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Abstract
Malting barley (Hordeum vulgare L.) productivity and grain quality are of criti-

cal importance to the malting and brewing industry. In this study, we analyzed 12

malting barley genotypes across 8 locations in California and 3 years (2017–2018,

2018–2019, and 2020–2021). The effects of genotype (G), location (L), year (Y), and

their interactions were assessed on grain yield (kg ha−1), grain protein content (%),

individual-grain weight (mg), thousand kernel weight (TKW; g), grain size (plump

and thin; %), onset gelatinization temperature (GT; temperature at which starch starts

to gelatinize), peak GT, offset GT, difference between onset and peak GT, and dif-

ference between peak and offset GT. L, Y, and their interaction explained the largest

variance for all traits except TKW, peak GT, and difference between onset and peak

GT, for which G explained the largest variance. Yield and plump (%) were weakly

negatively correlated with onset and peak GT (Pearson’s r of −0.15 to −0.21) but

showed a positive correlation with the difference between peak and offset GT (Pear-

son’s r of 0.37 and 0.36). The 2020–2021 samples formed partially distinct clusters in

principal component analysis, mainly discriminated by high percentage of thins and

high onset GT. These findings illustrate the key roles of G, L, and Y in determining

malting barley productivity and quality.

Abbreviations: AMBA, American Malting Barley Association; ASBC,
American Society of Brewing Chemists; B, block; GT, gelatinization
temperature; G, genotype; GPC, grain protein content; IGW,
individual-grain weight; LMEs, linear mixed effects; L, location; TKW,
thousand kernel weight; UC, University of California; Y, year.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided
the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2023 The Authors. Agronomy Journal © 2023 American Society of Agronomy.

1 INTRODUCTION

The barley belt is a term used to describe the primary barley
production region in the United States, spanning from Wash-
ington State in the west to North Dakota in the east (American
Malting Barley Association [AMBA], 2022). In California,
malting barley growing regions are primarily located in the
Sacramento and San Joaquin Valleys and south-Central Coast.
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https://orcid.org/0000-0002-6420-4198
https://orcid.org/0000-0003-1467-5204
mailto:gpfox@ucdavis.edu
mailto:chdiepenbrock@ucdavis.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/agj2
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fagj2.21433&domain=pdf&date_stamp=2023-08-23


RAMANAN ET AL. 2545

Production of malting barley in California typically makes
use of “spring” varieties (i.e., not having a vernalization
requirement) that are planted in fall and harvested in sum-
mer (Jackson et al., 2006; Lazicki et al., 2016). In 2021,
approximately 20% of barley produced in California was
grown in the Tulelake basin (Siskiyou County) as a rota-
tion crop with potato (Solanum tuberosum L.), onion (Allium
cepa L.), and alfalfa (Medicago sativa L.; NASS, 2023). In
the Sacramento and San Joaquin Valleys and the Southern
desert region, barley is grown predominantly as a rotation
crop. These environments form part of the Central Valley and
Imperial Valley of California with Mediterranean, semiarid,
and arid desert type climate profiles. As malting barley is
often grown as a rotation crop in a wide range of conditions
(Kanter et al., 2021), it is critical to understand the impact of
location on malting barley grain quality. Mediterranean cli-
mates are known for their temporal variability, driven by hot
and dry summers and rainy winter spells with more frequent
weather extremes (Hochman et al., 2021; Nelsen & Lundy,
2020). Despite these variable conditions, field crop acreage in
California is projected to increase with increased advocacy of
water-limited winter cropping systems in light of the recent
Sustainable Groundwater Management Act (Peterson et al.,
2022). However, the contributions of warming and increased
incidents of drought to grain quality are still unknown.

Malting barley productivity is directly linked to the sus-
tainable supply of grain to malthouses, and grain quality can
impact malting and brewing efficiencies, beer quality, and fla-
vor (AMBA, 2021; Bamforth, 2006). Previous studies have
found the interaction of genotype and environment to play an
important role in barley yield and quality in multiple produc-
tion regions worldwide (Bantayehu, 2013; Fekadu et al., 2023;
Laidig et al., 2017; Nielsen & Munck, 2003; Przulj et al.,
2014) and in the United States (Choi et al., 2020; Zhou et al.,
2020). However, those studies measured either agronomic
traits or grain quality traits stipulated by industry standards.
To understand the impacts of G, L, and Y on downstream pro-
cessing outcomes during brewing, it is important to consider
more in-depth traits relating to starch gelatinization.

Grain of malting barley is typically composed of 50%–68%
starch (Newman & Newman, 1992; Patindol et al., 2012; You
& Izydorczyk, 2007). Barley starch content and composition
play an important role during the mashing stage of brewing
(Briggs, 1998). During mashing, starch is hydrolyzed to fer-
mentable sugars such as maltose and maltotriose (which are
extracted into the wort and later fermented by yeasts to pro-
duce beer). However, for enzymes to efficiently hydrolyze
starch, starch must be gelatinized. Starch granules are gela-
tinized during mashing within a certain temperature range,
indicated by onset, peak, and offset gelatinization tempera-
tures (GT). In high-quality barley, the start of solubilization
would be as low as 56˚C (onset) and end around 65˚C (offset).
However, in barley that has been stressed due to high tem-

Core Ideas
∙ Genotype, location, and year variably explain

quality traits—for example, grain protein content,
gelatinization temperature.

∙ The L× Y interaction explained the largest variance
for GPC and yield.

∙ G and L × Y (and Y for onset) explained the largest
variance in onset, peak, and offset GT.

∙ The 2020–21 samples formed partially distinct
clusters, segregated by high thins and onset GT.

∙ Plumper grains had a lower onset GT but a larger
difference between peak and offset GT.

perature or drought during grain-fill, the temperature range
could be higher (Gous et al., 2015; Myllärinen et al., 1998).
Hydrolysis is characterized by swelling of the starch granules
within the endosperm and further gelatinization that typi-
cally occurs between 60 and 65˚C in malting barley. This GT
range does not change substantially between raw and malted
barley, but there is a slight increase due to the malting pro-
cess (Langenaeken et al., 2019). Two families of enzymes,
namely, α and β-amylases, also play an important role in cat-
alyzing this starch gelatinization. However, if the starch GT
exceeds 65˚C (as industry mashing protocol is set at 65˚C), β-
amylase is rapidly inactivated, which has been found to reduce
brewing efficiency (American Society of Brewing Chemists
[ASBC], 2011a; Evans et al., 2003). Hence, starch GT can
serve as an indicator of malting barley quality and brewing
performance.

Starch GT range in malting barley is affected by several
factors, such as starch granule size (Karlsson et al., 1983),
starch granule packing (Fox et al., 2007), ratio of amylose
to amylopectin (respectively, the linear and branched-chain
glucose polymers that compose starch), total amylose content
(Fredriksson et al., 1998; Källman et al., 2015), grain protein
content (GPC; %) (Wenwen et al., 2019), and grain weight
(Kandic et al., 2019). Protein content could influence GT due
to starch-protein interactions in the endosperm matrix, which
inhibit the swelling of starch granules during mashing (Wen-
wen et al., 2019). Finally, a positive correlation between grain
weight and starch GT has also been reported (Kandic et al.,
2019).

Previous studies have reported substantial variation in
starch GT among multiple genotypes of malting barley (Gujral
et al., 2013; Jaiswal et al., 2014; Pycia et al., 2015). Other stud-
ies have found that location (Fox et al., 2001), year (Przulj
et al., 2014), and environmental factors, such as drought
stress (Gous et al., 2015), also affect starch GTs. However,
these studies were not designed to include multiple locations,
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2546 RAMANAN ET AL.

years, and genotypes. In all cases, up to two out of the three
were varied, while keeping the third variable constant. A
multi-environment study has been conducted in California to
assess yield performance in wheat (George & Lundy, 2019),
but malting barley and quality traits have not received the
same level of attention in this region to date. A major US
genome-wide association study identified markers exhibiting
significant associations with multiple malting barley quality
traits (Mohammadi et al., 2015). These instances of potential
pleiotropy could make genomics-assisted selection for a full
suite of quality traits challenging for breeders. That study also
found that the marker-trait associations detected in individ-
ual (sub)regional programs were largely distinct from those
detected in other programs, and that analyzing a combined
panel across programs resulted in loss of 33 out of 52 marker-
trait associations (and the detection of eight new associations
in the combined panel) in two-row barley. Thus, examina-
tions of quality on a (sub)regional basis will continue to be
important to breeding (and agronomic) efforts.

This study aims to elucidate the complexity of maintaining
malting barley productivity and quality in the context of inter-
annual temperature and precipitation variability. We assessed
the following traits in spring malting barley varieties grown in
California: grain yield (kg ha−1), GPC (%), individual-grain
weight (IGW; mg), thousand kernel weight (TKW; g), grain
size (percentage of plump and thin grains), and onset GT,
peak GT, offset GT, difference between onset and peak GT,
and difference between peak and offset GT (˚C). We exam-
ined whether genotype (G), location (L), and/or year (Y) play
a more important role in affecting the aforementioned traits
using samples from a multi-environment variety trial. Fur-
thermore, we examined correlations between these malting
barley productivity and quality traits, with an aim to gener-
ate hypotheses at the molecular/compositional level. Variation
in barley productivity and quality traits arising from G, L,
and/or Y combinations is leveraged herein to understand rela-
tionships among traits affecting end usability for maltsters and
brewers.

2 MATERIALS AND METHODS

2.1 Multi-environment variety trial

The barley grain samples analyzed in this study were har-
vested from variety trials conducted in the 2017–2018,
2018–2019, and 2020–2021 growing seasons, by the Uni-
versity of California (UC) Small Grains Research team. For
example, the growing season designated as “2017–2018” was
planted in fall of 2017 and harvested in summer of 2018.
These trials were planted in a randomized complete block
design with four replications per location, at each trial loca-
tion (Nelsen & Lundy, 2020; Nelsen, Levinson, et al., 2021;

UC‑ANR, 2020). Grain from one out of the four replicates
from each location was used for grain quality analysis. Twelve
genotypes (nine varieties and three experimental lines) of
two-row spring malting barley that were developed in the
United States were included in this study, which were grown
in eight field sites within California (Table S1; Figure S1).
The plots were 3.65 m by 6 m and established with a 3.65 m
grain drill in the fall season (Table S1); fall planting is in
line with common agronomic practice in California (Jackson
et al., 2006; Lazicki et al., 2016). A seeding rate of approxi-
mately 2.2 million seeds per hectare was used across seasons
(Nelsen & Lundy, 2020). These field trials were conducted
in different areas of the state where malting barley is typi-
cally grown, with varying management practices based on the
initial soil moisture and nitrogen (N) levels at each location–
year (LY). Grain was harvested using a Wintersteiger Classic
small plot combine, weighed, and cleaned (to collect subsam-
ples that were used in the grain quality analyses described
herein) prior to final yield calculation (in kg ha−1) per plot,
as described previously (Nelsen & Lundy, 2020). Calculated
grain yields for each replicate plot for a given genotype within
an LY combination (including one additional year in the Yolo
2 location that was not analyzed for grain quality) were used
for Finlay–Wilkinson (FW) regression, linear mixed effects
(LMEs) modeling, and post hoc tests. Average yields for each
genotype–location–year (GLY) combination were used for the
correlation matrix and principal component analysis (PCA).

Average TKW values from multiple plot replicates were
used for the small number of GLY combinations for which this
trait was measured on multiple replicates; otherwise, the data
from one replicate was used for all analyses. Grain samples
from one replicate plot per GLY combination were used for
measurement of all other quality traits (Table S3). The precipi-
tation and temperature data (Tables S1 and S5) were obtained
from the California weather web-tool (Nelsen, Merz, et al.,
2021).

2.2 Starch gelatinization (differential
scanning calorimetry)

In preparation for an analysis of starch gelatinization, the grain
samples were ground in a Disc Mill (Buhler DLFU, Buhler
AG, CH-Uzwil) using the fine (0.2 mm particle size) set-
ting into barley flour. Differential scanning calorimetry was
then conducted using a modified procedure described previ-
ously (Fox et al., 2019). Briefly, 2 mg (±0.15 mg) of barley
flour was weighed into a Tzero aluminum pan (TA Instru-
ments), to which deionized water was added until the total
mass was 5 mg (±0.15 mg). The pan was then dry sealed. The
blank used for the testing was an empty pan, which was also
dry sealed. Using a DSC-250 differential scanning calorime-
ter (TA Instruments), the heating regimen started with an
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RAMANAN ET AL. 2547

initial temperature of 40˚C followed by a ramp-up to 75˚C
with 5˚C min−1 increments. Onset temperature, peak tem-
perature, and offset temperature were measured over a peak
integration of 55–75˚C using the Trios v4.2.136612 software
program (TA Instruments). Enthalpy (J g−1) and time to peak
temperature (min) were also recorded but not analyzed in this
study.

2.3 Grain weight and size

For the 2017–2018 and 2018–2019 years, 50 grains were
taken from a representative sample, and each grain was
weighed on a precision balance. The same grains were then
measured using a vernier caliper, and length and breadth
measurements were recorded in mm (comparable to indus-
try standard method). This method was repeated for all grain
samples in duplicate and was used to measure plump and thin
grains (%) in these seasons due to the limited grain quan-
tity that was available. For the 2020–2021 year, plump and
thins (%) were measured using the industry standard method
(ASBC, 2012). One hundred grams (±0.1 g) of sample was
passed through four consecutive sieves (2.78 mm [7∕64 in.],
2.38 mm [6∕64 in.], 2.18 mm [5.5∕64 in.], and 1.98 mm
[5∕64 in.]) using a sieve shaker (Sortimat Sample Grader K4,
Pfeuffer) for 3 min (±10 s). The sample collected in each
sieve was weighed, and the percentages of sample from the
2.78 and 2.38 mm sieves were recorded as plump and thins
(%), respectively. TKW was measured by counting, collecting,
and weighing 200 seeds from each sample with an elec-
tronic seed counter (ASBC, 2011b). Weights were converted
proportionally to TKW.

2.4 Grain protein content

GPC (%) and moisture (%) were quantified using the near
infrared reflectance (NIR) grain analyzer (Infratec, FOSS)
using a preexisting barley calibration. GPC and moisture %
results obtained for a randomized subset of samples were
further validated using combustion with thermal conductiv-
ity (TruSpec CN Analyzer; AOAC Official Method 972.43,
2006) conducted by the UC Davis Analytical Lab (Table S6).

2.5 Statistical analysis

2.5.1 Finlay–Wilkinson (FW) regression

FW regression (Finlay & Wilkinson, 1963) was performed
using LY means and genotype as covariates in a linear model
(Equation 1 for yield, and Equation 2 for all other traits). The
model was fitted in R 4.2.1 (R Core Team, 2020) and R Stu-

dio version 2022.07.1 builds 485 (RStudio Team, 2022) using
the lm() function within the lme4 package (Bates et al., 2015)
and emtrends() function within the emmeans package (Lenth
et al., 2023; Searle et al., 1980):

𝑦𝑖𝑗𝑟 ∼ μ + 𝑔𝑖ℎ𝑗 + ε𝑖𝑗𝑟 (1)

𝑦𝑖𝑗 ∼ μ + 𝑔𝑖ℎ𝑗 + ε𝑖𝑗 (2)

where yijr represents the yield value of the rth replicate for
genotype i in environment j (where j represents the LY com-
bination), and yij represents the trait value for genotype i in
environment j. μ is the grand mean, gi is the main effect of the
ith genotype, hj is the main effect of the jth environment, and
εijr (for yield) or εij (for all other traits) is the error term (Lian
& de los Campos, 2015). For yield, values for each plot repli-
cate within a GLY combination were used. For TKW, average
values across multiple replicates per GLY combination were
used for the small number of GLY combinations for which this
trait was measured on multiple replicates; otherwise, the data
from one replicate was used. For all other traits, the values
measured on one replicate per GLY combination were used.

Slopes were considered to be significantly different than
one if their confidence interval, as calculated using the
emtrends() function in the emmeans package (Lenth et al.,
2023), did not contain one. Slopes were only described in
the text for genotypes that were observed in at least half of
the environments in this study. For plots depicting the FW
regression, the environmental effect (regression estimates for
each LY combination across all genotypes; Lian & de los
Campos, 2015) was plotted in the X-axis and genotype per-
formance (regression estimates for each genotype within each
LY combination) in the Y-axis.

2.5.2 Modeling

Yield
For estimation of variance components, an LMEs model was
run for yield from each replicate plot within a GLY combina-
tion, with the inclusion of a block effect nested within LY as
shown in the following equation:

𝑦𝑖𝑗𝑘𝑧 ∼ μ + 𝑔𝑖 + 𝑙𝑗 + 𝑠𝑘 + 𝑔𝑖𝑙𝑗

+𝑔𝑖𝑠𝑘 + 𝑙𝑗𝑠𝑘 + 𝑔𝑖𝑙𝑗𝑠𝑘 + 𝑏𝑧(𝑙𝑗 ∶ 𝑠𝑘) + ε𝑖𝑗𝑘𝑧 (3)

where yijkz represents the response measured for genotype i, in
location j, in year k, within block z, and μ is the grand mean.
gi is the main effect of the genotype, lj is the main effect of the
location, sk is the main effect of the year, bz is the block effect
nested in location and year, gi lj is the interaction of genotype
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2548 RAMANAN ET AL.

and location, and so on. εijkz is the residual term. All predictor
variables were inputted as random effects (random intercepts
and fixed slopes) via the lmer() function in the lme4 package
(Bates et al., 2015).

For purposes of mixed analysis of variance (ANOVA)
(solely to determine which post hoc tests were appropriate to
conduct) and post hoc tests, a model that combined the L and
Y terms into a generic environment (E, or “LY”) term (Equa-
tion 4) was fit using lmer() with all terms as fixed effects
except for block (nested in LY), which was fit as a random
effect. This combining of L and Y was conducted to rep-
resent individual growing environments, ensure appropriate
nesting of block in mixed ANOVA, only conduct comparison
of means for LY combinations that were tested in the present
study, and improve tractability of examining the results of
pairwise comparisons (rather than comparing each G, L, and
Y combination):

𝑦𝑖𝑚𝑧 ∼ μ + 𝑔𝑖 + 𝑒𝑚 + 𝑔𝑖𝑒𝑚 + 𝑏𝑧(𝑒𝑚) + ε𝑖𝑚𝑧 (4)

p-Values for fixed effects in this model were obtained using
the mixed() function in the afex package (Singmann et al.,
2023) using the default settings (Kenward–Roger approxi-
mation), as in Dia et al. (2017). We only conducted post
hoc tests for the highest-order term that was significant for a
given variable. In the case of a three-way interaction exhibit-
ing significance, we conducted a comparison of means for
all genotypes (G) within a given LY combination, and for
all LYs for a given genotype (G). Pairwise comparison of
means was conducted using the emmeans() function in the
emmeans package (Lenth et al., 2023; Searle et al., 1980)
using list(pairwise ∼ G|LY) or list(pairwise ∼ LY|G) and
adjust = “Tukey.” Connecting letters reports were generated
using the cld() function in the multcomp package (Hothorn
et al., 2008) and used to identify means that were significantly
different from each other (ɑ = 0.05).

Grain quality traits
The LMEs model was run using the lm() function in the lme4
package (Bates et al., 2015) for all grain quality traits ana-
lyzed from one replicate per GLY combination, except for
TKW where averages from multi-replicate data were used
where available. The dataset, including data from 12 geno-
types, 8 locations, and 3 seasons (2017–2018, 2018–2019, and
2020–2021), was used for this analysis. The variance com-
ponents were estimated using an LMEs model (Equation 5).
Mixed ANOVA was conducted using the aov() function (R
Core Team, 2020) followed by the comparison of means via
the Tukey–Kramer post hoc test (which was used due to
unequal sample sizes; unbalanced was set to TRUE) using the
HSD.test() function in the agricolae package (de Mendiburu.,
2021) for the same Equation (5). We only conducted the
Tukey–Kramer post hoc test for the highest-order term that

was significant for a given variable; for example, if the loca-
tion:year interaction term and main effect of genotype were
significant, we fit the Tukey–Kramer post hoc test for those
terms but did not do so for the main effects of each of loca-
tion and year. Means that were significantly different from
each other (ɑ = 0.05) in pairwise comparisons were identi-
fied using connecting letter reports from this analysis. We did
not describe in the text any comparisons of levels that were
not ever directly compared to each other (e.g., two genotypes
that were not tested in any of the same LYs, or two locations
that were each only tested in 1 year and that were tested in a
different year from each other):

𝑦𝑖𝑗𝑘 ∼ μ + 𝑔𝑖 + 𝑙𝑗 + 𝑠𝑘 + 𝑔𝑖𝑙𝑗 + 𝑔𝑖𝑠𝑘 + 𝑙𝑗𝑠𝑘 + ε𝑖𝑗𝑘 (5)

where yijk represents the response measured for genotype i, in
location j, in year k and μ is the grand mean. gi is the main
effect of the genotype, lj is the main effect of the location, sk
is the main effect of the year, and so on. εijk is the residual
term. All predictor variables were inputted as random effects
(random intercepts and fixed slopes) for the LMEs model and
fixed effects for the mixed ANOVA.

2.6 Data visualization

Figure 1 was created using the ggplot2 (Wickham, 2016),
agricolae (de Mendiburu & Yaseen, 2020), datasets (R Core
Team, 2020), and reshape2 (Wickham, 2007) packages to
visualize the responsiveness of each genotype across envi-
ronments (LYs) for the measured traits using FW regression.
Figure 2a (correlation matrix) was created using the ggplot2
(Wickham, 2016), corrplot (Wei & Simko, 2021), and tidy-
verse (Wickham et al, 2019) packages. PCA was performed
on the full dataset using the prcomp function with corre-
sponding biplots (Figure 2b, c and Figure S2) developed using
the factoextra (Kassambara & Mundt, 2020) and ggbiplot
(Wickham, 2016) packages. Figure S1 was created and modi-
fied using Mapline (https://mapline.com). The data and script
underlying this study are available as supplemental material.

3 RESULTS AND DISCUSSION

3.1 Location overview and genotype
adaptability to the California region

The location, coordinates, weather, and management infor-
mation are summarized in Table S1. For the samples in this
experiment, the average yields ranged from 1996 kg ha−1 in
Davis (2020–2021) to 6686 kg ha−1 in Davis (2017–2018),
and GPC ranged from 7.9% in Imperial Valley (2020–2021)
to 15.1% in Davis (2020–2021). Yolo region 3 was an
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RAMANAN ET AL. 2549

F I G U R E 1 Finlay–Wilkinson regression of the 12 genotypes tested across eight locations and 3 years for adaptability of (a) yield (kg ha−1); (b)
grain protein content (GPC) (%). The X-axis denotes environmental effect (regression estimates for each location–year combination across all
genotypes) and Y-axis denotes regression estimates for each genotype. Dotted line represents reference slope of 1. “*” represents a significant
difference from reference slope (p-value < 0.05).

organically managed site with average yield and GPC of
3643 kg ha−1 and 8.4%, respectively (Table S3). The present
study on malting barley included the 2020–2021 season,
which was reported to be the warmest and driest season in
the last century (California Department of Water Resources,
2021). Average values for productivity and grain quality traits

summarized by genotype, location, and year are reported in
Table S3.

Yield (kg ha−1) and GPC (%) adaptability of these geno-
types was assessed using FW regression (Figure 1; Finlay &
Wilkinson, 1963). Adaptability (or responsiveness to a unit
change in environmental index; hereafter “responsiveness”)
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2550 RAMANAN ET AL.

F I G U R E 2 (a) Pearson correlation coefficient (r) matrix between malting barley productivity and quality traits. Colored circles indicate
significant correlations based on a 95% asymptotic confidence interval using Fisher’s Z transform; year based biplots for (b) productivity and quality
traits principal components (PCs) 1 and 2; (c) gelatinization temperature (GT) traits PCs 1 and 2. Vectors represent yield (yield), grain protein
content (GPC) (protein), percentage of plump (plump) and thin (thin) grains, individual-grain weight (mgwt), thousand kernel weight (tkw), onset GT
(onsetgt), peak GT (peakgt), offset GT (offsetgt), difference between onset and peak GT (donpeak), and difference between peak and offset GT
(doffpeak). Normal confidence ellipses based on multivariate t-distribution were drawn with 95% confidence intervals for all biplots.

was defined based on the slope of the regression line relative
to the reference slope equal to one, with genotypes with higher
responsiveness having slopes greater than one and genotypes
with lower responsiveness having slopes less than one. All
slope values and 95% confidence intervals for those values
are reported in Table S2.

For yield (Figure 1a), LCS Odyssey (Limagrain Cereal
Seeds, 2022) had higher responsiveness, and its slope was sig-
nificantly different than one (slope = 1.37). Other genotypes
with higher responsiveness (slopes greater than but not sig-
nificantly different than one) were UC Tahoe (Hegarty et al.,
2018), OSU Full Pint, and UC Alameda. Klages (Wesen-
berg et al., 1974) had low responsiveness with a slope of
0.69 that was significantly different than one. Other genotypes
with relatively lower responsiveness (less than but not sig-
nificantly different than one) were AAC Synergy (Legge
et al., 2014), Butta 12 (Gallagher et al., 2020), and CDC
Copeland (Canadian Food Inspection Agency, 2007). Klages,
CDC Copeland, and AAC Synergy were developed in other
production regions, whereas Butta 12 was developed for Cal-
ifornia. Some of these genotypes with relatively lower slopes
and higher intercepts could have been developed for niche
and/or low yielding environments. For example, Klages is

not recommended for low rainfall regions or water-limited
cropping, and AAC Synergy was specifically adapted for hot,
humid summers in Western Canada (Legge et al., 2014). A
minor trend of UC Tahoe slightly outperforming Butta 12
in irrigated environments (and vice versa in rainfed environ-
ments) was noted by Hegarty et al. (2018). The two lines
appear to have diverged in higher yielding environments in
this study as well (Figure 1), but with significant differences
not detected in the present study (Table S2) nor in Hegarty
et al. (2018).

For GPC (Figure 1b), the genotypes with highest respon-
siveness were Klages, LCS Odyssey, LCS Genie, and UC
Capay (del Blanco et al., 2022). However, all genotypes were
relatively responsive (or “adaptable”) in GPC, and no slopes
were significantly different than one. For the other traits ana-
lyzed in this study, certain genotypes that were observed in at
least half of the environments in this study exhibited slopes
significantly different than one (Table S2), which are the
only slopes specified in the text. CDC Copeland had slope
of 1.32 for TKW, and Butta 12, UC Capay, and UC Tahoe
had slopes of 0.43, 0.54, and 0.56 (respectively) for TKW. UC
Capay and LCS Odyssey had slopes of 0.42 and 1.60 (respec-
tively) for onset GT, and LCS Odyssey had a slope of 3.07 for
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T A B L E 1 Percent variance explained by main and interaction effects of genotype (G), location (L), and year (Y) on traits of relevance to
malting barley productivity and quality using linear mixed effects models.

Metric Trait G×L G×Y L×Y G L Y G×L×Y L×Y×B Res
Percent variance explained Yield 0 0 44 4 11 8 11 5 16

GPC 3 3 72 0 0 0 – – 22

TKW 2 8 21 33 0 26 – – 10

IGW 1 0 0 0 22 0 – – 77

Plump 0 10 4 18 0 30 – – 38

Thin 0 4 6 8 6 30 – – 46

Note: “B” refers to block; “Res” refers to residuals.
Abbreviations: GPC, grain protein content; TKW, 1000-kernel weight; IGW, individual-grain weight.

difference between onset and peak GT. Finally, UC Capay had
a slope of 0.51 for difference between peak and offset GT. No
other slopes for genotypes tested in at least half of the envi-
ronments in this study were significantly different than one,
for any genotype–trait combination.

3.2 Effects of G, L, Y, and their interactions
on malting barley productivity and quality

The six productivity and grain quality traits in this study—
yield (kg ha−1), GPC (%), IGW (mg), TKW (g), and grain
size (plump and thins)—were examined in an LME mod-
eling framework. The percentages of variance explained by
the main and interaction effects of G, L, and Y are shown in
Table 1. For yield and GPC, the L×Y interaction accounted
for 44% and 72% of the variance, respectively. The three-way
interaction term G×L×Y accounted for 11% of the variance
in yield. The largest variance for TKW was explained by G
(33%), Y (26%), and L×Y (21%). The largest variance in plump
was explained by Y (30%) and G (18%), and the largest vari-
ance for thins was explained by Y (30%). The linear model
that was fit for IGW had a large extent of residual variance,
potentially indicating that this trait is more dependent on spe-
cific management factors that were not explicitly tested in this
model.

These results (Table 1) are in line with a previous geno-
type by environment study conducted in Ethiopia (Bantayehu,
2013), where location explained the largest variance in grain
quality traits. Location and genotype effects significantly con-
tributed to variance in GPC, which in turn was found to be a
major driver of malt quality (Halstead et al., 2023). Interest-
ingly, in studies where malt quality was assessed as opposed
to grain quality (the latter was examined in the present study),
the contribution of variance coming from G was larger than
L and/or Y (Laidig et al., 2017; Nielsen & Munck, 2003).
This highlights the need for a deeper understanding of how
grain quality traits correlate with malt quality traits (e.g.,
total starch extract %, total β-glucan content). Furthermore,

a more in-depth characterization of grain and malt quality
parameters in a larger number of genotypes could also be
worthwhile to inform selection in earlier stages of the breed-
ing process. Enabling such characterizations at a greater scale
and/or with higher throughput could have value to the industry
and research community.

In mixed ANOVA for productivity and quality traits (Table
S4), the terms exhibiting significance were generally con-
cordant with the variance components results in Table 1.
For yield, the G×LY interaction was significant, alongside
main effects. In post hoc tests (Table S4), significant dif-
ferences were detected for certain G×LY combinations. For
example, LCS Odyssey (high) had significantly different
means for yield than Klages (low) in Davis 2017–2018,
Davis 2018–2019, and Merced 2018–2019. None of the
four 2020–2021 environments were among the highest yield-
ing environments for any genotype (Table S4), with a few
exceptions (viz., Imperial 2020–2021 for LCS Genie and
Fresno 2020–2021 for LCS Genie, CDC Copeland, and
AAC Synergy). The Davis 2020–2021 environment consis-
tently showed among the lowest means for all genotypes
that were tested therein. The poor yields in that environ-
ment (and across locations in 2020–2021) were primarily
due to drought and high temperatures. The Davis site is
managed as a rainfed site with only minimal irrigation as
needed (e.g., for successful establishment of the crop). Aver-
age daily maximum temperatures in the Davis 2020–2021
environment were 1.7˚C higher than the 10-year average
between April 1 and May 31 (the period representing grain
filling) (Nelsen, Merz, et al., 2021; PRISM Climate Group,
2020).

For protein, the L×Y interaction was significant alongside
main effects. Notably, among the 2020–2021 environments,
means for GPC from Davis and Yolo 2 (high) were signifi-
cantly different than those from Fresno and Imperial (low),
and the two sets of means varied by more than four percent-
age points for GPC (%). In this context, it is interesting to
note again that no genotypes had slopes significantly differ-
ent than one for GPC in FW regression. For IGW, the main
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2552 RAMANAN ET AL.

T A B L E 2 Percent variance explained by main and interaction
effects of genotype (G), location (L), and year (Y) on starch
gelatinization temperature (GT) using linear mixed effects models.

Metric Trait G×L G×Y L×Y G L Y Res
Percent variance

explained
Onset GT 6 9 12 23 1 26 24

Peak GT 0 7 25 36 0 4 29

Offset GT 2 5 30 23 0 0 39

donpeak 7 9 1 0 6 7 70

doffpeak 0 0 33 2 6 38 20

Note: Units are ˚C for all of the traits presented in this table. “Res” refers to residu-
als; “donpeak” refers to difference between onset and peak GT; “doffpeak” refers
to difference between peak and offset GT.

effect of L was the only term that exhibited significance in
mixed ANOVA, suggesting that continued monitoring of IGW
in samples from regional trials would be helpful in the case of
environmental and/or other effects that are not solely the main
effect of genotype.

For TKW and plump, the L×Y interaction was significant,
as were the main effects of each of G, L, and Y (Table S4). For
both traits, two of the 2018–2019 environments (Davis and
Fresno; high) had significantly different means than two of
the 2020–2021 environments (Davis and Yolo 2; low). Butta
12 (high) had a significantly different mean for plump than
all but two of the genotypes in this study; plumpness was
indeed noted as one of the key favorable attributes of that vari-
ety at time of release (Gallagher et al., 2020). For thins, the
main effects of L and Y were significant, and the 2020–2021
environments (high) had significantly different means than the
other 2 years.

3.3 Effects of G, L, Y, and their interactions
on starch GT

The main and interaction effects of G, L, and Y on starch GT
are shown in Table 2. For onset GT, the largest percentage
of variance was explained by Y (26%), followed by G (23%).
For peak and offset GT, the largest percentage of variance
was explained by G (36% and 23%, respectively) and the L×Y
interaction term (25% and 30%, respectively). In addition to
onset, peak, and offset GT, it is also important to consider
the GT temperature range using the difference between onset
and peak GT and difference between peak and offset GT. A
broader GT range will result in a wider DSC curve, which has
been attributed to the presence of more A-type starch gran-
ules that have been packed heterogeneously (Suh et al., 2004;
Vasanthan & Bhatty, 1996). Similar to IGW, the residual vari-
ance of the difference between onset and peak GT was large,
suggesting that there could be variance associated with spe-
cific management factors that were not explicitly tested in this
model.

The difference between peak and offset GT was substan-
tially explained by Y (38%) and L×Y (33%; Table 2). It is
possible that these effects were mediated by the amylose (A)
to amylopectin (AP) ratio, and the percentages of small gran-
ules present in the grain. Amylose (A) and amylopectin (AP)
ratios directly impact GT in malting barley, and it has been
found that a higher A:AP ratio can trigger higher GT (e.g.,
higher peak and offset GT; Källman et al., 2015). It was pre-
viously reported that a higher A content (%) may cause it
to entangle and/or co-crystallize with AP, thereby limiting
starch swelling and subsequent hydrolysis (Tester & Mor-
rison, 1990). This could result in an increased starch GT.
Further examination of these trends in a wider sample set
coming from varied G, L, and/or Y is needed for this assess-
ment. High GTs have also been associated with an increased
percentage of smaller starch granules in the barley endosperm
(Langenaeken et al., 2019). These smaller starch granules are
often developed due to changes in starch biosynthesis dur-
ing grain development that are triggered by drought (Gous
et al., 2015). Hence, a large extent of variance in the difference
between peak and offset GT being explained by Y could prove
to be problematic for the malting and brewing industries.

In mixed ANOVA for GT-related traits (Table S4), the
terms exhibiting significance were generally concordant with
the variance components results in Table 2. For onset GT
and peak GT, the L×Y and G×Y interactions were significant
alongside main effects. For onset GT, the 2020–2021 envi-
ronments (high) had significantly different means than most
of the other environments. For peak GT, the 2020–2021 envi-
ronments again exhibited high means but with a less clear
trend than that for onset GT. Although means for onset and
peak GT were also significantly different between certain G:Y
combinations, no clear trends were evident.

For offset GT, the L×Y interaction was significant, as were
the main effects of G and Y. The Fresno 2018–2019 environ-
ment (high) had a significantly different mean for offset GT
than all environments except for one (Tehama 2017–2018).
LCS Odyssey and Butta 12 (high) had significantly different
means for offset GT than UC Capay and OSU Full Pint (low);
the remaining genotypes did not significantly differ from any
of these four. For difference between offset and peak GT, the
main effects of G, L, and Y were significant, with no signif-
icant interaction effects; Butta 12 (high) had a significantly
different mean than LCS Odyssey (low). No terms were sig-
nificant in mixed ANOVA for difference between onset and
peak GT, such that post hoc tests were not conducted for that
trait.

3.4 Trait relationships (correlations and
principal component analysis)
Pearson correlations were examined between the malting bar-
ley productivity and quality traits studied herein (Figure 2a).
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RAMANAN ET AL. 2553

Correlations discussed here are indicated using colored circles
and were statistically significant based on a 95% asymp-
totic confidence interval using Fisher’s Z transform. Yield
was positively correlated with plump % (r = 0.37) and the
difference between peak and offset GT (0.37) but was nega-
tively correlated with thin % (−0.31) and peak GT (−0.21).
GPC was negatively correlated with plump % (−0.41) and
yield (−0.24). Peak GT was negatively correlated with yield
(−0.21) and plump % (−0.15) but was positively correlated
with IGW (0.21). TKW was positively correlated with yield
(0.26) and plump % (0.65), but negatively correlated with
GPC (−0.46) and thin % (−0.34). Interestingly, these traits
were not significantly correlated with IGW except for thin
% (0.1). The finding of TKW and plump % being among
the strongest positively correlated traits (r = 0.65) suggests
that measurements of TKW could be helpful to breeders and
agronomists as an indirect assay for plump (e.g., if data for
TKW is readily available for more genotypes and/or envi-
ronments). In the range of TKW observed in the samples in
this study (predominantly less than 47 g), TKW and plump
showed a positive relationship in Vahamidis et al. (2022)
(in the >2.5, 2.5–2.6, and >2.6 mm ranges for grain size).
Vahamidis et al. (2022) also found plump to have higher
plasticity than TKW (and yield) in two-row malting barley
produced in Mediterranean climates, suggesting that TKW
could be a less plastic proxy trait for use by breeders (and
one that was also weakly positively correlated with yield in
the present study)—with continued and routine monitoring of
relationships between these traits.

The correlations between yield and GPC, and plump % and
GPC, are generally accepted to be negative in malting barley
(Fox, 2009; Vahamidis et al., 2022; Yu et al., 2017). How-
ever, newer studies have shown that potential explanations for
this negative correlation could be due to nitrogen availabil-
ity (Magliano et al., 2014) and/or tiller formation (Hu et al.,
2021).

A few moderate-to-strong correlations were observed
between GT traits (Figure 2a). Among these, the difference
between peak and offset GT showed a positive correlation
with yield (0.37) and plump % (0.36), negative correlation
with thin % (−0.38), and strong negative correlation with
onset GT (−0.60) and peak GT (−0.53). To date, the mech-
anism behind this extension of the gelatinization curve past
the peak temperature has not been explained in the literature.
We hypothesize that some alternative endosperm parameter
not measured in this study could be underlying this extension.
The positive correlation between plump and this difference
trait could be attributed to the proportion of A- and B-type
starch granules within the endosperm (Goering et al., 1973;
Vasanthan & Bhatty, 1996). The smaller, B-type granules
that are developed later in the grain filling process have
been previously shown to gelatinize more slowly than A-type

granules (Karlsson et al., 1983; Langenaeken et al., 2019).
Hence, it is possible that the samples with a higher differ-
ence between the peak and offset GT assessed in this study
could contain a higher proportion of B-type granules than A-
type granules, indicated by the high plump (%). The negative
correlation between onset GT and this difference trait could
be due to variation in levels of hordeins (major seed storage
proteins in the endosperm). Although the large starch gran-
ules gelatinize at relatively lower temperatures (indicated by
onset GT), hordeins encompass the small starch granules and
could impact their accessibility to starch-degrading enzymes
(Wenwen et al., 2019). Further research on starch granule
proportions and hordein content will enable a more compre-
hensive understanding of this complex relationship between
starch GT and grain quality.

PCA biplots were used to visualize the relationships among
traits across three years (Figure 2b,c). Normal confidence
ellipses based on multivariate t-distribution were drawn with
95% confidence intervals for each year. For productivity and
quality traits, the first, second, and third principal components
(PCs) explained 45.0%, 17.2%, and 14.5% of the total vari-
ance, respectively. For the starch GT traits, the first and second
PCs explained 50.4% and 33.3% of the total variance, respec-
tively. The 2020–2021 season samples formed a partially
distinct cluster, mainly discriminated by high percentage of
thin grains (Figure 2b) and high onset GT (Figure 2c). These
results are consistent with the results of post hoc tests for thins
(for which the 2020–2021 environments had significantly dif-
ferent means than those from the other 2 years) and onset
GT (for which the 2020–2021 environments had significantly
different means than most of the other environments).

3.5 Gelatinization profiles (differential
scanning calorimetry curves)

Starch gelatinization curves for UC Tahoe and UC Capay were
examined for each of the 3 years in this study (Figure 3).
On average, onset GT was higher by approximately 1˚C (but
with a significant difference not detected) for the 2020–2021
season in comparison to other seasons for UC Tahoe (Table
S4). The 2020–2021 season was characterized by a higher
average maximum temperature during crop growth across the
locations tested (Table S1). Moreover, a few sites in other
seasons also experienced drought conditions (i.e., based on
crop evapotranspiration in excess of soil water supply during
the reproductive growth phase and accompanying observa-
tions of drought-related symptoms). Three out of four sites
in the 2020–2021 season experienced terminal drought stress
as also indicated by the water (precipitation and irrigation)
levels post heading in Table S5. Hence, one possible expla-
nation for higher onset GT for UC Tahoe (and in 2020–2021
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2554 RAMANAN ET AL.

F I G U R E 3 Average differential scanning calorimetry curves for (a) University of California (UC) Tahoe grown in 2017–2018 (N = 4
locations), 2018–2019 (N = 4) and 2020–2021 (N = 3); (b) UC Capay grown in 2017–2018 (N = 4), 2018–2019 (N = 4), and 2020–2021 (N = 3).

more generally, as appeared in the PCA results; Figure 2c)
is that the extreme weather conditions during grain-fill could
have led to the formation of smaller (i.e., a higher percent-
age of B-type) starch granules within the endosperm, which
subsequently could have led to higher onset and peak GTs
(Tables S3 and S4). Colder summer temperatures have been
shown to lower the peak GT in a barley study in Finland
(Myllärinen et al., 1998) compared to climate-typical sum-
mers, which is further indicative of a positive relationship
between starch GT and growing season temperature.

4 CONCLUSION

This study was the first assessment of the combined effects
of G, L, and Y on starch gelatinization. It was also the first
study to assess malting barley productivity and grain qual-
ity for the Californian region, while providing information
regarding the adaptability of genotypes grown in this region
for these traits. The largest variance in yield, GPC, plump
and thin grains, and IGW were explained by either L, Y, or
their interaction. Variance in TKW, on the other hand, was
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RAMANAN ET AL. 2555

largely explained by G and Y. We also confirmed that Y and
the L × Y interaction term explained the largest variance in
onset and offset starch GT, respectively, but the largest vari-
ance in peak GT was explained by G. Finally, the 2020–2021
season formed partially distinct clusters in PCA, segregated
by a high percentage of thin grains and high onset GT.
These findings illustrate the critical role of G, L, and Y in
determining malting barley productivity and grain quality in
California.
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