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1. INTRODUCTION
The first parallel computing systems date back to the 1960s and 1970s, but were

limited to specialty machines with limited accessibility and distribution. Examples of early
systems include the Burroughs D825 and the CDC 6600. Early development of parallel
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architectures led to a taxonomy of systems that defined the method by which instructions
operate on data elements as well as the method of sharing memory across processing units.
Two broad classifications for parallel instruction/data operation include Single-Instruction
Multiple-Data (SIMD) and Multiple-Instruction Multiple-Data. In the former, SIMD,
identical instructions operate on distinct data elements in a lockstep, parallel fashion.
MIMD, as the name suggests, allows for more flexible design of operations across parallel
data elements. These broad parallel specifications can be further dichotomized into shared
and distributed memory models; shared-memory systems allowing all processor cores
access to the same memory bank where the data resides, while distributed memory
maintains distinct memory units for each processor (requiring movement of data elements
among memory units). An overview of these architectures can be found in Dongarra and
van der Steen (2012).

Advances in computational hardware and their reduction in cost led to a surge in dis-
tributed parallel computing in the 1990s. During this period, single-core microprocessor
speeds were increasing at such a fast rate that powerful parallel computing systems were
easily designed by connecting a large number of compute nodes, each with an individual
core. Standards such as the Message Passing Interface (MPI) were developed to allow
communication among the distributed nodes. The first Beowulf cluster, introduced in
1994, was an example of such a system. It is a model that has been widely utilized to
the present day and which has been largely responsible for making parallel computing
available to the masses. However, in the early 2000s, microprocessors became increasingly
limited in terms of speed gains and much of the focus of system design in the comput-
ing industry shifted toward developing multicore and multiprocessor Central Processing
Units (CPUk).

Somewhat independently, the market for high-end graphics in the entertainment
industry led to the development of many-core Graphical Processing Units (GPUs) in the
1990s. These graphics cards were inherently SIMD, performing identical floating point
instructions on millions of pixels, and so they were designed to have numerous individual
processing units with high arithmetic intensity—many transistors dedicated to floating
point, arithmetic operations, but very few dedicated to memory management and control
flow. The result was that consumer-grade GPUs had high arithmetic power for a very
low cost.

Some time after the turn of the millennium, a number of computational scientists,
recognizing the low cost and low power consumption per unit of arithmetic power
(typically measured in FLOPS—TFloating Point Operations Per Second), began using
GPUs as parallel hardware devices for solving scientific problems. Early examples spanned
the fields of computer science (Kruger and Westermann (2002) and Purcell et al. (2002)),
fluid dynamics (Harris et al. (2003)), bioinformatics (Charalambous et al. (2005)), and
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molecular dynamics (Stone et al. (2007)), to name a few. In each case scientists recognized
similarities between their algorithms and the work of rendering millions of graphical
pixels in parallel. In response to the uptake of GPU computing in broad scientific fields,
NVIDIA released a set of software development tools in 2006, known as Compute Unified
Device Architecture (CUDA—nhttp://www.nvidia.com/object/cuda_home_new.html)
(NVIDIA (2012a)). The intention of CUDA was to facilitate higher-level interactions
with graphics cards and to make their resources accessible through industry standard
languages, such as C and C++. This facilitated a new discipline of General Purpose GPU
(GPGPU) computing, with a number of subsequent tools that have been developed and
released by a variety of hardware and software vendors.

The uptake of GPGPU computing in Economics has been slow, despite the need
for computational power in many economic problems. Recent examples include Aldrich
(2011), which solves a general equilibrium asset pricing model with heterogeneous beliefs,
Aldrich et al. (2011), which solves a dynamic programming problem with value func-
tion iteration, Creal (2012), which solves for the likelihood for affine stochastic volatility
models, Creel and Kristensen (2011), which explores the properties of indirect likeli-
hood estimators, Durham and Geweke (2011) and Durham and Geweke (2012), which
develop a parallel algorithm for sequential Monte Carlo, Dziubinski and Grassi (2012),
which replicates the work of Aldrich et al. (2011) with Microsofts C++Amp library
(http://msdn.microsoft.com/en-us/library/vstudio/hh265137.aspx) (Microsoft (2012)),
Fulop and Li (2012), which uses sequential Monte Carlo and resampling for parameter
learning, and Lee et al. (2010a), which shows how to use GPUs for Markov Chain
Monte Carlo and sequential Monte Carlo simulation. The objective of this paper will be
to demonstrate the applicability of massively parallel computing to economic problems
and to highlight situations in which it is most beneficial and of little use.

The benefits of GPGPU computing in economics will be demonstrated via two spe-
cific examples with very different structures. The first, a basic dynamic programming
problem solved with value function iteration, provides a simple framework to demon-
strate the parallel nature of many problems and how their computational structure can
be quickly adapted to a massively parallel framework. The second example, a general
equilibrium asset pricing model with heterogeneous beliefs, uses an iterative procedure
to compute optimal consumption allocations for a finite time horizon T. This example
experiences great gains from GPU parallelism, with the GPU allowing the solution of far
longer time horizons than would be feasible on a CPU. A substantial portion of this paper
will also be dedicated to introducing specific hardware and software platforms that are
useful for GPGPU computing, with the end objective to help researchers in economics
to not only become familiar with the requisite computing tools, but also to design and
adapt algorithms for use on GPU parallel hardware.
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The structure of this paper will be as follows. Section 2 will introduce the basic
concepts of GPGPU computing and Section 3 will illustrate these concepts in the context
of a very simple example. Sections 4 and 5 will consider the dynamic programming and
heterogeneous beliefs examples mentioned above, demonstrate how the solutions can
be parallelized, and report timing results. Section 6 will discuss recent developments in
parallel computing and will offer a glimpse of the future of the discipline and potential
changes for economic computing. Section 7 will conclude.

S 2. BASICS OF GPGPU COMPUTING

This section will introduce the basics of GPU hardware, software, and algorithms.
The details of this section will be useful for understanding the specific applications in
Sections 3-5.

2.1 Hardware Architecture

Understanding the basics of GPU architecture facilitates the design of massively parallel
software for graphics devices. For illustrative purposes, this section will often reference

the specifications of an NVIDIA Tesla C2075 GPU (NVIDIA (2011)),a current high-end
GPU intended for scientific computing.

2.1.1 Processing Hardware

GPUs are comprised of dozens to thousands of individual processing cores. These cores,

known as thread processors, are typically grouped together into several distinct multipro-

cessors. For example, the Tesla C2075 has a total of 448 cores, aggregated into groups
of 32 cores per multiprocessor, yielding a total of 14 multiprocessors. Relative to CPU
cores, GPU cores typically:

e Have a lower clock speed. Each Tesla C2075 core clocks in at 1.15 GHz, which is
roughly 30-40% the clock seed of current CPUs (e.g., the current fastest desktop and
server CPUs made by Intel are the 3.6 GHz 17-3820 (Intel Corporation (20132)) and
the 2.67 GHz E7-8837 (Intel Corporation (2011)), respectively).

e Dedicate more transistors to arithmetic operations and fewer to control flow and data
caching.

* Have access to less memory. A Tesla C2075 has 6 gigabytes of global memory, shared
among all cores.

Clearly, where GPU cores are lacking in clock speed and memory access, they compensate

with the sheer quantity of compute cores. For this reason, they are ideal for computational

work that has a high arithmetic intensity: many arithmetic operations for each byte of
memory transfer/access. It is important to note that this does not mean that every problem
which requires high arithmetic intensity will benefit from GPU parallelization;in addition
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Figure 1 Schematic diagram of CPU and GPU processors, taken from Section 1.1 of NVIDIA (2012a).
The diagram illustrates how traditional CPUs dedicate more transistors to memory and control (yellow
and orange blocks) and fewer to floating point operations (green blocks), relative to GPUs. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version
of this book.)

to arithmetic intensity, the problem must be divisible into hundreds or thousands of
data elements, each requiring an almost identical sequence of computational operations.
Where these latter conditions are not met, a heterogeneous CPU environment, using
OpenMP or MPI, may be ideal.

Figure 1 depicts a schematic diagram of CPU and GPU architectures, taken from
Section 1.1 of NVIDIA (2012a). The diagram illustrates the allocation of transistors for
each type of microprocessor. In particular, traditional CPUs dedicate relatively more
transistors to memory and control flow (the yellow and orange blocks) and fewer to
algorithmic logic units (ALUs) which perform floating point computations (the green
blocks). GPUs, on the other hand, dedicate many more transistors to ALUs and far fewer
to memory and control.

2.1.2 Memory
There is a distinction between CPU memory and GPU memory, the former being
referred to as “host” memory and the latter as “device” memory. GPU instructions can
only operate on data objects that are located in device memory—attempting to pass a
variable in host memory as an argument to a kernel would generate an error. Thus, GPU
software design often necessitates the transfer of data objects between host and device
memory.

Currently, memory transfers between host and device occur over a PCle v2.0 x16
interface, which for an NVIDIA Tesla C2075 GPU translates into a maximum data
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transfer bandwidth of 8 gigabytes per second (PCI-SIG (2006)). This is approximately
1/4th the bandwidth between common configurations of host memory and CPU at the
present date. For this reason it is crucial to keep track of host-device memory transfers,
since programs that require large amounts of CPU-GPU data transfer relative to the
number of floating point operations performed by the GPU can experience severe limits
to performance.

The architecture of GPU memory itself is also important. While all GPU cores share
a bank of global memory, portions of the global memory are partitioned for shared use
among cores on a multiprocessor. Access to this shared memory is much faster than
global memory. While these issues can be beneficial to the design of parallel algorithms,
the intricacies of GPU memory architecture are beyond the scope of this paper. A detailed
treatment of GPU memory architecture and use can be found in NVIDIA (2012a).

2.1.3 Scaling

Two notions of scalability are relevant to GPU computing: scaling within GPU devices
and across GPU devices. One powertul feature of GPU computing is that it automatically
handles within-device scaling when software is moved to GPU devices with diftering
numbers of cores. GPU interfaces (discussed below) allow software designers to be agnos-
tic about the exact architecture of a stand-alone GPU—the user does nothing more than
designate the size of thread blocks (described in Section 2.2), which are then allocated
to multiprocessors by the GPU scheduler. Although difterent block sizes are optimal for
different GPUs (based on number of processing cores), it is not requisite to change block
sizes when moving code from one device to another. The upshot is that the scheduler
deals with scalability so that issues related to core count and interaction among cores on
a specific device are transparent to the user. This increases the portability of massively
parallel GPU software.

GPU occupancy is a measure of the number of threads concurrently scheduled on an
individual core and is related to within-GPU scaling. While the number of total threads
can be less than the number of cores, GPU devices achieve their best performance results
when there are many threads concurrently scheduled on each core. Each device has a
limit (which varies by device) to the number of threads which can be scheduled on
a multiprocessor and occupancy is the ratio of actual scheduled thread warps (defined
below) to the maximum number possible (NVIDIA (2012a)).

Scalability across GPU devices is achieved in a more traditional manner, using OpenMP
or MPI.

2.2 Algorithmic Design

For a given computational program, there is no guarantee that any portion of the pro-
gram may be computed in parallel. In practice, most algorithms have some fraction of
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instructions which must be performed sequentially, and a remaining fraction which may
be implemented in parallel. Amdahls Law (Amdahl (1967)) states that if a fraction P of
a program can be executed in parallel, the theoretical maximum speedup of the program
with N processing cores is

1

1)
The intuition behind Amdahl’s Law is the following. If a serial version of an algorithm
takes 1 unit of time to execute, a fraction (1 — P) of a parallel algorithm will execute in
the same time as its serial counterpart, whereas a fraction P will run in % units of time
(because it can be run in parallel on N cores). Dividing 1 unit of time by the parallel
compute time yields the possible speedup in Eq. (1). A crucial step in GPU computing
is determining which portion of an algorithm can be executed in parallel.

Kernels and threads are the fundamental elements of GPU computing problems.
Kernels are special functions that comprise a sequence of instructions that are issued in
parallel over a user specified data structure (e.g., the fraction of instructions P mentioned
above, such as performing a routine on each element of a vector). Thus, a kernel typically
comprises only a portion of the total set of instructions within an algorithm. Each data
element and corresponding kernel comprise a thread, which is an independent problem
that is assigned to one GPU core.

Just as GPU cores are grouped together as multiprocessors, threads are grouped
together in user-defined groups known as blocks. Thread blocks execute on exactly
one multiprocessor, and typically many thread blocks are simultaneously assigned to the
same multiprocessor. A diagram of this architecture is depicted in Figure 2, taken from
Section 1.1 of NVIDIA (2012a). The scheduler on the multiprocessor then divides the
user-defined blocks into smaller groups of threads that correspond to the number of
cores on the multiprocessor. These smaller groups of threads are known as warps —
as described in NVIDIA (2012a), “The term warp originates from weaving, the first
parallel thread technology.” As mentioned above, each core of the multiprocessor then
operates on a single thread in a warp, issuing each of the kernel instructions in par-
allel. This architecture is known as Single-Instruction Multiple-Thread (SIMT) (NVIDIA
(2012a)).

Because GPUs employ SIMT architecture, it is important to avoid branch diver-
gence among threads. While individual cores operate on individual threads, the parallel
structure achieves the greatest efficiency when all cores execute the same instruction at
the same time. Branching within threads is allowed, but asynchronicity may result in
sequential execution over data elements of the warp. Given the specifications of GPU
cores, sequential execution would be horribly inefficient relative to simply performing
sequential execution on the CPU.
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2.3 Software

NVIDIA was the original leader in developing a set of software tools allowing scientists to
access GPUs. The CUDA C language (NVIDIA (2012a)) is simply a set of functions that
can be called within basic C/C++ code that allow users to interact with GPU memory
and processing cores. CUDA C is currently the most efficient and best documented way
to design GPU software — it is truly the state of the art. Downsides to CUDA C are that
it requires low-level comfort with software design (similar to C/C++) and that it only
runs on NVIDIA GPUs running the CUDA platform. The CUDA platform itself is free,
but requires NVIDIA hardware. While originally designed only for C/C++, it is now
possible to write CUDA C kernels for Fortran, Python, and Java.

OpenCL (http://www.khronos.org/opencl/) is an open source initiative led by Apple
and promoted by the Khronos Group. The syntax of OpenCL is very similar to CUDA C,
but it has the advantage of not being hardware dependent. In fact, not only can OpenCL
run on a variety of GPUs (including NVIDIA GPUy), it is intended to exploit the

Multithreaded CUDA Program

v v
GPU with 2 Cores GPU with 4 Cores

Core 0 Core 1 Core 0 Core 1 Core 2 Core 3

v

Figure 2 Schematic diagram of thread blocks and GPU multiprocessors, taken from Section 1.1 of
NVIDIA (2012a). This diagram shows how (1) each thread block executes on exactly one GPU multipro-
cessor and (2) multiple thread blocks can be scheduled on the same multiprocessor.
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heterogeneous processing resources of differing GPUs and CPUs simultaneously within
one system. The downside to OpenCL is that it is poorly documented and has much less
community support than CUDA C. In contrast to NVIDIA CUDA, it is currently very
difficult to find a cohesive set of documentation that assists an average user in making
a computer system capable of running OpenCL (e.g., downloading drivers for a GPU)
and in beginning the process or software design with OpenCL.

Beyond these two foundational GPU software tools, more and more third-party
vendors are developing new tools, or adding GPU functionality within current soft-
ware. Examples include the Parallel Computing Toolbox in Matlab and the CUD-
ALink and OpenCLLink interfaces in Mathematica. New vendors, such as AccelerEyes
(http://www.accelereyes.com/) are developing libraries that allow higher-level interac-
tion with the GPU: their Jacket product is supposed to be a superior parallel computing
library for Matlab, and their ArrayFire product is a matrix library that allows similar high-
level interaction within C, C++,and Fortran code. ArrayFire works with both the CUDA
and OpenCL platforms (i.e., any GPU) and the basic version is free. For a licensing fee,
users can also gain access to linear algebra and sparse grid library functions.

Similar to ArrayFire, matrix libraries such as Thrust,ViennaCL, and C++Amp have
been developed to allow higher-level GPU support within the context of the C and C++
languages. All are free,although each has specific limitations: e.g., Thrust only works on the
CUDA platform, and, at present, C++Amp only works on the Windows operating system
via Visual Studio 2012 (and hence is not free if VS2012 cannot be obtained through an
academic license). While tied to NVIDIA hardware, Thrust is a well-documented and
well-supported library which will be featured below.

One of the limitations of GPU computing relative to parallel computing with tra-
ditional CPUs is that there are fewer software tools available. Further, those which are
available tend to be less sophisticated. Debugging software and numerical libraries are
examples—in particular, far fewer numerical libraries are currently available for GPU than
CPU computing. However, given the rapid uptake of GPUs for scientific computing,
this will most likely change in the near future (as evidenced by the discussion of dynamic
parallelism and GPU callable libraries in Section 6.1).

g 3. A SIMPLE GPGPU EXAMPLE

Let us now turn to a simple problem that can be computed with a GPU and illustrate
how it can be implemented in several computing languages. One of the primary objectives
of this section will be to provide demonstration code that can serve as a template for using
GPUs in economic research and which will serve as a foundation for understanding the
applications in Sections 4 and 5.
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Figure 3 Second-order polynomials ax2+2.3x+5.4fora € [—0.9, —0.1]. The darkest line corresponds
toa = —0.1.

Consider the second-order polynomial
y=ax* + bx + c. (2)

Suppose that we wish to optimize the polynomial for a finite set of values of the second-
order coefticient in a specific range: a € [—0.9, —0.1]. Figure 3 depicts this range of
polynomials when b = 2.3 and ¢ = 5.4, and where the darkest line corresponds to the

case a = —0.1. In this example it is trivial to determine the location of the optimum,
' 3)
X=——"
2a

However, to illustrate the mechanics of parallel computing we will compute the solution
numerically with Newton’s Method for each a € [—0.9, —0.1].

The remainder of this section will show how to solve this problem with Matlab, C++,
CUDA C, and Thrust." The Matlab and C++ codes are provided merely as building
blocks—they are not parallel implementations of the problem. In particular, the Matlab
code serves as a baseline and demonstrates how to quickly solve the problem in a lan-
guage that is familiar to most economists. The C++ code then demonstrates how easily
the solution can be translated from Matlab to C++; indeed, most economists will be

1 All of the code can be obtained from http://www.parallelecon.com/basic-gpu/.
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surprised at the similarity of the two languages. Finally, understanding the serial C++
implementation is valuable for CUDA C and Thrust, since these latter implementations
are simply libraries that extend the C++ framework.

3.1 Matlab

Listing 1 displays the file main.m, which solves the optimization problem above for
various values of the second-order coefficient. The block of code on lines 2—4

nParam = 1000;
paramMin = -0.9;
paramMax = -0.1;

paramGrid = paramMin: ( (paramMax-paramMin) / (nParam-1)) :paramMax;

constructs a grid, paramGrid, of nParam = 1000 values between —0.9 and —0.1.
Line 8 then allocates a vector for storing the arg max values of the polynomial at each q,

argMaxVals = zeros (nParam,1l);

and lines 9-11 loop over each value of paramGrid and maximize the polynomial by
calling the function maxPoly,

for i = 1l:nParam

argMaxVals (i) = maxPoly (2.2, paramGrid(i), 0.00001);

end

To numerically solve for the maximum at line 10, Matlab provides built-in opti-
mization functions such as fmincon; alternatively, superior third-party software, such
as KNITRO ( http://www.ziena.com/knitro.htm), could be used. To keep the Matlab
software similar to the implementations below, we make use of a self-written Newton
solver wrapped in the function maxPoly, which is shown in Listing 2. The first line of
the listing

Listing 1 Serial Matlab code for polynomial maximization problem: main.m

% Grid for order 2 coefficient

nParam = 1000;

paramMin = —0.9;

paramMax = —0.1;

paramGrid = paramMin :(( paramMax—paramMin) /(nParam —1)) : paramMax ;

% Maximize for each coefficient
argMaxVals = zeros (nParam ,1) ;
for i = 1:nParam
argMaxVals (i) = maxPoly (2.2, paramGrid(i), 0.00001);
end
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function argMax = maxPoly (x0, coef, tol)

shows that maxPoly accepts three arguments: an initial value for x, X0, a value of the
second-order coefficient, coef,and a convergence tolerance, tol. On exit, the function
returns a single value, argMax, which 1s the arg max of the function. Lines 4 and 5

x = x0;
diff = tol+1l;

initialize the arg max, x, and create a variable, di f £, which tracks the difference between
Newton iterates of x. The main Newton step then occurs within the while loop between
lines 6 and 21. In particular, lines 9 and 12 compute the first and second derivatives of

the polynomial,
firstDeriv = 2*coef*x + 2.3;

secondDeriv = 2*coef;
and line 15

Listing 2 Serial Matlab code for Newton’s Method: maxPoly.m

function argMax = maxPoly(x0, coef, tol)

% Iterate to convergence
x = x0;

diff = tol+1;

while diff > tol

% Compute the first derivative
firstDeriv = 2%coefxx + 2.3;

% Compute the second derivative
secondDeriv = 2%coef;

% Newton step
xNew = x — firstDeriv/secondDeriv;

% Compute difference for convergence check and update
diff = abs (xNew — x);
x = xNew;

end

% Function outpout
argMax = x;

end
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xNew = x - firstDeriv/secondDeriv;

uses the derivatives to update the value of the arg max, xNew. Each iteration terminates
by computing the difference between the new and current iterates

diff = abs (xNew - x);

and then setting the new value of the arg max to be the current value

X = xXNew;
When convergence is achieved (diff < tol),the function exits and returns the most
recent value of x. As is seen above, the basic nature of the problem makes it very easy to

solve with few lines of code.

3.2 C++

Listings 3 and 4 display C++ code for the polynomial optimization problem. This
code makes no direct advances toward parallelization, but sets the framework for sub-
sequent parallel implementations (CUDA C and Thrust) which build on C++. While
most economists are not comfortable with C++, many will be surprised by the sim-
ilarity between the Matlab and C++ code, especially the functions maxPoly.m and
maxPoly.cpp.

Listing 3 Serial C++ code for polynomial maximization problem: main.cpp

#include <Eigen/Dense>
using namespace Eigen ;
double maxPoly(double x0, double coef, double tol);

int main ()

{

// Grid for order 2 coefficient

int nParam = 1000;
double paramMin = —0.9;
double paramMax = —0.1;

VectorXd paramGrid = VectorXd :: LinSpaced (nParam , paramMin, paramMax) ;

// Maximize for each coefficient
VectorXd argMaxVals = VectorXd :: Zero (nParam) ;
for(int i = 0 ; i < nParam ; ++i){
argMaxVals (i) = maxPoly (2.2, paramGrid(i), 0.00001) ;

}

return 0;
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Listing 4 Serial C++ code for Newton’s Method: maxPoly.cpp

1 #include <math.h>
2

3 double maxPoly(double x0, double coef, double tol){

5 // Tterate to convergence

6 double x = x0;

7 double diff = tol+1;

8 double firstDeriv , secondDeriv , xNew;
9 while (diff > tol){

11 // Compute the first derivative

12 firstDeriv = 2%coef*x + 2.3;

13

14 // Compute the second derivative
15 secondDeriv = 2xcoef;

16

17 // Newton step

18 xNew = x — firstDeriv/secondDeriv;
19

20 // Compute difference for convergence check and update
21 diff = fabs (xNew — x);

22 x = xNew;

23

24 }

25

26 // Function outpout

27 return Xx;

28

29 }

Listing 3 shows the file main . cpp which corresponds to the Matlab scriptmain.m
in Listing 1. Two general notes about C++ syntax will be beneficial:

1. Single-line comments in C++ begin with //, as opposed to % in Matlab. Multiline
comments begin with /* and end with * /.

2. Functions and conditional statements in C++ begin and end with curly braces {},
whereas in Matlab only the end point is explicitly defined with the statement
end.

The first notable difference between main. cpp and main.m arises in lines 1 and

3 of the former,

#include <Eigen/Dense>
using namespace Eigen;

where the Eigen library is called: Eigen (http://eigen.tuxfamily.org) is a template library
that provides basic linear algebra functionality. By default, C++ does not load many of
the basic libraries that are beneficial for scientific computing—these must be invoked
explicitly in the software.

The next difference is the declaration of the function maxPoly in line 5

double maxPoly (double x0, double coef, double tol);
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Before any variable or function can be used in C++, it must be declared and initialized.
Further, declarations require a statement of type: in this case the double preceding the
name of the function states that the function will return a double precision variable, and
the instances of double before each of the function arguments also state that the argu-
ments will be double precision values. The function itself is only declared in main. cpp
and not defined—the definition is fully enclosed in maxPoly . cpp. However, in order
to utilize the function, main . cpp must have access to the definition of maxPoly and
not only its declaration. This is accomplished by linking the two C++ files at compile time,
which can either be done on the command line or in a separate makefile, a topic which
is beyond the scope of this paper. To see how this is accomplished in a makefile, readers
can download code for this example at http://www.parallelecon.com/basic-gpu/.

Unlike Matlab, which allows users to write an interactive script, all C++ code must be
wrapped in an outer function entitled main. Thisis seeninline 7 of Listing 3. Convention
is that main returns an integer value: O if the program is successtul, 1 otherwise. Within
the main function, we see the same operations being performed as in main.m. First,
the grid of second-order coefficients, paramGrid, is constructed

int nParam = 1000;
double paramMin = -0.9;
double paramMax = -0.1;

VectorXd paramGrid = VectorXd::LinSpaced(nParam, paramMin, paramMax) ;

Clearly, nParam is declared to be an integer and paramMin and paramMax are
double precision. Less obviously, paramGrid is declared as type VectorXd, which is
a double precision vector made available by Eigen. The function LinSpaced (n, a, b)
constructs an equally spaced array of n values between a and b.

Lines 17-20

VectorXd argMaxVals = VectorXd::Zero (nParam) ;
for(int 1 = 0 ; 1 < nParam ; ++1){

argMaxVals (i) = maxPoly (2.2, paramGrid(i), 0.00001);
}

then allocate storage for the arg max values and loop over paramGrid, performing the
maximization by callingmaxPoly for each value of the grid. Aside from previously men-
tioned syntactical differences, these lines are identical to their Matlab counterpart. Listings
2 and 4 show that the same is true of the functions maxPoly .m and maxPoly.cpp:
aside from previously mentioned syntactical differences and line 1 of main. cpp

#include <math.h>


http://www.parallelecon.com/basic-gpu/
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which explicitly invokes the basic math library math.h, these two files are essentially
identical.

3.3 CUDAC

CUDA C is a set of C/C++ callable functions that provide an interface to NVIDIA
graphics devices. Listings 5 and 6 display parallel GPU code, written in C++, making use
of CUDA C function calls. Note that the file name extensions have been changed from
.cpp to .cu. The first line of Listing 5

#include "maxPoly.cu"

Listing 5 CUDA C code for polynomial maximization problem: main.cu

1 #include <iostream>
2 #include "maxPoly.cu"
3

4 using namespace std;
5

6 int main ()

74
8

9 // Grid for order 2 coefficient

10 int nParam = 1000;

1 double paramMin = —0.9;

12 double paramMax = —0.1;

13 doublex paramGrid = new double [nParam|;

14 for(int i = 0 ; i < nParam ; ++i) paramGrid[i] = paramMin + 1i%(paramMax—paramMin)/

(nParam —1);

16 // Copy parameter grid from CPU to GPU memory

17 doublex paramGridDevice;

18 cudaMalloc ((void #*)&paramGridDevice , nParam#sizeof (double)) ;

19 cudaMemecpy (paramGridDevice , paramGrid, nParam#sizeof (double), cudaMemcpyHostToDevice) ;
20

21 // Storage for argmax values

22 doublex argMaxValsDevice ;

23 cudaMalloc ((void#*x)&argMaxValsDevice , nParamssizeof (double)) ;

24

25 // Maximize for each coefficient

26 int threadsPerBlock = 256;

27 int blocksPerGrid = (int) ceil ((double)nParam/threadsPerBlock) ;

28 maxPoly<<<blocksPerGrid , threadsPerBlock >>>(2.2, paramGridDevice ,

29 0.00001, nParam, argMaxValsDevice) ;
30

31 // Copy argmax values from GPU to CPU memory

32 doublex argMaxVals = new double [nParam |;

33 cudaMemcpy (argMaxVals , argMaxValsDevice , nParam#sizeof (double) , cudaMemcpyDeviceToHost) ;
34

35 for(int 1 = 0 ; i < nParam ; ++1i){
36 cout << argMaxVals[i]| << endl;
37 }

38

39 return 0;

40

4}
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Listing 6 CUDA C code for Newton’s Method: maxPoly.cu

1 #include <math.h>

2
3 __global__ void maxPoly(double x0, doublex coef,
4 double tol, int nParam, doublex argMax) {

6 // Thread ID
7 int i = blockldx.x*blockDim.x + threadldx.x;

9 // The Kernel should only execute if i < nParam
10 if (i >= nParam) {

1 return ;

12 }oelse {

13

14 // Tterate to convergence

15 double x = x0;

16 double diff = tol+1;

17 double firstDeriv , secondDeriv , xNew;
18 while (diff > tol){

19

20 // Compute the first derivative

21 firstDeriv = 2xcoef[i]*x + 2.3;

22

23 // Compute the second derivative
24 secondDeriv = 2x%coef[i];

25

26 // Newton step

27 xNew = x — firstDeriv/secondDeriv ;
28

29 // Compute difference for convergence check and update
30 diff = fabs (xNew — x);

31 x = xNew;

32

33 }

34

35 // Function outpout

36 argMax|[i] = x;

37 }

38

39}

serves the purpose of declaring and defining the function in maxPoly . cu. Lines 7-9 of
Listing 5 show that nParam, paramMin, and paramMax are declared and initialized
exactly as in main. cpp, however the initialization of paramGrid on lines 10 and 11
is somewhat different:

double* paramGrid = new double[nParam] ;
for(int 1 = 0 ; 1 < nParam ; ++1i)
paramGrid[i] = paramMin + 1* (paramMax-paramMin)/ (nParam-1) ;
Where the C++ code declared paramGrid to be an Eigen vector of double precision
values and initialized the grid with the function LinSpaced, the CUDA C implemen-

tation is a bit more rudimentary: it declares a basic C array on line 10 and then initializes
each value of the array with a for loop. The reason for this is that the CUDA compiler,
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nvcc, does not support the object-oriented functionality of the Eigen library and hence
cannot compile CUDA code with Eigen references.

One of the major differences between main.cpp and main.cu centers on the
use of host and device memory (discussed in Section 2.1.2): in order to maximize the
polynomial for each value of paramGrid on the GPU, the grid must first be declared
and initialized in host memory, as on lines 10 and 11 of Listing 5, and then transferred to
device memory. The transfer is accomplished in two steps. First, on lines 14 and 15

double* paramGridDevice;
cudaMalloc ( (void**) &paramGridDevice, nParam*sizeof (double)) ;

memory is explicitly allocated on the device. The essential features are that line 14 declares
a new double precision vector paramGridDevice (in reality, the asterisk states that
paramGridDevice is a “pointer” that points to a block of memory that has been set
aside for double precision variables) and line 15 allocates enough space in memory for
nParam double precision variables. The second step on line 16

cudaMemcpy (paramGridDevice, paramGrid,
nParam*sizeof (double), cudaMemcpyHostToDevice) ;

uses the function cudaMemcpy to explicitly copy the variable paramGrid in host
memory to the empty vector paramGridDevice in device memory. Similar syntax
is used to declare and initialize a vector argMaxValsDevice on lines 19 and 20, but
since the initial values are unimportant there is no need to explicitly copy predefined
values from host to device memory. Only after the optimization has been performed,
with the arg max values stored in argMaxValsDevice, does the code return the
solution to host memory on lines 29 and 30

double* argMaxVals = new double[nParam];
cudaMemcpy (argMaxVals, argMaxValsDevice,
nParam*sizeof (double), cudaMemcpyDeviceToHost) ;

Note that to complete the transfer, the variable argMaxVals must first be declared and
initialized in host memory, since this was not done previously.

The final, crucial difference between Listings 3 and 5 occurs at lines 2325, where
the loop over paramGrid has been eliminated and replaced with a CUDA C call to the
kernel maxPoly:

int threadsPerBlock = 256;

int blocksPerGrid = (int)ceil ((double)nParam/threadsPerBlock) ;

maxPoly <<blocksPerGrid, threadsPerBlock>>> (2.2, paramGridDevice,
0.00001, nParam,

argMaxValsDevice) ;
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The <<x,y>> syntax is the core CUDA C interface to request parallel operation on
a data structure. The first argument can either be an integer or a one-, two-, or three-
dimensional object of type dim3, which specifies the dimensions of the grid containing
thread blocks (i.e., the thread blocks can be arranged in an array structure of up to three
dimensions). If this argument is an integer scalar N, the grid is one-dimensional with N
elements (i.e., N thread blocks). The second argument is either an integer or a one- or
two-dimensional object of type dim3 which specifies the dimensions of a thread block. In
the example above, <<<blocksPerGrid, threadsPerBlock>> specifiesa one-
dimensional grid containing blocksPerGrid = 4 one-dimensional thread blocks of
threadsPerBlock = 256 threads. Note that the syntax on line 24

int blocksPerGrid = (int)ceil ((double)nParam/threadsPerBlock) ;

ensures that there are always enough thread blocks in the grid to contain all of the nParam
threads by rounding the value nParam/threadsPerBlock up to the nearest integer
(the use of (double) and (int) force all variables to be cast as the right types). The
upshot is that line 25 requests the operations in the kernel maxPoly to be performed in
parallel on blocks of 256 elements of paramGridDevice. It is important to note that
while different block sizes are optimal for different GPUs (depending on the number of
cores), this variable defines the number of threads per block and is independent of the
total number of GPU cores (i.e., it does not need to be changed when moving the code
from one GPU to another—even if a GPU has fewer than 256 cores).

The C++ function maxPoly.cpp and CUDA kernel maxPoly.cu are almost
exactly identical. The first difference occurs in the kernel definition on line 3 of Listing 6:

_ _global__ void maxPoly(double x0, double* coef,

double tol, int nParam, double* argMax) {

The following is a breakdown of the how this line differs from the corresponding defi-

nition in maxPoly . cpp:

* _ _global_ _ is CUDA C syntax for declaring a kernel (referring to global device
memory).

» The kernel must return type void, which is true of all CUDA kernels (as compared
to the double return type of maxPoly.cpp). This means that maxPoly.cu
returns nothing.

* The second argument of the kernel is the full vector (in reality, a pointer to the vector
in memory) of possible second-order coefficients, rather than a single element of the
coefficient array.

* The kernel has an additional argument, nParam, which is the integer length of the
coefficient vector, coef.

* Because it returns void, the kernel has been augmented with an additional argument,
argMax, which is an empty vector where the solutions are stored. In particular, since
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a pointer to the location of the vector in memory is passed (the * notation) the values
can be modified by the function and will remain modified upon exit.
Finally, line 6 of maxPoly.cu

int i = blockIdx.x*blockDim.x + threadIdx.x;

is the operative line of code that CUDA uses to assign data elements to processor threads.
Within a particular kernel, the valuesblockIdx.x,blockIdx.y,andblockIdx. z
correspond to the three-dimensional indices of a unique block within the grid of blocks
and the values threadIdx.x and threadIdx.y are the two-dimensional indices
of a unique thread within a block. Variables blockDim.x and blockDim.y cor-
respond to the number of threads along each dimension of a block. Coupling block
indices with block dimensions traverses the threads within the grid to select the initial
thread element of a block within the grid. In this example, with a total of 4 blocks,
blockIdx:x € {0,1,2,3} (indexing in C++ begins at zero), blockDim.x = 256
and threadIdx:x € {0,1,...,255}. Hence, the variable 1 corresponds to a unique
element in the parameter grid coef, which is used on lines 21 and 24 and which results
in a final solution, argMax, on line 36. The commands

if (i >= nParam) {

return;

} else {

on lines 10-12 ensure that the kernel only operates on array indices that are less than
nParam. If the number of data elements is not perfectly divisible by the block size,
the grid of blocks will contain thread elements which exceed the number of threads
needed for computation—that is, the use of ceil in the code causes the number of
threads in the grid of blocks to be at least as great as nParam. In the example above, the
grid of blocks has 1024 threads, whereas the coefticient vector only has 1000 elements.
Without the conditional statement above, kernels will operate on threads that exceed
nParam, potentially altering values in memory that are reserved for computations by
other multiprocessors. Hence, lines 10—12 serve as a protection for memory objects that
do not belong to the coefficient vector coef.

In summary, this code allows the CUDA runtime environment to divide thread blocks
among available multiprocessors, which then schedules individual threads to individual
cores. As emphasized above, the scheduling of blocks is transparent to the user and scales
automatically to the number of multiprocessors. Each thread process then accesses a
unique ID in the thread block via the threadIdx command. The end result is that the
sequential loop is eliminated and each GPU core is able to issue the kernel instructions
for optimization in parallel on individual elements of the parameter vector. Because of
transparent scaling, this code can run on a laptop with only 32 GPU cores or on a Tesla
C2075 with 448 cores without modification.
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3.4 Thrust

As mentioned above, Thrust is a free template library that can be called within C/C++
and which provides an alternate interface to GPU hardware. Listings 7 and 8 display par-
allel GPU code written in C++, making use of the Thrust template library. The primary
advantage of Thrust is that it combines the conciseness of Matlab and C++/Eigen code
with the ability to schedule parallel work on a GPU. In particular, Thrust eliminates the
need for explicit memory allocation and transfer between host and device. Although the
transfer must still occur, allocating and copying a data object in device memory is as simple as

double* Y = new double[N]; // Allocate a vector, Y, of N elements in
host memory

thrust::device_vector<double> X = Y; // Allocate and copy to device memory

in contrast to the excessively verbose use of cudaMalloc and cudaMemcpy in
CUDAC. This greatly facilitates the development of software as it allows the user to work
at a high level of abstraction, without the need to deal with the minor details of memory
allocation and transfer.

Lines 1-3 of Listing 7 include the relevant Thrust libraries for use in C++ and line 4

Listing 7 Thrust code for polynomial maximization problem: main.cu

1 #include <iostream>

2 #include <thrust/device_vector.h>
3 #include <thrust/sequence.h>

4 #include <thrust/transform . h>

5 #include "maxPoly.hpp"

6

7 using namespace std;

8

9 int main ()

0 {

12 // Grid for order 2 coefficient

13 int nParam = 1000;

14 double paramMin = —0.9;

15 double paramMax = —0.1;

16 thrust :: device_vector <double> paramGrid (nParam) ;

17 thrust ::sequence (paramGrid.begin () , paramGrid.end () , paramMin, (paramMax—paramMin)/
(nParam —1)) ;

19 // Maximize for each coefficient

20 thrust :: device_vector <double> argMaxVals (nParam) ;

21 thrust :: transform (paramGrid. begin () , paramGrid.end () , argMaxVals.begin () , maxPoly (2.2,
0.00001)) ;

2

23 for(int i = 0 ; i < nParam ; ++i){

24 cout << argMaxVals[i] << endl;

25 }

26

27 return 0;




1
2
3
4
5

6
7
8
9
10
1

37
38
39
40
41
42
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Listing 8 Thrust code for Newton’s Method: maxPoly.hpp

#include <math.h>
struct maxPoly{

// Arguments
const double x0; ///< Initial value
const double tol; ///< Convergence criterion

/// Constructor
maxPoly (const double _x0, const double _tol) : x0(_x0), tol(_tol) {}

/// Kernel
__host__ __device__
double operator () (const double coef) const {

// lterate to convergence

double x = x0;

double diff = tol+1;

double firstDeriv , secondDeriv, xNew;
while (diff > tol){

// Compute the first derivative
firstDeriv = 2%coef*x + 2.3;

// Compute the second derivative
secondDeriv = 2kcoef;

// Newton step
xNew = x — firstDeriv/secondDeriv ;

// Compute difference for convergence check and update
diff = fabs (xNew — x);
x = xNew;

// Function output
return Xx;

#include "maxPoly.hpp"

is the equivalent of including the maxPoly kernel source code, which will be described
below. The declarations of nParam, paramMin, and paramMax on lines 10—12 are
identical to those in C++ and CUDA C, so the first major difterence arises on lines 13
and 14 with the declaration and initialization of paramGrid:
thrust: :device_vector<double> paramGrid (nParam) ;
thrust: :sequence (paramGrid.begin(), paramGrid.end(),
paramMin, (paramMax-paramMin)/(nParam-1));
The syntax thrust: :device_vector instantiates a vector directly in device mem-
ory. The function thrust::sequence(start, end, lower, step) then
constructs an equally spaced sequence of points between the positions start and end
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of a Thrust vector, beginning at the value Lower, with the grid points step units apart.
Unlike CUDA C, where paramGrid first had to be computed in host memory and
transferred to device memory, we see that Thrust allows functionality to build such a
grid directly in the device memory. This not only saves time in transferring data, but also
results in more streamlined code.

Line 17 then declares and allocates memory for a device vector,argMaxVals, which
is not transferred to host memory at the end of the program because Thrust allows users
to access and manipulate members of a device vector as if they reside in host memory.
The important parallel operation of the file occurs at line 18:

thrust::transform(paramGrid.begin(), paramGrid.end(),
argMaxVals.begin (), maxPoly (2.2, 0.00001));
In contrast to the <<<x,y>> syntax of CUDA C, the parallel interface in Thrust is

provided by two functions: thrust::transform and thrust::for_each.
Specifically,

thrust::transform(inputStart, inputEnd, outputStart, function)

applies function to each element of a Thrust vector between inputStart and
inputEnd and places the output in the Thrust vector starting at outputStart.
Although it is not described here, thrust: : for_each provides similar functionality.
Most users find this interface to be a bit more intuitive than that of CUDA C.

While we previously saw that the files maxPoly.m, maxPoly.cpp, and
maxPoly.cu were almost identical, a brief glance at Listing 8 shows substantial dif-
ferences in the Thrust equivalent, maxPoly . hpp (which is referred to as a “functor”
or function object). The major differences arise from the fact that Thrust encloses the
“kernel” in a C++ class structure rather than in a simple function. Line 3

struct maxPoly{
is the C/C++ syntax for declaring such an object and Lines 6, 7, and 10
const double x0; ///< Initial value
const double tol; ///< Convergence criterion
maxPoly (const double _x0, const double _tol) : x0(_x0), tol(_tol) {1}

declare the members of the object. In this case, the members are the actual function
maxPoly and the arguments to the function (the initial value of the arg max, x0, and
the Newton convergence tolerance, tol). Lines 13 and 14

__host__ _ _device_ _

double operator () (const double coef) const {

provide the syntax for an operator () ,which is the object interface formaxPoly,and the
instructions between lines 14 and 35 are identical to those found in maxPoly . cpp.
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Note that there is no explicit use of a thread ID in Thrust, nor does maxPoly take
paramGrid as an argument—these details are handled transparently via thrust: :
transform. Also, where users must specify a thread block structure in CUDA C,
Thrust handles details of blocks and grids under the hood.

The final advantage of Thrust is that it has separate backends for CUDA and
OpenMP; that is, the same software can access GPU or shared-memory CPU paral-
lelism (although not both at the same time). The result is that Thrust software can run
without modification on systems that do not have GPU capabilities, but that have mul-
tiple CPUs cores that share memory. This will be demonstrated in the examples of the
following sections. For more details on using the Thrust interface, see Bell and Hoberock
(2012) or the Thrust Quickstart Guide (NVIDIA (2012b)).

S 4. EXAMPLE: VALUE FUNCTION ITERATION

We will now turn our attention to a specific example where parallelism can greatly
speed up the computation of an economic model. Specifically, we will consider a canon-
ical real business cycle (RBC) model (Kydland and Prescott (1982)) solved with value
function iteration (VFI) (Judd (1998)). While this model is simple, it is an excellent illus-
tration of the benefits of a parallel architecture. The results of this section are based upon
those of Aldrich et al. (2011) with some minor modifications and code to replicate the
results is available at http://www.parallelecon.com/vti/.

4.1 Model

The economy is populated by a representative agent with preferences over a single con-
sumption good. The agent seeks to maximize expected lifetime utility,

Eq {Z ﬂ’u(@)} , )

t=0

where C, is the agent’s consumption at time ¢, [E ( is the conditional expectations operator
at t = 0, and B is the discount factor. For this example we specialize the period utility
function to be of the constant relative risk aversion form:
1_
c,

W)= 6)

where y is the coefficient of relative risk aversion.
The agent receives income each period by renting labor and capital to a representative
firm and chooses consumption and investment so as to satisfy the budget constraints

C+1=w+nrK, vt, (6)


http://www.parallelecon.com/vfi/
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where w; is the wage paid for a unit of labor, r, is the rental rate for a unit of capital, K; is
capital, [, is investment, and where we have assumed that labor, L,, is normalized to unity
and supplied inelastically because it does not enter the agent’s utility function. Capital
depreciates each period according to

Ky =1L+ (1 -90)K, Vi, (7)

where § is the depreciation rate.
The representative firm produces output according to

Y, = Z,f(Ky), Vit (8)

where Y, is output and where the total factor of productivity (TFP), Z,, follows the law
of motion

log(Zf) = p log(Zt—l) + &, Where & V}\fl N(O’ 02)5 Vt, (9)
We will assume that the production function is of the Cobb-Douglas form:

f(K) = KF, (10)

where o is the output elasticity of capital. Combining Eqs. (6)—(8) with the market
clearing condition C, = Y,, we arrive at the aggregate resource constraint

K1+ C = ZKY+ (1 - 8)K,, Vi (11)

Since the welfare theorems are satisfied, we can find the agent’s optimal consumption
path by solving a recursive version of a social planner’s problem

cl
V(K. Z) = max { — BE[V(K', Z") | Z]} (12a)
subject to
K =ZK*+ (1 —-8K —C (12b)
log(Z) = plog(Z) + €', &~N(0,07%), (12¢)

where the recursive structure of the problem allows us to simplify notation by dropping
time subscripts: a variable X refers to its value in the current time period, while X’
denotes its value in the subsequent period. It is not requisite to solve the model with
VFI in order to achieve the advantages of massive parallelism—we could obtain similar
benefits by working directly with the equilibrium conditions. However, the problem is
most easily illustrated in the present format.
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4.2 Solution

Since B € (0,1),8 € (0,1),u(C) and f(K) are both continuous, strictly increasing and
concave, and &, are i.i.d. shocks drawn according to a Lebesgue probability measure,
Theorem 9.8 of Stokey et al. (1989) proves that System (12) has a unique functional
solution 1/ (-, -) and that there also exists a unique policy function, G, for the endogenous
state variable, K : K’ = G(K, Z). Unfortunately, there are no closed-form, analytical
solutions for I/ and G, so they must be approximated numerically. Judd (1998) highlights
several ways to arrive at numerical solutions for this problem, one of which is value
function iteration (VFI). In brief, VFI specifies a domain (K, Z) € [K,K] x [Z, Z]
and a functional form for V. Discretizing the domain and starting with an initial guess,
179, for the value function, VFI iterates on System (12), using a numerical integration
method, until successive iterates of the value function converge. Convergence for this
problem is guaranteed by Theorem 9.6 of Stokey et al. (1989).

Given discretizations K and Z of [K, K] and [Z, Z], a sequential implementation of
VFI would use the current iterate of the value function, I, to iterate through pairs of
points in K x 2 and solve the optimization problem of System (12). The result would
be an updated value function, V*D, computed in a serial fashion over each pair of
state values. The algorithm would then repeat the procedure until convergence of the
value function. Algorithm 1 writes the VFI computations explicitly. In summary, a serial
implementation loops through the grid values in Steps 6 and 7 in sequence, performing
the maximization in Eq. (13) for each pair. Note that if either K or Z is a very dense
grid, Step 8 may involve many thousands of serial calculations for each of the values in
the loops at Steps 6 and 7.

Alternatively, with many processing cores available, the maximization problems com-
puted for each (K, Z) pair could be assigned to individual cores and computed in parallel.
In Algorithm 1 this amounts to eliminating the loops in Steps 6 and 7 and outsourcing the
computations of Eq. (13) to multiple cores. The reason that parallelism can be exploited
in this problem is that the maximization nested within Steps 6 and 7 depends only on the
concurrent (K, Z) and not on other values in K and Z. Aldrich et al. (2011) implement
this algorithm and Section 4.3 reports updated results from that paper.

As a final note, the maximization in Eq. (13) can be performed in a variety of ways.
The results below make use of a simple binary search procedure which iteratively bisects
IC until an optimal value of K’ is found (see p. 26 of Heer and Maussner (2005) for an
explicit algorithm). This algorithm is quite efficient, arriving at a solution in no more
than log, (N}) steps, where Nj is the number of elements in K.

4.3 Results

Table 1 reports calibrated parameter values for the model. These values are standard in
the literature for a quarterly calibration of a basic RBC model.
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Algorithm 1. Value Function Iteration for RBC Model

1:  Fix some 7 > 0 which will determine convergence and set € = 7 4 1.

Compute the deterministic steady-state level of capital, K, and set K = 0.95K, and
K = 1.05Kj,. Discretize the state space for capital so that it is confined to a grid of Nj
equally spaced values between K and K. Denote the grid by K.

3: Use the method of Tauchen (1986) to discretize the state space for the log of TFP so that
it is confined to a grid of N equally spaced values between z and Z (where z = log(Z)).
Denote the grid for TFP levels by Z and the matrix of transition probabilities P, where
the probability of transitioning from Z to 2’ is expressed as P(Z, Z).

4:  Guess initial values of the value function, V?, for each pair of possible values of the state
variables, K and Z (i.e., V"V is an N}, x N. matrix). In particular, set I’V to be equal to
the deterministic steady-state values of the value function.

5. while¢ > 1 do
6: for each K € K do
7: for each Z € Z do
8: Solve .
C(K,Z, K'Y
max {¥ + Exp(K, Z, K/)} . (13)
K'ek 1—y
where
C(K,Z,K')y=ZK*+(1-8§K - K (14)
Exp(K,Z,K'y= Y VUK, Z)xP(Z,2)) (15)
Z'eZ
9: end for
10: end for

11:  Compute the difference between the updated value function and 17%:
e=ll V=1l (16)

12: Set V' =1,
13:  end while

Table 1 Model calibration.
B Y o 8 o o
0.984 2 0.35 0.01 0.95 0.005

All solutions were computed in double precision with a convergence criterion of
7 = (1 — B)1le — 8. The grid for TFP was discretized over four values using the method
of Tauchen (1986). The grid for capital was discretized with increasing density in order to
assess the performance of GPU parallelism as the solution becomes increasingly precise.
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Table 2 Timing results (in seconds) for the RBC/VFI problem. “Serial CPP” and “Serial Matlab”
refer to the serial implementations of the algorithm in C++ (using the Eigen library) and Matlab.
"Thrust/OpenMP” and “Thrust/CUDA" refer to the Thrust implementation, using the separate back-
ends for OpenMP (on the Quad-Core Xeon CPU) and CUDA (on the Tesla C2075).

N 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536
Serial CPP 0.7894 2.009 5.377 1653 56.64 20235 869.67 3621.39 14711 58754
Serial Matlab 4439  91.12  189.59 410.36 938.84 2722.74 9743.7 36169 139270 546360

Thrust/OpenMP  0.4875 1.058 2286 4.925 10.69 22.56 48.05  102.40 217.45 464.80
(1-core)

Thrust/OpenMP  0.1486 0.6552 0.6992 1.375 3.008  6.396 13.59  29.45 60.41 127.91
(4-core)

Thrust/CUDA 6.940  6.929 6.937 6.991 7.318 7.784 8.761  10.83 15.18  23.88

Table 2 reports timing results for various software implementations of Algorithm 1.
The methods include
» Single-threaded, sequential C++, making use of the Eigen template library for linear

algebra computations.

* Single-threaded, sequential Matlab. This is done to compare with what the majority
of economists would use to solve the problem.

e Thrust, using the OpenMP backend to solve the problem on a single core and in
parallel on four CPU cores.

e Thrust, using the CUDA backend to solve the problem in parallel on the GPU.

All results were obtained on a 4U rackmount server with a single quad-core Intel Xeon

2.4 GHz CPU and two NVIDIA Tesla C2075 GPUs, although only one of the GPUs was

used for the Thrust/ CUDA and CUDA C timing results. The Thrust/OpenMP software,

however, made use of all four of the CPU cores.

Table 2 demonstrates the great benefits of parallelism for the VFI problem. Most
notably, as the capital grid density increases, the GPU implementation becomes increas-
ingly fast relative to the serial C++ and Matlab times, where at the largest grid size
considered (N, = 65,536) Thrust/CUDA times are roughly 2,500 and 23,000 times
faster, respectively. Not only does this show the gains from GPU parallelism, but it also
highlights the speed gains in moving from Matlab to a serial C++ implementation. It is
also noteworthy that the GPU implementation has an overhead cost for initializing the
CUDA runtime environment which corresponds to just <7 s. This overhead cost swamps
the computation times for small grid sizes and results in the GPU only improving upon
the serial C++ solution for N, > 1024. It should also be noted that the serial C++ code
could be further improved by employing optimizations suggested by Lee et al. (2010b)—
the code used for this problem was similar in structure to the Matlab implementation
and employed only standard default optimizations with the C++ compiler (gcc 4.4.7).

A rather surprising result is the performance of Thrust/OpenMP on a single-core.
Table 2 shows that the single-core Thrust solution is up to 125 times faster than the
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Square Root of Solution Times for RBC/VFI Problem
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Figure 4 Square root of solution times for serial CPP (black), serial Matlab (blue), single-core
Thrust/OpenMP (red), quad-core Thrust/OpenMP (green), and Thrust/CUDA (orange). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web version of this
book.)

single-core C++/Eigen solution, when N, = 65,536. This improvement may be a result
of CPU optimizations mentioned above. As expected, the quad-core Thrust/OpenMP
solution is almost uniformly 3.5-3.6 times faster than the single-core Thrust solution
for N, > 1024 (corresponding roughly to four times the number of cores net some
OpenMP overhead cost and the fraction of the program that must be run sequentially).

Overall, comparing each of the Thrust solutions that make use of all GPU cores
(Thrust/CUDA) and all CPU cores (quad-core Thrust/OpenMP), we see a maximum
speedup of a little more than five times for the GPU. Figure 4 depicts the square root of
solution times for each of the solution methods reported in Table 2, as a function of Nj.
The left panel shows all methods and the right panel excludes serial C++ and Matlab in
order to better visualize the remaining methods.

When comparing the solution times, it is important to remember that CPUs and
GPUs cost different amounts of money. The Tesla C2075 GPU and the quad-core Xeon
CPU used in this section cost $2120.79 and $339.03, respectively. This means that one
could purchase roughly 2120.79/339.03 ~ 6.25 quad-core 2.4 GHz Xeon processors
for the same amount of money as a single Tesla C2075 GPU. Figure 5 scales all of
the computation times by processor cost, resulting in time X dollar units. For single-
core solutions (serial C++,serial Matlab, and Thrust/ OpenMP single-core) the times are
scaled by 1/4 the price of the Xeon CPU.

When accounting for cost, the Thrust/ OpenMP methods have a slight advantage over
the Thrust/ CUDA method, with the scaled times approaching each other as N, rises.
This scaling suggests a slight advantage to purchasing several CPUs rather than one GPU,
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Square Root of Solution Times x Processor Cost for RBC/VFI Problem
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Figure 5 Square root of solution times multiplied by processor cost for serial CPP (black), serial
Matlab (blue), single-core Thrust/OpenMP (red), quad-core Thrust/OpenMP (green), and Thrust/CUDA
(orange). The single cores solution times (serial C++, serial Matlab, and Thrust/OpenMP single-core)
are scaled by 1/4 the cost of the Xeon CPU. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this book.)

so long as one uses the Thrust library. However, this assumption does not account for
the fact that the Thrust software would not automatically scale across several distinct
CPUs—care would have to be taken to rewrite portions of the software to include
message passing across devices. Alternatively, purchasing a single CPU with more cores
(so that explicit message passing is not required in the Thrust implementation) would
drive up the per-core price of the CPU and erode its economic advantage over the
GPU. One final consideration is important in this context: several new GPUs are already
available which would likely achieve different results for the VFI problem. Two examples
are the NVIDIA GeForce GTX Titan and the NVIDIA Kepler K20. The Titan has 2688
cores and costs on the order of $1000 while the K20 has 2496 cores and costs roughly
$3200. The low per-core cost of the Titan is due to the fact that it is a consumer-grade
GPU which is optimized for single-precision operations (although it is capable of double
precision). Relative to the Tesla C2075 with 448 cores, both the Titan and K20 have a
much lower per-core cost.

5. EXAMPLE: A GENERAL EQUILIBRIUM ASSET PRICING MODEL
WITH HETEROGENEOUS BELIEFS

Aldrich (2011) investigates asset exchange within a general equilibrium model
with heterogeneous beliefs about the evolution of aggregate uncertainty. This section
will outline the model and solution method of that paper and report the computational
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benefits of GPU parallelism. The economic implications of the model are not treated
here. See Aldrich (2011) for a complete discussion.

5.1 Model

The primary objective of the model in Aldrich (2011) is to understand the role of belief
heterogeneity in generating trading volume, relative to other forms of agent heterogeneity.
The paper demonstrates how small perturbations in agent beliefs can generate empirically
plausible levels of trading volume within an economy that is calibrated to broadly replicate
macroeconomic consumption dynamics. In order to highlight only the trading effects of
belief heterogeneity, the structure of the model is very basic.

We consider a simple endowment economy with I types of agents and S aggregate
states of nature each period. Time is discrete and indexed by t € N = {0, 1,2,...}. The
aggregate state at time fis s, € S = {1,..., S} and we let s' = (so, 51, ..., ;) denote the
history of aggregate states. Agents’ types are indexed by i € Z = {1,2,...,I} and u'(s")
denotes the proportion of the population consisting of type i agents in state s'. The total
population has unit mass, which dictates 2521 wish =1, foralls' € S'.

There is a single consumption good and a tree paying a dividend of d(s") units of
the consumption good in each state s' € S', which cannot be transferred between
time periods. By default, each agent is entitled to d(s") units of consumption in state
s', resulting in an endowment of u/(s")d(s") for cohort i and an aggregate endowment
of Zf=1 wi(s)d(s") = d(s"). Agents have preferences for consumption encapsulated in
period utility u,(c), which is type specific and which satisfies the usual conditions of strict
monotonicity, strict concavity, twice continuous differentiability, and lim ., u},(c) = oo.

The aggregate state follows an S-state Markov process: the probability of history s*
is w(s") = (s | Si—1) -+ -7w(s1 | s0)7 (s0), where sy € S is known and hence 7 (s)) = 1.
Aside from preference and endowment heterogeneity, encapsulated in u;(c) and ' (s")d(s"),
respectively, we allow agent types to have heterogeneous discount factors, B;, and hetero-
geneous beliefs about transition probabilities, 777 (s") = 7/(s; | 5;_1) - - - (51 | 50)-

Markets are complete and agent types can deviate from their endowments by pur-
chasing state-contingent consumption, ¢'(s"). As discussed below, the results of the paper
are unchanged for general asset markets, allowing agents access to assets with varying
maturities and payoff structures, so long as markets are complete. The results, however,
are easiest to understand within the framework of state-contingent consumption pur-
chases. We denote the time zero price of consumption in state s' as ¢"(s"). The resulting
optimization problem for an individual agent of type i is

Ue) = max (o) + D2 B D (e () (s) (173
t=1 <f
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subject to

“(s0) +ZZq A (") < d(s0) +22q (17b)

where ¢’ = (c(s0), ¢(s"), . ..) and where ¢"(s)) = 1.
A competitive equilibrium for this economy is a collection of consumption plans
{Ei}f:1 and prices {{q (s} eS'} such that
1. System (17) is solved.
2. The aggregate resource constraint

Do) = p (") (18)
holds for all s € S" and > 0.

5.1.1 First-Order Conditions
The first-order conditions of System (17) are

ui(c(s0)) = ' (19a)
’ww@wnmwzx”wWV§eS’ (19b)

d(sp) + ZZqO sY (s — ¢ (s0) ZZqO (s"e'(s" (19¢)

for i = 1,...,I, where A is agent i’s Lagrange multiplier for constraint (17b). The
intertemporal Euler equation is obtained by dividing (19b) by (19a),

tu;(ci(st» i O/t
WW%WEG)_q@L (20)

forall s € S'and i =1,...,I. Selecting agent 1 as a “reference” agent, Eq. (20) yields

Bl (' (s)/ui('(s0) (")
B i (c )/ (o) T
Reformulating (21), we arrive at
Bl (s") ui(c' (),
0= (5t o ). >

Substituting Eq. (22) into the aggregate resource constraint (18),

I I
Bl () ), S e
Z z( e " MQ—;MMM» (23)

21
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For each s' € 8" and t > 0, given discount rates, {B;}._,, beliefs, {m'(s")}_,, period
utilities, {u;(c)}/_,, population proportions, {1'(s")}._;, and initial consumption choices,
{c'(so)}_,, Eq. (23) represents a single nonlinear equation with a single unknown, ¢! (s").
If ¢'(s0) = ¢'(so) for i = 1,..., I, the optimal initial consumption values in competitive
equilibrium, the values of ¢! (s) and {¢'(s")}'_, which solve Egs. (23) and (22), respectively,
will also be the optimal competitive equilibrium values, ¢! (s") and {¢'(s')}_,,forall s’ € S'

and t > 0. In the general formulation, these optimal choices are history dependent.

5.2 Solution

Solving a finite horizon version of this model can become computationally challenging
as the time horizon, T, grows large. To solve the model, one would posit values for
{¢'(s0)}/_; and then solve Eqs. (23) and (22) for {c'(s")}._, at each possible state of the
world s’ prior to T'. The full sequence of optimal consumption values for all agents could
then be substituted into the aggregate resource constraint

I

1
DK = Y u (), (18)
i=1

i=1

to determine the quality of the initial guess for {¢'(so)}_, . If the constraint does not hold,
an informed update could be made for the initial consumption values and the entire
procedure could be repeated to convergence.

A serial implementation of the solution would involve an outer loop that forms a
candidate solution of optimal consumption values based on a guess for {¢'(so)}’_;, and
would use the resource constraint in Eq. (18) to iteratively update those values until
convergence is achieved. Within the outer loop, a single processing core would then move
sequentially through each state s',¢t < T, solving the nonlinear Eq. (23) for ¢'(s") and
subsequently determining {c'(s")}3_, with Eq. (22), conditional on the values {¢'(so)}/_;.
Algorithm 2 formally outlines these computations: line 3 represents the outer iterative
loop, and Eq. (24) represents that nonlinear equation that must be solved at each node in

the loops at lines 4 and 5.

ST+1_1
S—1

t =0,1,...,T. Clearly, as T grows, the total number of states, and hence systems of

Fora T + 1-period economy, there are a total of states: ' at each time period
nonlinear equations to solve, grows exponentially, which eventually becomes infeasible for
a serial processing implementation. Figure 6 depicts an example with S =2 and T = 3.
When T = 20 this would translate into more than two million nonlinear equations to
be solved serially within each of the outer loops of the algorithm.

It is important to note that Eqs. (23) and (22) determine a solution for {ci(s’)}

T
at each of the %

at other dates and states in the economy. This independence between states allows the

I
i=1
— 1 states after = 0, independent of the consumption choices

computation to be divided into distinct pieces, each of which can be performed by a
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separate processing core. For Algorithm 2, this amounts to outsourcing the work of lines

4-11 to individual cores. In theory, with enough cores, it would be possible to assign the

nonlinear equation problem (Eq. (23)) of each state to one core. In practice, with large S

or large T, a subset of state-tree nodes would be assigned to each core for computation.

In fact, when S and T are large, this problem is ideally suited for GPU computing (as

shown in the following section).

Algorithm 2.

Solution of General Equilibrium Model with Heterogeneous Beliefs

1:

AN A A

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:

Fix some T > 0, which will determine convergence and set & = v + 1.
Guess initial values for ci(so), i=2,...,N
while ¢ > 7 do
fortr=1,...,T do
for s' € S’ do
Determine ¢! (s) such that

I

i=1

fori=2,...,I do

Compute
w6y,
(5" = 51 o ))N (s)
Aty = w7t Prr () mle (Sr))u c'(s )
) ,<wnMW(kum.
end for
end for
end for
fori=2,...,N do
Compute

gl = d(s0) —i—ZZq d(s)—c(so ZZqO(s)c

=1

end for

Set &€ = Zz]\:z | & ].
if ¢ > 7 then

Use Broyden’s method to choose new values of ¢(sp) and return to Step 3.

end if
end while

et (BLEEO M ED N NS
Zuc,<ﬁnw/wmyam0—2umw»

(24)

(25)

(26)

27)
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t=0 t=1 t=2 t=3

Figure 6 A state-tree diagram of the heterogeneous beliefs model for the case of S = 2 (/ and h) and
T=3.

5.3 Results

Let us now consider a specialization of the model in Section 5.1 with S =2 and I = 2.
We will assume that proportions of agent types are fixed through time, u'(s") = u', for
i = 1,2, and that agents have constant relative risk aversion utility,
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Table 3 Maximum likelihood estimates for the parameters of the aggregate
consumption growth process using a hidden Markov model and quarterly
consumption data between 1947 and 2010. See Aldrich (2011) for details.
Standard errors are obtained from a numerical evaluation of the Hessian.

o(sp) a(sy) 7 (Sh|sh) T (sy1sy)

Estimate —0.005011 0.006222 0.9411 0.5304
Standard error 0.001146 0.001052 0.01879 0.1213

Agents receive aggregate consumption, C(s), as their endowment in state s', where the
two aggregate states of nature each period, s;, represent high consumption growth and
low consumption growth (s; € {s, s}, Vf). In particular, we assume that aggregate con-
sumption follows a two-state process

C(s™y = g(s"*HC(s"), (29)

where g(s") = exp(a(s)),s; € {s1,sn}. The values a(s;) and «(s;) were estimated by
Aldrich (2011) using a hidden Markov model and quarterly NIPA data between 1947 and
2010. The estimates are reported in Table 3 and include estimated transition probabilities
between states. In the results reported by Aldrich (2011), the majority of agents maintain
beliefs that are consistent with the estimated probabilities in Table 3, while a minority
of the population deviates. In particular, that paper considers cases where the minority
believes 7 (s; | 5;) is one, two, and three standard errors below its maximum likelihood
estimate; 1.e., they are relatively optimistic. For the present development, where we are
concerned with questions of computational efficiency, it is unnecessary to take a stance
on the degree of belief divergence and the proportions of agents that subscribe to each
view—the timing results are unchanged by these parameters.

Table 4 reports timing results for solutions of the model over increasing time horizons
T using Thrust/CUDA on the Tesla C2075 and Thrust/OpenMP and all four cores of
the Xeon CPU. As with the VFI problem in the previous section, the cost of initializing
the CUDA runtime environment (a bit <7 s) swamps the overall solution time of the
GPU for low values of T—only when T > 20 does the GPU solve the model in less
time than the CPU. The efficiency of the multicore CPU solution then erodes very
quickly: for T = 26 it is roughly 10 times slower than the GPU, for T" = 28 it is 20
times slower, and for T" = 30 it is more than 100 times slower. Clearly, as the problem
scales (for T' = {24, 26, 28, 30} the number of state-tree nodes is roughly 33 million, 130
million, 530 million, and 2 billion, respectively) the relative performance of the GPU
increases. These results are remarkable, especially when considering total computational
efficiency of each processing unit: the Tesla C2075 is capable of 515 billion floating point
operations per second (FLOPS), while the quad-core Xeon is capable of roughly 77
billion FLOPS (both measurements are for double precision arithmetic). These numbers
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Table 4 Timing results (in seconds) for the heterogeneous beliefs model over increasing horizon T.
“Thrust/OpenMP” and “Thrust/CUDA" refer to the Thrust implementation, using the separate backends
for OpenMP (on the quad-core Xeon CPU) and CUDA (on the Tesla C2075).

T 5 10 15 20 22 24 26 28 30

Thrust/OpenMP 0.0004110 0.002138 0.04968 1.1934 6.864 35.88 113.0 461.1 7021
Thrust/CUDA  6.630 6.646 6.606  6.686 6.767 7.507 10.15 23.40 67.15

suggest that the GPU should be no more than roughly 6.5 times faster than the CPU. As
suggested in Lee et al. (2010b), applying various CPU optimizations might ameliorate the
results reported in Table 4. However, such optimizations would be challenging for most
economists and the results of this section compare software implementations that are of
commensurate difficulty and accessible to the majority of economists. In this sense, these
results compare operational efficiency: they compare not only hardware, but also software
implementations that require roughly the same level of technical expertise and how they
interact with the hardware. As in the previous section, if we scale the solution times by
processor cost at T = 30, the GPU is roughly 16 times more efticient (time/dollar) than
the quad-core CPU. This is a substantial improvement relative to the VFI problem.

Increasing the complexity of the VFI problem in the previous section translated to
greater solution accuracy; in this problem increasing complexity has no bearing on solu-
tion accuracy, but increases the time horizon for the model under question. With a
quarterly calibration, T" = 20 (which the CPU can compute quickly) and T" = 28 (for
which the CPU 1s much slower) correspond to horizons of 5 and 7 years. With multiple
GPUs it would be feasible to push the horizon well past a decade, and with a cluster
of hundreds of GPUs (such as the Titan supercomputing system at Oak Ridge National
Lab: http://www.olcf.ornl.gov/titan/) it would be possible to extend the horizon to
several decades. To the extent that important economic decisions are being made at long
horizons, being able to compute such models adds real economic value to understanding
agents’ decisions. This is true of the model in Aldrich (2011) for which issues of survival
play a role in the exchange of assets.

S 6. THE ROAD AHEAD

Developments in software and hardware will necessarily influence the way we
design both GPU algorithms (in particular) and massively parallel algorithms (in gen-
eral). The current state of the art for GPGPU computing requires algorithmic design that
favors identical execution of instructions over heterogeneous data elements, avoiding exe-
cution divergence as much as possible. Occupancy (discussed in Section 2.1.3) is another
important consideration when parallelizing computations: most current GPUs are only
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fully utilized when the number of execution threads is on the order of 10,000-30,000.
While GPU parallelism in most algorithms can be achieved in a variety of ways, these
two issues, divergence and occupancy, direct scientists to parallel schemes that involve a
small set of simple instructions executing on a large number of data elements. This is
largely a result of the physical hardware constraints of GPUs—the number of transistors
dedicated to floating point vs. memory and control-flow operations. In time, as both
GPU and other massively parallel hardware changes, the design of algorithms suitable for
the hardware will also change. And so, while this paper has provided some examples of
algorithmic design for GPU architectures, it is most important for researchers to be aware
of and sensitive to the changing characteristics of the hardware they use. The remainder
of this section will highlight recent developments in parallel hardware and software and
in so doing will cast our gaze to the horizon of massively parallel computing.

6.1 NVIDIA Kepler and CUDA 5

CUDA 5, the most recent toolkit released by NVIDIA on 15 October 2012, leverages the
new NVIDIA Kepler architecture to increase productivity in developing GPU software.
Among others, the two most notable features of CUDA 5 are dynamic parallelism and
GPU callable libraries.

Dynamic parallelism is a mechanism whereby GPU threads can spawn more GPU
threads directly, without interacting with a CPU. Previous to CUDA 5, all GPU threads
had to be instantiated by a CPU. However, a kernel which is executed by a GPU thread
can now make calls to other kernels, creating more threads for the GPU to execute. Best
of all, the coordination of such threads is handled automatically by the scheduler on the
GPU multiprocessor. This increases the potential for algorithmic complexity in GPU
parallel algorithms, as multiple levels of parallelism can be coordinated directly on the
GPU. Dynamic parallelism is only available on Kepler-capable NVIDIA GPUs released
after 22 March 2012.

GPU callable libraries allow developers to write libraries that can be called within
kernels written by other users. Prior to CUDA 5,all GPU source code had to be compiled
within a single file. With the new toolkit, however, scientists can enclose GPU software
in a static library that can be linked to third-party code. As high-performance libraries
are created, this feature will extend the capabilities of individual researchers to write
application-specific software, since they will be able to rely on professionally developed
libraries rather than writing their own routines for each problem. An example would
be simple regression or optimization routines: if an application requires such routines to
be called within a GPU kernel, the new CUDA toolkit allows them to be implemented
in a third-party library, rather than written personally by an individual developing the
particular application. GPU callable libraries only depend on CUDA 5 and not on the
Kepler architecture—older NVIDIA GPUs can make use of callable libraries so long as
they have the CUDA 5 drivers installed.
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GPU callable libraries and dynamic parallelism interact in a way that results in a very
important feature: GPU libraries that were previously only callable from a CPU can now
be called directly within a kernel. As an example, CUDA BLAS, which leverages GPU
parallelism for BLAS operations, can now be called by a GPU thread in order to perform
vector or matrix operations. Prior to CUDA 5, vector and matrix operations had to be
written by hand if performed within a GPU kernel. This feature, of course, will extend
to other GPU libraries which spawn many threads in their implementation.

6.2 Intel Phi

On 12 November 2012, Intel released a new microprocessor known as the Intel Xeon
Phi (Intel Corporation (2013b)). To be specific the Phi is a coprocessor which can only be
utilized in tandem with a traditional CPU that manages its operations. However, the 50
individual cores on the Phi are x86 processors in their own right, similar to x86 cores
in other Intel CPU products. In other words, each Phi core possesses the capabilities of
running a full operating system and any legacy software that was written for previous
generation x86 CPUs.

The primary objective of the Phi is to introduce many of the advantages of GPU
computing within an architecture that doesn’t sacrifice the benefits of traditional CPUs.
At 1.05 GHz each, the 50 Phi cores don’t deliver as much raw compute power as a
Tesla C2075 GPU, but they allow for far greater functionality since they have many more
transistors dedicated to memory use and control flow. This eftectively eliminates the issues
of thread divergence and allows serial software to be more quickly and easily ported to
parallel implementations. It also allows the use of third-party numerical libraries and
software without modification.

It is difficult to forecast the nature of future parallel processors, but it is very likely
that hybrid processors like the Xeon Phi will become increasingly relevant since they
combine the benefits of GPU parallelism with the flexibility that is necessary for a wide
variety of computational tasks. Future processors may also synthesize the benefits of the
Phi and current GPUs by placing heterogeneous compute cores on a single, integrated
chip, overcoming memory transfer issues and simultaneously allowing for greater thread
divergence within a massively parallel framework.

6.3 OpenACC

OpenACC (OpenACC (2013)) is an example of a programming standard that allows for
high-level development of parallel computation. Developed jointly by Cray, NVIDIA,
and PGI, OpenACC allows users to insert compiler directives to accelerate serial C/C++
and Fortran code on parallel hardware (either a CPU or a GPU). In this way, OpenACC
is very similar to OpenMP which accelerates serial code on multicore CPUs.
OpenACC is an important example of software that promotes parallelism at a very
high level—it requires very little effort to extend serial code to parallel hardware. With
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some sacrifice of efficiency and flexibility, OpenACC takes GPU computing into the
hands of more software designers and offers a glimpse of the future of parallel computing:
software which automatically incorporates the benefits of massive parallelism with very
little user interaction. Coupled with future advances in hardware, this could dramatically
alter the ways in which parallel algorithms are designed.

S 7. CONCLUSION

This paper has provided an introduction to current tools for GPU computing in
economics and has demonstrated the use of these tools with examples. Sections 4 and 5
demonstrated the benefits of GPU computing for two specific economic problems. For
example, a current NVIDIA GPU intended for scientific computing was able to speed
the solution of a basic dynamic programming problem by thousands of times relative
to a single-threaded C++ or Matlab implementation. Relative to a multithreaded CPU
solution making use of the same software library, the GPU gains were more muted:
roughly 5 times. GPU parallelism was also striking in the heterogeneous beliefs model
of Section 5, where the model solution was 100 times faster on a GPU than a quad-core
CPU for long time horizons.

Adoption of GPU computing has been slower in economics than in other scien-
tific fields, with the majority of software development occurring within the subfield of
econometrics. Examples include Lee et al. (2010a), Creel and Kristensen (2011), Durham
and Geweke (2011), and Durham and Geweke (2012), all of which exploit GPUs within
an MCMC or particle filtering framework. These papers demonstrate the great poten-
tial of GPUs for econometric estimation, but the examples of this paper also highlight
the inherent parallelism within a much broader set of economic problems. The truth is
that almost all computationally intensive economic problems can benefit from massive
parallelism—the challenge is creatively finding the inherent parallelism, a task which often
involves changing the way the problem is traditionally viewed or computed. This paper
also provides guidance for determining if that inherent parallelism is well suited for a
massively parallel GPU architecture.

The intent of the examples in this paper is to demonstrate how traditional algorithms
in economics can be altered to exploit parallel resources. This type of thought process can
then be applied to other algorithms. However, since the tools of massive parallelism are
ever changing, so will the design of parallel algorithms. The current architecture of GPUs
guides the development of parallel software since it places limitations on memory access
and control flow, but as these aspects are likely to change with the development of new
many-core and heterogeneous processors, the ability to perform parallel computations
on many data elements will also change. The overriding objective then is to creatively
adapt algorithms for new and changing architectures.
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As time progresses, parallel computing tools are becoming more accessible for a larger
audience. So why learn the nuts and bolts of GPU computing now? Why not wait a
couple of years until it is even more accessible? For many researchers, waiting might
be the optimal path. However, a frontier will always exist and pushing the frontier will
not only yield returns for computationally challenging problems, but it will also inform
economists’ choices about paths for future research. For the economist who is tackling
computationally intensive problems and is often waiting long periods of time for a com-
puter to yield solutions, becoming fluent in the tools of this paper and staying at the
frontier will pay great dividends.
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