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A Priming Model of Category-based Feature Inference
Laura M. Hiatt (laura.hiatt@nrl.navy.mil)

US Naval Research Laboratory
Washington, DC 20375 USA

Abstract
Categorization has a large impact on how people perceive the
world, especially when used to make inferences about uncer-
tain features of new objects. While making these inferences,
people tend to draw information from only one possible cate-
gorization of a new object; in addition, people are sensitive to
pre-existing correlations between features. Here, we explain
these trends of feature inference using a priming-based cogni-
tive process model, and show that our model is distinguished
in that it can explain not only these two main trends, but also
cases where people seem to reverse the first trend and base in-
ferences on information from multiple categories.
Keywords: categorization; priming; spreading activation; in-
ductive inference; cognitive models

Introduction
Categorization is a fundamental tool in human cognition. One
of its main functions is to allow people to more easily un-
derstand the world by making inferences about new objects
based on existing knowledge that they already have. If one
sees a furry animal coming towards it and categorizes it a
loose dog, then it would be natural to further infer that the
animal is probably friendly.

Systematic research into how these inferences are made
has shown two major trends in performance (Nosofsky, 2015;
Murphy & Ross, 1994, 2007; Griffiths, Hayes, & Newell,
2012). First, people seem to base inferences on a single iden-
tified category for an object, even if the object’s categoriza-
tion is uncertain (called the single-category view). So, for
example, people would typically infer that the dog is friendly
without considering that it might be a fox, which should be
avoided. Second, people are sensitive to correlations between
features, and are more likely to infer features that are strongly
associated with the observed features of the new object. For
example, people would be further biased towards inferring
the dog is friendly if it were wagging its tail.

While there is a large body of research that supports these
two trends, here we consider a series of experiments per-
formed by Murphy and Ross (1994) that comprehensively
considered several variants and extensions of the basic infer-
ence paradigm. The authors, however, admit that their overall
results challenge many of the formal models of categoriza-
tion and inference (Murphy & Ross, 1994, 2007), with none
fully explaining the results. Recently, Nosofsky (2015) devel-
oped a exemplar model of feature inference that does quali-
tatively capture their results. Notably, however, Nosofsky’s
(2015) analysis does not discuss an important caveat of the
first trend: that responses seem to shift towards a multi-
category view, where more than one possible category is con-
sidered when making the inference, if participants do not ex-
plicitly identify the category before making the feature infer-
ence (Murphy & Ross, 1994; Griffiths et al., 2012).

We present here a priming-based process model of induc-
tive feature inference that explains these two main results,
including this caveat. Situated in the cognitive architecture
ACT-R/E (Trafton et al., 2013), a critical aspect of our model
is that its inferences are based not only on what stimuli have
been seen, but also on what the model is currently thinking
about (i.e., what is in its working memory). We show our
model’s ability to account for feature inferences in four main
experiments that are particularly indicative of the trends of
feature inference: Experiments 1, 5, 6, and 8 from Murphy
and Ross (1994).

Experiments
In the four experiments we consider from Murphy and Ross
(1994), participants were shown category structures with dif-
ferently shaded geometric objects, grouped together and la-
beled with the category they represent (e.g., Figure 1). Par-
ticipants were told that the categories represented different
children who drew the objects, and that the objects were il-
lustrative of a larger set of drawings by each child. Then, the
experimenter told participants about a new drawing, but only
shared one feature of it, such as a triangle; this feature, the
query feature, was typically chosen to be ambiguous in which
child drew it. Participants were then asked what they thought
the other feature of the new drawing was (such as the trian-
gle’s color). Additionally, in some experiments, participants
were asked to categorize the drawing (i.e., say which child
drew it) before they inferred the second feature. The most
likely category for each query is called the target category.

Experiment 1 focused on whether inferences are made us-
ing information from single, or multiple, categories. The cat-
egories are shown in Figure 11. This experiment had two
conditions. In the increasing condition, the query feature was
a triangle. The target category for a triangle is Bob, since Bob
has the most triangles. The target-category feature, or the fea-
ture that would be selected by primarily considering the target
category using a single-category view, is black. This condi-
tion is called increasing because there is additional evidence
outside the target category that the triangle would be black,
since Sam and John also sometimes draw triangles, and they
also sometimes draw black objects.

Now, consider a new drawing that is a square. Here, the tar-
get category is John, and the target-category feature is white.
In this condition, the neutral condition, there is no evidence
outside of the target category that the square would be white;

1While other variations of this category structure were used to
counterbalance features and category locations, they preserved this
same main category structure and so we discuss the experiment in
terms of this one. We do this for the other experiments, as well.
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Figure 1: Category structure for Experiment 1. In the in-
creasing condition, the query feature is a triangle, the target
category is Bob, and the target-category feature is black. For
the neutral condition, the query feature is a square, the tar-
get category is John and the target-category feature is white.
Adapted from Figure 1 of (Murphy & Ross, 1994).

no other child draws both squares and white objects.
Almost all of the 29 participants selected the target cate-

gory and target-category feature for both the increasing and
neutral conditions, and so ceiling effects prevented them from
being statistically compared. Participants also, however, pro-
vided a probability estimate of their certainty in their re-
sponse. These probability judgments did not have a ceiling
effect, yet provide no evidence of a difference between the
two conditions: the average certainty for each condition was
53%. This parity supports the single-category view of feature
inference by suggesting that, despite the additional evidence
for the target-category feature present in the increasing con-
dition, participants only took the target category into account
when making their inference.

Experiments 5 and 6 used a category structure in which
the single-category view and multiple-category view suggest
different patterns of feature inferences (Figure 2). Further,
they considered how the initial step of identifying the target
category may affect participants’ use of single vs. multiple
categories in their inference. Here, the query feature is a tri-
angle, and the target category is Bob, since he drew more
triangles than the other children. The single-category view
suggests black as the inferred feature; black is thus consid-
ered the target-category feature. A multiple-category view,
however, suggests that black and white are equally likely.

The results of the experiments support both these views,
depending on whether participants were asked to make the
initial categorization step. In Experiment 5, where partici-
pants did not initially categorize the drawings, 58% of the
32 participants chose the target-category feature, black, with
the majority of remaining responses as white. This differ-
ence was not significant, supporting the multiple-category
view. In Experiment 6, however, where participants did cate-
gorize the drawings before predicting the other feature, 82%

Bob Ed

SamJim

Figure 2: Category structure for Experiments 5 and 6. Here,
the query feature is a triangle, the target category is Bob, and
the target-category feature is black. Adapted from Figure 3
of (Murphy & Ross, 1994).

of the 36 participants responded with the target-category fea-
ture. Additionally, 88% of the participants that categorized
the drawing into the target category responded with the target-
category feature. This supports the single-category view and
suggests that participants were biased by the target category
when they identified it before making their inference.

Experiment 8 focused on exploring how feature correla-
tions may affect predictions. Here, the query features in two
conditions were explicitly controlled to have different degrees
of correlation with the target-category features. All partici-
pants were asked to assign the drawing to a category before
responding to the feature queries. Figure 3 shows an exam-
ple category structure. In the correlated condition, the query
and target-category features were perfectly correlated: the
query feature was a circle, the target category was “D” and
the target-category feature was “vertically striped.” In the un-
correlated condition, the features are only weakly correlated,
with a query feature of triangle, a target category of “C” and
a target-category feature of white.

The results show that 95% of the 26 participants selected
the target category across both conditions. More importantly,
more participants selected the target-category feature for the
correlated condition (94%) than for the uncorrelated condi-
tion (90%). This suggests that people are biased towards cor-
related features when they make inferences.

Model
We developed a priming-based process model of feature in-
ference given uncertain categorizations, situated within a
computational cognitive architecture, ACT-R/E, that allows
us to model the processes people undergo as they perform
tasks. In this architecture, concepts that are thought about
at the same time become associated in memory, and then can
prime one another; by using ACT-R/E, we are able to develop
a priming-based account of feature inference that is supported
by the underlying principles of this existing, well-studied the-
ory of cognition. Here, we first describe the general principles
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Figure 3: Category structure for Experiment 8. For the cor-
related condition, the query feature is a circle, the target cate-
gory is D and the target-category feature is vertically-striped.
For the uncorrelated condition, the query feature is a trian-
gle, the target category is C and the target-category feature is
white. Adapted from Figure 5 of (Murphy & Ross, 1994).

of our model. Then, we give further details of ACT-R/E, and
discuss how our model’s principles interact with the architec-
ture to make specific predictions about feature inference.

The process model has two phases corresponding to the
two phases of the experiment: an initial phase where the
model looks at, encodes, and stores the categories and objects
in memory; and an inference phase where the model makes
the category and feature predictions. During the initial phase,
each of the objects becomes associated with its underlying
features; both the features and objects, in turn, also become
associated with their corresponding category. These associ-
ations mean that the concepts prime one another when the
model is thinking of them.

Then, during the inference phase, to predict the category
of a new object, the model selects the category with the most
priming, including priming from the query feature. Conse-
quently, the model’s category response is heavily influenced
by the presence of the query feature in the category. To per-
form the feature prediction, the model selects the object in
memory that has the most priming, including priming from
the query feature and, when applicable, the selected category.
The second feature of that object is then considered to be
the inferred feature. This means that the predicted feature
is heavily influenced by both the correlation between the two
features, and the prevalence of that feature within the identi-
fied category (when the category is identified).

Model Architecture
The model was developed within the cognitive architecture
ACT-R/E (Trafton et al., 2013), an embodied version of the
ACT-R cognitive architecture (Anderson, 2007). At a high
level, ACT-R/E is an integrated, production-based system,
and models in ACT-R/E capture the core cognitive processes
that people go through as they undergo tasks. At its core are
the contents of its working memory; working memory indi-

cates, for example, what the model is looking at, what it is
thinking, and its current goal. At any given time, there is a
set of productions (if-then rules) that may fire because their
preconditions are satisfied by the current contents of working
memory. From this set, the production with the highest pre-
dicted usefulness is selected to fire. The fired production can
either change the model’s internal state (e.g., by adding some-
thing to working memory) or its physical one (e.g., by press-
ing a key on a keyboard). In our discussion, we abstract over
these productions and instead describe processes at a higher
level (i.e., we say that we look at an object, instead of dis-
cussing the 3-4 productions that must fire to achieve that).

Working memory is represented as a set of limited-capacity
buffers that can contain thoughts or memories. In addition
to the symbolic information (i.e., factual information) rep-
resented as part of these memories, memories have activa-
tion values that represent their relevance to the current sit-
uation, and guide what memories are retrieved from long-
term memory and added to working memory at any given
time. Activation has three components, activation strength-
ening, spreading activation, and activation noise, that together
have shown to be an excellent predictor of human declarative
memory (Anderson, Bothell, Lebiere, & Matessa, 1998; An-
derson, 1983; Schneider & Anderson, 2011; Thomson, Har-
rison, Trafton, & Hiatt, 2017). Noise is a random component
that models the noise of the human brain; since its presence
would not affect our results, we ignore noise in the rest of this
paper. Activation strengthening is learned over time and is a
function of the frequency and recency with which the mem-
ory has been in working memory in the past. The predomi-
nant role of activation strengthening in this experiment relates
to ordering effects, which the experimental stimuli’s counter-
balancing averages out. Therefore, we primarily focus the
rest of our discussion of activation on its third component:
spreading activation, or priming.

Priming is a short-term activation that sources from work-
ing memory, distributing activation along associations be-
tween the contents of working memory and other memo-
ries. Memories become associated when they are in work-
ing memory at the same time. Once established, an associ-
ation from memory j to memory i has a strength value that
affects the degree to which j primes i, and intuitively reflects
the probability that memory i is relevant while thinking of
memory j. This allows spreading activation to capture cor-
respondences between memories that typically co-occur, as
well as memories that are semantically related (such as an
object and its color and shape). Association strengths are cal-
culated in a Bayesian-like way, and are a non-standard adap-
tation of ACT-R’s Bayesian-based priming mechanisms. We
use this adaptation to account for the large numbers of asso-
ciations and objects needed by the experiments we consider
here, which ACT-R’s original formulation is unable to do, as
well as to capitalize upon its theory that priming stems from
working memory; see Hiatt and Trafton (2016) for more in-
formation on our priming mechanisms.
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Figure 4: Priming for Experiment 1, increasing condition, for
the query feature’s categorization (left) and the inferred fea-
ture (right). Thicker arrows indicate more priming; thinner
indicate less. The cumulative priming means that Bob will be
selected as the category and black will be the inferred feature.

ACT-R/E models interact with the world using ACT-R/E’s
built-in functionality. Models can view visual items on a sim-
ulated monitor, and can act on the world by pushing keys on
a simulated keyboard and clicking a simulated mouse. ACT-
R/E models are also inherently tied to physical embodiment
(i.e., executing models on a robot), but we do not use that
functionality in this paper.

Model Details
Our model for feature inference starts out with only the
task knowledge and productions necessary to complete the
tasks. It also assumes prior exposure to the category names,
since they are names participants would have encountered
frequently in their daily lives (i.e., “A”, “John”, etc.). There
are no initial associations; are all learned during the experi-
ment. The model “looks at” the stimuli as the participants did
via its simulated monitor.

During the initial experiment phase when the model is
looking at the categories and objects, it first finds a cate-
gory to look at, encodes it and adds it to working memory.
While continuing to think of the category, the model then
looks at, encodes and adds to working memory each of the
objects in that category, while making note of their color and
shape. Consequently, as it looks at each object: the object
(i.e., “black-triangle”) becomes associated with the category
(i.e., “Bob”); the object’s features (i.e., “black” and “trian-
gle”) become associated with both the object and the cate-
gory; and the features of the object become associated with
each other. When it has finished looking at all objects of a
category, it repeats this process with the other categories until
it has looked at all of the categories and objects on the screen.

During the inference phase, the model first adds the query
feature to working memory as part of the process of inter-
preting the query. When asked to infer the category of an
object, the model retrieves the category from memory with
the highest activation, including both activation strengthen-
ing and spreading activation (i.e., priming), responds with the
retrieved category, and leaves the category in working mem-
ory. For example, Figure 4, left side, shows the priming when
selecting the category for Experiment 1’s increasing condi-
tion. Then, when asked to infer the object’s missing feature,

the model retrieves an object while both the retrieved cate-
gory (when applicable) and the query feature are in working
memory. Again, the object with the highest activation, both
activation strengthening and priming, is retrieved; Figure 4,
right side, shows this for Experiment 1’s increasing condi-
tion. The second feature of the retrieved object is given as the
response to the query.

Model Results
In the original experiments, several versions of the basic cat-
egory structure were created to counterbalance features and
category locations. We varied our category structures accord-
ingly, then used our model to simulate data from 500 partic-
ipants per experiment to allow our results to better converge
on the model’s true predictions; our reported results are the
proportion of the 500 model runs that responded with the tar-
get category, target-category feature, etc., for each query.

The model had the same parameters for each experiment.
The activation strengthening decay parameter was 0.45 in-
stead of its default of 0.5. The associative learning rate was
4.8, representing a moderate rate of learning. There is no real
default value for this parameter. All other parameters were
set to their default values.

The main experiment and model results are shown in Ta-
ble 1. For Experiment 1, the model exhibited perfect perfor-
mance, always selecting the target category, and always se-
lecting the target-category feature for both the increasing and
neutral conditions. This is comparable to the experimental
results, where almost all participants also selected the target
category and target-category features.

In this experiment, however, despite almost all participants
selecting the target-category feature, participants’ probability
judgments of their responses were not as certain, with an aver-
age judgment for each condition of 53% for both the increas-
ing and neutral conditions. While we have no a priori way of
extracting probability judgments from the modeling frame-
work we utilize, our model does informally support these re-
sults. This is because, from our model’s point of view, these
conditions’ structures are the same. Both include two objects
with the query feature and target-category feature in the target
category; one object with just the query feature in the target
category; and two objects with just the query feature outside
of the target category. Thus, in both conditions, while the
black-triangle object (or white-square object) is the highest
activated object, it only receives about half of the total prim-
ing, suggesting a probability judgment of 50%.

For Experiment 5, the model selected the target-category
feature 50% of the time, which moderately reflects the ex-
periment’s results. In Experiment 6, the model very strongly
matched the experimental data, selecting the target-category
feature 80% of the time, as compared to the experiment’s
82%. Additionally, 89% of the model runs that categorized
the drawing into the target category responded with the target-
category feature, compared to the experiment’s 88%.

For Experiment 8, 95% of model runs selected the target
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Table 1: Model Results
Experiment Condition/Participant Group Measurement Exp. Data Model

Exp. 1 increasing probability judgments 53% 50%
neutral probability judgments 53% 50%

Exp. 5 all participants target-cat. feature 58% 50%

Exp. 6 all participants target-cat. feature 82% 80%
target cat. correct only target-cat. feature 88% 89%

Exp. 8
all participants target category 95% 95%

correlated target-cat. feature 94% 100%
uncorrelated target-cat. feature 90% 91%

category, the same as in the experiment. All of the model runs
selected the target-category feature for the correlated condi-
tion, and 91% selected the target-category feature for the un-
correlated condition. Again, this strongly corresponds to the
experimental results, where there was a significant difference
between the two conditions, with 90% of participants select-
ing the target-category feature in the uncorrelated condition
vs. 94% for the correlated condition.

Model Discussion

Recall the two main trends in research on feature inference
for uncertain categorizations that are illustrated by the four
experiments we consider here. First, people are biased to-
wards the single-category view when making feature infer-
ences; the bias seems to be modulated, however, when they
do not categorize the object first. And second, people’s in-
ferences are also sensitive to correlations between features,
selecting correlated features more often than non-correlated.

The model explains both of these trends via priming be-
tween the features, objects and categories. It explains the first
trend, and its caveat, because its predictions are based on the
sources of priming in working memory, and as such are not
inherently based on the consideration of single- or multiple-
categories. When making a feature prediction, the model al-
ways has the query feature in memory, which primes objects
that are associated with it. This serves to provide sugges-
tions compatible with the multiple-category view of what the
predicted feature should be. For example, in Experiment 5,
where triangle is the query feature and there is no categoriza-
tion step, triangle equally primes black-triangle and white-
triangle, because there are equal numbers of them. This leads
to a roughly an equal likelihood (50%) of the predicted fea-
ture being black or white. While this underestimates the 58%
response rate of the experimental data, given the lack of sta-
tistical significance in this experiment, we are comfortable
concluding that our model explains this trend.

In conditions where participants categorize the feature be-
fore making their prediction, priming stems not only from
the query feature but also from the category, which provides
suggestions compatible with the single-category view of what
the inferred feature should be. In Experiment 6, identical to
Experiment 5 but with an added categorization step, when

shown a triangle, the model generally selects Bob as the cate-
gory (i.e., Figure 4). Bob then strongly primes black-triangle,
since it has three of them, and weakly primes white-triangle,
since it has only one of them. Combining this category prim-
ing with the priming from the query feature, black-triangle
overall receives more. Again, this matches the data, where
82% of participants overall selected black as the inferred fea-
ture, and 88% of participants who identified Bob as the target
category selected black as the inferred feature. Overall, then,
the model’s use of priming in memory allows the model to
capture conditions both where participants seem to be biased
towards the single-category view, and where they do not – a
major contribution of the model.

The model also explains the second main trend of feature
prediction, where participants are sensitive to correlations be-
tween features. There are two reasons for this. The first is that
correlated objects, on average, have slightly higher activation
strengthening, since they will be more familiar to participants
than objects with less common feature pairings. The second
reason is that correlated objects will receive much higher lev-
els of priming from their underlying features because that
priming is, in a sense, undiluted by other options. For ex-
ample, in Experiment 8, where the correlated query feature is
circle, the only object primed by circle is vertically-striped-
circle. The target category, D, also spreads a high amount
of activation to vertically-striped-circle, since there are three
of them in that category, further underscoring the correlated
feature as the answer. In contrast, for the uncorrelated query,
both sources of priming (the query feature triangle, and the
target category C) prime white-triangle in addition to strongly
priming the target black-triangle. Thus, the model suggests
that for the correlated condition, the target-category feature
should almost exclusively be selected, whereas in the un-
correlated condition, the target-category feature should just
mostly be selected. These explanations match the data, where
the target-category feature was selected for 94% of correlated,
but only 90% of uncorrelated, structures.

General Discussion
The authors of the experiments that we model here were ul-
timately interested in characterizing people’s inference be-
haviors across different manipulations of categories and fea-
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tures (Murphy & Ross, 1994). Recently, as we mentioned,
Nosofsky (2015) proposed an exemplar model that qualita-
tively accounts for the majority of the results. The model is
based on an equation that calculates the similarity between
feature/category pairs using two parameters: the salience of
the feature, and the salience of the category. The probabil-
ity of inferring the target-category feature is then found by
summing the similarity of the query feature/category pair to
all displayed feature/category pairs with the target-category
feature, and dividing by the summed similarity of the query
feature/category pair to all displayed feature/category pairs
(irrespective of the target-category feature).

Our view of this promising work, however, is that it does
not consider an important result of the experiments: that of
the difference in results between experiments where partici-
pants explicitly identified the target category, and where they
did not (e.g., Experiment 5 vs. Experiment 6). Recall that
when participants were asked to identify the target category
before making their inference, a large and significant major-
ity responded according to the single-category view; when
participants were not asked to identify a target category be-
fore making their inference, however, participants’ responses
greatly shifted towards the multiple-category view. Nosofsky
(2015) do not discuss this difference, and considers the results
of Experiment 5, instead, as weakly supportive of the single-
category view that is more strongly suggested by Experiment
6. Although dynamically adjusting the parameter settings de-
pending on the specific queries of the experiment may lead
to this difference in predictions, there is no intuition for how
this parameter setting change may occur.

Our priming-based process model of feature inference,
however, naturally answers that question as part of its core
theory. Our model indicates that the difference in results is
due to an underlying difference in the way that the experi-
ments are processed by the human mind. It accounts for this
difference because it includes the sources of priming in work-
ing memory to be a key part of its predictions. It suggests that
when a person has explicitly thought about a category, the cat-
egory is included as part of the inference process, biasing the
model towards the single-category view; when a person has
not, the model relies only on priming from the query feature,
biasing the model towards the multiple-category view. Our
model thus explains the same qualitative trends as Nosofsky
(2015) while also accounting for this additional aspect of fea-
ture inference, and quantitatively matching the data.

Another model that has been proposed for explaining fea-
ture inference is the rational model and its associated variants
(Anderson, 1991; Sanborn, Griffiths, & Navarro, 2010). This
model, while also rooted in Bayesian-based reasoning, has
been shown to have trouble accounting for the breadth of the
results we model here (Nosofsky, 2015). A recent promis-
ing version of this model was developed by Konovalova and
Le Mens (2016), whose rational model is sensitive to uncer-
tainty in categorization; our belief, however, is that it also
would have trouble accounting for differences stemming from

the presence or lack of an initial categorization step.
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