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Nanoelectronics, promising significant boosts in device density, power and per-

formance, has been projected as the new driving force for Moore’s law1 in the post-

CMOS era. However, turning the vision of nanoelectronic systems into reality re-

quires solving the fundamental challenge of unreliability. The traditional fault tolerance

schemes have focused on low fault rates. Not only do they become impractically ex-

pensive, but also they fail to provide the flexibility and resilience necessitated for the

significant levels of expected fault rates in the nanoelectronic environment. Further-

more, the particularities of nanofabrics necessitate that the fault tolerance techniques fit

certain topological constraints to ensure viability within the expected constraints. Over-

all, the new realm of nanotechnology imposes manifold challenges on attaining fault

resilience.

The work in this thesis addresses the reliability challenge in nanoelectronic sys-

tems from the following perspectives. Based on a number of new characteristics exhib-
1The observation made by Intel co-founder Gordon E. Moore, that the number of transistors on a chip

roughly doubles every two years.
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ited in common by the emerging nanoelectronics, a number of peculiar fault tolerance

issues are identified and thus focused on throughout the thesis work. First, the two rep-

resentative genres of fault tolerance approaches, fault masking and online repair, are

confronted with unique challenges in nanoelectronic systems. Second, no matter which

approach is chosen, building a fault tolerant nanoelectronic system cost-efficiently re-

lies on two main principles: inherent redundancy exploitation, and a hierarchical fault

tolerance strategy. Last but not least, the fundamental issue of reliability in nanoelec-

tronics strongly impacts system design, raising a series of new modeling, algorithmic

and re-evaluation considerations in the system design perspectives.

The success of nanoelectronic system construction essentially relies on the twin

approaches of developing aggressive fault tolerance schemes, and novel system design

with reliability considerations. The thesis work expands across multiple design abstrac-

tion levels of nanoelectronic systems, including a series of fault tolerance approaches

that respond to the new characteristics of nanoelectronics, and a number of new system

design perspectives that address the reliability challenge.
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Chapter 1

Introduction

Current deep submicron fabrication technology imposes increasingly stringent

constraints on VLSI designs. While the effects of such submicron design constraints

have been observed in the elevated error occurrence rates, the extent of the challenge

is dwarfed compared to the challenges that will be encountered as we enter the era of

nanoelectronics [5]. While nanoelectronics promises to provide orders of magnitude

improvements in device density, power and performance, turning this vision into reality

requires solving the highly challenging problem of converting the nanoelectronic fabric,

which is prone to high levels of faulty behavior, into an effectively reliable medium that

is capable of engendering the next generation of nanoelectronic circuits.

Despite the existence of multiple nanoelectronic device candidates, they all face

in common the challenge of severe unreliability, which is essentially inevitable at their

ultimately shrunk device scales. On the one hand, the application requirements on fu-

ture nanoelectronic systems necessitate that any such techniques continue to ensure that

the highest levels of resilience be indeed attained. On the other hand, a number of new

characteristics exhibited by the nanofabric, such as the regularity and adaptivity require-

ments, necessitate that the fault tolerance techniques fit certain topological constraints

to ensure viability within the expected constraints of nanofabrics. In a nutshell, the new

realm of nanotechnology imposes manifold challenges on attaining fault resilience, and

1
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the practical solutions necessitate that the dramatic overhead for achieving reliability

be moderated. Whether the vision of nanoelectronic systems can be turned into real-

ity hinges on whether we can establish efficient strategies to overcome the fundamental

challenge of unreliability.

1.1 Nanoelectronic device candidates

CMOS technology has moved beyond 45 nanometers in scale, and is projected

to reach beyond 22 nanometers in the next several years [14, 36]. At nanometer scale,

CMOS devices start to meet the physical limits. Since the energy needed to read or write

a bit is limited by the uncertainty principle, the correlated thermal, quantum and power

dissipation limits of CMOS are to be reached soon, as frequency and density increase at

the current fast pace. Further shrinking in the CMOS feature sizes is checkmated by the

insurmountable barriers of quantum effects, leakage current and power consumption.

The technology limits will eventually manifest as economical limits, such that CMOS

production will cease to continue on Moore’s law at nanometer scales.

While non-traditional CMOS including those advanced MOSFETs will provide

a path to scaling CMOS to the end of the roadmap, perhaps by using new transistor

structural designs with new materials, eventually the continuation of Moore’s law relies

on the shift to nanoelectronic devices that operate based on quantum physical effects. A

number of emerging device candidates have been proposed as highly promising for the

following perspectives: 1) functionally scalable by several orders of magnitude beyond

CMOS, 2) providing high information and signal processing rate and throughput, 3)

exhibiting substantially less energy dissipation, and 4) eventually implementable with

minimum cost per function. At the current stage, there is not a single nanoelectronic

device expectable to replace CMOS in the near future, while a number of device can-

didates under active research have been shown as promising for the basis for future

nanoelectronic systems.

One-dimensional materials, including nanotube and nanowire, constitute critical
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elements in constructing nanoelectronic logic gates, as they possess the potential ad-

vantage of enhanced mobility and phase-coherent transport of electron wavefunctions,

leading to fast transistors and new wave interference devices [2, 16, 34]. Carbon Nan-

otubes (CNT) [2] are an important subset of 1D nanoelectronic structures, as their semi-

conducting band structure provides the capability of varying among the three states of

metallic, semiconducting, and insulating. Various simple circuits have been demon-

strated by CNT based transistors, including inverters, NOR gates, basic flip-flops and

ring oscillators [4, 38, 73, 74].

Resonant Tunnel Devices (RTD), including resonant tunnel transistors (RTT)

and hybrid devices incorporating resonant tunneling diodes, are two terminal devices

that can reach very high switching speed intrinsically, and exhibit negative differential

resistance in their I-V curves [55, 89]. These two characteristics make RTD potentially

attractive as high speed devices supporting multi-valued logic systems. However, the

peak current through an RTD depends exponentially on the barrier thickness, thus mak-

ing it inherently subject to high process variations and operation uncertainties [36].

Single-Electron Transistors (SET) are three-terminal devices operating on the

Coulomb blockade where the number of electrons on an island or dot is an integer num-

ber controlled by a gate [11, 42]. Numerous SET based memory elements and circuits

have been proposed, yet the operation of SET circuits is generally limited to very low

temperatures. SET devices are potential candidates for significantly low power oper-

ations. However, they suffer from the two main disadvantages of low error immunity

and limited fan-out. The operation basis of SET makes it extremely sensitive to thermal

noise and background charges. The limited fanout restricts the logic architecture of SET

to be exceedingly local based, so that SET would not have to drive a high capacitance

line across the chip.

Quantum Cellular Automata (QCA) represent a new computational paradigm,

where a regular array of cells performs computing and signal transferring through the

interaction with neighbors [52]. Implementations of the QCA paradigm include elec-

tronic QCA and magnetic QCA. The new paradigm of QCA supports novel basic logic
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gates, for instance, the universal gate of majority function for Boolean algebra. Research

on basic arithmetic designs, such as adders, has been carried out for QCA circuits [52].

QCA is employed in a locally interconnected architecture, and the coupling between the

neighboring cells is based on their electrostatic interactions. Based on the single elec-

tron devices, QCA circuits are highly susceptible to environmental influences such as

background charge.

Molecular devices have been proposed based on bistable operations of some

molecules with respect to electron transport [13, 22, 46, 79]. Experiments have demon-

strated two-terminal molecular devices employed at the crosspoints of a crossbar array

operating in parallel, exhibiting functions as digital switches or analog diodes. A num-

ber of molecular devices also display a region of negative differential resistance, thus

supporting multi-valued logic operations. Molecular devices exhibit potentials in high

device densities, reaching 1012 bits/cm2, as well as low power dissipation. However, the

orientation of the molecular devices is hard to control during the manufacturing stage,

thus resulting in massive defects, low yield, high process variation, and online operation

uncertainties.

Spin transistors have been proposed conceptually based on a narrow gap semi-

conductor FET with ferromagnetic source and drain contacts [91]. However, spin tran-

sistors are still in their early research stage, and no viable devices have been demon-

strated, despite the research activities in this field.

Overall, although each of these nano-scale device candidates operates on a unique

physical basis, they present to a large extent a common set of potential advantages over

CMOS, including high speed operation, low power consumption and high device den-

sities. Besides the advantages displayed by the nanoelectronic devices, they share a

number of new characteristics due to the nanometer-scale device dimensions. Most im-

portantly, they confront in common the severe reliability challenge.
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1.2 Reliability challenge

The high unreliability of nanoelectronic devices exists mainly in two forms.

First, manufacturing defects increase significantly, as the fabrication process in nano

environments is prone to defects due to the small scale of devices and the bottom-up

self-assembly process. In comparison with the defect rates of 10−9 to 10−7 in current

CMOS systems, the defect rates of nanoelectronic systems are projected to be extremely

high, of 10−3 to 10−1 orders of magnitude [62].

The line between defects and process variations becomes blurred in nanoelec-

tronic systems. Defective devices may still be functional, yet not meet the speed and

reliability requirements for effective large-scale circuit operation. These effects are go-

ing to be particularly acute for the nanoelectronic devices operating on quantum physics

basis, as it is well known that making nanoscale circuits operate with any degree of

functional certainty is very difficult.

Consequently, a high occurrence of transient faults is expected during run-time

[6, 14, 58]. This is essentially caused by device scales and the low voltage utilized in

nano transistors, which result in extremely high sensitivity to environmental influences,

such as temperature, cosmic ray particles and background noise.

In fact, transient faults have been observed increasingly in current CMOS based

systems as the device scales down to the deep sub-micron stage. Single event upset

caused by cosmic particles has already been observed in large amounts in memory sys-

tems and sequential logic state elements. Similar transient faults have started to be

observed in combinational logic as well [39, 41, 75]. The challenge of dynamic tran-

sient faults is severely aggravated in nanoelectronics based systems [6, 24]. The ultra

low power utilized as well as the quantum effects nanoelectronic devices rely on, both

result in significantly reduced noise margins and increased sensitivity to environmental

effects. Therefore, significant number of transient faults are expected to be triggered

due to variances in temperature, cosmic particles, background noise, and crosstalk ef-

fects [6, 14, 24, 58].
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Furthermore, not only is the fault rate projected to be high, but also a high vari-

ance in the fault rate and a clustered behavior of faults can be expected in the nanoelec-

tronic environment. The functionality of most nanoelectronic devices is extremely sen-

sitive to certain manufacturing parameters [36]. For instance, the peak current through

an RTD depends exponentially on the barrier thickness. Similar sensitivity also exists in

other devices such as CNT and molecular devices. The bottom-up manufacturing pro-

cess, however, cannot perfectly control such parameters to be precisely the same across

all the devices fabricated, thus resulting in high levels of process variations among the

transistors. Such variations inevitably lead to differences in noise immunity among

the devices in a chip, thus engendering clustered fault behavior in the system. In ad-

dition, many environmental effects, such as elevation in temperature generated when

heavy computations cause high power consumption in a particular area, contribute fur-

ther clustered behavior to the fault distribution in the system.

Overall, regardless of which basic device candidate to choose, future nanoelec-

tronic systems will face severe reliability challenges. Specifically, these challenges in-

clude massive existence of manufacturing defects, significant degree of process varia-

tion, and high online fault rates with clustered and varying behavior.

1.3 New characteristics of nanoelectronic systems and

their impact

1.3.1 Impact of high defect / fault rates

The most significant reliability characteristic shared among all the nanoelec-

tronic device candidates is the exceedingly high level of defect and fault rates. The

massive defect and fault occurrences projected in the nanoelectronic environment deter-

mine a fundamental difference between nanoelectronic systems and the current CMOS

based systems. Basically, defect and fault tolerance is deemed to play an essential role
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in nanoelectronic systems, as defect-free systems become impractically expensive to

fabricate, and high occurrences of run time faults have to be dealt with.

A number of changes are inevitable for the nanoelectronic systems. First of all,

for the current CMOS systems, manufacturing test is performed to select defect-free

chips and discard defective ones. Nanoelectronics based systems on the other hand

have to be constructed with built-in defect tolerance, as massive defects will exist in

almost every fabricated chip. Moreover, the current CMOS systems are highly robust

to online faults, and the approaches that deal with online faults mainly focus on the

detection of a low occurrence of faults. For nanoelectronic systems, the correction of

online faults constitutes a major concern beyond fault detection. Furthermore, due to the

high fault rates, the single fault assumption, which dominates in current CMOS systems,

no longer holds. Multiple fault occurrences need to be examined and dealt with for the

nanoelectronic systems.

Basically, the defect and fault tolerance schemes existing for the current CMOS

systems fall far from providing a feasible solution to the reliability challenge in nano-

electronic systems. The current defect / fault tolerance approaches are based on the

assumption of low defect / fault occurrences. When they are used to maintain correct-

ness in a high defect / fault rate environment, they either fail to guarantee reliability, or

demand impractical amounts of redundancy.

1.3.2 Impact of hardware abundance in nanoelectronic systems

The abundant hardware resources facilitated by the boost of device density is one

of the main advantages presented in common by the nanoelectronic device candidates.

Such a change not only influences the fault tolerance approaches, but also alters the

design optimization space of future nanoelectronic systems.

Basically, the abundant amount of hardware supports high performance through

parallelism, thus alleviating the constraint on hardware resource in the design optimiza-

tion space. In other words, for nanoelectronic systems, while performance continues to
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be a critical optimization dimension, hardware cost is no longer as expensive. In ad-

dition, reliability is introduced as a new dimension into the design optimization space

of nanoelectronic systems. The abundance in hardware resources provides a means to

approach reliability through hardware redundancy. On the other hand, reliability can

be approached from by exploiting time redundancy as well, yet at the cost of perfor-

mance overhead. Since both performance and reliability of the system compete for the

hardware resources, nanoelectronic system design needs to consider the utilization of

hardware resources for the trade-off between reliability and performance.

1.3.3 Stringent locality constraint

With shrinking device dimensions, increasing device densities and increasing de-

vice speeds, wiring delay becomes the performance bottleneck and wiring area overhead

becomes excessively large in late-CMOS systems. Long wires add significant overhead

to area, power and delay of the system, and furthermore suffer reliability problems them-

selves.

In a nanoelectronic system with densely packed and highly shrunk scaled de-

vices, such interconnect challenges are only going to be significantly worse. First of

all, accessing the extremely small devices is geometrically challenging. Second, the

low power operation and highly limited fan-out characteristics of nanoelectronic de-

vices determine that, transferring information and signals at a high speed or with high

bandwidth, can be only achieved within the immediate neighborhood. Overall, intercon-

nection and communication become extremely expensive, and are strictly limited within

a localized neighborhood in the nanoelectronic systems [6, 36].

The new challenge of highly localized interconnection has inevitably strong im-

pact on the design and fault tolerance approaches for the emerging nanoelectronic sys-

tems [6, 14, 36]. In the traditional fault tolerance approaches such as TMR and NMUX,

the issue of localized communication and interconnection complexity is not included in

the assumption. Consequently, the application of these approaches in the nanoelectronic
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environment is subject to the topological constraint, and the achievable fault tolerance

capability needs to be examined based on such a constraint as well.

1.3.4 Regularity and reconfigurability

Current CMOS systems utilize top-down lithographic fabrication, which is lim-

ited in obtaining precision when scaling down to the level of nanometers. Aggressive

approaches in lithographic fabrication do exist for the nanoelectronic environment, yet

they are too expensive to be applied for massive production. On the other hand, a

bottom-up approach is expected to prevail as the basic way to construct nanoscale cir-

cuits by building structures in a self-assembly manner.

Bottom-up self-assembly based approaches have been shown for molecular elec-

tronics based fabrics with a crossbar-like architecture [12, 13, 22, 46, 53]. The resul-

tant structure from the bottom-up fabrication process contains a number of perpendic-

ular nanowires, forming a grid with nanoelectronic devices located at the crosspoints

[34, 47, 76, 77].

Based on the crossbar structure, latch based storage elements and programmable

logic array (PLA) like logic blocks have been proposed [18, 21, 47]. These approaches

on the development of nanoelectronics based memory and logic, in conjunction with

research work on the interface design between CMOS and nanodevices [18, 21, 80, 81],

have exhibited a promising potential for the construction of functional nanoelectronic

systems.

The main implications of a bottom-up fabrication process are: 1) regularity in

structures imposed by the self-assembly process, 2) massive defects caused during the

fabrication process, and 3) post-fabrication reconfigurability necessitated to define the

circuits and bypass the defects. The high regularity defines a specific topology of the

system, thus needing to be considered together with the locality constraint for the fault

tolerance schemes. On the other hand, the high regularity opens up the opportunity for

developing efficient fault tolerance schemes. For instance, detection and diagnosis of
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defects and faults can be performed with high efficiency in a regular system.

Reconfigurability supports a new genre of fault tolerance schemes for nanoelec-

tronic systems, namely the online repair based approach. With the capability of online

reconfiguration, once the faulty units are identified, a system can be repaired online by

replacing the faulty units with spare ones. Overall, online reconfiguration based fault

tolerance approaches are highly flexible and efficient in dealing with the massive oc-

currences of faults. By exploiting the regularity and reconfigurability of nanoelectronic

systems, one can perform efficient online detection and diagnosis, and maintain the re-

liability of the system through a final online repair process.



Chapter 2

Thesis Overview

Reliability has ben identified as a fundamental challenge for the nanoelectronic

systems. In fact, throughout the decades of evolution in electronic system, a number

of devices exhibiting various promising advantages over CMOS has been proposed,

including Germanium transistors, Gallium Arsenide MESFET, various threshold logic,

tunneling diodes and other optical logic devices [43]. These devices have nonetheless

failed to take over the dominant position of CMOS, to a large extent because they failed

to match up the significant advantage offered by CMOS: high gain of the device allowing

the circuit to operate reliably with great precision and signal reproducibility. Essentially,

the reliability challenge has been a killer for many otherwise highly promising device

candidates.

At the current stage, when CMOS is going beyond 45nm scale and reaching at

a fast pace towards its physical limit, to succeed as the next generation of electronic

system, nanoelectronic based systems need to display significant advantages over the

current CMOS. Whether the grand vision of future nanoelectronic systems can be turned

into reality directly hinges on whether the fundamental challenge of reliability can be

overcome. If reliability cannot be foreseeably guaranteed in a cost-efficient manner for

nanoelectronic systems, the continuous scaling down of electronic devices, which has

served as the driving force for device density boost for four decades, will eventually

11
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terminate in the near future.

The reliability challenge is not only fundamental, but also quite severe. As is

presented in the introduction, the unique characteristics of the emerging nanoelectronics

determine a set of particularities for the reliability challenge. While fault tolerance has

always been a challenging topic in electronic designs, a number of factors prevalent in

nanoelectronics elevate further the expected difficulties and challenges.

Foremost are the significant levels of fault rates. The traditional fault tolerance

schemes have evolved to deliver techniques that are superior in providing resilience to

faults, albeit when the expected fault rates are exceedingly low in proportion to correct

operation rates. As fault rates climb, not only does the occurrence of faulty behavior

in components start approaching certainty, but the hardware necessary for error check-

ing and correction itself becomes increasingly unreliable. Direct application of these

fault tolerance schemes would demand hardware redundancy of three to five orders of

magnitude to achieve reliability under the fault rates projected in the nanoelectronic en-

vironment [24]. Such a huge amount of redundancy requirement would immediately

exhaust the density boost advantage offered by the nanoelectronic devices.

More importantly, the direct application of traditional fault tolerance schemes is

not only impractically expensive, but also unsatisfactory under the nanoelectronic en-

vironment. Not only do they lack the flexibility in dealing with the fault rates with

high variability, but they also fail to address the new characteristics exhibited by na-

noelectronics, which have strong impact on fault tolerance strategies in various ways.

Consequently, despite the abundance and maturity in fault tolerance research, there is

no efficient solution directly applicable to address the reliability challenge in nanoelec-

tronic systems.

In this chapter, we give an overview on a number of novel fault tolerance issues

in nanoelectronic systems, which are to be addressed by the various approaches devel-

oped in the thesis work. Particularly, chapters 3 to 5 of the thesis focus on developing

novel fault tolerance approaches, by focusing on the characteristics of nanoelectronics

that are highly relevant to the reliability challenge.
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The reliability challenge, accompanied by the new characteristics of the nano-

electronic systems, inevitably introduces new concerns to the system design process. On

the one hand, a number of new challenges emerge, necessitating novel models and solu-

tions to be addressed; on the other hand, the characteristics of nanoelectronics also open

up new opportunities previously impractical in the system design process. Overall, the

design optimization space needs a rethinking, as the tradeoff factors are shifting away

from the traditional axes between performance and hardware cost. Certainly, hardware

resources continue to be less and less expensive as systems move into the nanoelec-

tronic environment. More importantly, reliability needs to be included into the tradeoff

factors with performance and hardware. In chapters 6 to 8, we focus on the new design

perspectives at various system hierarchy levels. New mathematical models are therein

established, and corresponding algorithms are developed to address these new issues.

2.1 Novel fault tolerance themes for nanoelectronic sys-

tems

A number of fault tolerance approaches at various system hierarchical levels are

proposed in this thesis. Before presenting these approaches individually, we first identify

a number of important fault tolerance issues that are unique to the emerging nanoelec-

tronic systems. Essentially, although each approach focuses on a specific perspective

of the system, such as nanoelectronic logic, arithmetic component, or topological con-

straint, they all try to address the common set of fault tolerance issues identified for

nanoelectronic systems.

2.1.1 Existent redundancy exploitation

Any fault tolerance approach relies on certain forms of redundancy, and aggres-

sive schemes targeting the high fault rates necessitate redundancy in a large amount. In-

troducing extra redundancy into the system is always expensive, no matter which form
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it takes, since hardware, time and information redundancy each imposes its particular

overhead to the system. Developing powerful fault tolerance schemes at a low cost

essentially depends on the exploitation of the existent redundancy in the system. One

might question the existence of such “exploitable” redundancy in an efficiently designed

system. However, in a nutshell, this is achievable from two perspectives.

First, typically a function has multiple implementations with different tradeoffs

between performance and hardware cost. The abundant hardware resource in the nano-

electronic environment makes the high performance designs much more favorable, using

parallel computations instead of serial ones. In these high performance modules, there

typically exist alternative computational paths, which represent a form of redundancy

exploitable for fault tolerance purposes.

In addition, it is very likely that various fault tolerance approaches are neces-

sitated in combination, due to their complementary advantages and costs, as well as

the requirement for aggressive fault tolerance approaches to maintain reliability in an

environment with high fault rates. Particularly, fault masking schemes and online re-

pair based approaches present complementary attributes in terms of performance and

flexibility for variable fault rates. The combination of the two can therefore provide a

powerful fault tolerance capability for a nanoelectronic system. By exploiting the re-

dundancy employed for one scheme to serve the other one as well, a highly efficient

overall fault tolerance approach can be achieved.

2.1.2 Fault masking issues in nano

Fault masking approaches constitute the genre of most general fault tolerance

schemes, including the representative N-Modular Redundancy (NMR) and N-Multiplex

(NMUX) schemes. Basically, hardware redundancy is used in these approaches to pro-

vide multiple redundant copies of the same computation. The correct result can be

achieved despite the fault occurrences that may lie below a certain threshold. Fault

masking approaches are generally applicable for most computations. Nevertheless, for
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nanoelectronic systems, a number of important issues emerge and need to be addressed

for fault masking approaches to be applicable.

• Due to their inflexibility, fault masking schemes typically have poor efficiency

under high and variable fault rates. The redundancy for a fault masking scheme

is usually preset to a fixed amount. Consequently, the redundancy amount needs

to target the worst case to guarantee reliability under a high fault rate, thus de-

manding tremendous hardware overhead.

• Fault masking schemes have a certain threshold for tolerating faults. At the pres-

ence of multiple faults beyond the preset threshold, the result becomes incorrect.

Fault masking schemes do not naturally provide a mechanism to detect such a

scenario. thus becoming vulnerable under the high occurrence of faults in a

nanoelectronic environment. In other words, an additional layer of fault detec-

tion capability needs to be introduced for the fault masking schemes to identify

the erroneous output, when the number of fault occurrences reaches beyond the

threshold.

• Majority voting based fault masking schemes, such as NMR, rely on a voter in

the final stage for attaining a correct result. The implementation of a voter poses

a number of issues under the nanoelectronic environment. At a low design hi-

erarchical level, the implementation of a majority voter could be exceedingly

expensive, both in terms of hardware and performance. Furthermore, the relia-

bility of the voter poses as an additional concern, since it is crucial to the entire

fault masking scheme. The voter’s reliability might be hard to guarantee at a low

design level, and can be costly at a higher design level.

• The implementation of a fault masking scheme is subject to the stringent local-

ity constraint in the nanoelectronic environment. In order to cover a high rate

of faults, both NMR and NMUX based approaches involve considerable num-

ber of interconnections, which are presumed available in the general models.
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Consequently, the capability of fault masking schemes under the nanoelectronic

environment is limited by the interconnect constraints. A reevaluation of the

fault masking schemes’ capability is necessitated based on the topological in-

formation. Furthermore, how to develop powerful fault masking schemes that

address the locality issue in the nanoelectronic environment constitutes an im-

portant issue.

2.1.3 Online repair

Since online reconfigurability is supported by a large number of nanoelectronic

devices, online repair based fault tolerance schemes are envisioned as promising alter-

natives to fault masking schemes. Online repair approaches provide complementary

advantages to the fault masking schemes, due to their high flexibility and efficiency in

utilizing the hardware redundancies. Online repair based approaches are best applica-

ble to systems with high regularities and a large number of identical components. The

bottom-up fabrication process naturally results in systems with high regularity; further-

more, most high performance arithmetic components which rely on parallelism consist

of a large number of identical subcomponents. Consequently, online repair based ap-

proaches are highly promising for nanoelectronic systems.

However, online repair schemes involve a relatively long process, consisting of

online detection, fault diagnosis and the final stage of reconfiguration based repair, ne-

cessitating extra control hardware as well. Whether an online repair based scheme can

deliver high fault tolerance capability with efficiency depends on the three individual

steps.

• The first stage of online fault detection can benefit from the existing research

in the CMOS domain, as the problem of online fault detection has been well

investigated in the literature, and various online testing approaches have been

developed.
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• The second stage of online fault diagnosis is responsible for identifying the

faulty units that are to be replaced in the third stage. Online diagnosis constitutes

a crucial stage to the end result of an online repair based approach.

Such a problem was not a prominent concern previously, since the CMOS based

systems are highly robust, and online reconfigurability is not commonly present.

In CMOS based systems, fault diagnosis has been mainly performed under of-

fline environment conditions. Performing fault diagnosis online is by far a much

more challenging issue, due to the lack of controllability in an online environ-

ment.

Overall, online diagnosis has to be done on the fly at runtime, and its resolu-

tion directly influences the amount of hardware needed to perform the repair in

the third stage, since a low diagnosis resolution inevitably results in the replace-

ment of a large chunk of hardware in the ambiguity set. Consequently, online

diagnosis constitutes a crucial issue for the online repair based fault tolerance

approaches. The development of efficient online diagnosis schemes relies on the

exploitation of regularity in the system, and reusing the existent redundancies.

• The final stage of reconfiguration based repair replaces the faulty component

candidates identified in the second stage with spare ones. Therefore, the hard-

ware overhead required in this stage relies heavily on the diagnosis resolution in

the previous stage.

Online repair based schemes can achieve high flexibility through spare unit shar-

ing. However, once again, the locality constraint in the nanoelectronic environ-

ment needs to be considered. To address the issue of redundancy sharing under

topological constraints for the repair stage, new models need to be established to

develop efficient redundancy allocation schemes and perform evaluations with

locality considerations.
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2.1.4 Hierarchical fault tolerance approaches

Although the massive fault occurrences in a nanoelectronic system stem from

the reliability challenge at the device level, it takes a series of hierarchically organized

fault tolerance approaches to guarantee the computation correctness of the entire sys-

tem, and furthermore the mechanism to achieve performance, hardware and reliability

tradeoff. Trying to maintain reliability at a single design abstraction level is impractical

for the significant fault rates in the nanoelectronic environment, and a hierarchical fault

tolerance is the only way to construct reliable nanoelectronic systems efficiently, for the

following reasons:

• Not all fault tolerance approaches are applicable at each design hierarchical

level.

The lower design abstraction levels have the advantage of relatively cheap hard-

ware resources, yet cannot afford fault tolerance approaches that require com-

plex control mechanisms. Consequently, achieving the flexibility to deal with

the high variances of fault rates, such as applying time redundancy and bal-

ancing hardware and performance dynamically is extremely expensive. At the

higher design abstractions, each basic component is rather complex. Fault tol-

erance schemes that are simple yet demand large hardware redundancy, such as

NMR and NMUX, are expensive to implement. Certain types of fault tolerance

approaches have highly constrained applicability areas. For instance, informa-

tion redundancy based error checking / correction coding approaches can be only

applied to a set of subsystems such as data storage and transferring components.

To address the reliability challenge of nanoelectronic systems on a single design

abstraction level, no matter which one, would restrict one’s choice to a small

selection of fault tolerance approaches. Failing to exploit the various benefits

provided by the full range of fault tolerance approaches undoubtedly hampers

the power one would need to overcome the severe reliability challenge.
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• The nature of fault tolerance approaches determines a peculiar curve of hard-

ware cost versus achievable reliability, where the hardware cost does not grow

linearly with the achievable reliability [29]. Basically, reliability improvement

costs significantly higher when it gets close to 100%. In other words, it costs

much less to improve the reliability of a system from 60% to 70% than to strive

for the last ten percentage points from 90% to 100%.

A hierarchical fault tolerance strategy, therefore, exploits lower levels of design

abstraction to provide limited fault masking to cover the bulk of expected faults,

while the tail end of the fault distribution is left to higher design abstraction

levels. The hybrid approach enables low-cost fault handling for most faults while

expending control complexity at higher chunk granularity, thus amortizing it.

2.2 Overview of proposed work towards reliable nano-

electronic systems

The thesis work on fault tolerance of nanoelectronic systems includes three dis-

tinct pieces. Each piece of the work focuses on fault tolerance issues from a particular

perspective of system design hierarchical level. However, each piece of the work ad-

dresses multiple fault tolerance issues discussed above and forms a relatively complete

approach.

2.2.1 Fault tolerant nano PLA logic

For nano PLA logic based on the highly regular crossbar architecture, a special

fault masking scheme is developed based on two-level logic tautology, Traditional fault

masking schemes are shown to be highly inefficient at the logic gate design level, under

the locality constraint. By exploiting the characteristics of the two-level logic, such a

fault masking scheme becomes highly applicable to the regular structure of nano PLAs.
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Furthermore, a reconfiguration based online repair scheme is proposed to com-

pensate the fault masking approach. The particular issue of online diagnosis is addressed

by exploiting the regularity of nano PLA structure as well as the characteristics of two-

level logic functions. The redundancy employed in the proposed fault masking scheme

is exploited for the online repair approach as well. Consequently, this approach pro-

vides an efficient fault tolerance approach integrating fault masking and online repair

for nanoelectronic PLAs.

2.2.2 Reliable parallel adders in nano

An adder is the basic building block for arithmetic components, thus serving as

a starting point for research on fault tolerant arithmetic units. In nanoelectronic sys-

tems, when the constraint on hardware cost is significantly alleviated, high performance

parallel adders easily become the favorable choices.

Parallel adders, including carry lookahead adders (CLA) and parallel prefix adders

(PPA), employ parallel computation paths to eliminate carry propagation. Based on the

correlations among the carry signals, alternative calculation paths can be constructed

for the same computation with highly insignificant hardware and performance overhead.

This essentially indicates a way to exploit existing redundancy in the system for fault

tolerance purposes.

This piece of research work exploits such redundancy in parallel adders, includ-

ing CLA and PPA, for fault masking, online fault detection and diagnosis. It turns out

that by exploiting the inherent redundancy and the regularity within parallel adders, var-

ious fault tolerance schemes can be supported with very low cost, thus delivering high

reliability efficiently.

2.2.3 Locality aware redundancy allocation

This piece of work focuses on the locality issue of the nanoelectronic environ-

ment and its impact on fault tolerance approaches. Particularly, redundancy allocation
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for an online repair based approach is tightly connected to the constraint of localized

interconnections and communications. Basically, the spare units in a system for repair

purposes need to be shared among as many as possible functional units to enhance flex-

ibility and fault tolerance capability. However, such a sharing is not only subject to the

compatibility among the functional units and spare units, but also limited due to the

interconnection constraint.

The problem of redundancy allocation under a locality constraint is mathemat-

ically modeled and investigated. Such a model can be used to evaluate the reliability

of a system, based on the amount of redundancy and the interconnection complexity,

and is independent of the specific details of the topological layout. Based on the pro-

posed model, reconfiguration based defect and fault tolerance algorithms are developed

to maximize the reliability of a nanoelectronic system under manufacturing defects and

online fault occurrences, while satisfying the interconnection constraints.

As a case study, a specific flexible NMR fault tolerance scheme is proposed,

which is essentially a fault masking scheme supported by an online repair approach.

With localized redundancy sharing, the fault masking scheme is enhanced with high

flexibility, thus being capable of recovering from massive manufacturing defects, and

tolerating high and variable occurrences of online faults.

2.3 New designs of nanoelectronic systems under the re-

liability challenge

Specifically, the three pieces of research focus on the following:

• The traditional logic synthesis process focuses on the optimization of logic func-

tions. In a PLA structure, thanks to the regular structure, the mapping of a re-

sultant logic function onto the fabric is highly flexible and a trivial process. In

a nano PLA, however, the massive defects in the fabric impose strict constraints

to the function mapping process. Therefore, the process of function mapping
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emerges as a new challenge. We address this problem by developing a mathe-

matical model for it using a bipartite graph representation. Based on the model,

we develop the corresponding algorithm to perform a defect aware function map-

ping.

• Despite its outstanding performance, the applicability of carry save arithmetic is

traditionally limited due to the requirement of an underlying multi-valued logic

system. The implementation of multi-valued logic system through the traditional

binary-based CMOS system is quite expensive. Multi-valued logic is naturally

supported by a number of nanoelectronic devices, thus enabling the examination

of carry-save arithmetic for nanoelectronic systems based on these devices. Ap-

plying carry-save arithmetic not only engenders great potential of performance

boost, but also opens up the opportunity for developing information redundancy

based fault tolerance to the arithmetic components. By exploiting the character-

istics of carry-save arithmetics, we develop an error checking code based fault

tolerance scheme for arithmetic units. As a result, a unified information redun-

dancy based fault tolerance scheme can be extended to arithmetic units, in addi-

tion to its traditional application areas such as buses and memory subsystems.

• For a processor architecture based on unreliable nanoelectronic devices, since

any fault tolerance approach demands redundancy either in the form of time

or hardware, reliability needs to be considered in conjunction with the perfor-

mance and hardware tradeoffs. A new computational model for nanoelectronics

processor architectures is introduced, which provides flexible fault tolerance to

deal with the high and time varying faults.



Chapter 3

Fault Tolerant Nano PLA Logic

Programmable logic arrays (PLAs) are promising as platforms for nanoelec-

tronic logic, since they are highly regular and can be supported by the nano crossbar

architectures. This chapter focuses on the fault tolerance of nanoelectronic PLAs, so as

to ensure their viability as a foundation for the logic level of nanoelectronic systems.

In this chapter, we present a comprehensive fault tolerance scheme integrating

fault masking and online repair for nanoelectronic PLAs. The proposed fault mask-

ing scheme is based on two-level logic tautology, thus necessitating no majority voting

and displaying significant advantages over the traditional TMR based approach on nano

PLAs. Based on the two-level logic characteristics in a PLA structure, we propose an

online repair scheme on top of the fault masking scheme for enhanced reliability, when

fault occurrences exceed the threshold of the fault masking capability. For the online

repair approach, we focus on the crucial stage of online diagnosis. By utilizing the ex-

istent redundancy employed in the fault masking scheme, high diagnosis resolution can

be achieved with insignificant hardware overhead.

23



24

3.1 Motivation

As the crossbar based architectures are placed center stage as promising fun-

damental basic structures in constructing nanoelectronic systems, nano crossbar based

PLAs exhibit significant potential as a logic level basic architecture, since any arbitrary

function can be implemented in a two-level logic form. PLA based logic systems in

CMOS have enjoyed extensive research attention resulting in mature technologies. To

deal with the tremendous increases in online fault rates in the nanoelectronic environ-

ment, aggressive fault tolerance techniques need to be developed and integrated into

general PLA designs.

In essence, any fault tolerance scheme relies on certain forms of redundancy. It

has been shown that the generally applicable fault tolerance schemes demand a tremen-

dous amount of hardware redundancy for the high fault rates in nanoelectronic systems

[24, 62], making them infeasible even with the support of the hardware density boost in

the nanoelectronic environment.

To overcome the unreliability challenge for nanoelectronic systems, the only ap-

plicable way remains the exploitation of the particularity of the system, rather than the

simple adoption of generic fault tolerance approaches. For nano PLAs, the high regu-

larity of PLA logic and the online reconfigurability of nano crossbars can be exploited

to support efficient fault tolerance schemes.

We focus on developing two genres of fault tolerance approaches, namely the

fault masking schemes and online repair based approaches, for nano PLAs.

• Fault masking based schemes introduce low delay penalties and perform best

when dealing with transient faults. Fault masking approaches can guarantee the

correctness of the computational output for fault occurrences under a certain

threshold. However, when the number of fault occurrences exceeds the thresh-

old, fault masking fails to maintain a correct output.

• Online repair based approaches enhance the reliability of the system by detecting
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the faulty units and performing a reconfiguration process. The nanoelectronic

devices located at the crosspoints in a crossbar exhibit two distinct states of con-

necting and disconnecting the two wires, and these two states can be configured

by applying a positive or negative voltage correspondingly [13, 34, 53]. For such

a system supporting a highly dynamic reconfiguration capability, online repair is

promising for its hardware efficiency in dealing with massive faults.

The two genres of approaches, online repair and fault masking, exhibit comple-

mentary advantages in their fault tolerance capabilities. Even though development of

fault masking and online repair schemes for nano PLAs can benefit from exploiting the

characteristics of nanoelectronics and the regularity of PLA logic, implementing the two

approaches independently proves to be highly costly. The only possibility to apply both

strategies to guarantee the reliability of nano PLAs is through the overlapping of their

redundancy requirements. In other words, when the existent redundancy can be used by

both the fault masking and the online repair based approach, a powerful integrated fault

tolerance scheme can be achieved efficiently for nanoelectronic PLAs.

3.2 Preliminary: Fault Models for nano PLAs

In nanoelectronics, particularly for the crossbar based PLA structures, a massive

number of two-terminal molecular devices are sandwiched at the crosspoints between

two orthogonal layers of densely packed parallel nanowires. Due to the highly sensitive

devices and their unreliable characteristics, the main fault occurrences are expected at

the crosspoints. These online faults include permanent faults such as a device becoming

nonprogrammable, as well as transient faults of switching between states due to envi-

ronmental effects [12, 20, 34, 36]. For the faults occurring at the crosspoints of a nano

crossbar architecture, their corresponding fault models in a two-level PLA logic can be

represented with four types of faults [1, 8, 78], which are shown in table 3.1.

The four fault types are essentially the combination of two dimensions: the oc-
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Table 3.1: Fault models of PLA
fault type K-map cause effect output example

AND ↓ G growth missing device missing 0 → 1 f = ab + cd
in AND plane variable → b + cd

AND ↑ S shrink extra device extra 1 → 0 f = ab + cd
in AND plane variable → abe + cd

OR ↓ D disap- missing device missing 1 → 0 f = ab + cd
pearance in OR plane product term → cd

OR ↑ A appear- extra device extra 0 → 1 f = ab + cd
ance in OR plane product term → ab + cd + e

currence plane (AND or OR), and the occurrence type (missing or extra device). For

instance, for a G type fault, a device is either missing or switched from an “on” state

to an erroneous “off” state in the AND plane. The fault effect results in a growth in

the Karnaugh map. At the logic level, a variable is dropped from a product term, and

the outputs connected to the product term change unidirectionally from 0 to 1. In the

example shown in table 3.1, a G type fault with a missing variable a changes the original

function of ab + cd into the erroneous b + cd. We can notice from the table that all these

four types of faults lead to unidirectional changes in the output. This is an important

attribute for the crosspoint faults in PLA logic, based on which specialized techniques

that entail reduced hardware overhead can be developed for fault tolerance purposes.

3.3 Fault Masking for nano PLAs

Fault masking is a general technique that can be applied straightforwardly to

arbitrary functions. In the traditional NMR based fault masking approach, to achieve

the single fault masking capability, at least TMR with triple the amount of hardware is

required, plus the additional overhead of a majority voter.

However, the general fault masking scheme of NMR does not provide an effec-

tive solution for nano PLAs. The cost of a voting process in NMR based approaches,

both in terms of hardware and performance, is typically amortized by the size of the
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component and the complexity of the computation itself. At the low design hierarchical

level of logic gates, any function implemented by a nano PLA has two logic levels only.

Implementing NMR based approaches in a PLA logic form is highly expensive, due to

the relative cost of implementing a voter when compared to the size of a typical two-

level logic function by itself. Not only is significant area overhead needed for a majority

voter itself, but also tremendous additional area is wasted to support the NMR structure

with the highly regular PLA architecture. In addition, for any NMR based approach,

the crucial issue of voter’s reliability needs to be addressed. In the case of nano PLA,

this needs to be approached by adding extra redundancy to make a voter itself fault tol-

erant. Alternatively, a voter might be implemented with more reliable devices such as

CMOS. However, this demands a hybrid implementation of nanoelectronic devices and

CMOS devices and is expensive. Overall, applying the general fault masking scheme of

NMR to nano PLAs, which reside at the logic gate design hierarchical level, is highly

inefficient.

Alternatively, by exploiting the characteristics of two-level logic functions, a

Boolean logic tautology can be used to develop a class of new fault masking schemes

that are particularly favorable to nano PLAs. With tautology based fault masking, the

redundancy is integrated within the logic function. Consequently, faults can be masked

without an explicit majority voting process and significant improvement can be achieved

from both the performance and the hardware utilization perspectives.

3.3.1 Tautology based fault masking examples

In Boolean logic, the AND and the OR functions provide two tautology forms,

which we will refer to as f̂AND and f̂OR:

f̂AND = f · f ≡ f

f̂OR = f + f ≡ f

These tautology forms represent two redundant designs for a Boolean logic function. By

embedding the redundancy within the Boolean logic, a number of faults can be masked
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without the necessity for a majority voting process at all.

Table 3.2: Tautology form fault masking capability over the 4 fault models

fault type f under fault f̂AND under fault f̂OR under fault
AND ↓ G ab → a ab · ab → aba = f ab + ab → a + ab 6= f
AND ↑ S ab → abc ab · ab → ababc 6= f ab + ab → ab + abc = f
OR ↓ D p1 + p2 (p1 + p2)(p1 + p2) p1 + p2 + p1 + p2

→ p1 → p1(p1 + p2) 6= f → p1 + p1 + p2 = f
OR ↑ A p1 + p2 → (p1 + p2)(p1 + p2) → p1 + p2 + p1 + p2 →

p1 + p2 + p3 (p1 + p2)(p1 + p2 + p3) = f p1 + p2 + p1 + p2 + p3 6= f

Table 3.2 shows the fault masking capability of the two tautology forms over the

four fault types. The AND and OR tautology forms have complementary fault masking

capabilities depending on the fault manifestation directions and the fault occurrence

plane. Specifically, f̂AND can mask fault types G and D, while it is susceptible to

the S and A types of faults. f̂OR exhibits exactly the complementary capability and

susceptibility.

As a further observation, applying a tautology form to the plane of the same

function results in a single level logic, while applying it on the other plane necessitates

an additional logic level. Basically, neither the application of f̂AND tautology to an

AND function nor of the f̂OR tautology on an OR function entails any extra logic level.

The converse cases, on the other hand, do introduce an additional logic level.

Figure 3.1 illustrates how Boolean tautology can be used on a 2-level nano PLA

structure:

• Figure 3.1(a) shows the direct PLA implementation of the original function f =

ab + cd.

• In figure 3.1(b), the f̂AND tautology is applied to the AND plane, thus masking

the G type faults, namely the AND plane missing device faults.

• In figure 3.1(c), the f̂OR tautology is applied on both the AND and the OR planes.
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Figure 3.1: Fault masking examples

As a result, both the S (AND plane extra device) and the D (OR plane missing

device) faults are masked. Moreover, the extra level of OR logic introduced by

applying f̂OR to the AND plane is absorbed in the original OR plane of the PLA;

therefore, the resulting structure can still maintain a 2-level logic structure.

• In figure 3.1(d), f̂AND is applied to the OR plane, thus masking the A type of

faults, i.e., OR plane extra device faults. In this case, an extra level of AND logic

is inevitable since it has to be added after the OR plane in the original PLA.

Overall, as is shown in the examples from figure 3.1, each of the four types of faults can

be masked by applying the Boolean tautology forms in nano PLAs.
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Figure 3.2: Tautology based fault masking for all 4 fault types

3.3.2 Tautology based fault masking in nano PLAs

Single fault masking analysis

To cover all the four types of faults simultaneously, one needs to combine the

approaches shown in figure 3.1. We show in figure 3.2 the corresponding example of

such a combined approach. The AND planes are labeled from 1 to 4, while the OR

planes are labeled from 5 to 7. All four types of faults can be masked according to the

following analysis:

G type: a missing device fault in an AND plane is masked by applying an f̂AND

tautology on the AND plane.

For instance, the fault effect of any missing device in plane 1 never reaches the

OR planes, due to the redundant copy of plane 2. Consequently, within the plane

pair 1 and 2 (as well as plane pair 3 and 4), any missing device fault occurrence

can be successfully masked.

S type: an extra device fault in an AND plane is masked by applying f̂OR tau-
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tology on the AND plane.

An extra device fault occurring in AND plane 1 cannot be masked by plane

2, and will manifest in both OR planes 5 and 7. However, the existence of

redundant AND planes 3 and 4 guarantees that OR planes 6 and 8 are not affected

by the fault. Therefore, the fault manifestation in plane 5 can be masked by plane

6. At the same time, the fault manifestation in plane 7 is masked by plane 8.

D type: a missing device fault in an OR plane is masked by applying the f̂OR

tautology on the OR plane.

Within the plane pair 5 and 6 (as well as plane pair 7 and 8), any missing device

fault occurrence can be successfully masked.

A type: an extra device fault in an OR plane is masked by applying f̂AND tau-

tology on the OR plane.

This is achieved by adding the redundant planes 7 and 8 for planes 5 and 6. With

the additional level of AND plane at the end, any extra device fault occurring in

the OR planes can be masked at the final output.

The above analysis shows that any single fault occurrence of any fault type can

be masked by the tautology based fault tolerance scheme.

Double fault masking analysis

In fact, most of the double fault and multiple fault occurrences can be masked as

well by the tautology based approach. To estimate the double-fault masking capability,

assuming that the PLA consists of I input, O outputs and P product terms, then there

exist I × P crosspoints in each of the AND planes, and P × O crosspoints in each of

the OR planes. The total number of possible double fault occurrences in all the eight

planes, considering the combination of all the four types, is therefore (2O+2I)× 2P ×
((2O + 2I) × 2P − 1) × 4 × 4/2. We provide an analysis on the double-fault masking
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capability of the tautology based approach by listing below all the possible double-faults

that escape masking.

G+G: (AND ↓↓) When the first fault is a G type fault ( device missing in AND

plane) in plane 1, the fault effect will be masked unless a second G type fault oc-

curs in plane 2 at exactly the same location. The number of possible occurrences

of this type is 2 × I × P .

S+S: (AND ↑↑) When the first fault is an S type fault occurring in plane 1, then

a second fault of the same type in plane 3 or 4 might escape the fault masking

approach. However, the second fault’s position in the plane has to be in the same

row as the first one in plane 1. In other words, double faults where both faults

are of the S type will be masked unless the two faults take place at the copies of

the same product term signal. The number of possible occurrences of this type

is 2 × I2 × P .

S+D: (AND ↑ OR ↓) Since the fault effect of an S type fault (extra device in the

AND plane) always reaches the OR planes and relies on the redundancy in the

OR planes to mask, a second fault in the OR plane might result in fault masking

failure. For instance, when the first S type fault occurs in plane 1 or 2, the

occurrence of a D type fault at the same product line in plane 6 or 8 will make

the fault effect unmaskable. Essentially, the D type fault (missing device in the

OR plane) prevents the redundant correct copy of the product term signal from

reaching the final result, thus enabling the faulty signal to penetrate through and

affect the output values. The number of such unmaskable combinations of an S

type fault and a D type fault is 4 × I × P .

D+D: (OR ↓↓) In a manner analogous to the AND ↓↓ case, a D type fault occur-

ring in an OR plane escapes the fault masking approach only if there is a second

fault of the same type occurring in the same location of the corresponding re-

dundant plane (5 with 6, and 7 with 8). The number of possible occurrences of
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this type is 2 × P × O.

A+A: (OR ↑↑) In a manner analogous to the AND ↑↑ case, the double occur-

rence of A type faults cannot be masked if they occur at the two redundant copies

of the same output signal. The number of possible occurrences of this case is

2 × P 2 × O.

An overall rate of the unmaskable double fault occurrence can be calculated by

summing up the above cases and dividing it by the total number of possible double

fault occurrences. For a non-trivial PLA with I, P, O larger than 2, the percentage of

unmaskable double fault occurrence is less than 1%. For larger PLAs, the percentage is

far below 1%.

3.3.3 Hardware overhead analysis

The hardware overhead for a fault masking PLA scheme needs to be analysed

from both the device and the wiring aspects. We will discuss this issue based on the

previous assumption that the nanoelectronic PLA implements a logic function with I

input wires, O function outputs and P product terms. Furthermore, we assume also

that the number of devices utilized in the original PLA is DA in the AND plane, and

DO in the OR plane. Figure 3.3 illustrates the overall schematics for the proposed

tautology based fault masking scheme, and in comparison, the TMR based fault masking

implemented in a nano PLA.

In figure 3.3(a), the original 2-level PLA is shown with one P × I AND plane

and one P × O OR plane. Figure 3.3(b) illustrates the architecture of the proposed

fault masking scheme, in a 3-level PLA implementation. The architecture consists of

a 2P × 2I AND plane and a 2P × 2O OR plane. An extra logic level of an AND

plane is added with every logic output wire ANDed with its duplicate, thus using two

extra devices for each logic output wire. Therefore, the extra level of AND logic uses

an additional 2O number of devices and O wires. Overall, the tautology based scheme

utilizes 4DA + 4DO + 2O devices with 2I + 2P + 3O wires.
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Figure 3.3(c) illustrates a TMR fault masking approach in a PLA implementa-

tion. In a TMR approach, both the AND plane and the OR plane need three identical

copies, thus requiring 3DA + 3DO devices. In terms of wires, a tripling in the number

of product term wires and output wires is necessary; however, one copy of the input

wires can be extended to cross the three AND planes placed in a column. For a TMR

approach, a majority voting process is required for every final output wire. This in turn

imposes two extra logic levels in a PLA structure, due to the majority voting function of

the three output copies. This extra voting stage therefore necessitates an additional 9O

devices, and 7O wires.

Table 3.3 lists the hardware comparison of the proposed and the TMR based

fault masking schemes. From the hardware aspect, although the proposed tautology

based fault masking scheme utilizes one more copy of the AND plane and the OR plane,

the TMR approach necessitates significant extra overhead at the voter implementation.

Furthermore, the proposed schemes display a highly regular structure, as can be seen in

figure 3.3, thus making them compatible with an efficient nano PLA implementation.

On the other hand, the TMR approach has a voting structure that necessitates fan-in

from three independent modules. Implementing such a function with the highly regular

structure of nano PLAs results in a large amount of area overhead for wiring.

The fault masking capability of a TMR implementation is limited to the three

copies of AND and OR planes only, and does not naturally cover the voting hardware.

The proposed scheme is capable of masking any of the 4 fault types occurring at any

position in the whole architecture, since the redundancy is built in under the tautology

form, and the fault masking capability covers each individual plane. Performance-wise,

the proposed scheme evidently surpasses the TMR approach due to the implementation

with one less logic level.

Overall, it can be concluded that fault masking in a nanoelectronic PLA can

be efficiently achieved by exploiting redundancy in a tautology form. The traditional

representative fault masking scheme of NMR does not necessarily make a good solution

for fault tolerance in nano PLA, due to its voting overhead as well as being incompatible
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Figure 3.3: Comparison of fault masking schemes

with the regular structure of PLA based logic.

3.4 Online Repair for nano PLAs

Online reconfigurability is naturally supported in nano crossbar structures, since

the two terminal molecular devices are dynamically configurable into the “on” and “off”

states. Therefore, transient faults that have accidentally switched a device between its

Table 3.3: Hardware overhead summary
fault masking hardware overhead logic

scheme device wire levels
Original DA + DO I + P + O 2

Tautology based 4DA + 4DO + 2O 2I + 2P + 3O 3
TMR based 3DA + 3DO + 9O I + 3P + 7O 4
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“on” and “off” states can be fixed through re-applying the corresponding voltage and

resetting it to the correct configuration. For permanent faults, based on the regular

structure of nano PLAs, spare rows and columns can be used to perform the repair,

which is similar to the traditional built-in self-repair in systems of high regularities such

as memories and FPGAs [23, 44, 48] Essentially, reconfiguration based online repair

schemes are promising for nano PLA reliability enhancement.

An online repair scheme consists of three phases: 1) fault detection, 2) fault di-

agnosis, and 3) reconfiguration based repair. Efficient online fault detection approaches

for PLA logic have existed for CMOS based systems. Since the reconfiguration phase

relies on precise information regarding the faulty devices so as to perform online re-

pair, the key challenge remains in the online diagnosis phase, which is responsible for

identifying the faulty devices. Diagnostic resolution of faulty components is crucial to

the performance and hardware overhead during the reconfiguration stage, since it deter-

mines the spare units necessary during reconfiguration, as well as the amount of repair

that needs to be performed. A coarse grain diagnostic resolution leads to replacing a

large number of fault-free components with spares, while a fine grain diagnostic reso-

lution with precisely identified faulty components results in efficient utilization of spare

hardware. Consequently, we focus on the particular challenge of online diagnosis and

how to overcome such a challenge by exploiting the regularity of nano PLAs.

3.4.1 Online diagnosis exploiting nano PLA’s regularity

Basically, online diagnosis can be described as the problem of identifying the

type(s) and location(s) of the fault(s) given the fact that a fault or multiple faults have

been detected. Since it is hard to probe the status of each crosspoint online, one has to

infer information from the logic relationship between the functional input and the faulty

output to perform diagnosis.

In a typical offline diagnosis, test vectors can be applied to the inputs while the

outputs can be compared with the expected ones stored in a diagnosis dictionary. In
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an online diagnosis process, the vectors which stimulate the fault manifestations are the

run time functional inputs, and thus not controllable. Storing all the expected outputs for

every possible input is prohibitively expensive. Therefore, although plenty of research

approaches exist for offline diagnosis, online diagnosis remains a new challenge.

To eliminate the ambiguity in an online diagnosis process, additional observation

points need to be inserted between the AND plane and the OR plane, so as to differen-

tiate the AND plane faults from the OR plane ones. In the two-level PLA structure,

the additional observation points basically make the signals in the product term wires

observable. Overall, counting in the new observation points, the information accessible

in a nano PLA for online diagnosis includes:

• Input Vector (IV): the inputs to the PLA AND plane.

• Product Term Vector (PTV): the outputs of the AND plane; at the same time

the inputs to the OR plane.

• Output Vector (OV): the outputs of the PLA OR plane.

To overcome the online diagnosis challenge, we need to exploit the highly reg-

ular structure of a PLA. Based on the two-level logic function and the regularity of a

PLA, the following information can be utilized to infer the fault type and location:

• the logic relationship among the observable information online, i.e., the three

vectors: IV, PTV and OV;

• information obtained from the fault detection phase;

Figure 3.4 shows the information available in an online diagnosis environment

for nano PLAs. For AND plane faults (G and S), IV serves as the input and PTV serves

as the output; for OR plane faults (D and A), IV serves as the input and PTV serves as

the output.

Since each fault in a PLA changes the output in a unidirectional manner, the

location candidates can be inferred, upon fault detection, based on the plane input /
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output for each fault type. For example, a D type fault (missing device in the OR plane)

can result in a single bit flip from 1 to 0 in the Output Vector (OV). This is essentially

because the missing device fails to pull up the output line, when the product term wire

carries a value 1.

Due to such a unidirectional change from 1 to 0 caused by a D type fault, the zero

bits in OV provide the column candidate set of the fault occurrence. The row candidate

set on the other hand, needs to be obtained from PTV, which is the input of the OR plane.

Since a D type fault occurs in the OR plane, we only need to focus on the bits with value

1 in PTV, because the product term wires with value 0 would never have stimulated a

D type fault. According to the above information from the I/O vectors of the OR plane,
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the candidate rows and columns of a D type fault can be identified.

A similar analysis can be performed on all the four fault types of the two planes.

From the input side of a plane, the controlling values determine the candidate set. This

can be easily understood from the perspective of digital testing, where a fault in an

AND (OR) gate can only be stimulated when its associated input is set to the controlling

value (0 for an AND gate, 1 for an OR gate) and all the other inputs are set to the non-

controlling value (1 for an AND gate, 0 for an OR gate). From the output side of a plane,

the candidate set is determined by the direction of the fault effect, regardless of whether

the plane is AND or OR. Specifically, for a fault that flips the output from 0 to 1 (G and

A types), the “1” positions in the output side of the plane constitute the candidate set;

on the other hand, for a fault that flips the output from 1 to 0 (S and D types), the “0”

positions in the output side of the plane form the candidate set.

Table 3.4 lists the necessary conditions, from the input and output perspective

of a plane, for the manifestation of each type of fault at a specific location. These two

conditions are marked as C1 and C2:

C1: for the G, S types of faults occurring at location [i][p] in the AND plane, the IV

must have a zero at the i’th bit, at the input to the AND plane, to stimulate the

fault; similarly, for the D, A types of faults at location [p][o] in the OR plane, the

PTV [p] bit as an input to the OR plane must be 1 to stimulate the fault.

C2: the S, D faults unidirectionally flip the outputs from 1 to 0, forcing the corre-

sponding bit at the output of the plane to be 0; similarly, for the G, A faults,

which flip the outputs unidirectionally from 0 to 1, the corresponding bit at the

output of the plane must be 1.

The necessary conditions in table 3.4 identify a set of candidate locations for a

detected fault based on the input and output values of a plane. To further pinpoint the

exact location of a fault, one needs to refer to a “dictionary”. Unlike a traditional offline

diagnosis dictionary that contains test vectors and expected outputs, the dictionary for

online diagnosis has to be small, yet containing all the information needed for precise
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Table 3.4: Online diagnosis conditions for the 4 fault models
fault fault occurring C1: input to fault C2: output of
type location plane the plane effect the plane

G [i][p] AND IV [i] = 0 0 → 1 PTV [p] = 1
S [i][p] AND IV [i] = 0 1 → 0 PTV [p] = 0
D [p][o] OR PTV [p] = 1 1 → 0 OV [o] = 0
A [p][o] OR PTV [p] = 1 0 → 1 OV [o] = 1

diagnosis resolution, nonetheless. Due to the regularity in the PLA structure, the correct

configuration of the PLA planes suffices to serve for the purposes of a diagnosis dic-

tionary. The hardware overhead of such a dictionary is comparable to the original PLA

size, since the configuration of each crosspoint is stored using one bit.

3.5 Nano PLA with fault masking and diagnosis capa-

bilities

Generally speaking, a fault masking approach can tolerate a certain level of fault

occurrences by masking the faulty result from affecting the output. Such a fault masking

capability, determined by the amount of redundancy devoted for reliability purposes, has

certain limitations. For instance, TMR is capable of masking any single fault occurrence.

When two out of the three identical computations are faulty, the correct result cannot be

identified. Furthermore, when the two faulty results conform, a faulty output is taken

instead as the correct output according to the majority vote.

Consequently, a system guarded by a fault masking approach is not inherently

fault secure. The fault-secureness property of a system guarantees that, once a fault

occurs, it can always be identified. Therefore, a faulty output never escapes detection

and is never regarded as the correct output [51].

The lack of the fault-secureness property in fault masking approaches has not

been addressed previously, since fault occurrence is very low and unlikely to exceed

the fault masking threshold. When the fault rate is high, multiple faults beyond the
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threshold of the fault masking approach might occur at the same time. Consequently,

the fault-secureness property needs to be ensured besides the fault masking capability.

For nano PLAs, when multiple faults occur and escape the fault masking scheme, it

is important to: 1) distinguish such a case from a fault-free scenario, 2) identify the

types and locations of the faults, and 3) reconfigure the faulty devices to guarantee the

correctness of the output, and the reliability of the system. In other words, an integrated

fault tolerance scheme combining online repair and fault masking approaches is needed

to enhance the reliability of nano PLAs.

The key challenge in adding online repair capability to the fault masking scheme

is the extra hardware requirement. Such an approach will not be affordable if the hard-

ware requirement is costly on top of the redundancy necessitated by the fault masking

approach. Whether the overall fault tolerance works essentially hinges on the explo-

ration of an efficient approach that enables the existing redundancy in the fault masking

scheme to be exploited for further diagnosis purposes.

The proposed fault masking scheme utilizes redundant copies of the AND and

OR planes to implement a Boolean tautology. In fact, the redundancy existing within the

tautology based scheme can be exploited to eliminate the necessity for a dictionary in

online diagnosis. In other words, precise online diagnosis resolution can be achieved by

exploiting the redundant planes in the fault masking scheme, thus eliminating the neces-

sity to store the correct configuration using extra memory elements. In this section, we

put the online diagnosis approach into the fault tolerance framework in conjunction with

the proposed fault masking scheme, and examine how the overall fault tolerance strategy

can work together for nano PLAs. We show that such an online repair based strategy can

be implemented with insignificant extra hardware on top of the fault masking scheme.

3.5.1 Exploiting existing redundancy in fault masking

The idea of implementing an efficient fault tolerance approach is to get double

mileage out of the redundancy inherent in the fault masking scheme for diagnosis pur-
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poses, instead of spending extra hardware on the configuration dictionary. To carry out

such a scheme, we need to carefully examine which part of the redundancy in the fault

masking scheme is furthermore exploitable, and how much the redundancy contributes

to the diagnosis resolution. More importantly, we need to answer the question of how

fault diagnosis can be superimposed on top of a fault masking scheme, since the under-

lying mechanisms for these two fault tolerance schemes are different: the former needs

to be built upon the manifestation of a fault, in order to identify the fault location, while

the latter focuses on making the fault effect invisible.

Specifically, for an integrated fault tolerance scheme combining fault masking

and online repair, there are two considerations:

• Diagnosis of a fault when it is masked successfully by the fault masking ap-

proach.

When masked successfully, the fault effect does not manifest at the output; thus

the final function result remains correct. In such a case, if the fault location

can be identified, then online repair can be performed ahead of time without

performance loss.

• Diagnosis of faults when the fault masking approach fails.

When the faults manifest and result in an erroneous output, the fault-secureness

attribute of the system needs to be examined carefully. Basically, the faulty

result needs to be identified, so as not to be taken as a correct one. In such a

case, it is crucial to identify the locations of the faults, since online repair has to

be performed to recover the fault masking capability of the system.

Figure 3.5 illustrates the observable points needed for diagnosis purposes in the

nano PLA with the proposed fault masking approach. As in the previous example, the

four copies of the AND plane are labeled 1 to 4, while the four copies of the OR plane

are labeled 5 to 8. Particularly, for the two PTV vectors and two OV vectors, we label

them correspondingly as follows: PTV-12 consists of product term wires crossing planes
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Figure 3.5: Observable points for diagnosis purposes in the fault masking framework

1 and 2, PTV-34 consists of product term wires crossing planes 3 and 4; OV-56 consists

of output wires covering planes 5 and 6, and OV-78 consists of output wires covering

planes 7 and 8.

From the fault masking approach, it can be easily seen that the two IV vectors

are copies of the same input signals. Under the fault-free situation, PTV-12 and PTV-

34 represent the same PTV vector, while OV-56 and OV-78 represent the same output

vector. Such existing redundancy in the fault masking approach can be exploited for

online diagnosis. Specifically, by comparing the PTV pair, the precise row of an AND

plane fault location can be identified. By comparing the OV pair, we can obtain the

precise column of an OR plane fault location. Overall, the existent redundancy in the

fault masking scheme is used to enhance diagnostic resolution, thus eliminating the

necessity for a dictionary which stores all the correct configuration information.

Apparently, the comparison of the observation point vectors yields the possibility

to detect faults and pinpoint fault locations. Specifically, we want to examine whether

the following requirements can be achieved by relying solely on the information from

the comparisons:

• fault-secureness of the system, i.e., detecting the situation when fault masking

fails;
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• full diagnosis resolution under the two situations: 1) fault successfully masked,

and 2) unmaskable faults.

Table 3.5: Results of vector comparison for successfully masked faults
fault type fault effect example PTV: 12=34? OV: 56=78?

AND ↓ G PTV12=bab; = =
PTV34=abab

AND ↑ S PTV12=ababc; 6= =
PTV34=abab

OR ↓ D OV56=ab + cd + ab; = =
OV78=ab + cd + ab + cd

OR ↑ A OV56=ab + cd + ab + cd + e; = 6=
OV78=ab + cd + ab + cd

Table 3.5 lists the results of PTV pair comparison and OV pair comparison for

single fault occurrences that can be successfully masked. Since the effect of a success-

fully masked G type fault never reaches the PTV, both the PTV comparison and the OV

comparison conform, as is displayed in the first row of table 3.5. On the other hand,

although successfully masked in the final output, the fault effect of an S type fault man-

ifests in one of the PTVs. Consequently, PTV12 and PTV34 do not conform, as it can

be observed in the second row of table 3.5.

Table 3.6: Results of vector comparison for faults that escape from being masked
fault type fault effect example PTV: OV:

12=34? 56=78?
AND ↓↓ G+G PTV12=b; PTV34=ab 6= =
AND ↑↑ S+S PTV12=abc; PTV34=abd 6= =

PTV12=abc; PTV34=abc = =
AND ↑ OR ↓ S+D PTV12=abe; PTV34=ab; 6= 6=

OV56=abe + cd; OV78=cd
OR ↓↓ D+D OV56=cd; OV78=ab + cd = 6=
OR ↑↑ A+A OV56=ab + cd + e; = 6=

OV78=ab + cd + f
OV56=ab + cd + e; = =
OV78=ab + cd + e

Table 3.6 lists the results of vector comparisons for the unmaskable double-fault
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occurrences, which are discussed in the fault masking section. For instance, for a double

fault occurrence, both of G type, the scheme fails to mask the fault effect only when two

G type faults occur at the same location of both planes 1 and 2 (or 3 and 4). In such a

case, the fault effect manifests in PTV-12 (or PTV-34) and cannot be masked in the OR

planes either. As a result, PTV-12 and PTV-34 do not conform, yet the output vectors

OV-56 and OV-78 conform on an identical erroneous result.

In combination, tables 3.5 and 3.6 illustrate the information provided by the

comparison results under the maskable and unmaskable fault occurrences. According to

table 3.5, the comparisons of the PTV and the OV pairs can detect S and A type of faults,

even when the fault effect is successfully masked. For maskable G and D type of faults,

the comparisons in the PTV and the OV do not identify fault occurrences. According to

table 3.6, the comparisons of the PTV and the OV pairs can detect 5 out of 6 cases when

the fault masking scheme fails. Under the rare cases of fault masking failure under S and

A types, when extra devices appear at exactly the same locations of the two redundant

planes, both comparisons yield conforming results.

Another observation from tables 3.5 and 3.6 is the existence of aliasing when the

comparison results are used as signatures for the various types of fault occurrences. For

instance, the maskable S type fault (the second row in table 3.5) and the unmaskable

G type fault (the first row in table 3.6) have the same signature of comparison results:

(PTV-12 6= PTV-34, OV-56 = OV-78). Due to such ambiguity, two cases cannot be

distinguished: 1) a successfully masked S type fault with the correct final result, and 2)

unmaskable double faults of G type with the incorrect final result.

In summary, to answer the questions raised earlier in this subsection, the com-

parisons of the PTV pair and OV pair provide partial resolution, yet they fall short of

providing complete information to satisfy the requirements:

• The information provided by the comparison of observable point vectors can

help partially the detection of faults. For maskable faults, S and A types of faults

can be detected, while G and D types cannot. For unmaskable faults, all the fault
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types can be detected except for a subgroup of S type and A type of faults.

• The four distinct results of PTV and OV comparisons cannot fully distinguish the

12 faulty scenarios shown in tables 3.5 and 3.6 and a fault free case. Therefore,

full diagnostic resolution is not achieved due to such ambiguity.

3.5.2 Achieving a fault secure system with full diagnosis resolution

As is discussed in the previous subsection, depending solely on internal redun-

dancy does not make a system fault secure. Neither does it provide full diagnostic

resolution. Consequently, to make the nano PLA system fault secure under the unmask-

able faults, extra redundancy needs to be introduced. Basically, an extra fault detection

process is necessary for checking the final output from the PLA. A standard approach

with insignificant hardware overhead is the use of Berger code for the number of 1’s in

the output [1]. By doing so, any successfully masked fault will not trigger detection,

while an erroneous final result caused by unmaskable faults will be detected due to the

flipped bits in the output.

Since the effect of unmaskable faults changes the output unidirectionally, the

number of 1’s in the final output does not conform with the encoded number. Conse-

quently, the faults are caught by the Berger code based approach. For the faults that are

successfully masked, the number of 1’s in the final output remains correct. For these

cases, the Berger code based detection indicates an error-free output. By introducing

the Berger code based detection approach, faults that are successfully masked can be

differentiated from the ones that escape the masking approach.

With Berger code, information of whether the number of 1’s in the output in-

creases or decreases is available. This extra information essentially opens up the oppor-

tunity to achieve full diagnosis resolution, which could not be achieved by relying on

the internal redundancy alone, due to the ambiguity.

Table 3.7 illustrates the diagnosis signature with Berger code detection infor-

mation for both the maskable and unmaskable faults. The column of “Berger code”
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Table 3.7: Results of vector comparison and Berger code indication for faults that escape

from being masked
fault type fault effect example PTV: OV: Berger

12=34? 56=78? Code
AND ↓ G PTV12=bab; PTV34=abab = =

√

AND ↑ S PTV12=ababc; PTV34=abab 6= =
√

OR ↓ D OV56=ab + cd + ab; = =
√

OV78=ab + cd + ab + cd
OR ↑ A OV56=ab + cd + ab + cd + e; = 6= √

OV78=ab + cd + ab + cd

AND ↓↓ G+G PTV12=b; PTV34=ab 6= = +
AND ↑↑ S+S PTV12=abc; PTV34=abd 6= = -

PTV12=abc; PTV34=abc = = -
AND ↑ OR ↓ S+D PTV12=abe; PTV34=ab; 6= 6= -

OV56=abe + cd; OV78=cd
OR ↓↓ D OV56=cd; OV78=ab + cd = 6= -
OR ↑↑ A OV56=ab + cd + e; = 6= +

OV78=ab + cd + f
OV56=ab + cd + e; = = +
OV78=ab + cd + e

indicates whether the number of 1’s in the output has been increased (+), decreased (-),

or is correct (
√

).

As is shown in table 3.7, with the additional information from the Berger code

detection approach, the diagnosis signature for each type of fault occurrence consists of

a three tuple (PTV-12/PTV-34, OV-56/OV-78, Berger code indicator), The Berger code

indicator alone is sufficient to distinguish the maskable faults from the unmaskable one.

Among the maskable faults, G and D fault types cannot be distinguished from

a fault-free scenario, due to the identical signature. For the unmaskable faults however,

each has a unique diagnosis signature that is different from all the maskable fault types.

Therefore, every unmaskable fault type can be successfully identified without ambiguity.

Consequently, with the extra information from the Berger code based detection,

both of the following requirements are satisfied:

• Unmaskable faults can be detected, thus making the system fault secure.
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• Full diagnosis resolution is achieved for the unmaskable fault types.

3.5.3 Diagnosis resolution on fault location

The previous subsection provides a solution to distinguish various fault occur-

rence types from each other. In this subsection, we give an analysis on the diagnosis

resolution for the detailed location within each plan.

Basically, the input and output vectors of a plane provide a set of candidate

positions for a fault occurrence. The comparison between the redundant vector pairs

pinpoints the precise location on one dimension of the candidate positions: for the AND

plane, the comparison between PTV-34 and PTV-12 pinpoints the precise row of the

fault location according to the location of the nonconforming bit; for the OR plane,

the disagreeing bit between OV-56 and OV-78 identifies the precise column of the fault

location.

We provide a discussion using the AND plane as an example, without loss of

generality. For the AND plane faults, the candidate columns have to be obtained through

the controlling values in the input vector. Specifically, different fault types render dif-

ferent information in handling the candidate columns:

• A device missing fault of the AND plane changes the output bits from 0 to 1,

indicating that none of the controlling values (0) from the input is transferred to

the output. Consequently, the candidate column set consisting of all the 0 input

bits delivers the following information:

1. under the device missing fault, all the devices at the positions indicated by

the 0 input bits are “off”;

2. under the fault-free condition, one or more of these devices should be “on”.

Based upon such information, the repair process needs to access the correct the

configurations of the candidate positions. Since the faulty plane(s) among the

four copies are identified, a comparison between the faulty ones and the correct
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ones can be performed to send the reconfiguration signals to the faulty position,

according to the correct configurations.

• For the extra device fault of the AND plane, the output changes from 1 to 0,

indicating that one (or more) of the controlling values (0) from the input is er-

roneously transferred to the output. Consequently, the candidate column set

consisting of all the 0 input bits delivers the following information:

1. under the fault-free condition, all the devices at the positions indicated by

the 0 input bits should be “off”;

2. under the extra device fault, one (or more) of the devices in the candidate

set is erroneously set to “on”.

Based upon such information, the correct configuration of the candidate set is

already available. Consequently, the repair process can simply send a reconfig-

uration signal to all the candidate positions, switching all these devices to the

correct state of “off”.

3.6 Conclusions

Aggressive fault tolerance approaches are necessitated to overcome the severe

unreliability challenge in nano PLAs. Fault masking and online repair based approaches

exhibit complementary advantages when dealing with the unreliability challenge. The

two-tier approach presented in this chapter addresses the fault tolerance issue in nano

PLAs by integrating fault masking and online repair schemes efficiently.

We develop a fault masking scheme particularly suitable for the nano PLAs

based on logic tautologies. Such an approach eliminates the necessity for the voting

process in a generic NMR based fault masking approach, which turns out to be highly

costly in the nano PLA’s regular structure. Since fault masking based schemes are in-

trinsically limited to a certain threshold of fault occurrences, we propose to apply online
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repair based approaches to enhance the reliability of nano PLAs, when the fault masking

approach fails under multiple faults. We identify the crucial challenge of fault diagnosis

in an online repair based approach, and propose a solution by exploiting 1) the reg-

ular structure of PLA, and 2) the existent redundancy employed in the fault masking

approach, to overcome the online diagnosis challenge for nano PLAs. Furthermore,

we focus on the fault secure property of the system under the integrated fault tolerance

approach, so that the unmaskable faults can be identified and diagnosed for repair.

Overall, the power of the fault tolerance schemes developed in this chapter

comes from exploiting: 1) the highly regular structure of nano PLAs, 2) the reconfigu-

ration capability of nano crossbars with molecular devices, and 3) the characteristics of

two-level logic functions in a PLA architecture. Most importantly, although redundancy

is required in implementing any fault tolerance approaches, the hardware redundancy

in these two tiers of fault tolerance approaches are overlapped. The exploitation of ex-

istent hardware redundancy makes the overall approach highly efficient yet capable of

delivering high fault tolerance capabilities.



Chapter 4

Reliable Parallel Adders in Nano

Future nanoelectronics based systems will enjoy significant increases in device

density and performance. Consequently, high performance arithmetic component de-

sign that utilizes hardware to maximize parallelism can be foreseen to dominate future

nanoelectronic systems. Observing that hardware redundancy is typically employed to

achieve high performance in arithmetic component designs, we propose to exploit this

inherent redundancy for fault tolerance purposes as well. Thereby, the reliability chal-

lenge can be overcome frugally by exploiting the existing redundancy for performance

purposes.

In this chapter, we examine the reliability of adders, which are not only the

most fundamental component, but also the basic building blocks for arithmetic systems.

Particularly, we focus on high performance parallel adders, which are promising for na-

noelectronic systems. The high performance adders typically employ extra hardware

to calculate carry bits in parallel, so as to eliminate the long delay caused by the serial

carry propagation. Such redundancy embedded for performance consideration opens up

the possibility of its exploitation for fault tolerance approaches as well, including fault

detection, fault masking and reconfiguration based online repair. We first propose the

general principle of exploiting redundancy for the dual purposes of performance and

reliability in nanoelectronic systems, and then provide the detailed techniques devel-

51
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oped for parallel adders. In the end, we provide a comprehensive analysis to assess the

proposed technique.

By exploiting the existing redundancy in the high performance arithmetic com-

ponents, various fault tolerance approaches can be supported very efficiently. The inter-

nal redundancy provides direct support for online fault detection, and can be extended

to support fault masking as well. Furthermore, since the internal redundancy is embed-

ded with the particular regular structure of parallel adders, online diagnosis schemes

can be developed. With the support of high resolution online diagnosis, the reconfig-

urability of nanoelectronics can be fully exploited for the highly flexible online repair

approaches. In contrast to traditional fault tolerance techniques that involve tremendous

overhead, the proposed approach opens up a new way of supporting a genre of efficient

fault tolerance techniques, particularly targeting at high performance components under

the nanoelectronic environment.

4.1 Motivation

Traditionally, the main design optimization tradeoff in electronic system con-

struction has always been between hardware cost and performance. There typically

exist multiple tradeoff points in a design optimization space, and the ones with high

performance always come at the cost of extra hardware resources. Essentially, the basic

principle in achieving a high performance component is through the use of hardware

redundancy. These additional hardware resources are used either to construct parallel

computation, provide pre-computation, or even perform predictions. The ultimate goal

is to shorten the critical path.

The design of adders, the basic arithmetic component, is a classical example

of using hardware redundancy to achieve better performance. Serial adders such as

the carry ripple adder cost the least amount of hardware, yet their performance suffers

from the long delay of carry propagation. A carry select adder utilizes two identical

copies of hardware to pre-calculate the higher bits of result, under both cases of one
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and zero as carry-in. This redundancy in hardware breaks the long carry propagation

path and improves performance. Parallel adders, such as the carry lookahead adder, set

aside extra hardware to compute carry signals for higher bits in parallel, thus once again

avoiding the long carry propagation process through hardware redundancy. In fact, such

a principle exists in general for components of various functions and across multiple

design hierarchical levels as well. The design of tree multipliers, array multipliers and

the use of a branch predictor in a CPU all reflect the same principle of using hardware

redundancy for performance.

The fundamental changes at the device level necessitate reconsideration of sys-

tem design and construction. With the abundant hardware and high device density of-

fered in the nanoelectronic environment, the main concern of hardware and area cost

is alleviated. It can be foreseen that the principle of applying hardware redundancy to

achieve high performance will be widely applied for the design of nanoelectronic sys-

tems. Despite the hardware cost, high performance arithmetic components will become

significantly advantageous over their slow peers at the other end of the design optimiza-

tion tradeoff space.

Typically, redundant components in a system mean resources that are unnec-

essarily spent and can be pruned for cost-efficiency purposes. One needs to examine

carefully the precise meaning of hardware redundancy employed in high performance

arithmetic components, specifically from two different perspectives:

• Performance wise: the extra hardware is definitely necessitated.

• Computation wise: redundancy exists due to the extra hardware introduced.

Therefore, certain computation performed in the system is repeated, or not uti-

lized.

In the example of a high performance adder, extra hardware is employed to generate

carry bits in parallel. These extra hardware resources are necessitated to pre-compute

carry signals for most significant bits. However, to view it from the computational per-

spective, redundancy is embedded in that certain computation is repeated, or unused.
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For instance, in a carry lookahead adder, since carry signals at position i and i − 1 are

computed independently in parallel, the computation at position i employs a redundant

copy of the computation performed at position i − 1, so that the carry at position i does

not need to wait for the serial propagation from position i− 1. In the example of a carry

select adder, one of the two predictive computations for the high bits carry signals is

deemed never used. In summary, the hardware redundancy in a high performance arith-

metic component exists in the sense of computational redundancy, yet is necessitated

for good reasons - to ensure parallelism and performance.

To overcome the reliability challenge in nanoelectronic systems, aggressive fault

tolerance approaches need to be employed. It is well known that any fault tolerance

technique relies on certain forms of computational redundancy to guarantee correctness.

In general, duplication of hardware and recomputation are used to form the computa-

tional redundancy necessitated for fault tolerance. It has been shown that, under the

high fault rates of nanoelectronic environment, tremendous redundancy is required [62].

Since redundancy required for fault tolerance purposes is from the computational per-

spective, the hardware redundancy in high performance arithmetic components fulfills

such a requirement. Consequently, the extant hardware redundancy can be exploited for

reliability purposes, and opens up the opportunity to achieve fault tolerance efficiently.

Specifically, to examine the possibility and capability of exploiting the existing

redundancy in high performance arithmetic components for reliability purposes, one

needs to answer a number of questions from the following perspectives.

• Arithmetic component applicability: Which components can this idea be ap-

plied to? How much will the nanoelectronic systems benefit from this approach

based on the applicable components? How does it work? How does functional-

ity and internal structure of the component influence the approach? Does it raise

interconnect issues for the nanoelectronic systems?

• Fault tolerance strategies: There exist various genres of fault tolerance ap-

proaches. For instance, fault masking, fault detection, diagnosis and reconfigu-
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ration based repair enhance reliability from multiple angles and at multiple lev-

els. If the existing redundancy for performance can be exploited for reliability

purposes, which fault tolerance approaches does it support, and how well does it

support them?

• Evaluation and analysis: A thorough analysis needs to be made to evaluate the

capability of the proposed approach. Specifically:

– What is the overhead in terms of hardware and performance required by

the approach, and how do they compare to the generally applicable classic

fault tolerance techniques?

– From the component perspective, what is the fault coverage? Can the en-

tire component be covered by exploiting the existing redundancy, or, does

additional redundancy need to be embedded to ensure coverage of certain

parts?

– From the fault tolerance perspective, what is the capability of the proposed

approach, in terms of fault detection, masking capability, diagnosis resolu-

tion, and repair overhead?

4.2 Hardware redundancy in high performance parallel

adders

The adders constitute the most fundamental arithmetic building block, and vari-

ous adder designs provide multiple tradeoff points between the optimization criteria of

area and delay. In the particular environment of nanoelectronics, the hardware abun-

dance and massive parallelism supported by nano devices diminishes the relative im-

portance of the area constraint. As a result, parallel adders prevail over serial adders by

their significant advantage of performance. Naturally, a high performance parallel adder
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serves as the starting point for us to examine the approach of exploiting redundancy for

both performance and reliability purposes, under the nanoelectronic environment.

Specifically, for adders, the critical path for performance is the carry propaga-

tion. In high performance parallel adders, the hardware redundancy is devoted to cal-

culate carry bits in advance. Carry propagation and calculation therefore is the crucial

point of how hardware redundancy is organized to enhance performance through paral-

lelism. We therefore focus on the extant hardware redundancy for carry generation in

parallel adders, to exploit possible resources for fault tolerance purposes.

We examine first the class of Carry Lookahead Adders (CLA), which constitutes

a commonly used implementation of parallel adders. We then extend the discussion to

more general parallel adders - parallel prefix adders (PPA). We focus on three represen-

tative implementations: Kogge-Stone PPA, Brent-Kung PPA, and a hybrid implementa-

tion.

4.2.1 Redundant carry generation in CLA

Introduction of CLA

In order to avoid the delay of the rippling carries, a CLA computes block-level

generate (g) and propagate (p) signals so as to calculating carry-out bits in parallel [63].

Since the prediction hardware of carries at the most significant bits becomes exceed-

ingly expensive when the width of a CLA is large, the CLA is typically constructed in

multiple hierarchy levels. A CLA consists of multiple basic building blocks called the

lookahead carry generators (LCG). Each LCG contains a g, p generation block and a

carry generation block. The multiple LCGs in a CLA are organized hierarchically and

are responsible for generating the carry signal for every bit.

Figure 4.1 shows a 64-bit hierarchical CLA composed of 3 levels. The g, p

signals are generated hierarchically by the LCGs: initially, at the lowest level, the g, p

signals of each bit are calculated; then, these one-bit g, p signals are used to generate

the 4-bit block g, p signals at the second level; similarly, the 16-bit block g, p signals are
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Figure 4.1: A 64-bit hierarchical CLA

generated using the 4-bit block g, p signals at the highest level.

The carry bits are also calculated in 3 stages. Initially, the highest level LCG

uses carry-in c[0] and the four 16-bit block g, p signals to generate the carry-in bits

c[16], c[32], and c[48], for the second level LCGs. Then these carry-in bits and c[0]

are used by the second level LCGs to further generate the twelve carry-in bits for the

next level LCGs. At the third stage, the sixteen LCGs at the lowest level produce the

remaining forty eight carry-in signals, thus completing the carry generation for all the

bits.

Redundant carry generation in CLA

As is shown in Figure 4.2, a 4-bit LCG takes as inputs the carry-in of the least

significant bit and the g,p signals generated from the 4 lower-level LCG blocks. The

outputs of an LCG include the block g,p signals for the current level and 3 carry-in bits

for the lower-level LCG blocks.

In a hierarchical CLA, the carry-in to an LCG block is generated by the higher

level LCG for performance purposes. We can observe that the same carry-in signal

can also be generated through an alternative path at the same level. Consider the 4-
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Figure 4.2: A 4-bit Lookahead Carry Generator (LCG) circuit

bit LCG block shown in figure 4.3. The three carry generation blocks (C3, C2, and

C1) independently generate the carry-in bits (c3, c2, and c1) for the lower level LCGs

(numbered 4, 3 and 2) respectively. Alternatively, a redundant copy of the same carry-in

bits (indicated as c3′, c2′, and c1′), can be generated in the low level LCGs, based on the

signals c3, c2 and c1. Take c3′ for example; treating c2 as an available carry-in, c3′ can

be generated as the carry-out signal of LCG block 3, with the g, p block signal available

in LCG 3, based on the following equation:

c out = g + p · c in

C2

C1

Carry Signal
Component

Block

C3

c1’
C3 C2 C1

c0
c2c3 c1

block block block

c3’ c1’

blockblock
g,p

g,p

c_out’ 1234

4−bit LCG

4−bit LCGc2’

c3

c3’ c2

c2’ c1

Figure 4.3: Carry generation with internal redundancy
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Essentially, a hierarchical CLA enables fast generation of carry-in signals in

logarithmic time, since each carry-in signal is provided by the LCG block of a higher

level. This opens up the opportunity to generate a redundant copy for each carry signal,

by treating the carry-in signal of each LCG block as the carry-out of the adjacent LCG

block and calculating it through the alternative path in the lower level LCG block.

In a 64-bit CLA, the single highest level LCG generates c[16], c[32] and c[48].

Together with c[0], these signals serve as the carry-in signals for the four second level

LCGs. Alternatively, the redundant signals c[16]′, c[32]′ and c[48]′ can be generated

at the second level, using c[0], c[16], c[32] and the g, p block signals generated by the

second level LCGs. Specifically:

c[16]′ = g[0, 15] + p[0, 15] · c[0]

c[32]′ = g[16, 31] + p[16, 31] · c[16]

c[48]′ = g[32, 47] + p[32, 47] · c[32]

In general:

c[16i]′ = g[16i − 16, 16i − 1] + p[16i − 16, 16i − 1] · c[16i − 16], (i = [1, 3])

Similarly, the twelve carry-in signals generated by the four LCG blocks at the second

level can have their redundant copies generated at the third level:

c[4i]′ = g[4i−4, 4i−1]+p[4i−4, 4i−1] ·c[4i−4], (i = 4j+k, j = [0, 3], k = [1, 3])

At the lowest level, the redundant copies of the remaining 48 carry signals are generated:

c[i]′ = g[i] + p[i] · c[i − 1], (i = 4j + k, j = [0, 15], k = [1, 3])

Redundancy analysis for CLA

In the previous subsection we have described the mechanism of exploiting the

existing hardware redundancy in a CLA, and how to use it to generate redundant signals,

namely an extra copy of every carry bit. The conversion from hardware redundancy to
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redundant copies of the same signal is the key to enhancing reliability, since although

faults occur in the computational blocks, the correctness of the computation in an online

environment is all about the end results, i.e. signals. Comparing the two copies of the

same signal serves as the basis for online fault detection.

However, whether the scheme of redundant signal comparison can be effective in

dealing with the faults occurring in the computational hardware to a great extent relies

on the amount of overlapping hardware. One needs to examine the common compo-

nents involved in the computation of two copies of the same signal, since they are to be

compared for fault tolerance purposes. For example, if c2 and c2′ are generated using

the same carry generation block, say C2, then a fault in C2 might result in both erro-

neous c2 and c2′, thus providing a conforming comparison of faulty outputs. Figure 4.3

lists the hardware components involved in the generation of each signal, and it can be

observed that, for every pair of the same carry signal, the two copies are generated using

different carry blocks. For example, the two copies of the same carry signal, c2 and c2′,

are generated using C2 and C1 respectively.

From figure 4.3, we can also see that each block actually generates two signals,

one directly and one indirectly. For example, C1 generates c1 directly, and c2′ indirectly,

essentially because c2′ depends on c1 as an input. Although overlapping hardware is

utilized in generating c1 and c2′, this fault detection capability is not compromised,

since the same fault is not going to affect both copies of the same signal that are to be

compared. Furthermore overlapping of such a case can be exploited for online diagnosis

purposes. A detailed discussion on this is provided in the next section of the paper,

regarding the fault tolerance strategies supported by the redundancy.

To summarize, the exploitation of existing redundancy in a CLA for reliability

purposes is based on the following observations:

• The carry bits in an adder are correlated in that a higher bit carry signal depends

on the propagation of a carry signal from the lower bits.

• A CLA generates high bit carry signals with hardware redundancy, thus elim-
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inating the necessity to wait for carry propagation from lower bits in a serial

manner.

• Since a CLA does not rely on such propagation to generate carry bits, and instead

calculates carry bits independently within each LCG, the correlation between

adjacent carry signals becomes the exploitable redundancy existing in the CLA

structure, and can be used for reliability purposes.

In the previous subsection, we have illustrated how a redundant copy of each

carry signal can be generated, using the immediate adjacent carry signal (adjacent at

block scale at the higher hierarchical levels). In fact, this is not the only possible path

for generating a redundant copy for a carry signal. Based on the property of carry

unfolding, more redundant copies of a carry signal can be generated:

c[i] = g[i − 1] + c[i − 1] · p[i − 1]

= g[i − 1] + g[i − 2] · p[i − 1] + c[i − 2] · p[i − 2] · p[i − 1].

Obviously, generating the redundant copy from the immediately adjacent one

costs the least in terms of both delay, additional hardware and interconnection. The cost

increases gradually as the redundant copy of carry relies on the carry bits farther and

farther away. However, these multiple paths of generating redundant copies of a single

carry bit all utilize disjoint hardware components, thus extending the support to more

powerful fault tolerance strategies that necessitate more than two redundant copies.

4.2.2 Redundancy exploitation in Parallel Prefix Adders (PPA)

Introduction to PPA

Based on a number of block g, p signals (g[0, i− 1], p[0, i− 1]), the carry signal

of every bit c[i] can be calculated directly: c[i] = g[0, i−1]+p[0, i−1] ·c[0]. This forms

the basis of a genre of widely used parallel adders - Parallel Prefix Adders (PPA). For

an n-bit addition, a PPA focuses on calculating all the n pairs of (g[0, i], p[0, i]) signals,
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where i = [0, n − 1]. After all these g, p block signals are computed, the desired carry

signal and furthermore the sum signal for every bit can be evaluated in the end.

The generation of the g, p block signals falls into the framework of prefix com-

putation. Essentially, for two adjacent, or even overlapping blocks BL and BR, suppose

their associated g(generate) and p(propagate) signal pairs are defined as (gL, pL) and

(gR, pR), respectively; then the g, p signals for the merged block B = BLBR can be

obtained by:

g = gL + gR · pL

p = pL · pR

In other words, the generation of carry in the large block takes place if 1) the left block

generates a carry, or 2) the right block generates a carry and the left block propagates it.

The large block will propagate a carry if both the left block and the right block propagate

it.
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Figure 4.4: Functionality and internal structure of a prefix operator

A prefix operator can be defined for the generation of g, p pairs. Figure 4.4 illus-

trates the composition of g, p signals from two blocks BL and BR by a prefix operator

with its gate-level implementation.

In a PPA, a network is constructed to calculate all the pairs of (g[0, i], p[0, i]),

with each node consisting of a prefix operator. Figure 4.5 illustrates three parallel pre-

fix networks, each implementing a 16-bit PPA. The three examples represent various
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tradeoff points in terms of hardware, performance, and interconnect overhead in PPA

designs. For each of the PPAs shown in figure 4.5, the inputs are g, p signals from the

16 individual bits. Through the well-constructed prefix network, g, p signals of larger

blocks are constructed by applying prefix operators over consecutive smaller blocks. In

the end, all the pairs of (g[0, i], p[0, i]) are generated at the 16 output positions. Based

on these outputs, all the carry and sum signals can be directly calculated.

Kogge−Stone adder A hybrid Brent−Kung / Kogge−Stone adderBrent−Kung adder

Figure 4.5: Parallel prefix network examples

4.3 Redundancy in parallel prefix network

In a PPA, the problem of computing carry bits in parallel is converted to the

problem of generating the block g, p signals for every bit position. For every output bit

at position i, the signal pair (g[0, i], p[0, i]) is calculated through a tree of prefix operator

nodes covering all the inputs from bit 0 to bit i. Overall, for a 16 bit adder, the prefix

network consists of 16 trees, with possible sharing of intermediate results, to generate

the outputs in parallel.

In PPA, redundancy is embedded in the parallel computation of all the (g[0, i], p[0, i])

for performance reasons. Similar to the correlation among the carry bits in a CLA, the

outputs of the prefix network bear correlations among them in a PPA. Such correla-

tions are the manifestations of inherent redundancy, since in a PPA all the outputs are
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generated in parallel, independent of the correlations. Similar to the CLA case, such

correlations can be exploited for purposes of reliability.

For instance, between the two adjacent output positions i and i − 1, we have:

g[0, i] = g[i] + g[0, i − 1] · p[0, i − 1]

p[0, i] = p[i] · p[0, i − 1]

Note that g[i] and p[i] are simply bit level g, p signals, i.e., the input of the ith position

in the prefix network. In general, we can define the prefix operator as ◦ on signal pair

(g, p), so that

(g, p) = (gL, pL) ◦ (gR, pR)

. Therefore, the correlation between adjacent output position (g[0, i], p[0, i]) and (g[0, i−
1], p[0, i − 1]) can be represented as:

(g[0, i], p[0, i]) = (g[i], p[i]) ◦ (g[0, i − 1], p[0, i − 1])

Basically, by using the signals from an adjacent output position (i − 1), an al-

ternative path of generating (g[0, i], p[0, i]) can be formed in the prefix network. Thus,

only one extra prefix operator is needed to generate the same output at position i.

Furthermore, the correlation can be extended to output positions that are not

immediately adjacent:

(g[0, i], p[0, i]) = (g[i], p[i]) ◦ (g[i − 1], p[i − 1]) ◦ (g[0, i − 2], p[0, i − 2])

(g[0, i], p[0, i]) = (g[i], p[i])◦(g[i−1], p[i−1])◦(g[i−2], p[i−2])◦(g[0, i−3], p[0, i−3])

In summary, similarly to the CLA case, the same principle of exploiting inherent

hardware redundancy for reliability purposes can be applied to PPAs:

• Through the exploitation of the prefix correlation, for every output position, a re-

dundant copy of the same signal can be generated from the immediately adjacent

output position by adding an additional prefix operator.
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• Multiple redundant copies of a signal can be generated by extending the prefix

correlation to farther apart output positions. However, when the redundant copy

is built based on a farther away output position, the costs in terms of delay,

hardware and interconnect increase.

In CLA, the correlation between carry signals is exploited. In PPAs, the prefix

correlation between g, p pairs is exploited instead. Conceptually, the proposed approach

exploits the same kind of correlations in parallel adders, since a PPA basically transfers

the carry correlation to the one between g, p blocks. However, there are two main

differences between the case of PPA and CLA, caused by their distinct internal structures

used in generating the parallel signals.

• The amounts of hardware overlapping between the redundant signals are differ-

ent for the two cases.

In CLA, the three carry generation blocks in each LCG block are completely dis-

joint and independent. Therefore, a fault from a carry generation block will not

be propagated into the redundant signals which are to be compared. In PPA, al-

though all the output g, p signals are generated in parallel, there exists an amount

of component sharing among the output positions. Note that in each of the PPA

networks, a number of intermediate block signals are used to calculate multiple

output positions, and this can be easily observed from the fanout number of the

nodes in the prefix network. In this case, intuitively, a fault of a prefix operator

node might propagate to affect both of the two copies of the same output signal,

thus preventing the erroneous output signals from being detected.

In fact, through a careful analysis based on the superposition of fanout paths,

one can find out that such overlapping of hardware components in the redundant

signal generation paths do not impact the fault tolerance capability. We will

provide a discussion in the following sections addressing this issue.

• The redundancy coverage of the adder varies in these two cases.
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For CLA, the redundancy exists in the carry generation process solely, while

the g, p generation in the LCG blocks is accomplished by a single tree of prefix

operation without any redundancy. Due to the existing redundancy, the reliability

of carry signal generation can be efficiently enhanced. However, the redundant

copies of the carry signals do not help in detecting or tolerating faults occurring

in the g, p generation process in a CLA. Additional redundancy needs to be

introduced to cover the g, p part. In the last section, we provide an approach

using time redundancy to deal with the g, p generation part, such that the entire

CLA structure can be fully covered for fault tolerance purposes.

In PPA, since the dominant part consists of the prefix network and the exploita-

tion of the existing redundancy covers the prefix network, no significant part is

left uncovered as is in the CLA case.

4.4 Fault tolerance approaches supported by extant re-

dundancy in high performance parallel adders

The existing redundancy in parallel adders, as is discussed in the previous sec-

tion, can be exploited for multiple fault tolerance approaches. Specifically, the redun-

dancy can provide support directly for online fault detection, and to a certain extent

fault masking as well. Moreover, such internal redundancy provides a powerful means

to overcome the challenge of fine grained online diagnosis - a crucial stage for reconfigu-

ration based online repair approaches. We provide a detailed description and discussion

for these cases in the following subsections.

4.4.1 Online fault detection

Since a redundant copy of each output signal can be generated with an insignif-

icant amount of hardware and a small delay, checking for the conformity of the two
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copies of the same signal delivers online fault detection capability. Specifically, the re-

dundant copy of output signal at position i can be implemented from the output signal

at position i − 1, as the redundant copy generated through the immediate adjacent one

costs the least in terms of hardware and delay, and has the best interconnection locality.

These two copies of the same signal are directly compared using an XOR gate.

We can see from figure 4.5 that, for the Kogge-Stone PPA, no adjacent output

positions share a common prefix operator. Such a property ensures a fine-grained fault

detection capability, indicating at a bit level whether each output signal is faulty or

not. In general, for PPAs without such a property, fault detection is achieved at the

adder component level. Nonetheless, the fault-secure property of the PPA is maintained

[1, 51]. In other words, any single fault occurrence can be guaranteed detected. For a

fault to evade the redundant copy comparison based detection, the faulty computational

unit has to either fan out to all the output positions, or to none of the output positions.

Apparently, neither condition is satisfied for any node in the PPA network. Therefore, a

faulty output is always distinguishable from the fault-free one.

The fault detection capability is essentially associated with the way each basic

computational unit (in this case, a prefix operator) fans out to multiple output positions.

Whether the approach can provide fine-grained fault detection at the bit level depends on

the overlapping of computational units between the redundant copies to be compared.

If a common prefix operator fans out to the two adjacent output positions i and i − 1,

when the original copy at position i is compared with the redundant copy generated at

position i − 1, both might be infected by the same faulty prefix operator, thus possibly

conforming to a faulty bit.

4.4.2 Fault masking

A single fault masking capability achievable by TMR requires at least three

copies of each signal. At a first sight, it seems fault masking can be supported easily by

extending the fault detection approach to generate multiple copies of each output signal
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through inherent redundancy. However, the effectiveness of such fault masking schemes

hinges on the disjointness of the hardware to generate the three copies, as a fault in one

shared unit might cause the duplicated faulty result to outweigh in the majority vote.

Consequently, one needs to examine carefully component overlaps in a PPA network, in

order to make efficient use of the extant redundancy for fault masking purposes.

The Kogge-Stone PPA poses a unique characteristic in its structure. Notably

in the Kogge-Stone PPA, not a single common node is ever shared between adjacent

output positions. Although the set of odd numbered output positions has a large set of

overlapped prefix operator nodes, as do the even ones, there is no overlap whatsoever

between these two sets of components. In other words, the hardware is divided into

two disjoint sets with a “clear cut”. The internal redundancy structured into such two

disjoint sets naturally supports the generation of two copies of the same signal with

no overlapping in hardware. Consequently, the inherent correlation between adjacent

output positions can be exploited directly for fault masking approaches.

Traditional TMR approaches utilize triple the amount of original hardware to

form three copies of a computation with complete disjointness. For a Kogge-Stone PPA,

since the second copy of an output signal can be generated with the internal redundancy

disjointly, only the third copy of the computation in a TMR approach needs to be added.

In fact, to obtain a disjoint third copy of the output signals for TMR purposes, only half

the amount of the original hardware in the Kogge-Stone PPA needs to be added. By

duplicating either the hardware involved in the set of odd number output positions, or

the even ones, the third copy of each output signal can be constructed. Consequently,

a TMR based fault masking can be achieved with 1.5 times the original hardware for a

Kogge-Stone PPA, instead of the triplication in a directly implemented TMR approach.

In the Brent-Kung or hybrid PPAs, the overall overlapping of hardware across

output positions is so pervasive that the contribution of extant redundancy is hardly of

any help in forming redundant copies with fully disjoint hardware. Essentially, a Kogge-

Stone PPA utilizes more internal hardware redundancy to achieve higher performance,

in comparison to the other implementations of a PPA. In addition, the redundancy in a
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Kogge-Stone PPA is organized in a highly regular manner. This regularity, together with

the abundance of internal hardware redundancy makes it feasible to exploit the existing

redundancy for fault masking purposes without sacrificing the high performance.

4.4.3 Fine grained diagnosis for online repair

Online repair based fault tolerance approaches take advantage of the reconfigura-

bility in nanoelectronic systems and provide the best flexibility in dealing with online

occurring permanent faults. In a system with high and variable fault rates as is the case

of the nanoelectronic environment, this class of approaches is highly promising. Recon-

figuration based online repair is invoked after a fault has been detected and then diag-

nosed to be within a certain location. The amount of hardware necessitated in the repair

phase hinges on the precision of the online diagnosis; therefore, high resolution online

diagnosis is crucial to the efficiency of online repair based fault tolerance approaches.

Similar to the case of online fault detection, online diagnosis does not have any

controllability over the inputs. In traditional offline diagnosis, all the fault signatures

can be stored in a dictionary, which can be referred to when diagnosis is performed.

In an online environment, the approach of using a dictionary to store the signature of

every fault is not only costly but also infeasible. Because of the lack of controllabil-

ity, one would have to store all the outputs, under every fault, for every possible input

combination, for a dictionary based diagnosis approach.

Due to the aforementioned challenge, traditional offline diagnosis approaches

have very limited applicability in an online environment. To achieve online diagnosis

capability, one has to rely on a certain invariance, as in the online fault detection case.

In distinction to online fault detection however, the invariance for online diagnosis pur-

poses not only has to guarantee the fault-secure property, but also the fault-distinct capa-

bility. Without the fault-distinct capability, one faulty unit cannot be distinguished from

another. Consequently, such fault aliasing will result in tremendous hardware overhead

in the repair stage, because all the units in the ambiguity set need to be replaced by spare
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units. We start the general discussion of online diagnosis for PPA first, and then come

back to CLA, as it is essentially a special case in the PPA discussion framework.

We have shown in the fault detection subsection that by generating a redundant

copy of each output signal through its adjacent signal, the conformity of the two copies

serves as an invariance for online fault detection. Basically, under a fault-free scenario,

every pair should agree, and the XOR results of each output position between the two

redundant copies should form a zero vector. We will refer to the vector of XOR results

as observable signature henceforth. When a fault occurs, the observable signature is a

non-zero vector. Consider the same invariance for online diagnosis purpose; we can see

that if every fault gives out a unique observable signature, then fine-grained diagnosis

can be achieved with full resolution.

Essentially, the observable positions of a faulty unit are only the output posi-

tions that the unit can fan out to. We define the fanout signature of a unit by its as-

sociated combination of output positions it fans out to. The relationship between a

fanout signature (fs) , and the correspondent observable signature (os), is as follows:

os[i] = fs[i] ⊕ fs[i − 1]. This shows that they have the same distinction capability,

since at output position 0 there is no unit involved and fs[0] = 0 constantly. Figure 4.6

shows the fanout signature fs, as well as the observable signature os for the faulty black

unit in a hybrid PPA.

Since fanout signature and observable signature are essentially identical in rep-

resenting the diagnosis resolution, we can examine the diagnosis capability of the pro-

posed approach by looking at the fanout signature of each faulty unit, since it is more

relevant to the prefix network structure. Apparently, no two units with the same fanout

signature can be distinguished apart from each other. In such a case, aliasing is in-

evitable and the units with the signature fall into an ambiguity group. Figure 4.7 il-

lustrates all the ambiguity groups of the three PPA designs. For each PPA, the prefix

operator nodes that are marked by the same number belong to one ambiguity group, and

the nodes that are not marked by any number can be diagnosed with full resolution. For

instance, the Brent-Kung adder has four ambiguity groups, with group 1 consisting of
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fs: 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0

os: 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0

Figure 4.6: An example of fanout signature (fs) and observable signature (os) for the

prefix operator node in black

4 elements, groups 2 and 4 consisting of 2 elements each, and group 3 consisting of 3

elements. Since the associated diagnosis cannot distinguish between the members in an

ambiguity group, if the observable signature indicates a fault occurring in an ambiguity

group, the subsequent reconfiguration procedure needs to replace all the members for

repair purposes.

Online diagnosis for a CLA can be considered as a special case of the discussion

above. The carry generation blocks are completely disjoint and each fans out to one

output position; for example, block C2 generates signal c2 only. Consequently, the

fanout signatures of the three carry generation block are simply (0, 0, 1), (0, 1, 0) and

(1, 0, 0) and full diagnosis resolution can be achieved in CLAs.
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Figure 4.7: Ambiguity group of PPAs

4.5 Fault tolerance capability analysis

In this section, based on the proposed technique of exploiting the existing redun-

dancy in parallel adders, we provide an analysis of the fault tolerance capability from

the following perspectives:

• The capability and overhead for fault detection and fault masking.

• The capability of online fault diagnosis and the relevant repair costs.

• The fault coverage of the parallel adders by exploiting the existing redundancy.

• A discussion on the incomplete fault manifestation in an online environment.

4.5.1 Fault detection and fault masking discussion

Table 4.1: Fault detection analysis
Adder Fault detection capability extra hw / existing hw

64-bit CLA bit-level fault secure 6 / 16 (per LCG)
16-bit Kogge-Stone PPA bit-level fault secure 15 / 49

16-bit hybrid PPA adder-level fault secure 15 / 32
16-bit Brent-Kung PPA adder-level fault secure 15 / 26
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Table 4.1 summarizes the fault detection capability and hardware overhead for

the discussed parallel adders. The third column compares the extra hardware needed to

generate the redundant copies of signals as a ratio to the existing amount of hardware in

the adder.

In the CLA case, consider the basic unit of a two-input AND gate or a two-input

OR gate; the carry generation blocks in an LCG consist of 16 gates in total1. To generate

the redundant copy of a carry signal from the adjacent one according to the correlation

cout = g + cin · p, two extra gates are needed. Therefore, 6 gates need to be added

altogether for the redundant copies of the 3 carry signals. For each of the PPA cases, a

total of 15 prefix operator nodes need to be added at the 15 output positions to generate

the redundant signal copies, while the existing hardware consists of the prefix operator

nodes within the network.

Comparing to a generally applicable duplication based online fault detection

scheme, where the extra hardware equals the existing amount of hardware, the pro-

posed approach utilizes significantly lower hardware overhead. Performance-wise, the

proposed approach costs an insignificant two-gate delay to generate the redundant signal

copy.

Table 4.2: Fault masking analysis
Adder Fault masking extra hw / existing hw extra hw

supported? in TMR
64-bit CLA yes 18 / 16 (per LCG) 32

16-bit Kogge-Stone PPA yes 47 / 49 98
16-bit hybrid PPA no - 64

16-bit Brent-Kung PPA no - 52

Table 4.2 illustrates the support for fault masking by exploiting the existing re-

dundancy and the corresponding overhead. For CLA, the calculation of extra hardware

is performed similarly to the fault detection case, based on the carry generation blocks
1 The hardware of the g, p generation block in an LCG is not counted because we only consider the

components that are covered by the fault detection.
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within an LCG. For the Kogge-Stone PPA, the amount of extra hardware consists of

three parts: 15 prefix operator nodes at the output end, a redundant copy of the network

for the odd output positions with 24 internal nodes, and 8 extra nodes at the output of

the extra network. Overall, fault masking can be achieved by adding around the same

amount of hardware as the existing one for the proposed approach. This is significantly

less than double the amount of extra hardware required in a TMR approach. For the pro-

posed approach, the performance overhead for fault masking is a constant 4-gate delay

in the CLA, and 2-gate delay in the Kogge-Stone PPA.

4.5.2 Diagnosis resolution analysis

As is shown in figure 4.7, for a certain number of nodes in each of the parallel

prefix networks, aliasing exists for the proposed online diagnosis approach. The over-

head introduced by the loss of diagnosis resolution lies in the extra hardware needed to

replace the entire ambiguity group, if one of the group members is faulty. Overall, ac-

cording to the ambiguity group information illustrated in figure 4.7, the expected number

of nodes needed in the repair phase, to replace one faulty node, can be computed. Table

4.3 lists the expected number of nodes to replace a faulty one for each PPA designs.

Table 4.3: Expected repair cost considering the ambiguity groups
16-bit Adder Brent-Kung Kogge-Stone hybrid

Repair cost for one faulty node 1.85 1.90 1.63

Observing that the loss of diagnosis resolution is mainly due to the fact that all

the members in the same ambiguity group have the same fanout signature, one can im-

prove the diagnosis resolution using additional hardware to make each member’s fanout

signature distinct. Note that the extra hardware needs to be added within the same frame-

work of the diagnosis scheme. In other words, new output positions need to be added

to distinguish each member of an ambiguity group, while the only way to observe any

fault at the output positions is through the comparison of redundant copies of the same
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signal. Again, the only way is to form redundant copies of a signal by exploiting the

prefix computation correlation.

Brent−Kung adder

a

b

d

c

Figure 4.8: An example of using extra hardware to achieve full diagnosis resolution

Figure 4.8 illustrates an example of adding three nodes to distinguish the four

nodes, a, b, c, d in the same ambiguity group of a Brent-Kung PPA. Based on the prop-

erty of prefix operation, the three additional output positions form the same signal as

the highest (15th) output position in the original PPA. For example, the fan out line

from node c consists of (g[8, 15], p[8, 15]) while the 14th output position consists of

(g[0, 14], p[0, 14]). With one of the additional prefix operator nodes, these two pairs are

merged. According to the prefix operation:

(g[8, 15], p[8, 15]) ◦ (g[0, 14], p[0, 14]) = (g[0, 15], p[0, 15])

Therefore, the additional node fans out a redundant copy of the signal from the 15th

position. Note that full fault diagnosis resolution can be achieved for all the three addi-

tional nodes as well.

Without loss of generality, this approach can be applied to make each member

of any ambiguity group distinguishable, thus improving the diagnosis capability to full
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resolution for all the PPAs. For an ambiguity group of n members, n−1 new nodes need

to be added. Table 4.4 lists the number of extra nodes needed to achieve full resolution

in each of the PPA designs. It also shows the average hardware overhead of repair for

one node based on the original PPA. According to tables 4.3 and 4.4, in general, the

hardware overhead for repair is very low for the online diagnosis approach. Moreover,

with the approach to achieve full diagnosis resolution, hardware repair cost can be cut

down significantly.

Table 4.4: Hardware overhead and repair cost for full diagnosis resolution
16-bit Adder Brent-Kung Kogge-Stone Hybrid

Number of extra nodes 7 14 6
Avg repair cost for one faulty node 1.27 1.29 1.19

4.5.3 Fault tolerance coverage on parallel adder subcomponents

As discussed in the previous section, in the PPA cases, the existing redundancy

covers the entire adder, yet in the CLA case, the g, p generation blocks are not covered

by exploiting the redundancy in carry generation blocks. The g,p generation block in a

CLA does not bear an inherent redundancy as the carry generation blocks. Therefore,

redundancy needs to be explicitly added for reliability purposes.

We can observe that, in a CLA, the g, p generation by itself is a disjoint data flow

from the carry propagation, and is performed in a tree structure with no horizontal level

dependencies. In such a case, a time redundancy based approach that recomputes with

rotated operands (RERO) can be applied on such a structure for online fault detection

and diagnosis purposes.

When the components are performing the same type of computation with in-

dependent inputs, online fault detection and diagnosis can be achieved through time

redundancy, using a different permutation of the inputs for the recomputation. A sim-

ple form of permutation is rotation. In a CLA, the g, p generation blocks at the same
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level use disjoint input signals; therefore, a rotated recomputation does not suffer from

the perturbation caused by the correlated input signals. Therefore, RERO can be used

not only for fault detection, but also online diagnosis as well. A detailed RERO based

approach for the g, p generation blocks is proposed in [69].

4.5.4 Inconsistent fault manifestation

For a faulty component, at any time whether the output will be erroneous de-

pends on the input combination. Basically, a fault manifests only when the input combi-

nation stimulates the fault and sensitizes its propagation path towards the output. Simi-

larly, if an internal faulty signal is not directly connected to the output, it might lose its

observability when it reaches the output positions, after going through some other com-

ponents. Consequently, in an online environment, depending on the input, even though

a faulty component fans out to multiple output positions, it might only manifest at a

subset of these positions.

In the example of figure 4.6, theoretically a fault from the black node fans out

to three output positions {5, 13, 14}. However, due to such inconsistent fault mani-

festation, it might not manifest at all on these three positions, depending on whether

the faulty signal from the black node is the controlling input when going through other

nodes. Out of the three positions, it is certain that the fault will manifest at the 5th po-

sition, since the faulty signal goes directly to the output there. Whether the fault will

manifest at the 13th output position however, depends on the input to the node as well as

the internal logic of the node the faulty signal goes through before reaching the output.

Certainly, if the faulty signal is annihilated at the 13th output position, it will not prop-

agate to the 14th one either. Otherwise, whether the fault manifests at the 14th output

position depends on the nodes it propagates through at the 14th position.

Inconsistent fault manifestation makes online diagnosis challenging, since each

fault might have a number of possible fanout signatures. This increases fault aliasing

possibility, thus directly impacting diagnosis resolution. In general, any online diagnosis
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approach relies on certain fault manifestation signatures to identify the faulty compo-

nents, thus suffering from the loss of certainty in fault signatures, due to inconsistent

fault manifestation. The following observations about inconsistent fault manifestation

can serve as a starting point for improving diagnosis resolution.

• Inconsistent fault manifestation has unidirectional impact: the output positions

reachable through fan out by a faulty unit might be correct ones, yet the output

positions that are not reachable by the faulty block are always correct. This

means all the “zero” positions in a fanout signature are determinative.

• Inconsistent fault manifestation occurs when a faulty signal goes through cer-

tain computation units before finally reaching the output. Therefore, for faulty

signals that can directly reach an output position, it will always consistently

manifest. For these positions, the fanout signature bits are determinative. In

other words, for the “one” positions in a fanout signature, the subset consisting

of direct fanouts from the unit being diagnosed is determinative. For example, in

figure 4.6, there is no inconsistent fault manifestation at the 5th output position,

if the unit marked as black is faulty.

• Whether a faulty signal propagates through a unit and manifests at the output

depends on two issues: the internal logic of the unit, and the other inputs of the

unit. For a given arithmetic component such as CLA or PPA, the internal logic

of each unit is known. Under the assumption of uniformly distributed input sig-

nals at the inputs, the inconsistent fault manifestation at the output side can be

quantified and evaluated in a probabilistic sense. Therefore, even for the output

positions in a fanout signature that are impacted by insignificant fault manifesta-

tion, one can obtain a relatively precise probability of fault manifestation. This

probabilistic information can be utilized for online diagnosis techniques that are

based on fault manifestation accumulation over time.

Although inconsistent fault manifestation introduces challenges to online diag-
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nosis resolution, it does not have any impact on fault detection or fault masking. Since

inconsistent fault manifestation unidirectionally changes faulty output positions to fault-

free ones, neither fault detection nor fault masking capability will be compromised,

since the only thing that matters in these two schemes is the correctness of the results,

i.e., signals on the output side.

4.6 Conclusions

This chapter presents a novel way to enhance reliability in the arithmetic com-

ponents of nanoelectronic systems without adding tremendous overhead. The proposed

approach relies on the key observation that computational redundancy is typically em-

bedded in high performance arithmetic components to deliver parallelism. Specifically,

we identify the carry propagation correlation among adjacent bits for parallel adders

and exploit such computational redundancy for fault tolerance purposes. We examine

the cases of carry lookahead adders and general parallel prefix adders, and develop a

number of techniques to construct fault detection, fault masking and online fault diag-

nosis approaches utilizing the extant hardware redundancy.

The proposed approach for parallel adders provides an efficient means of en-

hancing the reliability for the basic arithmetic building blocks in nanoelectronic envi-

ronment. Moreover, the general principle behind the proposed approach, of exploiting

the extant redundancy for the dual purposes of parallelism and reliability, can be ex-

tended and applied to a genre of high performance arithmetic components, which are

crucial and dominant in the nanoelectronic systems. We show that the computational

redundancy embedded in the high performance arithmetic components can be exploited

to support various fault tolerance approaches. The proposed principle therefore opens

up a new way to develop with very low overhead powerful fault tolerance schemes and

thus overcome the reliability challenge in nanoelectronic systems efficiently.



Chapter 5

Locality Aware Redundancy Allocation
for Defect / Fault Tolerance

A high level of redundancy is required to deal with the challenge of high defect

and fault rates in the nano environment. The reconfigurability of nano devices and the

regular structure of nano fabrics make reconfiguration based repair an essential approach

for both defect and fault tolerance. Ideally, repair based approaches have best hardware

efficiency when full sharing of redundancy is achievable. However, nanoelectronic sys-

tems are subject to the strict constraint of localized interconnections, which limit the

sharing of redundant resources to within a small neighborhood.

In this chapter, we focus on this challenge and develop the corresponding model

for the redundant resource sharing issue under locality constraint. Such a model captures

the redundancy sharing essence of a system, and is applicable to any specific topology

or layout of a nanoelectronic system. Based on the established model, defect tolerance

is a well defined problem and can be addressed by existing algorithms. A case study is

presented in the end to examine how such a problem can be addressed with the detailed

topology, configuration and setup given in a nanoelectronic environment.

80
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5.1 Motivation

Online reconfigurability opens up the opportunities for developing defect and

fault tolerance approaches efficiently. After identifying the defects through manufacture

test, reconfiguration can be performed to bypass the defective units with spare ones

[20, 32, 59, 71, 82]. For online repair based fault tolerance approaches to be efficient in

utilizing hardware redundancy, the system need to have two attributes:

• Online reconfigurability is a necessity, since the commonly shared redundancy

needs to be dynamically configured through an online repair process upon fault

occurrence.

Online reconfiguration can be implemented at multiple design hierarchical lev-

els. Logic level reconfiguration is naturally supported by the nanoelectronic

devices [13, 34, 53]. At higher design hierarchical levels, reconfigurable nano

switch blocks are embedded among the nano computational blocks, thus en-

abling the reconfiguration of interconnections among the computational blocks

[26, 27, 57].

• The system consists of multiple identical components; therefore redundancy can

be shared among multiple units for replacement upon faults.

In fact, high regularity exists widely at various system hierarchical levels. At

the logic level, PLAs with regular structure can have spare wires and devices for

repair purposes; at the arithmetic level, most components such as parallel adders

and multipliers are composed of multiple identical units; FPGA and memory

systems are both representative structures with high regularities and identical

CLB units; at the processor architecture level, multiple homogeneous ALU and

computational units are utilized for to achieve parallelism; in a multi-processor

systems, faulty processor elements can be replaced by a pool of spare ones.

For reference convenience, we denote in this paper the original multiple identical

components in the system as functional units, while the redundant resources that can be
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shared by multiple functional units in an online repair process are denoted as spare units.

When every spare unit can be shared among all the functional units for replace-

ment purposes, optimal reliability is achieved due to the maximum sharing of redun-

dancy. However, such a maximum redundancy sharing demands complete interconnec-

tions between every pair of functional unit and spare unit. When defect and fault rates

are exceedingly low, as in the case of CMOS based systems, a small pool of spare units is

enough to fulfill the reliability requirement. The interconnections to support full sharing

are then affordable.

When a large number of redundant resources are required, as in the case of na-

noelectronic environment, not only are the interconnection complexity necessitated to

implement a full redundancy sharing scheme boosting tremendously, but also intercon-

nection is strictly limited to be within a local range. As a result, maximum redundancy

sharing is no longer affordable, as spare units can only be shared in a localized manner.

A number of parameters are related to the locality constraint. First of all, the

topology and layout of a system varies depending on the underlying nanofabric and the

design hierarchical level. Secondly, the interconnection range and complexity rely on

the specific nanoelectronic device, or the implementation of the switch blocks. As a first

cut on approaching such a problem, a model needs to be established for the redundancy

sharing under locality constraint. Based on the formulated model, multiple perspectives

including topology, interconnection, hardware overhead and reliability can be analysed,

thus providing guidance for developing efficient defect / fault tolerance schemes.

Specifically, the following issues need to be addressed:

• How to model the localized resource sharing and isolate it from the topology

details of a system?

• What are the defect, fault, reliability and failure models of a system under such

locality constraint?

• How to perform reconfiguration for defect tolerance?
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• For online faults, how to perform reconfiguration for revocable / irrevocable

online repair?

5.2 Mathematical model and framework

5.2.1 Bipartite graph model for redundancy sharing

Essentially, a reconfiguration based repair replaces a defective / faulty functional

unit by a local spare unit. The “localized sharing” of spare units includes the following

two perspectives. On the one hand, each functional unit can be repaired by a set of

spare units that are accessible according to the locality constraint. On the other hand,

each spare unit can be used to replace a number of functional units, thus representing the

sharing of redundancy and fault tolerance efficiency. Similarly, the accessible functional

units are limited within the neighborhood of the spare unit, under the locality constraint.

Mathematically, the relationship between the functional unit set and the spare

unit set can be represented by a Bipartite Graph model.

Definition: A bipartite graph B(N1, N2, E) is a 3-tuple where N1 and N2 are

two disjoint sets of nodes and E is a set of edges. Every edge e ∈ E connects a node

n1 ∈ N1 with a node n2 ∈ N2.

For a system consisting of a functional unit set, a spare unit set, and the corre-

sponding locality constraint defining the neighborhood range, it can be uniquely repre-

sented by a bipartite graph B(Nf , Ns, L). Node set Nf is the functional unit set, Ns

is the spare unit set, and each edge e = (n1, n2) ∈ L indicates that the corresponding

functional unit n1 and spare unit n2 are within a neighborhood defined by the locality

constraint, so that n2 can be used to replace n1.

Various perspectives of the redundancy sharing problem can be represented by

the attributes in the bipartite graph model.

• The amount of redundancy embedded in the system is depicted by |S|, i.e., the

number of spare unit.
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• The edges between the two node sets indicate the accessibility between the func-

tional units and the spare units defined by the locality constraint. Essentially, the

edges represent the potential repair possibilities.

• The overall number of edges in the bipartite graph, |L|, depicts the interconnec-

tion complexity of the system.

• The locality constraint of the system is represented by the fanout degree of each

node. Specifically, the fanout degree of a spare unit node illustrates how many

functional unit can be repaired by the spare unit; the fanout degree of a functional

unit represents the number of spare units accessible.

(a) (b) (c)

Figure 5.1: Examples of topology layout with their bipartite graph representations: (a)

no sharing - each functional unit has 2 exclusive spare units (b) full sharing - each spare

unit can replace any functional units (c) localized sharing - each spare unit can replace

the neighboring functional units
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Figure 5.1 shows three examples, each with 4 functional units (illustrated by

squares) and 5 spare units (illustrated by circles). The upper part of each example shows

the 2-D topological layout of the units. Each line connecting a functional unit and a

spare unit represents that interconnections are available in the systems, possibly through

multiple switching blocks, to replace the functional unit with the corresponding spare

unit. The bottom part shows the bipartite graph representation for the topology above.

Figure 5.1(a) shows an example of dedicated redundancy without sharing. The

bipartite graph of the example configuration is divided into 4 disjointed sub-graphs, each

contains one functional unit and its dedicated spare unit(s). Since each spare unit is used

exclusively to repair one specific functional unit, the degree of each spare unit node in

the bipartite graph is always one. Eliminating the sharing of redundancy makes the

interconnect complexity low. However, the system is very inflexible to deal with high

occurrence of faults.

Figure 5.1(b) shows a full sharing example, which demands high complexity of

interconnections. The corresponding bipartite graph is a complete bipartite graph.

Figure 5.1(c) shows an example of sharing under the locality constraint. Each

functional unit has 3 accessible spare units within the neighborhood. For the 5 spare

units, the ones at the corners each can be used to replace two neighboring functional

units. The spare unit at the center can be used to replace either of the 4 functional units

in the neighborhood. This is depicted in the bipartite graph, where each functional unit

node has a degree of 3, four of the spare unit nodes have degrees of 2, while one spare

unit node has a degree of 4.

Overall, the bipartite graph representation provides a form to model the redun-

dancy sharing relationship independent of the specific layout topology. Given any topol-

ogy with the associated specification in terms of functional / spare unit layout and shar-

ing attribute, a unique bipartite graph can be constructed accordingly to characterize the

localized redundancy sharing relationship.
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5.2.2 Repair under bipartite graph model

A reconfiguration based repair is performed by replacing a defective / faulty

functional unit with a locally accessible spare unit. In the bipartite graph, after perform-

ing a repair, the spare unit node and its associated edges are deleted from the graph.

When a defective / faulty functional unit has no accessible spare units in its neighbor-

hood, no repair can be performed. Such an unrepairable case is typically caused by

the exhaustion of local redundant resources, A suboptimal reconfiguration performed

for some other defect / fault occurrences might lead to the quick exhaustion of local

redundant resources. Consequently, the reliability of the system not only depends on

the amount of redundant resources and the amount of sharing, but also heavily hinges

on the algorithm spare unit selection when repair is performed. We consider the sys-

tem as having failed when at least one of the defective / faulty functional unit becomes

unrepairable.

(a) (b) (c)

Figure 5.2: Examples of successful and failing repair

Figure 5.2 illustrates a simple example with two different allocation schemes for

repair. The bipartite graph representation of a system is given in figure 5.2(a), where

three functional units share two spare units under locality constraints.

Figure 5.2(b) and (c) shows two different spare unit allocation possibilities, with

two defective functional units. The allocation of spare units for replacement is shown by

the bold edges with arrows, indicating a spare unit that is chosen to replace the specific

defective / faulty functional unit. The spare allocation in (b) illustrates a successful
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repair, with both defective / faulty units replaced by the two spare units. The allocation

in (c) is an unsuccessful repair, due to the contention of one spare unit shared by the two

defective / faulty functional units.

In an online environment, if the first fault occurs at the middle node, the alloca-

tion in (c) is possible to take place due to the lack of knowledge for the upcoming faults.

Intuitively, this simple example shows the difference between an off-line and an on-line

algorithm for the cases of defect versus fault tolerance:

• In an off-line environment, all the information regarding the defective functional

units are available for the repair process, thus making successful repairs more

easily achievable.

• When faults are occurring dynamically at run-time, the spare unit allocation to

be made without the knowledge of future fault occurrences. Consequently, suc-

cessful repair over a sequence of faults is much harder.

5.2.3 Defect tolerance as bipartite graph matching problem

After manufacturing test, a set of defective functional units are identified, thus

providing full information to perform reconfiguration based repair. Based on the bi-

partite graph model, the defect tolerance problem can be mapped to a Bipartite Graph

Matching Problem, so that a set of spare units can be identified to form an one-to-one

match to the defective functional units.

Definition: bipartite graph matching for defect tolerance: Given a bipartite

graph B(Nf , Ns, L) representation of a nanofabric configuration and the set of defec-

tive functional units N ′
f , where N ′

f ⊂ Nf , find a repair allocation as a match function

M : N ′
f → N ′

s such that: ∀n ∈ N ′
f , (n, M(n)) ∈ L, and ∀n1, n2 ∈ N ′

f where

n1 6= n2, M(n1) 6= M(n2).

Such a definition of the defect tolerance problem is based on a “one-for-one”

model between spare units and functional units. The assumption of the model is that the
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granularities of functional units and spare units are the same. In other words, exactly

one spare unit is used to replace one defective functional unit.

The same bipartite graph model can be set up based on a different model of

“multi-for-one”, where spare units are the sub-components of a functional unit. For

instance, a functional unit may represent a parallel prefix adder, while a spare unit is one

prefix operation node. Such an assumption makes the bipartite graph more compact. On

the other hand, a defective functional unit might require multiple spare units for repair

purposes. Nevertheless, a “multi-for-one” model can be converted straightforwardly

to the “one-for-one” model. Consequently, without loss of generality, we provide our

discussion based on the one-for-one assumption in this paper.

Overall, the problem of performing spare unit allocation for defect tolerance

is mapped to a well-defined bipartite graph matching problem, which can be solved

through a max-flow algorithm [15]. The complexity of the algorithm is O(|L′|
√
|N ′

f |),
where L′ is the set of edges connected to N ′

f . The repair is successful when a match

is found to replace every defective functional unit with a localized spare unit. When

the system is unrepairable, a quantitative evaluation can be performed by capturing the

percentage of repaired functional units over the total number of defective functional

units.

5.2.4 Fault tolerance based on the bipartite graph model

Dealing with dynamically occurring faults at run time means that the fault tol-

erance approach has to adopt an online algorithm for spare allocation. This is different

from the defect tolerance phase, where the algorithm is run offline, with all the defect in-

formation available. For fault tolerance, the system reacts to dynamic fault occurrences

by performing reconfiguration based online repairs. In the bipartite graph representa-

tion, a repair process is modeled by deleting the corresponding spare unit node from

the graph and marking the functional unit node as fault-free again. Each repair process

changes the bipartite graph into a new one, and the multiple choices of allocating a spare
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unit indicates the multiple variations of the current bipartite graph. Figure 5.3 exhibits

an example of two different resultant bipartite graphs according to the different choices

of spare unit node for replacement.

Figure 5.3: Examples of bipartite graph change according to spare allocation

The fault tolerance algorithm repairs a faulty functional unit by selecting an

accessible spare unit for replacement. Apparently, when there are multiple spare units

to select from, each choice affects the system in a different neighborhood, thus resulting

in different new bipartite graphs. An optimal spare allocation algorithm therefore needs

to guarantee the remaining system to be the most robust one among all the possible

variations.

Reliability model

Before approaching the problem of finding an optimal algorithm, optimality

needs to be defined first. For the specific fault tolerance problem, we need to compare

the possible bipartite graph variations for the system’s reliability. As a simple example,

the two variations of the bipartite graph in figure 5.3 both have 2 spare unit nodes and 3

edges. Which one represents a system that is more robust for the upcoming faults, and
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why?

The answer to this question hinges on the reliability model of a system. First of

all, we assume independent fault occurrence on each functional unit with equal prob-

ability. Furthermore, we assume that the faults occur sequentially, and one repair is

performed after every fault occurrence. For f faults occurring sequentially on a set of

m functional units, there are altogether mf equally possible occurrence patterns. The

reliability of the system under the next f faults is therefore defined by the percentage of

repairable cases over all the mf patterns.

We need to examine more carefully about the “repairable cases”, because for

each of the mf fault occurrence pattern, the multiple selection choices at each repair

step result in a repair decision tree. Apparently, not all the repair selections can lead

to successful repair for the given fault sequence. Counting all the repair possibilities

is computationally impractical. Furthermore, it is not even a good way to capture the

system’s reliability, since a large number of poor decisions lead to overall repair failure.

Therefore, the “repairable cases” need to be modeled in a deterministic manner. For

any one of the mf fault occurrence patterns, it is defined as repairable if at least one

successful repair sequence exists for it.

Definition: For a given system’s bipartite graph BG(Nf , Ns, L) with m func-

tional unit nodes and n spare unit nodes (|Nf | = m, |Ns| = n), a sequence of f fault

occurrences on the functional unit set Nf is defined as a vector < u1, u2, ..., uf >

where ui ∈ Nf . A successful repair sequence for such a fault sequence is a vector

< v1, v2, ..., vf > where vi ∈ S, such that ∀0 < i < j ≤ f, vi 6= vj , and (ui, vi) ∈ L.

A fault occurrence pattern is repairable, if there exists a successful repair se-

quence for it. To decide whether a fault occurrence pattern is repairable or not, one

needs to search for a successful repair sequence. Such a problem bears high similarity

to the defect tolerance model, because the fault occurrence sequence is given, and an

offline algorithm can be applied.

In fact, this is the bipartite graph matching problem under the multi-for-one

model, because multiple faults can occur upon the same functional unit node, thus de-
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manding multiple spare units for repair purposes. As is discussed in the defect toler-

ance subsection, the multi-for-one model can be converted to the one-for-one model and

solved with the bipartite graph matching algorithm. For denotation convenience, we

define a Φ function for the process of determining whether a fault occurrence pattern is

repairable.

Definition: Given a bipartite graph representation BG(Nf , Ns, L) and a fault

occurrence sequence s, a Φ(BG, s) is a function that: Φ(BG, s) = 1 if the fault se-

quence s is repairable on BG, and Φ(BG, s) = 0 if no successful repair sequence exists

for s on BG.

Given a bipartite graph, every fault occurrence pattern can be determined re-

pairable or not by solving the Φ function. To capture the reliability of a given system,

an overall ratio can be therefore calculated for repairable patterns over the total number

of fault occurrence patterns.

The system reliability model under the next f faults for any bipartite graph rep-

resentation is defined as follows:

Definition: For a bipartite graph BG(Nf , Ns, L) where |Nf | = m, let P be the

set of all possible occurrence patterns of f faults:

P = {< u1, u2, ..., uf >: ui ∈ F, 0 ≤ i ≤ f}, then |P | = mf

let R be the set of all repairable patterns in P :

R = {r : r ∈ P, Φ(r) = 1}, then |R| =
∑

∀p∈P Φ(p)

let U be the set of all unrepairable patterns in P :

U = P − R, then |U | = |P | − |R|
The reliability RE of the system under f faults is defined as:

RE(BG, f) =
|R|
|P | =

∑
∀p∈P Φ(p)

mf

The failure rate FA of the system under f faults is defined as:
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FA(BG, f) =
|U |
|P | = 1 −RE(BG, f) =

∑
∀p∈P Φ(p)

mf

Since a fault occurrence pattern is identified as repairable whenever a successful

repair sequence exists, the reliability model gives the rate of successful repair assuming

all the allocation choices are made with the right decision. This gives an upper bound for

the online repair, no matter how well the allocation algorithm can perform because no

knowledge of the future faults can be used to direct the decision making for each repair

step, and a number of repairable fault sequences may actually end up unrepairable.

Reliability function characteristics

Plotting the entire reliability curve RE(BG, f) for a given bipartite graph BG

over the upcoming f faults is computationally impractical, since exponential number of

Φ functions need to be calculated for each point. Nevertheless, based on the bipartite

graph model, we can identify a number of characteristics of the reliability function RE .

Figure 5.4(a) provides an illustrative plot for the reliability function RE(f) of a given

bipartite graph BG as a monotonous decreasing function over f .

Intuitively, the reliability of a system always decreases as the number of fault

occurrences increases. For the specific fault tolerance problem, the repair process under

a sequence of faults leaves fewer and fewer spare units available. Eventually, the system

becomes unrepairable due to the exhaustion of spare units in a local area. We provide

a formal proof below that the reliability function RE defined is a monotonic decreasing

function over the number of fault occurrences.

Since RE(BG, f) is a discrete function over f ∈ Z+, one only needs to prove

∀f ≥ 1,RE(BG, f) ≥ RE(BG, f + 1 to show that RE is a monotonically decreasing

function over f . As in the definition of RE and FA, suppose the bipartite graph has

m functional unit nodes (BG(Nf , Ns, L) with |Nf | = m), let P be the set of all fault

sequence patterns for f faults, R be the set of all repairable fault sequence patterns and

U be the set of all unrepairable fault sequence patterns, then FA(BG, f) = |U |/|P | =
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Figure 5.4: (a) Reliability plot of a general bipartite graph; (b) Reliability plot for a

system with full interconnection for maximum sharing; (c) Reliability plots for two

systems with different parameters

|U |/mf .

For f + 1 faults, there are altogether mf+1 fault sequence patterns. If the se-

quence pattern of the first f faults is unrepairable, then obviously the system is unre-

pairable for the f + 1 fault sequence as well, regardless of the location of the last fault.

Therefore, for every u ∈ U , there are m distinct unrepairable sequences for (f + 1)

faults, and they are all distinct. On the other hand, a repairable sequence of f faults

might turn out to be unrepairable due to the (f +1)th fault. Let N be the set of such new

unrepairable fault sequences (|N | ≥ 0), then FA(BG, f) = |U |
|P |

≤ FA(BG, f + 1) =

|U |×m+|N |
|P |×m

. Since RE = 1 − FA, RE(BG, f) ≥ RE(BG, f + 1), and thus proving the

monotonical decreasing of function RE .

Beyond the monotonous decreasing attribute that we have proved, there are two

characteristic points for RE(f): the “1-point”, beyond which the reliability starts to fall

lower than 1, and the “0-point” where it reaches 0.

Apparently, a system is always repairable if the number of fault occurrences
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is less than the minimum fanout degree in the functional unit node set. For a given

system’s bipartite graph BG(Nf , Ns, L) with m functional unit nodes and n spare unit

nodes (|Nf | = m, |Ns| = n). Let d(u) denote the fanout degree of a node u, and δ(N)

be the minimum fanout degree of a node set N : δ(Nf) = MIN{d(u)}, ∀u ∈ Nf . For

f ≤ δ(Nf), RE(BG, f) = 1. With more than δ faults (f > δ), the reliability starts to fall

below 1, since the system is unrepairable if the f faults all occur on the functional unit

node with the minimum fanout degree. Consequently, the “1-point” of the reliability

function RE is at δ(Nf) of the bipartite graph.

The “0-point” of the reliability function is determined by the number of spare

units n. Obviously, when f > n, there exists no successful repair sequence for any

fault occurrence pattern. On the other hand, when f = n, there certainly exists at least

one fault sequence pattern for which the system is repairable. We can construct such a

fault sequence pattern by traversing through the spare unit node set S in any order, and

having the i’th fault occur on any one of the functional units connected to the i′th spare

unit. Apparently, the sequence of spare units we traverse through is a successful repair

allocation. Since function RE(f) reaches 0 at f = n+1, and RE(f) is a monotonically

decreasing function, R(f) = 0 for f > n.

For a system with maximum sharing, where every spare unit is accessible by any

functional unit, the system is represented as a complete bipartite graph with δ(Nf ) = n.

As is shown in figure 5.4(b), the reliability curve for such a system is simple: RE(f) = 1

for f ∈ [0, n], and RE(f) = 0 for f > n. Such a system is fully reliable for up to n

faults, and the system’s reliability becomes zero for more than n faults. With the support

of full connectivity, reliability relies solely on the amount of redundancy. Among all the

systems with the same amount of redundancy, one with maximum sharing has the best

reliability.

Two bipartite graphs of different interconnection patterns present distinct relia-

bility curves over fault occurrences. Nevertheless, the system with a higher δ(Nf) can

maintain a full reliability for more faults, while the reliability of a system with more

spare units (m) reaches its zero point under higher fault occurrences. Figure 5.4(c)
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gives the illustrative plots of two systems with different parameters.

Fault tolerance algorithm and optimality

The fault tolerance approach needs to make a selection among the several choices

of spare unit nodes when repairing a faulty functional unit. The various possible choices

lead to new variations of the bipartite graph, depending on which spare unit node and

its corresponding edges to be deleted. Each repair allocation choice’s impact to the

reliability of the system lies in the neighborhood of the selected spare unit node.

In the bipartite graph representation, the adjacent node set adj(u) denotes the

neighborhood of a node u: adj(u) = {v : (v, u) ∈ L} for bipartite graph BG(Nf , Ns, L).

When a spare unit node v is selected to replace a faulty functional unit u, v is to be

deleted from the graph with all the edges connected to it. Consequently, all the func-

tional unit nodes in the neighborhood of v will have one fewer spare unit accessible. In

the bipartite graph representation, the degree of each node in adj(v) is decreased by one.

The multiple choices of spare unit nodes v1, v2, ..., vi therefore affect the corresponding

sets of functional unit nodes in adj(v1), adj(v2), ..., adj(vi).

Lemma: Recall that d(v) denotes the degree of node v, and δ(V ) denotes the

minimum degree among a node set V . To repair a faulty functional unit node u, among

the d(u) choices of spare unit nodes v1, v2, ..., vd(u), choosing the spare unit node v such

that δ(adj(v)) ≥= δ(adj(vi)), ∀1 ≤ i ≤ d(u) results in a bipartite graph with the best

reliability for the next upcoming δ(adj(v)) faults.

Intuitively, if a functional unit has a very small number of accessible spare units,

then one should avoid allocating these spare units for repair as much as possible, since

they constitute the scarce repair resource for this particular functional unit. The algo-

rithm suggested by the lemma essentially selects a spare unit v, such that the minimum

fanout degree of its neighboring functional units (δ(adj(v))) is the greatest among all

the choices. The lemma states that such a selection gives a resultant system with the

best reliability for a certain number (δ(adj(v))) of upcoming faults.
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adj(v1)={u2, u1, u0}

adj(v2)={u0, u3}

Figure 5.5: Spare unit selection example

Figure 5.5 provides an example for such a selection directed by the lemma with

a partially shown bipartite graph. Particularly, a comparison is made between the two

accessible spare unit nodes v1 and v2 for the faulty functional unit u0. The neighboring

functional unit set of v1 includes the upper three functional units, u2, u1, and u0, with

their corresponding fanout degrees of 5, 2, and 4. Therefore, the minimum fanout degree

in this node set is d(u1) = 2, as is shown in the figure by δ(adj(v1)) = 2. For the

neighboring functional unit set of v2, which includes u0 and u3, the minimum degree is

d(u3) = 3, therefore δ(adj(v2)) = 3.

Between v1 and v2, the lemma indicates selecting v2 over v3 for repairing the

faulty functional unit u0, since v2 has a larger minimum fanout degree in its neighbor-

ing node set. The intuition behind such a selection is that, selecting v1 makes u1 the

most vulnerable node within the shown graph for upcoming faults, while selecting v2

makes u3 the most vulnerable node. Comparing these two selections, selecting v2 has a

resultant system with the most vulnerable node stronger than the choice of v1.
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The formal proof for the lemma is given below.

Proof:

To prove the lemma, we only need to show that, between any two choices of

spare units v1 and v2, the one that has a larger δ(adj(v)) results in better relia-

bility for the next δ(adj(v)) faults.

Apparently, the difference between the two resultant bipartite graphs of selecting

v1 versus v2 resides only in the set of nodes adj(v1) ∪ adj(v2). Consequently,

to compare the reliability of the two resultant systems, we only need to focus on

the subgraph BG′(N ′
f , N

′
s, L

′), where N ′
f = adj(v1) ∪ adj(v2), N ′

s = adj(N ′
f),

and L′ includes all the edges between the node sets.

Let δ1 = δ(adj(v1)), δ2 = δ(adj(v2)), and suppose δ1 < δ2. Therefore, when

v1 is selected, the resultant bipartite graph from BG′ has δ1 as the minimum

degree in its functional unit node set. The reliability function of the resultant

system thus has δ1 as the 1-point. When v2 is selected, the resultant bipartite

graph’s reliability function has δ2 as the 1-point. Since δ1 < δ2, the system

after selecting v2 can maintain 100% reliability for the next δ2 fault occurrences,

which is more than the system after choosing v1 for the repair selection.

In general, selecting the spare node v among the choices of (v1, v2, ..., vd(u))

where δ(adj(v)) is the largest among all the δ(adj(vi)), 1 ≤ i ≤ d(u), the resul-

tant system has the best reliability for the next δ(adj(v)) fault occurrences.

Ideally, an optimal algorithm selects the allocation of spare unit such that the

resultant system is the most reliable one among all the possible decisions. With the

definition of reliability of a system, we can see that the system’s reliability is indeed a

function of fault occurrences. It is worth noticing that the provided algorithm guarantees

the selection to be optimal in reliability for a certain number of upcoming faults.

When comparing the reliability of two systems, one that is more robust for a

small number of upcoming faults is not necessarily more reliable for high fault occur-
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rences. The simple example in figure 5.4(c) shows that reliability for a low level of

fault occurrences depends largely on δ(Nf), while for a high level of fault occurrences

depends more on the number of spare units (n).

Figure 5.6 presents a concrete example, where two bipartite graphs are shown

with the same number of edges and the number of spare unit nodes. For two fault

occurrences, BG1 has a failure rate of 1/16, since the system becomes unrepairable

when both faults occur on the one node with degree 1. For three fault occurrences, BG1

becomes unrepairable only when: 1) two of the three faults occur on the single node

with degree 1, or 2) all the 3 faults occur on any single node. For BG2 however, when

the three faults occur among the upper three nodes that share two spare unit nodes, the

system becomes unrepairable. Such patterns outnumber the unrepairable patterns for

BG1 under three faults. Consequently, the reliability of BG2 is worse than BG1 under

three faults, even though with two faults BG2 is more reliable.

Fault # 1 2 3

R(BG1)

R(BG2)

1

1 1

15/16 50/64

37/64

BG1 BG2

Figure 5.6: Reliability comparison for two bipartite graphs under different fault occur-

rences

Nevertheless, when a decision has to be made without any knowledge of the fu-

ture fault occurrences, the proposed fault tolerance algorithm is able to make a selection

that is optimal for the “near future” for upcoming faults. In practice, concentrating on

the reliability of the system against the “near future” upcoming faults is certainly more

fundamental and tangible than making the system more reliable in the probability sense

for the “far future”, after a long sequence of fault occurrences.
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Furthermore, such a fault tolerance algorithm makes a localized decision, since

the information required is limited to the neighborhood of the candidate spare unit

nodes. For a faulty functional unit u, the algorithm compares and selects among the

|d(u)| accessible spare units. Since the selection needs the information of δ(adj(vi)) for

each candidate spare unit vi, each spare unit (vi) can store the degrees for all its neigh-

boring functional unit nodes (d(adj(vi))), as well as the minimum degree among them

(δ(adj(vi))). The decision of spare unit allocation can therefore be made quickly based

on polling and comparing the stored information among all the candidate spare units.

After performing the repair with the selected spare unit node, updated degree

information needs to be propagated to the neighborhood for consistency. For a selected

spare unit node v, all its neighboring functional units (adj(v)) need to be updated by

decreasing the degree of each by one. Then, the change of degree information of each

functional unit node (ui ∈ adj(v)) needs to be propagated to its neighboring spare units

(adj(ui)), to keep the corresponding information stored in these spare units uptodate.

Consequently, communication required to perform a repair is limited to the candidate

spare units, i.e., the adjacent nodes of the faulty functional unit (adj(u)). The informa-

tion update after the repair process is propagated to a wider range neighborhood: first to

the adjacent functional unit nodes of the selected spare unit node (adj(v)), then to the

neighborhood of this set (adj(ui), where ui ∈ adj(v)).

5.2.5 Discussion

Overall, the proposed model provides a general framework for the reliability of

systems equipped with shared redundancy, with locality constraints. The online fault

tolerance algorithm provides an optimal solution for a limited number of upcoming

faults, and can be achieved by using localized communication and decentralized control

only.

In practice, beside the framework established by the reliability model and the

defect / fault tolerance algorithms, a number of issues need to be considered:
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1. Whether the spare units are kept standby or involved in computation as redun-

dancy?

2. When the spare units are loaded with redundant computations, the boundary

between functional units and spare units becomes blurred.

3. For a system that supports preemption, i.e., reversible reconfiguration, what is

the algorithm, and what is the tradeoff between reliability benefit versus perfor-

mance overhead?

4. For defect tolerance, the bipartite graph matching provides one solution, possi-

bly among multiple ones. How to direct the defect tolerance process so as to

guarantee that the resulting system is more robust towards run time faults?

5. The bipartite graph representation is powerful in modeling any arbitrary topol-

ogy layout. However, when the system is rather large yet laid out with high

regularity, heuristic solutions involving less communication overhead need to be

developed.

6. For a system at a low design hierarchy level, a simpler algorithm without opti-

mality might be preferred; communication overhead might need to be decreased

furthermore.

These are all highly relevant perspectives of a system with its specifications. In

the following section, we provide a case study involving the defect / fault tolerance in na-

noelectronic environment with shared redundancies, namely an online repairable NMR

system. Rather than providing a straightforward example with the solution provided by

the general framework discussed in the previous section, we try to look into the specific

issues disclosed above for the given case study.

Applying the generalized bipartite graph based framework would provide a solu-

tion for both defect and fault tolerance. However, it would certainly demand much more

significant overhead due to the size of the bipartite graph. In addition, the many detailed
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parameters provided by the specific case is not addressed in the general bipartite graph

based model.

Instead, we provide heuristic algorithms for defect and fault tolerance for the

given specific system, taking into consideration some particular issues mentioned above.

We can see that, when the specific parameters are given for a system of high regular-

ity, efficient heuristic approaches can be developed to achieve powerful defect / fault

tolerance capabilities.

Overall, the bipartite graph based model is highly beneficial in terms of provid-

ing a general framework in performing evaluation and research on the novel emerging

reliability challenge, namely the redundancy sharing under locality constraints. Under

such a framework, a genre of defect and fault tolerance approaches can be developed.

Particularly, the algorithms can be directly applied to systems at high design hierarchy

levels, where optimality in terms of repair is crucial while the control and communi-

cation overhead for carrying out the optimal repair algorithm can be amortized by the

complex computation performed by the functional units.

5.3 Case study: Flexible NMR Supported by Reconfig-

uration

The traditional NMR technique is rigid for the number of redundant copies.

When N is preset to a fixed number, the system either can no longer guarantee correct-

ness when the redundancy is below the fault occurrences, or becomes wasteful when

the redundancy is set to aim at the worst case scenario. More importantly, the locality

issue is not addressed in traditional NMR approaches. These challenges make the well-

known fault tolerance approach hardly applicable to the nanoelectronic systems, which

are highly unreliable with strict locality constraints.

To solve these problems, localized sharable redundancy can be added to intro-

duce flexibility to an NMR approach. A voter with multiple failing computational units
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Figure 5.7: An example flexible NMR grid structure with five-modular redundancy ini-

tialized

can then allocate the spare units (denoted as “backup units” in this case study) to main-

tain the NMR structure with desirable fault tolerance. We present a structure denoted as

flexible NMR henceforth that deals with the defects and faults in the computation units,

which occupy the majority of components and constitute possibly the main concern from

the reliability perspective.

5.3.1 Nanofabric topology for flexible NMR

We use a grid structure since it is representative of a number of nanofabrics [18,

26]. Nanoelectronic computational units, which perform ALU operations are placed

in the grid structure. Due to the interconnection constraint, fast communication can

be attained only among neighboring components in the grid. In the example shown

in figure 5.7, we assume voters (shown as diamonds) and units (shown as circles) are

placed at the crosspoints of the grid structure.

As an example each voter shown on figure 5.7 is initialized with five-modular

redundancy1. A voter uses five out of the eight accessible units. These five units are
1A level of five modular redundancy is utilized solely for illustrative purposes in this discussion, while

the actual quantity in a particular implementation would need to be determined based on a more precise
understanding of the exact fault rates in nanotechnology.
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denoted as in-use units while the remaining three units are denoted as backup units. In-

use units are connected to the voter by solid lines and backup units are connected by

dotted lines. These backup units are utilized as in-use units by the neighboring voters,

representing the flexible additional redundancy for the voter on an as needed basis. With

this configuration, three out of the five in-use units of a voter serve as backup units for

other neighboring voters. All voters except those in the bottom row are initialized with

five modular redundancy. Voters in the bottom row are initialized with extra redundancy

of eight in-use units each.

Figure 5.8 shows a number of failing units on the example grid where faulty

computation units are denoted as black dots. A voter needs to maintain a certain pre-

defined fault tolerance capability threshold. In this example, we have defined the thresh-

old to be three fault-free in-use units. The clustering of failing units results in the loss

of fault tolerance capability for a number of voters. Particularly, two voters indicated in

black diamonds in the figure have fault tolerance capability fall below the pre-defined

threshold.

In fact, when the number of fault-free in-use units of a voter falls below the

threshold, a voter can acquire the backup units from its neighbors to recover from this

loss in fault tolerance capability. When a voter tries to utilize a backup unit, the neigh-

boring voter that is currently using the unit releases it. Then, the newly acquired unit

is reconfigured to perform the computation required by the acquiring voter. Figure 5.9

shows a reconfiguration of backup units and in-use units to withstand the failing units

of figure 5.8, such that all the voters can retain a fault tolerance capability that is above

the threshold.

Due to the localized communication constraint, communication between voters

and units, including the comparison of data and the transfer of reconfiguration infor-

mation, is limited to a voter and its surrounding units. In order to flexibly adjust the

redundant backup units in the presence of a possibly unbalanced distribution of faults,

redundancy needs that cannot be met locally should be propagated and transferred to

distant areas. Essentially, when a voter fails to acquire enough backup units from its
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Figure 5.8: A number of failing units in the grid example result in loss of fault tolerance

capability for two voters

local neighborhood, this redundancy requirement should be propagated until it reaches

a region of the nanofabric with available backup units.

There are two issues that need to be considered when constructing an underlying

nanofabric topology to support propagation of redundancy needs that cannot be satisfied

locally. The first one is to avoid cycles in a resource request propagation path. The sec-

ond issue is to direct propagation of the backup unit request towards nanofabric regions

rich in available redundancy.

A cycle of resource request propagation represents a deadlock situation. One

way to avoid cycles is by properly designing the reconfiguration algorithm. However,

this requires both global control and complex checking mechanisms in the algorithm,

thus making its online implementation hard on a simple voter. An alternative way to

avoid cycles in the propagation path is to enforce properties that preclude cycle forma-

tion in the underlying nanofabric topology. In the example of figures 5.7 to 5.9, the un-

derlying nanofabric topology enforces a unidirectional propagation of information about

backup units. The nanofabric grid is initialized so that every voter has three units below

it as backup units and the other five as in-use units. When a voter needs to acquire a

backup unit, it always acquires redundancy from the neighboring voters in a lower row.

In turn, every voter’s three in-use units on the upper row can be requisitioned by the
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Figure 5.9: A possible reconfiguration for the flexible NMR grid example to withstand

faulty units

neighboring voters in the row above it and so on. The rows of voters therefore represent

different levels in the propagation of requests for backup units and the propagation of

reconfiguration information always flows downwards.

Although the second issue of directing the unmet redundancy requests towards

resource-abundant voters relies largely on the reconfiguration algorithms, it imposes

certain properties on the underlying nanofabric topology to help attain algorithmic op-

timality. In the example of figures 5.7 to 5.9, by enforcing unidirectional propagation

of resource information, such information propagation terminates either at a voter with

available resources, or at a voter at the edges of the nanofabric. In the example, the vot-

ers at the edges, especially those at the bottom edge, are initialized with relatively more

redundant resources. This extra redundancy at the edges maximizes the probability that

such resource requests for redundant resources succeed.

Essentially, any topological structure that satisfies the following properties can

be used to support flexible NMR.

• Each voter is initialized with an above-threshold number of in-use units and can

access some backup units locally.

• Nanofabric topology enforces unidirectional propagation of requests for backup
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units.

• Extra redundancy is embedded at points where such information propagation

terminates.

These properties specify a genre of regular structures with the example shown

and analyzed being one possible instance. Various nanofabric topologies can be con-

structed by varying the number of units connected to each voter, the number of neigh-

bors per voter, the number of voters that can access a shared backup unit etc. Figure

5.10 shows another possible structure with four-modular redundancy embedded in each

voter.

Figure 5.10: An alternate topology of flexible NMR structure

5.3.2 Reconfiguration Algorithms

The proposed regular nanofabric topology enables flexible reconfiguration of

voter-unit connections. Although redundancy is embedded around every voter with the

initialized NMR, an effective reconfiguration algorithm is needed to re-allocate units to

overcome the impact of faulty units on the fault tolerance capability.

We consider two cases:
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• When the system is running, dynamically occurring faults might degrade the

number of fault-free units for a voter below its pre-defined threshold. For this

case, we propose a dynamic reconfiguration algorithm with simple and localized

control in section 5.3.3 to maintain the fault tolerance capability of the victim

voters.

• After the manufacturing process, a large number of defects are typically identi-

fied. Clustering of some of these defects might result in foregoing even the initial

fault tolerance capability in a number of voters. We propose a static reconfigu-

ration algorithm in section 5.3.4 that reconfigures the resources according to a

manufacture-time defect map. Since this algorithm can be carried out offline, it

can be complex.

5.3.3 Dynamic Reconfiguration

The dynamic reconfiguration algorithm is applied on a per-fault basis. It is in-

voked whenever a voter compares the results of its in-use units and identifies a faulty

unit.

• Dynamic reconfig(Voter v, Unit u)

//invoked when voter v identifies a faulty unit u; return success if v is above FT

threshold after reconfiguration, return failure otherwise

1. release u as an in-use unit, mark u as faulty

2. if v’s fault-free in-use units exceed threshold, return success

//still enough fault tolerance capability, no need to repair

3. if v has insufficient fault-free backup units, return failure

//there is not enough redundancy, so no possibility of repair

4. while (v’s fault-free in-use units below threshold)
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(a) if all the fault-free backup units have been visited, return failure

//when all the backup units are critical to their voters; then no one is

available to repair v

(b) pick a fault-free backup unit u0, which is an in-use unit of a neighbor-

ing voter v0 on the lower row

(c) if v0’s surrounding fault-free units exceeds threshold

//otherwise releasing u0 would sacrifice v0

i. configure u0 to be an in-use unit of v

ii. inform v0 to perform Dynamic reconfig(v0, u0)

5. return success

In this algorithm, the voter first deals with the two simple cases: no need to

repair, or not repairable. If fault tolerance capability is above the threshold, no reconfig-

uration is needed. If voter v cannot gather sufficient fault-free backup units to maintain

the threshold fault tolerance capability, then the reconfiguration process signals a failure.

Except for the two simple cases, the voter needs to allocate backup units. In

this case, the voter allocates the backup units based on the situation of the neighboring

voters that are using these units for their own NMR computations. Suppose a fault-free

backup unit u0 is used by a neighboring voter v0 as an in-use units, then the reallocation

of u0 for v should not result in an unacceptable fault tolerance capability for voter v0.

In other words, if u0 is one of the crucial fault-free in-use units of v0 and there is no

fault-free backup units for v0, then u0 should not be allocated from v0. Otherwise, u0

can be allocated for v, and v0 is notified for an update and possibly needs to utilize its

own backup units.

In the flexible NMR approach, a confirmed computation consists of two phases:

the computation phase and the confirmation phase. In the confirmation phase the voter

performs a majority vote for the multiple computation results and applies the dynamic

reconfiguration algorithm if a faulty unit is identified. The reconfiguration of a unit starts
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to take effect at the subsequent computation phase; therefore the computation prior to

the voting remains valid and is not cancelled by the reconfiguration of any related units.

In this algorithm, a voter accesses available resources locally and the commu-

nication consists of quite simple messages. Therefore, this algorithm can be applied

online with localized control of low complexity. The reconfiguration process of a voter

might propagate through the neighboring voters according to the availability of redun-

dant resources in the local area:

• If there are no available resources in the neighboring area, then the voter in-

evitably fails and no propagation path is necessarily formed.

• If the redundant resources in the neighboring area are abundant, then the re-

configuration of the starting voter can be easily achieved without invoking the

reconfiguration of other voters.

• If the resources in the local area are available yet limited, then the voter success-

fully acquires the resource, and initiates a chain of reconfiguration processes for

other voters along the unidirectional propagation path.

In the worst case, the dynamic reconfiguration results in one failure voter, regardless

of the formation of a propagation path. Figure 5.9 is essentially the resulting configu-

ration of applying the dynamic algorithm on the example grid, regardless of the fault

occurrence sequence.

When multiple faults occur on a single voter, the algorithm can proceed as long

as the faulty units remain the minority in the voting process. When faults occur on mul-

tiple voters, the algorithm can be executed by the voters in parallel. If two neighboring

voters are trying to do the reconfiguration at the same time and the reconfiguration in-

volves a common unit, then according to the flexible NMR topology and the dynamic

reconfiguration algorithm, the voter at the higher level in the unidirectional propagation

path allocates the unit while the other voter is forced to invoke another reconfiguration

process at the next confirmation phase.
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5.3.4 Static Reconfiguration Algorithm

After manufacturing test in nanoelectronic fabrication, a defect map can be gen-

erated with the location of each defective unit. Applying the dynamic reconfiguration

algorithm on the given defect map does not necessarily yield the best solution for bal-

ancing and recovering the most number of defective units. Since the algorithm needs

only to be carried out once and can be performed off-line, it can utilize the global defect

map and incorporate more complex control.

• Static reconfig(flexible NMR structure v[N ][M ])

//applied to a structure with N × M voters connected to units that are marked

correspondingly by a defect map; redistributing redundancies so as to recover

the FT capability for the maximum number of voters; return the reconfigured

structure

1. for i = 1 to N − 1 //from the bottom row up

(a) for j = 1 to M //from left to right

– if voter v[i][j]’s defect-free surrounding unit below threshold, mark

v[i][j] as fail

//insufficient redundancy to recover FT capability

(b) for j = 1 to M

//from left to right deal with voters in row [i + 1], first with the ones

that necessitate reconfiguration

– if v[i+1][j]’s defect-free surrounding units below threshold, mark

v[i + 1][j] as fail

//insufficient redundancy to recover FT capability

– if v[i+1][j]’s defect-free in-use units below threshold, reconfigure

available backup units of v[i + 1][j] as in-use units until threshold

FT capability achieved

//perform reconfiguration
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(c) for j = 1 to M //from left to right

//deal with other voters in row [i + 1]

for every backup unit u of v[i + 1][j]

if u’s voter in row [i] has more than the threshold number of

in-use units, assign u as in-use unit for v[i + 1][j]

//push the redundant resources upwards

2. return the reconfigured v[N ][M ]

The static reconfiguration algorithm tries to minimize the number of failing vot-

ers through a global resource reorganization. It starts from the bottom row of voters,

which are initialized with the most redundant resources. According to the topologic or-

der of processing voters from the bottom row upwards, the algorithm tries to push the

extra redundancy in the last row upwards and utilizes it to recover the fault tolerance

capabilities of voters with defective units.

When processing each row, the algorithm first updates the voters in the current

row, i, identifies the defective units of voters in row i and marks out the unrepairable

voters. After row i has been updated, the algorithm tries to push the maximum possible

available resources in row i to its upper row i + 1 as long as the non-failing voters in

row i retain above threshold fault tolerance capability.

However, the distribution of resources from row i towards row i+1 needs to sat-

isfy firstly the crucial voters in row i + 1. A voter in row i might have limited redundant

resources to distribute upwards; therefore distribution needs to make the highest priority

to the voters that necessitate repair. The algorithm goes through the voters in row i + 1

from left to right, assigning the redundant resources to the crucial voters first.

After performing the reconfigurations for the crucial voters, the remaining re-

dundant resources of voters in row i are assigned to the remaining voters in row i + 1.

Since the static reconfiguration algorithm starts from the resource abundant bottom row

of voters and pushes redundant resources upwards, it can redistribute the limited redun-

dant resources more effectively in a global manner.
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Figure 5.11: The resulting example grid configuration after applying the static algorithm

on a given defect map

In the case of no defects, after performing the static reconfiguration algorithm,

the new configuration map becomes the upside down version of the original configura-

tion. The voters in the uppermost row are assigned with the extra resources and become

the terminating points of the unidirectional propagation paths. Figure 5.11 shows the

configuration of the grid example after performing the static algorithm on a given defect

map of figure 5.8. The static algorithm starts from the resource abundant bottom row up,

resulting in a configuration with the top row having the most abundant resource. The

resulting topology of a static algorithm still satisfies the criteria of the flexible NMR

structure, thus supporting the application of the dynamic reconfiguration algorithm at

the operation-time for the fault tolerance of the nanofabric.

5.3.5 Simulation Results

To verify the proposed strategy, we have simulated the proposed flexible NMR

approach in C++. Our main target is to investigate how much fault tolerance capability

can be achieved under various fault rates by the proposed flexible NMR approach. We

compare the proposed strategy to the traditional NMR approach that utilizes exactly the

same amount of hardware resources. We investigate different grid sizes varying from
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10 × 10 to 30 × 30 and measure the voter failure rate under multiple fault rates. For

the static reconfiguration algorithm, a randomly generated defect map is setup for every

fault rate point. The same defect map is used to test the effectiveness of the traditional

NMR approach and the dynamic reconfiguration algorithm, for the purpose of a fair

comparison. To test the dynamic reconfiguration algorithm, the faulty units on the defect

map are ordered randomly in a sequence and the algorithm is invoked by the sequence

of the occurring faults. The result is exhibited through the ratio of failing voters, i.e.,

the number of voters that cannot maintain the threshold fault tolerance capability of

three fault-free in-use units divided by the total number of voters in the grid. Consistent

results are observed across different sizes of grid structures.

Figure 5.12 shows the comparison of the proposed algorithms to the traditional

NMR approach. The data are obtained on a 30 × 30 grid structure. The x axis indicates

the fault rates of units in the nanoelectronic environment; the y axis shows the ratio of

failing voters, with the smaller percentage indicating the higher fault tolerance capabil-

ity. For each fault rate of the units, the algorithms are repeated 50 times and the average

results are shown.

The dotted curve shows the results of traditional NMR. Basically a voter can

only utilize its initially assigned in-use voters and fails when its fault-free in-use unit

number falls below three. The middle curve indicated by the “+” sign shows the results

of performing the dynamic reconfiguration algorithm whenever a unit becomes faulty.

The lowest curve with the “*” sign represents the result of performing the static recon-

figuration algorithm with a predefined rate of injected defects.

It can be observed that both the dynamic and the static reconfiguration algorithm

perform significantly better than a typical FMR approach without any flexibility. As is

to be expected, the static algorithm outperforms the dynamic algorithm when the unit

fault rate is high, which starts from around 0.4 as is shown in figure 5.12.

Figure 5.13 presents a zoom-in view of the comparison in the unit fault rate range

[0, 0.2]. It can be observed that the proposed static and dynamic algorithms perform

equally well and can almost guarantee the fault tolerance of all the voters within this
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Figure 5.12: Comparison of Flexible five modular redundancy using static and dynamic

reconfiguration vis-a-vis traditional five modular redundancy.

fault rate range.

5.4 Conclusions

The severe reliability challenge of future nanoelectronic systems imposes fault

tolerance as a fundamental requirement, and furthermore requires considerations on: 1)

high fault rate, 2) regular structured topology, and 3) strictly localized interconnect.

In this chapter, a model that captures the locality particularities in fault tolerance

approaches, particularly in terms of redundancy sharing, is proposed. The model is

applicable to any specific topology or layout of a nanoelectronic system, and serves as a

basis to formulate both the defect and fault tolerance problems under locality constraints.

We provide the associated algorithms for both defect and fault tolerance approaches

on various system models with a detailed case study for a given topology on a grid

topology. Particularly, the case study illustrates the approach of a flexible N modular

redundancy scheme, with enhanced fault tolerance capability by introducing flexibility

and adaptability exploiting the regular structure of nanofabrics.
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Figure 5.13: Comparison of Flexible five modular redundancy using static and dynamic

reconfiguration vis-a-vis traditional five modular redundancy in 0-0.2 fault rate range.



Chapter 6

Defect Aware Logic Mapping in Nano
PLAs

The bottom-up self-assembly fabrication process of nanoelectronics imposes

high regularity on the nano fabric, indicating crossbar-based regular structured logic

in nanoelectronic systems. While programmable logic arrays (PLAs) are naturally sup-

ported by such a regular structure, new challenges associated with the defects and con-

nectivity emerge for the logic synthesis on nanocrossbar based PLAs.

Specifically, the strict topological constraints in the length and connectivity of

nanowires, in addition to the massive defects in the nanofabric, lead to a fundamen-

tal difference between the nanoelectronic crossbar logic and the classic PLA structure.

Mapping a logic function to the underlying nano crossbar can no longer be guaranteed

successful, unless performed in a particular way that matches the specific topological

constraints.

In this chapter we present the mathematical model for the problem of logic map-

ping in the nanoelectronic environment. Based on the model, we develop the corre-

sponding algorithm to address the emerging mapping problem in nano PLA logic syn-

thesis process. We further provide a number of enhancement techniques to improve

algorithm runtime by significantly cutting down on the unnecessary backtracking pro-

116
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Figure 6.1: Logic function mapping in traditional PLA versus nanowire crossbars

cesses. Overall, a new topological constraint imposed by the nanoelectronic charac-

teristics is identified and formulated. The established model and algorithm provide an

important initial step for logic synthesis in the nanoelectronic environment.

6.1 Motivation

Evidently, mapping a logic function onto a regular PLA is quite straightforward

since the PLA structure provides the full flexibility of mapping a logic variable to any

vertical wire and mapping a product term to any horizontal wire. However, for a na-

noelectronic crossbar structure, this mapping has to obey certain constraints, due to the

existence of massive breaks. On the one hand, the nanowires are broken periodically

due to the limited wire length and connectivity. The locations of these regular breaks

are defined according to the particular crossbar design, and knowledge about them is

thus available at the fabric time. On the other hand, a large number of random breaks

are introduced by the manufacturing defects. These rather arbitrary breaks demand a

post-fabric testing process to identify the locations.

Figure 6.1 provides an example of a logic function implemented in a traditional
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PLA and a nanowire-based crossbar with a number of breaks in wires. In this example,

if in the first step we map variable a to the vertical wire A, then the selection for the

product terms ab and acd is immediately constrained to the horizontal wires {β, δ} since

these are the only two wires crossing wire A.

It can be seen from this example that mapping a variable or a product term onto

a specific nanowire imposes constraints on the subsequent mapping. Therefore, (i) de-

termining whether a logic function can be successfully mapped to a specific crossbar

with topology constraints and (ii) finding a mapping, if one exists, constitute important

new challenges for logic synthesis on nanelectronic crossbars.

6.2 Logic mapping in nano crossbar

6.2.1 Bipartite graph model

The process of mapping a logic function onto a topologically constrained cross-

bar based nanofabric can be essentially modeled mathematically by mapping it to the

matching problem of two bipartite graphs.

Definition: A bipartite graph B(N, N ′, E) is a 3-tuple where N and N ′ are two

disjoint sets of nodes and E is a set of edges. Every edge e ∈ E connects a node n ∈ N

with a node n′ ∈ N ′.

Consider a two-level logic function in a sum-of-products form. The relationship

between the logic variable set and the product term set can be represented by a bipartite

graph, with node set Nvar representing the logic variables and node set Nprod represent-

ing the product terms. In the logic function bipartite graph, there exists an edge between

a node in Nvar and a node in Nprod if and only if the corresponding product term contains

the variable. Figure 6.2(a) illustrates the bipartite graph of the logic function shown in

figure 6.1.

A crossbar architecture can also be represented by a bipartite graph, with one set

of nodes representing the horizontal nanowires and the other set of nodes representing
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the vertical nanowires. A crosspoint connection between two orthogonal nanowires can

then be represented as an edge in the bipartite graph. A nanowire crossbar with breaks

in the regular structure (either periodic due to the topology constraints or arbitrary due

to fabrication time defects) is shown in figure 6.1 and its bipartite graph representation

is shown in figure 6.2(b).

When using a crossbar structure to implement a two-level logic function, the

relationships between the product term set and the variable set in the logic function are

represented by the connections between the horizontal wires and the vertical wires in

the crossbar. The problem of mapping a two-level logic function onto a target nanowire

crossbar entails matching each variable and each product term with specific nanowires

in the crossbar structure, such that the relationship between a variable and the product

term pair can be represented by activating the device at a crosspoint in the crossbar. This

logic function to crossbar mapping problem can be formulated as embedding the logic

function bipartite graph into the nanowire crossbar bipartite graph.

Definition: bipartite graph embedding: Given a logic function bipartite graph

B1(Nvar, Nprod, E1) and a crossbar nanofabric bipartite graph B2(Nvert, Nhor, E2),

find a node mapping (M : Nvar → Nvert; Nprod → Nhor) such that ∀(n, n′) ∈ E1, (n ∈
Nvar, n

′ ∈ Nprod), (M(n), M(n′)) ∈ E2 holds.

The dotted lines on Figure 6.2(c) illustrate a valid mapping from the logic func-

tion bipartite graph in figure 6.2(a) into the crossbar bipartite graph shown in figure

6.2(b).

A CMOS PLA with full connectivity essentially represents a complete bipar-

tite graph with an edge between every pair of nodes in the horizontal wire and vertical

wire sets. Embedding an arbitrary bipartite graph onto a complete bipartite graph is

straightforward, due to the full connectivity of the target complete bipartite graph. Con-

sequently, mapping a specific product term or variable of a logic function onto a wire in

the CMOS PLA does not impose any further constraints on the subsequent embedding

steps. The process of mapping a logic function onto the CMOS PLA structure is thus

trivial. On the contrary, the bipartite graphs corresponding to nano crossbars are not
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Figure 6.2: Bipartite graph representations of (a) a sum-of-product logic function and

(b) a nanowire crossbar with (c) a successful embedding

complete bipartite graphs, due to breaks in the wires as discussed. Hence, the mapping

of a specific node in the logic function bipartite graph onto a node in the nanowire cross-

bar bipartite graph imposes a number of constraints on the subsequent embedding steps.

In general, the bipartite graph embedding problem can be reduced to the NP-complete

problem of Balanced Complete Bipartite Subgraph, indicating the fact that this problem

has exactly the same complexity as the problem of searching for the largest possible

perfect sub-crossbar.

6.2.2 Embedding algorithm

We develop a recursive algorithm to embed the logic function bipartite graph

B1(Nvar, Nprod, E1) into the nanowire crossbar bipartite graph B2(Nvert, Nhor, E2),

such that all the edges in B1 can be mapped to the existing edges in B2.

EMBED (N1 ⊆ (Nvar ∪ Nprod), N2 ⊆ (Nvert ∪ Nhor))

//taking as input B1’s unmapped node set N1 and B2’s unmapped node set N2

1. if (N1 = �): //no more unmapped nodes in B1

return success

2. if (N2 = �): //no more unmapped nodes left in B2 to map N1, thus fail
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return fail

3. select one unmapped node n1 ∈ N1

4. if (n1 ∈ Nvar): //variable → unmapped vertical wires

repeat steps (a) - (d) for every node n2 ∈ (Nvert ∩ N2)

else (n1 ∈ Nprod): //product term → unmapped horizontal wires

repeat steps (a) - (d) for every node n2 ∈ (Nhor ∩ N2)

(a) justify n1 → n2: if n1 can be mapped to n2, mark n1 → n2;

else repeat with a different n2

(b) EMBED (N1 − n1, N2 − n2)

(c) if (success):

return success

(d) else (fail): //backtrack, try a different n2

cancel the mapping from n1 to n2

5. return fail //tried every n2 in the set, failed to map n1 to any possible node,

therefore impossible to map N1 → N2

The above algorithm embeds B1 to B2 in two steps. First, it maps one node

from B1 to B2. Then it recursively solves the reduced embedding problem with the re-

maining unmapped nodes. The critical part of the EMBED algorithm is the justification

step in 4(a), which is responsible for pruning unsuccessful trials when traversing the

solution space. The sufficient condition required to be checked at step 4(a) to perform

the justification is as follows: assume E1 is the edge set of B1 and E2 is the edge set of

B2, then a node n1 in B1 cannot be mapped to a node n2 in B2 if

∃(ñ1 ∈ B1 and ñ2 ∈ B2), ñ1 already mapped to ñ2, (n1, ñ1) ∈ E1 while

(n2, ñ2) /∈ E2.

For an already mapped node ñ1 that is connected to n1 in B1, if the edge (n1, ñ1)

cannot be embedded in B2, then such a mapping of node n1 does not lead to a valid
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solution. If all the unmapped nodes in B2 are justified as unmappable to n1, then the

algorithm fails.

6.2.3 Heuristics to prune impossible mappings

For a particular n1 in B1, the recursive EMBED algorithm explores a number

of solution subspaces, each determined by a possible selection of n2 from B2. The

algorithm is capable of exploring all these subspaces for a solution by performing a

sequence of trial mappings from n1 to each possible n2. To expedite the process of

searching for a valid solution, it is crucial to identify and prune subspaces which have

no solutions at an early stage. We propose three heuristic justification criteria on top of

the basic sufficient condition in step 4(a), so as to enhance the pruning capability, and

improve the algorithm runtime.

Fanout embedding heuristic

According to the constraint imposed in the mapping process, when n1 ∈ B1 is

mapped to n2 ∈ B2, the fanout nodes of n1 are deemed to be mapped within the fanout

nodes of n2. Therefore, if the number of edges connected to n1, i.e., the degree of n1,

exceeds the degree of n2, then such a mapping is deemed to fail as it cannot lead to any

valid solution. In the example of figure 6.2, node c in 6.2(a) can be mapped to node

A, B, D, E, but not C in 6.2(b) according to this criterion, since node c in 6.2(a) has a

degree of 2 while node C in 6.2(b) has a degree of 1.

Furthermore, during the mapping process, it is possible that a subset of the fanout

nodes of n1 as well as a subset of the fanout nodes of n2 have been mapped already.

Therefore, a more precise justification should consider the fanout nodes that have not

yet been mapped. Basically, if the number of unmapped fanout nodes in n1 is larger

than the number of unmapped fanout nodes of n2, then n1 cannot be mapped to n2.

Otherwise, we denote that n1 can be fanout embedded to n2. For m the total number of

nodes in B1 and B2, the justification process of n1 to n2 is of O(m) time.
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Fanout-fanout embedding heuristic

When n1 in B1 is mapped to n2 in B2, then the unmapped fanout nodes of n1,

denoted as Φ(n1), are to be mapped within n2’s unmapped fanout nodes, denoted as

Φ(n2). If n1 → n2 leads to a valid solution, then there should exist a valid mapping

Φ(n1) → Φ(n2). If there is no mapping to guarantee a fanout embedding from every

node in Φ(n1) to Φ(n2), then n1 → n2 does not lead to any valid solution.

Consider a simple example in figure 6.2. Node ab in figure 6.2(a) has 2 un-

mapped fanout nodes a and b with out degrees 2 and 3. Node ε in figure 6.2(b) has 2

unmapped fanout nodes C and D with out degrees 1 and 3, respectively. Although ab

and ε have the same number of unmapped fanout nodes, mapping ab to ε does not lead

to any valid solution, since there is no way to map Φ(ab) to Φ(ε).

The justification process for n1 with n2 has a time complexity of O(m2). Going

through sorted Φ(n1) and Φ(n2) takes O(m log m), which is dominated by the calcula-

tion for the degree numbers in Φ(n1) and Φ(n2), which takes O(m2).

Fanout chain embedding heuristic

Suppose we have a bipartite graph B1(N1, N1′, E1) with node n1 ∈ N1; then

the fanout node set of n1, denoted as Ψ(n1), is a subset of N1′. We can observe that

the set Ψ(n1) has a fanout set that contains nodes that are connected to any member of

Ψ(n1). The fanout set of a node set N is defined as Ψ̂(N) =
⋃

n∈N Ψ(n).

Assume that n1 is mapped to n2 in B2(N2, N2′, E2); then not only is Ψ(n1)

deemed to be mapped within Ψ(n2), but also the fanout set of Ψ(n1) is to be mapped

within the fanout set of Ψ(n2). Therefore, n1 → n2 implies Ψ(n1) → Ψ(n2), which

further implies Ψ̂(Ψ(n1)) → Ψ̂(Ψ(n2)), Ψ̂(Ψ̂(Ψ(n1))) → Ψ̂(Ψ̂(Ψ(n2))), and so on.

For ease of representation, we define the following:

Ψ̂1(N) = Ψ̂(N); Ψ̂i+1(N) = Ψ̂(Ψ̂i(N)).

The sequence of Ψ̂i(N) is denoted as a fanout chain and an example is shown

in figure 6.3. Figure 6.3(a) shows the two bipartite graphs and figure 6.3(b) shows the
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Figure 6.3: Fanout chain embedding example

fanout chains of node n1 and n2 for the two bipartite graphs. We define height chain as

is shown in figure 6.3(b):

H(n1) = (|Ψ̂1(n1)|, |Ψ̂2(n1)|, |Ψ̂3(n1)|, ...)

A necessary condition for the mapping of a node n1 to a node n2 to lead to a valid

solution is that the fanout chain of n1 must be mapped into the fanout chain of n2. The

height chain of n1 consequently needs to be smaller at every point than the height chain

of n2. As is shown in the example of figure 6.3, n1 cannot be mapped to n2 since

H2(n1) = 3, which is larger than H2(n2) = 2.

Based on the information of height chain, the following condition is sufficient

to determine that node n1 ∈ B1 cannot be mapped to a node n2 ∈ B2: ∃i such that

Hi(n1) > Hi(n2). Basically, if at any point the height chain of n1 is greater than the

height chain of n2, then the fanout chain of n1 cannot be embedded into the fanout chain

of n2. Otherwise, there is a fanout chain embedding from n1 to n2.

For any node n1 ∈ N1 in B1(N1, N1′, E1), it can be shown that H2i(n1)

and H2i−1(n1) are two monotonically increasing functions, with the upper bound for

H2i(n1) being |N1| and the upper bound for H2i−1(n1) being |N1′|. Furthermore, these
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two functions reach their maximum values within MAX(2|N1|, 2|N1′|) steps. This

implies that the height chain for any node in a bipartite graph reaches a maximum value

in a limited length bounded by MAX(2|N1|, 2|N2|) and remains constant afterwards.

Therefore, calculating the height chain of any node takes time O(m) where m is the

number of nodes in the two bipartite graphs B1 and B2. In fact, since the degree of

each node is constant, the Ψ height chain needs to be calculated only once before the

algorithm starts.

6.2.4 Heuristic justification summary

Figure 6.4 shows an overall illustration of the three heuristic conditions de-

scribed in the previous subsection. Basically, as is shown in figure 6.4a, the fanout

embedding heuristic prunes illegal mappings according to the fanout number of n1 and

n2. The fanout-fanout embedding heuristic prunes illegal mappings according to the

fanout number of all the fanout nodes of n1 and n2, thus performing more aggressively

by gathering information one step further beyond n1 and n2, as is shown in figure 6.4b.

Invoking advance justification can help aggressively reduce the number of sub-

spaces to explore by processing larger amounts of information ahead. However, the

more aggressive, the more time overhead the justification process itself requires. It is

certainly possible to go beyond the fanout-fanout embedding, to implement more ag-

gressive justification criteria. However, the number of cases to investigate for such an

advancement in justification grows exponentially. Essentially, a complete justification

process that detects all the invalid searching subspaces has exactly the same complexity

as the bipartite graph embedding problem itself. In the application of the proposed algo-

rithm, the level of justification that achieves the best run-time depends on various issues

such as the size of the logic function and the connectivity of the nano crossbar; thus the

decision should be made according to the specific trade-off points.

Figure 6.4c shows an example of the fanout chain embedding justification, which

instead of performing aggressive precise justification targeting individual nodes, keeps
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fanout embedding fanout−fanout embedding fanout chain embedding

Condition3

n2

Figure 6.4: Examples for all the heuristic justification conditions

track of the quantitative variation regarding a set. Therefore, it avoids the tracking of

exponentially increasing the number of possibilities when targeting individual nodes,

thus enabling it to monitor the entire chain of the fanout set for a particular node with

very low computational overhead.

The proposed fanout chain embedding justification essentially performs a fanout

embedding justification on each point of the chain to form a height chain. It is certainly

possible, however, to extend this approach, by applying a more aggressive justification

such as the fanout-fanout embedding on each chain point, forming a more complex

structure than the proposed height chain. Doing so, again, represents a tradeoff between

the computational complexity of performing the justification and the reduction in the

backtracking processes in the algorithm.

6.3 Experimental results

The proposed algorithm is implemented in C++. While the basic version solely

uses the fanout embedding heuristic, the advanced version uses all the three heuristics to

cut down on backtracking significantly. The algorithm is run on a computer with 2.8GHz
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CPU and 1GB memory, under the Linux operating system. Table 6.1 summarizes the

experimental results of embedding the logic function bipartite graph onto a nanowire-

based crossbar bipartite graph for four logic synthesis benchmarks from the LGSynth93

benchmark set [50].

For each of the benchmarks, we use multiple nanowire-based crossbars (each

representing a different defect map or topology constraints) by using the corresponding

bipartite graph. The size of the crossbar (size column in table) is determined according

to the number of variables and product terms in the logic function. The connectivity of

the crossbar (degree column in table) is defined as the fixed number of nodes that each

node is connected to. The crossbar size increases with the crossbar degree. The find

mapping column lists whether the algorithm has successfully found the mapping and

the run-time column illustrates the number of seconds spent in running the algorithm

for the particular benchmark configuration. We set a runtime limit of 1200 seconds for

both versions of the algorithm. When this limit is exceeded, the algorithm returns a

failure indication and is denoted as “> 1200” in the table.

It can be seen from table 6.1 that the success of the mapping of a logic function

onto a nanowire-based crossbar and the running time of the embedding algorithm de-

pend heavily on the connectivity of the crossbar. This is true for both the basic and the

advanced versions.

• When the connectivity is exceedingly low, the search space for exploration is

limited. Therefore, it is easy to justify at the decision point that none of the

search spaces leads to a solution. Obviously, the algorithm fails to return a suc-

cessful mapping within a very low run-time under this case.

• As connectivity increases, the search space grows exponentially. Backtracking

is required to explore the solution space for a possible solution. The runtime of

the algorithm then sharply increases with the increased connectivity. Under this

case, where the search space is huge with only a limited number of solutions,

the search process takes an exceedingly long time. When connectivity further
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increases, so do the number of valid solutions in the search space. Therefore, the

identification of solutions while exploring the solution space is straightforward.

Although both versions show similar behavior, increasing connectivity levels for

the underlying crossbar favor the advance algorithm, which utilizes all three heuristics,

cuts off backtracking processes and is thus significantly faster than the basic algorithm.

In fact, in a number of cases, the basic algorithm runs for more than the preset time limit

(1200s) without returning any successful mapping while the advance algorithm returns

a valid solution within a few hundred seconds.

6.4 Conclusions

With nanoelectronic technologies evolving at a rapid clip towards practical re-

alization of nanoelectronic computing systems, it is important to identify and propose

research on the new challenges emerging during their design process. In this chapter, a

new challenge of mapping a logic function onto a nanowire crossbar is identified, un-

der the inherent constraints of limited connectivity and unreliability. The research work

presented in this chapter sets up an important initial contribution in the logic synthe-

sis for nanoelectronics, opening up multiple future research directions, including the

decomposition of large logic functions onto nanoelectronic crossbar structures and an

incremental bipartite graph creation integrated with the defect testing procedure of the

nanofabrics.
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Table 6.1: Experimental results for selected logic synthesis benchmarks
PLA # of Crossbar Crossbar find mapping? run-time (s)

circuit inputs size degree basic adv basic adv
rd53 10 11 4 × × 17 1

13 5 × × 149 16
15 6 × × 909 114
17 7

√ √
1 1

21 9
√ √

3 1
25 11

√ √
6 0

misex1 16 16 4 × × 581 81
18 5 × × > 1200 > 1200
20 6

√ √
1072 4

22 7
√ √

768 80
24 8 × √

> 1200 203
26 9 × √

> 1200 441
5xp1 14 18 3 × × 1 1

20 4 × × 103 1
22 5

√ √
19 13

24 6
√ √

13 12
26 7

√ √
6 2

28 8
√ √

7 2
bw 10 13 3 × × 1 1

15 4 × × 1 12
17 5 × × > 1200 > 1200
19 6 × × > 1200 > 1200
21 7 × × > 1200 > 1200
23 8 × √

> 1200 66
25 9 × √

> 1200 32
27 10 × √

> 1200 52
29 11 × √

> 1200 79
31 12 × √

> 1200 115



Chapter 7

Applying Error Checking Code on
Carry-Save Arithmetic

This chapter focuses on a new approach for fault tolerant arithmetic computa-

tions for nanoelectronic systems, by exploiting the emerging new characteristic of Nega-

tive Differential Resistance (NDR), which has been displayed in multiple nanoelectronic

device candidates. Basically, the NDR characteristic can be used to support representa-

tional redundancy in the form of multi-valued logic (MVL), based on which Carry Save

Arithmetic (CSA) can be implemented, not only to provide significant speedup in com-

putations, but also to enable efficient fault tolerance approaches to be applied. In this

chapter, we show how a linear block code based information redundancy fault tolerance

scheme can be applied to the CSA operations in the NDR based nanoelectronic sys-

tems. We further examine the design space in implementing the proposed scheme and

illustrate that an overall optimal configuration can be achieved in the representational

redundancy and hardware redundancy implemented by using multiple bits.

It is widely known that linear block code based schemes can provide an optimal

fault tolerance capability with the amount of redundancy given, yet their application is

typically restricted to domain of data transfer and storage subsystems. Therefore, by

proposing the linear block code based fault tolerance scheme in the arithmetic compo-

130
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nents, we envision a unified fault tolerance approach across the multiple subsystems of

arithmetic, storage and communication in a nanoelectronic system.

7.1 Preliminaries

Hardware redundancy is one commonly used approach to enhance reliability.

Dynamic faults occurring during the runtime of the system demand much more aggres-

sive fault tolerance schemes than the static manufacturing defects. Hardware duplica-

tion based approaches applied for the fault tolerance requirement typically use a major-

ity vote among multiple redundant computations. Illustrative fault tolerance strategies

of this type include R-fold module redundancy and NAND multiplexing [85]. Since

large amounts of computational resources are available in nanotechnology based sys-

tems, hardware redundancy has been perceived as an attractive approach. Circuit-level

fault tolerance for signal processing [25], probabilistic construction of logic gates [60],

NAND multiplexing [30, 31, 66], the flexible NMR approach [70] and the hardware/time

hybrid redundancy approach [67, 68] constitute approaches in this direction at various

hierarchical levels. However, research has shown that in order to achieve an acceptable

level of reliability enormous amounts of hardware redundancy (in the order of 103 to

105) might be necessary to cope with failure rates in the order of 10−2 to 10−1 [62].

Recomputation in time is an alternative approach to concurrent error detection

and correction to guard against transient faults [64, 67, 68, 84]. Since the computation is

performed a second time with the same unit, this approach requires less hardware over-

head. However, time redundancy based fault tolerance delays the computation, thereby

compromising system performance. Furthermore, the application of a time redundancy

based approach on permanent faults demands subsequent online diagnosis and reconfig-

uration phases, which are time and hardware consuming.

Information redundancy is widely used to implement fault tolerance in commu-

nication and storage systems. Error detection and correction are performed by orga-

nizing the redundant information in the data according to a strict algebraic structure.
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Figure 7.1: Multipeak characteristic of I-V curves of negative differential resistance

nanotechnologies

In CMOS technology, several information redundancy based arithmetic fault-tolerance

techniques have been developed [61, 65, 83]. Coding based fault tolerance approaches

have been proposed on highly regular logic blocks such as PLA-like crossbar structures

in nanoelectronic systems [77].

7.1.1 NDR based Multi-valued logic

Despite the fact that the dominant systems implemented under CMOS technol-

ogy are binary based, various research on the topic of multi-valued logic has been pro-

posed due to its capability of reducing interconnection complexities and the enhanced

storage of information per unit area [9, 17, 35, 37, 40]. Nanotechnologies such as

resonant tunneling diodes (RTD), resonant tunneling transistors (RTT) and molecular

electronics have been investigated for their potential to enable ultra-high speed and ex-

tremely dense circuits [10, 55]. The current-voltage curves in these nanotechnologies

display multiple negative differential resistance (NDR) areas. Figure 7.1 shows an ex-

ample of the multipeak current-voltage curve with five peaks.

The multiple-folded nature of the current-voltage curves in these NDR nanotech-

nologies facilitates compact multi-valued logic circuit implementations as an N -peak
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NDR device can support N +1 logic states. [3, 56, 86]. Due to the high switching speed

and the folded nature of the I-V curves, multi-valued logic with a large number of logic

states has been shown to be of practical importance [90]. Fifteen state SRAM cells [90],

six state counters [49] and multiple-state logic gates [73, 87] have been designed. Multi-

valued logic based arithmetic component designs have also been proposed [28]. It can

be therefore projected that future nanoelectronic systems based on these NDR devices

are highly likely to be constructed with multi-valued logic systems, which provide high

representational capability and with less interconnection congestion.

7.1.2 Carry Save Arithmetic

The carry save technique has been developed as a classic strategy to cope with

the carry propagation delay problem in arithmetic unit design [45, 63, 88]. Carry save

arithmetic uses a redundant number system to absorb the carry bits and further eliminate

the carry propagation entirely. Carry save arithmetic operations can be performed with

a constant delay regardless of the number of bits in the operands, making this technique

extremely appealing in enhancing performance. The elimination of carry propagation

also provides potentials in applying coding based fault tolerance techniques [65]. Recent

research has explored the design of binary logic based carry save addition using 1-out-

of-3 codes [83].

To clarify the general carry save principle, an example of carry save addition

is shown in figure 7.2. It can be observed from the example that the sum of the two

operands is initially represented as a position sum, where the carry bits are absorbed us-

ing the representational redundancy. Each digit of the position sum is then decomposed

into two digits, the interim sum and the transfer digit, based on the radix. In the last

stage, the final sum digits are obtained by adding up the interim sums and the transfer

digits. It can be seen from the example that, due to the carefully selected operand digit

range [0, 11] and the radix 10, the final addition of an interim sum digit (within the

range [0, 9]) and a transfer digit (within the range [0, 2]) always falls in the operand



134

Operand digit in [0, 11]

Position sums in [0, 22]

Interim sums in [0, 9]

Transfer digits in [0, 2]
Sum digits in [0, 11]

+

1511

1 5 2

1 1 0 2
1 2 2

7 26

13 9

3 9

1
6 3 11

5 8 7

22

11
1110

3

Figure 7.2: Carry save addition supported by a 23-valued NDR nanotechnology.

digit range [0, 11], thus introducing no carry propagation. Overall, carry propagation is

entirely eliminated throughout the whole carry save addition process.

In general, consider a carry save addition of two operands in radix r on a redun-

dant number system where each digit can be represented in a range larger than r. The

operand digits are set to be in the range [0, α] and the sum of any two operand digits

falls in the range [0, 2α]. This sum vector with the digits in the range [0, 2α] is typically

represented without any carry digit and denoted as the position sum. The position sum

needs to be translated back into the range [0, α], and is decomposed into an interim sum

and a transfer digit according to the radix r, where:

position sum = transfer digit × radix + interim sum

The interim sum digits are therefore in the range [0, r − 1] and the transfer digits are in

the range [0, b(2α)/rc]. If the following equation can be satisfied:

b(2α)/rc + r − 1 ≤ α (7.1)

then adding an interim sum digit to a transfer digit yields a final sum digit in the range of

[0, α] without generating any carry. Therefore, the sum of the two operands is computed

without generating any carry propagation with the sum digits remaining in the operand

digit range [0, α]. In general, to perform a single carry save addition for n operands

without introducing any carry propagation, equation 7.1 needs to be modified to:

b(nα)/rc + r − 1 ≤ α (7.2)
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In binary logic (where r = 2) inequalities 7.1 and 7.2 do not have any positive

solutions for α, hence making it infeasible to perform carry save addition. Instead, the

carry save technique is only used to reduce the number of operands (typically from 3 to

2) in multi-operand additions. Thus, carry save addition is typically used as an important

building block to speed up the multi-operand additions in binary multipliers.

On the other hand, since NDR nanotechnologies can implement multi-valued

logic with a sizable number of logic states, they can support redundant number sys-

tems that satisfy inequality 7.1 and even further inequality 7.2 with a certain n. General

addition can then be performed without carry propagation. When applied in the multipli-

cation operation, the carry save technique can speed up the intermediate multi-operand

addition as well as the final sum calculation.

7.1.3 Linear Block Codes

A linear block code C(n, k) encodes a k-digit1 dataword into an n-digit codeword

(n > k). The codewords are constructed with a strict algebraic structure enforced, by

exploiting the redundancy in the coding space. The (n− k) redundant digits are used to

enforce the algebraic structure for each valid codeword [7]. Specifically, a linear block

code is constructed based on a finite field GF (q) of q numbers. The field operations of

addition, subtraction, multiplication and division can be performed on the field elements.

A well constructed linear block code can achieve the maximum fault tolerance capability

provided by the redundant information. For example, a (7, 4) Hamming code is a linear

block code on GF (2) with n = 7 and k = 4 using three digits of redundant information

to provide 2-digit error checking and 1-digit error-correction capability for any 4-digit

dataword. Linear block codes have been widely applied in communication systems due

to their well-defined structure and scalability: the level of error detection/correction

capability can be precisely determined by a number of systematic ways to form the

algebraic structure [7].
1We use digit instead of bit so as to indicate that the number system is based on multi-valued logic,

rather than limited to binary logic.



136

The algebraic property of a finite field GF (q) requires that q = pm, where p is a

prime number and m is a positive integer. The number of field elements is either a prime

number p (i.e. m = 1) or a power of a prime number p (i.e. m > 1). When m = 1,

the field operations addition and multiplication are identical to the modulo p operations

of arithmetic addition and multiplication. Therefore, when a finite field is constructed

from a prime number of elements, the field operations within the range of p are identical

to the corresponding arithmetic operations.

A linear block code C is a subspace of the linear vector space GF (q)n. Each

element of C (i.e., an n-digit valid codeword) is a vector on the finite field GF (q).

According to the properties of linear block codes, the linear combination of any two

codewords is always a valid codeword. The zero vector, since it is a member of any

linear vector space, is always a valid code. A codeword can be generated by multiplying

a dataword with a generator matrix G. The generator matrix G can be represented in

a systematic form of G = [I|P ], where I is the identity matrix and P is a k × (n − k)

matrix. When generated by a systematic matrix form, the resulting codeword has the

original dataword as its leftmost k digits.

The Hamming distance of two codewords v1 and v2 is the number of different

digits between v1 and v2. The Hamming weight of a codeword v is the number of non-

zero digits in it. A basic lemma shows that, if d is the minimum Hamming weight over

all non-zero codewords in C, then the Hamming distance between any two codewords

must be a multiple of d. The minimum Hamming distance of any two valid codewords

is also d.

The set of vectors that span the vector space orthogonal to C constitutes the

check matrix H for C. Since H is the orthogonal complement of G, multiplying a valid

codeword by H always generates a zero vector. A non-zero result, defined as a syndrome

vector, indicates an invalid codeword and can be used to identify the corresponding valid

codeword from a syndrome table. Suppose an error occurs and changes e digits of a

codeword c into c′: if e < d, then the error is detectable since the error vector c′ cannot

be a valid codeword. If e ≤ b(d − 1)/2c, then the erroneous codeword can be corrected
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to the codeword with the minimum Hamming distance to c′.

7.2 Motivation

To guarantee online fault tolerance for the nanoelectronic arithmetic compo-

nents, we propose an information redundancy based carry save arithmetic approach as a

practical technique for the emerging nanotechnologies based on the following observa-

tions.

• In emerging systems based on nanotechnologies, fault tolerance schemes are re-

quired at various design hierarchical levels and in multiple subsystems. Fault tol-

erance strategies are required to ensure reliable data transfer and storage. Linear

block code based approaches have been successfully applied in the data commu-

nication and storage area for online fault tolerance as mature techniques due to

their optimality in checking/correcting errors and the existing systematic way to

construct them. It can be envisioned that in a future nanoelectronic system, linear

block codes are inevitably required to support reliable data transfers over unre-

liable interconnections and to guarantee the correctness of the data stored in the

memory blocks. Therefore, if the same technique can be extended to the arith-

metic components, then the existing encoding/decoding hardware for the data

transfer and storage systems can be utilized without adding extra overhead. Fur-

thermore, with a unified linear block code interface, arithmetic components can

directly utilize the codewords transferred or stored and perform the fault tolerant

arithmetic operations without delay. Overall, a unified linear block code based

fault tolerance approach to interconnection, storage and arithmetic subsystems

can eliminate the intermediate encoding/decoding process at the interfaces of the

multiple subsystems and effectively minimize encoding/decoding time and the

associated hardware overhead in the entire system.

• Negative Differential Resistance (NDR) is an important characteristic of a num-
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ber of emerging nanoelectronic devices, thus making them naturally support

multi-valued logic with large numbers of logic states. In a multi-valued logic

based system, a native digit-level redundant number system can be easily imple-

mented. Carry save arithmetic is then ideal for providing a significant perfor-

mance boost by eliminating the carry propagation and achieving constant delay

in the basic addition operation.

Traditionally, despite its significant advantage in the speedup for computation,

carry save arithmetic is not popular among CMOS based binary systems due

to its requirement of being processed based on a high radix of three or more.

With the emerging nanoelectronic devices exhibiting the NDR characteristics,

carry save arithmetic can be constructed on a multi-valued logic system which

naturally supports the high radix computations.

• With carry save arithmetic, carry propagation is eliminated. This provides signif-

icant potential for applying information redundancy based fault tolerance schemes.

Online faults are not as prominent a problem in the CMOS systems; thus the ben-

efit of eliminating carry propagation for fault tolerance purposes is not as signif-

icant in the CMOS systems. However, as nanoelectronic devices are highly un-

reliable and online faults are projected to be significantly high, aggressive fault

tolerance schemes become the fundamental requirement of constructing the fu-

ture nanoelectronic systems.

In general carry save arithmetic, the basic addition process is split into three

stages, each without any propagation of carries. Within each stage the addi-

tion operation can be mapped to an identical field addition operation when a

proper finite field is carefully chosen. The arithmetic operation therefore can be

checked with the algebraic structure of a finite field and a linear block code can

be therefore applied for fault tolerance purposes.

The main challenges in applying linear block code based fault tolerance in carry

save arithmetic under the nanoelectronic environment essentially consist of the follow-
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ing three aspects.

1. The elimination of carry propagation in carry save arithmetic makes it possi-

ble to maintain the strict algebraic structure necessitated for linear block codes.

However, the basic addition process in a CSA computation is split into three

stages, which include not only addition, but also a decomposition phase. Con-

sequently, challenges remain as of how to apply linear block codes on all the

stages to guarantee the fault tolerance throughout the computation process.

2. The construction of a fault tolerant CSA on multi-valued logic involves a number

of parameters, including the number of logic states for the multi-valued logic, the

range of radix and operands in the CSA configuration, as well as the finite field

construction parameters in the linear block code. Not only do these parameters

need to be carefully considered together to make the system work, but also there

exist multiple possibilities in the design space, depending on the selection of the

various parameter combinations. Therefore, achieving optimality in constructing

such a fault tolerant system remains challenging.

3. The fault tolerant capability of such an approach needs to be evaluated and veri-

fied. This is particularly important for the nanoelectronic environment, as relia-

bility becomes a fundamental concern.

In the following sections, we address these challenges by proposing a linear

block code based fault tolerance scheme on nanoelectronic CSA components. We fur-

ther provide a discussion on parameter selection to attain system optimality, as well as

a proof for the fault tolerance capability of the proposed approach.

7.3 Fault tolerant carry save arithmetic

In this section we present the basic theory of the proposed approach by first

describing the mathematical underpinnings with an example, followed by the tradeoff



140

OP1

OP2

1 0 0 0 0 0 
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0 
0 0 0 0 1 0
0 0 0 0 0 1

1 0 
2 0 
3 0 
0 1  
0 2
0 3

=

=

Check Matrix

0   6   7    3    2   11     10   17

GF(23)built on
codeword

22  21  20   0    0    0    1   0 
 0    0    0   22  21  20   0   1 defined on 

G, H

in range [0, 22]in range [0, 11]
dataword:

original check
symbols:

GF(23)

MatrixGenerator

G =
0   5   8   10   7   11     11   11

H  =T

Figure 7.3: An example linear block code on GF (23). The codeword is composed of

four data digits and two check symbols.

discussion on the implementation aspect.

7.3.1 Linear Block Code based Error Checking in Carry Save Ad-
dition

We use the running example of figure 7.2 that is based on the configuration of

(r = 10, α = 11). In order to construct an algebraic structure where the field operation

is identical to the arithmetic operation for error checking, we need to choose a finite

field with a prime number of elements to construct a linear block code. In this example,

we use the prime number 23 to construct the finite field GF (23), i.e., q = 23, such that

the position sum with the largest range of [0, 22] can be covered. Since the final sum

might be one digit longer than the operands, we extend the operands by adding a zero to

the left.

The generator matrix of a linear block code on GF (q) can be constructed in

a systematic form according to a given specification of how many faults need to be

checked/corrected at the same time. Figure 7.3 shows an example generator matrix G,

check matrix H and two codewords for the operands. The code symbols are generated
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OP1

OP2

HF  x        = 

C  x        = H

+

correct result  C =

faulty  result    F =

0    6    7     3     2    11      10   17

sum
position

=
0

=
0

0(11x21+15x20+21x1) mod 23

0    5    8    10    7    11      11   11

0   11  15   13    9    22      21    5
0   11   5    13    9    22      21    5

(13x22+9x21+22x20+5x1) mod 23

(11x21+5x20+21x1) mod 23 7

(13x22+9x21+22x20+5x1) mod 19

( mod 23 )

Figure 7.4: Error checking during position sum calculation entails multiplying the check

matrix H with the position sum.

by multiplying the six data digits with G. For example, for the data word OP2, the first

check symbol is obtained as 10 = (6 × 2 + 7 × 3) mod 23 by multiplying it with the

second to last column of G. Since the generator matrix G is in a systematic form, the left

six digits of the codeword are identical with the dataword and the rightmost two digits

serve as the check symbols. According to the linear block code theory, the validity of a

codeword can be checked by multiplying it with the check matrix H and checking if the

result is zero.

As can be seen from the example in figure 7.2, a carry save addition is performed

in three stages:

Stage 1: The position sum is calculated by adding the two operands digit by digit.

Stage 2: The position sum is decomposed into an interim sum and the transfer digits.

Stage 3: The interim sum digits and the shifted transfer digits are added to generate the

final sum.
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Error checking during the position sum calculation

Figure 7.4 explains the error checking during position sum calculation using the

running example. The two 8-digit operand codewords are added to generate an 8-digit

position sum. Since each position sum digit is within the range of GF (23), this addition

process is identical to the field addition, i.e., modulo 23 addition. The correctness of

the position sum calculation can be verified by checking whether the result codeword is

valid using the check matrix H . Basically, a valid codeword, when multiplied with the

check matrix H under a field operation, should yield a zero vector. Figure 7.4 also shows

the situation when an error occurs in the third digit of the position sum, thus changing

the correct value 15 to the faulty value 5. When this faulty position sum is multiplied by

the check matrix H , it results in a non-zero syndrome vector (7, 0), indicating an error.

This syndrome vector can also be used to determine the correct result using a syndrome

table [7].

Error checking the position sum decomposition

In the second stage of a carry save addition, the position sum is decomposed

into the interim sum and transfer digits according to the radix r. Unfortunately, such

a 1-to-2 decomposition differs from the addition process, which is inherently a linear

combination process. Decomposing the check symbols according to this transformation

does not yield correspondingly two valid codes. Therefore, we cannot directly apply the

validity checking of linear block code. This can be observed from the example shown in

figure 7.5 that the check symbols of the interim sum, (17, 4), are not the decomposition

results of the position sum check symbols (21, 5) based on radix 10.

Nevertheless, applying a linear block code for fault tolerance necessitates the

exploitation of the linearity in the operation. We make the observation that such a de-

composition process is basically a reverse computation of the addition process, since

the position sum is essentially a linear combination of the interim sum and the transfer

digits. Based on this observation, fault tolerance in this stage can be approached in the
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opposite direction of the actual computation flow; Figure 7.5 shows the error checking

procedure. Consider a right-shift of the transfer digit vector by one digit and magnified

by the radix as a radix vector, and the position sum is exactly the sum of the radix vector

and the interim sum vector. Error checking and error correction can be then achieved by

performing the following checking: adding the code symbols of the interim sum with

the code symbols of the radix vector should generate the corresponding code symbols of

the position sum. The check symbols of the radix vector can be constructed by obtaining

the check symbols for the transfer digits first and then performing a field multiplication

by the radix.

position sum

interim sum

transfer digit

radix vector +

 mod
Compare

dataword

G

G

0   11  15  13   9   22         21    5

0    1    5    3    9    2          17    4

1    1    1    0    2          

0   10   10  10   0   20          4     1

21     5

23

check symbols

Figure 7.5: Error checking for the position sum decomposition stage entails checking if

codewords for the transfer digit vector and the radix vector add up to the check symbols

of the position sum.

Error checking the final sum

The final sum is obtained by adding the interim sum with the transfer digits.

Since each interim sum digit is in the range [0, 9] and each transfer digit is in the range

[0, 2], every digit in the final sum is in the range [0, 11]. Since this addition is identical

to the field addition on GF (23), the algebraic structure of the linear block code is pre-

served. In a manner identical to Stage 1, faults in this stage can be detected by checking

the validity of the final sum codewords. This error checking strategy is summarized in
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Figure 7.6.

0

0

G

interim sum

transfer digits+
mod

Check validity by 
Hfinal sum S

0    1    5    3    9    2          17    4

1    1    1    0    2    0           6     4

1    2    6    3   11   2           0     8

23

HS  x        = =
(3x22+11x21+2x20+8x1) mod 23

(1x22+2x21+6x20) mod 23

Figure 7.6: Error checking for the final sum entails multiplying the check matrix H with

the final sum.

Overall Flow

Figure 7.7 shows this overall flow of incorporating fault tolerance into the carry

save addition. In Stage 1, the two operands are encoded using G. The resulting operand

codewords are added to form a position sum codeword. This stage is checked by validat-

ing the position sum codeword using H . In Stage 2, the position sum is decomposed into

the interim sum and the transfer digits. The radix vector is obtained by right shifting the

transfer digits first, and then multiplying by the radix r. The check symbols for the radix

vector are added to the check symbols of the interim sum modulo q and compared with

the check symbols of the position sum. In Stage 3, the check symbols for the transfer

digit vector are calculated using G and the final sum codeword is generated by adding

the interim sum codewords and the transfer digit codewords modulo q. Error checking

in this stage is performed by testing the validity of the final sum codeword using H .

Concurrent Error Correction

The error correction capability in the linear block codes is determined by the

minimum Hamming distance d between any two codewords. When an error occurs with

e digits changed from a valid codeword c, if e ≤ b(d − 1)/2c, then the resultant error
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Figure 7.7: Fault tolerant carry save addition

vector c′ can be corrected to its nearest valid codeword. Typically, the implementation

of error correction in the linear block code approach is performed by building up a syn-

drome table, which stores the valid codeword for each group of erroneous codewords.

By looking up the resultant syndrome vector in the syndrome table, errors changing e

digits with e ≤ b(d − 1)/2c can be corrected [7].

7.3.2 Implementation Overview

The carry save arithmetic system needs to be constructed based on a redundant

number system with radix r and operand digit range α satisfying the condition of in-

equality 7.1. The algebraic field structure of finite field GF (q) is used to support the

application of a linear block code on error detection and correction. Various levels of

fault tolerance can be embedded into a system based on the expected defect rate, by



146

using an appropriate generator matrix G. Research in algebraic coding has provided

numerous methods of constructing G to check and correct a given rate of errors [7]. The

check matrix H is generated as the orthogonal complement of G. With a systematic

generator matrix, the resulting codeword always contains the original dataword as its

prefix. To encode, a dataword vector is multiplied by G under the field operation, i.e.

modulo q multiplication. Similarly, a codeword is checked by multiplying it with H

modulo q and checking if it yields a zero syndrome vector. A non-zero syndrome vector

can also be compared to a syndrome table for error correction.

Encoding / Decoding Process

While the encoding operation of a linear block code consists of multiplying a

dataword vector with the generator matrix G, the error checking operation entails mul-

tiplying a codeword with the check matrix H . The hardware for encoding and error

checking needs to implement a field multiplication of a vector with a matrix using the

basic field addition and field multiplication. Each field operation, such as addition or

multiplication, is essentially a function mapping from q2 to q. Consequently, there are

only q × q possibilities for each field operation on GF (q). The field addition and field

multiplication can thus be easily implemented with very small hardware overhead, pos-

sibly by storing all the q × q results in a multi-valued ROM-based look-up table. Such

encoding and error checking hardware is common across communication, storage and

arithmetic subsystems; thus the hardware overhead is amortized across all these subsys-

tems.

The major operation of error checking in every stage consists of the multiplica-

tion of a vector with the matrix G or H . In terms of computation latency, multiplying

an n digit vector with a matrix is the bottleneck. Multiplying an n digit vector with each

column of a matrix consists of: n 1-bit field multiplications followed by a field addition

of n elements. The n multiplications can be performed in parallel in one cycle. These

n results can be then added using a tree structure. The latency of the error checking
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process is thus dominated by the addition in the tree structure, which is O(log n). The

process of error checking does not interfere in the critical path of the arithmetic opera-

tions. Therefore, although the checking result might be delayed by a few clock cycles,

the checking operation in itself does not impact the overall system performance.

Finite field construction: trade-off between using MVL states and multiple digits
in hardware

Equation 7.1 essentially implies that r < α. Furthermore, it can be easily ob-

served that the radix r needs to be equal to or greater than three to have a positive integer

solution for α. A number of examples of (r, α) combinations that can satisfy equation

7.1 include (r = 3, α ≥ 4), (r ∈ [4, 6], α ≥ 7) and (r = 7, α ≥ 8).

To process the proposed fault tolerance on carry save arithmetic, a finite field

GF (q) needs first to be identified as a basis for the linear block code. The number of

elements in the field, q, should be a prime number and satisfy q ≥ 2α; i.e., q should

be a prime that is greater than the maximum possible value for the position sum digits.

This is to ensure that the arithmetic operations are then identical to the field operations,

which are modulo q computations.

Table 7.1: Hardware & representation redundancy tradeoff for CSA based on various

multi-valued logic states
Configurations MVL state # v OP digit # PS digit #

radix r = 3 2 3 × 4×
operand range α = 4 4 2 × 3×

operand #: 2 5 1 × 2×
position sum range 2α = 8 9 1 × 1×

radix r = 4 2 3 × 4×
operand range α = 5 4 1 × 3×

operand #: 2 8 1 × 2×
position sum range 2α = 10 16 1 × 1×

radix r = 5 2 4 × 6×
operand range α = 12 4 2 × 3×

operand #: 3 8 2 × 2×
position sum range 3α = 36 16 1 × 2×
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We now examine the various tradeoff points in the design space related to the

representation of q elements by the number of logic states supported in the multi-valued

logic system. Suppose the underlying nanoelectronic technology can support multi-

valued logic with v states. Table 7.1 exhibits the tradeoff between representational

power and the number of digits required in the proposed scheme for the multi-valued

logic systems with various logic state numbers v.

The two configurations are set up according to inequalities 7.1 and 7.2 as the

necessary conditions for performing the 2-operand and 3-operand carry save additions.

The “MVL state # v” column indicates the number of logic states v supported by the

underlying electronics. The “OP digit #” column shows the number of digits necessary

to represent each number in the operands under the radix shown in the corresponding

configuration. The “PS digit #” column shows the number of digits required to represent

each number in the position sum vector.

From the table we can see that, with 2-operand CSA based on radix 4, when

implemented in a binary system which only supports 2 logic states, 3 bits are necessary

to represent each operand digit. In other words, since the operand digits range from

zero to seven, we need at least three binary bits to represent each operand number.

Since position sum numbers have a larger range of 2α = 10, four bits are necessary in

binary. Essentially, a binary system needs to rely solely on extended hardware support

by multiple bits. It also can be observed from examining this case that, although four

bits are necessary, the representational capability of 16 states provided by four bits is

not fully utilized since the position sum can be at most 10 in this case. Similarly, under

the configuration of 3-operand addition in the lower half of table 7.1, a binary system

requires six bits to represent the range of 36 in the position sum.

With a multi-valued logic system, high radix numbers can be approached from

two directions: using the supported multiple logic states or using multiple bits. These

two dimensions provide higher flexibility in the multi-valued logic based carry save

arithmetic designs. For instance, with a multi-valued logic system supporting 8 states,

one digit is enough to cover the whole operand range (α = 5), while each position sum
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number still requires two digits. With a 16-valued logic system, the position sum is cov-

ered by the representational capability, thus necessitating no additional digits for either

the operands or the position sum. However, under this situation half of the represen-

tational range is reserved solely for the position sum addition process and is of no use

in the later stages of the carry save addition process. Since multi-valued logic systems

naturally support much more powerful representational capabilities, the implementation

of carry save addition can exploit the tradeoff between such a representational capability

and the number of digits required to represent each number.

It is worth noticing that the size of the field addition / multiplication table is

fixed by q; thus using a multi-digit representation does not increase the size of field

operation table. For the range of the position sum vector represented by multiple digits,

the corresponding table entries in the field operation table are listed in multiple digits as

well.

As is shown in table 7.1, multiple tradeoff points exist in a multi-valued logic

system when implementing the proposed scheme. For particular devices that support a

large number of states, multi-valued logic can afford an abundant representational re-

dundancy so as to implement compact carry save arithmetic designs with fewer number

of digits. When the underlying nanoelectronic device cannot provide enough logic states

to cover all the ranges of the operands and the position sum, tradeoffs can be made by

using the multiple digits to compensate for the lack of representational capability.

7.3.3 Extension to Other Arithmetic Operations

The proposed technique can be extended to other carry save arithmetic opera-

tions as follows:

• Subtraction is equivalent to adding the complement of a number; therefore, the

proposed scheme can be directly applied.

• Multiplication with constants is typically implemented as a collection of shifts-

and-adds. Since the error detection and correction for the shift operation by a



150

linear block code is easy to implement, the proposed scheme can be applied too.

• A general multiplication process uses multi-operand additions, and is typically

implemented by organizing several carry save addition blocks into a tree struc-

ture. Within each tree node, the carry save addition block can accomplish a

constant delay for the multi-operand addition; thus the total delay of the multi-

plication is proportional to the depth of the tree, which equals the logarithm of

the operand length.

The carry save addition block in a multi-operand addition process performs a

reduction on operand numbers by converting multiple operands into a single

position sum vector, which is further split into an interim sum vector and the

transfer digits. It is easy to observe that inequality 7.2 will be violated if the

radix r is less than or equal to n. This observation not only explains the reason

why carry save addition is not supported by binary system but nonetheless can be

applied in multi-valued logic, but also shows that the application of carry save

addition can be easily extended to multiple-operand addition, thus enabling a

fast multiplication process. The proposed linear block code based approach can

be applied similarly to the multi-operand carry save addition process. There-

fore, the proposed fault tolerance scheme can be extended to benefit the general

multiplication operation.

7.4 Error Checking Capability

It is difficult to justify and verify the error detection/correction capability of any

fault-tolerance technique proposed for nanotechnologies, since convincing experimen-

tal data are not available at this current research stage. However, with well-structured

information redundancy approaches such as linear block codes, it is possible to provide

a formal proof, not only to validate, but also thus to precisely quantify its fault tolerance

capability. Therefore, even despite the lack of knowledge regarding the implementa-
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tion details of the underlying nanotechnologies, the fault tolerance level of the proposed

scheme can be securely guaranteed.

In this section, we provide such a formal proof to show that the proposed tech-

nique can guarantee a predefined (d − 1)-fault detection capability in the carry save

addition operation. Since a carry save addition can be divided into three stages as de-

scribed in the previous section, the proof is constructed by validating the error checking

capability at each stage. We first outline some preliminaries and setups for the proof;

subsequently, the validation of the three stages is shown in three separate subsections.

Assuming we apply a linear block code C with the minimum Hamming distance

d between any two codewords, then

∀c1, c2 ∈ C, |c1 − c2| ≥ d.

The information redundancy in C should provide a (d − 1)-error checking capability.

We will show that, in each of the three stages of the carry save addition, any error that

changes fewer than d digits of the result can be detected by the proposed scheme.

Assume in the carry save addition, the operand digits to be within the range

[0, α]; then the position sum digits are within the range [0, 2α]. Suppose the linear

block code is constructed on GF (q), where q is a prime number ≥ 2α. Let us denote

the dataword, codeword and check symbols for a vector v as D(v), C(v) and K(v),

respectively. The encoding process using a generator matrix G = [I|P ] can be expressed

by K(v) = D(v) × P and C(v) = D(v) × G. Since G is constructed in a systematic

form, each codeword has its dataword as a prefix. Therefore, C(v) = [D(v)|K(v)].

7.4.1 Validation of Error Checking for the Position Sum Calcula-
tion

A position sum codeword C(ps) = C(op1)+C(op2) is calculated by adding the

codewords of the two operands. Since arithmetic addition is identical to field addition,

the resultant vector remains a valid codeword, i.e., C(ps) ∈ C. When an error occurs
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and changes e digits of C(ps), where e < d, we claim that the faulty position sum

codeword is invalid, i.e.,

C ′(ps) /∈ C.

This is because |C ′(ps) − C(ps)| = e < d, C(ps) ∈ C. Since the minimum Hamming

distance between any two codewords in C is d, if C ′(ps) ∈ C, we would have

|C ′(ps) − C(ps)| ≥ d > e,

a contradiction.

Therefore, C ′(ps) cannot be a codeword in C. The check in this stage performed

with H will justify C ′(ps) /∈ C with a nonzero syndrome vector.

7.4.2 Validation of Error Checking for the Position Sum Decompo-
sition

The linear block code based fault tolerance in this stage basically guards the

correctness of the position sum splitting by guaranteeing that the radix vector and the

interim sum add up to the position sum. The only case that a position sum digit is split

wrongly yet passes the check is under the rare situation that the position sum digit is

split into an incorrect interim sum digit and an incorrect transfer digit, such that the

incorrect radix digit and the incorrect interim sum digit add up to the exact position sum

digit. Under this situation it is easy to see that either the transfer digit or the interim sum

digit must fall out of the corresponding range illustrated in figure 7.2. Therefore, this

single rare fault can be prevented by performing a simple range checking on the interim

sums and the transfer digits, which is equivalent to a voltage range checking in the NDR

based devices.

We now provide the formal proof for the part that the linear block code can guar-

antee the correctness of the radix vector and the interim sum adding up to the position

sum.
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The dataword part of the position sum, D(ps), is split into two parts: the interim

sum dataword D(is) and the transfer digits dataword D(td).

D(td) is used to deliver the radix vector dataword D(rv) and the relationship

D(ps) = D(is) + D(rv) holds.

K(is) + K(rv) = D(is) × P + D(rv) × P

= (D(is) + D(rv)) × P

= D(ps) × P

= K(ps)

Error checking in this stage is performed by checking the equality relationship:

K(ps) = K(is) + K(rv). (7.3)

Suppose when a fault occurs, the position sum dataword D(ps) is split into the

erroneous D′(is) and D′(td). When

D′(is) − D(is) = e1, D
′(td) − D(td) = e2, e1 + e2 < d

holds, we want to show that

K(ps) 6= K ′(is) + K ′(rv) (7.4)

thus implying that the check in equation 7.3 does detect the fault.

Since the check symbols K ′(is) and K ′(rv) are generated by D′(is) × P and

D′(rv) × P , we have

[D′(is)|K ′(is)] ∈ C

and

[D′(rv)|K ′(rv)] ∈ C.

[D′(ps)|K ′(ps)] is the linear combination of the above two codewords under

field addition; therefore, [D′(ps)|K ′(ps)] ∈ C.
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Since |D′(td) − D(td)| = e2 and D′(rv) is derived from D′(td) digit by digit,

|D′(rv) − D(rv)| = e2.

Since

|D′(is) − D(is)| = e1

|D′(rv) − D(rv)| = e2

D′(is) + D′(rv) = D′(ps)

D(is) + D(rv) = D(ps)

We have:

0 ≤ |D′(ps) − D(ps)| ≤ e1 + e2 ≤ d.

Since the error actually occurs in the transfer digits, and D′(rv) is derived by multiplying

D′(td) with the radix r, then

|D′(ps) − D(ps)| 6= 0

D′(rv) + D′(is) = D′(ps) 6= D(ps)

Suppose K ′(is) + K ′(rv) = K ′(ps); if we can show

|K ′(ps) − K(ps)| > 0

then inequality 7.4 holds since

K ′(ps) 6= K(ps)

In fact,

|[D′(ps)|K ′(ps)] − [D(ps)|K(ps)]| ≥ d.

since we have [D′(ps)|K ′(ps)] ∈ C and [D(ps)|K(ps)] ∈ C, from the above proof, we

have:

0 < |D′(ps) − D(ps)| < d,

thus

|K ′(ps) − K(ps)| > 0

and the check in equation 7.3 can detect the fault.
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7.4.3 Validation of Error Checking for the Final Sum

In the third stage, the final sum vector is calculated by adding the codewords of

the interim sum and the transfer digit vector. Since the error checking mechanism in this

stage is identical to the one in the first stage, the proof of stage 1 can be applied to this

stage directly.

7.5 Conclusions

The proposed scheme achieves fault tolerance in arithmetic operations via in-

formation redundancy. The same strategy has been widely used for fault tolerance in

interconnection and memory subsystems. Within such a unified fault tolerance system,

data are stored, transmitted and calculated using linear block codewords. The same

error checking/correction unit can be used to provide fault tolerance for the different

components and during distinct operations of the system. The powerful fault tolerance

capability provided by information redundancy can be thus applied to the overall sys-

tem with highly eliminated hardware / performance overhead because of the sharing of

encoding / decoding hardware and process. For the future systems based on the un-

reliable nanoelectronic devices, such a unified fault tolerance scheme across multiple

components is particularly important, because aggressive yet efficient fault tolerance

approaches are essential due to the high rates of dynamically occurring faults in the

nanoelectronic systems.

By using a linear block code generated by a systematic generator matrix, the

proposed scheme achieves concurrent error checking without introducing any delays in

the critical path of the arithmetic operation. Error checking is performed on the check

symbol part of a codeword and does not interfere with the calculation of the datawords.

Therefore, the advantage of fast addition with constant delay provided by carry save

arithmetic can be fully preserved.

The proposed approach provides flexibility to adjust the fault tolerance and re-
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dundancy levels in two ways. First, different levels of fault tolerance can be achieved

by constructing linear block codes with a desired Hamming distance. Second, tradeoffs

can be made between the amount of decode/encode hardware and error checking delay.

The proposed technique utilizes the multi-valued logic support in nanotechnol-

ogy, yet does not depend on the specific underlying technology in the implementation

of the multi-valued logic. As a rather general approach, it can be applied to any nan-

otechnology that supports multi-valued logic, possibly based on the negative differential

resistance (NDR) characteristic displayed by multiple nanoelectronic device candidates.



Chapter 8

Fault Tolerant Computational Model
for Nanoelectronic Processors

For a processor architecture based on unreliable nanoelectronic devices, fault

tolerance is required to ensure the basic correctness of any computation. Since any

fault tolerance approach demands redundancy either in the form of time or hardware,

reliability needs to be considered in conjunction with the performance and hardware

tradeoffs. In this chapter, a new computational model for nanoelectronics processor ar-

chitectures is introduced, which provides flexible fault tolerance to deal with the high

and time varying faults. The model guarantees the correctness of instruction execution,

while dynamically balancing hardware overhead and performance penalty. The correct-

ness of every instruction is confirmed by multiple execution instances through a hybrid

hardware-time redundancy approach. To achieve high system performance, multiple

speculative computation branches are executed in parallel. Hardware resource growth

that these speculative computations entail is controlled so that the utilization of hard-

ware is balanced between the two competing goals of performance and fault tolerance.

Simulation confirms that the proposed computational model achieves flexible fault tol-

erance under a wide range of failure rates, while at the same time guaranteeing high

system performance and efficient utilization of hardware resources. In addition, the im-

157
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pact on the proposed computational model of other nanoelectronic characteristics are

discussed, including the necessity for localizing of interconnections and the regularity

of nanofabric structures.

8.1 Motivation

According to the above analysis, applying hardware or time redundancy based

fault tolerance schemes for the arithmetic/logic computation subsystem is the only choice.

However, this is challenging due to the high cost in either hardware resource or perfor-

mance. We motivate the proposed approach in this section by investigating a set of

conflicts among hardware resources, system performance and fault tolerance in a nano-

electronic architecture under high and time varying rates of faults.

Triple-Modular Redundancy (TMR) and in its generalized form, N-Modular Re-

dundancy (NMR), have been some of the most commonly applied hardware redundancy

based approaches for fault tolerance. To apply this straightforward strategy, an instruc-

tion can be computed by N distinct units in parallel and the result confirmed by a ma-

jority/plurality vote. This strategy is supported by the emerging nanotechnologies due

to the abundant hardware resources.

A careful analysis reveals however that this approach is practical only if the fault

rates are steady and the faults are evenly distributed, since the amount of redundancy

is predefined and fixed. With high occurrence of time varying faults, however, a low

predetermined number of computation units might generate distinct results and fail to

confirm the computation. On the other hand, setting the redundant computation unit

number high to match the worst case scenario consumes unnecessary hardware over-

head. Therefore, the rigidity of the NMR fault tolerance strategy makes it extremely

hard to match a predefined amount of redundancy with the high and varying fault occur-

rence in the nanoelectronic environment.

Consider a straightforward time redundancy strategy instead. Multiple clock

cycles may elapse before the result of an instruction can be confirmed. For time re-
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dundancy based schemes, recompute with shifted operand (RESO) can be used to deal

with dynamic permanent faults [64, 92]. However, the application of RESO is strictly

limited to a small subset of functions, such as the addition operation. For general arith-

metic/logic computation, a time-redundancy based scheme that reuses the same compu-

tation unit over multiple time slots is only effective for transient faults. If the component

becomes permanently faulty or the transient fault lasts across multiple cycles, distinct

computation units need to be allocated. Basically, both hardware and time redundancy

are required in a complementary manner, so as to provide high flexibility. With time

redundancy, an instruction is always confirmable despite the dynamically varying fault

rate, since it can always allocate new computation units at the next cycle when the cur-

rent results do not conform.

Severe compromises in system performance can be introduced by the time re-

dundancy based approach if subsequent instructions need to wait and contend for a

common centralized control unit, which performs both the instruction issue and the fault

tolerance control task. Such a centralized control becomes the performance bottleneck

in the system with time-redundancy based fault tolerance approaches. This problem

can be resolved by introducing more parallelism. In fact, the control for fault tolerance

purposes can be separated from the main architecture control unit, forming a second

level distributed control for fault tolerance. Supported by the abundant hardware re-

source in nanoelectronic environment, multiple dedicated control units can be used in

parallel, each performing a decentralized fault tolerance scheme for an instruction being

executed. Consequently, the latency caused by the time redundancy approach on one

instruction does not block the next instruction from being issued. By adding a new layer

of decentralized control units for fault tolerance purposes, instructions can be issued and

dispatched without stalls.

Computations at the processor architecture level are not isolated. The existence

of large number of dependencies among the instructions further causes complications

in the performance overhead of time redundancy based approaches. The main perfor-

mance bottleneck thus resides among the instructions with data dependencies. Basically,
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applying a time redundancy approach inevitably costs prolonged latency in the confir-

mation process. It might take an unpredictable number of cycles, as determined by the

time varying fault occurrence, before an instruction can be confirmed. Therefore, any

successor instructions that rely on the unconfirmed result of a current instruction have

to be delayed, resulting in a domino effect on the subsequent dependent instructions

and a tremendous number of stalls in an instruction pipeline. Consequently, the latency

introduced by time redundancy becomes a severe problem when data dependency exists

among instructions, especially in a pipelined environment.

To solve this problem, it can be observed that a dependent instruction need not

wait for the confirmation of its predecessor results; additional units can be used to spec-

ulatively execute an instruction. In other words, a dependent instruction can use the un-

confirmed results in a speculative manner. Multiple speculative branches may be formed

for a dependent instruction. As results are confirmed, the correct branches of the depen-

dent instruction are retained and the remaining branches are pruned. While speculation

can speed up instruction execution in the presence of data dependencies, one has to care-

fully manage the amount of speculation. Speculative branches can grow exponentially

and quickly exhaust the available hardware, furthermore compromising parallelism and

performance in a processor system. We will present an allocation algorithm that care-

fully manages the speculative instruction execution by allocating hardware frugally.

8.2 Nanoelectronic Processor Computational Model

In a nutshell, the key features of a high-performance fault-tolerant computational

model for the nanoelectronic processor architectures are:

• decentralized fault tolerance control units (denoted as voters) with a large num-

ber of complex computation units (denoted as C-units)

• fault tolerance scheme that utilizes hardware and time redundancy to guarantee

the correctness of computations
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• support for speculative instruction execution of dependent instructions

• hardware allocation algorithm that dynamically balances hardware resources and

system performance when dealing with speculation branches for dependent in-

structions.

8.2.1 Voter/C-unit structure

In the nanoelectronic environment where the device densities can be 1 to 3 or-

ders of magnitude higher than the current CMOS systems, a nanoelectronic processor

can support a large number of computation units. Under such a scenario, parallel instruc-

tion improve system performance. However, the parallel instruction execution demands

not only multiple execution units, but also decentralized control units to support fault

tolerance to guarantee correctness of each instruction.

In the proposed architecture for a nanoelectronic processor, the system includes

a pool of decentralized control units, denoted as voters. The control of the instruction

is handled over to the voter once such a connection is established with the allocated

voter. The centralized control performs the fetching, decoding and dispatching of the

subsequent instructions in the instruction queue without delay. The voters support the

parallel execution of the instruction and guarantee the correctness of the computations.

Specifically, when an instruction is issued, a voter is allocated to it. The voter man-

ages the reliable execution of the instruction by applying hybrid redundancy based fault

tolerance approaches.

Computation units (C-units), which carry out the actual arithmetic and logic

computations doing instruction execution, are managed by the voters. C-units are dy-

namically allocated by a voter, and receive from the voter the input values to perform

a specific computation. Upon returning result back to the voter, the C-unit is released

by the voter and is free for future allocations. In order to confirm the result of an in-

struction, a voter assigns the same computation to multiple C-units, and compares their

results. Figure 8.1 shows a functional view of the instruction issue process. It can be
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seen that the Issue Machine constitutes the highest centralized control while the voters

constitute the second level of decentralized control.

Dispatch Instruction
Allocate Voter

Pool

Voter C− Unit

Pool

Get instruction
Instruction
Queues

Issue Machine

Figure 8.1: Instruction issue process with voter/C-unit structure

8.2.2 Fault tolerant computation

In order to guarantee the correctness, an instruction should be confirmed by at

least two results in agreement.1 The fault tolerance computation is composed of two

processes:

1. an initial NMR hardware redundancy approach, followed by

2. a time redundancy approach, which continues invoking new computation in-

stances until two of the results conform.

The main idea behind such a hybrid approach is two-folded: 1) the hardware

redundancy based NMR provides an initial trial to confirm the instruction, such that

under the situation of low fault rate the computation can be quickly confirmed with

minimum hardware resource required; 2) the time redundancy based approach provides

full flexibility by trading off performance for reliability, so that high fault rates can be
1Note that in the computation of a processor architecture level the results typically consist of multiple

bits, and it is presumed that faults in computation units exhibit themselves in distinct ways. Therefore, the
faults occurring in multiple computation units tend to have negligible chances of generating a conforming
yet faulty result. Further insurance against letting faulty computations slip through can be attained by
increasing the threshold of agreement.
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handled in a hardware-efficient way. In this section, we provide an exposition of the

proposed scheme based on the minimum redundancy of 2 C-units.

Specifically, a voter accomplishes fault tolerance computation for each instruc-

tion by combining hardware and time redundancy in the following way. At the begin-

ning, the voter allocates two C-units for an instruction for the initial hardware redun-

dancy based NMR. Triple modular redundancy (TMR) is not necessary for this initial

allocation, since the follow-on time redundancy can be invoked if an instruction can-

not be confirmed with the initial C-units. After the execution, the unconfirmed values

are stored by the voter while the C-units are released so as to support the computation

requirement for other instructions. If the initial two results conform, then the instruc-

tion is deemed confirmed. Otherwise, the voter incrementally applies time redundancy

by allocating one C-unit at a time until two of the results agree and the instruction can

be confirmed. Similarly, each C-unit allocated during the time redundancy process is

released once the result is stored back to the voter.

The voter performs a comparison each time a new result is returned. Since the

previous stored results in a voter are all deemed distinct, the only possible agreement is

between one of the previously stored results and the newly returned result. Therefore,

only two-input comparators are needed in the voters and the number of comparisons

performed inside a voter equals the number of existing results stored in the voter. Figure

8.2 depicts the comparisons needed to be performed upon the nth result being available.
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Figure 8.2: Comparison performed in a voter when the nth result is returned
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Due to the involvement of time redundancy approach, the confirmation of an

instruction might demand unpredictable latency. For a multi-cycle pipelined proces-

sor architecture, such a confirmation process can stride across multiple cycles. In im-

plementing high performance processor architectures, pipelines of various depths have

been utilized, varying from the simple five-stage pipelines in RISC architectures to the

complex twenty-stage pipelines in Pentium 4 [33]. However, for the purpose of illustra-

tion, we make considerable simplification and divide an instruction confirmation process

into three pipeline stages:

a: Instruction decode and initial allocation of C-units by the voters.

b: Instruction execution carried out by C-units.

c: Result comparison and new C-unit allocation (if needed).

According to the above functionality division, the confirmation process of an instruction

has a pattern of {a, b, c, (b, c)∗}, which consists of a first initial allocation cycle (a),

and followed by a number of recurrent (b, c) steps, due to possibly non-conforming

comparisons.

Cycle:

 !  !  !  ! "!""!""!""!"
#!##!##!##!#$!$$!$$!$$!$ %!%%!%%!%%!%&!&&!&&!&&!&

'!''!''!''!'(!((!((!((!( )!))!))!))!)*!*
*!**!**!*
+!++!++!++!+,!,,!,,!,,!,
-!--!--!--!-.!..!..!..!.

/!//!//!//!/0!00!00!00!0
1!11!11!11!12!22!22!22!2
3!33!33!33!34!44!44!44!4

5!55!55!55!56!66!66!66!6

7!77!77!77!78!88!88!88!8
9!99!99!99!9:!::!::!::!:
;!;;!;;!;;!;<!<<!<<!<<!<

=!==!==!==!=>!>>!>>!>>!>

Comparison result:

5 6 7

C−unit: allocated result storedin execution

2 3 41

Figure 8.3: An example of the instruction confirmation process

Figure 8.3 shows an example of an instruction being confirmed in seven cycles

with four C-units allocated throughout the process. In cycle 1 the voter initially allocates
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two C-units and the results are available in the third cycle. The two C-units are released

at this point and the results stored in the voter. Since the results are not conforming,

a new C-unit is allocated at the third cycle. After the execution stage in the 4th cycle,

the new result is available at the 5th cycle and is compared with the two stored results.

Again the comparisons cannot achieve an confirmation, thereby a new C-unit is allocated

in cycle 5. The instruction is finally confirmed at cycle 7 when one of the three previous

stored results conforms with the newly returned result.

To carry out the fault tolerance approach, a voter needs a number of storage

elements and comparators. Although multiple values need to be compared to check

for possible conformity between two results, the comparisons are always performed

pairwise, since they are only required between the returning result and the existing ones.

Therefore, these comparisons can be performed in parallel with a number of two-input

comparators, avoiding the necessity of multi-input comparators, which are expensive

both in terms of hardware and latency. Furthermore, a tradeoff needs to be examined

when designing the voters: a voter can utilize a large number of comparators for fast

parallel comparisons; alternatively, a voter can perform the comparisons in serial with

shared comparators, which might result in a prolonged multi-cycle comparison process

in the pipelined environment.

The storage elements in a voter is for the purpose of keeping the non-conformable

results. The number of storage elements set in a voter depends on the tradeoff between

hardware and fault tolerance requirement. At the rare occasions where fault rate is ex-

tremely high and all the storage elements are used up in a voter, a simple strategy of

discarding a fraction of the existing results can be used. Since all the results stored are

unconfirmed and distinct, the chance of discarding a correct result is very low.

8.2.3 Speculative computation to improve performance

We have discussed the fault tolerance computation scheme, which confirms each

instruction through a hybrid redundancy of hardware and time. The main concern for
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system performance, consequently, hinges on the data dependencies on the instructions

yet to confirm. Consider the situation where an instruction B takes as input the result

of a yet unconfirmed instruction A (we denoted B as a child instruction, and A as a

parent instruction), since the execution of B needs to be based on a correct input, B’s

execution is delayed until the confirmation of A’s result.

Alternatively, in order to improve system performance, dependent instructions

do not need to stall for the confirmation of their operands. A child instruction can

speculatively use the results of the yet unconfirmed parent instruction. As a confirmed

result of the parent instruction is obtained at a later cycle, it can be used to confirm or

prune the corresponding speculative branches of the child instruction.

As an example, suppose instruction B uses the result of instruction A as an input,

while A takes an exceedingly long time to confirm. B can start executing speculatively

without delay, based on the multiple unconfirmed results of A. Multiple speculative

branches for computing B can thus be formed. As the result of A is finally confirmed,

the correct branches of B are retained and the incorrect speculative branches are pruned.

The conforming results within a correct branch of B’s execution can further confirm the

instruction B.

According to the above analysis, two extremal positions in terms of hardware vs.

latency tradeoff can be envisioned.

• In a no speculation approach, if the input data of a child instruction depends on a

parent instruction that is not yet confirmed, the execution of the child instruction

is delayed and waits for the confirmed input from the parent instruction, thus

necessitating no extra computation units for speculations.

The no speculation approach is a simple scheme that uses a small constant num-

ber of C-units, yet inevitably results in significant delay among the dependent

instructions. Particularly, in the case of a sequence of dependent instructions, the

delay caused by the time redundancy approach is transferred to all the descen-

dent instructions, resulting in a domino effect of latency accumulation. Conse-
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quently, the no speculation approach represents a mechanism with low hardware,

yet high latency overhead.

• In a full speculation approach, an instruction can start execution by generat-

ing multiple speculative branches for every unconfirmed input. Since the initial

NMR needs to be applied in each speculative branch for the purpose of local con-

firmation2, the formation of full speculative branches necessitates at least twice

the number of the hardware resources to compute all the branches of a child in-

struction in parallel. Consequently, the full speculation approach represents a

mechanism with low latency, yet high hardware overhead.

Figure 8.4 illustrates the no speculation and the full speculation approaches.

When executing dependent instructions with the no speculation case as shown in figure

8.4(a), the latency can be arbitrarily long; in the case of full speculation as shown in

figure 8.4(b), an exponential growth in the hardware requirements is encountered.

(b): full speculation 

A1 A1A2 A2

1B B2

A3 B21B A3

A4

. . .

A confirmed

L a t e n c y

(a): no speculation 

B 4B3

CC7 8. . . 5B B6C C21 . . .

. . .

H a r d w a r e

Figure 8.4: An example for the cases of (a) no speculation and (b) full speculation

Basically, while speculation can speed up instruction execution in the presence

of data dependencies, speculative branches can grow exponentially and exhaust rapidly

even the abundant hardware available in a nanoelectronic environment. To avoid the
2We assume each speculative branch always allocates the minimum number, i.e., two, redundant com-

putations for local confirmation purposes.
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severe latency problem in the no speculation approach and the exponential growth of

hardware allocation in the full speculation approach, a hardware allocation framework

needs to be developed to achieve both frugal hardware resource allocation and short

overall latency. The essence of such a resource allocation mechanism is to control the

generation of speculative branches, such that hardware resources are allocated on an

as-necessary basis. Specifically, extra hardware is only allocated when an instruction is

known definitely not confirmable.

8.2.4 Dynamic hardware allocation algorithm

For a child instruction that depends on the unconfirmed input data from its parent

instruction, the correctness of the result relies on:

1. the correctness of the input data, and

2. the confirmation of the computation process within the child instruction.

The challenge of performing speculative execution essentially comes from these two

points.

First of all, a parent instruction might have multiple unconfirmed results, thus

forming multiple speculation branches for a child instruction. These speculation branches

are dynamically changing. According to the time redundancy approach of the parent in-

struction, new unconfirmed results might emerge and form additional branches. Further-

more, the confirmation of the parent instruction will cause merging of correct branches

and pruning of incorrect ones.

Secondly, within the child instruction itself, the hardware and time redundancy

approach applied to confirm the computation for each speculation branch is dynamically

changing: two C-units are allocated initially for each branch and additional ones are

added in later cycles if necessary.

Overall, these two means of guaranteeing the correctness of a child instruction,

when combined, result in an exponential hardware growth in the full speculation ap-
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proach. The underlying reason for the exponential growth of hardware resources needed

in the full speculation approach is that it does not differentiate the hardware allocation

policy in a parent instruction and a child instruction. In a sequence of dependent in-

structions, the exponential growth in hardware resources occurs when a speculation tree

is formed with the branch number doubling with depth. The most significant part of the

hardware is therefore spent on extensive speculations, a large portion of which might

turn out to be based on faulty input data.

From the above analysis, we can draw the conclusion that, hardware allocation

should be concentrated on the root-level parent instruction, where the confirmation will

accelerate the further confirmation of the descendent instructions. In other words, the C-

unit allocation in the child instructions should be controlled so as to reduce the hardware

resources spent in the speculative execution. This is the core idea that enables reductions

in the exponential hardware growth to be otherwise expected.

An ideal C-unit allocation algorithm for the child instructions needs to achieve

the goals of frugal hardware resource allocation, quick confirmation with low latency

and fault tolerance for a computation. Specifically, the following aspects should be

addressed:

• Parent instructions should be provided with higher priority for obtaining hard-

ware resources in order to quickly prune out wrong speculative branches.

• Child instructions should be updated with the states of the parent instructions

during the fault tolerant computation, so as to effectively control the speculation

branches.

• The initial C-unit allocation for a child instruction should try to preserve the con-

firmation possibility of the instruction, yet with minimum hardware resources.

• For a child instruction based on unconfirmed input, hardware allocation should

be frugal yet maintain the possibilities for confirmation. In other words, for

fault tolerance of the speculative branches, hardware is only added when the
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Figure 8.5: Initial allocation of C-unit in a child instruction

instruction becomes impossible to confirm.

Essentially, when the fault rate is low, the initial speculative branches suffice for

the child instruction to quickly confirm, without consuming large amounts of hardware

resources. When the fault rate is high, the speculation branches should be controlled to

a limited number to avoid an exponential growth of hardware requirement. Hardware

resources need to be highly prioritized, in this case, on the root level of the speculation

tree, thus guaranteeing the quick confirmation of the parent instructions.

We explore the hardware allocation algorithm in depth in the following three

subsections. Basically, we discuss the initial C-unit allocation of the dependent instruc-

tions, how the parent instruction level information is utilized for the child instructions

and how the hardware growth in the dependent instructions is managed. The description

of the proposed technique is followed by an example and a discussion subsection.

Initial C-unit allocation of dependent instructions

The minimum hardware resources needed to confirm an instruction in the short-

est time are two C-units. For a child instruction based on an unconfirmed input, the full

speculation approach allocates likewise two initial C-units for each unconfirmed input.

This eventually leads to an exponential growth in hardware requirement for a sequence

of dependent instructions. In fact, two of the results in the parent instruction will turn

out to conform, yet the initial allocation of the child instruction in the full speculation
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approach presumes every unconfirmed result to be distinct, thus generating a number of

redundant speculative branches.

When a child instruction is issued, information from the previous comparisons

in the parent instruction should be utilized. Obviously, an input with the full resolution

of information, i.e., known to be correct or incorrect, is easy to deal with. However,

for most of the unconfirmed inputs, at a particular cycle, such full resolution is not

achievable. However, even if an input is not under full resolution, information can be

extracted by distinguishing between the following two states:

- distinct: the unconfirmed result is known to be distinct among all the other

unconfirmed results.

- conformable: the unconfirmed result has a comparison companion, i.e., is to be

compared with another unconfirmed result. In this case there is a possibility that

the unconfirmed result might conform with the comparison companion’s result.

In the example shown in figure 8.3, at the 3rd cycle and the 5th cycle, the stored

results, represented by the shadowed circles, are all in the distinct state, since the newest

comparison indicates they differ from each other. On the other hand, at the fourth and

sixth cycle, the stored results are all in the conformable state, since they are all to be

compared with the new result in execution.

Figure 8.5 shows the two specific situations as well as the corresponding initial

C-unit allocation cases for a child instruction. In the case shown on the left side, all

the results in the parent instruction are known to be distinct since a comparison has just

completed and it turns out no conformity is achieved. For the child instruction, two C-

units are initialized for each distinct result, forming multiple speculation branches that

can be locally confirmed. There is no need to allocate any C-units in the child instruction

to take the result of the newly issued C-unit in the parent instruction, since this result

will not be available until two cycles later.

However, in the case shown on the right side of figure 8.5, all the available results

in the parent instruction are to be compared with the last C-unit, the result of which will



172

be available in the next cycle. Therefore, every result has its comparison counter part

and is conformable with the new result in the parent instruction. In this situation, the

child instruction only needs to allocate one C-unit for each unconfirmed input, with the

same comparison companion relationship constructed as the parent instruction. A C-

unit is also allocated in the child instruction for the C-unit currently being executed in

the parent instruction, the result of which will be available in the next cycle. With this

initial C-unit allocation, the child instruction can confirm in minimum latency when the

fault rate is low.

To summarize, for every unconfirmed result in the parent instruction, the initial

C-unit allocation for a child instruction is described below:

• for inputs known to be incorrect, no C-unit is allocated.

• if the input is known to be distinct, allocate two C-units initially.

• if the input is conformable, allocate only one C-unit initially and assign the com-

parison companion according to the parent instruction.

Information propagation

In a child instruction, based on 1) the state of the input data, and 2) the computa-

tion within a specific branch, the result of a speculative branch at any cycle can fall into

one of the following categories:

+ Full resolution:

- Correct: both the input data and the computation are confirmed to be cor-

rect; thus the instruction can be confirmed with this result.

- Wrong: either the input data or the computation within the branch itself is

confirmed to be wrong; thus this result is known to be incorrect.

+ Half resolution:
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- Global: the input data is confirmed to be correct but the correctness of the

computation within the branch is not confirmed yet.

- Locally confirmed: the input data is not confirmed but the computation is

locally confirmed within the branch.

+ Zero resolution:

- Unknown: No information is available for the correctness of the input data,

and the result is not confirmed within the branch either.

Table 8.1 illustrates how a specific result falls into one of the above categories

according to the information from the input data as well as the computation within the

child instruction branch.

Table 8.1: Speculation branch result categories
Computation within Input data from parent instruction
speculative branch correct wrong unconfirmed
confirmed with conformation correct wrong locally confirmed
confirmed to be incorrect wrong wrong wrong
unconfirmed global wrong unknown

It can be observed that in order for a result within a speculative branch to be

correct, it has to satisfy two conditions: 1) the input data has to be confirmed as correct,

and 2) the result conforms with another one locally within the branch. When any of

the two conditions turns out to be false, the result is deemed wrong. When one of the

conditions is true while the other not available yet, the result is either locally confirmed

or global.

If a pair of results in a branch are marked as global3 and they conform, then the

instruction can be confirmed with this pair of results marked as correct. Otherwise, if

the result pair within a branch agrees but is unknown, then the pair of results becomes

locally confirmed.
3If an instruction does not depend on the results of any unconfirmed instructions, i.e., it has no parent

instruction, then all its unconfirmed results are marked as global.
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During the process of the fault tolerance computation, the information obtained

from a parent instruction comparison needs to be dynamically propagated to all the

child instructions, so as to direct the branch pruning and hardware allocation in the child

instruction. Basically, according to the comparison performed in the parent instruction,

two types of information can be propagated.

• Information propagation on non-conforming comparison results

If a pair of results in a parent instruction is compared, the non-conforming com-

parison result affects only the child instructions that had initially allocated one

C-unit for each of the results, as is shown in the right hand part of figure 8.5.

When the two C-units in the child instruction are set as comparison companions

according to the parent instruction, this is based on the presumption that the two

inputs are conforming. When the resulting C-unit pair in the parent instruction

does not comform, the information should be propagated to cancel the compari-

son between the two child C-units, since they are deemed non-conforming due to

their distinct data inputs. Through the propagation of the non-conforming com-

parison results, the distinct property is propagated from the parent instruction

results to the corresponding results in the child instructions.

• Information propagation on conforming comparison results

When a parent instruction is confirmed to be correct, information is passed to

preserve the correct and prune the wrong speculation branches. The specula-

tive branches that take the correct results as inputs are marked as global, indi-

cating that the input inherited from the parent instruction is confirmed. If the

results of the children are already locally confirmed, then they become correct

and the child instruction can be confirmed too. The speculative branches tak-

ing the wrong results as input will inherit the wrong attribute and propagate the

information to all the descendants, thus pruning the speculation branches.
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C-unit update

The speculative execution of a child instruction is based on the unconfirmed

results of the parent instruction. These unconfirmed results of the parent instruction,

however, may be dynamically generated after the initial C-unit allocation of the child

instruction. A full speculation scheme allocates new C-units and forms a new spec-

ulation branch in the child instruction for every newly generated result in the parent

instruction.

To control the growth of hardware resources in the speculation of child instruc-

tions, the allocation of new C-units for a child instruction should be strictly limited. A

voter only allocates new C-units in two cases: 1) the initial C-unit allocation, and 2)

when the child instruction becomes impossible to confirm. The first case has been dis-

cussed in the previous section, and we focus on the second case in this section. There

are two situations when a child instruction can be identified as impossible to confirm:

• All the results in the child instruction turn out to be wrong.

This occurs when every speculation branch of the child instruction turns out

to have a wrong input. In other words, the results which the child instruction

inherited from the parent instruction all turn out to be wrong. Obviously the

confirmation of the child instruction is impossible under this situation.

The new C-units are allocated by taking the results which are not identified as

wrong in the parent instruction. Similar to the initial C-unit allocation process,

two C-units are allocated for each distinct result while one C-unit is allocated

for each conformable result.

• There exist some unconfirmed results in the child instruction which are not

wrong, but all known to be distinct.

This is either due to the propagation of the distinct attribute, or because the

computation within the branch fails to conform. Under this situation the child
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instruction becomes impossible to confirm, due to the lack of local confirmation

capability within each speculative branch.

To make the child instruction possible to confirm, new C-units are allocated by

duplicating the computation of the distinct results.

8.2.5 An example
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Figure 8.6: An example of five cycles for a sequence of instructions using the proposed

allocation algorithm

We show an example of dynamic allocation of C-units in figure 8.6, where a

sequence of instructions, A, B, C, D, E, are executed and confirmed, each depending

on the result of the previous one. A C-unit of any instruction can be in one of the three

main states: issue, execute and compare. For representational convenience, we use the

superscript of a C-unit to indicate the index of the parent-level C-unit from which the

input is taken; we use the subscript of a C-unit for its own index.

Figure 8.6(a) shows the first cycle, during which instruction A is issued; the voter

of A initially allocates two C-units, A1 and A2, in this cycle. In the second cycle shown

in the (b) part, A1 and A2 are in the execution cycle, while at the same time instruction

B is issued. B depends on A’s result. At this stage A1 and A2 are set as comparison

companions. According to the algorithm, the voter of B allocates two C-units B1
1 and
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B2
2 , taking the results from A1 and A2 correspondingly.

In the third cycle, as is shown in figure 8.6(c), the comparison of A1 and A2 is

finished and the results do not conform. A1 and A2 are thus known to be distinct, and

the information is passed further to split B1
1 and B2

2 to be distinct as well.

To continue the fault tolerance computation of A, the voter of A allocates and

issues a new C-unit A3 in this cycle. Now that B is known to be impossible to confirm,

since all its C-units are distinct, the voter of B also needs to allocate two new C-units

by duplicating B1
1 with B1

3 and B2
2 with B2

4 . These newly allocated C-units are issued

for instruction B in the third cycle.

Instruction C is also issued in the third cycle. Since B1
1 and B2

2 are in the ex-

ecution stage and their results will be available in the next cycle, C-unit allocation for

instruction C is only considered for them. Since both B1
1 and B2

2 are distinct, two C-

units are allocated for each: C1
1 and C1

2 are set to take the result from B1
1 , while C2

3 and

C2
4 are set to take the result from B2

2 . On the other hand, B1
3 and B2

4 are still in the issue

stage, so no C-units are allocated to await their result at this cycle.

The (d) part of figure 8.6 shows the fourth cycle of the example. A3, B1
3 and B2

4

are now in the execution stage while the results of B1
1 and B2

2 are available and have been

passed to {C1
1 , C

1
2}, {C2

3 , C
2
4} correspondingly. No comparison is made between B1

1 and

B2
2 because they are already identified to be distinct. All four C-units of instruction C

are in the execution stage. Instruction D is issued with four C-units allocated, inheriting

the comparison companion relationship of instruction C.

The (e) part in figure 8.6 shows the propagation of confirmation as well as the

branch pruning process in the fifth cycle. In this cycle, instruction A is confirmed with

A1 = A3, while the result of A2 is identified to be wrong and the corresponding specu-

lative branch is pruned. Also in this cycle, instructions B and C are locally confirmed

with B1
3 = B1

1 and C1
1 = C1

2 . Since the speculative branch of A1 is confirmed to be

correct, instruction B is confirmed, which further confirms instruction C.

The example shows that the proposed hardware frugal allocation algorithm can

be used to achieve a fault tolerance scheme with high flexibility for performance. In this
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example, although A2 is faulty and the confirmation of A is delayed for two cycles, with

the proper control of speculative branches, the delay is not propagated to the subsequent

dependent instructions and the whole sequence of instructions is confirmed in time.

8.2.6 Discussion

The fault tolerance computational model for the nanoelectronic processor archi-

tecture basically consists of a voter/C-unit architecture to perform a hybrid hardware

and time redundancy based fault tolerance approach, and a novel controlled speculation

mechanism for data dependent instructions.

With the new computational model, among data dependent instructions, the

speculated execution of the instructions is performed out of order while the confirmed

results are always generated in order. In general, such a computational model supports

out-of-order execution among independent instructions so as to exploit the parallelism

offered by the nanoelectronic environment. The related issues of out-of-order execution,

including the imprecise exception problem, are essentially similar to the same issues ex-

isting in traditional CMOS based architectures, and can be approached accordingly with

a number of available techniques being utilized currently.

The speculative execution in the computational model can be further extended

beyond the arithmetic instructions to the branch instructions. Essentially, multiple spec-

ulations can be formed on the branch targets and the wrong speculation can be pruned

according to the address calculation.

Overall, the fault tolerant computational model targets the main reliability chal-

lenge of the emerging nanoelectronic environment, and provides a novel approach that

integrates fault tolerance, performance and hardware overhead considerations. These

conflicting optimization criteria are effectively balanced under such a computational

model at the processor architecture level.
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8.2.7 Simulation Results

In the above described computational model, hybrid hardware and time redun-

dancy is used to guarantee the correctness of instruction executions. For the instructions

with dependencies, the hardware allocation algorithm is used to balance the performance

and hardware utilization according to the occurrence of faults. A simulation framework

is developed to evaluate the effectiveness of the computational model. Detailed simula-

tion results are available in [67, 68, 72].

Basically, two sets of simulations are provided. First, the new fault tolerance

computational model is compared with the no speculation and full speculation ap-

proaches, which represent the two extreme points in the performance/latency tradeoff.

Both hardware requirement and latency are compared for the three strategies. Through

this set of experiments, the tradeoff between latency and hardware is examined. Sec-

ondly, various replication quantities, N , for the initial NMR hardware redundancy ap-

proach are compared. The results show the multiple tradeoff points existing within

the computational model and they have corresponding applicability under various fault

rates.

It turns out that, as expected, the no speculation approach suffers from signifi-

cant delays in comparison to the other two models. Since no speculation branch is ever

formed, the data dependencies among the instruction sequences result in the delayed

issuing of child instructions. The tremendous latency of the no speculation approach

grows and makes the gap even larger as fault rates increase. The full speculation ap-

proach, as expected, achieves the minimum latency since it utilizes hardware resources

without any constraints to provide the same redundancy for every speculation branch.

The new computational model, in terms of latency, exhibits behavior similar to that of

the full speculation approach. Overall, simulation results confirm that the new compu-

tational model can achieve a near-optimum performance that is comparable to the full

speculation, which is the best case in terms of performance [67, 68, 72].

The hardware resource consumption in the fault tolerance computation models
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is considered from two aspects. First, the number of C-units occupied at each cycle

shows the amount of computational unit hardware requirement in the system. Notice

that a C-unit is released once its computation is finished and the result is returned to the

voter. The number of C-units occupied therefore indicates the amount of parallelism ex-

isting when multiple speculation branches are executed. Second, since the unconfirmed

results are stored by the voter, the number of unconfirmed results during the computa-

tion depicts the storage hardware requirement in a voter. From both aspects of hardware

consumption, the new computational model displays efficient hardware allocation, that

significantly outperforms the full speculation approach and is close to the no speculation

approach in hardware requirement.

Essentially, through the simulation results it can be observed that the new com-

putational model shows significant results both in performance and hardware, thus achiev-

ing the goal of fault tolerance with ideal balance of hardware and latency. In comparison

to the other two models, the new computation model can be seen to compete with the

best aspects of both, i.e., the short delay of the full speculation and the frugal hardware

allocation in the no speculation model.

As the emerging nanoelectronics are expected to offer a density boost in the order

of 103 to 106 compared to today’s CMOS technology, a crucial determinant factor for the

amount of corresponding boost of parallel computation power at the architectural level

is the amount of hardware that is demanded for fault tolerance purposes. According

to the simulation results, the new computational model shows significant potential by

using an order of magnitude less hardware for fault tolerance purposes while sacrificing

neither reliability nor performance, thus supporting eventually the boost of computation

power in the nanoprocessor architectures.

The minimum initial NMR of C-unit allocation for the proposed computational

model is two; however, the manner in which various initial C-unit settings influence the

behavior of the algorithm bears further scrutiny. In this experiment set, we compare the

minimum case of 2 initial C-units with the cases of initially allocating 3 and 4 C-units.

The simulation results are expected to provide knowledge of various tradeoff points
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within the proposed scheme.

With more initially allocated C-units, an instruction can be confirmed more

quickly when the fault rate is high. On the other hand, when the fault rate is low, some

initially allocated C-units are essentially redundant, thus consuming comparatively more

hardware resources. The simulation results confirm this syllogism. Essentially, when the

fault rate is low, the configuration of minimum initial C-unit allocation provides a highly

attenuated loss of latency, while exhibiting a significantly reduced amount of hardware

consumption. When the fault rate is high, allocating more C-units in the initial cycle

helps reduce the overall latency by and large, while consuming almost the same hard-

ware resources as the minimum initial C-unit allocation configuration. Therefore, the

initial C-unit allocation number in the proposed computational model provides multiple

optimal points under various fault rate ranges.

8.3 Topological Structure Design of Nanoprocessor Ar-

chitectures

The proposed computational model aims at providing fault tolerance for the na-

noelectronics based processor architecture, with the tradeoff consideration for perfor-

mance and hardware issues. In addition to the unreliability challenge, a number of

other characteristics, particularly, the localized communication constraint imposed by

nanodevices, need to be investigated. Due to these new characteristics, multiple issues

are raised when the proposed behavioral computational model is mapped to a number

of structural components in a processor, consisting of both CMOS and nano devices.

In this section, we discuss a coarse distribution of architecture level components in a

CMOS/nano hybrid system, based on a number of existing research approaches for the

interface design among the CMOS and nano systems. We investigate the message pass-

ing mechanisms that are crucial in the communication of the proposed fault tolerance

computational model, with a further topological constraint imposed by the limitation of
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localized communication in nanoelectronic environment.

8.3.1 Research approaches supporting the addressing mechanism
at the CMOS/nano interface

A number of research approaches have shown various interface designs that in-

tegrate a crossbar based nanoelectronic system with a CMOS based system [18, 19, 21,

80, 81]. Based on these techniques, each nanowire/device can be addressed individually

through a combination of CMOS devices.

In the CMOL approach [80, 81], a layer of nano crossbar is posed above a layer

of CMOS cells. The interface between the nano wire and the CMOS cells is formed

through a limited number of pins, such that each CMOS cell is connected to exactly

one nanowire. A particular angle is formed between the CMOS cells and the nano

wires; therefore, the addressing of each nanodevice located at the cross point in the

nano crossbar structure can be approached through the combination of two CMOS cells.

An alternative approach has been proposed in [18, 21], which utilizes a de-

coder, possibly formed stochastically to perform the mapping from CMOS wires to nano

wires. A number of microwires of CMOS scale are initially connected on a one-to-one

base with the same number of nanowires, then expanded to an exponential number of

nanowires through a decoder. A detailed description of the nanowire based architecture

can be found in [18, 19, 21]

These techniques facilitate the communication between a CMOS system and a

nano crossbar based system, thus exhibiting multiple possibilities of implementing a

CMOS/nano hybrid architecture system. These approaches essentially provide the basis

for the proposed computational model, which exploits the potentiality of both CMOS

and nanoelectronic devices to overcome the challenges for the processor architectures

in the nanoelectronic environment.
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8.3.2 Processor architecture components across CMOS/nano layers

Architecture

Voters
Control

FT

File
Register

Memory

CMOS layer

nano layer

Control

ALU

Figure 8.7: Decomposition of the implementation layers across a CMOS/nano hybrid

system for the components in the proposed nanoprocessor architecture

We envision the construction of a nanoprocessor architecture in a hybrid ap-

proach, consisting of a reliable CMOS layer and an unreliable nano layer, each contain-

ing correspondingly the components of logic devices, buses/wires and storage elements.

The main modules of the proposed nanoprocessor architecture consist of the main con-

trol system for the processor, the additional fault tolerance control of voters, the register

file, memory and ALU components. Figure 8.7 exhibits the information connection

among the modules and our vision of their implementation in a CMOS-nano hybrid

approach.

Basically, the main concern of implementing a component in the CMOS or the

nano layer is related to the following differences:

• Performance: consisting of the following two aspects:

– Computation: nano devices outperform CMOS devices significantly.

– Communication: nano signal transfer is expensive and suffers from sig-

nificant wire delay, thus making it in general worse than the CMOS level

communications.

• Hardware: nano devices offer significantly more abundant hardware resources

than CMOS.
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• Reliability: CMOS devices are significantly more reliable than nanodevices.

• Locality: communication among nanodevices is strictly constrained to within

a nearby locality, in contrast to CMOS which has a comparatively much wider

communication range.

• Power: nanoelectronic devices consume significantly lower power than the CMOS

counterparts.

According to the above analysis, a component suffers from the reliability prob-

lem when implemented in the nano layer, while tending to be much more reliable when

implemented in the CMOS layer. On the other hand, a component is more expensive in

hardware if implemented in CMOS, in comparison to its implementation in nanoelec-

tronics.

Based on the the consideration of the reliability/hardware cost tradeoff, ALU

components and memory blocks, occupying the majority of hardware requirement in

a processor architecture, should be implemented with nanoelectronic devices, so as to

benefit from the abundant hardware resources. Furthermore, since ALU is heavily com-

putational oriented, a nanodevice based ALU also has the advantage of computational

performance boosting. However, from the aspect of locality, implementing these com-

ponents in the nano layer strictly limits the communication range among the compo-

nents within the nano layer. Global communication in the nano layer is prohibitively

expensive, while only localized communication among the ALU components (C-units)

is supported. Consequently, the communication among the ALU components should be

limited within a local area.

The control units, including the processor architecture controller and the voters

for fault tolerance purposes, impose higher demands of reliability and massive commu-

nications with other modules. Therefore, the implementation of these control compo-

nents in the CMOS layer is advantageous in terms of reliability, locality and communi-

cation performance.
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Due to the large loads of communication between the register file and the voters,

it is more beneficial in terms of communication performance to implement the register

file in the CMOS level.

8.3.3 Message passing mechanism

During the speculative computations, the information regarding an instruction

being confirmed or speculation branches being confirmed/pruned is transferred among

the voters of dependent instructions. Unconfirmed results are transferred directly among

the C-units. Voters and C-units also communicate during the C-unit allocation process

and the result transmission process.

Essentially, three types of messages are transferred in the proposed fault tolerant

computational model:

• voter/voter: messages transferred among the voters contain information about

the speculative computation: confirmation of instructions and confirmation /

pruning / splitting of speculation branches. These messages are always trans-

ferred unidirectionally from the voters of the parent instructions to the voters of

the dependent child instructions.

• voter/C-unit: messages transferred among the voters and the C-units contain

the C-unit allocation and release information, parameters of the instructions sent

from a voter to the C-units, and the transmission of unconfirmed results from a

C-unit to its voter, thus consisting of bidirectional transfer of messages.

• C-unit/C-unit: messages transferred among the C-units contain the direct pass-

ing of unconfirmed results among the C-units of dependent instructions. The

messages are always transferred unidirectionally from the C-units of the parent

instructions to the C-units of the dependent child instructions.

The three types of messages described above can be transferred by two genres of com-

munication mechanisms: one with the sender in control, while the other with the receiver
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in control.

The first and the third types of messages, the voter/voter and the C-unit/C-unit,

are transferred unidirectionally from the parent instructions to the dependent child in-

structions. Since the parent instructions are always dispatched ahead of the child in-

structions, the sender of the messages in this case cannot be aware of the receivers. The

receivers, on the other hand, can establish a connection with the sender easily at the

initial stage, both in the cases of voter/voter messages and the C-unit/C-unit messages.

Therefore, the messages need to be passed in a receiver-in-control mechanism, where a

sender simply broadcasts the message while each receiver is responsible for identifying

the messages relevant to it.

The second type of messages, which are transferred between a voter and multiple

C-units, consist of information passing in both directions: from the voter to the C-units

during C-unit allocation, and from the C-units back to the voter when returning the

results. In this case, the voter and the C-units are of the same instruction. The C-units

are allocated and initialized by the voter, during which process the communication bond

can be established on both sides. Therefore, either the voter or the C-unit, when acting as

the sender of a message can clearly identify the receivers, supporting a sender-in-control

message passing mechanism to address the specific receivers without the overhead of

broadcasting.

The receiver-in-control message passing mechanism can be easily implemented

on a bus topology, while the sender-in-control mechanism fits best to a star topology with

the voter connecting multiple C-units. Specifically, the messages within the voters are

passed through a common bus, supporting the receiver-in-control, sender-broadcasting

mechanism. A similar bus can be used for message passing among the C-units. Among

a voter and its related C-units, a star topology is used to support the sender-in-control

message passing.

In a CMOS-nano hybrid system, since the voters are in the CMOS layer while

the C-units are implemented by the nanoelectronics, the bus among the voters is im-

plemented by CMOS-level wires while the bus among the C-units is implemented by
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nanowires. The connections among the voters and the C-units can be implemented

through the access mechanism developed for the CMOS/nano interface [18, 21, 80, 81].

Error checking code (ECC) can be applied to the message transfer process to en-

hance reliability. It is worth noticing that, although the reliability of information transfer

can be enhanced by applying well developed coding techniques, as in the memory case,

the proposed fault tolerant computational model neither presumes, nor relies on the re-

liability in the message transfer process involving the nanodevices. Any fault or failure

in the message transfer of voter/C-unit and C-unit/C-unit can be dealt with in the same

manner as the failure of C-unit computations, thus covered by the proposed fault toler-

ance scheme.

8.3.4 Locality constraint aware network topology

The simple network topology model described above inherently bears a number

of constraints. The receiver-in-control mechanism requires a broadcasting on the com-

mon bus; however, such a common bus is always subject to the contention problem.

One solution to the contention problem is to introduce multiple buses. When broad-

casting, a random subset of buses is selected so as to minimize the collision probability.

Furthermore, the star topology with the voter at the center is not flexible in the run-time

environment where the number of C-units requested by a voter is dynamically changing.

Allowing voters to share accessibility to all the C-units provides maximum flexibility,

however, at the price of a highly complex mesh network topology.

More importantly, when the characteristics of a nanoelectronic environment are

included in the consideration, a number of new challenges are raised. Neither the global

common bus nor the complete mesh network fits the locality constraint severely imposed

in a nanoelectronic environment.

Taking into consideration the localized interconnection constraints, the accessi-

bility of any component in the nanoprocessor is limited to a localized neighborhood.

Figure 8.8 exhibits a revised logic topology of the voters and the C-units adjusted to the
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localized communication constraint. As is shown in figure 8.8, the voters are connected

by a number of buses that cover merely a local neighboring area. A similar localized bus

structure is shown among the C-units. The communication among the voters, as well as

among the C-units, is therefore limited to the ones that share at least one common local

bus. The interconnection among the voters and the C-units is also organized to support

the sharing of C-units among the voters in a localized manner. Essentially, neighboring

voters have accessibility to a common set of C-units, thus being flexible when unbal-

anced C-unit allocation occurs dynamically among multiple neighboring voters.

. . . CCCCCCC

V V V V VV

CC

. . .

. . .
. . .

. . .

Figure 8.8: The logic message passing channels for voters and C-units considering the

locality constraint of nanoelectronic environment

Figure 8.8 shows the logic topology of the voters and C-units, where these com-

ponents are placed on a number of one-dimensional lines. When the specific regular

structure constraint is considered, these components need to be physically placed on a

two-dimensional regular structure based nanofabric. It can be envisioned that the voter

and the C-units need to be placed with an interleaved manner, as is shown in the ex-

ample of figure 8.9, where each voter has a number of locally accessible C-units. The

accessibility among the voters and among the C-units is similarly limited to within a

local range, with an underlying network implementing the logic topology of figure 8.8.

The localization constraint further influences the schedule and dispatch of in-

structions. Basically, according to the localized communication among the voters, de-

pendent instructions need to be dispatched into a neighboring area where communi-



189





V

V V V

V

V V

CCC C C C C C C

C

CCC C C C C C

CCC C C C C C C

C C C C C

C C

C C

CCCCCC

C

VV

Accessible local area

C

V

Figure 8.9: The topology of voters and C-units on a regular structured nanofabric con-

sidering the locality constraint

cation is feasible for the voter/voter messages. When allocating C-units for the fault

tolerance computation, the same locality principle needs to be applied for the C-units so

as to enable the fast transfer of unconfirmed results for dependent instructions among

the neighboring C-units.

It is certainly true that the locality principle of most programs supports the dis-

patch of dependent instructions to the neighboring voters and C-units. However, how to

optimally perform the mapping of a program with arbitrary dependency structure onto

the regular fabric based nanoprocessor remains challenging.

8.4 Conclusion

Multiple challenges and opportunities are raised by the new characteristics of

nanoelectronics. Particularly, for the construction of a nanoelectronics based proces-

sor architecture, unreliability, localized communication constraints, performance and

hardware resource tradeoffs all need to be considered. A new architectural level com-

putational model for the future nanoelectronic processors is developed, addressing the

above issues.
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The main techniques in this architecture level computational model include: 1)

a fault tolerance scheme exploiting hardware and time redundancy dynamically to guar-

antee the correctness of each instruction, 2) the idea of computation through multiple

speculative branches to improve system performance in data dependent instructions,

3) the algorithm of dynamically allocating computation units to avoid the exponential

growth in hardware consumption, and 4) localized communication among the processor

components in the computational model considering the interconnect overhead in the

nanoelectronic environment.

Such a computational model exploits the abundant hardware resources provided

by the nanoelectronic technology and makes tradeoffs between hardware and computa-

tion performance. Fault tolerance in instruction execution can be guaranteed and system

performance is boosted as well; yet communications among the nanoelectronics based

components are designed to be within a localized area. Through the simulation with

multiple parameters, several tradeoff points are identified for the computational model,

thus providing an insight in selecting the proper parameter for a certain fault rate range

to achieve the best hardware/latency tradeoff. The overall simulation results confirm the

effectiveness of the computational model from both a performance and a hardware over-

head perspective, thus evincing that a strong solution is provided to the vital challenges

in architecture level fault tolerant computation in nanoelectronic processors. Overall,

the computational model sets up a starting point of designing nanoelectronic based pro-

cessors, and based on the emerging nanoelectronic characteristics provides a framework

in investigating multiple nanoelectronic characteristics related issues including reliabil-

ity, performance, hardware and localized communication at the architecture level for the

future processors based on nanoelectronics.
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Conclusions and Future Work

In the thesis work, we target the severe reliability challenge of the future nano-

electronics based systems. Particularly, we develop efficient fault tolerance schemes that

are based on the particular characteristics of emerging nanoelectronic devices. These ap-

proaches address the fault occurrences projected to be significantly high, variable, and

with clustered behavior in the nanoelectronic environment.

The work in the thesis consists of multi-fold approaches: 1) exploiting the new

characteristics of the emerging nano devices, 2) alleviating the tremendous cost of fault

tolerance schemes by examining the particular structure of the components and exploit-

ing the existing redundancy, 3) a hierarchical fault tolerance strategy, taking advantage

of a large set of fault tolerance approaches on the corresponding applicable design ab-

straction levels. In addition to providing a set of fault tolerance schemes, we present a

set of design methodologies that are novel for the nanoelectronic system, as a result of

considering reliability together with traditional design optimization goals such as per-

formance, topology and hardware costs.

The thesis work opens up multiple directions for future explorations for reli-

able nanoelectronic system constructions, including: 1) extending the fault tolerance

approaches and system design methodologies as the research on nanoelectronic devices

evolves; 2) a simulation framework that evaluates the overall reliability, performance

191
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and hardware costs of the system, under various probabilistic fault behavior models; 3)

an overall organic integration of the multiple fault tolerance schemes across the multi-

ple system design hierarchical levels, and the design of an online reliability monitoring

mechanism.
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