbon formation and removal reaction rates can be influenced by the Ni particle size. Different Ni particle sizes ranging in between 6 nm and 26 nm have been reported for the net formation of carbon on Ni-based catalyst.^{78–80} It has been shown that the removal rate of carbon is faster than the formation rate of carbon on catalysts containing smaller Ni particles, indicating that large Ni particles are more susceptible to carbon

formation.^{79,81} In particular, the carbon formation rate in SRM is found to be directly related to the Ni particle size with smaller Ni particles resulting in a lower coking rate due to the low driving force for carbon diffusion through the Ni.⁸² In addition to the carbon formation rates, smaller Ni particles are shown to yield carbon filaments with smaller diameters in DRM compared to filaments formed on larger Ni particles.⁸³ Growth of smaller diameter carbon filaments is not thermodynamically favorable, resulting in less carbon deposition compared to larger diameter carbon filaments. Carbon filament growth can be related to the equilibrium Gibbs free energy growth of graphite. Deviations from graphite's equilibrium Gibbs free energy are inversely proportional to particle diameter. The deviations from the graphite equilibrium value represent extra energy needed by the system to form filamentous carbon, therefore smaller Ni particles lead to larger deviations resulting in less carbon filament growth.⁸⁴ In POM, smaller Ni particles result in the formation of more hydrogen containing carbon species than graphitic or nanotube structure carbon.⁸⁵ Carbon species containing hydrogen are easily gasified and therefore do not cause catalyst deactivation, meaning that smaller particles are not as easily deactivated by carbon as larger particles. It stands to reason that the catalyst containing smaller yolks might form less and more easily removable carbon than the catalyst containing larger yolks. However, no distinctive conclusion can be made in terms of what Ni particle size is more beneficial to prevent carbon formation, as it highly depends on the chemistry and morphology of the catalyst. In addition to the Ni yolk size, Ni–Ce interaction can play a major role on the stability of the catalyst. Under reducing conditions i.e., O/M feed ratios of 0.85 and 1.0, NiCe@SiO₂^C has high resistance to carbon deposition possibly due to the high amount of Ce⁴⁺ concentration. The first step in methane reforming reactions is believed to start with CH4 dissociation to generate hydrocarbon species and carbon atoms.⁸⁶ Carbon atoms can be oxidized

by reacting with CO₂ (reaction (1.10)) and Ce⁴⁺ (reaction (1.12)). The reverse reaction of (1.12) could be observed for the NiCe@SiO₂^A and NiCe/SiO₂^{Imp} catalysts as they have high Ce³⁺ concentration, thereby can produce more carbon deposits compared to NiCe@SiO₂^C.⁸⁶

1.3.5 Effect of yolk size under oxidizing conditions

The active metallic Ni phase in small yolks can be re-oxidized by adsorbing oxygen species from the feed gases or interaction with CeO₂ at O/M feed ratios higher than 1.0. Large Ni yolks can have slower carbon removal rate leading to carbon deposition even at higher O/M ratios feed stream, as shown in Figure 1.15a and Figure 1.16a. However, it has been hypothesized that the carbon formation on large Ni particles can prevent Ni metal from being oxidized in the high oxygen-containing feed stream (O/M ratio > 1.0).⁸⁷ On the other hand, carbon formation rate is slower than the carbon oxidation rate on the small yolks (NiCe@SiO $_2^{C}$), therefore, the amount of deposited carbon may not be sufficient enough to prevent the oxidation of metallic Ni to NiO, leading to deactivation of the catalyst. In contrast to the nanotubular NiCe@SiO₂ multi-yolk-shell catalyst, the conventional NiCe/SiO₂^{WI} catalyst exhibits stable activity without both Ni oxidation and carbon formation confirmed by XRD at the O/M feed ratio of 1.1 (Figure 1.15a). This can be explained by the fact that NiCe/SiO₂^{WI} has stronger interaction between dispersed Ni and Ce species confirmed by H2-TPR and XPS. The Ce3+/Ce4+ redox property on CeO₂ provides high surface and bulk oxygen vacancies.³⁸ Therefore, it is possible that the oxygen species migrate to the oxygen vacancies on CeO₂, which hinders Ni species from being oxidized. The stable activity of NiCe@SiO₂^A and NiCe/SiO₂^{WI} at O/M ratio of 1.1 can also be explained by Ce effect as aggregated Ni yolks and dispersed Ni particles in interaction with Ce lead to the formation of more Ce^{3+} species evidenced by H₂-TPR and XPS. Availability of Ce^{3+} and Ce^{4+} species can shift the equilibrium of the reaction (1.13) and

32

facilitate Ni oxidation ⁸⁶. Both NiCe@SiO₂^A and NiCe/SiO₂^{WI} have higher Ce³⁺ concentration compared to NiCe@SiO₂^C and show stable activity without Ni oxidation. On the contrary, the forward reaction of (1.13) can be observed for the NiCe@SiO₂^C as it has high Ce⁴⁺ concentration, thereby can oxidize active Ni yolks.

In summary, our results indicate that carbon formation and removal rates need to be balanced to obtain stable performance under the TRM by controlling the Ni yolk size and Ni–Ce interaction. If the carbon formation is faster than carbon removal process, the carbon will deposit onto the catalyst, whereas if the carbon removal reaction rate is faster than carbon formation rate, the metallic Ni species can be oxidized to NiO by exposing to oxygen species, which both cases can deactivate the catalyst.^{88,89} While the effect of yolk size and Ce effect on the TRM activity can be pronounced, other structural parameters, such as shell thickness and tube diameter of the nanotubular multi–yolk–shell catalysts, should be systematically analyzed in future studies.

1.4 Conclusions

Different morphologies of nanotubular NiCe@SiO₂ multi–yolk–shell catalysts were synthesized by controlling the water to surfactant ratio in the reverse microemulsion method. The nanotubular multi–yolk–shell catalyst prepared at the high water/surfactant ratio forms smaller yolks surrounded by a longer diameter silica tube shell, whereas a low water/surfactant ratio produces larger yolks with a shorter diameter tube shell. Catalysts prepared with small and large yolks show distinct characteristic behavior at various feed gas ratios under TRM. At a low O/M feed ratio, the nanotubular NiCe@SiO₂ multi–yolk–shell catalysts exhibit higher resistance to carbon deposition due to its confinement effect. In contrast, the conventional impregnated

33

NiCe/SiO₂^{WI} catalyst produces a high amount of carbon deposition on the catalyst, which deactivates the catalyst fast. The nanotubular NiCe@SiO₂ multi–yolk–shell catalyst with smaller yolks forms less carbon compared to the catalyst with larger yolk sizes (> 20 nm) possibly due to the facile oxidation of carbon on the smaller Ni yolks and low Ce³⁺ concentration. On the other hand, at a high O/M feed ratio, the NiCe@SiO₂ catalyst containing smaller yolks tends to be easily re-oxidized by oxygen species leading to the catalyst deactivation followed by destruction of nanotubular multi–yolk–shell morphology. However, the NiCe@SiO₂ with larger yolks shows stable activity without oxidation possibly due to the slower carbon removal reaction rate and high Ce³⁺ concentration. Our results show that the morphology of the nanotubular NiCe@SiO₂ multi–yolk–shell catalysts will influence the TRM activity at different O/M feed ratios, and this tunable morphology can be engineered for obtaining high TRM activity and stability.

CHAPTER 2

Yolk–Shell Single-Atom Alloy Catalysts for Low-Temperature Dry Reforming of Methane

2.1 Introduction

One engineering approach to reduce CO₂ emissions is to develop chemical processes for the synthesis of value-added chemicals or liquid fuels directly from the CO₂ source. Dry reforming of methane (DRM, CH₄ + CO₂ \rightarrow 2CO + 2H₂, Δ H^o = +247.3 kJ mol⁻¹) is considered as a promising reaction to utilize streams with a high content of CO₂ from ammonia plants, oxyfuel combustion, or biogas generated from anaerobic digestion of sewage, sludge, and landfill.^{90,91} DRM can convert CO₂ and CH₄ to syngas, which can be converted further to high value-added products, such as C₂₊ hydrocarbons and oxygenated chemicals, while avoiding costly CO₂ and CH₄ separation in the biogas stream.⁹

DRM has strong endothermicity and requires high operating cost and energy. Therefore, developing a catalyst with high DRM activity and stability at relatively low reaction temperatures (e.g., 500 °C) is of interest.^{47,92,93} To date, Ni-based catalysts have been extensively studied for DRM due to their high activity and low cost compared to the noble metals.^{93–95} Despite their high activity, carbon formation and/or metal sintering can reduce the stability of Ni-based catalysts leading to fast deactivation.^{96–98} Particularly, the carbon formation rate is substantially enhanced on the catalyst through the favorable Boudouard reaction ($2CO \leftrightarrow C + CO_2, \Delta H^\circ = -171.5 \text{ kJ mol}^{-1}$) at low reaction temperatures under DRM.⁴⁷ Further research is required to stabilize the active Ni metal and minimize the effect of the Boudouard reaction at low reaction temperatures. Our recent work has shown that nanotubular NiCe@SiO₂ multi–yolk– shell catalysts can maintain a stable catalytic activity and decrease carbon deposition at 750 °C under tri-reforming of methane (TRM).⁹⁹ The confined morphology of NiCe@SiO₂ provides strong interaction between active Ni and SiO₂ support, which can improve the catalytic activity and provide high resistance to carbon deposition compared to conventional catalysts synthesized by wet impregnation. The confined morphology of core/yolk–shell have shown to have high resistance to coking and sintering during methane reforming due to the confinement effect and strong metal–support interaction.^{59,100–102} The addition of CeO₂ to the Ni-based catalysts can enhance the Ni dispersion and decrease carbon content on the catalyst due to its oxygen vacancies and reversible redox property.^{36,38,99}

Unlike TRM, DRM does not involve oxidizing reactants, i.e. H₂O and O₂, which can facilitate carbon removal during the reaction. Therefore, it is challenging to prevent deactivation of Ni species, specifically at low DRM reaction temperatures without carbon accumulation. Dopants added to the Ni-based catalyst has shown promising activity and stability under DRM conditions. A suitable dopant should have a moderate adsorption energy for carbon to improve the carbon resistance as well as low dissociation barriers for CH₄ and CO₂ activation to obtain a high DRM activity.¹⁰³ Several studies have shown that adding a small amount of Pt to Ni-based catalysts can increase the activity and stability of the catalysts for DRM.^{92,104–106} Pt can improve the metal dispersion on the support and reducibility of Ni species due to H₂ spillover effect.^{92,104,105} Formation of Pt–Ni alloy can produce reactive carbonaceous species, which can be removed more efficiently compared to monometallic Ni.¹⁰⁷ Promotion of Ni catalysts with low Pt concentrations can lead to the formation of single-site catalysts (SSCs), including single-atom catalysts (SACs), and single-atom alloys (SAAs) with unique electronic and geometric structures.^{108–110} Compared to the catalysts with nanoparticles, SSCs has isolated metals, which can enhance metal–support interaction providing good thermal stability in catalytic reactions and lower the activation barrier by shifting the reaction pathway.^{111–114}

In the present work, we report the DRM performance of the carbon-resistant nanotubular yolk–shell Pt-NiCe@SiO₂ SAA catalyst at 500 °C. Effects of the confined morphology and Pt promotion are investigated to overcome the challenges associated with catalyst deactivation. The activity and stability of the yolk–shell catalysts are compared with the conventional catalysts synthesized by wet impregnation to elucidate the structural differences. Our results show that a 0.25 wt% of Pt-promoted yolk–shell SAA catalyst (Pt^{0.25}-NiCe@SiO₂) exhibits excellent resistance to carbon deposition for DRM. The improved performance of Pt^{0.25}-NiCe@SiO₂ is attributed to the atomically dispersed Pt on the yolks with the formation of Pt–Ni SAA in the confined nanotubular SiO₂ structure.

2.2 Experimental Methods

2.2.1 Catalyst preparation

The yolk–shell catalysts were synthesized by a reverse microemulsion method. The solution containing 0.0006–0.006 M of platinum tetrachloride (PtCl₄, 99.9%, Sigma Aldrich), 0.2 M of nickel nitrate hexahydrate (Ni(NO₃)₂· 6H₂O, 98%, Alfa Aesar), and 0.05 M of cerium nitrate hexahydrate (Ce(NO₃)₃· 6H₂O, 99%, Sigma Aldrich) in 4 ml of deionized (DI) water as yolk precursors was added dropwise to the microemulsion of 0.17 M of 1-hexadecyl trimethyl ammonium bromide (CTAB) (CH₃(CH₂)₁₅N(CH₃)₃Br, 98%, Alfa Aesar) dissolved in a 15 ml of 1-butanol (CH₃(CH₂)₃OH, anhydrous, 99.8%, Sigma Aldrich) and 80 ml of cyclohexane (C₆H₁₂, 99%, Alfa Aesar) mixture. After stirring the solution for 1 h, the transparent microemulsion solution was heated to 70 °C in an oil bath, and 0.7 ml of hydrazine (N₂H₄, anhydrous, 98%,

37

Sigma Aldrich) as a reducing agent with 0.5 M of sodium hydroxide (NaOH, Fisher Chemical) in 1.5 ml DI was added to the solution dropwise, followed by further stirring for 40 min. The solution was cooled down to room temperature and aged for another 2 h under stirring. Finally, 1.5 ml of tetraethyl orthosilicate (TEOS) (Si(OC₂H₅)₄, 99% Sigma Aldrich) as a silica shell precursor and 1.5 ml of ammonium hydroxide solution (NH₄OH, 28% NH₃, Alfa Aesar) were added to the solution dropwise. The final solution was aged for 20 h for hydrolysis and condensation of the silica precursor. The solution was washed with ethanol (C_2H_6O , anhydrous, Fisher Chemical) and separated by centrifuging. The washed sample was dried at 100 °C overnight and calcined in static air at 500 °C for 4 h with a ramping rate of 5 °C min⁻¹. Pt^x-NiCe@SiO₂ (where x = 0.1, 0.25, 0.5, and 1 corresponding to the wt% of Pt) was synthesized by controlling the PtCl₄ concentration, while the weight percentages of Ni and Ce were fixed at 9.23 wt% and 5.82 wt%, respectively. A conventional Pt^x-NiCe/SiO₂^{WI} catalyst was synthesized by the wet impregnation method. Fumed silica (SiO₂, Sigma Aldrich) was added to the aqueous solution of PtCl₄, Ni(NO₃)₂ \cdot 6H₂O, and Ce(NO₃)₃ \cdot 6H₂O with the same weight percentages of Pt, Ni, and Ce as the yolk–shell catalysts. The mixture was stirred for 15 h at 70 °C. The sample was dried at 100 °C overnight and calcined in static air at 500 °C for 4 h with a ramping rate of 5 °C \min^{-1} .

2.2.2 Characterization

Transmission electron microscopy (TEM) images were obtained using Hitachi H8000. Highresolution TEM (HRTEM) and aberration-corrected high-angle annular dark field scanning TEM (AC-HAADF-STEM) images with energy dispersive X-ray spectroscopy (EDX) were collected using JEOL Grand ARM. The samples were ultrasonically dispersed in ethanol and loaded on a carbon-coated Cu grid. The particle size distribution of yolks was calculated using 100 yolk particles and normalized by the total of measurements to obtain the fraction. The total metal loading (wt%) of the samples was analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES, PerkinElmer Avio 200) after dissolving the samples completely in a mixture of hydrochloric acid and nitric acid. Powder X-ray diffraction (XRD) patterns were recorded with Rigaku MiniFlex II using Cu K α source radiation ($\lambda = 1.5406$ Å) in a 2 θ range of 10° -80° with a step rate of 2° min⁻¹, and the crystallite size of the samples was calculated by the Scherrer equation. X-ray photoelectron spectroscopy (XPS) was conducted on a Kratos Axis Ultra DLD using Al K_{α} radiation. The spectra were obtained after the catalysts were reduced in H₂ at 500 °C for 1 h, followed by Ar⁺ etching for 9 min to analyze yolks inside the SiO₂ shell. The binding energy was calibrated to the signal of C 1s at 284.8 eV. N₂ adsorption and desorption isotherms were collected by Micromeritics ASAP 2020 at -196 °C. Prior to the measurements, the samples were degassed at 300 °C for 7 h. Hydrogen temperature-programmed reduction (H₂-TPR) was performed on Micromeritics AutoChem II equipped with a thermal conductivity detector (TCD). First, 50 mg of catalyst was heated at 300 °C for 1 h under He flow to eliminate any moisture and contamination, and then cooled down to 30 °C. After this preparation step, the temperature was ramped from 30 °C to 900 °C at a rate of 10 °C min⁻¹ in a 10% H₂/Ar mixture. H₂ chemisorption experiments were performed on the same Micromeritics AutoChem II to determine Ni dispersion. 100 mg of catalyst was reduced in a $10\% H_2/Ar$ mixture at 500 °C for 3 h, and then the catalyst was purged at 500 °C for 1 h under He. H₂ pulse chemisorption was carried out at 35 °C in 10% H₂/Ar with 8 min intervals. The active Ni sites were obtained from the adsorbed H_2 volume by assuming the H/Ni stoichiometry of 1. Thermogravimetric analysis (TGA) was employed on TGA-50 Shimadzu to determine carbon deposition on the spent catalyst. The samples were heated from 30 °C to 900 °C with a ramping

temperature of 10 °C min⁻¹ under airflow. The nature of carbon deposited on the spent catalyst was determined by Raman spectroscopy using XploRA PLUS, Horiba in the backscattering configuration using 638 nm wavelength. The time-resolved in situ and operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments were performed on Bruker infrared spectrometer (VERTEX 70) using the Harrick Praying Mantis DRIFTS gas cell equipped with ZnSe windows and mercury cadmium telluride (MCT) detector. Prior to the tests, catalysts were reduced at 500 °C in 25% H₂/N₂ mixture for 1 h and purged with N₂ for an additional 1 h at 500 °C. CO₂ injection experiments (CO₂:N₂=1:6) were performed on the reduced catalyst for 20 min followed by N₂ purge for 1 h at 500 °C. After N₂ purge, CH₄ (CH₄:N₂=1:6) was fed to the cell for 20 min. The DRM experiments were performed with a reactant mixture of CO₂:CH₄:N₂=1:1:6 on the reduced catalysts at 500 °C for 15 min. The background spectra were collected after the H_2 reduction. The background and sample spectra were collected 64 scans with a resolution of 4 cm^{-1} . The X-ray absorption spectroscopy (XAS) measurements of the samples at Pt L₃-edge, Ni K-edge, and Ce L₃-edge were conducted at the 10-BM beamline of the Advanced Photon Source (APS), Argonne National Laboratory. The fluorescence yield mode of the samples was collected using a 4 element Vortex detector. Pt metal foil and Ni metal foil were analyzed in transmission mode as a reference and for monochromatic energy calibration. The extended X-ray absorption fine structure (EXAFS) data at Pt L₃-edge was weighted by k^2 to gain the magnitude plots in radial space fitted by Artemis software.¹¹⁵ Fourier transformation was performed over the k-range of 3-10 Å⁻¹, and the amplitude reduction factor was set to 0.76 calculated from the Pt foil.

2.2.3 DRM activity

40

The DRM performance of the catalyst was tested in a fixed-bed reactor at atmospheric pressure. The prepared catalysts were pressed, crushed, and sieved to granules in the range of 40–60 mesh (250–420 μ m). The catalyst (75 mg) was placed between quartz wool in a quartz reactor with an inner diameter of 7 mm. The reactor was placed in a furnace and the temperature of the catalyst was measured by a K-type thermocouple placed inside the catalyst bed. The reaction gases were introduced to the reactor via mass flow controllers. The effluent gases were passed through a condenser in which any residual water was removed, and their concentration was measured with a gas chromatograph (GC) using a TCD. Prior to the reaction, all catalysts were reduced at 500 °C for 3 h with 25% H₂ balanced with N₂. Following the reduction, the DRM activity and stability of the catalysts were evaluated at 500 °C under atmospheric pressure in a reaction stream of CO₂:CH₄:N₂=1:1:1 for 20 h time-on-stream (TOS). All activity and kinetic studies were conducted at a gas hourly space velocity (GHSV) of 60,000 ml g⁻¹ h⁻¹, and the catalytic activity was calculated using the following equations:

Conversion, X (%) =
$$\frac{F_{\text{react,in}} - F_{\text{react,out}}}{F_{\text{react,in}}} \times 100$$
 (2.1)

$$H_2 \text{ yield (\%)} = \frac{F_{H2,out}}{2F_{CH4,in}} \times 100$$
 (2.2)

C0 yield (%) =
$$\frac{F_{CO,out}}{F_{CO2,in} + F_{CH4,in}} \times 100$$
 (2.3)

$$H_2/CO ratio = \frac{F_{H2,out}}{F_{CO,out}}$$
(2.4)

Conversion rate (mmol
$$g_{Ni+Pt}^{-1} s^{-1}$$
) = $\frac{GHSV \cdot F_{react,in} \cdot X_{react}}{W_{Ni+Pt}}$ (2.5)

where F represents the mole fractions of the reagent species measured at the inlet or outlet of the reactor, and W_{Ni+Pt} denotes the sum of the Ni and Pt metal loadings. In all experiments, the carbon balance was close to 100%, and the reproducibility of the catalytic activity is within ±5%.

2.3 Results

2.3.1 Catalysts characterization

Figure 2.1a shows the TEM image of the reduced nanotubular yolk-shell Pt^{0.25}-

NiCe@SiO₂ SAA catalyst prepared by the reverse microemulsion synthesis. The yolks are well distributed inside the nanotubular SiO₂ shell with an average cavity diameter of 106.5 nm and a wall thickness of 6.6 nm. The average length of the nanotubular SiO₂ is as high as $1.7 \mu m$, and the yolk sizes inside the SiO₂ support vary from 5 nm to 65 nm with an average size of 20.5 nm. High-resolution AC-HAADF-STEM images of the reduced yolks reveal that Pt is atomically dispersed on the yolks (Figure 2.1b and Figure 2.2). The isolated Pt atoms are presented as bright dots (some of them are highlighted by yellow circles) with higher contrast than the surrounding Ni and CeO₂ lattice, confirming the SAA structure. The HRTEM images in Figure 2.1c,d show the lattice fringes with interplanar spacings of 0.20 nm and 0.18 nm corresponding to the Ni

Figure 2.1. (a) TEM (b) HAADF-STEM, and (c,d) HRTEM images of reduced nanotubular yolk–shell Pt^{0.25}-NiCe@SiO₂ SAA catalyst.

Figure 2.2. (a–c) HAADF-STEM and (d) HRTEM images of reduced Pt^{0.25}-NiCe@SiO₂ SAA catalyst.

(111) and Ni (200) planes, respectively. Next to the Ni lattice fringes, CeO₂ (111) and CeO₂ (200) planes are observable with interplanar spacings of 0.31 nm and 0.27 nm, respectively, indicating a possible Ni–CeO₂ interaction (Figure 2.1c). In addition, the lattice fringe of 0.22 nm shown in Figure 2.1d and Figure 2.2d) can be associated with the (111) plane of a Pt–Ni alloy.^{116–118} The Pt–Ni alloys are observed mostly at the edges of the yolks rather than the core. It is possible that Pt-terminated supported Pt–Ni catalysts are thermodynamically stable under a reducing environment, where the reduced particles can form a core–shell type structure with Pt–rich shell.¹¹⁹ Generally, Pt–Ni alloys can form thermodynamically by controlling the precipitation rate and concentration of precursor during the microemulsion synthesis. Pt has low

Figure 2.3. EDX elemental mapping images of reduced Pt^{0.25}-NiCe@SiO₂ (Pt: cyan, Ni: green, Ce: yellow, Si: magenta).

surface energy and can segregate to the surface when alloyed with Ni.¹²⁰ At low Pt loadings, the slow reduction rate of Pt can lead Pt to deposit on the Ni surface. However, the increase in the Pt precursor concentration can accelerate the reduction rate, resulting in a higher degree of Pt–Ni mixture in the core with Pt enriched nanoparticles.¹²¹ In addition to the Pt–Ni interaction, Pt–CeO₂ interaction can be observed in Figure 2.1d. The lattice fringe size of 0.24 nm, which is slightly larger than 0.23 nm of Pt (111), can be observed near CeO₂ (200) planes. This result can be attributed to the Pt lattice expansion due to the interaction with CeO₂ species^{122,123} or assigned to the Pt–Ce alloy formations, yet they are not identified in our XRD analysis. As shown in Figure 2.2, the formation of voids in the yolks can be seen due to the possible restructuring that occurred from oxygen loss under H₂ reduction.¹²⁴ Elemental mapping and EDX spectrum of the reduced Pt^{0.25}-NiCe@SiO₂ are shown in Figure 2.3 and Figure 2.4. The images confirm that the yolks are composed of Pt, Ni, and Ce species surrounded by the nanotubular SiO₂ shell. It is

Figure 2.4. EDX spectrum for reduced Pt^{0.25}-NiCe@SiO₂.

important to note that Pt pixels are mostly observed on the yolks, yet they can also be detected outside of the shell at 0.25 wt% of Pt loading due to the low characteristic X-ray signals detected for Pt.

Lastly, the reduced Pt^{0.25}-NiCe/SiO₂^{WI} catalyst synthesized by wet impregnation is analyzed by HRTEM (Figure 2.5). Pt species are mostly distributed as Pt nanoclusters (some of them are highlighted by yellow circles) with an average size of 0.746 nm on both Ni and Ce species. As shown in Figure 2.6, the elemental mapping images of the same particle depicts that the nanoparticle located at the center is composed of Ni and Ce species. The EDX image of Pt

Figure 2.5. (a) HAADF-STEM and (b) HRTEM images of reduced Pt^{0.25}-NiCe/SiO₂^{WI}.

Figure 2.6. EDX elemental mapping images of reduced Pt^{0.25}-NiCe/SiO₂^{WI}. species matches with the nanoclusters marked in Figure 2.5. As shown in Figure 2.7, single distributed Pt atoms (some of them are indicated by red circles) can also be detected on the Ni and Ce nanoparticles, suggesting the co-existence of Pt nanoclusters and Pt single-atoms in the reduced Pt^{0.25}-NiCe/SiO₂^{WI}. This observation implies that the impregnated catalysts with 0.25 wt% Pt can have less Pt–Ni interaction than the yolk–shell SAA catalysts. Pt and Pt–Ni alloy

Figure 2.7. (a) HAADF-STEM and (b) HRTEM images of reduced $Pt^{0.25}$ -NiCe/SiO₂^{WI}.

Figure 2.8. XRD patterns of (a) fresh and (b) reduced yolk–shell and impregnated catalysts with and without 0.25 wt% Pt promotion.

species are mostly observed at the edges of the Ni nanoparticles for the impregnated catalyst, which is consistent with the yolk–shell morphology (Figure 2.7b).

The XRD patterns of the fresh yolk–shell and impregnated catalysts with and without 0.25 wt% Pt promotion are shown in Figure 2.8a. All fresh catalysts show the NiO and CeO₂ diffraction patterns together with amorphous SiO₂. The peaks at 20 of 37.3° , 43.3° , 62.9° , and 75.4° belong to the cubic rock salt structure of NiO, and the peaks at 20 of 28.6° , 33.1° , 47.5° , and 56.4° correspond to the cubic fluorite structure of CeO₂. The broad peak observed at 20 of 21.6° indicates amorphous SiO₂. Pt diffraction peaks could not be detected clearly on the 0.25 wt% of Pt-promoted catalysts for both yolk–shell SAA and impregnated catalysts due to the low

Figure 2.9. XRD patterns of fresh, reduced, and spent for (a) Pt^1 -NiCe@SiO₂ and (b) $Pt^{0.25}$ -NiCe@SiO₂.

Figure 2.10. XRD pattern of fresh Pt¹-NiCe/SiO₂^{WI}.

concentration and high dispersion of the Pt species. Additionally, XRD patterns of the 1 wt% of Pt-promoted catalysts in the 2 θ range of 35–50° are shown in Figure 2.9a. The result indicates that Pt peaks appear at 2 θ of 39.8° and 46.3° for the fresh 1 wt% Pt-promoted yolk–shell catalysts, while Pt phases could not be identified for the impregnated catalysts, possibly due to the highly dispersed Pt on the support (Figure 2.10). Figure 2.8b represents the XRD patterns of the yolk–shell and impregnated catalysts with and without Pt promotion after 3 hours of H₂ reduction at 500 °C. The background noise in the XRD patterns is associated with the quartz wool used in the reactor. The peaks at 2 θ of 44.7°, 52.0°, and 76.6° correspond to the metallic Ni phase. NiO phase is not identified in all samples indicating that NiO is fully reduced to metallic Ni, which is an active phase for the DRM.^{9,125}

The Pt (111) peaks for the fresh, reduced, and spent $Pt^{0.25}$ -NiCe@SiO₂ are compared in Figure 2.9b. It has been shown that the Pt (111) peak observed in the fresh sample is not detected in the reduced $Pt^{0.25}$ -NiCe@SiO₂, suggesting the formation of the isolated Pt atoms after the reduction. The Pt (111) peak for the spent one is located at a higher 20 of 40.3° than that of 39.8°

for the fresh one. This peak shift is more distinct when the same analysis is performed on Pt¹-NiCe@SiO₂ (Figure 2.9a). These results imply that Pt atoms might be incorporated into the Ni lattice leading to the formation of Pt–Ni SAA structures,^{117,118,126,127} which is in good agreement with the HRTEM analysis. The lattice constants of the reduced catalysts are determined by Rietveld refinement, as shown in Table 2.1. It is found that the Ni lattice constant slightly increases after Pt promotion, suggesting the formation of Pt–Ni SAAs. The ceria lattice constant also increases for both yolk-shell SAA and impregnated catalysts after Pt promotion due to the partial reduction of Ce⁴⁺ to Ce³⁺. Scherrer equation is implemented to calculate the crystallite size using the (111) plane of the species, as shown in Table 2.1. The fresh impregnated catalysts without Pt promotion have smaller crystallite sizes of 12.90 nm and 4.79 nm for NiO and CeO₂, respectively, compared to the fresh yolk-shell catalysts (15.99 nm and 6.58 nm for NiO and CeO₂) due to the higher metal dispersion on the SiO₂ support.⁹⁹ Addition of 0.25 wt% Pt slightly decreases the NiO crystallite size to 15.73 nm and 11.83 nm for the yolk-shell SAA and impregnated catalysts, respectively, which is in good agreement with the literature.^{105,106} Similar to the fresh catalysts, the reduced $NiCe/SiO_2^{WI}$ has smaller crystallite sizes of 12.35 nm and 4.11 nm for Ni and CeO₂, respectively, compared to those in the reduced NiCe@SiO₂ (16.31 nm and
Table 2.1. Crystallite size and lattice constant for fresh and reduced yolk–shell and impregnated
 catalysts with and without 0.25 wt.% Pt promotion

Catalysts		NiO		Ni		CeO ₂		Pt	
		Crystal	Lattice	Crystal	Lattice	Crystal	Lattice	Crystal	Lattice
		size	constant	size	constant	size	constant	size	constant
		(nm) ^{<i>a</i>}	$(Å)^b$	$(nm)^a$	$(Å)^b$	$(nm)^a$	$(Å)^b$	$(nm)^a$	$(Å)^b$
Fresh	Pt ^{0.25} -NiCe@SiO ₂	15.73	4.188	-	-	5.71	5.401	5.44	3.932
	NiCe@SiO ₂	15.99	4.179	-	-	6.58	5.392	-	-
	Pt0.25-NiCe/SiO2WI	11.83	4.183	-	-	4.95	5.405	-	-
	NiCe/SiO2 ^{WI}	12.90	4.179	-	-	4.79	5.388	-	-
Reduced	Pt ^{0.25} -NiCe@SiO ₂	-	-	16.25	3.523	6.66	5.411	-	-
	NiCe@SiO ₂	-	-	16.31	3.521	6.15	5.399	-	-
	Pt0.25-NiCe/SiO2WI	-	-	12.06	3.522	5.14	5.410	-	-
	NiCe/SiO2 ^{WI}	-	-	12.35	3.521	4.11	5.391	-	-

^{*a*}Calculated by Scherrer equation for (111) plane. ^{*b*}Measured by Rietveld refinement.

6.15 nm for Ni and CeO₂). With the addition of 0.25 wt% Pt, the crystallite size of Ni in both reduced yolk–shell SAA and impregnated catalysts decrease to 16.25 nm and 12.06 nm, respectively. The crystallite sizes of the reduced Ni and CeO₂ calculated by the XRD measurement are smaller than the yolk sizes determined by the TEM analysis, indicating that the yolks are in polycrystalline form. For the high loading of Pt (1 wt%), the reduced yolk–shell catalyst shows a large Pt crystallite size of 15.00 nm by XRD (not shown here).

The XPS spectra of Ni and Ce species in $Pt^{0.25}$ -NiCe@SiO₂ and NiCe@SiO₂ after 1 h of *in situ* H₂ reduction are shown in Figure 2.11. The Ni 2p core-level spectra of both catalysts show characteristic Ni⁰ and Ni²⁺ peaks of Ni 2p_{3/2} and Ni 2p_{1/2} with shake-up satellites. For the Pt-promoted catalysts, the Ni 2p_{3/2} core level energies located at 852.4 eV and 853.5 eV are assigned to Ni⁰ and Ni²⁺, respectively. These Ni 2p_{3/2} core level energies are similar to the non-promoted catalysts (852.3 eV and 853.4 eV). Although non- and Pt-promoted catalysts show similar Ni binding energies, Pt promotion increases the reducibility of Ni species, such that Pt^{0.25}-NiCe@SiO₂ has a higher Ni⁰ concentration of 62.6% compared to that of NiCe@SiO₂ (57.5%). The Ce 3d core-level spectra can be deconvoluted into multiple peaks for Ce 3d_{5/2} (v) and Ce 3d_{3/2} (u), where v and v'' peaks and v₀ and v' peaks are associated with Ce⁴⁺ and Ce³⁺,

Figure 2.11. (a) Ni 2p and (b) Ce 3d XPS spectra of reduced $Pt^{0.25}$ -NiCe@SiO₂ and NiCe@SiO₂.

respectively. Similar to the Ni species, the reducibility of Ce species increases after Pt promotion. Our results show that the Ce³⁺ concentration of Pt^{0.25}-NiCe@SiO₂ (63.1%) is higher than that of NiCe@SiO₂ (59.4%), indicating that more oxygen vacancies are formed in the ceria lattice after Pt promotion. The interaction between Pt and CeO₂ is observed in the HRTEM analysis in which a slight lattice expansion of Pt (111) has been detected (Figure 2.1d). It is possible that Pt can be incorporated into the Ce lattice leading to a partial reduction of Ce⁴⁺ to Ce³⁺ and an increase in the Ce–O bond length.^{105,128,129} This increase is consistent with the small change of the CeO₂ lattice constant calculated in the XRD analysis (Table 2.1). High Ce³⁺ concentration observed after Pt promotion refers to an increased oxygen storage capacity of CeO₂, which can enhance the carbon removal efficiency if Ce is located in close proximity to Pt and Ni.¹³⁰ It is important to note that Pt peaks for Pt^{0.25}-NiCe@SiO₂ could not be observed in XPS due to the low Pt loading (Figure 2.12).

H₂-TPR analysis is performed to investigate the catalyst reducibility and metal-support interaction. Figure 2.13 shows the H₂-TPR profiles of the yolk–shell and impregnated catalysts with and without 0.25 wt% Pt promotion. In addition to these samples, $Pt^{0.25}$ -Ni/SiO₂^{WI}, $Pt^{0.25}$ -

Figure 2.12. XPS spectrum of $Pt^{0.25}$ -NiCe@SiO₂ in the Pt 4f region.

Figure 2.13. H₂-TPR profiles for yolk–shell and impregnated catalysts with and without 0.25 wt% Pt promotion.

Ce/SiO₂^{WI}, and Pt^{0.2 5}/SiO₂^{WI} with the same nominal loading of Ni or Ce are synthesized by wet impregnation and evaluated for their reducibility to identify the Ni reduction peaks (Figure 2.14). No H₂ consumption peaks are detected when Ni is not present, indicating that all major reduction peaks observed in Figure 2.13 are associated with the Ni species. The H₂ consumption peak of β observed at temperatures from 240 °C to 350 °C is attributed to the reduction of bulk and aggregated NiO interacting with CeO₂. The γ peak shown in the medium temperature region

Figure 2.14. H₂-TPR profiles for $Pt^{0.25}$ -Ni/SiO₂^{WI}, $Pt^{0.25}$ -Ce/SiO₂^{WI}, and $Pt^{0.25}$ /SiO₂^{WI}.

from 270 °C to 400 °C is associated with the dispersed NiO interacting with CeO₂. Observation of the γ peak at higher temperatures than the β peak can be attributed to the dispersed Ni species strongly coordinated with CeO₂.^{52,131} In the case of Pt^{0.25}-Ni/SiO₂^{WI}, the major reduction peak for NiO located at 307.2 °C (Figure 2.14) shifts to a higher temperature (323.5 °C) after Ce promotion (Figure 2.13) due to the enhanced Ni-support interaction. Since impregnated catalysts have more dispersed Ni species on the support evidenced by the XRD and H₂ chemisorption analysis (Table 2.2), it has a low β/γ peak ratio compared to the yolk–shell catalysts. The broad δ peak located at temperatures above 400 °C is assigned to the reduction of NiO interacting with SiO₂ support.⁹⁹ The δ peak for NiCe@SiO₂ is located at a much higher temperature (648 °C) than that for NiCe/SiO₂^{WI} (456 °C), indicating that the yolk–shell catalyst exhibits stronger metal-support interaction than the impregnated catalyst. The strong metal-support interaction in a confined morphology, especially in the two-dimensional yolk-shell structure, can inhibit the carbon deposition and metal sintering leading to improved catalyst stability.¹³² Compared to the H₂-TPR of the catalysts without Pt promotion, the addition of 0.25 wt% Pt to both yolk–shell SAA and impregnated catalysts shifts β , γ , and δ peaks to the lower reduction temperatures while providing higher reduction intensity and narrower reduction peaks. This can be attributed to H₂ spillover from Pt to Ni as Pt can facilitate H₂ dissociation and promote NiO reduction. In addition, a small peak of α located at around 200 °C is observed for impregnated

Table 2.2. H₂ uptake and Ni dispersion measured by H₂ chemisorption for yolk–shell and impregnated catalysts with and without Pt promotion.

Catalysts	H_2 uptake (mmol g ⁻¹)	Ni dispersion (%)
Pt ¹ -NiCe@SiO ₂	0.0046	0.31%
Pt ^{0.25} -NiCe@SiO ₂	0.0050	0.30%
Pt ¹ -NiCe/SiO ₂ ^{WI}	0.0231	1.46%
Pt ^{0.25} -NiCe/SiO ₂ ^{WI}	0.0143	0.92%

Pt^{0.25}-NiCe/SiO₂^{WI}, which pertains to the reduction of PtO_x nanoclusters.¹⁰⁷ This is consistent with the HRTEM analysis as the impregnated catalysts are shown to contain Pt nanoclusters. The appearance of the α peak can suggest that the impregnated catalysts have more pronounced Pt–CeO₂ interaction compared to the yolk–shell SAA catalysts. The absence of the α peak in the yolk–shell catalysts may suggest that the Pt species is highly distributed mainly on the Ni species as SAA structure rather than presented as PtO_x nanoclusters on the yolks or support.

Generally, the hydrogen reduction peaks for the yolk–shell catalyst after 0.25 wt% Pt promotion are located at lower reduction temperatures than those for the impregnated catalysts, which might imply that Pt is dispersed as single-atoms on the active Ni species forming the yolk–shell SAA structures. To elucidate Pt effect on the reduction, H₂-TPR of the 1 wt% Pt-promoted catalysts are analyzed along with the 0.25 wt% Pt-promoted catalysts (Figure 2.15 and Table 2.3). In most cases, the overall hydrogen uptakes are almost identical or slightly higher than the total amount of metals, considering two moles and one mole of H₂ consumed per one mole of Pt and Ni, respectively. However, the H₂ uptake for the α peak in the impregnated

Figure 2.15. H₂-TPR profiles for Pt¹-NiCe@SiO₂, Pt^{0.25}-NiCe@SiO₂, Pt¹-NiCe/SiO₂^{WI}, and Pt^{0.25}-NiCe/SiO₂^{WI}.

catalysts is much larger than the actual amount of Pt (measured by ICP-OES (Table 2.4)), and it increases with the Pt loading (Table 2.3). This result can be explained by the H₂ spillover from the adjacent Pt or incorporated Pt species into the CeO₂ lattice leading to the lattice oxygen reduction of CeO₂, which is also observed in the HRTEM analysis (Figure 2.7).^{133–135}

Table 2.3. H₂ uptake during H₂-TPR experiments for Pt¹-NiCe@SiO₂, Pt^{0.25}-NiCe@SiO₂, Pt¹-NiCe/SiO₂^{WI}, and Pt^{0.25}-NiCe/SiO₂^{WI}.

Catalyst	Pt	Ni (mmol) ^a	H ₂ uptake (mmol)					
Catalyst	$(mmol)^a$		α	β	γ	δ	Sum	
Pt ¹ -NiCe@SiO ₂	0.0015	0.086	-	0.058	0.024	0.010	0.092	
Pt ^{0.25} -NiCe@SiO ₂	0.0006	0.101	-	0.074	0.019	0.011	0.104	
Pt1-NiCe/SiO2 ^{WI}	0.0023	0.080	0.009	0.032	0.037	0.011	0.089	
Pt ^{0.25} -NiCe/SiO ₂ ^{WI}	0.0006	0.078	0.003	0.024	0.041	0.011	0.079	

^aMeasured by ICP-OES analysis.

Table 2.4. Metallic content of Pt¹-NiCe@SiO₂, Pt^{0.25}-NiCe@SiO₂, Pt¹-NiCe/SiO₂^{WI}, and Pt^{0.25}-NiCe/SiO₂^{WI} measured by ICP-OES.

Catalysta	Pt		Ni	l	Ce		
Catarysts	Nominal	ICP	Nominal	ICP	Nominal	ICP	
Pt ¹ -NiCe@SiO ₂	1	0.88	9.23	9.76	5.82	5.72	
Pt ^{0.25} -NiCe@SiO ₂	0.25	0.22	9.23	8.34	5.82	6.55	
Pt1-NiCe/SiO2 ^{WI}	1	1.34	9.23	9.68	5.82	8.03	
Pt ^{0.25} -NiCe/SiO ₂ ^{WI}	0.25	0.36	9.23	8.90	5.82	7.20	

2.3.2 Activity measurements

The DRM performance of the yolk–shell and impregnated catalysts with and without 0.25 wt% Pt promotion is evaluated at 500 °C for 20 h TOS, as shown in Figure 2.16. The DRM performances are assessed over 75 mg catalyst with particle sizes of 250–420 µm. The inter/intra-particle mass transfer resistances are evaluated by varying the gas hourly space velocity (GHSV) and particle size of the catalysts, respectively, at 500 °C under DRM condition as shown in Figure 2.17. The former one is confirmed by changing the mass of catalysts with

Figure 2.16. (a) CO_2 and (b) CH_4 conversions of yolk–shell and impregnated catalysts with and without 0.25 wt% Pt promotion under DRM at 500 °C (Dashed line indicates equilibrium conversion). (c) CO_2 and (d) CH_4 conversions of Pt^x -NiCe@SiO₂ in different wt% of Pt under DRM at 500 °C.

Figure 2.17. CO_2 and CH_4 conversions of $Pt^{0.25}$ -NiCe@SiO₂ under DRM at 500 °C for (a) external mass transport resistance and (b) internal mass transport resistance measurements.

keeping constants of other parameters, and latter one is measured by varying the particle size of

the catalysts with keeping constants of other parameters. The result shows that both CO₂ and CH₄ conversions does not increase at a high GHSV, indicating that no external mass transport resistance. The CO₂ and CH₄ conversions are also maintained at all ranges of particle size, demonstrating that the internal mass transport resistance is not occurred. Thermodynamic equilibrium conversions for CO_2 and CH_4 are calculated to be 25.8% and 17.4% at 500 °C, respectively, considering DRM and RWGS reaction (CO₂ + H₂ \rightarrow CO + H₂O, Δ H^o = +40.6 kJ mol^{-1}). It has been observed that the impregnated catalysts with and without Pt promotion have slightly higher initial CO_2 and CH_4 conversion than the yolk–shell catalysts, possibly due to the higher metal dispersion. Despite their high initial conversion, the impregnated catalysts show fast deactivation. In particular, the activity of NiCe/SiO₂^{WI} plummets after 6 h TOS due to the severe carbon deposition, which blocks the catalyst bed. Addition of 0.25 wt% Pt to NiCe/SiO₂^{WI} significantly improves the catalyst stability, yet the conversions of CO₂ and CH₄ for Pt^{0.25}-NiCe/SiO₂^{WI} still decrease by 43.1% and 69.3%, respectively, over 20 h TOS. On the other hand, Pt^{0.25}-NiCe@SiO₂ shows a slight decrease in CO₂ and CH₄ conversions by 21.6% and 33.6%, respectively, over 20 h TOS.

The catalytic conversion rates of CO₂ and CH₄ are calculated and shown in Figure 2.18. $Pt^{0.25}$ -NiCe/SiO₂^{WI} demonstrates the highest initial CO₂ and CH₄ conversion rates of 0.392 mmol $g_{Ni+Pt}^{-1} s^{-1}$ and 0.277 mmol $g_{Ni+Pt}^{-1} s^{-1}$, while NiCe@SiO₂ exhibits the lowest initial CO₂ and CH₄ conversion rates of 0.287 mmol $g_{Ni+Pt}^{-1} s^{-1}$ and 0.151 mmol $g_{Ni+Pt}^{-1} s^{-1}$, respectively. However, the activity of $Pt^{0.25}$ -NiCe/SiO₂^{WI} decreases fast, reaching a plateau at 0.1 mmol $g_{Ni+Pt}^{-1} s^{-1}$ for the CH₄ conversion rate within 10 h due to severe carbon formation. Among the catalysts tested, $Pt^{0.25}$ -NiCe@SiO₂ achieves the highest activity over 20 h TOS. The yolk–shell catalysts show stable activity for up to 5 h, and the activity gradually decreases after 5 h, whereas

Figure 2.18. (a) CO₂ and (b) CH₄ conversion rates of $Pt^{0.25}$ -NiCe@SiO₂, NiCe@SiO₂, and $Pt^{0.25}$ -NiCe/SiO₂^{WI} under DRM at 500 °C.

the impregnation catalysts deactivate fast for the first 10 h, and the activity stabilizes after 10 h. The yolk–shell catalysts show an increase in the activity during the initial hours of the reaction (Figure 2.16), possibly due to the reconstruction of the metal sites after interaction with the reactants and products. It is reported that the reconstruction of the active sites can be more pronounced on the larger size nanoparticles.¹³⁶ The yolk–shell catalysts with larger Ni crystallite size (16.2 nm) (compared to the impregnated catalysts (12.1 nm)) show stable or increased activity in the beginning of the reaction. However, the activity can still gradually decrease by sintering. In the case of the impregnated catalysts, severe carbon accumulation can be observed in the TGA and XRD analysis of the spent samples, which is discussed in Section 2.3.3. This fast deactivation can be attributed to the blocking of the active sites by carbon species. The carbon formation and carbon removal reaction rate can be similar to each other after ~10 h of reaction, which might stabilize the activity. The CO and H_2 yields and H_2 /CO ratios of the catalysts are shown in Table 2.5. In general, all catalysts exhibit a higher CO₂ conversion than CH₄, and their H₂/CO ratios are below unity, indicating the effect of the concurrent RWGS reaction. The H₂/CO ratios of the yolk–shell catalysts (0.46-0.49) are lower than those of the impregnated catalysts (0.57–0.79), implying that RWGS reaction is favored on the yolk–shell catalyst. A strong

oxidant like water produced by RWGS reaction can reduce the carbon formation, enhancing the catalyst stability.⁶⁴

Reaction	Catalysts	H_2 yield (%)	CO yield (%)	H ₂ /CO ratio
500.00	Pt ^{0.25} -NiCe@SiO ₂	5.38	10.75	0.49
	NiCe@SiO ₂	4.67	9.84	0.46
300 °C	Pt ^{0.25} -NiCe/SiO ₂ ^{WI}	5.19	8.94	0.57
	NiCe/SiO2 ^{WI}	7.60	9.28	0.79
750 °C	Pt ^{0.25} -NiCe@SiO ₂	54.9	64.1	0.89

Table 2.5. H_2 and CO yield and H_2 /CO ratio of yolk–shell and impregnated catalysts with and without 0.25 wt.% Pt promotion under DRM at 500 °C and 750 °C.

2.3.3 XAS analysis in different Pt loadings

Figure 2.19. AC-HAADF-STEM images of fresh (a) Pt^{0.1}-NiCe@SiO₂, (b) Pt^{0.25}-NiCe@SiO₂, (c) Pt^{0.5}-NiCe@SiO₂, and (d) Pt¹-NiCe@SiO₂.

The effect of Pt loadings on the structure and DRM activity of the yolk–shell catalysts has also been studied by the addition of 0.1 wt%, 0.5 wt% and 1 wt% Pt. Figure 2.19 shows the representative AC-HAADF-STEM images of the fresh Pt^{0.1}-NiCe@SiO₂, Pt^{0.25}-NiCe@SiO₂, Pt^{0.5}-NiCe@SiO₂, and Pt¹-NiCe@SiO₂. As it can be seen in Figure 2.19a–c, individual Pt atoms are displayed as bright dots with higher contrast than the surrounding NiO lattice.¹³⁷ The NiO nanoparticles (10–20 nm) exhibit lattice fringes of 0.21 nm, 0.24 nm, and 0.13 nm, assigned to the (200), (111), and (311) planes, respectively. The low number of Pt single atoms (indicated by arrows) observed for Pt^{0.1}-NiCe@SiO₂ can be due to the small Pt loading (Figure 2.19a). Both Pt^{0.25}-NiCe@SiO₂ and Pt^{0.5}-NiCe@SiO₂ display well dispersed Pt single-atoms on NiO, as shown in Figure 2.19b,c. However, small Pt nanoparticles (~3 nm) with 0.20 nm lattice fringe for Pt (200) are detected for Pt^{0.5}-NiCe@SiO₂ (Figure 2.20a). When the Pt/Ni atomic ratio is increased (Pt¹-NiCe@SiO₂), large Pt nanoparticles (~10 nm) are observed, as shown in Figure 2.19d. This large Pt nanoparticles are also verified by the EDX elemental mapping (Figure 2.21), where the analyzed nanoparticle is only composed of Pt species. It is noted that the low number

Figure 2.20. AC-HAADF-STEM images of fresh (a) $Pt^{0.5}$ -NiCe@SiO₂ and (b) Pt^1 -NiCe@SiO₂.

Figure 2.21. EDX elemental mapping images of fresh Pt¹-NiCe@SiO₂.

of Pt single atoms (indicated by arrows) can be anchored on NiO nanoparticles (Figure 2.20b), while the majority of Pt species form Pt nanoparticles.

Figure 2.22a displays the normalized XANES spectra of the catalysts loaded with

Figure 2.22. (a) Normalized XANES spectra and (b) first-order derivative of the XANES spectra at Pt L₃-edge for fresh $Pt^{0.1}$ -NiCe@SiO₂, $Pt^{0.25}$ -NiCe@SiO₂, $Pt^{0.5}$ -NiCe@SiO₂, Pt^{1} -NiCe@SiO₂, $Pt^{0.5}$ -NiCe@SiO₂, $Pt^$

absorption edges of Pt foil and PtO₂ appear at 11563.0 eV and 11564.2 eV indicating Pt⁰ and Pt⁴⁺, respectively. The white lines for the fresh Pt^{0.1}-NiCe@SiO₂, Pt^{0.25}-NiCe@SiO₂, Pt^{0.5}-NiCe@SiO₂ are similar to that of PtO₂, indicating the Pt species are in a highly oxidized state. It is also confirmed that the Pt species are in cationic states from the first-order derivative of the XANES spectra (Figure 2.22b). The adsorption edge shifts to the lower energy values as the Pt loading increases, suggesting that Pt-Pt interaction gets stronger. The white line intensity for the Pt^{0.1}-NiCe@SiO₂, Pt^{0.25}-NiCe@SiO₂, and Pt^{0.5}-NiCe@SiO₂ catalysts are higher than that for PtO₂ due to the Pt 5d orbital of vacancy generated by the atomically dispersed Pt on NiO.¹³⁷ The singly distributed Pt atoms over the oxide can facilitate charge transfer between metal atoms and host oxide due to the strong metal-support interaction. On the other hand, the normalized XANES data for Pt¹-NiCe@SiO₂ has the lowest rising absorption edge intensity, and its features are closer to the Pt foil spectrum. This is due to the Pt nanoparticle formation, in good agreement with the TEM analysis. Additionally, the white line intensity of Pt¹-NiCe@SiO₂ is in between that of the Pt foil and PtO₂, suggesting a mixture of the two states due to the possible Pt-SiO₂ support interaction.¹³⁸

Figure 2.23a,b show the k^2 -weighted EXAFS and Fourier transformed EXAFS spectra of the fresh catalysts with different Pt loadings, respectively. Table 2.6 shows the structural parameters obtained from the EXAFS fittings of the first shell. The first prominent peak at 1.7 Å (without phase correction) in Figure 2.23b is attributed to the Pt–O contribution. This Pt–O contribution has a bond distance of 2.04 Å with coordination numbers (CN) in between 3 and 4 for the low Pt-loaded catalysts, i.e. Pt^{0.1}-NiCe@SiO₂ and Pt^{0.25}-NiCe@SiO₂, which can be originated from the Pt atoms coordinated with four oxygen atoms on the host NiO.¹³⁹ The close bond distance of Pt–O for the low Pt-loaded catalysts and PtO₂ can imply strong Pt–NiO interaction.¹⁴⁰ The

Figure 2.23. k^2 -weighted (a) EXAFS functions and (b) Fourier transforms of EXAFS spectra at Pt L₃-edge for fresh Pt^{0.1}-NiCe@SiO₂, Pt^{0.25}-NiCe@SiO₂, Pt^{0.5}-NiCe@SiO₂, Pt¹-NiCe@SiO₂, Pt¹-NiCe@SiO₂, Pt foil, and PtO₂. The fitting data are displayed in dashed lines.

Table 2.6. Structural parameters obtained from the EXAFS fittings of the first shell at Pt L₃edge for fresh Pt^{0.1}-NiCe@SiO₂, Pt^{0.25}-NiCe@SiO₂, Pt^{0.5}-NiCe@SiO₂, Pt¹-NiCe@SiO₂, Pt foil, and PtO₂. (CN: coordination number, R: internal atomic distances, ΔE_0 : edge-energy shift, σ^2 : Debye–Waller factor, R-factor: closeness of the fit)

Samples	Path	CN	R (Å)	ΔE_0	σ^2	R-factor
Pt foil	Pt-Pt	12*	2.76 ± 0.00	7.5 ± 0.5	3.8±0.2	0.004
PtO ₂	Pt–O	6*	2.02 ± 0.01	10.5 ± 1.2	1.2 ± 1.6	0.013
Pt ¹ -NiCe@SiO ₂	Pt-O	0.5 ± 0.2	2.02 ± 0.01	6.1±1.6	3*	0.016
	Pt-Pt	7.6 ± 1.4	2.74 ± 0.01		$3.7{\pm}1.5$	
Pt ^{0.5} -NiCe@SiO ₂	Pt–O	$2.9{\pm}1.1$	2.05 ± 0.02	15.0±3.4	$7.0{\pm}6.9$	0.015
Pt ^{0.25} -NiCe@SiO ₂	Pt–O	$3.4{\pm}1.2$	2.04 ± 0.02	13.3±2.5	3.8 ± 5.9	0.022
Pt ^{0.1} -NiCe@SiO ₂	Pt–O	3.9±1.7	2.04 ± 0.02	13.7±2.1	0.8±5.0	0.012

second peak at 2.7 Å in the phase uncorrected spectra in Figure 2.23b can be originated from the next-nearest neighbor Ni atoms bridged by the nearest O atoms (not fitted).¹³⁷ For the catalysts with high Pt loadings, i.e. Pt^{0.5}-NiCe@SiO₂ and Pt¹-NiCe@SiO₂, Pt–Pt contribution begins to appear at 2.3 Å (without phase correction) in the Fourier transformed EXAFS spectra, because of the Pt nanoparticles formation. The EXAFS spectrum of Pt¹-NiCe@SiO₂ resembles to the Pt foil spectrum, indicating a Pt–Pt CN and bond length of 7.6 and 2.74 Å, respectively. This confirms

Figure 2.24. AC-HAADF-STEM images of reduced Pt^{0.25}-NiCe@SiO₂.

that large Pt (~10 nm) nanoparticles form at high Pt loadings, in consistent with the STEM analysis. Similar Pt–Pt CN (8) has been reported for the samples having Pt sizes of 10 nm.¹⁴¹ It is noted that Pt¹-NiCe@SiO₂ has a small Pt–O contribution with CN of 0.5, which is probably due to the interaction between Pt nanoparticles and SiO₂ support in the confined structure.^{142–144}

Figure 2.24 depicts the AC-HAADF-STEM images for the reduced Pt^{0.25}-NiCe@SiO₂. Many individual bright dots attributed to the Pt single atoms can be discerned on the surface of Ni (200) and Ni (111) with the lattice fringes of 0.17 nm and 0.20 nm, respectively, showing the possible formation of Pt–Ni SAA structure. The singly distributed Pt on NiO before the reduction can maintain its structure after the NiO is reduced.¹⁴⁵ For the high Pt-loaded catalysts (Pt¹-NiCe@SiO₂), the large Pt nanoparticles are still shown after the reduction with lattice fringes of 0.20 nm and 0.22 nm, corresponding to the Pt (200) and Pt (111), respectively (Figure 2.25). It is noted that a superlattice structure can be observed as Ni-Pt L1₀ structure with the alternative arrangement of Pt and Ni column by the Z contrast on the edge of the Pt nanoparticles for Pt¹-NiCe@SiO₂.¹⁴⁶ It is possible that Ni species around the Pt nanoparticles can react with Pt at the edge forming Ni-Pt alloys during H₂ reduction.

Figure 2.25. AC-HAADF-STEM images of reduced Pt¹-NiCe@SiO₂.

The electronic structure of Pt for the reduced $Pt^{0.25}$ -NiCe@SiO₂ and Pt^1 -NiCe@SiO₂ is evaluated by XANES and compared with that of the Pt foil and PtO₂ references (Figure 2.26a,b). The absorption edge position and white line intensity for both $Pt^{0.25}$ -NiCe@SiO₂ and Pt^1 -NiCe@SiO₂ are similar to the Pt foil, indicating that Pt atoms are in metallic state. A linear combination fitting (LCF) applied using the spectra of Pt foil and PtO₂ (limited to 20 eV below and 50 eV above the edge jump) suggests that Pt presents primarily in metal state on both catalysts (Table 2.7). However, the SAA structured catalyst ($Pt^{0.25}$ -NiCe@SiO₂) shows different edge feature as compared to Pt foil or Pt¹-NiCe@SiO₂, indicating a different Pt coordination geometry exists on Ni. In addition, the Pt¹-NiCe@SiO₂ shows slightly higher white line intensity than the Pt foil with 3.9% of PtO₂ in LCF possibly due to the electron transfer between Pt and the SiO₂ support.^{142,144} Figure 2.26c,d shows the normalized XANES spectra of the reduced NiCe@SiO₂, Pt^{0.25}-NiCe@SiO₂, and Pt¹-NiCe@SiO₂ at the Ni K-edge and Ce L₃-edge, respectively. The Ni foil, NiO, CeO₂, and Ce(NO₃)₃ samples are analyzed as references. The increased pre-edge

Figure 2.26. (a) Normalized XANES spectra and (b) first-order derivative of the XANES spectra at Pt L₃-edge for reduced $Pt^{0.25}$ -NiCe@SiO₂, Pt¹-NiCe@SiO₂, Pt foil, and PtO₂. Normalized XANES spectra at (c) Ni K-edge for reduced NiCe@SiO₂, Pt^{0.25}-NiCe@SiO₂, Pt¹-NiCe@SiO₂, Ni foil, and NiO and (d) Ce L₃-edge for NiCe@SiO₂, Pt^{0.25}-NiCe@SiO₂, Pt¹-NiCe@SiO₂, CeO₂, and Ce(NO₃)₃.

intensity of Ni at 8334 eV and a decreased white line intensity for the Pt^{0.25}-NiCe@SiO₂ SAA imply that Ni reducibility is enhanced due to the high Pt–Ni interaction (Figure 2.26c).¹⁴⁷ The LCF of the Pt^{0.25}-NiCe@SiO₂ SAA, calculated by using the Ni foil and NiO references, shows the highest Ni⁰ proportion of 65.0%, followed by 61.6% and 54.6% for NiCe@SiO₂ and Pt¹-NiCe@SiO₂, respectively. This analysis indicates that less Pt–Ni interaction exists when Pt forms large nanoparticles at the high Pt loadings.

Figure 2.26d shows the normalized XANES spectra of the samples at Ce L₃-edge. The reference spectra exhibit Ce^{4+} oxidation state with a double peak at 5730 eV and 5737 eV, and Ce^{3+} oxidation state with a peak at 5726 eV. All the reduced catalysts show pronounced Ce^{4+}

Catalysts	Pt L ₃ .	-edge	Ni K	-edge	Ce L ₃	3-edge
	Pt^0	Pt^{4+}	Ni ⁰	Ni ²⁺	Ce ⁴⁺	Ce ³⁺
Pt ¹ -NiCe@SiO ₂	96.1%	3.9%	54.6%	45.4%	86.8%	13.2%
Pt ^{0.25} -NiCe@SiO ₂	100%	0%	65.0%	35.0%	67.7%	32.3%
NiCe@SiO ₂	-	-	61.6%	38.4%	91.4%	8.6%

Table 2.7. Linear combination fitting (LCF) results of the XANES spectra.

Figure 2.27. AC-HAADF-STEM images of fresh Pt^{0.25}-NiCe@SiO₂.

oxidation state, however, the spectrum of $Pt^{0.25}$ -NiCe@SiO₂ has features similar to that of Ce(NO₃)₃ with a high Ce³⁺ proportion of 32.3% (Table 2.7). It is found that CeO₂ species can interact with Ni, as they are deposited on Ni species, as shown in Figure 2.27. The CeO₂ nanoparticles (~3 nm) with lattice fringes of 0.31 nm and 0.19 nm, assigned to the CeO₂ (111) and CeO₂ (202), respectively, are observed on the Ni nanoparticles. Since $Pt^{0.25}$ -NiCe@SiO₂ has well dispersed Pt–Ni SAA structures, the high Ce³⁺ concentration can be derived by the electron transfer from Pt to CeO₂ on the CeO₂ deposited Pt–Ni SAA.¹⁴⁸

Figure 2.28a,b shows k^2 -weighted EXAFS and Fourier transformed EXAFS spectra for the reduced Pt^{0.25}-NiCe@SiO₂ and Pt¹-NiCe@SiO₂. The Pt^{0.25}-NiCe@SiO₂ has a peak at 2.1 Å (without phase correction), which is located between Pt–O peak (1.6 Å) of PtO₂ and Pt–Pt peak

Figure 2.28. k^2 -weighted (a) EXAFS functions and (b) Fourier transforms of EXAFS spectra at Pt L₃-edge for reduced Pt^{0.25}-NiCe@SiO₂, Pt¹-NiCe@SiO₂, Pt foil, and PtO₂. The fitting data are displayed in dashed lines.

(2.4 Å) of Pt foil, attributed to the Pt–Ni bonds, suggesting the formation of the isolated Pt atoms on Ni nanoparticles. The Pt–Ni interaction is detected in the first-shell at a bond distance of 2.53 Å (Table 2.8), which is in between the Pt–Pt (2.76 Å) and Ni–Ni (2.49 Å) bond lengths and can further support the formation of SAA structures.¹⁴⁹¹⁵⁰ The Pt^{0.25}-NiCe@SiO₂ does not have any Pt–Pt interaction, indicating the absence of Pt nanoparticles at the low Pt loadings after the reduction. The fitting results demonstrate that Pt–Ni shell has a CN of 5 with a bond distance of 2.53 Å. The low CN is possible, if the atomically dispersed Pt atoms are located at the outermost

Table 2.8. Structural parameters obtained from the EXAFS fittings of the first shell at Pt L₃edge for reduced Pt^{0.25}-NiCe@SiO₂, Pt¹-NiCe@SiO₂, Pt foil, and PtO₂. (CN: coordination number, R: internal atomic distances, ΔE_0 : edge-energy shift, σ^2 : Debye–Waller factor, R-factor: closeness of the fit)

Samples	Path	CN	R (Å)	$\Delta E_0 (eV)$	$\sigma^2 (10^{-3} \text{\AA}^2)$	R-factor
Pt foil	Pt–Pt	12*	2.76 ± 0.00	7.5 ± 0.5	3.8±0.2	0.004
PtO ₂	Pt–O	6*	2.02 ± 0.01	10.5 ± 1.2	1.2±1.6	0.013
Pt ¹ -NiCe@SiO ₂	Pt–Ni	3.5±1.7	2.60±0.01	7.0±1.4	15.9±5.7	0.007
	Pt–Pt	7.4±1.5	2.75±0.01		5.7±1.7	
Pt ^{0.25} -NiCe@SiO ₂	Pt–Ni	5.1±0.6	2.53±0.01	5.5±1.4	6.4±1.1	0.011

layer of Ni nanoparticles without diffusing into the Ni bulk lattice.¹⁵¹ On the other hand, the shape of Fourier transformed EXAFS function for the Pt¹-NiCe@SiO₂ is similar to that of Pt foil with the Pt–Pt CN and bond distance of 7.4 and 2.75 Å, respectively, which shows the formation of Pt nanoparticles. It is calculated that Pt¹-NiCe@SiO₂ contains Pt–Ni contribution with a CN of 3.5 due to the formation of Ni-Pt L1₀ structure during the reduction process evidenced by STEM analysis (Figure 2.25).

The wavelet transforms (WT) of Pt EXAFS is performed for the reduced catalysts by decomposing both k and R signals of the EXAFS to identify the contributions of scattering paths.

Figure 2.29. Wavelet transform (WT) for the k^2 -weighted EXAFS signals of (a) Pt foil, (b) PtO₂, (c) Pt¹-NiCe@SiO₂, and (d) Pt^{0.25}-NiCe@SiO₂.

As it can be seen in Figure 2.29, the WT contour plots of Pt foil and PtO₂ references has the intensity maxima at 8.8 Å⁻¹ and 5.9 Å⁻¹, ascribing to the Pt–Pt and Pt–O contributions, respectively. The Pt^{0.25}-NiCe@SiO₂ SAA shows only one intensity maximum at 7.4 Å⁻¹, owing to the Pt–Ni contribution without no distinct features at higher *k* values, resulting from the atomically dispersed Pt atoms on the Ni surface.¹⁵² The WT plots of the reduced Pt¹-NiCe@SiO₂ contains both Pt–Pt and Pt–Ni contributions, matching with the STEM and EXAFS analysis.

As shown in Figure 2.16c,d, the Pt^x-NiCe@SiO₂ catalysts exhibit nearly identical CO₂ and CH₄ conversions of 11.5% and 6.5%, respectively, over 20 h TOS. Finally, long-term stability tests are performed over 120 h TOS for the Pt¹-NiCe@SiO₂, Pt^{0.25}-NiCe@SiO₂, and NiCe@SiO₂ catalysts, as shown in Figure 2.30. Among the catalysts tested, Pt^{0.25}-NiCe@SiO₂ shows the most stable DRM activity over 120 h TOS, whereas the other catalyst beds are blocked at around 50 h TOS due to the carbon formation. Our results imply that amount of Pt does not influence the conversion rate of the yolk–shell catalysts, but the catalyst stability can be improved by minimizing the carbon formation at a certain Pt concentration, i.e., Pt^{0.25}-

Figure 2.30. Long-term stability of Pt¹-NiCe@SiO₂, Pt^{0.25}-NiCe@SiO₂, and NiCe@SiO₂ over 120 h TOS under DRM at 500 °C.

Figure 2.31. CO_2 and CH_4 conversion of $Pt^{0.25}$ -NiCe@SiO₂ under DRM at 750 °C.

NiCe@SiO₂. Additionally, the DRM activity of the Pt^{0.25}-NiCe@SiO₂ SAA catalyst was tested at 750 °C for 20 h, as shown in Figure 2.31 and Table 2.5. The catalyst shows high initial CO₂ and CH₄ conversions of 68.6% and 64.5% with H₂ and CO yields of 54.9% and 64.1%, respectively. The activity decreases by 18% and 14% for CO₂ and CH₄ over 20 h TOS, respectively. However, there is no significant conversion drop during the reaction. The catalysts bed also is not blocked by severe carbon deposition. These results imply that the yolk–shell SAA presents good stability against the CO disproportionation reaction at high CO₂ and CH₄ conversions.

2.3.4 Kinetic studies

Kinetics experiments are performed to determine reaction order and activation energy for the best performing catalyst, i.e., $Pt^{0.25}$ -NiCe@SiO₂, under differential conditions at 500 °C. The effect of the partial pressures of CO₂ and CH₄ on the consumption rate of reactants is depicted in Figure 2.32. The reaction rate is expressed by the following semi-empirical power-law rate equations for $Pt^{0.25}$ -NiCe@SiO₂.

$$R_{CH4} = k_1 (PCH_4)^{0.60} (PCO_2)^{-0.55}$$
(2.6)

 $R_{CO2} = k_2 (PCH_4)^{0.34} (PCO_2)^{-0.22}$ (2.7)

According to Eq. (2.6), the forward CH₄ reaction rate is proportional to P_{CH4} with the reaction order of 0.60, while the reaction order with respect to CO₂ is -0.55, suggesting that CO₂ adsorbs more strongly than CH₄. A negative reaction order with respect to CO₂ partial pressure is reported, when the catalyst shows high resistance to coking.^{153–155} The increased surface coverage of oxygen species originated from CO₂ dissociation can block the sites for CO₂ adsorption. The high surface coverage of oxygen species can minimize coke formation as oxygen species react with the surface carbon.^{154,155} We observe facile re-oxidation of the Ni species by feeding CO₂ in the *in-situ* DRIFTS experiments, which is discussed in Section 2.3.5. The apparent CH₄, CO₂, H₂, and CO activation energies are measured within the temperature range of

Figure 2.32. Reaction rates for the consumption of (a,b) CO₂ and (c,d) CH₄ as a function of the CO₂ and CH₄ partial pressures for $Pt^{0.25}$ -NiCe@SiO₂ at 500 °C.

	$E_{a,app} (kJ mol^{-1})$
CH ₄	99.01
CO_2	79.87
H_2	120.40
СО	86.65

Table 2.9. Apparent activation energies $(E_{a,app})$ for Pt^{0.25}-NiCe@SiO₂ under DRM.

450–510 °C based on the consumption rates of CH₄ and CO₂ and formation rates of CO and H₂ (Table 2.9). The Arrhenius plots are presented in Figure 2.33. The CH₄ activation energy (99.0 kJ mol⁻¹) is higher than the CO₂ activation energy (79.9 kJ mol⁻¹), matching well with the literature. The activation energy for H₂ formation is 120.4 kJ/mol, which is greater than that of CO formation of 86.7 kJ mol⁻¹ due to the RWGS reaction.^{92,94,156–158}

Figure 2.33. Arrhenius plots for reaction rates of (a) CO_2 , (b) CH_4 , (c) H_2 , and (d) CO on $Pt^{0.25}$ -NiCe@SiO₂.

The inhibition effect with respect to P_{CO2} can be associated with the competitive occupancy of active sites by the CO₂ species.¹⁵⁹ It is reported that inert SiO₂-supported metal catalysts follow the mono-functional pathway, in which both CO₂ and CH₄ are activated on the metal.⁶⁴ The CO₂ reaction rate increases with CH₄ partial pressure from DRM due to the facile adsorption of CH₄ on the surface, followed by its dissociation (Eq. (2.7)). Dissociation of CH₄ in DRM can produce H₂, which can react with CO₂ in RWGS reaction leading to an increase in the CO₂ reaction rate.¹⁶⁰ In contrast, the CO₂ reaction rate decreases with increasing CO₂ partial pressure. This can be attributed to the change in reaction mechanism, where at low CO₂ partial pressure, not only DRM but also the RWGS reaction is favored by H* from CH₄ decomposition, while CO₂ reacts with CH₄ by DRM at high CO₂ partial pressure.

Figure 2.34. (a) XRD patterns, (b) TGA profiles, and (c) Raman spectra of spent Pt^x -NiCe@SiO₂ after 20 h of DRM and (d) TEM image of spent $Pt^{0.25}$ -NiCe@SiO₂ after 20 h of DRM.

2.3.5 Carbon deposition

The spent yolk–shell catalysts loaded with different wt% of Pt are analyzed using XRD, TGA, and Raman spectroscopy to investigate carbon formation during DRM. As shown in Figure 2.34a, all the spent yolk–shell catalysts show diffraction peaks of metallic Ni and CeO₂, indicating no oxidation has occurred. A Pt diffraction peak is also visible, especially at high Pt loadings, and shows a shift compared to the fresh ones indicating the formation of the Pt–Ni alloy structures. The spent yolk–shell catalysts except Pt^{0.25}-NiCe@SiO₂ show diffraction peaks at 20 of 26.6° and 43.5° corresponding to graphitic carbon. These carbon formations are more pronounced on the spent impregnated catalysts. As shown in Figure 2.35, the spent Pt^{0.25}-NiCe/SiO₂^{WI} shows strong carbon diffraction peaks, making it difficult to analyze the other metal species.

TGA is performed to quantify the amount of carbon formed on the spent yolk–shell catalysts and Pt^{0.25}-NiCe/SiO₂^{WI}, as shown in Figure 2.34b and Table 2.10. The weight of the spent yolk–shell catalysts slightly increases starting from 250 °C due to oxidation of the catalysts

Figure 2.35. XRD pattern of spent Pt^{0.25}-NiCe/SiO₂^{WI} after 20 h of DRM.

Catalysts	Deposited carbon $(mg g_{cat}^{-1})^a$	$I_D/I_G{}^b$
Pt ¹ -NiCe@SiO ₂	0.44	0.80
Pt ^{0.5} -NiCe@SiO ₂	0.56	1.00
Pt ^{0.25} -NiCe@SiO ₂	0	-
Pt ^{0.1} -NiCe@SiO ₂	0.20	0.89
NiCe@SiO ₂	0.41	0.82
Pt ^{0.25} -NiCe/SiO ₂ ^{WI}	0.62	-

Table 2.10. Deposited carbon amount and I_D/I_G ratios calculated for Pt^x -NiCe@SiO₂ and $P^{t0.25}$ -NiCe/SiO₂^{WI} after 20 h of DRM.

by air. Generally, a dramatic weight loss is observed on the spent catalysts at the temperature region of 400–600 °C, which is attributed to gasification of filamentous or graphitic carbon deposited during the DRM.⁶⁴ The amount of carbon formed during the DRM is calculated to be 0.41 mg g_{cat}^{-1} for NiCe@SiO₂, which decreases to 0.20 mg g_{cat}^{-1} after 0.1 wt% Pt promotion. Further promotion of the catalyst with 0.25 wt% Pt indicates that carbon accumulation is negligible, which is in good agreement with the XRD analysis. When the Pt loading exceeds 0.5 wt%, a significant weight loss occurs again due to the carbon formation during the DRM. The Pt^{0.25}-NiCe/SiO₂^{WI} contains the largest amount of carbon deposition of 0.62 mg g_{cat}^{-1} showing that the impregnated catalysts are the least resistant to the carbon deposition despite the Pt promotion.

The Raman spectra of the spent Pt^x -NiCe@SiO₂ are collected to determine the nature of carbon, as shown in Figure 2.34c. Two vibrational peaks centered at 1327 cm⁻¹ and 1587 cm⁻¹ are observed for all the spent yolk–shell catalysts except for $Pt^{0.25}$ -NiCe@SiO₂. The former peak is assigned to the D band associated with the disordered defective carbon correlating with amorphous carbon structures, while the latter peak is the G band belonging to the ordered and well-graphitized carbon structures. The integrated intensity ratio of D band to G band (I_D/I_G) is

calculated to compare fractions of the disordered and ordered carbons, as shown in Table 2.10. NiCe@SiO₂ exhibits I_D/I_G ratio of 0.82, and the value reaches unity for 0.5 wt% Pt promotion. Further promotion of the catalyst with 1 wt% Pt decreases I_D/I_G ratio to 0.8. The lack of a carbon peak on Pt^{0.25}-NiCe@SiO₂ might be explained by the disordered carbon formed mainly on the catalyst, which can be removed easily during DRM.^{107,161}

The XRD, TGA, and Raman data for the spent catalysts indicate that Pt^{0.25}-NiCe@SiO₂ shows the highest resistance to carbon deposition during DRM. No significant carbon formation is observed in the TEM image of the spent Pt^{0.25}-NiCe@SiO₂ after 20 h TOS at 500 °C (Figure 2.34d). In addition, its nanotubular yolk-shell structure remains stable without showing any degree of destruction. Our results show that the percentage of yolks having size of 0–10 nm decreases from 31% to 12% after the 20 h of DRM reaction, while the percentage of 10-20 nm sized yolks increases from 28% to 48% (inset graph of Figure 2.1a and Figure 2.34d). Similarly, the percentage of 20–30 nm sized yolks decreases from 24% to 16% after the reaction, and this change matches with the increased percentage of 30–50 nm sized yolks. These results indicate that yolks can sinter during the reaction, which could be the reason for decrease in CO₂ and CH₄ conversions by 21.6% and 33.6%, respectively (Figure 2.16). In addition, the XRD patterns of the reduced and spent for Pt^{0.25}-NiCe@SiO₂ (Figure 2.9b) show that the Pt peaks are not observed before the reaction due to the singly distributed Pt, whereas the spent catalyst shows a very small hump, which could be attributed to the sintered Pt–Ni structure. However, the average yolk size of the spent Pt^{0.25}-NiCe@SiO₂ (24.4 nm) are similar to those of the reduced catalyst (Figure 2.1a), suggesting that SiO₂ encapsulation limits sintering and provides a strong metalsupport interaction. The positive effect of SiO₂ encapsulation can also be observed in the crystallite size of Ni (Table 2.1 and Table 2.11). The crystallite size of active Ni for the reduced

Catalysta		Crystallite size (nm) ^a				
	Catalysis -	NiO	Ni	CeO ₂	Pt	
	Pt^1 -NiCe@SiO ₂	14.94	-	6.25	12.35	
	Pt ^{0.5} -NiCe@SiO ₂	15.12	-	5.93	7.43	
Fresh	Pt ^{0.25} -NiCe@SiO ₂	15.73	-	5.71	5.44	
	Pt ^{0.1} -NiCe@SiO ₂	13.44	-	6.60	-	
	NiCe@SiO ₂	15.99	-	6.58	-	
	Pt^1 -NiCe@SiO ₂	-	17.40	6.11	12.00	
	Pt ^{0.5} -NiCe@SiO ₂	-	17.37	5.97	-	
Spent	Pt ^{0.25} -NiCe@SiO ₂	-	17.29	5.97	-	
	Pt ^{0.1} -NiCe@SiO ₂	-	18.56	6.43	-	
	NiCe@SiO ₂	-	17.71	6.09	-	

Table 2.11. Crystallite size for fresh and spent Pt^x-NiCe@SiO₂ after 20 h of DRM.

(16.25 nm) and spent (17.29 nm) $Pt^{0.25}$ -NiCe@SiO₂ remains similar. Finally, the structure of $Pt^{0.25}$ -NiCe@SiO₂ SAA after the 20 h of DRM reaction at 500 °C is analyzed by AC-HAADF-STEM and EXAFS analysis (Figure 2.36 and Figure 2.37). The presence of bright dots for the

Figure 2.36. AC-HAADF-STEM images of spent Pt^{0.25}-NiCe@SiO₂ after 20 h of DRM at 500 °C.

Figure 2.37. k^2 -weighted (a) EXAFS spectrum and (b) Fourier transforms of EXAFS spectra at Pt L₃-edge for spent Pt^{0.25}-NiCe@SiO₂ after 20 h of DRM at 500 °C.

isolated Pt atoms on Ni in STEM image and showing only one peak at 2.52 Å for the Pt-Ni

contribution with CN number of ~7 in EXAFS fitting result (Table 2.12) indicate that the Pt-Ni

SAA structure remains after the DRM reaction, providing the stability of the SAA structure.

Overall, the developed Pt^{0.25}-NiCe@SiO₂ exhibits similar activity and longer stability by

minimizing carbon formation compared to the studies reported at low DRM

temperatures.^{92,93,162,163}

Table 2.12. Structural parameters obtained from the EXAFS fittings of the first shell at Pt L₃edge for spent Pt^{0.25}-NiCe@SiO₂ after 20 h of DRM at 500 °C. (CN: coordination number, R: internal atomic distances, ΔE_0 : edge-energy shift, σ^2 : Debye–Waller factor, R-factor: closeness of the fit)

Path	CN	R (Å)	$\Delta E_0 (eV)$	$\sigma^2 (10^{-3} \text{\AA}^2)$	R-factor
Pt–Ni	7.33 ± 0.82	2.52 ± 0.01	3.4±1.2	8.8±1.0	0.009

2.3.6 In situ and operando DRIFTS

To provide a mechanistic understanding for the DRM activity of the yolk–shell and impregnated catalysts with and without 0.25 wt% Pt promotion, *in situ* and *operando* DRIFTS experiments are conducted. First, only CO₂ gas is injected into the DRIFT cell after H₂ reduction of the catalyst, and the temporal activity of the catalyst is recorded for 20 min. As shown in

Figure 2.38. Time-resolved in situ DRIFTS spectra in CO₂ (CO₂:N₂=1:6) and CH₄ (CH₄:N₂=1:6) stream at 500 °C for (a) Pt^{0.25}-NiCe@SiO₂, (b) NiCe@SiO₂, (c) Pt^{0.25}-NiCe/SiO₂^{WI}, and (d) NiCe/SiO₂^{WI}.

Figure 2.38, the Fourier-transform infrared (FTIR) spectra of the catalysts show the gaseous (2143 cm^{-1}) and adsorbed $(1730-2080 \text{ cm}^{-1})$ CO bands along with the characteristic IR bands for carbonate (CO_3^{2-*}) species located at 1410–1653 cm⁻¹ in CO₂ stream. As shown in Figure 8c, Pt^{0.25}-NiCe/SiO₂^{WI} shows a strong CO* band for linearly adsorbed CO on the reduced metal sites at 2029 cm⁻¹, and broad CO* bands at 1919 cm⁻¹ and 1844 cm⁻¹ for the bridge and multicentered bonded CO, respectively. The adsorbed CO₂ dissociates to CO* and O* species on Ni, where CO* desorbs subsequently as CO gas. Vibrational CO* bands are immediately visible upon CO₂ injection on the impregnated catalysts, yet their intensities decrease after 10 min. Similarly, the doublet of gaseous CO can be observed only for the first 10 min. It is possible that O* species formed during CO₂ injection can oxidize reduced Ni leading to its deactivation. As a

result, the CO* coverage on Ni decreases on the surface and limits CO production. Additionally, $CO_3^{2^-*}$ species can form through the reaction of CO_2^* and O* on CeO₂. As shown in Figure 8, the $CO_3^{2^-*}$ bands develop after CO_2 injection on both impregnated and yolk-shell catalysts, yet their intensity is much stronger on the impregnated catalysts. A clear difference between the yolk–shell and impregnated catalysts is shown in CO absorption bands. Unlike impregnated catalysts, the yolk–shell catalysts show a weak linear CO absorption band at 2011 cm⁻¹, while bridge CO bands are not observed (Figure 2.38a,b). Like impregnated catalysts, the gaseous CO and small linearly adsorbed CO peaks are not seen after 10 min of CO₂ stream due to the possible Ni oxidation.

Following CO₂ injection, CH₄ is introduced after flushing the cell with N₂ for 1 h. The linear and bridge CO absorption bands are still observed for the impregnated catalyst, whereas only a weak linear CO absorption band is identified for the yolk–shell catalysts during CH₄ injection. The CO₃^{2–*} peaks are not observable throughout the CH₄ feed stream. The presence of CO* bands at 1 min of CH₄ stream on the impregnated catalysts can imply that the adsorbed CO formed during CO₂ injection does not react with CH₄. The gaseous CO appears upon CH₄ injection at 1 min, because the CO₃^{2–*} species formed during CO₂ injection can react with H* to generate formate species (COOH*) followed by their decomposition to CO.¹⁶⁴ The gaseous and adsorbed CO peaks continue to increase for the first 5 min of CH₄ injection and start to decrease after 10 min for the impregnated catalysts. The initial increase of CO bands can be explained with the reaction between the decomposed carbon from CH₄ and reactive lattice oxygen. Once the reactive lattice oxygen is consumed, further decomposition of CH₄ blocks the active sites with carbon, reducing the intensity of CO bands.⁶⁴ The yolk–shell catalyst does not have any gaseous and adsorbed CO bands at 1 min CH₄ stream due to the low amount of carbonate species

Figure 2.39. Operando DRIFTS spectra of yolk–shell and impregnated catalysts with and without 0.25 wt% Pt promotion in DRM condition (CO₂:CH₄:N₂=1:1:6) at 500 °C.

formed during CO_2 injection. However, the gaseous CO band observed after 5 min remains up to 20 min of CH_4 stream indicating that yolk–shell catalysts present high resistance to carbon deposition, matching with DRM activity data.

Lastly, *operando* DRIFTS experiment is performed at 500 °C. As shown in Figure 2.39, the FTIR spectra of all catalysts show the doublet of gaseous CO (2143 cm⁻¹) produced from DRM. Similar to the *in situ* DRIFTS experiments, impregnated catalysts show absorption bands for linear- and bridge-bonded CO, whereas CO absorption bands are not pronounced on the yolk–shell catalysts. During DRM, carbon is formed through methane decomposition (CH₄ \rightarrow C+2H₂, Δ H°= +74.9 kJ mol⁻¹) and CO disproportionation (the Boudouard reaction), and the latter reaction is dominant at the relatively low reaction temperature (e.g. 500 °C). The lack of CO absorption bands on the yolk–shell catalysts implies that carbon formation on the active sites through the Boudouard reaction might not occur.^{47,64,165} In comparison to CO₂ injection experiments, the linearly adsorbed CO band is shifted to 2048 cm⁻¹ from 2029 cm⁻¹ during DRM due to the increase in the dipole-dipole coupling between the CO* molecules.^{93,166} It is important

Figure 2.40. DRIFTS spectra of Ni/SiO_2^{WI} and $Pt^{0.25}/SiO_2^{WI}$ during DRM condition (CO₂/CH₄/N₂=1/1/6).

to note that linearly adsorbed CO bands on Ni and Pt cannot be differentiated from each other. As shown in Figure 2.40, the linearly adsorbed CO band on both Ni and Pt are detected at the same wavenumber (2050 cm^{-1}) for Ni/SiO₂^{WI} and Pt^{0.25}/SiO₂^{WI} under DRM condition, which is in agreement with the literature.^{127,167} Compared to the CO₂ and CH₄ injection experiments, the gaseous and adsorbed CO bands do not diminish during the *operando* experiments suggesting that feeding CO₂ and CH₄ simultaneously can stabilize the catalyst by inhibiting Ni oxidation or carbon deposition due to facile interaction among the intermediates. Based on the experimental data analysis, elementary steps of the DRM reaction mechanism can be summarized in Figure 2.41. Both CH₄ and CO₂ are activated on the Pt–Ni SAA structures which are in interaction with

Figure 2.41. Reaction mechanism for DRM on yolk–shell Pt^{0.25}-NiCe@SiO₂ SAA catalyst.

CeO₂ and supported on SiO₂ shell. CH₄ (g) adsorbs on the Pt–Ni and Ni sites and dissociates to CH_x intermediates to form C* and H* species (eq. 2.8). H* species react on the Ni to form H₂ (g) (eq. 2.9). CO₂ adsorbs on the Ni site and dissociate to form CO (g) and O* (eq. 2.10 and eq. 2.11).⁶⁴ CO is produced from the reaction between O* formed on the Pt–Ni and Ni sites, and C* (eq. 2.12). The high mobility of lattice oxygen in CeO₂ can play an important role for carbon removal reaction. The oxygen sites (O_x) on CeO₂ can convert C* by forming CO* at the interface between Ni and CeO₂, leaving O_{x-1} vacancy. For the confined morphology of the yolk–shell, CO* on Ni can easily desorb as CO (g) (eq. 2.13). Pt single atoms can inhibit carbon generation by increasing the energy barrier for subsequent CH_x dissociation (eq. 2.8). The overall mechanism can be more pronounced on the well dispersed Pt single atoms interacting with Ni, e.g. 0.1 wt% and 0.25 wt%) generate more amount of carbon due to the lack of Pt–Ni SAA structures.

 $CH_4^* \leftrightarrow CH_x^* + H^* \leftrightarrow C^* + H^*$ (2.8)

 $2\mathrm{H}^{*} \leftrightarrow \mathrm{H}_{2}\left(\mathrm{g}\right) \tag{2.9}$

$$CO_2^* \leftrightarrow CO^* + O^*$$
 (2.10)

84

$CO^* \leftrightarrow CO(g)$	(2.11)
$C^* + O^* \leftrightarrow CO^*$	(2.12)
$2CO \leftrightarrow C + CO_2$	(2.13)

The RWGS reaction occurs during DRM by activation of CO_2^* with H* to generate OH* followed by reaction between OH* and H* to generate H₂O gas (eq. 2.14 and eq. 2.15).

$$CO_2^* + H^* \leftrightarrow COOH^* \leftrightarrow CO^* + OH^*$$
 (2.14)
 $OH^* + H^* \leftrightarrow H_2O$ (2.15)

2.4 Discussion

Our results confirm that the yolk–shell catalysts exhibit higher resistance to carbon deposition compared to the conventional ones during DRM. The cavity inside the shell can be beneficial for rapid chemical diffusion and conversion, which facilitates the gasification of carbon intermediates. The two-dimensional-confined cavity can disperse active metals as well as enhance adsorption and mass transfer of reactants.¹³² Addition of Pt can lead to the formation of Pt–Ni alloy structures, which can promote carbon oxidation while suppressing Ni oxidation on the surface by forming Pt-rich metal surfaces.^{127,149,168} The Pt-dominant bimetallic surface can weaken the O binding energy and reduce carbon oligomerization, thereby enhancing the DRM activity and stability.¹⁶⁹ Particularly, promotion of active metals with low Pt concentrations (< 1 wt%) can prevent carbon formation in methane reforming reactions due to the strong metal–support interaction, high Pt dispersion, and enhanced coke gasification.^{106,130,170,171} A specific amount of Pt promotion might be necessary to keep the desired Pt concentration on the Ni surface, while minimizing the formation of Pt nanoclusters or nanoparticles. In our work, we report that carbon formation can be minimized at certain low Pt concentrations, i.e., 0.25 wt%,

with a positive effect of confined space in the yolk–shell structures. We observe that promotion of NiCe@SiO₂ with 0.25 wt% Pt can form Pt–Ni SAA structures, which increase Pt–Ni interaction and the reducibility of Ni species, as shown in the HRTEM and H₂-TPR analysis. Pt has low segregation energy, and it can remain on the Ni surface forming SAA structures.¹²⁰ When the Pt–Ni SAAs formed, it is shown that the SAAs can maintain a high activation energy for CH_x dehydrogenation and increase carbon gasification rate compared to monometallic catalysts.^{111–114} Additionally, singly dispersed Pt can effectively dissociate H₂ followed by its spillover on to the Ni surface.^{172,173} These highly reactive H atoms can hydrogenate adsorbed carbon species, which hinders the nickel carbide formation while minimizing the carbon dissolution into the Ni lattice.¹⁷⁴ When Pt concentration increases from 0.25 wt% to 1 wt%, Pt nanoparticles are observed in the yolks, as shown in Figure S3 and S4. Formation of Pt nanoparticles at high Pt loadings can facilitate dehydrogenation of CH₄ enabling oligomerization of C–H species to form coke.¹⁷⁵

In situ and *operando* DRIFTs experiments do not confirm directly whether intermediate CO* is reacting fast to form other surface adsorbed species or released from the surface as CO gas on the yolk–shell structures. It has been reported that CO binds weekly on single Pt atoms in SAAs that can impede the Boudouard reaction preventing carbon formation on the catalyst.¹⁷⁶ However, our results indicate that the linear- or bridge-bonded CO is not directly associated with Pt promotion; instead it is related to the confined morphology of the yolk–shell structures. It is possible that the adsorption energy of CO can be influenced by surface deformations in the confined morphology. Strain effects induced from the lattice mismatch between yolks and shell materials can affect the electronic property, producing a shift of the surface d-band states of the transition metals.¹⁷⁷ A change in electron density of the confined Ni strongly interacting with

86

SiO₂ shell can change CO adsorption behavior having CO species to be easily released from the surface.⁴⁷ As shown in Table 2.5, the yolk–shell catalysts produce less H₂/CO ratio than the impregnated catalysts, possibly due to the efficient release of CO species.¹⁷⁸ In addition, the CO* absorption band observed on the Ni active sites can influence CH₄ activation. As shown in Figure S15, a decrease in the CH₄ conversion rate for the impregnated catalyst is faster than that for the yolk–shell catalysts, which might indicate that the active sites for CH₄ is blocked by CO* from the mono-functional pathway.¹⁷⁹

2.5 Conclusions

In this work, we have evaluated the low-temperature DRM performance of the nanotubular yolk–shell structured Pt-NiCe@SiO₂ at 500 °C. The developed Pt-NiCe@SiO₂ exhibits high resistance to carbon deposition in the confined morphology due to the efficient CO desorption, whereas the conventional impregnated catalyst deactivates fast by severe carbon formation through favorable Boudouard reaction during DRM. The Pt^{0.25}-NiCe@SiO₂ catalyst presents atomically dispersed Pt on the yolks forming Pt–Ni SAA structures encapsulated by a nanotubular SiO₂ shell. The Pt–Ni SAA facilitates Pt–Ni interaction and enhances the reducibility of Ni species, which further suppresses carbon formation during DRM. When the Pt loading increases above 0.25 wt%, Pt nanoclusters form leading to oligomerization of C–H species to form coke. Promotional effects of both confined morphology and Pt–Ni SAA structures can lower the operating temperature of DRM without showing any catalyst deactivation. These discoveries highlight the potential routes to design catalysts for industrially relevant DRM process to utilize GHGs to produce syngas, which can contribute to carbon neutrality.

87

CHAPTER 3

Direct CO₂ Hydrogenation to Light Olefins over Tandem Catalysts

3.1 Introduction

High atmospheric CO₂ concentration contributes to global warming and ocean acidification.⁷ Activation of CO₂ to high value-added chemicals and fuels is a promising route to mitigate CO₂ emissions and open possibilities to net-zero carbon based energy production.¹¹ One approach for CO₂ utilization can be direct conversion of CO₂ to light olefins (ethylene, propylene, and butylene) by a tandem catalyst via methanol mediated reaction, where CO₂ is first hydrogenated to methanol (3.1), followed by methanol-to-olefins (MTO) reaction (3.2) in a single reactor.^{180,181}

$$CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O, \Delta H^\circ = -49.5 \text{ kJ mol}^{-1}$$

$$(3.1)$$

$$nCH_{3}OH \leftrightarrows C_{n}H_{2n} + nH_{2}O \tag{3.2}$$

$$CO_2 + H_2 \leftrightarrows CO + H_2O, \Delta H^\circ = +42.1 \text{ kJ mol}^{-1}$$
(3.3)

The former reaction is thermodynamically favored at low reaction temperatures (< 250 °C), while the MTO reaction can be operated at high reaction temperatures (> 350 °C).^{182,183} The difference in reaction temperatures can decrease the desired product selectivity, when two active catalysts for each reaction are coupled in a single reactor as a tandem reaction. However, the tandem process can promote consumption of the intermediate species, shifting the reaction equilibrium to the right, while minimizing the undesired CO formation by reverse water-gas shift (RWGS) reaction (3.3).¹⁸⁴ Additionally, the methanol intermediate route occurring on the tandem

catalyst can break the Anderson–Schulz–Flory (ASF) distribution, which results in higher light olefins selectivity (> 80%) compared with the modified Fischer–Tropsch reaction.^{185,186}

Generally, the direct conversion of CO₂-to-light olefins can be carried out on a mixture of In₂O₃ supported on ZrO₂ and SAPO-34, where CO₂ to methanol and MTO reactions occur, respectively.^{180,187} Surface oxygen vacancies of In₂O₃ has been identified as active sites for methanol formation by CO_2 hydrogenation.^{188,189} The oxygen vacancies created by H₂ can promote CO₂ activation and stabilize the reaction intermediates, followed by replenishing the oxygen vacancy by CO₂, producing methoxy species during the reaction.¹⁹⁰ One of the most well-performing catalysts investigated for the CO₂ hydrogenation to methanol is ZrO₂-supported In_2O_3 . In_2O_3 supported on monoclinic zirconia demonstrates up to 10 times higher methanol yield than In₂O₃ supported on Al₂O₃, CeO₂, TiO₂, ZnO, and SiO₂ due to the tensile strain caused by pronounced lattice mismatching.^{189,191} In₂O₃/ZrO₂ can provide not only higher dispersion and sintering resistance but also advantageous metal-support interaction, which all promote high stability of the catalyst.^{189,191,192} High dispersion of In₂O₃ on ZrO₂ leads to a strong electronic interaction with ZrO₂, The electrons located in the vicinity of ZrO₂ can be depleted by In₂O₃ impregnation, abstracting O atoms from the active phase leading to increase the vacancies.¹⁸⁹ Dang et al. demonstrated that chemisorption of CO₂ is stronger on the oxygen vacancy sites close to Zr ions compared to that on the pure In_2O_3 . These sites can also stabilize intermediate species for methanol formation in $In_{1-x}Zr_xO_y$ and promote activity.¹⁹³

Unlike ZrO_2 , yttria-stabilized zirconia (YSZ) is a unique material with a stable cubic fluorite structure that is prone to higher levels of oxygen-ion conductivity due to the difference in valence charges of Y³⁺ to Zr⁴⁺. YSZ-based catalysts have been generally studied for oxidation reaction as it can facilitate spillover of oxygen ions onto the metal surface. For instance facile oxygen ion diffusion in YSZ can replenish the oxygen consumed by partial oxidation of methane enhancing the activity.¹⁹⁴ In addition to the oxygen diffusion, YSZ promotes metal–support interaction with high oxygen vacancies, and it is shown to have high reaction rate for low temperature toluene oxidation despite the low Pt dispersion.¹⁹⁵ The spillover of oxygen ion species onto metals due to the strong metal–support interaction can enhance the activity because oxygen chemisorption on Pt is the rate-determining step for toluene oxidation. The YSZsupported catalysts can have beneficial effect for CO₂ hydrogenation as strong interaction between metal and YSZ with high content of oxygen vacancies can facilitate CO₂ adsorption with stabilizing the reaction.^{191,196}

For the MTO reaction, chabazite zeolites with high hydrothermal stability, such as SAPO-34, are great interest due to their excellent performance and high selectivity towards light olefins production.¹⁹⁷ L. Han et al. synthesized hierarchical porous SAPO-34, and it presented a long lifetime of up to 740 min with light olefins selectivity of 87.5%.¹⁹⁸ However, the channels in SAPO-34 can be partially blocked by coking, deactivating the reaction.¹⁹⁹ It is reported that low crystal size of SAPO-34 can increase the catalyst lifetime and product selectivity because the high external surface area and short residence time of the reactants and products hinders the coking and further formation of paraffins or larger hydrocarbons.^{200,201} Therefore, applying the nano-sized SAPO-34 can benefit the stability of the tandem catalyst for CO₂ hydrogenation to light olefins.

Here, we report a tandem catalyst composed of indium oxide supported on zirconia and nano-sized SAPO-34 zeolite for direct CO₂ hydrogenation to light olefins at high temperature (420 °C). Two different types of zirconia-based supports (YSZ and ZrO₂) are adopted and compared in the reaction performance. The high oxygen vacancies in YSZ can stabilize the light

90

olefins production, and developed nano-sized SAPO-34 can prolong the lifetime of the catalytic reaction with high light olefins selectivity without any significant coke formation.

3.2 Experimental Methods

3.2.1 Catalyst preparation

In₂O₃ supported on YSZ (Sigma Aldrich) and ZrO₂ (Alfa Aesar) catalysts were prepared with 10 wt% of In using incipient wetness impregnation. Appropriate amounts of indium nitrate hydrate $(In(NO_3)_3 \cdot xH_2O, 99.99\%)$, Alfa Aesar) was dissolved in deionized (DI) water, and the aqueous solution were added dropwise to the support. The sample was dried at 373 K overnight and calcined in static air at 773 K for 4 h with a ramping rate of 5 °C min⁻¹. The prepared catalysts in YSZ and ZrO₂ supports are denoted as In₂O₃/YSZ and In₂O₃/ZrO₂, respectively. A nano-sized SAPO-34 was synthesized by a microwave-assisted hydrothermal method. Finely ground aluminum isopropoxide (Al(OPrⁱ)₃, 98%, Sigma Aldrich) was mixed with tetraethylammonium hydroxide solution (TEAOH, ~40% in H₂O, Sigma Aldrich) and DI water until dissolved completely. Tetraethyl orthosilicate (TEOS, 99.0%, Sigma Aldrich) was then added dropwise to the solution, followed by stirring for 2 h. After that, phosphoric acid (H_3PO_4 , 85%, Alfa Aesar) was added dropwise, and the mixture was further stirred for additional 1 h. The final precursors gel with the molar composition of $1.0Al_2O_3 : 1.2P_2O_5 : 0.6SiO_2 : 2.0TEAOH :$ 40H₂O was transferred into Teflon vessels and placed inside a microwave oven (MARS 5, CEM Corporation). The vessels were heated to 180 °C with magnetic stirring for 1 h under autogenous pressure with an 800 W output. The resulting solids were collected by centrifugation and washed with ethanol (C₂H₆O, anhydrous, Fisher Chemical) and DI water. The washed sample was dried at 100 °C overnight and calcined in static air at 500 °C for 6 h with a ramping rate of 5 °C min⁻¹.

The activity of microwave synthesized SAPO-34 is compared with the commercial SAPO-34^{COM}, purchased from ACS Material, LLC.

3.2.2 Characterization

High-resolution transmission electron microscopy (HRTEM) images with energy dispersive X-ray spectroscopy (EDX) were obtained using JEOL Grand ARM. The samples were ultrasonically dispersed in ethanol and loaded on a carbon coated Cu grid. Field emission scanning electron microscopy (FESEM) images were taken on Zeiss Ultra plus. Powder X-ray diffraction (XRD) patterns were recorded with Rigaku MiniFlex II using Cu K α source radiation $(\lambda = 1.5406 \text{ Å})$ in a 2 θ range of 10°–80° with a step rate of 2° min⁻¹. Raman spectroscopy measurements were conducted on XploRA PLUS, Horiba in the backscattering configuration using 638 nm wavelength. N₂ adsorption and desorption isotherms were collected by Micromeritics ASAP 2020 at -196 °C. Prior to the measurements, the samples were degassed at 300 °C for 7 h. Surface area, pore volume, and pore size were determined by Brunauer-Emmett-Teller (BET) and Barrett-Joyner- Halenda (BJH) methods. H₂ temperature-programmed reduction (H₂-TPR) was conducted on Micromeritics AutoChem II. First, 50 mg of catalyst was heated at 300 °C for 1 h under helium, and then cooled down to 30 °C. After pretreatment step, the temperature was ramped from 30 °C to 900 °C at a rate of 10 °C min⁻¹ in a 10% H₂/Ar mixture with recording the signal in thermal conductivity detector (TCD). H₂ chemisorption experiments were conducted on the same Micromeritics AutoChem II to obtain H₂ uptake. 100 mg of catalyst was purged at 300 °C for 1 h under He, and H₂ pulse chemisorption was carried out at 35 °C in 10% H₂/Ar with 8 min intervals. H₂ temperature-programmed desorption (H₂-TPD) and CO₂-TPD were performed on Micromeritics 3Flex equipped with TCD. First, 100 mg of catalyst was heated at 300 °C for 1 h under argon and cooled down to 50 °C. After the

92

preparation step, the sample was saturated in H₂ or CO₂ for 1 h at 50 °C, followed by purging with argon for additional 1 h to remove any physisorbed molecules. H₂-TPD and CO₂-TPD experiments were then performed at 50–1000 °C with a heating rate of 10 °C min⁻¹ in argon flow. X-ray photoelectron spectroscopy (XPS) was performed using a Kratos Axis Ultra DLD with Al K_a radiation, and the binding energy was calibrated to the signal of C 1s at 284.8 eV. Thermogravimetric analysis (TGA) was employed on TG 209 F1 Libra, NETZSCH. The samples were heated from 30 °C to 900 °C with a ramping temperature of 10 °C min⁻¹ under flowing air.

3.2.3 Catalyst evaluation

The performance of tandem catalysts for CO₂ hydrogenation to light olefins was carried out in a fixed-bed continuous-flow reactor. The supported In₂O₃ and SAPO-34 was mixed physically with a mass ratio of 1:1. 400 mg of the tandem catalyst was loaded in a stainless-steel tubular reactor with an inlet diameter of 7.7 mm. Temperature of the catalyst was measured using a K-type thermocouple placed on top of the catalyst bed. The reaction gases (CO₂ : H₂ : N₂ = 1 : 3 : 1) were introduced to the reactor via mass flow controllers. The reaction was conducted at 320–420 °C under 30 bar at a GHSV of 4,000 ml g⁻¹ h⁻¹. The effluent gases were analyzed online using a gas chromatograph (GC) equipped with a TCD and a flame ionization detector (FID). The CO₂ conversion (X), product selectivity (S), and light olefins yield (Y) are calculated using the following equations:

$$X (\%) = \frac{F_{CO2,in} - F_{CO2,out}}{F_{CO2,in}} \times 100$$
(3.4)

$$S_{CO} (\%) = \frac{F_{CO}}{F_{CO} + \sum_{1}^{m} F_{CmHn}} \times 100$$
 (3.5)

$$S_{\text{CmHn}}(\%) = \frac{\sum_{1}^{m} \text{mF}_{\text{CmHn}}}{F_{\text{Co}} + \sum_{1}^{m} \text{mF}_{\text{CmHn}}} \times 100$$
(3.6)
$$Y_{C_2^{-}-C_4^{-}} (\text{mmol } h^{-1} g_{\text{cat}}^{-1}) = \frac{\frac{\text{GHSV} \cdot \frac{X_{\text{CO2}} \cdot S_{\text{C2}-C_4}}{100}}{22.4}}{22.4}$$
(3.7)

where $F_{CO2,in}$ and $F_{CO2,out}$ are the molar flow rates of CO₂ measured at the inlet and outlet of the reactor, respectively, and F_{CO} and F_{CmHn} are the molar flow rates of the products. In all experiments, carbon molar balance was closed within ±2%, and the reproducibility of the catalytic activity for all experiments is found to be deviating within ±5%.

3.3 Results and Discussion

3.3.1 Characterization of catalysts

Figure 3.1a,b show TEM images of In_2O_3/YSZ and In_2O_3/ZrO_2 with particle size distribution in the inset of the images. The particles of the In_2O_3/YSZ is distributed in the range of 2–10 nm with the average size of 6.0 nm, whereas In_2O_3/ZrO_2 has particle size from 10 nm to 45 nm with the average size of 21.1 nm. The HRTEM images in Figure 3.1c,d show a lattice fringe with interplanar spacings of 0.29 nm corresponding to the In_2O_3 (222) planes, and the In_2O_3 is shown to be deposited on the surface of both YSZ and ZrO_2 . The In_2O_3 particle supported on YSZ shows size of 7.1 nm, which is similar with the YSZ support, and In_2O_3 deposited on ZrO_2 has size of 9.4 nm. The EDX elemental mapping analysis indicates that the In_2O_3 particles are dispersed evenly on the YSZ and ZrO_2 supports (Figure 3.1e,f).

The XRD patterns of In_2O_3/YSZ , In_2O_3/ZrO_2 , and bare supports are shown in Figure 3.2a. The diffraction patterns observed at 20 of 24.2°, 28.2°, 31.6°, and 34.3° for In_2O_3/ZrO_2 and ZrO_2 correspond to the monoclinic zirconia phase (Crystallography Open Database (COD) no. 96-900-5834). The XRD pattern for the In_2O_3/ZrO_2 catalyst shows an additional diffraction peak at 20 of 31.0°, which is assigned to the (222) plane of the In_2O_3 bcc phase (COD no. 96-152-

1754). The XRD patterns for both In_2O_3/YSZ and YSZ show diffraction peaks at 30.5°, 35.3°, 50.5°, and 59.9°, which are assigned to the cubic zirconia phase (COD no. 96-152-1754).²⁰² In_2O_3 diffraction peaks are not detectable for In_2O_3/YSZ because of the overlapped large cubic zirconia peak located at 30.5°. The lattice constants of cubic In_2O_3 and cubic zirconia are similar to each other, which makes the XRD patterns to be identical.¹⁹¹ The crystallite size of In_2O_3 calculated using the Scherrer equation is 11.3 nm for In_2O_3/ZrO_2 (Table 3.1). The crystallite sizes of YSZ and ZrO_2 is 6.9 nm and 15.4 nm, respectively, which is in good agreement with the

Figure 3.1. HRTEM and EDX elemental mapping images of (a) In_2O_3/YSZ and (b) In_2O_3/ZrO_2 (In: green and Zr: red)

Figure 3.2. (a) XRD patterns, (b) N_2 adsorption–desorption isotherms, and (c) Raman spectra of In_2O_3/YSZ , In_2O_3/ZrO_2 , and their bare supports.

TEM analysis. After impregnation of indium species, the crystallite sizes of YSZ and ZrO₂

slightly increase to 7.4 nm and 18.0 nm, respectively, possibly due to the sintering of ZrO₂ species during calcination.

Catalysts	Crystallite size (nm)						
	m-ZrO ₂ (11–1)	c-ZrO ₂ (111)	In ₂ O ₃ (222)				
In ₂ O ₃ /YSZ	-	7.4	-				
YSZ	-	6.9	-				
In_2O_3/ZrO_2	18.0	-	11.3				
ZrO_2	15.4	-	-				

Table 3.1. Crystallite size of In₂O₃/YSZ, In₂O₃/ZrO₂, and their bare supports.

N₂ adsorption–desorption isotherms of catalysts are shown in Figure 3.2b, and their textural properties are displayed in Table 3.2. All isotherms can be assigned to type IV isotherms with H2 hysteresis, indicating that mesoporous with bottle necked structures formed after impregnation and calcination process.¹⁸⁷ The specific surface areas of the bare YSZ and ZrO₂ supports are 222.4 m² g⁻¹ and 158.7 m² g⁻¹ with the pore volume of 0.399 cm³ g⁻¹ and 0.270 cm³ g⁻¹, respectively. YSZ possesses larger surface area and pore volume than ZrO₂ because of smaller particle size of YSZ than ZrO₂. After impregnation of In₂O₃, the surface area and pore volume of the both supports decrease as In₂O₃ can occupy pores of the support. The difference is more pronounced for the YSZ than ZrO₂ due to the similar size between YSZ and In₂O₃. As shown in Figure 3.3 and Table 3.2, the pore sizes of In₂O₃/YSZ and In₂O₃/ZrO₂ show similar values of 6.33 nm and 6.74 nm, respectively. The presence of mesopores in In₂O₃/ZrO₂ could be associated with the interparticle voids within the particles possibly due to the large particle size of ZrO₂, whereas In₂O₃/YSZ does not show the mesopores region due to the small particle size, evidenced by TEM and XRD analysis.

Catalysts	$S_{BET} (m^2 g^{-1})^a$	$V_{p} (cm^{3} g^{-1})^{a}$	Pore size (nm)
In ₂ O ₃ /YSZ	184.8	0.292	6.33
YSZ	222.4	0.399	7.18
In_2O_3/ZrO_2	157.6	0.266	6.74
ZrO_2	158.7	0.270	6.79

Table 3.2. Textural properties of In₂O₃/YSZ, In₂O₃/ZrO₂, and their bare supports.

 ${}^{a}S_{BET}$ and V_p represent the BET surface area and total pore volume, respectively.

Figure 3.3. Pore size distribution diagrams of In₂O₃/YSZ, In₂O₃/ZrO₂, and their bare supports using the Barrett–Joyner–Halenda (BJH) method.

The Raman spectra of the catalysts are collected to determine the structural disorders and oxygen vacancies. As shown in Figure 3.2c, the spectra of In_2O_3/YSZ and YSZ can be characterized by amorphous-like broad bands, related to the disordered oxygen sublattice and lowering symmetry from the Y substitution of Zr.^{203,204} Both In_2O_3/ZrO_2 and ZrO₂ shows the typical vibrational peaks centered at 103 cm⁻¹, 144 cm⁻¹, 180 cm⁻¹, 191 cm⁻¹, and 223 cm⁻¹ corresponding to the monoclinic zirconia phase. The small peak located at 133 cm⁻¹ for In_2O_3/ZrO_2 can be assigned to the phonon vibration modes of the bcc-In₂O₃. The structural disordering in Raman for YSZ can be associated with the oxygen vacancies.²⁰⁴ The high amount

of oxygen vacancy in YSZ can provide facile oxygen vacancy elimination and generation cycle, which can enhance the catalytic performance.

H₂-TPR is performed to investigate the reducibility of In species and their interaction with the support in Figure 3.4. As a baseline, the bare YSZ and ZrO₂ supports are also analyzed for their H₂ consumption. Both bare supports do not show any distinct H₂ reduction peaks up to 900 °C due to the irreducible nature of YSZ and ZrO₂. After In₂O₃ impregnation, a small broad α peak at the temperature range of 150–400 °C is observed on both In₂O₃/YSZ and In₂O₃/ZrO₂, which can be ascribed to the partial reduction of dispersed In species on the surface.¹⁹³ The dispersed species can have more oxygen vacancies with low formation energy of oxygen vacancy.²⁰⁵²⁰⁶ This indicates that the oxygen vacancies might be presented at the CO₂ hydrogenation reaction temperature applied. The high temperature peak (β) located at 464 °C for In₂O₃/ZrO₂ can be assigned to the reduction of In₂O₃ into metallic In.²⁰⁷ The asymmetric shape with a tail of the reduction peak suggests the presence of heterogeneously distributed In species. The unsupported In₂O₃ also contains two broad peaks from the reduction of In₂O₃, as shown in Figure 3.5. The small broad peak (α) at low temperature below 127 °C is related with the

Figure 3.4. H_2 -TPR profiles of In_2O_3/YSZ , In_2O_3/ZrO_2 , and their bare supports.

Figure 3.5. H₂-TPR profile of pure In₂O₃.

reduction of surface In₂O₃, and the strong peak (β) at high temperature range (> 400 °C) is attributed to the reduction of bulk In₂O₃.²⁰⁸ The peak located at much higher temperature (732 °C) could be related to the reduction of the large crystallite size of In₂O₃.²⁰⁹ When In₂O₃ is impregnated onto the ZrO₂ support, the major peaks shift to the lower temperature from 580 °C to 464 °C, suggesting that supported In₂O₃ is more easily reduced than unsupported In₂O₃. However, when In₂O₃ is impregnated onto YSZ, no distinct peaks are observed. In₂O₃ on YSZ can be hardly reduced compared to In₂O₃ on ZrO₂ due to the strong metal–support interaction, which can provide high metal dispersion, thereby high activity. H₂ chemisorption measured on the samples shows that H₂ uptake for In₂O₃/YSZ is 2.26 times larger than that for In₂O₃/ZrO₂ (Table 3.3).²¹⁰ In addition, the strong metal–support interaction can prevent In₂O₃ from overreduction to metallic In, stabilizing the methanol production as oxygen vacancies in In₂O₃ is the **Table 3.3**. H₂ uptake measured by H₂ chemisorption for In₂O₃/YSZ and In₂O₃/ZrO₂.

Catalysts	H_2 uptake (mmol g ⁻¹)
In_2O_3/ZrO_2	0.0093
In ₂ O ₃ /YSZ	0.0210

the active sites.¹⁸⁸

Figure 3.6a shows the H₂-TPD profiles of the supported In₂O₃ and bare supports. The bare ZrO₂ support presents less amount of H₂ adsorption capacity and lower desorption temperature of 240 °C compared to the bare YSZ support. YSZ shows not only large amount of H₂ adsorption capacity but also a higher H₂ adsorption temperature of 440 °C. Impregnation of In₂O₃ onto the both supports lowers the desorption temperature and H₂ adsorption capacity compared to the bare supports. However, In₂O₃/YSZ still shows larger H₂ adsorption capacity and higher H₂ desorption temperature of 263 °C than that of 231 °C for In₂O₃/ZrO₂. CO₂-TPD is

Figure 3.6. (a) H₂-TPD and (b) CO₂-TPD profiles of In₂O₃/YSZ, In₂O₃/ZrO₂, and their bare supports.

performed to elucidate oxygen vacancies of the catalysts. As shown in Figure 3.6b, the desorption peak observed at low temperatures (50–200 °C) can be ascribed to the desorption of the physiosorbed CO₂ from weak basic sites. The large peaks observed at temperatures higher than 200 °C can be associated to the chemisorbed CO₂ on the oxygen vacancies.²¹¹ The bare YSZ presents the highest CO₂ uptake, whereas the bare ZrO₂ shows the lowest CO₂ adsorption capacity. This finding indicates that YSZ provides stronger CO₂ adsorption sites on the oxygen vacancy site near the Zr than the ZrO₂. After In₂O₃ impregnation, In species on the supports lowers the CO₂ uptake compared to the bare supports. However, In₂O₃/YSZ still shows a larger CO₂ uptake compared to In₂O₃/ZrO₂. Gao et al. reported that CO₂ is strongly chemisorbed on the oxygen vacancy sites near the Zr dopant on In_{1-x}Zr_xO_y surface than the pure In₂O₃.¹⁸⁰ The enhanced adsorption capacity for both H₂ and CO₂ can increase CO₂ hydrogenation activation on the YSZ-supported In₂O₃.

Core level photoelectron spectra of the supported In_2O_3 and bare supports are collected to elucidate surface speciation. As shown in Fig. 3.7a, the O 1s core level spectra of catalysts can be deconvoluted into three peaks, whose relative contents are shown in Table 3.4. The main peak located at 530.0 eV originates from the lattice oxygen (O_{latt}), and two other peaks observed at

Figure 3.7. (a) O 1s, (b) In 3d, and (c) Zr 3d XPS spectra of In_2O_3/YSZ , In_2O_3/ZrO_2 , and their bare supports.

Catalysts	Olatt	O _{ads}	OH	O_{ads}/O_{latt}
In ₂ O ₃ /YSZ	77.3	15.4	7.3	0.20
YSZ	74.8	20.2	5.0	0.27
In_2O_3/ZrO_2	80.5	12.6	6.9	0.16
ZrO ₂	84.3	12.7	3.0	0.15

Table 3.4. Relative surface concentration of oxygen species of In₂O₃/YSZ, In₂O₃/ZrO₂, and their bare supports measured by XPS

531.6 eV and 532.5 eV can be assigned to surface adsorbed oxygen (O_{ads}) and surface hydroxyls (OH) groups, respectively. The oxygen defect concentration, which is proportional to the O_{ads}/O_{latt} ratio, are measured to be 0.20 and 0.16 for In_2O_3/YSZ and In_2O_3/ZrO_2 , respectively, indicating that the YSZ supported-In₂O₃ presents higher surface oxygen vacancies compared to In₂O₃/ZrO₂. For the bare supports, YSZ possesses almost two times higher oxygen vacancies (0.27) than ZrO₂ (0.15). The In 3d core level spectra show two main peaks corresponding to the characteristic spin-orbit coupling of In^{3+} (Figure 3.7b). It is noted that the In $3d_{5/2}$ peak of In_2O_3/YSZ has a lower binding energy of 444.7 eV compared to the one of 445.0 eV for In₂O₃/ZrO₂, indicating that electron density of In on YSZ increases through the donated electrons from the neighboring Zr sites due to the strong metal-support interaction, matching well with the H₂-TPR results.¹⁹³ The Zr 3d core level spectra indicates that the spin-orbit doublet of Zr⁴⁺ has similar binding energies for Zr 3d_{3/2} (184.5 eV) and Zr 3d_{5/2} (182.1 eV) for both In₂O₃/YSZ and In₂O₃/ZrO₂, as shown in Figure 3.7c. The atomic In/Zr ratios on the In₂O₃/YSZ and In₂O₃/ZrO₂ surfaces are calculated to be 12.7% and 20.4%, respectively (Table 3.5). The low In/Zr ratio on In₂O₃/YSZ indicates less In enrichment on the support surface, suggesting a high In₂O₃ dispersion, in consistent with the H₂-TPR and H₂ chemisorption data.

Catalysts		S	Surface c	ratios				
		Zr	In	0	Y	С	In/Zr	Zr/O
Fresh	In ₂ O ₃ /YSZ	22.8	2.9	65.4	3.3	5.6	12.7	34.9
	In ₂ O ₃ /ZrO ₂	24.0	4.9	59.3	-	11.8	20.4	40.5
Spent (320 °C)	In ₂ O ₃ /YSZ	36.9	3.7	49.1	3.2	7.1	10.0	75.2
	In ₂ O ₃ /ZrO ₂	37.1	3.4	40.7	-	18.8	9.2%	91.2
Spent (693 °C)	In ₂ O ₃ /YSZ	40.3	3.9	48.1	3.1	4.6	9.7%	83.8
	In ₂ O ₃ /ZrO ₂	45.5	5.1	42.4	-	7.0	11.2	107.3

Table 3.5. Relative surface chemical concentration of In₂O₃/YSZ, In₂O₃/ZrO₂, and their spent catalysts without SAPO-34 after 45 h of reaction.

^{*a*}Measured by XPS analysis

Figure 3.8a,c,d show the SEM and STEM images of the nano-sized SAPO-34

synthesized by microwave heating. The developed SAPO-34 presents small spherical particle

Figure 3.8. SEM images of (a) nano-sized SAPO-34 and (b) commercial SAPO-34^{COM} and (c) HAADF-STEM and (d) STEM images of nano-sized SAPO-34.

Figure 3.9. XRD patterns of nano-sized SAPO-34 and commercial SAPO-34.

sizes ranging in between 0.2–0.35 μ m, possibly formed by aggregation of the cubic crystals of ca. 60 nm. However, commercially obtained SAPO-34^{COM} has much larger particle sizes ranging from 2–5 μ m (Figure 3.8.b). The XRD pattern of the synthesized SAPO-34 shows characteristic diffraction peaks of the CHA structure and match with the XRD pattern of SAPO-34^{COM} (Figure 3.9). The diffraction peaks of the nano-sized SAPO-34 have broader shapes and their intensities are lower than those of SAPO-34^{COM}, leading to an ~80% of relative crystallinity. N₂ adsorption-

Figure 3.10. N₂ adsorption–desorption isotherms of nano-sized SAPO-34 and commercial SAPO-34^{COM}.

desorption isotherms of the nano-sized SAPO-34 and SAPO-34^{COM} are analyzed (Figure 3.10), and their textural properties are shown in Table 3.6. SAPO-34^{COM} has Type I isotherm, whereas developed SAPO-34 has a composite of Types I and II isotherms with pronounced N₂ uptake near saturation pressure. This indicates that the synthesized SAPO-34 has nano-sized hierarchical structures consisting of smaller crystal sizes as well as mesopores and macropores.^{201,212} The overall surface area of SAPO-34^{COM} (527.0 m² g⁻¹) is larger than that of the nano-sized SAPO-34 (455.9 m² g⁻¹). However, the nano-sized SAPO-34 possesses much larger external surface area of 162.0 m² g⁻¹ due to the small crystal size, whereas SAPO-34^{COM} presents small external surface area of 20.7 m² g⁻¹. It is known that high external surface area can provide enhanced mass transfer for reactants and products.²¹² This would be beneficial for the MTO reaction. For instance, the less contact time of the produced light olefins with SAPO-34 can reduce further conversion of light olefins to paraffins or aromatics. Additionally, the decreased crystal size can shorten the diffusion length for the reactants and products leading to a less coke deposition.²¹³

	SAPO-34	SAPO-34 ^{com}
$S_{overall} (m^2 g^{-1})$	455.9	527.0
$S_{micro} (m^2 g^{-1})$	293.9	506.3
$S_{external} (m^2 g^{-1})$	162.0	20.7
Pore size (nm)	2.485	2.023
$V_{micro} (cm^3 g^{-1})$	0.152	0.259
$V_{meso} (cm^3 g^{-1})$	0.131	0.007
Crystal size (µm)	0.2–0.35	2–5

Table 3.6. Textural properties of nano-sized SAPO-34 and commercial SAPO-34^{COM}.

3.3.2 Activity measurements

CO₂ hydrogenation activity of In₂O₃/YSZ with/without the presence of the microwave synthesized SAPO-34 is measured at each reaction temperatures after 4 h of reaction. As shown in Figure 3.11(a) and Table 3.7, when only In₂O₃/YSZ presents, methanol is produced at 320 °C with CO₂ conversion of 10.4% and methanol, CO and CH₄ selectivity's of 43.2%, 54.8% and 2.0%, respectively. CO is the major product with high selectivity due to the kinetically favored endothermic RWGS reaction, and undesired CH₄ can be generated by CO₂ methanation reaction (the Sabatier reaction, CO₂ + 4H₂ \rightarrow CH₄ + 2H₂O, Δ H^o = -165.0 kJ mol⁻¹). When the reaction temperature increases to 370 °C and 420 °C, the CO₂ conversion increases to 25.9% and 34.9%, respectively, and CO selectivity increases to 77.1% and 97%, respectively. Hydrocarbons are not observed at all reaction temperatures, as molecular sieves are required for methanol conversion

Figure 3.11. CO₂ conversion (black square), product selectivity (bar graph), and light olefins yield (red star) of (a) In_2O_3/YSZ , (b) $In_2O_3/YSZ//SAPO-34$, (c) In_2O_3/ZrO_2 , and (d) $In_2O_3/ZrO_2//SAPO-34$.

		X_{CO2}		Product selectivity (%)				Light olefins yield
	Catalysts	(%)	СО	CH ₄	MeOH	Light	Light	$(\text{mmol } h^{-1} g^{-1})$
		. ,				olefins	paraffins	
	In ₂ O ₃ /YSZ	10.4	54.8	2.0	43.2	-	-	-
320 °C	In ₂ O ₃ /YSZ//SAPO-34	6.8	72.1	1.1	-	16.3	10.5	0.380
	In ₂ O ₃ /ZrO ₂	6.3	22.1	0.3	77.6	-	-	-
	In2O3/ZrO2//SAPO-34	5.9	59.2	2.8	-	24.3	13.7	0.444
	In ₂ O ₃ /YSZ	25.9	77.1	1.1	21.8	-	-	-
370 °C	In ₂ O ₃ /YSZ//SAPO-34	18.5	74.7	1.1	-	15.2	9.0	0.960
	In ₂ O ₃ /ZrO ₂	20.9	61.2	0.3	38.5	-	-	-
	In2O3/ZrO2//SAPO-34	18.7	70.5	1.0	-	20.2	8.3	1.166
	In ₂ O ₃ /YSZ	34.9	97.0	2.0	1.0	-	-	-
420 °C	In2O3/YSZ//SAPO-34	30.3	79.3	1.9	-	10.8	8.0	1.121
	In ₂ O ₃ /ZrO ₂	31.9	98.2	0.5	1.3	-	-	-
	In2O3/ZrO2//SAPO-34	32.5	90.0	1.3	-	6.5	2.2	0.661

Table 3.7. Catalytic performance in CO₂ hydrogenation of supported In₂O₃ with/without SAPO-34 at different temperatures.

to hydrocarbons. When In₂O₃/YSZ is combined with SAPO-34 as a tandem catalyst, light olefins are produced at all reaction temperatures due to the MTO reaction, confirming that SAPO-34 shifts the equilibrium right via selective C–C coupling. Our results show that the In₂O₃/YSZ//SAPO-34 tandem catalyst can show CO₂ conversion of 6.8%, and selectivity for light hydrocarbons (C₂–C₄) and light olefins (C₂⁼–C₄⁼) as high as 26.8% and 16.3% at 320 °C, respectively. As the temperature increases to 370 °C and 420 °C, the CO₂ conversion increases to 18.5% and 30.3%, respectively. Compared to the catalyst without the presence of SAPO-34, the CO selectivity is reduced to 74.7% and 79.3% at 370 °C and 420 °C, respectively, indicating that presence SAPO-34 shifts the equilibrium of methanol formation reaction to the right with decreasing the RWGS rate. As it can be seen in Fig. 3.11c,d, In₂O₃/ZrO₂ presents similar activity trends with In₂O₃/YSZ. The methanol selectivity of In₂O₃/ZrO₂ at 320 °C shows higher value of 77.6% compare to the In₂O₃/YSZ of 43.2%, and it can be attributed to the different CO₂ conversion. ZrO₂-supported In₂O₃ exhibits lower CO₂ conversion than that of In₂O₃/YSZ, and the low CO₂ conversion leads to the higher selectivity of methanol production in CO₂ hydrogenation.^{214,215} Adsorption and activation of CO₂ can be promoted on the defects of metal oxides.^{192,216} The oxygen vacancies defects in YSZ can be generated by addition of Y due to the charge neutrality. The abundance of oxygen vacancies on In₂O₃/YSZ//SAPO-34 facilitates CO₂ adsorption.¹⁹¹ In addition, H₂O can dissociate on the defects of YSZ induced by Y³⁺ and form hydroxyl groups which are necessary for CO₂ chemisorption.²¹⁷ Our results show that bare YSZ displays a multitude of surface hydroxyl groups compared to bare ZrO₂ (Table 3.5). Overall, the higher CO₂ conversion observed on In₂O₃/YSZ compared to In₂O₃/ZrO₂ can be attributed to the large surface area and high affinities towards H₂ and CO₂ coupled with high oxygen vacancies, evidenced by N₂ isotherms and TPD analysis.

The stability of catalytic performance for In₂O₃/YSZ//SAPO-34 and In₂O₃/ZrO₂//SAPO-34 tandem catalysts for CO₂ hydrogenation reaction are evaluated at 420 °C for 45 h time-onstream (TOS) as shown in Figure 3.12. In the beginning of the reaction, In₂O₃/YSZ//SAPO-34 shows higher CO₂ conversion of 31.3% than that of 25.4% for In₂O₃/ZrO₂//SAPO-34. CO is found to be the major product for both catalysts with the same initial CO selectivity of 81.6%. The initial selectivity of the light olefins for In₂O₃/YSZ//SAPO-34 and In₂O₃/ZrO₂//SAPO-34 are 6.3% and 9.7%, leading to light olefins yields of 0.844 mmol h⁻¹ g⁻¹ and 0.680 mmol h⁻¹ g⁻¹, respectively. Both catalysts show no obvious decline in CO₂ conversion during 45 h TOS. However, the light olefins selectivity decreases to 4.2% for In₂O₃/ZrO₂//SAPO-34, and CO selectivity increases to 91.8% after 45 h TOS. Decreasing light olefins production can be

Figure 3.12. CO_2 conversion (black square), product selectivity (bar graph), and light olefins yield (red star) of (a) $In_2O_3/YSZ//SAPO-34$ and (b) $In_2O_3/ZrO_2//SAPO-34$ at 420 °C.

ascribed to the further reduction of the catalyst with CO, leading to the formation an amorphous molten state of In^0 , which can block the active sites and decrease the methanol selectivity.¹⁸⁸ On the other hand, the light olefins selectivity for $In_2O_3/YSZ/SAPO-34$ starts to increase for the first 20 h TOS and stabilizes at 11.9% after 20 h. Initial increase observed for the light olefins selectivity can be attributed to the creation of oxygen vacancies in In_2O_3 .¹⁸⁸ Formation of oxygen vacancies is facilitated in the presence of CO compared to H_2 due to the more exothermicity with CO than H_2 .¹⁹⁰ CO formed by RWGS can reduce In_2O_3 and generate more oxygen vacancies, which will enhance the reaction rate.¹⁸⁹ Pustovarenko et al. observed that an induction period is

required for MOF-derived In@Co catalyst to stabilize the methanol selectivity, which is associated with the formation of the active phase between the indium oxide and cobaltite phase.²¹⁸ After 45 h TOS, CO selectivity barely changes for In₂O₃/YSZ//SAPO-34 throughout the reaction, and the overall hydrocarbons selectivity maintains throughout the 45 h TOS. The longer stability in light olefins selectivity observed on In₂O₃/YSZ//SAPO-34 can be attributed to the higher metal dispersion and strong metal-support interaction which can inhibit the restructuring effects of the indium particles. In addition, In₂O₃/ZrO₂//SAPO-34 generates two times higher CH₄ selectivity (2.8%) than that of $In_2O_3/YSZ/SAPO-34$ (1.4%). Methanol is not observed throughout the reaction, indicating that all methanol converted to the C_2 - C_4 hydrocarbons on the SAPO-34. Table 3.8 shows CO₂ conversion, product selectivity, and light olefins yield at the 45 h TOS for both catalysts. Our results show that CO₂ conversion is slightly higher on In₂O₃/YSZ//SAPO-34 compared to In₂O₃/ZrO₂//SAPO-34. Additionally, In₂O₃/YSZ//SAPO-34 presents hydrocarbons and light olefins selectivity's of 16.4% and 11.9%, while In₂O₃/ZrO₂//SAPO-34 shows much smaller selectivity's of 5.3% and 4.0%, respectively. This can lead to produce almost three times higher light olefins yield for In₂O₃/YSZ//SAPO-34 $(0.997 \text{ mmol } h^{-1} \text{ g}^{-1})$ compared to $In_2O_3/ZrO_2//SAPO-34$ (0.336 mmol $h^{-1} \text{ g}^{-1}$). Among the olefins produced, $C_3^{=}$ shows the most selective product followed by $C_2^{=}$ and $C_4^{=}$ for $In_2O_3/YSZ//SAPO-34$.

		0 11 10	5.							
	X _{CO2}	Product selectivity (%)						Light olefins yield		
Catalysts	(%)	СО	CH ₄	Light olefins		Light paraffins		fins	$(\text{mmol } h^{-1} g^{-1})$	
				$C_2^=$	C3 ⁼	$C_4^=$	C_2°	C ₃ °	C4°	
In ₂ O ₃ /YSZ//SAPO-34	24.5	82.2	1.4	3.8	7.1	1.0	0.4	2.2	1.9	0.997
In2O3/ZrO2//SAPO-34	23.5	91.9	2.8	1.5	0.1	2.4	0.4	0.3	0.6	0.336

Table 3.8. Catalytic performance in CO₂ hydrogenation of In₂O₃/YSZ//SAPO-34 and In₂O₃/ZrO₂//SAPO-34 at 45 h TOS.

3.3.3 Characterization of spent catalysts

Carbon deposition in internal channels of zeolite during MTO reaction can be detrimental, resulting in deactivation.^{201,219} The TGA profiles of the spent catalysts are plotted in Figure 3.13a. Both In₂O₃/YSZ//SAPO-34 and In₂O₃/ZrO₂//SAPO-34 shows a weight loss of 6.1% and 7.5%, respectively, at temperatures below 157 °C, which can be attributed to the desorption of water. At temperatures larger than 157 °C, only 5.3%, and 2.9% of weight loss are observed due to carbon gasification deposited inside the nano-sized SAPO-34, indicating high

Figure 3.13. (a) TGA profiles and (b) XRD patterns of spent $In_2O_3/YSZ//SAPO-34$ and spent $In_2O_3/ZrO_2//SAPO-34$ after 45 h of reaction at 420 °C.

resistance to carbon deposition. This also implies that coking does not account for the decrease in methanol selectivity. In₂O₃/YSZ//SAPO-34 would present slightly higher amount of weight loss than In₂O₃/ZrO₂//SAPO-34 due to the larger amount of hydrocarbon yield with stable production during the 45 h TOS. The high carbon-resistant nature of SAPO-34 can also be determined by the $C_3^{=}/C_2^{=}$ ratio during the reaction. It is known that larger hydrocarbon production can decrease over SAPO-34 during MTO reaction because the intracrystalline diffusion of hydrocarbon species over SAPO-34 can turn into the intercrystallite diffusion by occurrence of coke deposition.²²⁰ However, the $C_3^{=}/C_2^{=}$ ratio maintains stable activity after 15 h without a decline in the stabilized region as shown in Figure 3.14, indicating that there is no significant coking during direct CO₂ hydrogenation to light olefins reaction.

Figure 3.13b and Table 3.9 show XRD patterns and crystallite size of the spent catalysts after 45 h of CO₂ hydrogenation reaction at 420 °C. For the spent $In_2O_3/YSZ//SAPO-34$, the crystallite size of YSZ (7.4 nm) is identical to the fresh one, and no appreciable change in the structure is observed. Similarly, the spent $In_2O_3/ZrO_2//SAPO-34$ presents identical diffraction

Figure 3.14. $C_3^{=}/C_2^{=}$ product ratio during 45 h of reaction at 420 °C for In₂O₃/YSZ//SAPO-34 and In₂O₃/ZrO₂//SAPO-34.

patterns of In_2O_3 , ZrO_2 , and SAPO-34 compared with the fresh catalyst. The crystallite size of ZrO_2 slightly increase to 20.0 nm from 18.0 nm, while the crystallite size of In_2O_3 remains the same as the fresh catalyst of 11.3 nm. This result might imply that In_2O_3 species has high resistance to sintering during the reaction.

Table 3.9. Crystallite size and lattice constant for spent $In_2O_3/YSZ//SAPO-34$ and spent $In_2O_3/ZrO_2//SAPO-34$ after 45 h of reaction at 420 °C.

Catalysts	(Crystallite size (nm))
	m-ZrO ₂ (11–1)	c-ZrO ₂ (111)	In ₂ O ₃ (222)
In ₂ O ₃ /YSZ//SAPO-34	-	7.4	-
In ₂ O ₃ /ZrO ₂ //SAPO-34	20.0	-	11.3

The oxidation states of the chemical species presented in the spent catalysts were evaluated by XPS. As shown in Figure 3.15, the In 3d core level spectra of the spent In₂O₃/ZrO₂//SAPO-34 contain an additional peak located at 446.5 eV, which can be attributed to In(OH)₃ with 41.1%, possibly formed due to the reaction with H₂O.²²¹ In the case of the spent In₂O₃/YSZ//SAPO-34, the In 3d core level spectra shows only one oxidation state of In³⁺ as the fresh catalyst without In(OH)₃. Similarly, the Zr 3d core level spectra of the spent In₂O₃/ZrO₂//SAPO-34, contains an additional peak at 182.8 eV, which can be associated with the Zr⁴⁺ bonding with OH groups due to the hydroxylation of Zr⁴⁺ ions with 28.9%.²²² However, the spent In₂O₃/YSZ//SAPO-34 contains only peaks that are associated with the ZrO₂ lattice. The spent In₂O₃ catalysts supported on YSZ and ZrO₂ show similar In³⁺ binding energies as the fresh catalysts. The binding energy of Zr⁴⁺ in the spent catalysts shifts to the lower energies when compared to the fresh ones. This is possibly due to the fact that the part of the electrons remains in the oxygen vacancy, localizing the zirconium atoms during the reaction under the reducing environment.²²³ The O 1s XPS data for the spent catalysts could not be analyzed due to the

Figure 3.15. (a) In 3d and (b) Zr 3d XPS spectra of spent $In_2O_3/YSZ//SAPO$ -34 and spent $In_2O_3/ZrO_2//SAPO$ -34 after 45 h of reaction at 420 °C.

presence of SAPO-34. Therefore, we tested the activity of the supported In_2O_3 without the presence of the SAPO-34 at 420 °C for 45 h and analyzed them in XPS. As shown Figure 3.16, In_2O_3/ZrO_2 still contains peaks associated with $In(OH)_3$ and $Zr(OH)_4$ with 20.2% and 26.3%, respectively, whereas In_2O_3/YSZ has only In_2O_3 and ZrO_2 characteristic peaks. These results indicate that hydroxide formations do not related with the SAPO-34, but rather it can be directly associated with CO_2 -to-methanol and MTO reactions. The water produced during the reaction can adsorb on the surface, leading to an increase in the amount of hydroxyl (OH) species, as

_		Catalysts	O _{latt}	O _{ads}	OH
-	320 °C	In ₂ O ₃ /YSZ	54.5	10.3	35.2
		In_2O_3/ZrO_2	51.7	11.8	36.5
-	420 °C	In ₂ O ₃ /YSZ	55.5	12.9	31.6
		In ₂ O ₃ /ZrO ₂	58.1	23.6	18.2

Table 3.10. Relative surface concentration of oxygen species of spent In_2O_3/YSZ and spent In_2O_3/ZrO_2 after 45 h of reaction measured by XPS.

shown in O 1s spectra compared to the fresh catalysts (Figure 3.16 and Table 3.10). The high amount of H₂O produced during CO₂ hydrogenation and MTO reactions can be detrimental to the catalytic activity and the methanol selectivity.¹⁹⁶ It is reported that the high concentration of H₂O can aggregate In species, thereby decreasing the metal distribution on the support, deactivating the methanol selectivity. 211 The amount of OH species on the spent In_2O_3/YSZ and In₂O₃/ZrO₂ surfaces after the reaction at 420 °C is calculated to be 31.6% and 18.2%, respectively by O 1s XPS results (Table 3.10). It is possible that the adsorbed OH species react with ZrO_2 and In_2O_3 to form $Zr(OH)_4$ and $In(OH)_3$. These results indicate that Zr ions in YSZ have more resistance to hydroxylation during the reaction. After H₂O adsorption, the defect oxygen concentration in In_2O_3 decreases due to the increased concentrations of OH and $In(OH)_3$ species on the surface. The higher amount of oxygen vacancy in the YSZ support can adopt more OH species without forming hydroxide of Zr species, preventing further formation of indium hydroxide, leading to stabilizing the performance. The surface Zr/O ratio for the spent In₂O₃/YSZ obtained by XPS increases to 83.8% from 34.9% observed on the fresh one, while the ratio for spent In_2O_3/ZrO_2 increases to 107.3% from the fresh one of 40.5% (Table 3.5). It can imply that ZrO_2 -supported In_2O_3 shows higher reducibility than YSZ-supported In_2O_3 , which is

Figure 3.16. (a) O 1s, (b) In 3d, and (b) Zr 3d XPS spectra of spent In_2O_3/YSZ and spent In_2O_3/ZrO_2 after 45 h of reaction at 420 °C.

Figure 3.17. (a) O 1s, (b) In 3d, and (b) Zr 3d XPS spectra of spent In_2O_3/YSZ and spent In_2O_3/ZrO_2 after 45 h of reaction at 320 °C.

in good agreement with H₂-TPR data. High reducibility can lead to water-induced sintering or hydroxylation, which can decrease the methanol formation. M. S. Frei et al. studied Pd-promoted In_2O_3 for CO_2 hydrogenation to methanol, and they observed deterioration of the performance for the Pd atoms deposited onto the In₂O₃.²²⁴ It shows negative rate dependence on the water pressure, speculating that less facilitated water desorption by too much H₂ spillover leaded to over-reduction and water-induced sintering of In₂O₃ crystals. On the other hand, the spent catalysts tested for 45 h at lower temperature of 320 °C present similar amount of OH species for In₂O₃/YSZ (35.2%) and In₂O₃/ZrO₂ (31.6%) (Figure 3.17). In addition, the XPS spectra of In 3d and Zr 3d tested at 593 K do not show any In(OH)3 or Zr(OH)4 for both YSZ and ZrO2supported In₂O₃ unlike the ones tested at 420 °C. It is known that the zirconium hydroxide can be observed, upon exposure to the H₂O in the bare zirconia. OH groups from water molecules are physisorbed on the ZrO₂ surface followed by the penetration of OH species into the substrate lattice forming zirconium hydroxide with heat treatment.²²⁵ It is hypothesized that the OH can also migrate to the In species, transforming indium to the indium hydroxide. This can emphasize the beneficial of using YSZ support exhibiting high resistance to hydroxylation for tandem reactions applied at high reaction temperature.

Figure 3.18. CO_2 conversion (black square), product selectivity (bar graph), and light olefins yield (red star) of $In_2O_3/ZrO_2//SAPO-34^{COM}$.

Figure 3.18 shows CO_2 hydrogenation performance for In_2O_3/ZrO_2 combined with commercial SAPO-34^{COM} in a temperature range of 320–420 °C. At 320 K, the CO selectivity (59.2%) is similar to the value of tandem catalyst composed of developed nano-sized SAPO-34 of 59.2% (Figure 3.11d). At the high temperature of 420 °C, In₂O₃/ZrO₂//SAPO-34 shows a higher CO selectivity (90.0%) than that for In₂O₃/ZrO₂//SAPO-34^{COM} (77.5%). This is because In₂O₃/ZrO₂//SAPO-34 shows higher CO₂ conversion of 32.5% compared to In₂O₃/ZrO₂//SAPO- 34^{COM} of 27.0% since small crystallite size of nano-sized SAPO-34 can shift the CO₂ to methanol reaction more. However, due to smaller diffusion path inside SAPO-34 channel, produced methanol converts to more light olefins rather than further transforming to paraffins. The light olefins/paraffins (O/P) ratio of hydrocarbon products for $In_2O_3/ZrO_2//SAPO-34$ is always higher than SAPO-34^{COM} (Table 3.11). The O/P ratio for the tandem In₂O₃/ZrO₂//SAPO-34 almost 4.5-times higher than that for In₂O₃/ZrO₂//SAPO-34^{COM} at the reaction of temperature of 420 °C. This data indicates that small crystallite with a short diffusion length of nano-sized zeolite is beneficial to produce high light olefins selectivity. However, acidity cannot be ruled out for considering light olefins selectivity, as low acidity with low Si/Al ratio in zeolites can

	Temperatures				
Catalysts	320 °C	370 °C	420 °C		
In ₂ O ₃ /ZrO ₂ //SAPO-34	1.78	2.44	3.05		
$In_2O_3/ZrO_2//SAPO34^{COM}$	0.80	0.70	0.66		

Table 3.11. Produced O/P ratio for $In_2O_3/ZrO_2//SAPO-34$ and $In_2O_3/ZrO_2//SAPO-34^{COM}$ in CO_2 hydrogenation reaction.

produce high O/P ratio of the products.^{226,227} The developed nano-sized SAPO-34 and commercially obtained SAPO- 34^{COM} has Si/Al ratio of 0.3 and 1, respectively. Therefore, it is possible that the higher O/P ratio of products in In₂O₃/ZrO₂//SAPO-34 could be related with the acidity. This work has focused on the supported In₂O₃ for obtaining stable CO₂ to light olefins, therefore investigating different physical and chemical structures of the zeolites for the tandem catalysts will need to be considered in future research.

3.4 Conclusions

In this work, we have prepared $In_2O_3/YSZ//SAPO-34$ tandem catalysts for stable and selective synthesis of light olefins by CO₂ hydrogenation. The yield of light olefins reaches to 0.997 mmol h⁻¹ g⁻¹ with selectivity of 11.9% (66.9% without CO) over 45 h TOS at 420 °C without any deactivation. It is concluded that the large amount of oxygen vacancies and strong metal–support interaction on YSZ-supported In_2O_3 can prevent In species from hydroxylation and over-reduction, stabilizing the active sites. However, In_2O_3 supporting on regular ZrO₂ presents a decline of light olefins production in time because water produced can fill the vacancies, generating indium hydroxide and zirconium hydroxide at high reaction temperature of 420 °C. In addition, the In_2O_3 can be transformed to the molten In^0 due to the low metal–support interaction. The developed nano-sized SAPO-34 synthesized by microwave heating shows stable light olefins selectivity with high resistance to carbon formation due to low crystal size with high external surface areas. The new findings of this work can pave the way for integrating YSZ in CO₂ hydrogenation for rational design of the tandem catalyst.

SUMMARY AND FUTURE WORK

Two main reactions are investigated for CO_2 utilization: methane reforming and CO_2 hydrogenation. First, TRM which CO₂ reacts with CH₄, H₂O, and O₂ is studied over nanotubular NiCe@SiO₂ multi-yolk-shell catalyst. The conventional impregnated catalyst shows fast deactivation because of severe carbon deposition on the catalyst. However, the developed yolkshell catalyst exhibits high resistance to carbon deposition due to the facile CO* desorption in the confined morphology, which minimizes the Boudouard reaction. The catalyst presents distinct characteristic behavior at various feed gas streams under TRM, where carbon deposition or metal re-oxidation is correlated with the yolk size and Ce³⁺ concentration. Next, the yolk–shell catalyst is developed by doping with Pt forming SAA structure with Ni species to further strengthen the resistance against the carbon formation. The yolk-shell morphology with SAA structure shows high stability in DRM reaction at low temperature of 500 °C due to the enhanced Ni reducibility with high Pt–Ni interaction. The 0.25 wt% of Pt is the optimum loading to create the well dispersed Pt–Ni SAA structure, whereas a high Pt-loaded catalyst creates Pt nanoparticles, reducing the Pt-Ni interactions. The developed catalyst operated at wide temperature ranges is proven to be effective for the reactions generating carbon species. For the future work, more detailed experiments can be performed to investigate the behavior of intermediate species and carbon generation/removal reaction during methane reforming by DRIFTS-MS and isotope exchange methods. In addition, a computational study such as densityfunctional theory (DFT) can be incorporated to investigate how the Pt-Ni SAA structure can alter the reactants dissociation path. Fundamental understanding of the unique structured yolkshell SAA will guide us to prepare catalysts with low cost so that the overall methane reforming reactions can be feasible and carried out in a worldwide region.

Secondly, the $In_2O_3/YSZ/SAPO-34$ tandem catalyst is prepared for CO_2 hydrogenation to generate light olefins. Combination of In₂O₃/YSZ metal oxide and SAPO-34 zeolite in a single reactor can promote shifting of the methanol production equilibrium to the right, leading to a high light olefins selectivity. The light olefins selectivity for In₂O₃/YSZ//SAPO-34 shows steady production of 11.9% during 45 h of reaction whereas the tandem catalyst with conventional ZrO₂-supported catalyst behaves decreasing in selectivity. The stable performance of the YSZsupported catalyst can be explained by higher oxygen vacancy in YSZ and stronger In₂O₃–YSZ interaction compared to the ZrO_2 -supported In_2O_3 . The water produced during the reaction can facilitate hydroxide formation and overreduction of In₂O₃ for ZrO₂-based one, inhibiting methanol formation and decreasing the light olefins production. On the other hand, YSZ with high oxygen vacancies presents high resistance to hydroxide formation and reduction of active species, maintaining the targeted production rates. To obtain high performances, the tandem catalysts should be combined in a well-tuned way with high proximity. A capsule catalyst such as core-shell morphology for the tandem catalyst can benefit the desired production rate by lower adsorption energy and large surface area of zeolite in the shell. The high proximity between core and shell structure can demonstrate better mass transfer and diffusion by minimizing the side reactions, enhancing the light olefins selectivity. In addition, the induction heating method can be applied to the tandem catalyst system. Incorporating inductive materials can solve the temperature mismatch between two different reactions in a single reactor, which can overcome the different thermodynamics. These studies highlight the potential approach to

122

design the catalysts for industrially relevant processes to utilize CO_2 to produce useful chemicals, which can contribute to both carbon neutrality and human energy use.

REFERENCES

- 1. Masson-Delmotte, V. et al. Global warming of 1.5°C. IPCC Press (2018).
- 2. U. S. Energy Information Administration. International Energy Outlook 2019. https://www.eia.gov/outlooks/archive/ieo19/pdf/ieo2019.pdf (accessed 2019-09-24).
- 3. Song, C. Global challenges and strategies for control, conversion and utilization of CO₂ for sustainable development involving energy, catalysis, adsorption and chemical processing. *Catal. Today* **115**, 2–32 (2006).
- 4. Lashof, D. A. & Ahuja, D. R. Relative contributions of greenhouse gas emissions to global warming. *Nature* **344**, 529–531 (1990).
- 5. Cassia, R., Nocioni, M., Correa-Aragunde, N. & Lamattina, L. Climate Change and the Impact of Greenhouse Gasses: CO₂ and NO, Friends and Foes of Plant Oxidative Stress. *Front. Plant Sci.* **9**, 1–11 (2018).
- 6. Omri, A. CO₂ emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models. *Energy Econ.* **40**, 657–664 (2013).
- 7. Fawzy, S., Osman, A. I., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: a review. *Environ. Chem. Lett.* **18**, 2069–2094 (2020).
- 8. Gabrielli, P., Gazzani, M. & Mazzotti, M. The Role of Carbon Capture and Utilization, Carbon Capture and Storage, and Biomass to Enable a Net-Zero-CO₂ Emissions Chemical Industry. *Ind. Eng. Chem. Res.* **59**, 7033–7045 (2020).
- 9. Jang, W. J., Shim, J. O., Kim, H. M., Yoo, S. Y. & Roh, H. S. A review on dry reforming of methane in aspect of catalytic properties. *Catal. Today* **324**, 15–26 (2019).
- Song, C. & Pan, W. Tri-reforming of methane: A novel concept for catalytic production of industrially useful synthesis gas with desired H₂/CO ratios. *Catal. Today* 98, 463–484 (2004).
- 11. Peter, S. C. Reduction of CO₂ to chemicals and fuels: A solution to global warming and energy crisis. *ACS Energy Lett.* **3**, 1557–1561 (2018).
- 12. Ampelli, C., Perathoner, S. & Centi, G. CO₂ utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production. *Philos. Trans. R. Soc. A* **373**, 20140177 (2015).
- 13. Saeidi, S., Amin, N. A. S. & Rahimpour, M. R. Hydrogenation of CO₂ to value-added products—A review and potential future developments. *J. CO₂ Util.* **5**, 66–81 (2014).
- 14. Whipple, D. T. & Kenis, P. J. A. Prospects of CO₂ utilization via direct heterogeneous electrochemical reduction. *J. Phys. Chem. Lett.* **1**, 3451–3458 (2010).
- 15. Yu, K. M. K., Curcic, I., Gabriel, J. & Tsang, S. C. E. Recent advances in CO₂ capture and utilization. *ChemSusChem* **1**, 893–899 (2008).

- 16. Jiang, Z., Xiao, T., Kuznetsov, V. L. & Edwards, P. P. Turning carbon dioxide into fuel. *Philos. Trans. A. Math. Phys. Eng. Sci.* **368**, 3343–3364 (2010).
- 17. Freund, H.-J. & Roberts, M. W. Surface chemistry of carbon dioxide. *Surf. Sci. Rep.* 25, 225–273 (1996).
- 18. Kang, J. S., Kim, D. H., Lee, S. D., Hong, S. I. & Moon, D. J. Nickel-based tri-reforming catalyst for the production of synthesis gas. *Appl. Catal. A Gen.* **332**, 153–158 (2007).
- 19. Sadeghi, M., Jafari, M., Yari, M. & Mahmoudi, S. M. S. Exergoeconomic assessment and optimization of a syngas production system with a desired H₂/CO ratio based on methane tri-Reforming Process. *J. CO*₂ *Util.* **25**, 283–301 (2018).
- 20. Zhao, X. *et al.* NiMg/ceria-zirconia cylindrical pellet catalysts for tri-reforming of surrogate biogas. *Ind. Eng. Chem. Res.* **57**, 845–855 (2018).
- Minutillo, M. & Perna, A. A novel approach for treatment of CO₂ from fossil fired power plants, Part A: The integrated systems ITRPP. *Int. J. Hydrogen Energy* 34, 4014–4020 (2009).
- Pichas, C., Pomonis, P., Petrakis, D. & Ladavos, A. Kinetic study of the catalytic dry reforming of CH₄ with CO₂ over La_{2-x}Sr_xNiO₄ perovskite-type oxides. *Appl. Catal. A Gen.* 386, 116–123 (2010).
- 23. Guczi, L. *et al.* Methane dry reforming with CO₂: A study on surface carbon species. *Appl. Catal. A Gen.* **375**, 236–246 (2010).
- 24. Son, I. H. *et al.* Study on coke formation over Ni/γ-Al₂O₃, Co-Ni/γ-Al₂O₃, and Mg-Co-Ni/γ-Al₂O₃ catalysts for carbon dioxide reforming of methane. *Fuel* **136**, 194–200 (2014).
- 25. Zhao, X. *et al.* In situ preparation of Ni nanoparticles in cerium-modified silica aerogels for coking- and sintering-resistant dry reforming of methane. *New J. Chem.* **41**, 4869–4878 (2017).
- 26. Lee, S. H. *et al.* Tri-reforming of CH₄ using CO₂ for production of synthesis gas to dimethyl ether. *Catal. Today* **87**, 133–137 (2003).
- 27. Dwivedi, A., Gudi, R. & Biswas, P. An improved tri-reforming based methanol production process for enhanced CO₂ valorization. *Int. J. Hydrogen Energy* **42**, 23227–23241 (2017).
- 28. Luyben, W. L. Control of parallel dry methane and steam methane reforming processes for Fischer-Tropsch syngas. *J. Process Control* **39**, 77–87 (2016).
- 29. Bian, Z., Wang, Z. & Kawi, S. Ni-phyllosilicate structure derived Ni–SiO₂–MgO catalysts for bi-reforming applications: acidity, basicity and thermal stability. *Catal. Sci. Technol.* **8**, 1730–1742 (2018).
- 30. Kathiraser, Y. *et al.* Highly active and coke resistant Ni/SiO₂ catalysts for oxidative reforming of model biogas: Effect of low ceria loading. *J. CO*₂ *Util.* **19**, 284–295 (2017).
- 31. Singha, R. K. *et al.* Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni-ZrO₂ catalyst. *Appl. Energy* **178**, 110–125 (2016).

- 32. Zhang, Y., Zhang, S., Gossage, J. L., Lou, H. H. & Benson, T. J. Thermodynamic analyses of tri-reforming reactions to produce syngas. *Energy and Fuels* **28**, 2717–2726 (2014).
- García-Vargas, J. M., Valverde, J. L., Díez, J., Dorado, F. & Sánchez, P. Catalytic and kinetic analysis of the methane tri-reforming over a Ni-Mg/β-SiC catalyst. *Int. J. Hydrogen Energy* 40, 8677–8687 (2015).
- 34. Schmal, M., Toniolo, F. S. & Kozonoe, C. E. Perspective of catalysts for (Tri) reforming of natural gas and flue gas rich in CO₂. *Appl. Catal. A Gen.* **568**, 23–42 (2018).
- Wang, J. B., Tai, Y. L., Dow, W. P. & Huang, T. J. Study of ceria-supported nickel catalyst and effect of yttria doping on carbon dioxide reforming of methane. *Appl. Catal. A Gen.* 218, 69–79 (2001).
- Pino, L., Vita, A., Cipitì, F., Laganà, M. & Recupero, V. Hydrogen production by methane tri-reforming process over Ni–ceria catalysts: Effect of La-doping. *Appl. Catal. B Environ.* 104, 64–73 (2011).
- García-Vargas, J. M., Valverde, J. L., Díez, J., Sánchez, P. & Dorado, F. Preparation of Ni-Mg/β-SiC catalysts for the methane tri-reforming: Effect of the order of metal impregnation. *Appl. Catal. B Environ.* **164**, 316–323 (2015).
- 38. Wang, S. & Lu, G. Q. Role of CeO₂ in Ni/CeO₂–Al₂O₃ catalysts for carbon dioxide reforming of methane. *Appl. Catal. B Environ.* **19**, 267–277 (1998).
- 39. Deganello, F. & Martorana, A. Phase analysis and oxygen storage capacity of cerialanthana-based TWC promoters prepared by sol-gel routes. *J. Solid State Chem.* **163**, 527– 533 (2002).
- 40. Walker, D. M., Pettit, S. L., Wolan, J. T. & Kuhn, J. N. Synthesis gas production to desired hydrogen to carbon monoxide ratios by tri-reforming of methane using Ni-MgO-(Ce,Zr)O₂ catalysts. *Appl. Catal. A Gen.* **445**–**446**, 61–68 (2012).
- 41. Singha, R. K. *et al.* Ni nanocluster on modified CeO₂–ZrO₂ nanoporous composite for trireforming of methane. *Catal. Sci. Technol.* **6**, 7122–7136 (2016).
- 42. Yao, Q., Lu, Z. H., Zhang, Z., Chen, X. & Lan, Y. One-pot synthesis of core-shell Cu@SiO₂ nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane. *Sci. Rep.* **4**, 4–11 (2014).
- 43. Ghosh Chaudhuri, R. & Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. *Chem. Rev.* **112**, 2373–2433 (2012).
- 44. Wang, F., Xu, L. & Shi, W. Syngas production from CO₂ reforming with methane over core-shell Ni@SiO₂ catalysts. *J. CO₂ Util.* **16**, 318–327 (2016).
- 45. Li, Z., Li, M., Bian, Z., Kathiraser, Y. & Kawi, S. Design of highly stable and selective core/yolk–shell nanocatalysts—A review. *"Applied Catal. B, Environ.* **188**, 324–341 (2016).
- 46. Li, Z. *et al.* Silica-based micro- and mesoporous catalysts for dry reforming of methane. *Catal. Sci. Technol.* **8**, 2763–2778 (2018).

- 47. Bian, Z. & Kawi, S. Sandwich-like silica@Ni@silica multicore–shell catalyst for the low-temperature dry reforming of methane: Confinement effect against carbon formation. *ChemCatChem* **10**, 320–328 (2018).
- 48. Li, Z. & Kawi, S. Multi-Ni@Ni phyllosilicate hollow sphere for CO₂ reforming of CH₄: influence of Ni precursors on structure, sintering, and carbon resistance. *Catal. Sci. Technol.* **8**, 1915–1922 (2018).
- 49. Ashok, J., Ang, M. L. & Kawi, S. Enhanced activity of CO₂ methanation over Ni/CeO₂-ZrO₂ catalysts: Influence of preparation methods. *Catal. Today* **281**, 304–311 (2017).
- 50. Li, Z., Kathiraser, Y., Ashok, J., Oemar, U. & Kawi, S. Simultaneous tuning porosity and basicity of nickel@nickel-magnesium phyllosilicate core-shell catalysts for CO₂ reforming of CH₄. *Langmuir* **30**, 14694–14705 (2014).
- 51. Li, Z., Kathiraser, Y. & Kawi, S. Facile synthesis of high surface area yolk–shell Ni@Ni embedded SiO₂ via Ni phyllosilicate with enhanced performance for CO₂ reforming of CH₄. *ChemCatChem* **7**, 160–168 (2015).
- 52. Zhao, X., Li, H., Zhang, J., Shi, L. & Zhang, D. Design and synthesis of NiCe@m-SiO₂ yolk-shell framework catalysts with improved coke- and sintering-resistance in dry reforming of methane. *Int. J. Hydrogen Energy* **41**, 2447–2456 (2016).
- 53. Liu, J. *et al.* Yolk-shell hybrid materials with a periodic mesoporous organosilica shell: Ideal nanoreactors for selective alcohol oxidation. *Adv. Funct. Mater.* **22**, 591–599 (2012).
- 54. Liu, J. *et al.* Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. *Chem. Commun.* **47**, 12578 (2011).
- 55. Kuo, C. H. *et al.* Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. *J. Am. Chem. Soc.* **134**, 14345–14348 (2012).
- 56. Wang, S., Zhang, M. & Zhang, W. Yolk-shell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres. *ACS Catal.* **1**, 207–211 (2011).
- 57. Li, Z., Wang, Z., Jiang, B. & Kawi, S. Sintering resistant Ni nanoparticles exclusively confined within SiO₂ nanotubes for CH₄ dry reforming. *Catal. Sci. Technol.* **8**, 3363–3371 (2018).
- 58. Li, Z. & Sibudjing, K. Facile Synthesis of Multi-Ni-Core@Ni Phyllosilicate@CeO₂ Shell Hollow Spheres with High Oxygen Vacancy Concentration for Dry Reforming of CH₄. *ChemCatChem* **10**, 2994–3001 (2018).
- Li, Z., Mo, L., Kathiraser, Y. & Kawi, S. Yolk-satellite-shell structured Ni-Yolk@Ni@SiO₂ nanocomposite: Superb catalyst toward methane CO₂ reforming reaction. ACS Catal. 4, 1526–1536 (2014).
- 60. Li, L. *et al.* Highly Active and Stable Lanthanum-doped Core-Shell-structured Ni@SiO₂ Catalysts for the Partial Oxidation of Methane to Syngas. *ChemCatChem* **5**, 3781–3787 (2013).

- 61. Majewski, A. J. & Wood, J. Tri-reforming of methane over Ni@SiO₂ catalyst. *Int. J. Hydrogen Energy* **39**, 12578–12585 (2014).
- 62. Jiang, H., Li, H., Xu, H. & Zhang, Y. Preparation of Ni/Mg_xTi_{1-x}O catalysts and investigation on their stability in tri-reforming of methane. *Fuel Process. Technol.* **88**, 988–995 (2007).
- 63. Dahlberg, K. A. & Schwank, J. W. Synthesis of Ni@SiO₂ nanotube particles in a water-inoil microemulsion template. *Chem. Mater.* **24**, 2635–2644 (2012).
- 64. Das, S. *et al.* Silica–ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights. *Appl. Catal. B Environ.* **230**, 220–236 (2018).
- 65. Zhu, J. *et al.* Synthesis gas production from CO₂ reforming of methane over Ni-Ce/SiO₂ catalyst: The effect of calcination ambience. *Int. J. Hydrogen Energy* **38**, 117–126 (2013).
- 66. Yang, T. *et al.* Hierarchical mesoporous yolk–shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage. *Chem. Commun.* **51**, 2518–2521 (2015).
- Ashok, J. & Kawi, S. Steam reforming of toluene as a biomass tar model compound over CeO₂ promoted Ni/CaO–Al₂O₃ catalytic systems. *Int. J. Hydrogen Energy* 38, 13938– 13949 (2013).
- Zhang, L., Li, M., Ren, T., Liu, X. & Yuan, Z.-Y. Ce-modified Ni nanoparticles encapsulated in SiO₂ for CO_x-free hydrogen production via ammonia decomposition. *Int. J. Hydrogen Energy* 40, 2648–2656 (2015).
- 69. Du, X., Zhang, D., Shi, L., Gao, R. & Zhang, J. Morphology dependence of catalytic properties of Ni/CeO₂ nanostructures for carbon dioxide reforming of methane. *J. Phys. Chem. C* **116**, 10009–10016 (2012).
- 70. Lakshmanan, P., Kim, M. S. & Park, E. D. A highly loaded Ni@SiO₂ core-shell catalyst for CO methanation. *Appl. Catal. A Gen.* **513**, 98–105 (2016).
- Kang, K. M., Kim, H. W., Shim, I. W. & Kwak, H. Y. Catalytic Test of Supported Ni Catalysts with Core/Shell Structure for Dry Reforming of Methane. *Fuel Process. Technol.* 92, 1236–1243 (2011).
- 72. Iglesias, D. & Melchionna, M. Enter the tubes: Carbon nanotube endohedral catalysis. *Catalysts* **9**, 128 (2019).
- 73. Pino, L., Vita, A., Laganà, M. & Recupero, V. Hydrogen from biogas: Catalytic trireforming process with Ni/La–Ce–O mixed oxides. "*Applied Catal. B, Environ.* **148–149**, 91–105 (2014).
- Li, B., Xu, X. & Zhang, S. Synthesis gas production in the combined CO₂ reforming with partial oxidation of methane over Ce-promoted Ni/SiO₂ catalysts. *Int. J. Hydrogen Energy* 38, 890–900 (2013).
- 75. Krause, K. R., Schabes-Retchkiman, P. & Schmidt, L. D. Microstructure of Rh-Ce particles

on silica: interactions between Ce and SiO₂. J. Catal. 134, 204–219 (1992).

- 76. Farmer, J. A. & Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. *Science* **329**, 933–936 (2010).
- 77. Nagai, Y. *et al.* Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction. *J. Catal.* **242**, 103–109 (2006).
- Kim, J.-H., Suh, D. J., Park, T.-J. & Kim, K.-L. Effect of metal particle size on coking during CO₂ reforming of CH over Ni–alumina aerogel catalysts. *Appl. Catal. A Gen.* 197, 191–200 (2000).
- 79. Li, Z., Hu, X., Zhang, L., Liu, S. & Lu, G. Steam reforming of acetic acid over Ni/ZrO₂ catalysts: Effects of nickel loading and particle size on product distribution and coke formation. *Appl. Catal. A Gen.* **417–418**, 281–289 (2012).
- 80. Luisetto, I., Tuti, S., Battocchio, C., Lo Mastro, S. & Sodo, A. Ni/CeO₂–Al₂O₃ catalysts for the dry reforming of methane: The effect of CeAlO₃ content and nickel crystallite size on catalytic activity and coke resistance. *Appl. Catal. A Gen.* **500**, 12–22 (2015).
- Zhang, J., Wang, H. & Dalai, A. K. Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO₂ reforming of CH₄. *Appl. Catal. A Gen.* **339**, 121–129 (2008).
- Christensen, K. O., Chen, D., Lødeng, R. & Holmen, A. Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming. *Appl. Catal. A Gen.* 314, 9–22 (2006).
- 83. San-José-Alonso, D., Juan-Juan, J., Illán-Gómez, M. J. & Román-Martínez, M. C. Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane. *Appl. Catal. A Gen.* **371**, 54–59 (2009).
- 84. Alstrup, I. A new model explaining carbon filament growth on nickel, iron, and Ni–Cu Alloy Catalysts. *J. Catal.* **109**, 241–251 (1988).
- 85. Singha, R. K., Shukla, A., Yadav, A., Sivakumar Konathala, L. N. & Bal, R. Effect of metal-support interaction on activity and stability of Ni-CeO₂ catalyst for partial oxidation of methane. *Appl. Catal. B Environ.* **202**, 473–488 (2017).
- Khajenoori, M., Rezaei, M. & Meshkani, F. Characterization of CeO₂ promoter of a nanocrystalline Ni/MgO catalyst in dry reforming of methane. *Chem. Eng. Technol.* 37, 957–963 (2014).
- 87. Hou, Z. *et al.* Deactivation of Ni catalysts during methane autothermal reforming with CO₂ and O₂ in a fluidized-bed reactor. *J. Catal.* **250**, 331–341 (2007).
- 88. Lu, Y., Xue, J., Yu, C., Liu, Y. & Shen, S. Mechanistic investigations on the partial oxidation of methane to synthesis gas over a nickel-on-alumina catalyst. *Appl. Catal. A Gen.* **174**, 121–128 (1998).
- 89. Enger, B. C., Lødeng, R. L. & Holmen, A. Modified cobalt catalysts in the partial oxidation of methane at moderate temperatures. *J. Catal.* **262**, 188–198 (2009).
- Schwab, E., Milanov, A., Schunk, S. A., Behrens, A. & Schödel, N. Dry reforming and reverse water gas shift: Alternatives for syngas production? *Chemie-Ingenieur-Technik* 87, 347–353 (2015).
- 91. Gao, Y., Jiang, J., Meng, Y., Yan, F. & Aihemaiti, A. A review of recent developments in hydrogen production via biogas dry reforming. *Energy Convers. Manag.* **171**, 133–155 (2018).
- Elsayed, N. H., Roberts, N. R. M., Joseph, B. & Kuhn, J. N. Low temperature dry reforming of methane over Pt–Ni–Mg/ceria–zirconia catalysts. *Appl. Catal. B Environ.* 179, 213–219 (2015).
- 93. Wang, Y. *et al.* Low-Temperature Catalytic CO₂ Dry Reforming of Methane on Ni-Si/ZrO₂ Catalyst. *ACS Catal.* **8**, 6495–6506 (2018).
- 94. Han, J. W., Park, J. S., Choi, M. S. & Lee, H. Uncoupling the size and support effects of Ni catalysts for dry reforming of methane. *Appl. Catal. B Environ.* **203**, 625–632 (2017).
- 95. Akri, M. *et al.* Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. *Nat. Commun.* **10**, 1–10 (2019).
- 96. Arora, S. & Prasad, R. An overview on dry reforming of methane: Strategies to reduce carbonaceous deactivation of catalysts. *RSC Adv.* **6**, 108668–108688 (2016).
- 97. Zhang, Q. *et al.* A sintering and carbon-resistant Ni-SBA-15 catalyst prepared by solid-state grinding method for dry reforming of methane. *J. CO*₂ *Util.* **17**, 10–19 (2017).
- 98. Wang, Y., Yao, L., Wang, S., Mao, D. & Hu, C. Low-temperature catalytic CO₂ dry reforming of methane on Ni-based catalysts: A review. *Fuel Process. Technol.* **169**, 199–206 (2018).
- 99. Kim, S. *et al.* Activity and stability of NiCe@SiO₂ multi–yolk–shell nanotube catalyst for tri-reforming of methane. *Appl. Catal. B Environ.* **259**, 118037 (2019).
- 100. Bu, K. *et al.* Methane dry reforming over boron nitride interface-confined and LDHsderived Ni catalysts. *Appl. Catal. B Environ.* **252**, 86–97 (2019).
- 101. Bian, Z., Suryawinata, I. Y. & Kawi, S. Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane. *Appl. Catal. B Environ.* **195**, 1–8 (2016).
- 102. Das, S. *et al.* Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO₂. *Chem. Soc. Rev.* **49**, 2937–3004 (2020).
- 103. Chen, S., Zaffran, J. & Yang, B. Descriptor design in the computational screening of Nibased catalysts with balanced activity and stability for dry reforming of methane reaction. *ACS Catal.* **10**, 3074–3083 (2020).
- 104. Dai, C. *et al.* Hollow zeolite encapsulated Ni–Pt bimetals for sintering and coking resistant dry reforming of methane. *J. Mater. Chem. A* **3**, 16461–16468 (2015).
- 105. Araiza, D. G., Arcos, D. G., Gómez-Cortés, A. & Díaz, G. Dry reforming of methane over Pt-Ni/CeO₂ catalysts: Effect of the metal composition on the stability. *Catal. Today* (2019)

doi:10.1016/j.cattod.2019.06.018.

- 106. Jawad, A., Rezaei, F. & Rownaghi, A. A. Highly efficient Pt/Mo-Fe/Ni-based Al₂O₃-CeO₂ catalysts for dry reforming of methane. *Catal. Today* **350**, 80–90 (2019).
- 107. Pawelec, B., Damyanova, S., Arishtirova, K., Fierro, J. L. G. & Petrov, L. Structural and surface features of PtNi catalysts for reforming of methane with CO₂. *Appl. Catal. A Gen.* 323, 188–201 (2007).
- 108. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. *Nat. Rev. Chem.* **2**, 65–81 (2018).
- 109. Li, X., Yang, X., Huang, Y., Zhang, T. & Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. *Adv. Mater.* **31**, 1–19 (2019).
- 110. Hannagan, R. T., Giannakakis, G., Flytzani-Stephanopoulos, M. & Sykes, E. C. H. Singleatom alloy catalysis. *Chem. Rev.* (2020) doi:10.1021/acs.chemrev.0c00078.
- 111. Besenbacher, F. *et al.* Design of a surface alloy catalyst for steam reforming. *Science* **279**, 1913–1915 (1998).
- 112. Marcinkowski, M. D. *et al.* Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation. *Nat. Chem.* **10**, 325–332 (2018).
- 113. Sun, G. *et al.* Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. *Nat. Commun.* **9**, (2018).
- 114. Meng, Y. *et al.* Theoretical research on a coke-resistant catalyst for the partial oxidation of methane: Pt/Cu single-atom alloys. *New J. Chem.* **44**, 3922–3929 (2020).
- 115. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
- 116. Zhong, Y. J. *et al.* Highly efficient Ni@Ni–Pt/La₂O₃ catalyst for hydrogen generation from hydrous hydrazine decomposition: Effect of Ni–Pt surface alloying. *J. Power Sources* **300**, 294–300 (2015).
- 117. Huang, X. *et al.* High-performance transition metal-doped Pt₃Ni octahedra for oxygen reduction reaction. *Science* **348**, 1230–1234 (2015).
- 118. Tian, X. *et al.* Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. *Science* **366**, 850–856 (2019).
- 119. Tupy, S. A. *et al.* Correlating ethylene glycol reforming activity with in situ EXAFS detection of Ni segregation in supported NiPt bimetallic catalysts. *ACS Catal.* **2**, 2290–2296 (2012).
- 120. Guisbiers, G. *et al.* Size and shape effects on the phase diagrams of nickel-based bimetallic nanoalloys. *J. Phys. Chem. C* **121**, 6930–6939 (2017).
- 121. Buceta, D., Tojo, C., Vukmirovic, M. B., Deepak, F. L. & López-Quintela, M. A. Controlling bimetallic nanostructures by the microemulsion method with subnanometer resolution using a prediction model. *Langmuir* **31**, 7435–7439 (2015).

- 122. Hardacre, C., Rayment, T. & Lambert, R. M. Platinum/ceria CO oxidation catalysts derived from Pt/Ce crystalline alloy precursors. *J. Catal.* **158**, 102–108 (1996).
- 123. Abid, M., Paul-Boncour, V. & Touroude, R. Pt/CeO₂ catalysts in crotonaldehyde hydrogenation: Selectivity, metal particle size and SMSI states. *Appl. Catal. A Gen.* 297, 48–59 (2006).
- 124. Beheshti Askari, A. *et al.* In situ X-ray microscopy reveals particle dynamics in a NiCo dry methane reforming catalyst under operating conditions. *ACS Catal.* **10**, 6223–6230 (2020).
- 125. Wang, C. *et al.* Coking and deactivation of a mesoporous Ni–CaO–ZrO₂ catalyst in dry reforming of methane: A study under different feeding compositions. *Fuel* **143**, 527–535 (2015).
- 126. Godínez-Salomón, F., Hallen-López, M. & Solorza-Feria, O. Enhanced electroactivity for the oxygen reduction on Ni@Pt core-shell nanocatalysts. *Int. J. Hydrogen Energy* 37, 14902–14910 (2012).
- 127. Yan, B. *et al.* Dry reforming of ethane and butane with CO₂ over PtNi/CeO₂ bimetallic catalysts. *ACS Catal.* **6**, 7283–7292 (2016).
- 128. Fugane, K. *et al.* Improvement of cathode performance on Pt-CeO_x by optimization of electrochemical pretreatment condition for PEFC application. *Langmuir* **28**, 16692–16700 (2012).
- 129. Murphin Kumar, P. S. *et al.* Pt nanoparticles supported on mesoporous CeO₂ nanostructures obtained through green approach for efficient catalytic performance toward ethanol electro-oxidation. *ACS Sustain. Chem. Eng.* **5**, 11290–11299 (2017).
- 130. Singha, R. K. *et al.* Partial oxidation of methane to synthesis gas over Pt nanoparticles supported on nanocrystalline CeO₂ catalyst. *Catal. Sci. Technol.* **6**, 4601–4615 (2016).
- 131. Ye, R. P. et al. High-performance of nanostructured Ni/CeO₂ catalyst on CO₂ methanation. *Applied Catalysis B: Environmental* vol. 268 (Elsevier B.V., 2020).
- 132. Wang, C. *et al.* The importance of inner cavity space within Ni@SiO₂ nanocapsule catalysts for excellent coking resistance in the high-space-velocity dry reforming of methane. *Appl. Catal. B Environ.* **259**, 118019 (2019).
- 133. Lee, J., Ryou, Y., Chan, X., Kim, T. J. & Kim, D. H. How Pt interacts with CeO₂ under the reducing and oxidizing environments at elevated temperature: The origin of improved thermal stability of Pt/CeO₂ compared to CeO₂. *J. Phys. Chem. C* **120**, 25870–25879 (2016).
- 134. Vita, A. *et al.* Hydrogen-rich gas production by steam reforming of n-dodecane Part I: Catalytic activity of Pt/CeO₂ catalysts in optimized bed configuration. *Appl. Catal. B Environ.* **199**, 350–360 (2016).
- 135. Nie, L. *et al.* Activation of surface lattice oxygen in single-atom Pt/CeO₂ for low-temperature CO oxidation. *Science* **358**, 1419–1423 (2017).
- 136. de la Cruz-Flores, V. G., Martinez-Hernandez, A. & Gracia-Pinilla, M. A. Deactivation of

Ni-SiO₂ catalysts that are synthetized via a modified direct synthesis method during the dry reforming of methane. *Appl. Catal. A Gen.* **594**, 117455 (2020).

- 137. Lin, C. *et al.* Accelerated active phase transformation of NiO powered by Pt single atoms for enhanced oxygen evolution reaction. *Chem. Sci.* **9**, 6803–6812 (2018).
- 138. Oh, K. R. *et al.* In situ synthesis of trimeric ruthenium cluster-encapsulated ZIF-11 and its carbon derivatives for simultaneous conversion of glycerol and CO₂. *Chem. Mater.* **32**, 10084–10095 (2020).
- 139. Zhang, Z. *et al.* Thermally stable single atom Pt/m-Al₂O₃ for selective hydrogenation and CO oxidation. *Nat. Commun.* **8**, 1–10 (2017).
- 140. Qiao, B. *et al.* Single-atom catalysis of CO oxidation using Pt₁/FeO_x. *Nat. Chem.* **3**, 634–641 (2011).
- 141. Ogel, E. *et al.* Impact of preparation method and hydrothermal aging on particle size distribution of Pt/γ-Al₂O₃ and its performance in CO and NO Oxidation. *J. Phys. Chem. C* **123**, 5433–5446 (2019).
- 142. Ahmadi, M., Timoshenko, J., Behafarid, F. & Cuenya, B. R. Tuning the structure of Pt nanoparticles through support interactions: An in situ polarized X-ray absorption study coupled with atomistic simulations. *J. Phys. Chem. C* **123**, 10666–10676 (2019).
- 143. Siani, A., Captain, B., Adams, R. D., Alexeev, O. S. & Amiridis, M. D. Synthesis and structural characterization of SiO₂-supported PtFe catalysts prepared from PtFe₂(C₈H₁₂)(CO)₈. *Top. Catal.* **54**, 318–333 (2011).
- 144. Nakaya, Y., Miyazaki, M., Yamazoe, S., Shimizu, K. I. & Furukawa, S. Active, selective, and durable catalyst for alkane dehydrogenation based on a well-designed trimetallic alloy. *ACS Catal.* **10**, 5163–5172 (2020).
- 145. H Sykes, E. C. & Christopher, P. Recent advances in single-atom catalysts and single-atom alloys: opportunities for exploring the uncharted phase space in-between. *Curr. Opin. Chem. Eng.* **29**, 67–73 (2020).
- 146. Arenas-Alatorre, J., Avalos-Borja, M. & Díaz, G. Microstructural characterization of bimetallic Ni–Pt catalysts supported on SiO₂. *Appl. Surf. Sci.* **189**, 7–17 (2002).
- 147. Ho, P. H. *et al.* Understanding structure-activity relationships in highly active La promoted Ni catalysts for CO₂ methanation. *Appl. Catal. B Environ.* **278**, (2020).
- 148. Gänzler, A. M. *et al.* Tuning the Pt/CeO₂ interface by in situ variation of the Pt particle size. *ACS Catal.* **8**, 4800–4811 (2018).
- 149. Mukainakano, Y. *et al.* Catalytic performance and characterization of Pt–Ni bimetallic catalysts for oxidative steam reforming of methane. *Chem. Eng. Sci.* **63**, 4891–4901 (2008).
- 150. Lucci, F. R. *et al.* Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. *Nat. Commun.* **6**, (2015).
- 151. Wang, H. *et al.* Quasi Pd₁Ni single-atom surface alloy catalyst enables hydrogenation of nitriles to secondary amines. *Nat. Commun.* **10**, (2019).

- 152. Zhang, X. *et al.* Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. *Nat. Commun.* **10**, 5812 (2019).
- 153. Zhang, Z. L. & Verykios, X. E. Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts. *Catal. Today* **21**, 589–595 (1994).
- 154. Richardson, J. T., Garrait, M. & Hung, J. K. Carbon dioxide reforming with Rh and Pt–Re catalysts dispersed on ceramic foam supports. *Appl. Catal. A Gen.* **255**, 69–82 (2003).
- 155. Al Abdulghani, A. J. *et al.* Methane dry reforming on supported cobalt nanoparticles promoted by boron. *J. Catal.* **392**, 126–134 (2020).
- 156. Lemonidou, A. A. & Vasalos, I. A. Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al₂O₃ catalyst. *Appl. Catal. A Gen.* 228, 227–235 (2002).
- 157. Múnera, J. F. *et al.* Kinetics and reaction pathway of the CO₂ reforming of methane on Rh supported on lanthanum-based solid. *J. Catal.* **245**, 25–34 (2007).
- 158. Ayodele, B. V., Khan, M. R., Lam, S. S. & Cheng, C. K. Production of CO-rich hydrogen from methane dry reforming over lanthania-supported cobalt catalyst: Kinetic and mechanistic studies. *Int. J. Hydrogen Energy* **41**, 4603–4615 (2016).
- 159. Xie, Z. *et al.* Dry reforming of methane over CeO₂-supported Pt-Co catalysts with enhanced activity. *Appl. Catal. B Environ.* **236**, 280–293 (2018).
- 160. Ayodele, B. V., Khan, M. R. & Cheng, C. K. Syngas production from CO₂ reforming of methane over ceria supported cobalt catalyst: Effects of reactants partial pressure. *J. Nat. Gas Sci. Eng.* 27, 1016–1023 (2015).
- 161. Xie, Z. *et al.* Effects of oxide supports on the CO₂ reforming of ethane over Pt-Ni bimetallic catalysts. *Appl. Catal. B Environ.* **245**, 376–388 (2019).
- 162. El Hassan, N. *et al.* Low temperature dry reforming of methane on rhodium and cobalt based catalysts: Active phase stabilization by confinement in mesoporous SBA-15. *Appl. Catal. A Gen.* **520**, 114–121 (2016).
- 163. Li, Z., Jiang, B., Wang, Z. & Kawi, S. High carbon resistant Ni@Ni phyllosilicate@SiO₂ core shell hollow sphere catalysts for low temperature CH₄ dry reforming. *J. CO₂ Util.* 27, 238–246 (2018).
- 164. Jiang, S., Lu, Y., Wang, S., Zhao, Y. & Ma, X. Insight into the reaction mechanism of CO₂ activation for CH₄ reforming over NiO-MgO: A combination of DRIFTS and DFT study. *Appl. Surf. Sci.* **416**, 59–68 (2017).
- 165. Buelens, L. C., Galvita, V. V., Poelman, H., Detavernier, C. & Marin, G. B. Super-dry reforming of methane intensifies CO₂ utilization via Le Chatelier's principle. *Science* **354**, 449–452 (2016).
- 166. Panagiotopoulou, P. & Kondarides, D. I. Effects of alkali additives on the physicochemical characteristics and chemisorptive properties of Pt/TiO₂ catalysts. *J. Catal.* 260, 141–149 (2008).
- 167. Freysz, J. L., Saussey, J., Lavalley, J. C. & Bourges, P. In situ FTIR study of the NO+CO

reaction on a silica-supported platinum catalyst at atmospheric pressure using a new pulse technique. *J. Catal.* **197**, 131–138 (2001).

- 168. García-Diéguez, M., Finocchio, E., Larrubia, M. Á., Alemany, L. J. & Busca, G. Characterization of alumina-supported Pt, Ni and PtNi alloy catalysts for the dry reforming of methane. J. Catal. 274, 11–20 (2010).
- 169. Gould, T. D. *et al.* Enhanced dry reforming of methane on Ni and Ni-Pt catalysts synthesized by atomic layer deposition. *Appl. Catal. A Gen.* **492**, 107–116 (2015).
- 170. Jaiswar, V. K., Katheria, S., Deo, G. & Kunzru, D. Effect of Pt doping on activity and stability of Ni/MgAl₂O₄ catalyst for steam reforming of methane at ambient and high pressure condition. *Int. J. Hydrogen Energy* **42**, 18968–18976 (2017).
- 171. Araújo, J. C. S. *et al.* The role of Pt loading on La₂O₃-Al₂O₃ support for methane conversion reactions via partial oxidation and steam reforming. *Fuel* **254**, 115681 (2019).
- 172. Tierney, H. L., Baber, A. E., Kitchin, J. R. & Sykes, E. C. H. Hydrogen dissociation and spillover on individual isolated palladium atoms. *Phys. Rev. Lett.* **103**, 1–4 (2009).
- 173. Kyriakou, G. *et al.* Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. *Science* **335**, 1209–1212 (2012).
- 174. Moraes, T. S. *et al.* Ethanol conversion at low temperature over CeO₂—supported Ni-based catalysts. Effect of Pt addition to Ni catalyst. *Appl. Catal. B Environ.* **181**, 754–768 (2016).
- 175. Zhou, L. *et al.* Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. *Nat. Energy* **5**, 61–70 (2020).
- 176. Liu, J. *et al.* Tackling CO Poisoning with Single-Atom Alloy Catalysts. *J. Am. Chem. Soc.* **138**, 6396–6399 (2016).
- 177. Gamler, J. T. L. *et al.* Effect of lattice mismatch and shell thickness on strain in core@shell nanocrystals. *Nanoscale Adv.* **2**, 1105–1114 (2020).
- 178. Zhu, J. *et al.* Deconvolution of the particle size effect on CO₂ hydrogenation over ironbased catalysts. *ACS Catal.* **10**, 7424–7433 (2020).
- 179. Marchionni, V., Nachtegaal, M. & Ferri, D. Influence of CO on dry CH₄ oxidation on Pd/Al₂O₃ by operando spectroscopy: A multitechnique modulated excitation study. *ACS Catal.* **10**, 4791–4804 (2020).
- 180. Gao, P. *et al.* Direct production of lower olefins from CO₂ conversion via bifunctional catalysis. *ACS Catal.* **8**, 571–578 (2018).
- 181. Ma, Z. & Porosoff, M. D. Development of tandem catalysts for CO₂ hydrogenation to olefins. *ACS Catal.* **9**, 2639–2656 (2019).
- 182. Wang, J. *et al.* High-performance MaZrOx (Ma = Cd, Ga) Solid-Solution Catalysts for CO₂ Hydrogenation to Methanol. *ACS Catal.* **9**, 10253–10259 (2019).
- 183. Taheri Najafabadi, A., Fatemi, S., Sohrabi, M. & Salmasi, M. Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34 catalyst. *J. Ind. Eng.*

Chem. 18, 29–37 (2012).

- 184. Li, Z. *et al.* Highly selective conversion of carbon dioxide to lower olefins. *ACS Catal.* **7**, 8544–8548 (2017).
- 185. Liu, X. *et al.* Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates. *Chem. Sci.* **9**, 4708–4718 (2018).
- 186. Gao, J., Jia, C. & Liu, B. Direct and selective hydrogenation of CO₂ to ethylene and propene by bifunctional catalysts. *Catal. Sci. Technol.* **7**, 5602–5607 (2017).
- 187. Numpilai, T., Wattanakit, C., Chareonpanich, M., Limtrakul, J. & Witoon, T. Optimization of synthesis condition for CO₂ hydrogenation to light olefins over In₂O₃ admixed with SAPO-34. *Energy Convers. Manag.* **180**, 511–523 (2019).
- 188. Tsoukalou, A. *et al.* Structural evolution and dynamics of an In₂O₃ catalyst for CO₂ hydrogenation to methanol: An operando XAS-XRD and in situ TEM study. *J. Am. Chem. Soc.* **141**, 13497–13505 (2019).
- 189. Martin, O. *et al.* Indium oxide as a superior catalyst for methanol synthesis by CO₂ hydrogenation. *Angew. Chemie Int. Ed.* **55**, 6261–6265 (2016).
- 190. Ye, J., Liu, C., Mei, D. & Ge, Q. Active oxygen vacancy site for methanol synthesis from CO₂ hydrogenation on In₂O₃(110): A DFT study. *ACS Catal.* **3**, 1296–1306 (2013).
- 191. Frei, M. S. *et al.* Role of zirconia in indium oxide-catalyzed CO₂ hydrogenation to methanol. *ACS Catal.* **10**, 1133–1145 (2020).
- 192. Zhang, M., Dou, M. & Yu, Y. Theoretical study of the promotional effect of ZrO₂ on In ₂O₃ catalyzed methanol synthesis from CO₂ hydrogenation. *Appl. Surf. Sci.* **433**, 780–789 (2018).
- 193. Dang, S. *et al.* Role of zirconium in direct CO₂ hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts. *J. Catal.* **364**, 382–393 (2018).
- 194. Zhu, J., Van Ommen, J. G., Bouwmeester, H. J. M. & Lefferts, L. Activation of O₂ and CH₄ on yttrium-stabilized zirconia for the partial oxidation of methane to synthesis gas. *J. Catal.* 233, 434–441 (2005).
- 195. Dole, H. A. E. *et al.* Low temperature toluene oxidation over Pt nanoparticles supported on yttria stabilized-zirconia. *Catal. Letters* **143**, 996–1002 (2013).
- 196. Dang, S. *et al.* Rationally designed indium oxide catalysts for CO₂ hydrogenation to methanol with high activity and selectivity. *Sci. Adv.* **6**, (2020).
- 197. Ahmad, M. S. *et al.* Effect of reaction conditions on the lifetime of SAPO-34 catalysts in methanol to olefins process A review. *Fuel* **283**, 118851 (2021).
- 198. Han, L. *et al.* Polyacrylamide-assisted synthesis of hierarchical porous SAPO-34 zeolites with excellent MTO catalytic performance. *Microporous Mesoporous Mater.* **311**, 110676 (2021).
- 199. Gao, S. et al. Insight into the deactivation mode of methanol-to-olefins conversion over

SAPO-34: Coke, diffusion, and acidic site accessibility. J. Catal. 367, 306–314 (2018).

- 200. Zhong, J. *et al.* Recent advances of the nano-hierarchical SAPO-34 in the methanol-toolefin (MTO) reaction and other applications. *Catal. Sci. Technol.* **7**, 4905–4923 (2017).
- 201. Sun, Q., Wang, N., Bai, R., Chen, X. & Yu, J. Seeding induced nano-sized hierarchical SAPO-34 zeolites: cost-effective synthesis and superior MTO performance. J. Mater. Chem. A 4, 14978–14982 (2016).
- 202. Vasanthavel, S. & Kannan, S. Structural investigations on the tetragonal to cubic phase transformations in zirconia induced by progressive yttrium additions. J. Phys. Chem. Solids 112, 100–105 (2018).
- 203. Basahel, S. N., Ali, T. T., Mokhtar, M. & Narasimharao, K. Influence of crystal structure of nanosized ZrO₂ on photocatalytic degradation of methyl orange. *Nanoscale Res. Lett.* 10, (2015).
- 204. Baklanova, N. I., Kolesov, B. A. & Zima, T. M. Raman study of yttria-stabilized zirconia interfacial coatings on NicalonTM fiber. *J. Eur. Ceram. Soc.* **27**, 165–171 (2007).
- 205. Deshpande, S., Patil, S., Kuchibhatla, S. V. & Seal, S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. *Appl. Phys. Lett.* **87**, 1–3 (2005).
- 206. Li, Y. *et al.* Investigation of oxygen vacancy and photoluminescence in calcium tungstate nanophosphors with different particle sizes. *Mater. Res. Bull.* **50**, 36–41 (2014).
- 207. Chen, T. Y. *et al.* Unraveling highly tunable selectivity in CO₂ hydrogenation over bimetallic In-Zr oxide catalysts. *ACS Catal.* **9**, 8785–8797 (2019).
- 208. Numpilai, T. *et al.* CO₂ hydrogenation to methanol at high reaction temperatures over In₂O₃/ZrO₂ catalysts: Influence of calcination temperatures of ZrO₂ support. *Catal. Today* (2020) doi:10.1016/j.cattod.2020.03.011.
- 209. Rahman, S. *et al.* Mesoporous TUD-1 supported indium oxide nanoparticles for epoxidation of styrene using molecular O₂. *RSC Adv.* **5**, 46850–46860 (2015).
- Ramirez, A., Gevers, L., Bavykina, A., Ould-Chikh, S. & Gascon, J. Metal organic framework-derived iron catalysts for the direct hydrogenation of CO₂ to short chain olefins. *ACS Catal.* 8, 9174–9182 (2018).
- 211. Jiang, X. *et al.* A combined experimental and DFT study of H₂O effect on In₂O₃/ZrO₂ catalyst for CO₂ hydrogenation to methanol. *J. Catal.* **383**, 283–296 (2020).
- 212. Yang, G. *et al.* Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. *J. Phys. Chem. C* **117**, 8214–8222 (2013).
- Chen, G., Sun, Q. & Yu, J. Nanoseed-assisted synthesis of nano-sized SAPO-34 zeolites using morpholine as the sole template with superior MTO performance. *Chem. Commun.* 53, 13328–13331 (2017).
- 214. Tada, S. *et al.* Cu species incorporated into amorphous ZrO₂ with high activity and selectivity in CO₂-to-methanol hydrogenation. *J. Phys. Chem. C* **122**, 5430–5442 (2018).

- 215. Witoon, T., Chalorngtham, J., Dumrongbunditkul, P., Chareonpanich, M. & Limtrakul, J. CO₂ hydrogenation to methanol over Cu/ZrO₂ catalysts: Effects of zirconia phases. *Chem. Eng. J.* 293, 327–336 (2016).
- 216. Dou, M., Zhang, M., Chen, Y. & Yu, Y. Theoretical study of methanol synthesis from CO₂ and CO hydrogenation on the surface of ZrO₂ supported In₂O₃ catalyst. *Surf. Sci.* **672–673**, 7–12 (2018).
- 217. Köck, E. M., Kogler, M., Bielz, T., Klötzer, B. & Penner, S. In situ FT-IR spectroscopic study of CO₂ and CO adsorption on Y₂O₃, ZrO₂, and yttria-stabilized ZrO₂. J. Phys. Chem. C 117, 17666–17673 (2013).
- 218. Pustovarenko, A. *et al.* Metal–organic framework-derived synthesis of cobalt indium catalysts for the hydrogenation of CO₂ to methanol. *ACS Catal.* **10**, 5064–5076 (2020).
- 219. Wang, P., Zha, F., Yao, L. & Chang, Y. Synthesis of light olefins from CO₂ hydrogenation over (CuO-ZnO)-kaolin/SAPO-34 molecular sieves. *Appl. Clay Sci.* **163**, 249–256 (2018).
- 220. Han, J. *et al.* Simultaneous evaluation of reaction and diffusion over molecular sieves for shape-selective catalysis. *ACS Catal.* **10**, 8727–8735 (2020).
- 221. Hoch, L. B. *et al.* The rational design of a single-component photocatalyst for gas-phase CO₂ reduction using both UV and visible light. *Adv. Sci.* **1**, 1400013 (2014).
- 222. Samson, K. *et al.* Influence of ZrO₂ structure and copper electronic state on activity of Cu/ZrO₂ catalysts in methanol synthesis from CO₂. *ACS Catal.* **4**, 3730–3741 (2014).
- 223. Zhang, Y. *et al.* Structure–activity–selectivity relationships in propane dehydrogenation over Rh/ZrO₂ catalysts. *ACS Catal.* **10**, 6377–6388 (2020).
- 224. Frei, M. S. *et al.* Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO₂ hydrogenation. *Nat. Commun.* **10**, 1–11 (2019).
- 225. T. Merle-Méjean, P. Barberis, S. B. Othmane, F. Nardou, P. E. Q. Chemical forms of hydroxyls on/in zirconia: An FT-IR study. *J. Eur. Ceram. Soc.* 18, 1579–1586 (1998).
- 226. Peng, Q. *et al.* Tuning hydrocarbon pool intermediates by the acidity of SAPO-34 catalysts for improving methanol-to-olefins reaction. *ACS Sustain. Chem. Eng.* **6**, 16867–16875 (2018).
- 227. Liu, X. *et al.* Tandem catalysis for hydrogenation of CO and CO₂ to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34. *ACS Catal.* **10**, 8303–8314 (2020).