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Autism spectrum disorder (ASD) is a behaviorally diagnosed neurodevelopmental 

condition that is associated with atypical functional connectivity (FC). However, no consistent 

biomarkers have been identified. Most studies to date have focused on static FC, and relatively 

little is known about time-varying properties of FC. This three-paper dissertation aimed to better 

characterize brain networks in ASD by evaluating: 1) transient connectivity states, 2) BOLD lag 



 xii 

structure, and 3) associations between hemodynamic and electrophysiological measures of brain 

function. Study 1 (Mash et al., 2019) used sliding window analysis to examine FC variability and 

describe transient connectivity states in children and adolescents (ages 6-18) with ASD (n = 62) 

and their typically developing (TD) peers (n = 57). Across all regions, the ASD group showed 

FC overconnectivity and hypervariability, on average. Distinct patterns of FC group differences 

were found in two transient states, but not in static FC analyses. Study 2 (Mash et al., under 

review) explored resting-state and task-related BOLD lag structure in adolescents and young 

adults (ages 12-21) with ASD (n = 28) and typical development (n = 22). Lag patterns did not 

significantly differ between groups, with common ‘early’ and ‘late’ regions emerging in both 

groups. However, lag structure was associated with both task condition and vascular supply, 

suggesting a combination of neural and vascular contributions to BOLD latency. Study 3 (Mash 

et al., 2020) characterized relationships between separately acquired resting-state fMRI and EEG 

activity in a sample of children and adolescents (ages 6-18) with ASD and typical development 

(EEG-only: n = 36 per group; fMRI-only: n = 66 ASD, 57 TD; EEG-fMRI: n = 17 per group). 

Reduced EEG alpha power, increased BOLD activity in right temporal regions, and widespread 

thalamocortical BOLD overconnectivity were observed in the ASD group. Multilevel modeling 

(with brain regions nested within individuals) revealed mostly positive relationships between 

EEG alpha power and regional BOLD activity in typical development, which were not observed 

in ASD. Overall, findings suggest that in comparison to conventional static FC studies, dynamic 

and multimodal analyses reveal more complex FC and activity patterns that may distinguish 

ASD from typical development.  



 1 

Chapter 1: 
 

Integrated Introduction 

 The content within this section, titled “Chapter 1: Integrated Introduction,” reflects 

material from a paper that has been published in the journal Developmental Neurobiology. The 

full citation is as follows: 

 

Mash, L. E., Reiter, M. A., Linke, A. C., Townsend, J., & Müller, R.-A. (2018). Multimodal 

approaches to functional connectivity in autism spectrum disorders: An integrative perspective. 

Developmental Neurobiology, 78, 456-473. https://doi.org/10.1002/dneu.22570 
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Integrated Introduction 

Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by 

deficits in social communication and restricted or repetitive behaviors (American Psychiatric 

Association, 2013). These symptoms typically emerge within the first few years of life and 

persist throughout the lifespan. ASDs are a major research priority, as the Centers for Disease 

Control and Prevention estimate that 1 in 54 school-aged children in the United States are 

affected (Maenner, Shaw, Baio et al., 2020). The neuroimaging literature broadly indicates that 

ASDs are characterized by altered connectivity within and between brain networks (Di Martino, 

Yan, Li et al., 2014). Brain ‘connectivity’ can refer to structural (i.e., physical properties of 

neuronal connections), functional (i.e., a statistical relationship between activity in two or more 

regions), or effective (i.e., causal association between regions) relationships. Both structural and 

functional connectivity have been studied extensively in ASDs; however, this dissertation will 

focus on functional connectivity (FC). 

Functional imaging data have extraordinary potential to characterize distributed brain 

activity across both space and time. However, reproducible biomarkers of ASDs have yet to be 

identified. This is likely, in part, due to the considerable heterogeneity across individuals on the 

autism spectrum. Phenotypic expression and outcome vary widely (Olsson, Westerlund, 

Lundstrom et al., 2015) and etiologically distinct variants of ASDs are likely (Geschwind & 

State, 2015). However, another major source of variability is methodological. Functional MRI 

(fMRI) and electroencephalography (EEG) are two commonly reported measures of FC in this 

population. These data have distinct neural bases and are best suited to different analyses; 

analyses in a single imaging modality are generally limited with respect to either spatial (e.g., 

electroencephalography [EEG]) or temporal (e.g., functional magnetic resonance imaging 
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[fMRI]) resolution. This has complicated efforts to compare and integrate findings across 

unimodal studies.   

These discrepancies can be addressed in several ways: 1) Novel unimodal analyses may 

overcome the limitations of a given method, to some degree. For example, most functional 

connectivity MRI (fcMRI) research describes static relationships between brain regions over 

several minutes of scanning. However, dynamic fcMRI methods aim to explore changes in these 

relationships over time, despite the relatively low temporal resolution of MRI. Analyses have 

also been proposed to examine BOLD ‘lag structure,’ thought to reflect propagation between 

regions comprising functional networks (Mitra, Snyder, Blazey et al., 2015; Mitra, Snyder, 

Hacker et al., 2014). 2) Data acquired in multiple modalities can be jointly analyzed to improve 

our understanding of the relationship between electrophysiological and fMRI measures, aiding in 

comparison and integration across previous unimodal work. The vast majority of functional 

imaging research in ASDs to date is unimodal, although interest has recently shifted toward 

increasingly dynamic, multimodal approaches (Mash, Reiter, Linke et al., 2018). 

As mentioned above, EEG and fMRI detect distinct physiological signals and have 

largely complementary strengths and limitations. EEG directly measures summated post-synaptic 

potentials (PSPs), arising mostly from pyramidal neurons, using sensors placed at the scalp 

(Niedermeyer, Schomer, & Lopes da Silva, 2011). This approach provides high temporal 

resolution and captures neural oscillations across a broad frequency range (Buzsaki, 2006). 

Within given frequency bands, connectivity is typically measured in terms of power (the 

magnitude of voltage calculated from amplitude, often following time-frequency decomposition 

of waveforms), or coherence (phase-coupling across distant electrodes; for a review of coherence 

approaches see Bowyer, 2016). However, the spatial resolution of EEG is limited, particularly 
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for deep brain structures. Additionally, the measured signal at the scalp represents the summation 

of signal from many sources, and skull and tissue conductivity may cause EEG signals to blur 

across sensors (van den Broek, Reinders, Donderwinkel et al., 1998).  Magnetoencephalography 

(MEG) is another commonly reported electrophysiological recording method with some key 

differences from EEG, but these will not be discussed in detail, as MEG is outside scope of this 

dissertation (Hillebrand & Barnes, 2002; Supek & Aine, 2014; Winter, Nunez, Ding et al., 2007)  

In fMRI, the blood oxygenation level-dependent (BOLD) signal is a hemodynamic proxy 

for neural activity. Compared to EEG, fMRI can accurately localize signals from both cerebral 

cortex and deep brain structures (i.e., high spatial-resolution, full brain coverage). Therefore, 

fMRI is useful for identifying both regional brain activity and correlations among functionally 

related areas over a scan period (i.e., functional connectivity; Biswal, Yetkin, Haughton et al., 

1995; Fox & Raichle, 2007). Temporal resolution, however, is limited by low sampling rates 

(typically ~ 2 seconds) and the shape of the hemodynamic response, which peaks about 5 

seconds after corresponding neuronal activity changes. Therefore, BOLD correlations are 

commonly measured in frequency bands below .1 Hz (Cordes, Haughton, Arfanakis et al., 2000), 

although functional networks may also be detected at slightly higher frequencies (Gohel & 

Biswal, 2015).  

Functional Connectivity in ASDs 

Despite the large and fast-growing fcMRI literature exploring ASDs, functional network 

organization in this disorder remains poorly understood. Early FC findings appeared to support 

general underconnectivity within distributed cortical networks during a variety of tasks (Just, 

Cherkassky, Keller et al., 2007; Just, Cherkassky, Keller et al., 2004; Kana, Keller, Cherkassky 

et al., 2006; Kleinhans, Richards, Sterling et al., 2008; Koshino, Kana, Keller et al., 2008; 
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Mostofsky, Powell, Simmonds et al., 2009). However, other studies have found more complex 

patterns of mixed over- and under-connectivity associated with memory tasks (Koshino, 

Carpenter, Minshew et al., 2005; Noonan, Haist, & Müller, 2009). Task-free (i.e., resting-state) 

fMRI studies testing intrinsic FC reveal functional network architecture at rest (Biswal et al., 

1995; Van Dijk, Hedden, Venkataraman et al., 2010). This approach, in contrast with task-based 

methods, has frequently produced mixed patterns of under- and over-connectivity in ASDs (e.g., 

Fishman et al., 2014; Supekar et al., 2013; for reviews, refer to Hull et al., 2016 and Rane et al., 

2015). Methodological differences likely account for some of the discrepancies observed 

between studies using task-based and resting-state designs (Jones, Bandettini, Kenworthy et al., 

2010; Müller, Shih, Keehn et al., 2011; Nair, Keown, Datko et al., 2014).  

In light of mixed findings, underconnectivity between distant regions and increased local 

connectivity was proposed (Belmonte, Allen, Beckel-Mitchener et al., 2004).  However, neither 

long-range underconnectivity nor short-range overconnectivity is consistently supported by the 

existing literature (for review, see Vissers, Cohen, & Geurts, 2012). Indeed, not a single fcMRI 

study examining local connectivity, using graph theory (Itahashi, Yamada, Watanabe et al., 

2015; Keown, Shih, Nair et al., 2013) or regional homogeneity methods (Dajani & Uddin, 2016; 

Jiang, Hou, Yang et al., 2015; Maximo, Keown, Nair et al., 2013; Nair, Jao Keehn, Berkebile et 

al., 2017), has found broadly consistent local overconnectivity in ASDs. Rather, findings have 

been mixed and region-specific, even in studies analyzing fMRI data without regional 

homogeneity standardization (Maximo et al., 2013; Nair et al., 2017), which could theoretically 

obscure global group differences in local connectivity.  

Similar to fcMRI, EEG and MEG findings in ASDs have been inconsistent, with both 

increased and decreased coherence observed across various task and analysis designs. This is 
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further complicated by differences between frequency bands and brain regions (Kitzbichler, 

Khan, Ganesan et al., 2015; Ye, Leung, Schafer et al., 2014) . A recent review concluded that 

reduced coherence between distant electrodes, often interpreted as underconnectivity, is 

generally supported, but is found most consistently in low frequencies, with mixed findings in 

higher frequencies (O'Reilly, Lewis, & Elsabbagh, 2017). Unlike coherence, power appears to be 

increased in ASDs at low and high frequencies, but decreased in middle frequencies, such as 

alpha and beta (Wang, Barstein, Ethridge et al., 2013). Although power and coherence are each 

affected by synchronized neural activity, these are ultimately different measures of 

‘connectivity’, and it is therefore difficult to interpret their distinct frequency-related patterns. 

Even more importantly, there is no clear translation between these constructs and those measured 

in fMRI (i.e., BOLD correlations). Therefore, EEG and MEG findings may not be readily suited 

to addressing fcMRI under- and overconnectivity hypotheses.    

Many recent studies have shifted away from an overconnectivity/underconnectivity 

framework toward a broader network organization perspective. A growing literature suggests 

that neural networks in ASDs may be inefficiently organized due to poor functional 

differentiation and integration. Specifically, several fMRI studies have revealed reduced 

connectivity within networks, but increased connectivity between networks (Fishman et al., 

2014; Rudie, Shehzad, Hernandez et al., 2012; Shih, Keehn, Oram et al., 2011). This theory has 

found additional support in studies using graph theory metrics to characterize network properties 

of both fMRI (Chen, Nomi, Uddin et al., 2017; Keown, Datko, Chen et al., 2017; Rudie, Brown, 

Beck-Pancer et al., 2012) and EEG/MEG data (Peters, Taquet, Vega et al., 2013; Pollonini, 

Patidar, Situ et al., 2010; Tsiaras, Simos, Rezaie et al., 2011), suggesting possible consensus 

across recording methods at the network level. However, opposite findings have also been 
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reported in fMRI, suggesting increased modularity in ASDs (Barttfeld, Wicker, Cukier et al., 

2011; Yerys, Herrington, Satterthwaite et al., 2017). Additionally, group differences in network 

efficiency appear to vary across MEG frequency bands (Kitzbichler et al., 2015). The precise 

characterization of network organization in ASDs remains an area of active, ongoing study.    

Although several promising themes have emerged across the fMRI and EEG literatures, 

no single hypothesis accommodates all reported findings. This highlights the importance of 

adopting novel unimodal and multimodal analysis strategies to better understand connectivity in 

ASDs (Mash et al., 2018). Because fMRI and EEG are generated by different sources and suited 

to different analyses, these literatures have remained largely separate in ASD research. This has 

limited our ability to draw conclusions across modalities. For an integrated interpretation of 

fcMRI and EEG findings, the neurophysiological bases of different signals must first be 

reconciled.  

Neural Bases of fMRI and EEG 

The direct relationship between EEG signals and extracellular, postsynaptic activity 

(measured as local field potentials; LFPs) is well-established. The BOLD signal, however, is a 

secondary hemodynamic measure that relies on neurovascular coupling, which is not perfectly 

understood (Hillman, 2014). Simultaneous fMRI and intracortical recordings have been used to 

investigate the neurovascular bases of BOLD changes. Overall, intracortical recordings suggest 

that, like the EEG signal, fluctuations in BOLD are more closely related to synaptic activity 

(LFPs, specifically in the gamma band) than action potentials. This has been demonstrated in 

anesthetized animals  (Logothetis, Pauls, Augath et al., 2001) and awake animals (Hutchison, 

Hashemi, Gati et al., 2015; Magri, Schridde, Murayama et al., 2012; Shmuel & Leopold, 2008), 

as well as in humans during task performance (Conner, Ellmore, Pieters et al., 2011 ; Gaglianese, 
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Vansteensel, Harvey et al., 2017; Nir, Fisch, Mukamel et al., 2007) and at rest (He, Snyder, 

Zempel et al., 2008; Nir et al., 2007; Nir, Mukamel, Dinstein et al., 2008).  

Compared to intracortical recordings, simultaneous EEG and fMRI acquisition is less 

invasive and therefore far more widely used in human research. EEG-fMRI studies have sought 

to further clarify the relationship between electrical signals measured at the scalp, localized 

BOLD activity, and BOLD correlations across networks (for reviews, see Mulert, 2013; Murta, 

Leite, Carmichael et al., 2015). EEG alpha rhythms (~8-12 Hz) are dominant at rest and have 

been most widely studied in relation to spontaneous BOLD signal changes. Increases in alpha 

power are associated with simultaneously reduced BOLD activity in frontal, occipital, and 

parietal areas (Bridwell, Wu, Eichele et al., 2013; Goldman, Stern, Engel et al., 2002; Laufs, 

Kleinschmidt, Beyerle et al., 2003; Olbrich, Mulert, Karch et al., 2009); a similar relationship 

has been reported for beta power increases (Murta, Chaudhary, Tierney et al., 2017; Scheeringa, 

Fries, Petersson et al., 2011). However, a consistently positive relationship has been found 

between alpha power and thalamic BOLD (Bridwell et al., 2013; de Munck, Goncalves, 

Huijboom et al., 2007; Goldman et al., 2002).  

Although most early studies focused on the alpha frequency band, different EEG 

frequencies, each associated with distinct functional states (Buzsaki, 2006), may relate 

differently to the BOLD signal. Unique relationships between BOLD networks derived from 

independent component analysis (ICA) and specific EEG frequency bands have been 

demonstrated (Mantini, Perrucci, Del Gratta et al., 2007; Neuner, Arrubla, Werner et al., 2014). 

In line with the intracortical literature, positive associations have consistently been found 

between EEG gamma power and local BOLD activity (Bridwell et al., 2013; Murta et al., 2017; 
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Scheeringa et al., 2011). Furthermore, Scheeringa and colleagues (2011) reported that fast 

(gamma) and slower (alpha and beta) oscillations predict unique variance in the BOLD signal.   

Relatively less is understood about links between EEG power and BOLD correlations 

(i.e., FC).  One relatively consistent finding is an inverse relationship between alpha power and 

coupling (positive or negative) between networks; in other words, increased alpha power is 

associated with less positive BOLD correlations in correlated networks, and less negative BOLD 

correlations in anticorrelated networks (Allen, Damaraju, Eichele et al., 2017; Scheeringa, 

Petersson, Kleinschmidt et al., 2012). However, one study found increased modularity 

(anticorrelation) between default mode and dorsal attention networks associated with increased 

alpha power (Chang, Liu, Chen et al., 2013). Another group reported that relationships between 

BOLD connectivity and alpha/beta power appear to be state-dependent (Tagliazucchi, von 

Wegner, Morzelewski et al., 2012). This study also identified many BOLD connections that were 

positively associated with gamma (which, however, may be confounded by muscle activity; 

Muthukumaraswamy, 2013). Overall, the relationship between BOLD correlations and 

electrophysiological power is poorly understood, and appears to depend on regions of interest, 

cognitive state, and frequency band studied. 

Dynamic Functional Connectivity Approaches 

Most fcMRI studies to date have used a traditional, ‘static’ approach to estimating BOLD 

connectivity by using all data points of a scan to generate a single estimate of FC. However, 

communication between brain networks is highly flexible, and a static approach may therefore 

mischaracterize FC by ignoring important temporal information (Calhoun, Miller, Pearlson et al., 

2014; Ciric, Nomi, Uddin et al., 2017). Dynamic properties of brain activity have long been a 

focus of electroencephalography (EEG) and magnetoencephalography (MEG), whereas dynamic 
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fcMRI approaches have only recently been developed (for reviews: Hutchison, Womelsdorf, 

Allen et al., 2013; Preti, Bolton, & Van De Ville, 2017). Interest in dynamic fcMRI methods has 

grown considerably in recent years, with recent studies demonstrating reproducible 

spatiotemporal network connectivity patterns using various methods, such as sliding window 

functional connectivity (Allen, Damaraju, Plis et al., 2014; Nomi, Farrant, Damaraju et al., 2016) 

and exploration of quasi-periodic patterns of anticorrelated activity in opposing functional 

networks (Abbas, Bassil, & Keilholz, 2019; Abbas, Belloy, Kashyap et al., 2019).  

Direct comparisons of fMRI connectivity measures (e.g., BOLD correlations) with EEG 

connectivity measures (e.g., power, coherence) are challenging at best, and possibly 

inappropriate. However, the study of transient brain states through dynamic fcMRI may provide 

a novel solution to this problem. Sliding window analysis is a popular and relatively 

straightforward dynamic connectivity approach (Allen et al., 2014; Hutchison et al., 2013). This 

method generates a series of temporally contiguous connectivity matrices. These can then be 

clustered into representations of  transient, repeating connectivity patterns (i.e., brain states), 

which are thought to correspond to cognitive states (Vidaurre, Smith, & Woolrich, 2017). 

Crucially, electrophysiological and hemodynamic measures of neural activity may be integrated 

more readily when assessed at the level of states and their dynamic changes over time, compared 

to static measures of over- and underconnectivity (Allen et al., 2017). 

However, there is currently little consensus about best practices concerning window 

length and overlap, which have been shown to affect findings (Hindriks, Adhikari, Murayama et 

al., 2016; Shakil, Lee, & Keilholz, 2016). Furthermore, the temporal resolution of single-

modality dynamic fcMRI remains limited by the slowness of the BOLD response. While some 

have questioned the meaning of BOLD dynamics altogether (Laumann, Snyder, Mitra et al., 
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2016; Nalci, Rao, & Liu, 2019), others have found the approach to be generally reliable (Abrol, 

Damaraju, Miller et al., 2017; Smith, Zhao, Keilholz et al., 2018). Despite these limitations, the 

study of transient connectivity states may be one of the most promising avenues towards 

integrating electrophysiological and hemodynamic measures of brain function.   

 Whereas sliding window analysis captures time-varying changes of BOLD correlations 

at ‘zero-lag’, resting state lag analysis (RSLA) examines whether these relationships are better 

modeled using offset timeseries (Mitra et al., 2014). In other words, cross-covariance is 

calculated between each pair of timeseries at different lags, and covariance at each lag is plotted. 

Parabolic interpolation is then used to estimate the ‘optimal’ lag of the given timeseries. Using 

this method, putative sources and sinks of neural activity have been identified in typically 

developing adults (Mitra et al., 2015; Mitra et al., 2014; Raut, Mitra, Marek et al., 2019). Early 

work suggests that latencies observed using RSLA change as a function of task performance, 

time of day, and eye status, which has been interpreted as evidence for a neural basis for lag 

topographies (Mitra et al., 2014). However, it is also important to consider hemodynamic 

impacts on the timing of the BOLD signal; the same study reported that BOLD latencies were 

biased toward large venous sinuses. The degree to which other vascular properties (e.g., arterial 

transit time, arterial flow territories) affect BOLD lag structure remains unclear.   

Evolving Methods in ASD Research 

The fcMRI literature on ASDs remains largely inconclusive, with reported methods 

typically limited to static and unimodal analyses. While EEG and MEG work have provided 

some important insights about oscillatory activity at finer time scales, dynamic and multimodal 

approaches show great promise in uniting these bodies of work.  
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Interest in dynamic fcMRI in ASDs has recently grown, with a number of studies turning 

to transient brain states to better understand complex spatiotemporal patterns of brain 

connectivity. Some early studies have reported associations between static underconnectivity and 

increased variability in connection strength over time (Chen et al., 2017; Falahpour, Thompson, 

Abbott et al., 2016), reduced switching between transient brain states (de Lacy, Doherty, King et 

al., 2017; Fu, Tu, Di et al., 2018; Watanabe & Rees, 2017), and transient overconnectivity 

between default mode and non-default mode networks (de Lacy et al., 2017; Mash, Linke, Olson 

et al., 2019). Dynamic methods have also been used to identify diagnostic subtypes (Easson, 

Fatima, & McIntosh, 2018), and to predict ASD diagnostic status (Wee, Yap, & Shen, 2016; 

Zhu, Zhu, Zhang et al., 2016). However, this line of research is at an early stage, with many 

studies reporting different analytic approaches and dynamic measures. Therefore, there is much 

work to be done to clarify the nature of time-varying FC in ASDs. 

In a similar vein, there is some evidence that the temporal lag structure of the BOLD 

signal may be atypical in ASDs. Using resting state lag analysis, Mitra, Snyder, Constantino et 

al. (2017) reported that compared to typically developing (TD) individuals, ASD participants 

showed atypically ‘early’ activity in frontopolar cortex and putamen, and atypically ‘late’ 

activity in occipital cortex, with respect to the rest of the brain; there were no group differences 

in zero-lag BOLD correlations. Another study reported predominant overconnectivity in ASDs 

compared to typical development only when using lagged BOLD correlations, regardless of lag 

direction, but not zero-lag correlations (King, Prigge, King et al., 2018). This was interpreted as 

evidence of atypically prolonged synchrony over time. However, group differences in 

hemodynamic variables cannot be entirely ruled out as an explanation for atypical BOLD lag. 

Differences in neurotransmitter synthesis (e.g., GABA) and metabolic activity, which have been 
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implicated in ASDs, may directly impact neurovascular coupling (Reynell & Harris, 2013). 

Furthermore, a recent study found that the shape of the hemodynamic response function (HRF) 

in the precuneus significantly differed in individuals with ASDs, and that some group differences 

in functional connectivity were only observed after deconvolving BOLD time series with the 

HRF (Yan, Rangaprakash, & Deshpande, 2018). Overall, the relative neural and hemodynamic 

contributions to group differences in BOLD lag are unclear. However, the few previous studies 

in this area suggest that this is an important aspect of dynamic FC to consider in ASDs.   

Finally, multimodal FC research in ASDs remains extremely limited to date (Mash et al., 

2018). To our knowledge, only two simultaneous EEG-fMRI studies have been published in this 

population; both included relatively small samples (n < 15 per group) and focused primarily on 

cortical responses to audiovisual stimulation (Hames, Murphy, Rajmohan et al., 2016; Jochaut, 

Lehongre, Saitovitch et al., 2015). However, there have been no studies jointly analyzing resting-

state EEG and fMRI, either simultaneously or separately acquired. As described earlier, there is a 

relatively well-documented relationship between EEG alpha power, thalamocortical BOLD 

activity, and BOLD network synchronization in typical adults. Abnormalities in alpha power 

(Wang et al., 2013), network integration and segregation (Fishman et al., 2014; Rudie, Shehzad, 

et al., 2012; Shih et al., 2011) and thalamocortical connectivity (Nair, Carper, Abbott et al., 

2015; Nair, Treiber, Shukla et al., 2013; Woodward, Giraldo-Chica, Rogers et al., 2017) are 

among best replicated findings in the ASD literature. Therefore, multimodal studies addressing 

the relationship between alpha power and BOLD activity in individuals with ASDs are 

warranted. 
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General aims 

The main goals of this three-paper dissertation are as follows: 1) to better characterize 

dynamic FC fluctuations and transient brain states using sliding window analysis and k-means 

clustering, 2) to examine resting-state and task-related BOLD lag structure and its relation to the 

hemodynamic variables, and 3) to explore interindividual relationships between separately 

acquired resting-state EEG and fMRI measures in ASDs and typical development.  

Dissertation Author Note 

Chapter 1, in part, is a reprint of the material as it appears in Developmental 

Neurobiology, 78, 456-473. Mash, L. E., Reiter, M. A., Linke, A. C., Townsend, J., & Müller, 

R.-A. Wiley, 2017. 
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Chapter 2: 
 

Study 1 

 The content within this section, titled “Chapter 2: Study 1,” reflects material from a paper 

that has been published in the journal Human Brain Mapping. The full citation is as follows: 

 

Mash, L. E., Linke, A. C., Olson, L. A., Fishman, I., Liu, T. T., & Müller, R.-A. (2019). 

Transient states of network connectivity are atypical in autism: A dynamic functional 

connectivity study. Human Brain Mapping, 40, 2377-2389. https://doi.org/10.1002/hbm.24529 
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Abstract 

There is ample evidence of atypical functional connectivity (FC) in autism spectrum 

disorders (ASDs). However, transient relationships between neural networks cannot be captured 

by conventional static FC analyses. Dynamic FC approaches have been used to identify repeating, 

transient connectivity patterns (“states”), revealing spatiotemporal network properties not 

observable in static FC. Recent studies have found atypical dynamic FC in ASDs, but questions 

remain about the nature of group differences in transient connectivity, and the degree to which 

states persist or change over time. This study aimed to 1) describe and relate static and dynamic 

FC in typical development and ASDs, 2) describe group differences in transient states and compare 

them with static FC patterns, and 3) examine temporal stability and flexibility between identified 

states. Resting-state functional magnetic resonance imaging (fMRI) data were collected from 62 

ASD and 57 typically developing (TD) children and adolescents. Whole-brain, data-driven regions 

of interest were derived from group independent component analysis. Sliding window analysis and 

k-means clustering were used to explore dynamic FC and identify transient states. Across all 

regions, static overconnnectivity and increased variability over time in ASDs predominated. 

Furthermore, significant patterns of group differences emerged in two transient states that were 

not observed in the static FC matrix, with group differences in one state primarily involving 

sensory and motor networks, and in the other involving higher order cognition networks. Default 

mode network segregation was significantly reduced in ASDs in both states. Results highlight that 

dynamic approaches may reveal more nuanced transient patterns of atypical FC in ASDs.  
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Introduction 

Autism spectrum disorders (ASDs) are characterized by atypical social communication 

and restricted and repetitive behaviors or interests (American Psychiatric Association, 2013) and 

have high prevalence, recently estimated at 1 in 45 school-aged children in the United States 

(Zablotsky, Black, Maenner, Schieve, & Blumberg, 2015). Improved understanding of the 

biological bases of these disorders is therefore a high research priority. Of particular focus in the 

past decade have been studies of brain network connectivity in ASDs, given increasing 

awareness that symptomatology cannot be explained exclusively by localized brain anomalies 

(Müller, 2007; Rippon, Brock, Brown, & Boucher, 2007).  

Functional connectivity MRI (fcMRI) refers to a type of analysis that detects 

spontaneous, temporally coherent blood oxygen level-dependent (BOLD) activity in functionally 

related regions (Biswal, Yetkin, Haughton, & Hyde, 1995; Fox & Raichle, 2007). The term 

“fcMRI” distinguishes this from functional connectivity analyses in other modalities (e.g., EEG 

or MEG). Correlated BOLD activity among distant brain regions in the resting state (i.e., in 

absence of a task) is considered to reflect a history of shared activation (Cordes et al., 2000), 

which can be interpreted as membership in a common functional network. Therefore, fcMRI is 

useful for examining intrinsic functional connectivity (iFC) within and between distinct brain 

networks. However, the fcMRI literature on ASDs has generated many inconsistencies with 

respect to over- and underconnectivity, without converging on a single explanatory model. Early 

research examined BOLD correlations during specific cognitive tasks, rather than at rest. These 

studies appeared to support general underconnectivity in ASDs during some tasks (Just, 

Cherkassky, Keller, Kana, & Minshew, 2007; Just, Cherkassky, Keller, & Minshew, 2004; Kana, 

Keller, Cherkassky, Minshew, & Just, 2006; Kleinhans et al., 2008; Koshino et al., 2008; 
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Mostofsky et al., 2009). However, task-free iFC studies exploring spontaneous BOLD 

correlations have often found more complex patterns of over- and under-connectivity between 

various regions (Fishman, Keown, Lincoln, Pineda, & Müller, 2014; Supekar et al., 2013; for 

reviews, see Hull, Jacokes, Torgerson, Irimia, & Van Horn, 2016; Rane et al., 2015). 

Methodological differences between task-based and resting-state designs likely play an important 

role in these discrepancies, as do various preprocessing and analysis decisions (for review, 

Müller et al., 2011).  A dichotomy of long-range underconnectivity and short-range 

overconnectivity has been proposed to accommodate diverse findings (Belmonte et al., 2004), 

but supportive evidence is weak, with mixed findings of over- and under-connectivity in studies 

testing local (Dajani & Uddin, 2016; Itahashi et al., 2015; Keown et al., 2013; Maximo, Keown, 

Nair, & Müller, 2013; Nair et al., 2017) and long-distance connectivity in ASDs (e.g., Abbott et 

al., 2016; Doyle-Thomas et al., 2015). Of note, the terms “overconnectivity” and 

“underconnectivity” refer to relative group differences between BOLD correlations. For 

example, “overconnectivity” can refer to either increased correlation or decreased anticorrelation 

of time series in two brain regions.  

As described above, the fcMRI literature in ASDs to date has included both task-based 

and resting-state designs. However, both types of studies have almost exclusively used 

traditional, ‘static’ approaches to estimating BOLD connectivity. Static analyses use all data 

points of a scan to generate a single estimate of iFC, and may therefore overlook crucial time-

varying properties of iFC. However, neural communication between networks is highly flexible, 

and important temporal information is therefore lost in static fcMRI analysis (Ciric, Nomi, 

Uddin, & Satpute, 2017). Dynamic properties of brain activity have long been a focus of 

electroencephalography (EEG) and magnetoencephalography (MEG), whereas dynamic 
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functional connectivity (dFC) MRI approaches have only recently been developed (for reviews: 

Hutchison et al., 2013; Preti, Bolton, & Van De Ville, 2017). The most common ‘sliding 

window’ method involves calculating FC across overlapping time windows to generate a series 

of temporally contiguous connectivity matrices. In one widely used data-driven method, 

developed by Allen et al. (2014), functional networks are derived through independent 

component analysis (ICA), sliding window connectivity between networks is calculated, and 

windows are subsequently clustered into distinct ‘states’. Although strictly speaking 

mathematical abstractions, these dynamic FC states are thought to represent distinct, underlying 

cognitive states experienced by individuals during a scan (Vidaurre, Smith, & Woolrich, 2017).  

However, dynamic FC methods are relatively new, and gold standards have yet to be agreed 

upon with respect to sliding window parameters such as window length and overlap. Indeed, 

some have raised doubts about the reliability of sliding window methods, and the degree to 

which resulting states represent true functional connectivity configurations (Laumann et al., 

2016; Nalci, Rao, & Liu, 2019; Shakil et al., 2016). For example, in heterogeneous samples 

differences in dynamic FC measures may arise from non-neuronal sources of variability 

(Lehmann, White, Henson et al., 2017).    

Nevertheless, the existence of discrete cognitive and neural states is supported by 

evidence from the EEG and simultaneous EEG/fMRI literature. Spontaneous, mutually exclusive 

‘microstates’ have long been a focus of EEG studies (for review, Khanna, Pascual-Leone, 

Michel, & Farzan, 2015), and simultaneous EEG/fMRI research suggests that EEG microstates 

are highly correlated with specific BOLD networks (Britz, Van De Ville, & Michel, 2010; 

Musso, Brinkmeyer, Mobascher, Warbrick, & Winterer, 2010; Yuan, Zotev, Phillips, Drevets, & 

Bodurka, 2012). Although the duration of EEG microstates is very short (~100 ms), their 
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relationship with low-temporal resolution static fcMRI networks may be explained by evidence 

of scale-free temporal dynamics of EEG microstates; in other words, EEG microstates exhibit 

consistent temporal patterns even at time scales of multiple seconds (Van de Ville, Britz, & 

Michel, 2010). Complementing the links between EEG microstates and static BOLD networks, 

dynamic fcMRI states have shown associations with distinct patterns of EEG power across 

frequency bands (Allen, Damaraju, Eichele, Wu, & Calhoun, 2017). 

Despite their recent emergence and lack of a definitive gold standard, dynamic 

approaches may help to resolve inconsistencies in the static fcMRI literature described earlier. 

Atypical functional connectivity in ASDs is likely considerably more complex than static 

approaches suggest. For example, group differences in connectivity may vary between transient 

brain states, resulting in changes over time that cannot be detected in static analyses. dFC 

approaches have been applied recently to other psychiatric populations, such as schizophrenia 

and bipolar disorder (Damaraju et al., 2014; Du et al., 2017; Rashid, Damaraju, Pearlson, & 

Calhoun, 2014). While evidence for dFC abnormalities in ASDs remains very limited, initial 

studies show promise. For example, unique regional patterns of group differences have been 

demonstrated in transient states, which differ from those observed in static connectivity analyses 

(Chen et al., 2017; de Lacy et al., 2017). Furthermore, dynamic connectivity measures have been 

found to improve diagnostic prediction of ASDs (Wee, Yap, & Shen, 2016; Zhu et al., 2016), 

and have also been explored as a potential subtype classifier (Easson et al., 2018). However, 

findings with respect to transient state duration and flexibility have been more difficult to 

interpret. Two studies reported that static underconnectivity in ASDs was associated with 

atypically increased variability over time (Chen, Nomi, Uddin, Duan, & Chen, 2017; Falahpour 

et al., 2016). In one of these, mediation analysis indicated that static underconnectivity between 
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two nodes of the default mode network (DMN) was directly affected by increased temporal 

variability of that same connection (Falahpour et al., 2016). This suggests that common 

underconnectivity findings do not necessarily indicate ‘weaker’ connections, but may instead 

reflect greater variability in functional connectivity over time. Using different approaches to 

study temporal dynamics of functional connectivity, other studies have reported less frequent 

switching between transient states in ASDs, suggesting overly stable dynamic properties (de 

Lacy, Doherty, King, Rachakonda, & Calhoun, 2017; Fu et al., 2018; Watanabe & Rees, 2017). 

Similarly, Rashid, Blanken, Muetzel et al. (2018) found that in a large sample of typically 

developing (TD) children, autistic traits were associated with longer dwell times in a ‘globally 

disconnected’ state. This is further supported by a recent EEG study of brain network dynamics, 

which reported longer duration of quasi-stable resting state networks in children with ASDs 

(Malaia, Bates, Seitzman et al., 2016).  However, state-switching and dwell-time are higher-

order measures of ‘stability’, which do not necessarily map directly to variability of individual 

region-to-region correlations, as measured by Falahpour et al. For example, it is possible that 

higher-order measures of stability, such as reduced state-switching, may underlie perseverative, 

inflexible behavior associated with ASDs, whereas increased variability between regions may be 

related to specific functional impairments in language and social domains.  Therefore, these 

findings are not mutually exclusive, but do raise important questions that warrant additional 

research. In particular, on measures of ASD symptomatology (e.g., ADOS-2, ADI-R, SRS-2), 

restricted and repetitive behavior subscales may be higher for individuals who dwell longer in 

each state and switch less frequently between them, whereas social communication scores may 

relate predominantly to time-varying fluctuations between regions involved in language or 

salience.   
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The current paper applied a data-driven, ICA-based method to an in-house dataset of 

children and adolescents with and without ASDs. The aims of this investigation were to explore 

the following questions: 1) Are static iFC and iFC variability inversely related across a broad 

range of regions and networks (i.e., can iFC variability lead to erroneous conclusions about static 

underconnectivity in ASD)?, 2) Are group differences in transient brain states distinct from 

group differences in static iFC (i.e., can multiple transient state configurations account for 

inconsistent static iFC findings)?, and 3) Do individuals with ASDs show increased or reduced 

state-switching compared to TD participants (i.e., do ASD participants show differences in 

neural stability and flexibility)? 

Methods 

Participants 

The study included 119 individuals (62 ASD, 57 TD) ages 6-18 years. All ASD 

diagnoses were confirmed using the Autism Diagnostic Interview–Revised (ADI-R, Lord, 

Rutter, & Le Couteur, 1994) and the Autism Diagnostic Observation Schedule, Second Edition 

(ADOS-2, Gotham, Risi, Pickles, & Lord, 2007).  The Wechsler Abbreviated Scales of 

Intelligence-Second Edition (WASI-II, Wechsler, 2011) and Social Responsiveness Scale, 

Second Edition (SRS-2, Constantino & Gruber, 2012) parent report form were administered to 

individuals in both groups. The SRS-2 was missing for two TD participants. Groups were 

matched on age, handedness, sex, nonverbal IQ, and head motion (Table 1a).  All TD 

participants were unmedicated. Twenty-eight ASD participants were reportedly taking 

medication, 29 were unmedicated, and medication status was not documented for the remaining 

five. Select analyses were conducted using the full sample, and repeated with only unmedicated 

ASD participants. Comorbid psychiatric diagnoses were documented in twenty ASD 
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participants. Details regarding medication usage and comorbid diagnoses are reported in 

Supplemental Table 1.  

Data acquisition 

Imaging data were acquired on a GE 3T MR750 scanner with an 8-channel head coil at 

the Center for Functional MRI (University of California, San Diego). High-resolution structural 

images were acquired with a standard FSPGR T1-weighted sequence (TR: 8.108ms, TE: 3.172 

ms, flip angle: 8°; FOV 256 mm; 1mm3 resolution; 172 slices). Functional T2*-weighted images 

were acquired using a single-shot gradient-recalled, echo-planar imaging pulse sequence (TR: 

2000ms; TE: 30 ms; flip angle: 90°; 3.4mm3 resolution; FOV: 220mm; matrix: 64 x 64; 42 axial 

slices). One 6:10 minute resting-state scan was obtained consisting of 185 whole-brain volumes. 

The first five volumes were discarded to account for T1-equilibration effects. Subjects were 

instructed to fixate on a cross projected onto the middle of a screen, viewed through a mirror in 

the bore, and to “Let your mind wander, relax, but please stay as still as you can. Do not fall 

asleep.”  Compliance with instructions to remain still and awake was monitored via video 

recording.  

fMRI data processing 

Functional images were processed using Analysis of Functional NeuroImages software 

(AFNI v17.2.07; Cox, 1996) and FSL (v5.0; Smith et al., 2004). Images were slice-time 

corrected and each functional volume was registered to the middle time point of the scan to 

adjust for motion via rigid-body realignment as implemented in AFNI. Field map correction was 

applied to minimize distortions due to magnetic field inhomogeneity. The functional images 

were registered to the anatomical scan via FSL’s FLIRT (Jenkinson & Smith, 2001). Anatomical 

and functional images were resampled to 3mm isotropic voxels and standardized to the atlas 
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space of the Montreal Neurological Institute (MNI) template using FSL’s nonlinear registration 

tool (FNIRT).  AFNI’s 3dBlurToFWHM was used to smooth functional images to a Gaussian 

full width at half-maximum (FWHM) of 6 mm. Functional MRI time series were bandpass 

filtered (.008 < ƒ < .08 Hz) using a second-order Butterworth filter, which was also applied to 

the 10 nuisance regressors (see below).  

Given the known impact of motion on BOLD correlations (Power et al., 2014), additional 

measures were taken to correct for motion. The mean signal from ventricles and white matter 

masks (obtained from FSL segmentation of T1-weighted structural image and eroded by 1 voxel) 

as well as six motion parameters (obtained from rigid-body realignment) and their first temporal 

derivatives were regressed from the signal. Residuals from nuisance regression were used for all 

subsequent functional connectivity analyses. Root mean squared displacement (RMSD), an 

estimate of head motion across all time points, was calculated for each participant as the square 

root of the sum of squares of the six motion parameters described above. Framewise 

displacement (FD) was calculated as a volume-by-volume measure of motion. Time points with 

> 0.5 mm FD as well the two subsequent time points were censored. Time series fragments with 

< 10 consecutive time points remaining after censoring were also excluded. Of note, dynamic FC 

analyses typically avoid time point censoring in order to maintain a continuous time series. 

However, in this analysis a very small amount of censoring was deemed necessary to avoid 1) 

artefact introduced by noisy time points and 2) reducing our sample size by using only 

participants with complete time series < 0.5 mm FD. On average, both groups underwent 

minimal censoring (mean: 1.4% timepoints in each group). No censoring was needed in 38 ASD 

participants (61%) and 36 TD participants (63%), and the maximum number of censored time 

points for any individual was 21 (12%) in the ASD group, and 20 (9%) in the TD group. The two 
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groups did not significantly differ with respect to number of timepoints censored (t(117) = .18, p 

= .85). Supplemental analyses demonstrate that RMSD was not related to group differences in 

connectivity patterns (cf. Supplemental Fig. 4). All structural and functional data were visually 

inspected at every preprocessing stage by at least two blinded reviewers to ensure acceptable 

data quality.  

Overview of Analyses 

Our analytical approach is briefly summarized here to aid readers in navigating the 

following sections, which describe each step in detail. First, data-driven regions of interest 

(ROIs) were identified and classified by functional network. We then examined static iFC 

between each ROI and each network. The variability of these functional connections was then 

assessed using sliding windows. Static iFC and iFC variability were then compared across all 

ROI pairs and networks. Finally, k-means clustering was used to identify transient iFC states and 

compare them across groups at the ROI- and network-levels.  

Regions of Interest (ROIs) 

A data-driven approach was used to define functionally related areas (ROIs) to be used in 

subsequent analysis. Preprocessed functional data from both groups (combined) were subjected 

to group independent component analysis (ICA) using FSL’s Multivariate Exploratory Linear 

Optimized Decomposition into Independent Components (MELODIC). A multi-session temporal 

concatenation approach was used to generate 75 group components. High-order group ICA was 

selected, as in previous papers using this method (Allen et al., 2014; de Lacy et al., 2017), to 

isolate regionally specific subsets of large functional networks. Independent components were 

assessed using a semi-automatic selection process. The main criteria considered were percentage 

overlap with gray matter and weighted spatial correlation with the ten primary low-order ICA 
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networks derived by Smith et al. (2009) from the BrainMap database (Laird, Lancaster, & Fox, 

2005; fmrib.ox.ac.uk/datasets/brainmap+rsns). A conservative 99% threshold was used to 

calculate gray matter overlap using AFNI’s 3dABoverlap, because non-artefactual (especially 

subcortical) components were expected to expand into non-gray matter compartments due to 

smoothness and spatial normalization. Components with ≥ 65% gray matter overlap and 

correlation of r ≥ .10 with at least one BrainMap component were considered acceptable. The 

spatial correlation threshold was liberal because our high-order ICA resulted in smaller and more 

numerous components compared to the BrainMap components. Based on visual inspection and 

consensus among multiple raters (n = 4), several additional components that clearly matched 

known functional networks were also included (e.g., subcortical components, which had no 

corresponding BrainMap component).  

 A final set of 47 components (shown in detail in Supplemental Fig. 1) was selected for 

the subsequent analyses. These components were conceptualized as falling into one of eight 

broad functional networks: default mode (DMN), executive (Exec), frontoparietal (FP), auditory 

(Aud), visual (Vis), sensorimotor (SM), cerebellar (CB), and subcortical (SC). These are 

standard and commonly reported resting state networks (see Smith, Fox, Miller et al., 2009). 

Classification of components into one of these networks was guided by BrainMap component 

correlations, as well as visual inspection and multi-rater consensus (as described above). 

 In line with the methods reported in previous studies (Allen et al., 2014; de Lacy et al., 

2017), individual participants’ spatial maps were derived from each group component to account 

for inter-individual variability in network topography in the following analyses.  This was 

accomplished using FSL’s DualRegression, a method described by Filippini, MacIntosh, Hough 

et al. (2009), which is similar to the GICA1 backreconstruction method used by Allen et al. 
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(2014). Using AFNI’s 3dclust, masks (i.e., 3-dimensional, binary subvolumes of selected voxels 

within the brain) were generated from each individualized spatial map by identifying positive 

voxels in the top 5% of absolute z-score values, belonging to a cluster of at least 100 voxels. 

These masks were used as subject-specific ROIs for all subsequent analyses, which were run 

using in-house MATLAB scripts. 

 Data-driven techniques (e.g., ICA) can be used to identify individualized ROIs. 

Compared to literature-derived ROIs, these better account for inter-individual variability and 

lead to more accurate calculations of functional connectivity (Sohn, Yoo, Lee et al., 2015). Pre-

defined ROIs may be particularly problematic in pediatric and clinical populations. Therefore, 

we considered a data-driven approach indispensable in order to identify suitable ROIs for our 

cohort of children and adolescents with and without ASDs. The crucial criterion for ROI 

generation was therefore maximal functional homogeneity (i.e., high levels of signal covariance), 

which in some instances resulted in ROIs that were not spatially contiguous (cf. Supplemental 

Fig. 1). While this may differ from more typical use of spatially contiguous ROIs, our 

subsequent connectivity analyses (described below) followed standard ROI-ROI analysis 

methods.   

Static Connectivity Analysis 

ROI-Level  

Static iFC was examined for all possible ROI-ROI unique pairs ([47x46]/2 = 1081 pairs). 

For each participant, the average timecourse over all available time points was extracted from 

each ROI mask using AFNI’s 3dmaskave. Pearson correlations were calculated for the 

timecourses of all ROI pairs, and simple correlation values (r) were transformed to Fisher’s z. 

This resulted in one static correlation matrix per participant. Groups were compared on all ROI 
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pairs (i.e., across the entire correlation matrix) using permutation testing to control for multiple 

comparisons (Chen, Witte, Heemsbergen et al., 2013). T-scores for all 1081 ROI pairs were 

compared to a null Tmax distribution consisting of t-scores derived from random permutations of 

group assignment (ASD or TD; see Supplemental Materials for MATLAB code). This approach 

inherently controls for familywise Type 1 error, which was set to α = .05. In addition, 

permutation methods make very few assumptions about underlying data, and are therefore more 

appropriate than parametric methods for comparing matrices of non-independent ROI-ROI 

correlations. A supplemental analysis was conducted using ANCOVA (MATLAB’s mancovan 

function) to compare group differences with and without select covariates (age, RMSD, sex, and 

handedness). Medication and comorbidity were not included as covariates because they are not 

independent of group. 

Network-Level  

To characterize iFC within and between functional networks, ROI-ROI correlations were 

averaged within each network (e.g., all DMN-DMN ROIs) and between each network (e.g., all 

DMN-Vis ROIs), resulting in eight within-network cells and 28 between-network cells for each 

participant. Each of these averaged values was then compared between groups using the 

permutation procedure described above. Permutation tests were conducted separately for 8 

within-network comparisons and 28 between-network comparisons at an α = .05 significance 

level.   

Dynamic Connectivity Analysis 

Sliding windows were applied to each ROI timecourse. Following procedures in Allen et 

al. (2014), each window was 44s (22 TR) in length, with a 2s (1 TR) shift between windows. 

Windows were tapered by applying Gaussian weights to each timepoint, with heavier weighting 
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of middle time points (see Supplemental Materials). As in Falahpour et al., (2016) windows 

missing >20% of timepoints (>4 of 22) were excluded. For each participant, the first 123 usable 

windows (~4.8 minutes of data) were selected for further analysis (to avoid differences in 

number of windows between participants).  For analyses requiring consecutive data (i.e., mean 

dwell time and state-switching), the first 123 consecutive usable windows were selected from a 

subset of participants meeting this criterion. Ten participants from the original sample (7 ASD, 3 

TD) were excluded from these analyses, and remaining participants were group-matched as 

described above (Table 1b).  The average timecourse within each window was then extracted 

from each ROI. As in the static iFC analysis, the timecourses of all ROI pairs were correlated, 

and r values were transformed to Fisher’s z. This resulted in 123 temporally contiguous 

correlation matrices (one per window) per subject.   

The standard deviation (Stdev-iFC) of each Fisher z-transformed ROI-ROI correlation 

was calculated across all dynamic windows. As in the static iFC analysis, stdev of each ROI pair 

was compared between groups using permutation tests, and a supplemental analysis was 

conducted to explore the effects of covariates on group differences. Network-level analyses were 

also conducted, as described above. 

The relationship between static iFC (Fisher’s z scores for all ROI pairs) and Stdev-iFC 

(variability of all Fisher’s z scores across windows) describes the degree to which static 

overconnectivity or underconnectivity may reflect fluctuations in synchronization over time; this  

was explored in two ways. First, the correlation between group-averaged static iFC and stdev 

iFC was calculated across all ROI pairs within each group. Then, a stepwise general linear model 

(MATLAB stepwiseglm) was used to examine individual participants’ static iFC-stdev 

correlations, with diagnosis, RMSD, age, sex, handedness, verbal IQ, nonverbal IQ, and SRS 
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total score as potential predictors. A linear starting model was specified, and all interactions were 

considered in the stepwise modeling process.  

Transient State Analysis 

Clustering analyses were performed separately for the ASD and TD groups to 

characterize transient connectivity states. This approach differs somewhat from earlier studies 

that clustered both groups together. However, states derived from k-means clustering on data 

from both groups may not reach optimal clustering solutions for either group. Our alternative 

choice of clustering separately by group accounts for the possibility that individuals with ASDs 

may experience qualitatively different states than TD individuals. All windowed correlation 

matrices for all subjects in each group underwent k-means clustering, with 100 replicates to 

avoid local minima. The elbow method (within cluster/between cluster variance ratio) and 

silhouette plots suggested that either three or four clusters best fit our data. We selected a four-

cluster approach for our primary analysis, given that prior dFC studies using similar methods 

have identified as many as 5-7 clusters (Allen et al., 2014; Damaraju et al., 2014; de Lacy et al., 

2017). A supplemental sensitivity analysis was also conducted using three and five clusters.  

 After generating clusters separately per group, each ASD cluster was matched to a TD 

cluster based on the maximum whole-matrix correlation (i.e., across all ROI pairs) between 

cluster centroids. If two ASD clusters were most similar to the same TD cluster, priority was 

given to the better matching pair. Groups were compared on all ROI pairs in each state, with and 

without covariates, as in the static iFC and stdev analyses. Network-level analyses of group 

differences (described above for the static connectivity matrix) were repeated for each of the four 

states by averaging of all windows belonging to a given state per participant. Number of 

participants experiencing each state and percentage of time spent in each state (regardless of 
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whether the state was experienced) were calculated, and groups were compared on these 

measures, using independent samples t-tests or chi-square tests of independence.  

 Additional analyses were then conducted in the subsample of participants with 

consecutive windows (55 ASD, 54 TD). Using the four states identified in the full sample, mean 

dwell time (MDT) per state and number of switches between states was calculated, as these 

analyses are most likely to be affected by nonconsecutive data. Group comparisons were carried 

out using independent samples t-tests.  

Results 

Static iFC 

Static iFC matrices showed broadly similar patterns in both the ASD and TD groups, 

with no group differences reaching statistical significance (Fig 1A). The addition of covariates 

did not appreciably change the observed pattern of group differences (Supplemental Fig. 4). 

However, an additional permutation test (i.e., nonparametric one-sample t-test) determined that 

overconnectivity (ASD > TD) predominated across all ROI pairs (t(1080) = 12.057, p < .001, 

Hedges’ g = .37). At the network level, Fisher’s z correlation values averaged across same-

network ROI pairings did not significantly differ between groups for any functional network (all 

p > .43). Similarly, no significant differences were found between functional networks (all p > 

.14).   

Dynamic iFC 

Stdev-iFC across all ROIs was calculated for the ASD and TD groups, with no group 

differences reaching statistical significance (Fig. 1B). As in the static analysis, group differences 

were robust to the addition of covariates. An additional permutation test (i.e., nonparametric one-

sample t-test) across all ROI pairings revealed predominant hypervariability in the ASD group 
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(t(1080) = 9.72, p < .001, Hedges’ g = .30). At the network level, stdev-iFC group differences 

did not reach significance either within networks (all p > .08) or between networks (all p > .33).  

Static iFC-Dynamic iFC Relationship 

The relationship between static iFC (Fisher’s z scores for all ROI pairs) and Stdev-iFC 

(variability of all Fisher’s z scores across windows) was studied in two different ways: 1) group-

averaged correlations across all ROIs, and 2) a general linear model of individual participants’ 

correlations across all ROIs. Group-averaged static iFC and stdev-iFC values showed significant 

negative correlations across all ROI pairings in both the ASD (r = -.344, p < .001) and TD (r = -

.294, p < .001) groups (Supplemental Fig. 2). The stepwise general linear model determined that 

individual static iFC-stdev iFC correlations (one per participant; intercept β = -.04) were 

significantly less negative in ASD (coded TD = 0, ASD = 1; β = 0.09, p = .04), more negative in 

right-handed individuals (coded Left = 0, Right = 1; β = -0.05, p = .04), and negatively 

associated with NVIQ (β = -0.001, p = .009). SRS total score was also included in the model, but 

did not reach significance (β = -0.002, p = .08). Interaction effects and additional considered 

variables were not included in the final model, as they did not significantly improve model fit. 

The final model fit significantly better than the intercept-only model (F(112) = 3.8, p = .006). 

Transient State Analyses 

Four transient states were identified in both diagnostic groups (Fig. 2A). Overall, these 

states showed good concordance between the ASD and TD groups (corresponding state median 

correlation = 0.91; non-corresponding state median correlation = 0.72; Supplemental Table 2). 

Group differences across all ROI pairings did not change with addition of covariates 

(Supplemental Fig. 4), and permutation tests revealed significant group differences across 

multiple ROIs for States 1 and 2, but not for States 3 or 4 (Fig. 2A). Therefore, States 1 and 2 
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were also assessed at the network level. In State 1, significant underconnectivity was found 

within SM ROIs and between Vis-SM ROIs, while significant overconnectivity was found 

within Vis and between SM-DMN and Vis-DMN ROIs. In State 2, significant underconnectivity 

was found within Aud ROIs and between FP-Vis ROIs, while significant overconnectivity was 

found between DMN-Exec and DMN-FP ROIs (Fig. 2B, Table 2).  

The percentage of time spent in each state did not differ between groups (all p > .13). 

However, a significantly larger proportion of ASD than TD participants experienced State 1 (i.e., 

had at least 1 window classified as State 1; ASD = 82%, TD = 53%; χ2(1) = 11.99, p < .001). 

State 2, on the other hand, was experienced by a larger proportion of TD participants (ASD = 

81%, TD = 98%; χ2(1) = 9.45, p = .002). In the subsample of participants with consecutive 

windows of data, no group differences were found for mean dwell time in any state (all p > .07), 

nor for mean number of switches between states (ASD = 11.76, TD = 12.37, p = .43). Group 

comparisons for dynamic summary measures were also explored in an unmedicated subsample 

of ASD participants (n= 29). All comparisons with the TD group remained the same for this 

sample. There were also no significant differences between the medicated (n = 28) and 

unmedicated ASD samples with respect to any of these measures.   

Supplemental analyses were conducted exploring group differences in three-state and 

five-state clustering solutions (Supplemental Fig.s 5a, 5b). For the three- and five-state solutions, 

the resulting states uniquely matched states from the primary analysis, with Pearson’s 

correlations between corresponding states ranging from .96 to >.99 (Supplemental Table 3). 

Compared to the four-state analysis, a five-state analysis revealed almost identical patterns of 

group differences in States 1 and 2 at both the ROI- and network-levels. For the three-state 

analysis, State 1 was eliminated, but DMN-FP overconnectivity remained significant in State 2. 
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All higher-order results were consistent across analyses, with several exceptions: reduced state-

switching in ASD was found only in the three-state analysis, and the ASD group had higher 

mean dwell times in State 1 only in the five-state analysis. Statistics are presented with 

Supplemental Fig. 5.  

Discussion 

Using a data-driven approach, this dynamic iFC study revealed group differences in 

transient states that were not observable in static iFC analyses. Across the whole-brain ROI 

matrix, broad patterns of static iFC overconnectivity and stdev-iFC hypervariability in the ASD 

group predominated. Although no findings at the ROI level survived correction, a significant 

inverse relationship between static iFC and stdev-iFC was discovered across all ROIs.  

Additionally, significant group differences were found for two transient states, at both the ROI 

and network levels.  

Static iFC shows predominant overconnectivity in ASD 

While no static group differences at the ROI or network levels survived multiple 

comparison correction, an overall trend toward overconnectivity (ASD > TD) was found across 

all ROI pairs. This was largely driven by network-level trends toward overconnectivity between 

DMN and frontoparietal, visual, and subcortical ROIs, which did not reach statistical 

significance (Fig. 1B). Overall, most ROI pairings linking DMN and subcortical networks with 

other networks showed relative (although not statistically significant) overconnectivity in the 

ASD group. Our exploratory design included numerous ROIs, and a necessarily conservative 

approach to significance testing. However, the direction of these findings is consistent with 

previous studies reporting poor functional segregation between DMN and other networks 

(Abbott et al., 2016; Rudie, Shehzad, et al., 2012; Yerys et al., 2015), as well as overconnectivity 
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between subcortical and cortical regions (Cerliani et al., 2015; Delmonte, Gallagher, O'Hanlon, 

McGrath, & Balsters, 2013; Di Martino et al., 2011).  

iFC variability across time is mostly increased in ASD 

Hypervariability (ASD > TD) across time windows predominated across all ROI 

pairings, despite an absence of significant group differences at the ROI or Network levels. A 

recent study using a different dynamic approach also showed overall FC hypervariability in 

ASDs (Chen et al., 2017). As in previous studies of typical development (Thompson & Fransson, 

2015), static iFC was inversely related to iFC variability in both groups, suggesting that higher 

interregional correlations in static analyses tend to also be less variable over time. Previous 

research has also shown that static underconnectivity within the DMN in ASDs is associated 

with hypervariability over time (Falahpour et al., 2016). Our analysis corroborates this negative 

relationship between static iFC and stdev-iFC across numerous ROIs, and additionally suggests 

that this relationship is significantly weaker in ASD participants (controlling for handedness, 

non-verbal IQ, and symptom severity). This may explain seemingly contradictory findings of 

both overconnectivity and hypervariability in ASD compared to TD participants, which would 

be unexpected if the static-dynamic relationship was invariant across groups. 

Two dynamic connectivity states differ between groups 

Four connectivity states were identified, each with distinct connectivity patterns (Fig. 2; 

Supplemental Fig. 3). State 3 most closely resembled the static connectivity matrices, with both 

ASD and TD participants spending more time in this state than in any other (45% and 50% on 

average, respectively). In State 4, correlations were broadly elevated across the entire 

connectivity matrix, although network structure remained apparent. This hyperconnected state 

has been found in other studies using similar methods (de Lacy et al., 2017, Rashid et al., 2018), 
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and may be predominated by partially non-neuronal global signal fluctuations (Power et al., 

2014.). However, global signal fluctuations have been shown to contain meaningful neural 

information (Schölvinck, Maier, Ye, Duyn, & Leopold, 2010) and may be particularly associated 

with vigilance (Wong, Olafsson, Tal, & Liu, 2012). Notably, the current study did not use global 

signal regression (GSR), a controversial method in which the time series of the averaged whole-

brain signal is statistically removed from the data (Murphy, Birn, Handwerker, Jones, & 

Bandettini, 2009). This may explain the appearance of State 4 in the current dataset.     

In States 1 and 2, distinct patterns of group differences were detected, with partly 

opposing functional network associations (Fig. 2). State 2 was characterized by high iFC within 

DMN, but anti-correlations between DMN and several other networks (Fig. 2A & Supplemental 

Fig. 3). State 2 may therefore represent differentiation of the DMN, with high levels of within-

network integration and relatively strong segregation from other networks. All group differences 

involved frontoparietal, executive, and auditory regions, i.e., networks important for supramodal 

cognition and language. Some of these group differences reflected reduced segregation of the 

DMN, which was ‘overconnected’ with executive and frontoparietal networks (largely reflecting 

reduced anti-correlations). This was accompanied by underconnectivity (reduced integration) 

within the auditory network, and between frontoparietal and visual networks (Fig. 2B).  

A simple functional interpretation of this pattern of findings is challenging, given the 

data-driven approaches selected in our study (i.e., ROIs defined through ICA; transient states 

identified using k-means clustering). However, the findings for State 2 can be grossly 

summarized as reflecting predominant segregation of DMN and integration between other 

networks – a pattern that was relatively distinct in the TD group, but significantly less 

pronounced in the ASD group. Notably, State 2 was experienced by significantly more TD than 
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ASD participants, suggesting that it is an almost ubiquitous state that is absent in an 

unexpectedly high number of children with ASDs (19% for ASD vs. 2% for TD). 

State 1 showed partially opposite connectivity patterns compared to State 2 (Fig. 2 & 

Supplemental Fig. 3). While State 1 was seen in most ASD participants (82%), many TD 

participants (47%) did not experience this state. In both groups, the DMN was not as distinctly 

segregated in State 1 as in State 2, with coupling between DMN and executive and auditory 

networks. In the ASD group, anticorrelation between DMN and visual regions (seen in State 2 in 

both groups) was reversed and positive in State 1. Finally, for both groups, the sensorimotor 

network was segregated in State 1 (positive correlations within-network, anticorrelations with 

other networks). In TD participants experiencing State 1, positive within-network correlations 

and anticorrelations between sensorimotor and DMN networks were especially pronounced.  

Group differences at the network-level were complementary for states 1 and 2 (i.e., 

largely non-overlapping). For State 1, they involved networks predominantly responsible for 

sensory and motor functions (Fig. 2B). Specifically, DMN was less segregated (i.e., 

overconnected) in ASD from visual, and sensorimotor networks. Reduced DMN segregation in 

ASD was also seen in State 2, but only affected executive and frontoparietal networks. In State 1, 

there was also significant overconnectivity within the visual network, underconnectivity within 

the sensorimotor network, and underconnectivity between sensorimotor and visual regions. 

Generally, group differences in State 2 involved more areas relevant for higher-order cognition 

and attention, as discussed above. The distinct patterns of group differences for the two states 

may relate to two distinct lines of ASD research documenting, on the one hand, executive and 

attentional abnormalities (Craig et al., 2016; Hill, 2004; Keehn, Müller, & Townsend, 2013) and 

atypical sensorimotor behaviors, on the other (Chukoskie, Townsend, & Westerfield, 2013; 
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Marco, Hinkley, Hill, & Nagarajan, 2011). They may also relate to previous findings in typical 

development of two hierarchical “meta-states”, one associated with sensory and motor function, 

the other involving higher-order cognitive regions (Vidaurre et al., 2017). This latter study found 

the relative amount of time spent in each of these two states to be both heritable and associated 

with behavioral variables (e.g., cognitive abilities, personality traits), which is notable with 

regard to striking differences in the proportion of ASD and TD participants experiencing either 

state in our study.      

In a supplemental analysis using a 3-cluster k-means solution, State 1 from the primary 

analysis was eliminated. Significant overconnectivity between DMN-FP regions was found for 

State 2, irrespective of whether a 3, 4, or five-state clustering solution was used.  However, only 

the three-state solution suggested that individuals with ASDs switched less frequently between 

states, whereas no significant group difference was found for the four-state or five-state solution. 

One possible explanation for this is the elimination of State 1. Because this state was more often 

experienced by ASD participants, assigning State 1 windows to the next closest cluster should 

reduce the number of state switches to a greater degree in the ASD group than the TD group. In 

other words, the ASD participants may tend to rotate between a larger number of states than the 

TD group, but switch between those states equally often. This may explain why previous studies 

clustering all individuals together (i.e., forcing uniform states across groups) have reported 

reduced state-switching in ASD.  

Across analyses, the most consistent finding was overconnectivity in ASD between DMN 

and other networks, which was evident in both States 1 and 2 at the network level, regardless of 

the number of k-means clusters used. This pattern did not significantly emerge in the static iFC 

analysis, but the direction of findings was broadly consistent. Although de Lacy et al. (2017) 
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primarily found underconnectivity in ASDs using a similar dynamic FC approach, 

overconnectivity was reported between anterior DMN and cingulo-opercular regions in both 

static and dynamic analyses. Importantly, this finding only appeared in one or two (depending on 

window size) of six brain states. Thus, as in our study, group differences suggested 

overconnectivity between DMN and non-DMN regions, and this finding appeared to be state-

specific.  

Our results are also consistent with previously reported fMRI evidence of reduced 

functional network segregation in ASDs, specifically involving the DMN (Rudie, Brown, et al., 

2012; Yerys et al., 2015). However, our findings go beyond previous static fcMRI studies, 

suggesting that reduced DMN segregation (i.e., reduced anti-correlations or overconnectivity 

with non-DMN-networks) occurs in different patterns during different transient states (i.e, 

involving sensorimotor networks in one state but frontoparietal and executive networks in 

another). This also suggests that time-varying properties of functional connectivity in ASDs may 

help to explain inconsistencies in the existing literature. More specifically, our findings suggest 

that previously observed iFC patterns in ASDs, such as reduced network integration and 

segregation, may reflect some transient connectivity states, but not others (1 and 2 vs. 3 and 4 in 

the present study). In other words, whole brain functional connectivity may not be persistently 

atypical in ASD but may be characterized by atypical patterns affecting only some transient 

states. 

Challenges and Perspectives 

This study is among the first to apply dynamic fcMRI methods to examine transient 

connectivity states in ASDs. These findings have laid the groundwork for exciting future 

research in this disorder. In particular, group differences involving sensorimotor and higher-
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order cognitive networks imply possible relationships with cardinal behavioral features of ASDs. 

Future studies may explore measures of repetitive behaviors, sensory abnormalities, and 

sociocommunicative impairment to determine whether these uniquely relate to specific brain 

states. Distinct neural correlates of different symptom profiles may elucidate the nature of 

heterogeneity of ASDs, which has proven particularly challenging. Dynamic fcMRI methods 

may inform future studies examining neural and behavioral subtypes, paving the way for 

precision diagnostic and treatment protocols.  

Despite its promise, this novel approach remains in its early phases, and its limitations 

must be addressed. Although interest has been growing in sliding window fMRI analyses, there 

is little consensus on how to select parameters such as window length and overlap, which may 

substantially affect analysis outcomes (Shakil, Lee, & Keilholz, 2016). Furthermore, it has been 

shown that sliding window analyses may erroneously attribute non-neuronal noise (e.g., head 

motion, sleep state) to BOLD dynamics (Laumann et al., 2016). Therefore, controlling for these 

factors is of the utmost importance. It should further be noted that findings may relate to the use 

of resting state data in our study and may not correspond to dynamic connectivity differences 

associated with sensory stimulation or performance on various cognitive tasks (Gonzalez-

Castillo & Bandettini, 2018). Finally, cluster centroids (states) were derived separately for each 

diagnostic group, an approach that diverged from the few other extant studies in this population. 

While this improves our ability to detect differences in overall state configuration, perfect state-

matching between groups is not guaranteed.  

 Several challenges common in neuroimaging studies of children with ASDs should be 

noted. First, although the size of our ASD sample compared well to that in other single-site 

dynamic FC studies of clinical populations (Du, Fryer, Fu et al., 2017; Falahpour et al., 2016; 
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Rashid et al., 2018; Rashid, Damaraju, Pearlson et al., 2014), it was limited compared to 

multisite studies.  However, use of single-site data circumvented issues associated with site and 

scanner differences. Additionally, use of psychotropic medications that may affect brain 

functioning is common in ASDs, as are comorbid psychiatric diagnoses. Our study recorded 

medication and comorbidity information for the majority of ASD participants and performed 

select analyses in an unmedicated subsample of the ASD group. Unfortunately, most fcMRI 

studies of ASDs do not report these important sample characteristics. Future studies with larger 

samples should consider focusing specifically on the effects of medication and comorbid 

diagnosis on dynamic FC metrics (Linke, Olson, Gao et al., 2017).   

Furthermore, dynamic analyses of fMRI data remain limited by the slow hemodynamic 

BOLD response. While advanced analysis methods can reveal some information about dynamic 

phenomena, investigation of rapid, transient changes on faster timescales requires 

electrophysiological methods (EEG, MEG), which are in turn hampered by low spatial resolution 

and incomplete brain coverage. Integrative multimodal approaches will therefore be necessary 

for a more comprehensive understanding of time-varying properties of functional connectivity in 

ASDs (for review and discussion, see Mash, Reiter, Linke, Townsend, & Müller, 2018). 

Conclusions 

This study found overall predominance of static overconnectivity and hypervariability 

over time in ASDs across numerous brain regions. Results suggest that the nature of atypical 

functional connectivity in ASDs varies over time, with distinct patterns of group differences 

across transient states. Furthermore, state-specific group differences in connectivity aligned 

uniquely with sensorimotor and higher-order cognitive networks. Finally, reduced segregation of 
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the default mode network from other functional networks emerged as a common theme, present 

in multiple transient states but falling short of statistical significance in static analysis.     
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Table 1.1 Sample Characteristics 

B. Consecutive Data Sample Characteristics 

 ASD (n = 55) TD (n = 54) Statistic p 
Sex 45 male 43 male Χ2(1) = 0.08 .772 

Handedness 46 right 46 right Χ2(1) = 0.05 .824 

Age 13.8 (2.5) 13.1 (2.9) t(107) = 1.35 .180 
 [9.2 – 18] [6.9 – 17.6]   

RMSD 0.06 (0.03) 0.06 (0.03) t(107) = -0.09 .926 
 [0.02 – 0.11] [0.02 – 0.17]   

VIQ 100 (18) 108 (11) 
     t(107) = -

2.82 .006 
 [59 – 147] [78 – 133]   

NVIQ 105 (20) 106 (14) t(107) = -0.59 .559 
 [53 – 140] [62 – 137]   

FSIQ 103 (18) 108 (12) t(107) = -1.75 .084 
 [61 – 141] [79 – 132]   

SRS Total 82 (9) 42 (5) t(105) = 27.48 <.001 
 [58 – 96] [35 – 58]   

Values are presented as Mean (SD), [min – max]. ASD = Autism Spectrum Disorder; TD = Typically 
Developing; RMSD = Root Mean Squared Displacement; VIQ = Verbal IQ; NVIQ = Nonverbal IQ; 
FSIQ = Full Scale IQ; SRS = Social Responsiveness Scale 
 

  

A. Complete Sample Characteristics 
 ASD (n = 62) TD (n = 57) Statistic p 

Sex 52 male 46 male Χ2(1) = 0.21 .651 
Handedness 52 right 49 right Χ2(1) = 0.10 .750 

Age 13.7 (2.5) 13.1 (2.9) t(117) = 1.16 .250 
 [9.2 – 18.0] [6.9 – 17.6]   

RMSD 0.07 (0.03) 0.06 (0.03) t(117) = 0.41 .687 
 [0.02 – 0.15] [0.02 – 0.17]   

VIQ 101 (18) 108 (10) 
t(117) = -

2.72 .007 
 [59 – 147] [78 – 133]   

NVIQ 104 (19) 106 (14) 
t(117) = -

0.70 .479 
 [53 – 140] [62 – 137]   

FSIQ 103 (17) 108 (12) 
t(117) = -

1.77 .074 
 [61 – 141] [79 – 132]   

SRS Total 81 (9) 42 (5) t(115) = 28.0 <.001 

 [58 – 96] [35 – 58]   
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Table 1.2 Significant Network-Level State Group Differences 

ROIs Direction df t p Hedges’ g 
State 1 

SM - SM UC 79 -3.56 .006 -.81 
SM - DMN OC 79 5.65 <.001 1.29 
Vis - Vis OC 79 4.48 <.001 1.02 
Vis - DMN OC 79 9.48 <.001 2.16 
Vis - SM UC 79 -3.68 .01 -.84 

State 2 
Aud - Aud UC 104 -3.45 .005 -.67 

DMN - Exec OC 104 3.35 .03 .65 
DMN - FP OC 104 3.51 .02 .68 

FP - Vis UC 104 -3.34 .03 -.65 
SM = sensorimotor; DMN = default mode network; Vis = visual; Aud = auditory;  
Exec = executive control; FP = frontoparietal; UC = underconnectivity; 
OC = overconnectivity 
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Figure 1.1 Static iFC and iFC Variability 
Panel A: Static connectivity matrices at the ROI- and network-levels for each group, as well as relevant 
group comparisons. Colors represent Fisher’s z values or t-scores for group comparisons (positive 
indicates ASD > TD). Panel B: stdev-iFC across windows at the ROI and network levels and relevant 
group comparisons. Colors represent standard deviations or t-scores for group comparisons. No group 
differences were significant after permutation testing. Abbreviated labels denote the following networks: 
Default Mode (DMN), Executive (Exec), Frontoparietal (FP), Auditory (Aud), Visual (Vis), Sensorimotor 
(SM), Cerebellar (CB), and Subcortical (SC). 
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Figure 1.2 Transient States and Group Differences 
Panel A:  State 1-4 connectivity matrices at the ROI-level for each group, as well as group comparisons 
with and without multiple comparison correction.  Colors represent Fisher’s z values, or t-scores for 
group comparisons (positive indicates ASD > TD). Panel B: Network-level correlation matrices for States 
1 and 2 in each group and relevant group comparisons. Colors averaged Fisher’s z values or t-scores for 
group comparisons. * indicates p < .05 after permutation testing. Note that significant underconnectivity 
was found within the auditory network, but this is not visible due to small network size (i.e., few 
contributing ROIs). Abbreviated labels denote the following networks: Default Mode (DMN), Executive 
(Exec), Frontoparietal (FP), Auditory (Aud), Visual (Vis), Sensorimotor (SM), Cerebellar (CB), and 
Subcortical (SC). 
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Chapter 3: 
 

Study 2 

 The content within this section, titled “Chapter 3: Study 2,” reflects material from a paper 

that has been submitted for publication. The citation is as follows: 

 

Mash, L. E., Linke, A. C., Gao, Y., Wilkinson, M., Olson, M. A., Jao Keehn, R. J., & Müller, R.-

A. (Under Review). BOLD lag patterns differ between rest and task conditions, but are largely 

typical in autism. 
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Abstract 

Background/Introduction: Autism spectrum disorder (ASD) is characterized by atypical 

functional connectivity (FC) within and between distributed brain networks. However, FC 

findings have often been inconsistent, possibly due to focus on static FC rather than brain 

dynamics. Lagged connectivity analyses aim to evaluate temporal latency, and presumably 

neural propagation, between regions. This approach may therefore reveal a more detailed picture 

of network organization in ASD than traditional FC methods.  

Methods: The current study evaluated whole-brain lag patterns in adolescents with ASD (n = 

28) and their typically developing peers (n = 22). Functional MRI data were collected during rest 

and during a lexico-semantic decision task. Optimal lag was calculated for each pair of regions 

of interest using cross-covariance, and mean latency projections were calculated for each region.  

Results: Latency projections did not regionally differ between groups, with the same regions 

emerging among the ‘earliest’ and ‘latest.’ Although many of the longest absolute latencies were 

preserved across resting-state and task conditions, lag patterns overall were affected by 

condition, as many regions shifted toward zero-lag during task performance. Lag structure was 

also strongly associated with literature-derived estimates of arterial transit time.  

Discussion: Results suggest that lag patterns are broadly typical in ASD but undergo changes 

during task performance. Moreover, lag patterns appear to reflect a combination of neural and 

vascular sources, which should be carefully considered when interpreting lagged FC.      

 
Keywords: Autism spectrum disorder; functional MRI; functional connectivity; BOLD dynamics   
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Introduction 

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by 

deficits in social communication and restricted interests, repetitive behaviors, or unusual sensory 

responses (American Psychiatric Association, 2013). Recent prevalence estimates approach 2% 

(Maenner et al., 2020). However, neurobiological underpinnings of ASD remain incompletely 

understood.  

Neuroimaging research in recent decades has led to consensus that ASD is characterized 

by atypical communication among distributed brain networks (Di Martino et al., 2014), rather 

than focal abnormalities. However, ASD is highly heterogeneous (Geschwind & State, 2015; 

Lombardo, Lai, & Baron-Cohen, 2019; Olsson et al., 2015), and functional connectivity 

magnetic resonance imaging (fcMRI) studies have often reported discrepant or mixed findings of 

overconnectivity and underconnectivity involving various functional networks (Hull et al., 2016; 

Rane et al., 2015).  Methodological variables likely explain some of these inconsistencies 

(Müller et al., 2011; Nair et al., 2014), but cannot fully account for the wide range of findings.   

Most fcMRI research has focused exclusively on static functional connectivity (FC), 

based on correlations between regional timeseries across an entire scan. Blood oxygen level-

dependent (BOLD) activity in regions belonging to common functional networks tend to be 

highly correlated (Biswal et al., 1995; Fox & Raichle, 2007). However, static FC is limited by its 

inability to capture continuous changes in BOLD correlations that occur over seconds or 

minutes. Alternative, dynamic FC approaches, such as sliding window and clustering analyses, 

have demonstrated that the configuration of BOLD networks and the ‘strength’ of individual 

connections vary on a timescale of seconds in typical development (Allen et al., 2014; Calhoun 

et al., 2014; Nomi et al., 2016). However, even the majority of dynamic FC studies assume that 
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BOLD activity between related regions is synchronous (i.e., at zero-lag). Recent findings suggest 

that neural propagation (i.e., temporal latency between activity in a source region and a 

destination region) may be observable at a timescale of seconds via BOLD activity. For example, 

resting-state lag analysis (RSLA), first described by Mitra et al. (2014), determines the optimal 

latencies between pairs of timeseries by calculating lagged cross-covariance at several points in 

either direction of zero-lag. Covariance estimates are then plotted at each lag, and parabolic 

interpolation is used to estimate timing of the peak covariance; this yields a pairwise lag estimate 

between each pair of brain regions examined. Finally, “latency projections” are calculated for 

each brain region as the mean lag with respect to all other regions. While pairwise lags describe 

the temporal relationship between any two regions, averaged latency projections are useful in 

identifying brain areas that are consistently ‘early’ or ‘late’ and may therefore serve as general 

sources or sinks of neural activity.  

Using a large sample of typically developing (TD) individuals, Mitra et al. (2014) 

demonstrated highly reproducible patterns of “lag structure” across seven independent 

subsamples, with consistently ‘early’ and ‘late’ nodes emerging in several functional networks. 

In other words, latency projections were negative for ‘early’ regions and positive for ‘late’ 

regions, with respect to the rest of the brain.  In a small group of extensively sampled 

participants, this method revealed stable lag structure within individuals, with a number of early 

regions serving multiple functional networks showing similar latency across all subjects (Raut, 

Mitra, Marek, et al., 2019).  Mitra et al. (2014) found that RSLA estimates varied with eye status 

(open versus closed), after a button press task, and at different times of day (morning versus 

evening); this was interpreted as support for a neural basis of the observed latency structure. 

Furthermore, calcium/hemoglobin imaging and laminar recordings in a mouse model suggest 
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that spontaneous infra-slow activity, most often associated with BOLD fluctuations (He et al., 

2008; Pan, Thompson, Magnuson et al., 2013), follows predictable propagation patterns that are 

distinct from those seen at higher frequencies (Mitra, Kraft, Wright et al., 2018).  However, 

primarily vascular, non-neuronal explanations for BOLD lag have also been proposed (Aso, 

Jiang, Urayama et al., 2017). 

A limited number of studies have explored resting-state BOLD latency in ASD using 

various approaches. Using RSLA, Mitra et al. (2017) reported atypical lag structure in a small 

ASD sample. Specifically, they found that frontopolar cortex and putamen were significantly 

‘earlier’ in an ASD than a TD group, whereas occipital cortex was ‘later.’ Furthermore, in the 

ASD group earlier frontopolar activity was associated with increased attention problems, and 

earlier putamen activity was associated with increased restricted and repetitive behaviors. 

Another study compared resting-state FC between adults with and without ASD at different lags; 

broadly increased FC in ASD was discovered at greater lags (in both directions), despite an 

absence of group differences at zero-lag (King et al., 2018). This was accompanied by increased 

“sustained connectivity,” or FC duration, in the ASD group. Finally, a recent resting-state study 

using ultrafast magnetic resonance encephalography (MREG; TR = 100 ms) reported atypical 

latency patterns in ASD across multiple networks, with the ASD group generally showing 

shorter lags than the TD group (Raatikainen, Korhonen, Borchardt et al., 2020). This study used 

dynamic lag analysis, which assesses lag by comparing the timing of resting-state BOLD peaks 

across high-resolution timeseries. 

Although these first lag studies show promise, there are several limitations to consider. 

First, measurement of lagged cross-correlations is limited by the low temporal resolution of the 

BOLD signal. Second, latency analyses are particularly sensitive to data length (i.e., scan 
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duration), motion artefact, physiological artefact, and censored timepoints, all of which can 

affect sampling error and reliability of estimates (Chen, Lewis, Chang et al., 2020; Raut, Mitra, 

Snyder et al., 2019; Smith, Miller, Salimi-Khorshidi et al., 2011); similar concerns have been 

raised about the effects of motion and physiological artefact on dynamic FC (Laumann et al., 

2016; Nalci et al., 2019). Third, hemodynamic and neural contributions to the BOLD signal 

cannot be entirely separated. In other words, it is unclear to what degree BOLD latency between 

two regions reflects directional neural communication, versus regional differences in vascular 

supply.  Therefore, group differences in vascular measures, such as arterial supply and cerebral 

blood flow, may confound BOLD lag estimates (Tong, Yao, Chen et al., 2019). Mitra et al. 

(2014) reported a lateness bias for regions near large venous sinuses in TD participants but did 

not find any relationship between latency and perfusion. These concerns merit particular 

attention in ASD studies, as localized differences in the hemodynamic response (Yan et al., 

2018), as well as altered cerebral blood flow (George, Costa, Kouris et al., 1992; Jann, 

Hernandez, Beck-Pancer et al., 2015; Starkstein, Vazquez, Vrancic et al., 2000; Yerys, 

Herrington, Bartley et al., 2018), have been documented in this population. To this end, the 

current study compared whole-brain lag maps to a publicly available map of vascular supply 

territories (including measures of cerebral perfusion and arterial transit time) to further examine 

associations between BOLD latency and blood supply.    

The current study builds upon the few previous reports of atypical lag structure in ASD 

by examining regional latencies of multi-echo, simultaneous multi-slice (MESMS) BOLD data. 

These data offer higher temporal resolution than standard fMRI sequences (TR ≤ 1.25). 

Although one previous study has examined lag in ASD at even higher temporal resolution 

(Raatikainen et al., 2020), the MESMS protocol acquires data using three distinct echo times 
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(TE). This allows for multi-echo independent component analysis (ME-ICA) denoising, in which 

TE dependencies of ICA components are used to distinguish neural components from noise 

components. This method has shown superior artefact removal compared to standard denoising 

procedures (Kundu, Brenowitz, Voon et al., 2013; Kundu, Inati, Evans et al., 2012).  

The previous literature has explored only resting-state lag structure in ASD, which relies 

on assumptions about the source and timing of neuronal events. In the absence of an explicit 

task, the degree to which synchronous BOLD activity reflects intrinsic connectivity versus state-

specific processing remains ambiguous. Therefore, the current study assessed latency during rest 

as well as during a task, providing controlled data acquisition during which all participants are 

exposed to the same stimuli. A complex lexicosemantic decision task was selected, due to its 

recruitment of numerous brain regions and networks including primary visual cortex, motor 

regions, language networks, and executive regions involved in decision-making, inhibition, and 

initiation. Therefore, this task was considered suitable for comparing BOLD latency differences 

between a relatively uncontrolled state (with spontaneous signal fluctuations) and a relatively 

controlled state (with task-driven fluctuations). Comparisons between resting-state and task 

conditions may shed light on the degree to which BOLD latency structure reflects a history of 

directional co-activation versus task-specific cognitive demands. The current study aimed to 

clarify 1) differences in whole-brain lag structure in ASD compared to typical development, 

including between occipital, frontopolar, and subcortical areas previously implicated in ASD, 2) 

differences in lag structure in the presence versus absence of an explicit task, and 3) inter-

individual variability of whole-brain lag structure. Secondarily, this study examined associations 

between latency projections and literature-derived measures of cerebral perfusion and arterial 
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blood supply, to assess the degree to which these variables may confound neural sources of lag 

in either group.   

Methods 

Participants 

Seventy adolescents and young adults ages 12-21 years were enrolled and scanned as part 

of this study. Fourteen participants with ASD and six typically developing (TD) participants 

were excluded from analyses due to unacceptable data quality for one or more of the three 

functional scans. Criteria for exclusion were excessive motion (root mean squared displacement 

> .15 mm), < 60% accuracy on behavioral tasks, missing scans, preprocessing failure, or 

incidental MRI findings. This left a final sample of 50 participants (28 ASD, 22 TD) with high-

quality data. All ASD diagnoses were confirmed using the Autism Diagnostic Observation 

Schedule, Second Edition (ADOS-2, Gotham, Risi, Pickles, & Lord, 2007), the Autism 

Diagnostic Interview–Revised (ADI-R, Lord, Rutter, & Le Couteur, 1994), and expert clinical 

judgment based on DSM-5 criteria (American Psychiatric Association, 2013). The Wechsler 

Abbreviated Scales of Intelligence-Second Edition (WASI-II, Wechsler, 2011) and Social 

Responsiveness Scale, Second Edition (SRS-2, Constantino & Gruber, 2012) parent report form 

were administered to individuals in both groups. Groups did not significantly differ with respect 

to age, handedness, gender, verbal IQ, nonverbal IQ, or in-scanner head motion (Table 1). Root 

mean squared displacement (RMSD) was used as an estimate of head motion across all time 

points for both conditions (task and resting state). All included participants had low estimates of 

motion in both conditions (RMSD ≤ .15 mm). A mixed analysis of variance (ANOVA) found no 

effect of condition, diagnosis, or the condition * diagnosis interaction on RMSD (all p values > 

.12). All TD participants were unmedicated. Eleven ASD participants reported taking 
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psychotropic medications, and co-occurring psychiatric diagnoses were documented in 10 ASD 

participants. Medication status and co-occurring conditions were not documented for one 

individual in the ASD group. Details regarding medication usage and co-occurring diagnoses are 

reported in Supplemental Table 1. Written informed consent was obtained from all participants 

and/or their caregivers, and written assent was obtained for participants under 18 years old. All 

procedures were approved by the San Diego State University and University of California, San 

Diego Institutional Review Boards.  

Data Acquisition 

Imaging data were acquired on a GE 3T MR750 scanner with a 32-channel head coil at 

the Center for Functional MRI (University of California, San Diego). High-resolution structural 

images were acquired with a standard FSPGR T1-weighted sequence (TR: 8.136ms, TE: 3.172 

ms, flip angle: 8°; FOV 256 mm; matrix: 256 x 192 1mm3 resolution; 172 slices). Functional 

T2*-weighted images were acquired using an accelerated multi-echo simultaneous multi-slice 

(MESMS) echo-planar (EPI) sequence (TR: 1250 ms; TE: 13.2, 30.3, and 47.4 ms; flip angle: 

60°; 3 mm3 resolution; FOV: 216mm; matrix: 72 x 72 with in-plane acceleration factor R: 2; in-

plane resolution: 3 x 3; multiband acceleration factor R: 3; 54 slices). Two single-echo EPI 

sequences with the same parameters (TE: 30.3) and opposite phase-encoding directions were 

also acquired for later distortion correction (see section 2.3). The MESMS approach has been 

shown to improve detection of functional networks and substantially reduce motion and 

physiological artifact (see section 2.3 for preprocessing details; Kundu et al., 2013; Kundu et al., 

2012).  One 6-minute 26-second resting-state scan was obtained (309 volumes), followed by two 

task scans lasting seven minutes each (340 volumes). The functional scan protocol for 9 TD and 

2 ASD participants differed slightly (TR = 1100 ms, 45 slices, 340 resting volumes, 6:14 resting 
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scan duration, 386 task volumes, 7:00 duration for each of two task scans). The mean temporal 

signal-to-noise ratio (tSNR) did not significantly differ between these participants and a sample 

of participants scanned with the standard protocol who were matched for motion and 

demographic variables (resting state: t(20) = -.91, p = .37, task run 1: t(20) = -.61, p= .55, task 

run 2: t(20) = .32, p=.75). The first nine volumes of each scan were discarded to account for T1-

equilibration effects.  

During resting-state scans, participants were instructed to fixate on a cross projected onto 

the middle of a screen, viewed through a mirror in the bore, and to “Let your mind wander, relax, 

but please stay as still as you can. Do not fall asleep.”  Compliance with instructions to remain 

still and awake was monitored via video recording. During task scans, participants performed a 

lexical decision task. In this task, participants were asked to distinguish between animal words 

(e.g., “cat”), standard (nonanimal) words (e.g., “chair”), and pseudowords (e.g., “blont”). Null 

trials consisting of a fixation string (“xxxxxx”) were also included. Participants were asked to 

respond to standard words (90 trials) and animal words (30 trials) using their left index and 

middle fingers, respectively, and to withhold responses to pseudowords (30 trials).  Stimuli were 

presented for 500 ms, followed by a 1500 ms fixation string to allow for response (total of 2s per 

trial). Conditions were matched for number of letters and syllables (p > 0.1). Animal and 

standard words were also matched for word frequency (Brysbaert & New, 2009; van Heuven, 

Mandera, Keuleers et al., 2014) and age of acquisition (Kuperman, Stadthagen-Gonzalez, & 

Brysbaert, 2012), using publicly available corpora (p > 0.1). 

Data Processing 

All structural and functional data were visually inspected for signal dropout, excessive 

motion artifact, and alignment errors at multiple preprocessing stages to ensure acceptable data 
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quality. Functional images were processed using Analysis of Functional NeuroImages software 

(AFNI v17.2.07; Cox, 1996) and FMRIB Software Library (FSL; v5.0; Smith et al., 2004). Two 

spin-echo EPI acquisitions with opposite phase encoding directions were used to minimize 

susceptibility-induced distortions via FSL’s TOPUP (Smith, Jenkinson, Woolrich et al., 2004). 

Each functional volume was registered to the middle time point of the scan to adjust for motion 

via rigid-body realignment as implemented in AFNI. Functional images were co-registered to the 

anatomical scan via FSL’s FLIRT (Jenkinson & Smith, 2001) and standardized to the atlas space 

of the Montreal Neurological Institute (MNI) template using FSL’s nonlinear registration tool 

(FNIRT). AFNI’s 3dBlurToFWHM was used to smooth functional images to a Gaussian full 

width at half-maximum (FWHM) of 6 mm. Functional MRI time series were either bandpass 

filtered (.008 < f < .08; resting-state scan) or highpass filtered (.01 < f; task scans).  

 Denoising was conducted using multi-echo independent component analysis to remove 

artefactual components (ME-ICA; Kundu et al., 2013). Data from the three echoes were 

optimally combined to produce a single timeseries. Multi-echo weighted optimization and ME-

ICA are described in detail by Olafsson, Kundu, Wong et al. (2015; see Appendix A), and 

implemented by meica.py, which is publicly available at http://afni.nimh.nih.gov/afni/. No 

censoring was applied to preserve the continuity of timeseries for lag analysis.  

Analyses 

Regions of Interest 

An exploratory set of ROIs covering all cortical and subcortical regions was created by 

combining 100 regions from a widely used functional cortical parcellation (Schaefer, Kong, 

Gordon et al., 2018; 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefe
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r2018_LocalGlobal) with 14 regions from the Harvard-Oxford subcortical atlas (Bohland, Bokil, 

Allen et al., 2009). Cortical regions were assigned to one of seven functional networks, as 

described by (Yeo, Krienen, Sepulcre et al., 2011): visual, somatomotor, dorsal attention, ventral 

attention, limbic, frontoparietal control, and default-mode.  

Functional Connectivity and Lag Analysis 

For each participant, timeseries were extracted from all ROIs. Pearson correlations 

(transformed to Fisher’s z) were calculated between timeseries for each ROI-ROI pairing, 

yielding a symmetrical FC matrix. FC at each ROI-ROI pair was compared between ASD and 

TD groups using independent samples t-tests. The distribution of group differences in FC was 

evaluated using a one-sample t-test of all group difference t-scores, to examine whether, on 

average, group differences across all ROI pairs differed significantly from zero in either 

direction. Significant findings were followed up with a supplemental analysis using censored 

data to examine potential effects of motion. Censoring was performed by removing volumes with 

greater than 0.5mm framewise displacement, as well as the three following volumes. If fewer 

than 18 usable timepoints fell between two censored timepoints, then all volumes in between 

were also censored. 

Pairwise lag estimates and regional mean latency projections were calculated using the 

method developed and described in detail by (Mitra et al., 2014), using in-house MATLAB code. 

Cross-covariance between each pair of timeseries was calculated at zero-lag, as well as at -4 to 4 

TR lag (using MATLAB’s xcov function). Cross-covariance was plotted at each lag using 

piecewise cubic interpolation (MATLAB’s pchip) and a local minimum or maximum was 

identified if possible. Parabolic interpolation was then used to estimate the optimal lag between 

two timeseries. If a local minimum or maximum could not be identified within three TRs of 
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zero-lag in either direction, the peak lag was considered unlikely to result from true neural signal 

(Raut, Mitra, Marek, et al., 2019) and was discarded. The number of discarded peak lags was 

considerably larger during resting state scans (ASD mean = 8.3%, TD mean = 8.8%) than task 

performance (ASD mean = 0.45%, TD mean = 0.39%), but did not significantly differ between 

groups in either rest or task conditions (p = .81 and p = .75, respectively).   

 The procedure above resulted in an anti-symmetric matrix of all pairwise lag values for 

each participant. “Latency projections” for each ROI, as defined by Mitra et al. (2014), were then 

calculated by averaging across all rows of the matrix, resulting in one mean lag value per 

column. In other words, latency projections represent the mean lag for a given ROI across all of 

its pairings with other ROIs. To compare lag structure across conditions, average resting-state 

and task-related latency projections (across 114 ROIs) were correlated separately for ASD and 

TD groups. To compare lag structure between groups, group-averaged latency projections were 

correlated separately for resting-state and task conditions. These correlational analyses were also 

conducted for pairwise lag estimates.  Effects of diagnosis, condition, and their interaction on 

latency projections were evaluated using a mixed design ANOVA for each ROI (using 

simple_mixed_anova in MATLAB; Caplette, 2020), with diagnosis as a between-subjects 

variable and task condition as a within-subjects variable. Resulting p-values were adjusted to 

control for false discovery rate using the Benjamini-Hochberg linear step-up procedure 

(Benjamini & Hochberg, 1995). 

Similarity Analysis 

Recent research suggests that the organization of functional networks may be more 

idiosyncratic in ASD (i.e., characterized by increased within-group variability) than in typical 

development (Hahamy, Behrmann, & Malach, 2015; Nunes, Peatfield, Vakorin et al., 2019). 
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Therefore, similarity analyses were conducted to examine the inter-individual variability of FC 

and latency projections for both resting-state and task conditions. For each group, all 

participants’ pairwise FC estimates were correlated with all other participants’ FC estimates. The 

resulting correlation matrix was averaged across rows, yielding one similarity score per 

participant, which was then converted to a Fisher’s z-score. These scores represent the average 

within-group similarity between each individual’s whole-brain FC pattern and all other 

individuals’ whole-brain FC patterns. A mixed ANOVA was conducted (as in lag analyses) to 

determine the effects of diagnosis, condition, and their interaction on within-group FC similarity. 

This similarity analysis procedure was repeated for latency projections.  

All significant ANOVA effects were followed up with non-parametric permutation 

testing due to the non-independence of similarity scores. In this procedure, p-values were 

calculated by comparing t-scores to a null Tmax distribution (Chen et al., 2013) consisting of t-

scores derived from 1000 random permutations of the grouping variable of interest (i.e., ASD or 

TD; task or rest).  

Hemodynamic Comparisons 

To determine possible vascular contributions to lag structure, secondary analyses were 

conducted comparing whole-brain latency projections to 1) cerebral blood flow (CBF) maps 

obtained from the Pediatric Template of Brain Perfusion (Avants, Duda, Kilroy et al., 2015), and 

2) arterial territory maps and associated median arterial transit times (ATT) reported by 

Mutsaerts, van Dalen, Heijtel et al. (2015). For the first analysis, CBF was extracted from all 

ROIs and correlated with latency projections for each group. For the second analysis, each 

cortical ROI was assigned to one of nine arterial flow territories from a publicly available map 

(Mutsaerts, 2015), based on descriptions by Tatu, Moulin, Bogousslavsky et al. (1998). 
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Assignments were made according to spatial overlap between each ROI and flow territory. For 

every ROI, each voxel was assigned a number (1-9) corresponding to the flow territory that 

encompassed that voxel. This resulted in a vector of voxel locations for each ROI. The modal 

value of each vector then determined the territory assignment for the corresponding ROI (Fig. 

S1). For 11 subcortical ROIs, the majority of voxels fell outside all nine flow territories. 

Therefore, these ROIs were excluded from hemodynamic analyses. Mean latency was calculated 

for each territory and correlated with median arterial transit time. Similarity of arterial flow 

patterns between groups was also examined by correlating ASD and TD mean latencies for all 

territories. 

Results 

Functional Connectivity Analyses 

A one-sample t-test of all group comparison t-scores (all ROI pairings in the matrix), 

examining the overall distribution of group differences in FC, revealed a broad shift toward 

overconnectivity in the ASD relative to the TD group in both resting-state (t(6440) = 101.42, p < 

.001) and task conditions (t(6440) = 158.64, p < .001). On pairwise tests, resting-state 

overconnectivity (ASD > TD) between one pair of left visual ROIs (Vis 3-Vis 6, t(48) = 4.97, p 

< .001) survived correction for false-discovery rate (FDR). No other findings remained 

significant after FDR correction, given the large number of comparisons. A supplemental 

analysis revealed no substantial changes in either resting-state (t(6440) = 95.34, p < .001) or 

task-based (t(6440) = 145.47, p < .001) findings after censoring volumes with excessive motion. 

Finally, there were no significant differences in resting-state or task-based functional 

connectivity between medicated and unmedicated participants with ASD, nor were there 
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significant differences between participants with and without comorbid psychiatric diagnoses (all 

p-values > .05).  

Lag Analyses 

Latency projections revealed largely bilateral lag patterns across the brain in both groups 

(Fig. 1a-b), with estimates ranging from approximately -0.8 to +1.0 seconds. Similar lag patterns 

were observed between resting-state and task conditions with respect to both latency projections 

(Rest vs. Task, ASD: r = .87, p < .001; TD: r = .78, p < .001) and pairwise lag matrices (Rest vs. 

Task, ASD: r = .78, p < .001; TD: r = .70, p < .001). ASD and TD participants also showed 

highly similar patterns of group-averaged latency projections (ASD vs. TD, resting-state: r = .90, 

p < .001; task: r = .95, p < .001), as well as pairwise lag matrices (ASD vs. TD, resting-state: r = 

.78 p < .001; task: r = .86, p < .001).  

Several regions consistently emerged among the earliest and latest in both groups. In the 

resting-state, ‘early’ regions included the putamen, inferior frontal gyrus, insula, lateral dorsal 

attention regions, and lateral somatomotor regions, while ‘late’ regions included visual areas, 

thalamus, caudate, cingulate, and medial parietal cortex. During task performance, a similar 

pattern emerged with ‘early’ activity in inferior frontal gyrus and insula, and ‘late’ activity in 

visual and medial parietal regions; mean latencies were close to zero for other structures (Fig. 

1b). In general, anterior, lateral structures tended to be early relative to posterior, medial 

structures, and this pattern affected more ROIs in the resting-state condition than the task 

condition.  

 Mixed ANOVAs for each ROI found no main effects of diagnosis on latency, and no 

interactions between diagnosis and task condition (all corrected p values > .05).  However, 37 

ROIs spanning most networks showed main effects of condition (all corrected p values < .05; 
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Fig. 1c; Table S2), which consistently reflected reduced absolute latency in the task compared to 

the rest condition. In other words, many regions that were relatively early or late during the 

resting state showed latencies closer to zero during task performance. A post-hoc two-sample 

Kolmogorov-Smirnov test was conducted (using MATLAB’s kstest2) to compare the 

distributions of mean pairwise lag values (6441 ROI pairs) in each condition. This test confirmed 

that group-averaged rest and task lag distributions differed from one another (D* = .19, p < 

.001), such that the Gaussian distribution of resting latencies was flatter and more spread out 

than the task-related distribution, which showed a large number of ROI-ROI latencies clustered 

closer to zero (Fig. S2).  

To ensure that lag differences between the task and resting-state conditions were not 

associated with acquisition length (i.e., one resting run versus two concatenated task runs), this 

analysis was repeated using individual task runs. Results were similar to those reported above 

when run 1 only (D* = .19, p < .001) and run 2 only (D* = .17, p < .001) were used (Fig. S2).  

Finally, to account for the greater number of pairwise lags that could not be calculated at rest, the 

analysis was repeated after eliminating ROI-ROI pairs that were unusable in resting-state data 

from the task data. This procedure produced similar results to those described above (D* = .19, p 

< .001). Finally, independent-samples t-tests revealed no significant differences in resting-state 

or task-based latency between medicated and unmedicated participants with ASD, nor were there 

significant differences between participants with and without comorbid psychiatric diagnoses (all 

p-values > .05). 

 Similarity Analyses 

A mixed ANOVA showed that within-group FC similarity was lower in the ASD relative 

to the TD group (ASD mean z = .50, TD mean z = .59, F(1,48) = 65.28, p < .001), and that FC 
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similarity was lower during the resting state than task performance (resting mean z = .46, task 

mean z = .62, F(1,48) = 329.95, p < .001). There was no interaction between diagnosis and 

condition. Post-hoc permutation tests corroborated both the main effects of diagnosis (t(98) = -

4.81, p < .001) and condition (t(49) = 18.51, p <.001) on FC similarity. 

Similarity analyses of latency projections revealed reduced within-group similarity 

during the resting state compared to task performance (rest mean z = .28, task mean z = .44, 

F(1,48) = 80.02, p < .001). There was no main effect of diagnosis, nor was there a diagnosis * 

condition interaction. Post-hoc permutation testing corroborated the main effect of condition 

(t(49) = 8.64, p < .001) on lag similarity. To account for differences in amount of data (two task 

runs vs. one resting state run), this analysis was repeated using individual task runs. A main 

effect of condition (resting < task) was similarly observed for both run 1 (F(1,48) = 12.52, p < 

.001) and run 2 (F(1,48) = 12.27, p = .001), and these effects were corroborated using 

permutation testing (Run 1: t(49) = 5.31, p < .001; Run 2 t(49) = 5.32, p < .001).   

Hemodynamic Comparisons 

Cerebral blood flow estimates from the Pediatric Template of Brain Perfusion (Avants et 

al., 2015) were not correlated with mean latency projections in either group in either the resting-

state (ASD: r = -.12, p = .20; TD: r = -.06, p = .56) or task conditions (ASD: r = -.06, p = .53, 

TD: r = -.10, p = .27). However, mean latency of nine arterial flow territories was associated 

with median ATT reported by Mutsaerts et al. (2015), with stronger relationships emerging 

during task performance (ASD: r = .79, p = .01; TD: r = .73, p = .03) than resting-state scans 

(ASD: r = .60, p = .09; TD: r = .46, p = .21; Fig 2a).  Furthermore, the ASD and TD groups 

showed extremely similar mean latency patterns across all flow territories in both resting-state (r 

= .94, p < .001) and task conditions (r = .99, p < .001; Fig. 2b). Overall, regions supplied by the 
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middle cerebral artery were earlier, on average, than regions supplied by the anterior and 

posterior cerebral arteries. Regions supplied by the distal branches of the anterior and posterior 

cerebral arteries were consistently latest (Fig. 2c).  

Discussion 

Using high-resolution multi-echo fMRI data, this study found broadly similar whole-brain 

lag patterns in adolescents with ASD compared to a typically developing cohort. Latency 

projections differed in both groups as a function of task condition, with many regions shifting 

toward zero-lag during task performance. In other words, the Gaussian distribution of lags 

observed at rest showed reduced variance during task performance as more lags clustered around 

zero (Fig. S2). While (zero-lag) FC was more variable in the ASD group than the TD group, 

there were no group differences in the variability of lag patterns. However, both FC and latency 

projections showed more inter-individual variability during task performance than at rest. 

Finally, latency projections in both groups were strongly related to arterial blood supply and 

transit time. 

Similar lag structure observed in both groups 

With respect to resting-state lag structure, similar regions emerged among the ‘earliest’ 

and ‘latest’ in both ASD and TD groups. A general pattern emerged of earlier activity in lateral, 

anterior regions, compared to posterior, medial regions. In line with previous studies, lag 

structure was largely bilateral. The earliest regions during the resting state included inferior 

frontal gyrus, insula, lateral somatomotor and dorsal attention areas, putamen, and pallidum. 

Among the latest regions were visual cortex, cingulate, thalamus, caudate, and medial parietal 

areas.  Early cortical regions in the current study largely correspond to those identified by Raut, 

Mitra, Marek, et al. (2019) using resting-state fMRI from eleven extensively-sampled healthy 
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adults; specifically, they reported early activity in anterior insula (left earlier than right, as in the 

current study), lateral premotor regions, and inferior frontal gyrus. Raut et al. found that early 

regions were identified more consistently across individuals than late regions, and proposed that 

these presumed neural sources serve a wide range of tasks as part of a “multiple-demand” system 

(Duncan, 2010).  

Lag patterns differ between resting-state and task performance 

Average lag patterns for resting-state and task data were highly correlated, with similar 

patterns of ‘early’ and ‘late’ regions. However, absolute lag was reduced in many regions during 

task performance, resulting in differences in lag distributions between conditions. Compared to 

the resting-state, latency projections showed greater within-group similarity during task 

performance; this was also true of FC estimates. Finally, peak lag could not be calculated 

(presumably due to noise) in approximately 8% of resting-state ROI-ROI pairs, but this occurred 

in less than 1% of ROI-ROI pairs during task performance. Altogether, this suggests that 

compared to the resting-state condition, latency patterns during an explicit task are less 

susceptible to noise, show greater consistency between individuals, and show greater distinction 

between few ‘early’ (i.e., left anterior insula, inferior frontal) and ‘late’ regions (visual, medial 

parietal) as other regions shift toward zero-lag.   

Changes in the pairwise lag distribution during task performance may suggest that neural 

activity contributes to observed lag patterns, despite high correlations between resting-state and 

task-related latencies. One possible interpretation of this finding is that resting-state BOLD 

latency patterns partially reflect temporal relationships sculpted by past experience (Dosenbach, 

Fair, Miezin et al., 2007), which are modified during task-related processing. However, the 

greater uncertainty of neural event timing for resting compared to task data may have contributed 
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to the higher rate of unidentifiable pairwise peak lags, and thus a wider distribution of lags 

around zero. Furthermore, shared input between regions during task performance has been 

shown to increase FC estimates (Cole, Ito, Schultz et al., 2019), which could result a lag 

distribution that is clustered around zero.  

No regional lag differences between ASD and typical development 

Across all cortical and subcortical ROIs, there was minimal evidence of regional group 

differences in latency during either rest or task performance. This contrasts with resting-state 

findings by Mitra et al. (2017), who reported group differences in frontopolar (late in TD, 

average in ASD), occipital (early in TD, late in ASD), and putamen latencies (average in TD, 

early in ASD). Interestingly, for these three regions, resting-state latencies found in both groups 

in the current study most closely resemble those reported for the ASD group by Mitra et al. (i.e., 

average latency in frontopolar cortex, early activity in the putamen, late activity in visual cortex).  

Partly divergent findings may relate to methodological differences, including eye status 

(open versus closed), temporal resolution (TR = 1.25 versus 2.2 sec), and denoising approach 

(multi-echo ICA versus nuisance regressors), and differing ages of participants (adolescents vs. 

young adults). Multi-echo ICA denoising uses data-driven methods to identify and remove non-

BOLD artefact from various sources, including motion, respiration, and pulse. Compared to 

standard denoising methods using nuisance and global signal regressors, this approach has 

demonstrated superior recovery of BOLD signal corresponding to known resting-state networks 

(Kundu et al., 2013; Kundu et al., 2012; Olafsson et al., 2015). Differences in findings compared 

to previous lag studies may therefore be related to different methods of artifact removal. In 

addition, eye status has been found to affect lag estimates in visual regions, with eyes-closed 

paradigms eliciting earlier activity in occipital cortex (Mitra et al., 2014). This may relate to 
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extensive effects of eye status on (zero-lag) BOLD correlations within visual cortices observed 

in a large multisite ASD sample (Nair et al., 2017). Furthermore, group differences in FC likely 

vary across development in ASD (Henry, Dichter, & Gates, 2018; Nomi & Uddin, 2015; Uddin, 

Supekar, & Menon, 2013). Compared to the current study, mean age was c. 3 and 9 years higher 

in the samples studied by Mitra et al. (2017) and Raatikainen et al. (2019), respectively. While it 

is currently unknown how lag patterns may differ through adolescence and young adulthood, 

maturational FC changes are another potential explanation for differences in results.  

Finally, Raatikainen et al. (2020) found atypical lag between multiple resting state 

networks using dynamic lag analysis (DLA) in ultra-fast MREG in adults with ASD. However, 

aside from potential maturational changes mentioned above, this study differed in multiple 

crucial respects from the current one (e.g., peak-to-peak DLA, use of ICA-based distributed 

resting-state networks as ROIs, exceptionally short TR), making it difficult to attribute 

differences in findings to a specific variable. 

While inter-individual variability for (zero-lag) FC patterns was greater in the ASD than 

the TD group, no group differences in variability were found for lag patterns. In typically 

developing individuals, FC similarity measures have sometimes been associated with motion 

artifact (Kopal, Pidnebesna, Tomeček et al., 2020; Raut, Mitra, Snyder, et al., 2019).  However, 

in our sample, individual FC similarity scores across all participants were not significantly 

correlated with head motion (i.e., RMSD) in either the resting state (r = -.21, p = .15) or the task 

(r = -.08, p = .56) condition. Although our findings are therefore consistent with reports of 

‘idiosyncrasy’ of static FC (Hahamy et al., 2015; Nunes et al., 2019), they do not suggest that 

variability in lag patterns play a major role in ‘idiosyncratic’ FC in ASD.   
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Latency projections correspond to arterial flow territories 

Mitra et al. (2014) reported a minimal association between cerebral blood flow and 

latency projections. The current study corroborates this finding, with no evident relationship 

between latency projections and perfusion values from the Pediatric Template of Brain Perfusion 

(Avants et al., 2015). Mitra et al. (2014) also did not find a clear association between regional lag 

and standard vascular territories (Damasio, 1983). However, the current study determined that 

lateral regions supplied by the middle cerebral artery (MCA) tended to be earlier on average 

compared to medial regions supplied by the anterior and posterior cerebral arteries (ACA, PCA), 

with the highest latencies in regions supplied by the distal branches of the ACA and PCA. 

Furthermore, the current study is the first to use an independent measure of arterial blood flow 

(ATT) to assess potential vascular contributions to BOLD latencies, which may confound 

interpretation of lag patterns. Mean lag for each flow territory was positively related to literature-

derived estimates of ATT (Mutsaerts et al., 2015), especially during task performance, with ATT 

accounting for >50% of the variance in lag patterns. However, ATT explained <30% of the 

variance in lag during the resting state condition. Mean latency for each territory was also highly 

correlated between ASD and TD participants, suggesting that any effect of arterial supply on 

BOLD latency was consistent across diagnostic groups. Therefore, ATT appears to heavily 

impact lag patterns, and positive latencies in visual and medial parietal regions (supplied by the 

distal branches of the ACA and PCA) should be interpreted with particular caution. 

Open questions and limitations  

Overall, our findings suggest that BOLD latency reflects both neural and vascular 

contributions, with a major role of the latter. On one hand, while the overall pattern of lag 

structure was similar in resting-state and task conditions, the distribution of latencies differed 
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between conditions. Task-based lag structure also showed more reliable peak latency detection 

and greater consistency between individuals compared to the resting state. Altogether, these 

changes associated with task performance suggest some neural contribution to lag structure.  

However, relationships between latency and vascular supply (i.e., arterial flow territory, 

ATT) suggest that observed BOLD latencies are considerably influenced by hemodynamic 

factors. This is expected, as the BOLD signal is an indirect measure of neural activity that is 

based on neurovascular coupling and associated changes in magnetic resonance (Hillman, 2014). 

The current study is limited by its use of an approximate map of vascular territories, which were 

derived from arterial spin labeling (ASL) scans in a different sample of individuals (Mutsaerts et 

al., 2015). Additionally, this study used estimates of vascular territories, ATT, and CBF derived 

from samples that are not necessarily representative of our participants. Vascular territories and 

ATT estimates were calculated based on an elderly adult sample (Mutsaerts et al., 2015); 

although CBF estimates were drawn from a pediatric population (Avants et al., 2015), this 

sample did not include any individuals with ASD. Therefore, while the current study sheds light 

on a general relationship between vascular supply and BOLD latency, future research is 

necessary to more clearly separate the relative influences of neural and vascular contributions to 

the BOLD signal by combining fMRI with complementary imaging modalities, such as EEG or 

ASL, in a common sample of children with and without ASD. Additionally, the current study did 

not directly explore regional differences in the hemodynamic response function (cf. Yan et al., 

2018) across groups or task conditions. This alternative approach to characterizing hemodynamic 

variables may allow for closer examination of both inter- and intra-individual differences. Future 

studies may also further explore associations between hemodynamic features and lag at the 

individual level, as opposed to the group level alone (as in the current study).  
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 There are several other limitations to the current study. First, our sample was relatively 

small, which impacts sampling variability and therefore the precision of both FC and latency 

analyses. Although large samples can be obtained from publicly available datasets, such as the 

Autism Brain Imaging Database Exchange (Di Martino, O'Connor, Chen et al., 2017; Di Martino 

et al., 2014), our in-house data benefited from high temporal resolution multi-echo, simultaneous 

multi-slice acquisition, as well as combined availability of resting and task data in the same 

individuals. Additionally, our in-house sample provided data on psychotropic medication use and 

co-occurring conditions, both of which are common in the general ASD population (Hossain, 

Khan, Sultana et al., 2020; Jobski, Hofer, Hoffmann et al., 2017) and were therefore not 

considered exclusionary criteria. However, effects of medication (Linke et al., 2017), and 

multiple diagnoses (Mikita, Simonoff, Pine et al., 2016) on functional connectivity have been 

demonstrated, and may have affected the findings reported in this study. Moreover, inclusionary 

age ranged from early adolescence through young adulthood. This developmental period is 

associated with changes in FC (Klapwijk, Goddings, Burnett Heyes et al., 2013; Solé-Padullés, 

Castro-Fornieles, de la Serna et al., 2016; Teeuw, Brouwer, Guimarães et al., 2019) that may 

affect BOLD lag patterns. Finally, fMRI data are inherently limited by the slow nature of the 

BOLD signal. Coordinated brain dynamics take place across a range of frequencies, including 

high-frequency changes on a millisecond timescale that are not observable using fMRI. 

Multimodal imaging approaches, such as simultaneous EEG-fMRI, have shown great promise in 

early studies of lagged functional connectivity (Feige, Spiegelhalder, Kiemen et al., 2017) and 

dynamic brain activity (Allen et al., 2017; Bridwell et al., 2013; Musso, Brinkmeyer, Mobascher 

et al., 2010; Yuan, Zotev, Phillips et al., 2012). However, multimodal functional neuroimaging to 

date remains extremely limited in ASD (Mash et al., 2018).  
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Conclusions 

Findings suggest that adolescents and young adults with ASD show typical patterns of 

BOLD latency across the brain during both resting-state and task performance. While the earliest 

and latest regions were preserved across resting-state and task conditions, many areas showed 

reduced absolute latency during task performance, which may indicate neural contributions to 

lag patterns. However, latency projections in both groups were strongly associated with arterial 

supply and transit time. Our findings, which suggest that BOLD lag patterns reflect a 

combination of vascular and neural factors, extend the previous literature and provide a 

foundation for future research exploring spatiotemporal BOLD dynamics in ASD.  
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Table 2.1 Sample Characteristics 

 

Relevant characteristics are reported for both groups as: mean (sd), [min – max]. ASD and TD groups 
only differed with respect to task accuracy, which was lower in the ASD group. RMSD = Root Mean 
Squared Displacement; VIQ = Verbal IQ; NVIQ = Nonverbal IQ; ADOS = Autism Diagnostic 
Observation Schedule; SA = Social Affect; RRB = Restricted and Repetitive Behaviors 
  

 ASD (n = 28) TD (n = 22) Statistic p 

Sex 20 male 17 male Χ2(1) = 0.22 .640 

Handedness 27 right 20 right Χ2(1) = 0.67 .415 

Age 15.9 (2.2) 15.3 (1.9) t(48) = 1.01 .319 

 [12.9 – 20.1] [12.4– 21.3]   

RMSD Rest 0.07 (0.03) 0.06 (0.02) t(48) = 1.07 .290 

 [0.01 – 0.13] [0.02 – 0.11]   

RMSD Task 0.07 (0.02) 0.06 (0.03) t(48) = 1.67 .102 

 [0.03 – 0.13] [0.03 – 0.15]   

VIQ 106 (17) 111 (13) t(48) = -1.27 .210 

 [68 – 134] [85 – 135]   

NVIQ 108 (22) 110 (12) t(48) = -0.33 .746 

 [54 – 156] [80 – 128]   

Task Accuracy (%) 88.0 (8.3) 94.7 (3.3) t(48) = -3.63 < .001 

 [70.7 – 99.0] [85.0 – 98.7]   

ADOS-2 SA 8.8 (3.0) --- --- --- 

 [3 – 14] --- --- --- 

ADOS-2 RRB 2.4 (1.9) --- --- --- 

 [0 – 9] --- --- --- 

ADOS-2 Total 10.8 (3.4) --- --- --- 

 [6 – 20] --- --- --- 
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Figure 2.1 Pairwise Lag Matrices and Latency Projections  
Pairwise lag matrices (left) and mean latency projections (right) are shown by group for the resting state 
(A) and task (B) conditions; colors represent lag in seconds. Differences between task and resting 
conditions for all participants combined are also presented (C). Only regions showing a significant main 
effect of condition on latency are shown on the right (FDR-corrected p < .05); colors represent mean 
difference in seconds. Pairwise lag matrices are organized by functional network (Vis = Visual; SM = 
somatomotor; DA = dorsal attention; VA = ventral attention; Lim = limbic; FP = frontoparietal; DMN = 
default mode; SC = subcortical). Each region’s relationship to other regions is interpreted vertically, with 
‘earlier’ networks appearing as blue columns and ‘later’ networks appearing as red columns. 
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Figure 2.2 Associations Between Lag and Arterial Supply 
A) Group-averaged correlations between mean latency and median arterial transit time (ATT; from 
Mutsaerts et al., 2015) for each of nine arterial flow territories are shown for the resting (top) and task 
(bottom) conditions. B) Correlations between ASD group and TD group mean latency for each arterial 
territory are shown for each condition. C) Mean latencies for the proximal, middle, and distal branches of 
the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA) are 
shown for each group.  
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Chapter 4: 
 

Study 3 

 The content within this section, titled “Chapter 4: Study 3,” reflects material from a paper 

that has been published in the journal Brain Connectivity. The full citation is as follows: 

 

Mash, L. E., Keehn, B., Linke, A. C., Liu, T. T., Helm, J. L., Haist, F., Townsend, J., & Müller, 

R.-A. (2020). Atypical relationships between spontaneous EEG and fMRI activity in autism. 

Brain Connectivity, 10, 18-28. https://doi.org/10.1089/brain.2019.0693 
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Abstract 
 

Autism spectrum disorders (ASDs) have been linked to atypical communication among 

distributed brain networks. However, despite decades of research, the exact nature of these 

differences between typically developing (TD) individuals and those with ASDs remains unclear.  

ASDs have been widely studied using resting state neuroimaging methods, including both 

functional MRI (fMRI) and electroencephalography (EEG). However, little is known about how 

fMRI and EEG measures of spontaneous brain activity are related in ASDs. In the current study, 

two cohorts of children and adolescents underwent resting-state EEG (n = 38 per group) or fMRI 

(n = 66 ASD, 57 TD), with a subset of individuals in both the EEG and fMRI cohorts (n = 17 per 

group). In the EEG cohort, parieto-occipital EEG alpha power was found to be reduced in ASDs. 

In the fMRI cohort, blood oxygen level-dependent (BOLD) power was regionally increased in 

right temporal regions and there was widespread overconnectivity between thalamus and cortical 

regions in the ASD group relative to the TD group. Finally, multimodal analyses indicated that 

while TD children showed consistently positive relationships between EEG alpha power and 

regional BOLD power, these associations were weak or negative in ASDs. These findings 

suggest atypical links between alpha rhythms and regional BOLD activity in ASDs, possibly 

implicating neural substrates and processes that coordinate thalamocortical regulation of the 

alpha rhythm. 

 
 
 
 
 
 
Keywords: Autism, Functional MRI, EEG, Alpha, Resting State 
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Introduction 

Autism spectrum disorders (ASDs) are neurodevelopmental disorders defined 

behaviorally by social communication deficits and the presence of restricted/repetitive patterns 

of behavior or interest (American Psychiatric Association 2013). It is currently estimated that 

one in 59 eight-year-olds in the United States are on the autism spectrum (Baio et al. 2018). 

However, the neurobiological basis of these disorders remains poorly understood. Research 

clarifying the nature of brain differences in ASDs may improve treatment and diagnostic 

strategies and is therefore a high priority.  

 Over the past several decades, interest in brain functioning in ASDs has grown rapidly.  

Studies using functional MRI (fMRI) and electroencephalography (EEG) to examine neural 

activity in vivo comprise the majority of this literature. While fMRI research broadly supports 

atypical coordination (i.e., functional connectivity; FC) across distributed brain networks in 

ASDs, there have been mixed and sometimes conflicting reports of underconnectivity and 

overconnectivity involving numerous regions and functional networks (Di Martino et al. 2014, 

Hull et al. 2016). However, findings of atypical thalamocortical circuitry have been relatively 

consistent, with multiple studies reporting overconnectivity between thalamus and sensorimotor 

cortical regions (Cerliani et al. 2015, Nair et al. 2015, Woodward et al. 2017). These findings are 

further supported by evidence of structural thalamic differences in ASDs (Schuetze et al. 2016).  

Much like the fMRI literature, EEG studies have produced mixed results with respect to both 

power and coherence across a range of frequencies (Wang et al. 2013, O'Reilly et al. 2017). 

Despite these inconsistencies, one of the best replicated findings in ASDs is decreased power in 

the alpha frequency band (i.e., 8-12 Hz) at rest (Dawson et al. 1995, Chan et al. 2007, Murias et 

al. 2007, Sheikhani et al. 2012, Tierney et al. 2012, Keehn et al. 2017).  
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To date, there has been little progress relating findings across modalities in ASDs (Mash 

et al. 2018), and it is currently unknown how reports of reduced EEG alpha power and atypical 

thalamocortical activity may be associated. While EEG directly measures postsynaptic potentials 

(Niedermeyer et al. 2011, Heller & Volegov 2014), fMRI detects the blood oxygen level-

dependent (BOLD) signal, an indirect measure of neural activity influenced by vascular and 

metabolic factors (Hillman 2014). Therefore, measures of magnitude (i.e., power) and 

synchronicity (i.e., FC) derived from different modalities may reflect neuronal communication in 

fundamentally different ways. Studies combining both modalities in the same individuals allow 

for joint analysis and direct comparison of EEG and fMRI results.  

In typically developing (TD) adults, a large body of simultaneous EEG-fMRI work has 

consistently demonstrated that spontaneous EEG alpha power is positively associated with 

thalamic BOLD activity (Goldman et al. 2002, de Munck et al. 2007, Bridwell et al. 2013) and 

negatively related to cortical BOLD activity (Goldman et al. 2002, Laufs et al. 2003, Olbrich et 

al. 2009, Bridwell et al. 2013). The relationship between EEG alpha power and BOLD FC is less 

well established; however, there is some evidence that increased EEG alpha power is associated 

with reduced anticorrelation (i.e., less negative correlations) between thalamic and cortical 

regions (Scheeringa et al. 2012, Allen et al. 2018).  Multimodal imaging research in ASDs 

remains very limited. To our knowledge, only two small EEG-fMRI studies in ASDs have been 

published, both of which explored neural processing during auditory and language processing 

tasks using concurrent EEG-fMRI (Jochaut et al. 2015, Hames et al. 2016). While these efforts 

provide first glimpses of potential links between electrophysiological and hemodynamic 

measures during task performance in ASDs, they cannot speak to unimodal resting state findings 

involving EEG alpha power and thalamocortical networks.  
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 To our knowledge, there are currently no published resting state EEG-fMRI studies of 

ASDs. However, established relationships between thalamocortical networks and EEG alpha 

power in typical development described above provide a compelling direction for future ASD 

research combining EEG and fMRI. Although there are advantages to simultaneous data 

acquisition, this procedure is often lengthy and uncomfortable. This is especially problematic for 

children with developmental disorders. Separately acquired EEG-fMRI data cannot speak to 

concurrent fluctuations in regional BOLD activity/coordination and EEG alpha power within 

individuals. However, these data may still provide important insight into multimodal 

relationships between individuals.  

In order to investigate links between separately acquired EEG and fMRI, suitable 

summary measures for EEG alpha power, BOLD activity, and BOLD FC must be selected. EEG 

alpha power can be averaged over an acquisition period to yield a specific value for each 

participant. Calculating a single representative BOLD value over an entire scan period for an 

individual, on the other hand, is challenging as BOLD units are arbitrary and only relative BOLD 

activity changes can be interpreted meaningfully. Therefore, spontaneous BOLD activity (i.e., 

power) is best summarized by the amplitude of low frequency fluctuations (ALFF; Zang et al. 

2007), a measure that captures power in BOLD frequencies typically around .01-.1 Hz. ALFF is 

often reported together with fractional ALFF (fALFF), i.e., the ratio between low frequency 

power and total power of all frequencies (Zou et al. 2008); ALFF tends to have better test-retest 

reliability, whereas fALFF is considered more robust to non-neuronal artefact (Zuo et al. 2010). 

However, ALFF/fALFF has only played a minimal role in the ASD neuroimaging literature to 

date. A few relevant studies have reported varying findings, from broadly increased ALFF 

(Supekar et al. 2013) to regionally increased fALFF in right frontal and temporal regions (Di 
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Martino et al. 2014) and decreased fALFF in occipital regions (Di Martino et al. 2014, Itahashi et 

al. 2015) 

  The primary aims of this study were to 1) clarify previous unimodal EEG and fMRI 

findings in ASDs described above, and 2) to establish inter-individual relationships between 

EEG alpha power and thalamic activity, cortical activity, and thalamocortical FC in a sample of 

adolescents with and without ASDs.  

Methods 

Participants 

Resting-state EEG was collected from 76 individuals (38 ASD, 38 TD) ages 7-18 years. 

Groups did not significantly differ with respect to age, handedness, sex, nonverbal IQ, or EEG 

length after preprocessing (Table 1a). None of the TD participants were taking psychotropic 

medications or had any documented history of psychiatric or developmental disorders. In the 

ASD group, medication status was documented for 23 of 38 individuals. Of these, six reported 

taking psychotropic medications. 

Functional MRI data were separately acquired from 123 individuals (66 ASD, 57 TD) 

ages 6-18 years. ASD and TD groups did not significantly differ with respect to age, handedness, 

sex, nonverbal IQ, RMSD, a measure of in-scanner head motion (Table 1b). As in the EEG 

sample, none of the TD participants were taking psychotropic medications or had any 

documented history of psychiatric or developmental disorders. In the ASD group, 23 individuals 

reported taking psychotropic medications, 37 were unmedicated, and medication status was 

undocumented for six individuals.  

A subset of participants underwent fMRI and EEG acquisition within three months of one 

another (22 ASD, 25 TD, ages 12-17 years; Table 1c). Four individuals with ASDs and six 
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typically developing individuals were excluded from multimodal analyses due to excessive fMRI 

artefact. One individual with ASD was excluded due to an incidental finding on MRI. Two 

additional typically developing individuals were excluded from the multimodal sample to 

improve matching and to maintain equal sample sizes. The final EEG-fMRI sample consisted of 

17 individuals per group with high-quality data in both modalities. Of these participants, six 

ASD participants were prescribed medications and the remaining 11 were unmedicated. All 

available medication and comorbidity data are summarized in Table S1. 

Across all samples, ASD diagnoses were confirmed based on the Autism Diagnostic 

Interview–Revised (ADI-R, Lord, Rutter, & Le Couteur, 1994), the Autism Diagnostic 

Observation Schedule- Generic (ADOS-G; Lord et al. 2000) or Autism Diagnostic Observation 

Schedule, Second Edition (ADOS-2; Gotham et al. 2007), and expert clinical judgment 

according to DSM-5 criteria.  The Wechsler Abbreviated Scales of Intelligence (WASI, 

Wechsler, 1999) or Wechsler Abbreviated Scales of Intelligence, Second Edition (WASI-II, 

Wechsler, 2011) was administered to all participants. Informed assent and consent were obtained 

from all participants and caregivers in accordance with the University of California, San Diego 

and San Diego State University Institutional Review Boards. 

Electroencephalography (EEG) 

Acquisition 

Continuous EEG was recorded using a Biosemi ActiveTwo system with 68 Ag/AgCl active 

electrodes. Sixty-four electrodes were mounted in an elastic cap according to locations in the 

modified International 10–20 system. Remaining electrodes were placed below the right eye, on 

the outer canthus of the left eye (to monitor blinks and saccades), and over the left and right 

mastoids (reference). EEG data were recorded at a sampling rate of 256 Hz and direct current (DC) 
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offsets were kept below 25 mV at all channels. Participants completed six minutes of eyes-open 

EEG, during which a black central fixation crosshair was presented on a grey background. 

Participants were instructed to relax, remain as still as possible, and look at the crosshair. 

Data Processing 

Data were processed in EEGLAB (Delorme and Makeig 2004) high-pass filtered at 1 Hz, 

and re-referenced to the grand average. Independent component analysis (ICA) was applied using 

the Fieldtrip toolbox (Oostenveld et al. 2011). Each participant's component activations were first 

visually inspected for motor artifact, and noisy segments were manually rejected. Component 

activations and their scalp maps were then examined to identify ocular artifacts, and artifact-

contaminated components were removed (Jung et al. 2000, Jung et al. 2000). Finally, noisy 

channels were excluded and replaced as missing values. After preprocessing, all participants had 

at least two minutes of remaining data for subsequent analyses (Table 1a, Table 1c). For each 

channel, a fast Fourier transform (EEGLab’s spectopo) was applied to continuous (unepoched) 

data to determine the magnitude of power at frequencies ranging from .25 to 128 Hz, at .25 Hz 

increments. The spectral power values were converted from decibels to microvolts squared (μV2). 

Alpha Power Analysis 

Alpha power, expressed as microvolts squared (𝜇𝑉!) was extracted from and averaged 

across parieto-occipital (Oz, POz, O1, O2, PO3, PO4) electrodes. There is strong evidence that 

peak alpha frequency varies substantially between individuals (Haegens et al. 2014), shifts 

throughout childhood and adolescence (Cragg et al. 2011, Miskovic et al. 2015), and may differ 

between ASDs and typical development (Edgar et al. 2015, Dickinson et al. 2018). Therefore, it 

has been recommended that alpha frequency windows be individually defined for each participant 

(Klimesch 1999). For this study, the alpha peak was defined as the local maximum of the average 



 101 

parieto-occipital power spectrum between 7-13 Hz.  Because the alpha rhythm is most prominent 

in posterior regions (Britton et al. 2016), only parieto-occipital electrodes were used to optimize 

signal-to-noise ratio and improve peak estimates. Parieto-occipital alpha power (referred to 

henceforth as “alpha power”) was then extracted from the 4-Hz window surrounding this midpoint 

(e.g., an alpha window of 7-11 Hz for a participant with an alpha peak at 9 Hz). For participants 

with no clear alpha peak (n =7, all ASD), a standard window of 8-12 Hz was applied.  Individual 

alpha peaks ranged from 7.5 Hz to 12.5 Hz and did not differ significantly between groups (ASD 

mean (sd) = 9.76 (.87) Hz, TD mean (sd) = 9.80 (.73) Hz, p = .82).  

Absolute and relative parieto-occipital alpha power were compared between groups using 

two-sample t-tests with degrees of freedom adjusted for unequal variances (using Satterthwaite’s 

approximation). These group analyses were repeated on an unmedicated subsample of ASD 

participants and a matched TD group. To ensure that our findings were not primarily due to 

differences in individual alpha windows, a standard alpha window of 8-12 Hz was compared to 

our method described above for calculating alpha windows. Absolute parieto-occipital alpha 

power calculated using a standard alpha window was highly correlated with the individualized 

window method (r = .99, p < .00001; Figure S1).  

Functional MRI (fMRI) 
 
Acquisition 
 

Imaging data were acquired on a GE 3T MR750 scanner with an 8-channel head coil at 

the Center for Functional MRI (University of California, San Diego). High-resolution structural 

images were acquired with a standard FSPGR T1-weighted sequence (TR: 8.108ms, TE: 3.172 

ms, flip angle: 8°; FOV 256 mm; 1mm3 resolution; 172 slices). Functional T2*-weighted images 

were acquired using a single-shot gradient-recalled, echo-planar imaging pulse sequence (TR: 
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2000ms; TE: 30 ms; flip angle: 90°; 3.4mm isotropic resolution; FOV: 220mm; matrix: 64 x 64; 

42 axial slices). One 6 minute 10 second resting-state scan was obtained consisting of 185 

whole-brain volumes. The first five volumes were discarded to account for T1-equilibration 

effects. Subjects were instructed to fixate on a cross projected onto the middle of a screen, 

viewed through a mirror in the bore, and to “Let your mind wander, relax, but please stay as still 

as you can. Do not fall asleep.”  Compliance with instructions to remain still and awake was 

monitored via video recording.  

Data Processing 

Functional images were processed using Analysis of Functional NeuroImages software 

(AFNI v17.2.07; Cox, 1996) FMRIB Software Library (FSL; v5.0; Smith et al., 2004), and 

Freesurfer (Dale et al. 1999, Fischl et al. 1999, Fischl 2012). Images were slice-time corrected 

and each functional volume was registered to the middle time point of the scan to adjust for 

motion via rigid-body realignment as implemented in AFNI. Field map correction was applied to 

minimize distortions due to magnetic field inhomogeneity. The functional images were 

registered to the anatomical scan via FSL’s FLIRT (Jenkinson & Smith, 2001). Anatomical and 

functional images were resampled to 3mm isotropic voxels and standardized to the atlas space of 

the Montreal Neurological Institute (MNI) template using FSL’s nonlinear registration tool 

(FNIRT).  AFNI’s 3dBlurToFWHM was used to smooth functional images to a Gaussian full 

width at half-maximum (FWHM) of 6 mm. Functional MRI time series were highpass filtered at 

.008 Hz using a second-order Butterworth filter, which was also applied to the 10 nuisance 

regressors (see further down in this section).  

Given the known impact of motion on BOLD correlations (Power et al., 2014), additional 

measures were taken to correct for motion. The mean signal from ventricles and white matter 
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masks (obtained from Freesurfer segmentation of T1-weighted structural image and eroded by 1 

voxel) as well as six motion parameters (obtained from rigid-body realignment) and their first 

temporal derivatives were regressed from the signal. Residuals from nuisance regression were 

used for all subsequent functional connectivity analyses. Root mean squared displacement 

(RMSD), an estimate of head motion across all time points, was calculated for each participant. 

Framewise displacement (FD) was calculated as a volume-by-volume measure of motion. Time 

points with > 0.5 mm FD as well the two subsequent time points were censored. Time series 

fragments with < 10 consecutive time points remaining after censoring were also excluded. 

Minimal censoring was performed (ASD mean = 2.8% censored, TD mean = 2.2% censored), 

and groups did not differ with respect to the number of remaining timepoints (Table 1b).  All 

structural and functional data were visually inspected at every preprocessing stage by at least two 

blinded reviewers to ensure acceptable data quality.  

For ALFF and fractional ALFF (fALFF) analyses, data were processed as above with the 

exception of highpass filtering and censoring, in order to preserve the full timeseries and range of 

frequencies. In FC analyses, minimal censoring was necessary in both groups (averages of 2.8% 

for ASD and 2.2% for TD). Therefore, including these few outlier timepoints for ALFF/fALFF 

analyses is unlikely to affect findings, which summarize the entire timeseries.  Bandpass filtering 

was applied for ALFF analyses in subsequent analysis steps (described below).    

Performing GSR to remove global noise from resting state fMRI time series is 

controversial and a consensus has not been reached (Liu et al. 2017, Murphy and Fox 2017, 

Power et al. 2017a, b; Uddin 2017). While the global BOLD signal at least partially reflects 

physiological artefact (Power et al. 2017b) it also contains neural information (Fox et al. 2009, 

Schölvinck et al. 2010). We matched ASD and TD groups on motion, included only participants 
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with high-quality data, and used white matter and CSF regressors, which have been shown to 

contain physiological artefact as well, for denoising. GSR was therefore not performed to avoid 

potential removal of true neuronal signal.  

Amplitude of Low Frequency Fluctuations (ALFF)  

All ninety-six cortical regions (Table S2) and the thalamus from the Harvard-Oxford 

Atlas (Bohland et al. 2009) were used as regions of interest (ROIs). This relatively coarse 

parcellation minimized the computational burden of the current brain-wide analysis. 

Furthermore, an anatomical parcellation avoids potential confounds related to the greater inter- 

and intra-individual variability of functional atlases (Salehi et al. 2019), which may be especially 

problematic when studying clinical groups. ALFF and fractional ALFF (fALFF) were extracted 

from each ROI using AFNI’s 3dRSFC (Taylor and Saad 2013), with a frequency range of .008-

.08 Hz specified for ALFF.  

Functional Connectivity  

Functional connectivity was assessed between left and right thalamus and all ipsilateral 

cortical ROIs, given predominantly ipsilateral connectivity between thalamus and cerebral cortex 

(Jones 2007). Average timecourses were extracted from each ROI using AFNI’s 3dmaskave. 

Pearson correlations were calculated between ipsilateral thalamus and cortical ROIs and then 

transformed to Fisher’s z values.  

Analysis Approach 

Groups were compared on fMRI measures (i.e., ALFF, fALFF, and thalamocortical FC) 

at two levels of analysis. 1) In order to reduce the dimensionality of the data while preserving 

broad regional patterns of interest, multilevel modeling was conducted separately for six 

mutually exclusive ROI groups in the left and right hemispheres (frontal, limbic, somatomotor, 
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temporal, parietal, occipital; Table S2), which included all 96 cortical ROIs. For example, group 

differences in ALFF were examined for all left frontal ROIs nested within subjects, all left limbic 

ROIs nested within subjects, and so on for all six ROI groups in both hemispheres (Figure S2). 

In other words, for these models each participant had one observation for diagnosis (ASD or 

TD), and n observations (where n = number of ROIs) for ALFF. Degrees of freedom for each 

multilevel model were calculated as: (number of participants x number of nested ROIs) – number 

of model parameters. This approach both reduces the number of comparisons and accounts for 

non-independence of multiple ROIs within each participant. 2) Following MLM, post-hoc 

analyses were conducted at the single ROI-level to characterize group differences in finer detail. 

For ALFF, fALFF, and thalamocortical FC, two-sample t-tests were conducted for each 

individual cortical ROI and the thalamus, with degrees of freedom adjusted for unequal 

variances. ROI-level analyses were repeated for an unmedicated subsample of ASD participants 

and a matched TD group.  

Multimodal Analyses 
 

For the 34 individuals described above with both EEG and fMRI data (Table 1c), 

multimodal analyses were conducted. First, the relationship between absolute EEG  alpha power 

and ALFF, which is considered more comparable to absolute EEG power than fALFF 

(Luchinger et al. 2012), was examined. Furthermore, ALFF demonstrates better test-retest 

reliability than fALFF, and is therefore a more appropriate measure for evaluating between-

subjects relationships (Zuo et al. 2010). As in fMRI-only analyses, effects of interest were 

examined with both MLM and at the single ROI-level. MLM was conducted for each of six 

groups of ROIs (as above) to determine the effect of diagnostic status, alpha power, and their 

interaction on ALFF. Sex and nonverbal IQ were not well-matched between multimodal groups 
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and were therefore included as covariates. As described above for fMRI MLM, each participant 

had one observation for each predictor and covariate, and n observations (where n = number of 

ROIs) for ALFF. At the ROI-level, analogous general linear models were used to examine these 

effects for each individual cortical ROI and the thalamus.  

 Finally, the relationship between alpha power and thalamocortical connectivity was 

explored. As in the multimodal ALFF analysis, MLM was conducted for each ROI group with 

thalamocortical functional connectivity (Fisher’s z) as the dependent variable. General linear 

models were also run at the ROI-level, as described above.  

Multiple Comparison Approach 
 

The analyses described above involve numerous comparisons among cortical ROIs. 

Traditional approaches to multiple comparison correction rely on conservative adjustments to 

significance values (i.e., p-values), with the goal of reducing Type 1 error or false discovery rate. 

However, p-values are influenced by data precision, which is closely tied to sample size. 

Therefore, particularly in smaller samples, inferences based on p-values alone may lead to 

erroneous conclusions (c.f. Schmidt and Rothman 2014). Alternatively, hierarchical models (i.e., 

MLM) have been proposed to account for multiple comparisons without the adjustment of p-

values (Gelman, Hill, & Yajima, 2012), and have demonstrated specific utility in 

neuroimaging (Friston et al., 2002; Friston & Penny, 2003). In order to balance between more 

liberal (i.e., uncorrected p-values for ROI analyses) and conservative approaches (i.e., 

corrections using MLM), we present results from MLM, followed up with uncorrected ROI-level 

comparisons to describe patterns driving MLM findings. Therefore, individual comparisons are 

best interpreted with caution, and in the context of MLM results.   
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Results 

EEG Analyses 

In the full sample with resting-state EEG data, the ASD group showed reduced absolute 

(t(60.41) = 2.74, p = .008) and relative (t(73.42) = 3.83, p < .001) power in the alpha frequency 

band (Figure 1). Groups did not differ with respect to alpha peak frequency (t(58.40) = -0.23, p = 

.82). In a supplemental analysis of only unmedicated ASD participants and a matched TD 

subgroup (n = 17 per group), similar differences were found in both absolute (t(27.17) = -2.22, p 

= .04) and relative alpha power (t(31.30) = -2.39, p = .02; Figure S3), and there were no 

significant group differences for alpha peak frequency (t(30.13) = 1.24, p = .23).  

Functional MRI Analyses 

MLM indicated increased fALFF (ASD > TD) in right temporal regions (t(1843) = 2.45, 

p = .01; Table S3). In ROI-level analyses, ALFF was increased in ASDs in both the anterior 

(t(108.50) = 2.58, p = .01) and posterior (t(116.52) = 2.00, p = .048) segments of the right middle 

temporal gyrus, and fALFF was increased in ASDs in 12 temporal and occipital ROIs spanning 

both hemispheres (p range = [.002, .046]; Figure 2A, Table S4). Finally, at the ROI-level there 

were no group differences in ALFF or fALFF in the thalamus (both p > .70). 

With respect to thalamocortical FC, MLM revealed ipsilateral overconnectivity (ASD > 

TD) involving bilateral frontal, somatomotor, and temporal, as well as left limbic regions (p 

range = [.002, .03], Table S3). ROI-level results were consistent and are presented in Figure 2A 

and Table S4. Supplemental analyses of unmedicated ASD participants and a matched TD 

subsample (n = 37 per group) yielded similar results for ALFF, fALFF, and FC to those reported 

in the full sample (Figure S4). 

Multimodal Analyses 
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Alpha Power and ALFF 

MLM showed multiple alpha by diagnosis interactions with respect to ALFF (i.e., the 

alpha-ALFF relationship differing between groups) in bilateral frontal, limbic, and somatomotor 

ROI groups, with consistently less positive relationships between ALFF and alpha power in the 

ASD compared to the TD group (p range = [.01, .04]; Table S5). Furthermore, MLM combining 

all 96 cortical ROIs in the ASD group alone found that across the whole brain, there was an 

interaction between ADOS total score and alpha power (t(1628) = -2.44, p = .01), such that 

greater ASD symptom severity predicted an overall less positive relationship between alpha 

power and ALFF. Finally, within the ASD group there was no effect of medication on the overall 

relationship between alpha power and ALFF in whole-brain MLM (p = .90). 

 At the ROI-level, thalamic ALFF was not predicted by absolute alpha power, diagnosis, 

or their interaction (all p > .09). Findings for cortical ROIs were consistent with MLM analysis, 

suggesting that alpha-ALFF relationships differed between groups in 15 frontal, limbic, 

somatomotor, and temporal ROIs (Figure 2B, Figure S5, Table 2). Follow-up Pearson 

correlations determined that across all cortical ROIs, alpha power and ALFF were more 

positively related in the TD group (mean r = .40, range = [.11, .70]) than in the ASD group 

(mean r = -.18, range = [-.61, .17]). One-sample t-tests of alpha-ALFF correlations (transformed 

to Fisher’s z) for each ROI corroborated that this relationship was significantly greater than zero 

in the TD group (t(95) = 22.15, p < .0001), but significantly less than zero in the ASD group 

(t(95) = -10.90, p < .0001).  

Alpha Power and Thalamocortical FC 

There was no effect of alpha, diagnosis, or their interaction on thalamocortical 

connectivity in MLM (all p > .11; Table S5). One-sample t-tests indicated that overall, the 
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correlation between EEG alpha and thalamocortical FC was significantly less than zero in both 

the ASD (t(95) = -8.95, p < .0001) and TD groups (t(95) = -3.62, p < .001). At the ROI-level, the 

ASD group showed a more positive relationship between alpha power and thalamocortical FC 

than the TD group for the right angular and supramarginal gyri, whereas the opposite effect of 

group was observed in the occipital pole (p range = [.003, .03]; Table 2).  

Discussion 
 

Our study replicates two commonly reported findings from the unimodal EEG and fMRI 

literatures, showing reduced alpha power as well as predominantly increased thalamocortical 

connectivity in children and adolescents with ASDs. Although no robust group differences were 

detected for ALFF, findings suggest spontaneous BOLD fluctuations in right temporal lobe may 

be increased in ASDs. Multimodal analyses identified group differences in the relationship 

between EEG alpha power and ALFF, but not between alpha power and thalamocortical FC.  

Unimodal Group Differences 
 
Reduced EEG alpha in ASDs  

In line with previous research (Murias et al. 2007, Keehn et al. 2017) our EEG sample 

showed atypically reduced posterior (i.e., occipital or parietal) resting state alpha power in 

children and adolescents with ASDs. Although the resting alpha rhythm is most prominent at 

posterior electrodes, reduced alpha power in ASDs has also been reported more broadly in 

frontal and temporal regions (for review, see Wang et al. 2013). The resting alpha rhythm is 

inversely associated with autonomic arousal (i.e., electrodermal activity) in typically developing 

children (Barry et al. 2004), which is thought to be coordinated largely by inhibitory GABAergic 

interneurons (Jensen and Mazaheri 2010). In ASDs, an imbalance between excitatory and 

inhibitory neural activity has been proposed (Rubenstein and Merzenich 2003, Nelson and 
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Valakh 2015), which may lead to such changes in autonomic activity. This is supported by 

evidence of tonic hyperarousal (Palkovitz and Wiesenfeld 1980) as well as histological (Oblak et 

al. 2010, Hashemi et al. 2017) and magnetic resonance spectroscopy reports (Gaetz et al. 2014, 

Puts et al. 2017) of reduced GABA in this population.   

Increased thalamocortical connectivity in ASDs 

Previous findings with respect to thalamocortical FC in ASDs have been only partially 

consistent. Nair et al. (2015), who included a smaller sample partly overlapping with that of the 

current study, reported primarily reduced thalamocortical FC with frontal, parietal, and occipital 

regions and increased FC with auditory, primary motor, and limbic areas.  These distinct findings 

may be attributed to methodological differences. For example, the focus on functional 

differences within the thalamus through voxelwise analyses by Nair et al. (2015) contrasts with 

focus on overall thalamic connectivity with each cortical ROI in the present study.  

Similarly to Nair and colleagues (2015), Cerliani and colleagues (2015) reported 

overconnectivity between thalamus and primary sensory and motor networks (including 

somatosensory, motor, visual, and auditory regions) identified through independent component 

analysis in a larger sample of children and adults (ages 7-50; 166 ASD, 193 TD) from the 

Autism Brain Imaging Data Exchange (ABIDE) database; however, they did not find any 

evidence of thalamocortical underconnectivity.  Another study using a large ABIDE sample 

(ages 6-40; n=228 per group) described overconnectivity between thalamus and primary sensory 

cortices (including somatosensory, motor, and temporal regions) as well as prefrontal cortex 

(Woodward et al. 2017). Furthermore, this study reported greatest overconnectivity in older 

adolescents (ages 13-18) compared to other age groups.  These findings are consistent with 
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results from the current study, which also found exclusive overconnectivity with frontal, 

temporal, somatomotor, and limbic ROIs in children and adolescents.  

Regionally Increased BOLD activity in ASDs  

The results of the current study support increased BOLD activity (i.e., ALFF, fALFF) in 

bilateral (right more than left) temporal and occipital regions; no evidence of decreased ALFF or 

fALFF was found. These findings are only partly consistent with extremely limited previous 

research examining ALFF and fALFF in ASDs. In a multi-site study, Supekar et al. (2013) 

reported broadly increased ALFF across the brain in ASDs in multiple independent cohorts of 

children. In a large ABIDE sample, increased fALFF was found in right temporal regions (as in 

the current study), as well as in right dorsal superior frontal cortex (Di Martino et al. 2014). 

However, this same study and another (Itahashi et al. 2015) reported reduced fALFF in left and 

right occipital regions in ASDs. This is contrary to the findings from the current study, which 

were exclusively positive (i.e., ASD > TD) for both temporal and occipital regions.   

EEG-fMRI Associations Differ Between Groups  
 
EEG Alpha and ALFF 
 

Relationships between EEG alpha power and fMRI measures were surprising and 

seemingly counterintuitive, in light of the well-established inverse relationship between 

concurrent (i.e., simultaneously acquired) EEG alpha and cortical BOLD activity in TD adults. 

However, simultaneous alpha and BOLD timeseries are distinct from overall alpha power and 

ALFF, which were measured in the current study. The former describes moment-to-moment 

fluctuations, but the latter provide summary measures of alpha and BOLD magnitude across an 

entire recording session. In the current study, alpha power had an overall positive relationship 

with spontaneous BOLD activity (ALFF) in TD adolescents, but a weakly negative relationship 
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with ALFF in those with ASDs. This difference was driven mainly by frontal, limbic, and 

somatomotor regions. Furthermore, a more negative alpha-ALFF relationship across the entire 

brain was associated with greater ASD symptom severity. The underlying neural basis of this 

relationship remains unclear but may relate to differences in inhibitory GABAergic activity, as 

described earlier.  Importantly, GABA is thought to mediate thalamocortical regulation of the 

alpha rhythm (Hughes and Crunelli 2005, Lorincz et al. 2009, Lozano-Soldevilla et al. 2014). 

Therefore, impaired GABAergic signaling in ASDs could conceivably disrupt modulation of 

alpha rhythms by thalamic and cortical activity, leading to an atypically weak relationship 

between alpha and cortical BOLD magnitudes in ASDs. 

EEG Alpha and Thalamocortical FC  

Thalamocortical FC and EEG alpha power showed overall weakly negative associations 

in both ASD and TD groups across the brain. This diverges from findings described above for 

ALFF; while the magnitude of BOLD activity appears to be dissociated from alpha power in 

ASDs, coordination between thalamus and cortex showed a comparatively normal relationship 

with alpha power in the ASD group. This negative alpha-FC relationship across groups in our 

multimodal sample may be considered in relation to unimodal results in our larger EEG and 

fMRI samples. Specifically, the ASD samples showed reduced alpha power in EEG analyses, but 

widespread overconnectivity between thalamus and frontal, limbic, somatomotor, and temporal 

ROIs in functional connectivity MRI analyses. The overall negative relation between alpha and 

thalamocortical FC detected in both ASD and TD subsamples with multimodal data suggests that 

the two findings in the larger unimodal samples may be related, implying that children with 

ASDs with most severely reduced alpha power will also tend to show heavier overconnectivity 

between thalamus and cerebral cortex.  
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Limitations and Future Directions 
 

The current study included a limited subsample of participants with high-quality data in 

both EEG and fMRI modalities. Only high-functioning individuals with ASDs were included, 

who may not represent the full autism spectrum. Furthermore, groups were not well matched for 

verbal IQ in the fMRI-only and multimodal samples. However, as verbal abilities are related to 

core ASD symptomatology in the sociocommunicative domain, verbal IQ was not included as a 

covariate in group analyses. Therefore, reported group differences cannot be definitively 

dissociated from verbal ability in the current study.  Future research with larger, matched 

samples representing a broader range of ASD symptom severity may help to clarify some of the 

patterns suggested by the current study. 

Another important consideration is the distinction between multimodal relationships 

within versus between individuals. Past research using simultaneous recordings has examined 

concurrent fluctuations in EEG and fMRI within typically developing adults, or “state-level” 

associations. Separately acquired data cannot answer this question, but they can speak to how 

these signals are related between individuals, at the “trait-level.” For example, it has been 

established that within individuals (state-level), moment-to-moment increases in EEG alpha 

power are associated with concurrent decreases in cortical (but not thalamic) BOLD (Goldman et 

al. 2002, Laufs et al. 2003, Olbrich et al. 2009, Bridwell et al. 2013). However, the present study 

suggests a seemingly opposite relationship between typical developing individuals (trait-level), 

such that in typical development, those showing higher overall alpha power also show greater 

magnitude of spontaneous BOLD fluctuations. These trait-level associations are an important 

bridge between fMRI and EEG research in ASDs. Group differences reported by unimodal 

studies suggest that there are meaningful, interindividual differences between ASD and TD 
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groups. Therefore, a clear understanding of normative interindividual relationships between 

multimodal measures will provide a common context for interpreting past EEG and fMRI 

findings. Future research may further explore these important questions with simultaneous EEG-

fMRI when possible, and by conducting both within-subjects analysis of temporal dynamics as 

well as between-subjects analysis of multimodal relationships. 

Conclusion 
 

This is the first known study to characterize relationships between resting state EEG and 

fMRI measures in ASDs. Reduced alpha power and broadly increased thalamocortical 

connectivity were found in ASDs relative to TD individuals. Results also suggest a positive 

relationship between EEG alpha power and cortical BOLD activity in typical development, 

which was not observed in ASDs. These findings raise questions for future research about 

potential abnormalities in thalamocortical regulation of the alpha rhythm in this disorder.  
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Table 3.1 Sample Characteristics 

A. EEG Sample 
 ASD (n = 38) TD (n = 38) Statistic p 

Sex 32 male 29 male 𝜒2(1) = 0.75 .39 
Handedness 35 right 32 right 𝜒 2(1) = 1.13 .29 

Age 12.6 (2.4) 13.0 (2.8) t(74) = -0.57 .57 
 [7.1 – 17.1] [7.1 – 18.0]   

Usable EEG (min) 4.9 (1.0) 5.2 (0.7) t(74) =-1.83 .07 
 [2.2 – 6.0] [2.9 – 6.0]   

VIQ 105 (18) 108 (11) t(74) = -0.86 .39 
 [72 – 147] [83 – 126]   

NVIQ 104 (18) 107 (12) t(74) = -0.61 .54 
 [64 – 140] [77 – 129]   

ADOS SC 10 (4)   
 [1 – 19]    

ADOS RRB 4 (4)    
 [0 – 19]    

ADOS Total 14 (4)    
 [8 – 23]    

B. fMRI Sample 
 ASD (n = 66) TD (n = 57) Statistic p 

Sex 54 male 45 male 𝜒 2(1) = 0.16 .69 
Handedness 58 right 49 right 𝜒 2(1) = 0.10 .75 

Age 13.4 (2.6) 13.1 (2.8) t(121) = 0.53 .60 
 [8.0-18.0] [6.9-17.6]   

Usable fMRI (timepoints) 175 (7) 176 (7) t(121) = -0.48 .63 
 [144 – 180] [145 – 180]   

RMSD 0.08 (0.04) 0.07 (0.04) t(121) = 0.36 .72 
 [0.02 – 0.19] [0.02 – 0.17]   

VIQ 101 (17) 107 (11) t(121) = -2.19 .03 
 [67 - 147] [73 - 127]   

NVIQ 105 (17) 106 (13) t(121) = -0.58 .56 
 [53 – 140] [62 - 137]   

ADOS SC 12 (4)    
 [6 – 22]    

ADOS RRB 2 (2)    
 [0 – 7]    
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C. EEG-fMRI Sample 
 ASD (n = 17) TD (n = 17) Statistic p 

Sex 16 male 13 male 𝜒 2(1) = 2.11 .15 
Handedness 15 right 13 right 𝜒 2(1) = 0.81 .37 

Age 14.3 (1.5) 14.5 (1.4) t(32) = -0.43 .67 
 [12.7 – 17.1] [12.4 – 16.8]   

Usable EEG (min) 5.3 (0.59) 5.2 (0.72) t(32) = 0.07 .94 
 [3.9– 6.0] [2.9 – 5.9]   

Usable fMRI (timepoints) 176 (7) 177 (5) t(32) = -0.53 .60 
 [153 – 180] [165 – 180]   

RMSD 0.07 (0.04) 0.07 (0.04) t(32) = -0.17 .87 
 [0.02 – 0.15] [0.03 – 0.16]   

VIQ 116 (13) 107 (10) t(32) = 2.32 .03 
 [88– 147] [87– 126]   

NVIQ 116 (11) 110 (12) t(32) = 1.67 .11 
 [100 – 140] [86 – 129]   

ADOS SC 10 (3)    
 [7 – 19]    

ADOS RRB 2 (1)    
 [0 – 4]    

ADOS Total 12 (4)    
 [8 – 23]        

Values are presented as mean (SD), [range]. VIQ = Verbal IQ; NVIQ = Nonverbal IQ; FSIQ = Full Scale 
IQ; ADOS = Autism Diagnostic Observation Schedule; SC = Social Communication; RRB = 
Restricted/Repetitive Behavior; RMSD = Root Mean Squared Displacement 
  

ADOS Total 14 (4)    
 [7 – 24]    
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Table 3.2 ROI-level EEG-fMRI Findings 
 

ROIs with group differences (p < .05, uncorr) are shown. 
 
  

Outcome  Region df Alpha*Group (t) p 

ALFF 

L Frontal Medial Cortex 28 -2.40 .02 
L Frontal Operculum Cortex 28 -3.17 .004 
L Cingulate Gyrus (anterior) 28 -2.16 .04 
L Supplementary Motor Cortex 28 -2.53 .02 
L Temporal Fusiform Cortex (anterior) 28 -2.94 .007 
L Temporal Pole 28 -2.28 .03 
R Frontal Medial Cortex 28 -2.26 .03 
R Superior Frontal Gyrus 28 -2.32 .03 
R Cingulate Gyrus (anterior) 28 -2.38 .02 
R Paracingulate Gyrus 28 -2.24 .03 
R Parahippocampal Gyrus (anterior) 28 -2.28 .03 
R Supplementary Motor Cortex 28 -3.49 .002 
R Middle Temporal Gyrus (anterior) 28 -2.50 .02 
R Temporal Fusiform Cortex (anterior) 28 -2.30 .03 
R Temporal Fusiform Cortex (posterior) 28 -2.09 .046 

Thalamocortical FC 

R Angular Gyrus 28 3.21 .003 

R Supramarginal Gyrus (posterior) 28 2.33 .03 

R Occipital Pole 28 -2.52 .02 
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Figure 3.1 Group Differences in EEG Alpha Power 
Bars show absolute and relative alpha power averaged across participants in each group. Both absolute 
and relative alpha power are smaller in the ASD group than the TD group.  
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Figure 3.2 fMRI and Multimodal Group Differences 
Panel A: ROIs showing group differences (p < .05, uncorr.) in ALFF (left), fALFF (middle), and 
thalamocortical FC (right) are depicted.  Colors represent t-scores (positive indicates ASD > TD). Panel 
B: Pearson correlations (colors represent r) between EEG alpha power and ALFF are depicted for each 
cortical ROI in the ASD group (left) and the TD group (middle). Alpha-ALFF relationships are generally 
negative in the ASD group, but positive in the TD group. ROIs with group differences in the alpha-ALFF 
relationship (i.e., alpha by group interaction; p < .05, uncorr.) are shown (right). Colors represent t-scores 
(negative indicates a less positive alpha-ALFF association in ASD relative to TD). Figures were 
visualized with the BrainNet Viewer (Xia et al. 2013, http://www.nitrc.org/projects/bnv)  
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Chapter 5: 

General Discussion 

The three studies described above each explore alternative approaches to static, unimodal 

FC analysis, which has largely dominated the ASD neuroimaging literature to date. Each study 

offers novel insights into features of brain activity that may be overlooked by standard analyses, 

and how these features may (or may not) be altered in ASDs. Specifically, this dissertation 

examined the nature of transient FC patterns, BOLD lag structure, and EEG-fMRI associations 

in children and adolescents with and without ASDs. Study 1 found group differences in the 

patterns of two transient FC states, despite the absence of static FC group differences. Study 2 

reported that BOLD lag patterns changed in response to task demands and were associated with 

arterial blood supply, but found no clear group differences in BOLD lag in either resting or task 

conditions.  Finally, Study 3 showed that separately acquired EEG alpha power and regional 

BOLD activity were positively associated in typical development, whereas this association was 

weakly negative in ASDs. Altogether, this work highlights the importance of integrating 

dynamic and multimodal data to clarify and refine existing models of atypical FC in ASDs.  

Functional Connectivity Dynamics: Transient States and Lag Patterns 
 

Studies 1 and 2 take distinct, yet complementary approaches to evaluating the temporal 

structure of BOLD correlations. Study 1 used sliding window analysis and k-means clustering to 

reveal transient connectivity states and explore the variability of individual connections over 

time; in other words, this study focused on changes in simultaneous BOLD correlations across 

contiguous time segments. Study 2, on the other hand, examined lag between regional BOLD 

timeseries over an entire scan period using cross-covariance, which does not assume 

simultaneous coactivation between regions. It is unknown how or whether BOLD lag is 
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associated with transient FC states, but any evidence of atypical lag structure in ASDs could 

suggest a potential mechanism for transient FC group differences, particularly if atypical 

latencies were state-dependent (i.e., rest vs. task performance).  However, while Study 1 revealed 

robust group differences in transient FC patterns, BOLD lag patterns in Study 2 did not differ 

between groups during either rest or task performance.  

One interpretation of these findings is that atypical transient FC in ASDs is independent 

of BOLD lag structure, which appears to be similar across groups. However, there is currently 

little consensus about BOLD lag in ASDs, with the few other known studies of adults reporting 

atypical latencies in specific regions (Mitra et al., 2017) and across multiple networks (King et 

al., 2018; Raatikainen et al., 2020). Furthermore, Study 2 found that BOLD latency patterns 

differed across traditional arterial flow territories, and that mean latencies in these territories 

were highly associated with literature-derived estimates of arterial transit time, suggesting a 

substantial vascular contribution to observed BOLD lags. This finding highlights a key limitation 

of the BOLD signal as a means of examining brain dynamics. The slowness of the BOLD signal 

and its inherent association with hemodynamic factors complicate the separation of neural 

dynamics from regional differences in vasculature and other variables affecting neurovascular 

coupling. This is particularly problematic for lag analysis, which is highly influenced by regional 

differences in blood supply. However, the temporal resolution of sliding-window analysis is also 

considerably limited by the delay between neural activation and the BOLD signal peak. Dynamic 

fcMRI methods have the potential to improve our understanding of the extensive and often 

contradictory fcMRI literature in ASDs, but they represent only one component of a broader 

movement toward an integrated understanding of spatiotemporal brain dynamics.  
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Moving Toward Multimodal Research 
 

The BOLD signal is a slow, hemodynamic measure with insufficient temporal resolution 

to capture neural dynamics at a millisecond timescale. Therefore, multimodal research 

combining fMRI with direct measurements of neural activity with high temporal resolution (i.e., 

EEG or MEG) are needed to fill critical gaps in our understanding of dynamic brain networks in 

ASDs. Concurrent EEG-fMRI relationships (i.e., simultaneously measured) are relatively well-

established in neurotypical adults, but very few studies have combined these modalities in ASDs. 

Study 3 sought to characterize relationships between separately acquired EEG and fMRI 

measures, which are not well understood in either ASDs or typical development. Although 

separately acquired data cannot speak to dynamic network functioning, they may help to clarify 

group differences in previous, unimodal EEG and fMRI studies. 

Study 3 found unimodal group differences similar to those reported in previous studies, 

including reduced parieto-occipital EEG alpha power and broadly increased thalamocortical FC, 

as well as increased right temporal BOLD activity (amplitude of low frequency fluctuations; 

ALFF) in children and adolescents with ASDs. Multimodal analyses revealed that overall, alpha 

power and thalamocortical FC were negatively associated in both groups; this is generally 

consistent with reduced alpha power and increased thalamocortical FC in ASDs observed in 

unimodal studies. However, the alpha-ALFF relationship was reversed between groups (positive 

in typical development, negative in ASDs), and a more negative relationship predicted greater 

symptom severity in the ASD group. This complicates the interpretation of unimodal findings 

and may suggest a disruption in the processes that coordinate the alpha rhythm with cortical 

activity at rest.  
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In a study using simultaneous EEG-fMRI recordings, transient fcMRI states (derived 

using the same sliding window method as Study 1 showed unique EEG spectral signatures 

during the resting state in neurotypical adults (Allen et al., 2017). Interestingly, one state 

showing increased thalamocortical anticorrelation was associated with decreased EEG alpha 

power (as well as increased power in theta and delta bands). This relationship is opposite from 

the alpha-thalamocortical FC association described for separately collected data in Study 3, 

which may be explained by differences between within-subject, concurrent data, and between-

subjects, separately acquired data (see Study 3 for in-depth discussion). Nonetheless, this raises 

questions for future research about potential state-dependent EEG-fMRI relationships in autism, 

and their association with transient BOLD correlations (as in Study 1). For example, using 

concurrent recordings, it would be possible to examine whether alpha-ALFF or alpha-FC 

associations vary over time, and how these temporal features may characterize ASDs more 

clearly than static or unimodal measures.   

It is also worthwhile to consider how EEG measures may inform BOLD lag analyses. 

Study 2 highlighted inherent difficulties interpreting lag differences between two BOLD 

timeseries, due to regional differences in vascular and hemodynamic features that affect the 

timing of both signals.  However, simultaneous EEG-fMRI has been used to establish lag 

patterns between modalities, where only one modality is affected by hemodynamics. For 

example, thalamic BOLD signal increases have been found to precede corresponding increases 

in EEG alpha power by several seconds (de Munck et al., 2007; Feige et al., 2005; Feige et al., 

2017). One of these studies further reported that BOLD activity preceded EEG power increases 

across a broader range of regions and frequency bands, while negative BOLD-EEG power 

associations were more common at zero-lag (Feige et al., 2017). Multimodal lag analyses may 
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improve our understanding of BOLD lag structure and may help to clarify temporal features of 

EEG-fMRI relationships, such as those described in Study 3.  

Conclusions 
 

The increasing prevalence of ASDs in recent decades has fueled a proliferation of 

research examining the neural underpinnings of these disorders. Neuroimaging studies have 

repeatedly implicated distributed brain network abnormalities in ASDs, but these findings have 

not been clear or consistent enough to reliably distinguish children diagnosed with ASDs from 

their typically developing peers. These shortcomings are partly associated with methodological 

limitations of noninvasive neuroimaging modalities, such as EEG and fMRI. However, advanced 

analytical approaches, such as dynamic fcMRI and combined EEG-fMRI analysis, have been 

increasingly used to explore complex spatiotemporal dynamics of brain networks in typical 

adults. The studies that comprise this dissertation are among the first to apply these methods to 

children and adolescents with ASDs.  

 This dissertation demonstrates the unique potential of dynamic and multimodal 

neuroimaging methods to reveal a more detailed picture of atypical brain function in ASDs. 

These three studies generate evidence that transient FC patterns and EEG-fMRI relationships 

may provide important clues about the neurobiology of ASDs that cannot be gleaned from 

traditional fcMRI and EEG analyses. However, many important questions remain about the 

timing, structure, and flexibility of coordinated brain activity in these heterogeneous disorders. 

Future multimodal work aimed at clarifying the nature of dynamic network communication in 

ASDs will be essential in moving this promising avenue of research forward.  
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