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Abstract 

The linearized approximation to the semiclassical initial value representation (LSC-IVR) has been 

used together with the thermal Gaussian approximation (TGA) (TGA/LSC-IVR) [J. Chem. Phys. 125, 

224104 (2006)] to simulate quantum dynamical effects in realistic models of two condensed phase 

systems.  This represents the first study of dynamical properties of the Ne13 Lennard-Jones (LJ) 

cluster in its liquid-solid phase transition region (temperature from 4 K to 14 K).   Calculation of the 

force autocorrelation function shows considerable differences from that given by classical mechanics, 

namely that the cluster is much more mobile (liquid-like) than in the classical case.  Liquid 

para-hydrogen at two thermodynamic state points (25 K and 14 K under nearly zero external 

pressure) has also been studied.  The momentum autocorrelation function obtained from the 

TGA/LSC-IVR approach shows very good agreement with recent accurate path integral Monte Carlo 

(PIMC) results at 25 K [J. Chem. Phys. 125, 024503 (2006)].  The self-diffusion constants calculated 

by the TGA/LSC-IVR are in reasonable agreement with those from experiment and from other 

theoretical calculations.  These applications demonstrate the TGA/LSC-IVR to be a practical and 

versatile method for quantum dynamics simulations of condensed phase systems. 
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I. INTRODUCTION 

Theoretical simulations of the dynamics of large molecular systems is an extremely active 

area of research nowadays, and as in most areas of theory, the accuracy of the treatment is inversely 

related to the ease of its application.  It is thus useful to have a full ‘menu’ of theoretical approaches, 

from the very accurate, which may be difficult to apply to very large systems, to much simpler and 

more approximate methods that are more readily applicable to complex molecular systems. 

Perhaps the simplest theoretical approach to chemical dynamics is classical mechanics, i.e., 

classical molecular dynamics (MD) simulations (which are extremely wide spread nowadays), while 

the most accurate treatment is of course a complete solution of the time-dependent Schrödinger 

equation.    Semiclassical (SC) theory1,2 stands between these two limits: it utilizes classical 

trajectories as ‘input’, and thus contains classical dynamics, and incorporates quantum mechanics 

approximately, i.e., within the SC approximation.  The SC approximation actually contains all 

quantum effects at least qualitatively, and in molecular systems the description is usually quite 

quantitative.  This was first demonstrated by work in the 1970’s on small molecular systems 

(primarily scattering problems)1-6, and more recently in applications to systems with many degrees of 

freedom by using various initial value representations (IVRs) of SC theory (primarily to calculate 

time correlation functions)7-18. 

The SC-IVR approach is also intermediate between classical MD and a full quantum 

treatment with regard to ease of application, i.e., it is more difficult to apply than standard classical 
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mechanics, but much easier (for large molecular systems) than a full quantum calculation.  Within 

the SC-IVR framework, too, there is a ‘sub-menu’ of approaches, from the full SC-IVR treatment 

which entails no additional approximations, to other versions that introduce approximations beyond 

the SC approximation itself to make it easier to apply to complex systems. 

The simplest (and most approximate) version of the SC-IVR is its ‘linearized’ approximation 

(LSC-IVR)19-24, which leads to the classical Wigner model25-27 for time correlation functions; see 

Section IIA for a summary of the LSC-IVR.  The classical Wigner model is an old idea, but it is 

important to realize that it is contained within the SC-IVR approach, as a well-defined approximation 

to it.  There are other ways to derive the classical Wigner model (or one may simply postulate it)28-31, 

and we also note that the ‘forward-backward semiclassical dynamics’ (FBSD) approximation of Makri 

et al32-39 is very similar to it.  The LSC-IVR/classical Wigner model cannot describe true quantum 

coherence effects in time correlation functions—more accurate SC-IVR approaches, such as the 

Fourier transform forward-backward IVR (FB-IVR) approach40,41 (or the still more accurate 

generalized FB-IVR42) of Miller et al, are needed for this—but it does describe a number of aspects of 

the dynamics very well21-24,43.  E.g., the LSC-IVR has been shown to describe reactive flux 

correlation functions (which determine chemical reaction rates) quite well, including strong tunneling 

regimes22, and velocity correlation functions in systems with enough degrees of freedom for quantum 

re-phasing to be unimportant23,43. 

Within the LSC-IVR approximation for thermal time correlation functions the most 
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challenging aspect of the calculation (beyond what is required for a purely classical MD calculation) 

is construction of the Wigner function involving the Boltzmann operator23.  In a previous paper23 the 

two of us showed that the thermal Gaussian approximation (TGA)44-46 of Frantsuzov and 

Mandelshtam could be very fruitfully adapted for this purpose; Section IIB summarizes this 

approximation.  Test calculations in our previous paper23 showed that the TGA introduced no 

significant approximation beyond that of the LSC-IVR itself (at least for the applications considered).   

We have demonstrated that the combined TGA/LSC-IVR can be readily applied to condensed phase 

systems with a simulation of the dynamics of liquid neon near its triple point (around 29.90 K). 

The purpose of this paper is to apply this combined TGA/LSC-IVR approach to two much 

more challenging examples, (a) a Ne13 Lennard-Jones (LJ) cluster in the temperature range 

, which encompasses the transition of the cluster from solid-like to liquid-like behavior, 

and (b) liquid para-hydrogen at two temperatures, 25 K and 14 K (under nearly zero external 

pressure).  The Ne

4 K 14 KT≤ ≤

13 LJ cluster is such a demanding system that even its thermodynamic properties 

were not treated accurately until recently45,47, since the simulation of quantum canonical ensemble of 

small neon clusters is far from trivial48.  The present TGA/LSC-IVR simulation is the first study of 

quantum dynamical effects in this system.  In the second example, liquid para-hydrogen, collective 

coherent excitations have been discovered49,50, and its transport properties (e.g. self-diffusion 

constants) have been measured51 and also studied by others with a variety of theoretical methods43,52-56.  

It thus serves as another useful benchmark system to test the applicability and accuracy of the 
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TGA/LSC-IVR approach. 

Section II first summarizes the TGA/LSC-IVR methodology very briefly, and Section III then 

presents the results of the present applications.  Section IV concludes. 

II. METHODOLOGY 

 In this section we briefly review the TGA/LSC-IVR methodology23 that we have developed 

recently.  Our focus is on equilibrium time correlation functions57 of systems at finite temperature, 

which are of the form 

 ( ) ( )ˆ ˆ/ /ˆ ˆTr iHt iHt
ABC t A e Beβ −=  (2.1) 

where ˆ1ˆ H
ZA eβ β−= Â  for the standard version of the correlation function, or 

ˆ ˆ/ 2 / 21ˆ ˆ
sym

H H
ZA e Aeβ ββ − −=  

for the symmetrized version58, or ( ) ˆ ˆ1
0

ˆ d H ˆ H
Kubo ZA e

β β λ Aeβ λ
β λ − − −= ∫  for the Kubo-transformed version59.  

These three versions are related to one another by the following identities between their Fourier 

transforms, 

 ( ) ( ) ( )/ 2

1
Kubo sym
AB AB ABC C e C

e
β ω

β ω

β ω ω ω− = =
−

ω

t

 (2.2) 

where  etc. Here ( ) ( )i t
AB ABC dt e Cωω

∞
−

−∞

= ∫ Ĥ  is the (time-independent) Hamiltonian for the 

system, which for large molecular systems is usually expressed in terms of its Cartesian coordinates 

and momenta 

 ( ) ( )T
11

02
ˆH V H−= + = +p M p q qV  (2.3) 
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where  is the (diagonal) mass matrix and ,  are the momentum and coordinate operators, 

respectively. Also, in Eq. 

M p q

(2.1) ( )ˆTr 1/H
BZ e β β−= = k T  is the partition function, and  and Â B̂  

are operators relevant to the specific property of interest. 

A.  Linearized Semiclassical Initial Value Representation 

 The SC-IVR approximates the forward (backward) time evolution operator  ( ) by 

a phase space average over the initial conditions of forward (backward) classical trajectories

ˆ /iHte− ˆ /iHte

1,7-9.  By 

making the (drastic but reasonable) approximation that the dominant contribution to the phase space 

averages comes from forward and backward trajectories that are close to one another and then 

linearizing the forward and backward actions of such trajectories, Miller and coworkers19-21 obtained 

the linearized SC-IVR (LSC-IVR), or classical Wigner model for the correlation function 

 ( ) ( ) ( )0 0 0 0, ,LSC IVR
AB w w t tC t d d A Bβ− = ∫ ∫x p x p x p  (2.4) 

where wAβ  and wB  are the Wigner functions25 corresponding to these operators, 

 ( ) /ˆ, / 2 / 2
Ti

wO d O e= − +∫ p Δxx p Δx x Δx x Δx  (2.5) 

for any operator .  Here Ô ( )0 0,x p  is the set of initial conditions (i.e., coordinates and momenta) 

for a classical trajectory, ( ) ( )( 0 0 0 0, , ,t tp p px x x )  being the phase point at time  along that 

trajectory.  The LSC-IVR approximation for the time correlation function approaches the classical 

limit at high temperature, and for the case of a harmonic potential it gives the exact quantum 

correlation function for all time t and for arbitrary operators  and 

t

Â B̂ ; it also gives the correct 

quantum result as t  for arbitrary potentials.  The LSC-IVR can be applied not only to 0→
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correlation functions at equilibrium but also to non-equilibrium correlation functions.  These merits 

of the LSC-IVR make it a versatile tool to study quantum-mechanical effects in chemical dynamics of 

complex (large) systems. 

 The LSC-IVR formulation of the time correlation function has also been obtained from a 

different approach by Pollak and Liao28, Shi and Geva29, and Rossky et al30 by adopting a similar 

linearization approximation but to the real time path integral representation of the time evolution 

operators in the correlation function.  More recently, Liu and Miller31 have shown that the exact 

quantum time correlation function can be expressed in the same form as Eq. (2.4), with an associated 

dynamics in the single phase space, and it was furthermore demonstrated that the LSC-IVR is its 

classical limit , high temperature limit 0→ 0β → , and harmonic limit.  This formulation thus 

suggests ways to improve the LSC-IVR without having to deal with the phase cancellation problems 

in the full version of the SC-IVR. 

Calculation of the Wigner function for operator B̂  in Eq. (2.4) is usually straight-forward; in 

fact, B̂  is often a function only of coordinates or only of momenta, in which case its Wigner 

function is simply the classical function itself.  Calculating the Wigner function , 

however, involves the Boltzmann operator with the total Hamiltonian of the complete system, so that 

carrying out the multidimensional Fourier transform to obtain it is far from trivial.  Furthermore, it is 

necessary to do this in order to obtain the distribution of initial conditions of momenta  for the 

real time trajectories.  A rigorous way to treat the Boltzman operator is via a Feynman path integral 

( )0 0,wAβ x p

0p
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expansion, but it is then in general not possible to evaluate the multidimensional Fourier transform 

explicitly to obtain the Wigner function ( )0 0,wAβ x p , as discussed by Liu and Miller23.  The inability 

to calculate the Wigner function of Âβ  exactly is in fact the reason for the various harmonic and 

local harmonic approximations to the Boltzmann operator20,23,24,30 that have been used in 

implementing the LSC-IVR.  These approximations have been successfully applied to several 

interesting complex systems23,43,60. 

B.  LSC-IVR Correlation Functions Using the Thermal Gaussian Approximation 

Here we use the thermal Gaussian approximation44-46 (TGA) of Frantsuzov and Mandelshtam 

to construct the Boltzmann operator as necessary for the LSC-IVR16.  In the TGA, the Boltzmann 

matrix element is approximated by a Gaussian form: 

 
( )( )

( )( ) ( ) ( )( ) ( )
3 / 2

ˆ 1
1/ 2

1 1 1exp
2 2det

N
THe τ τ τ τ γ

π τ
− −⎛ ⎞ ⎛= − − −⎜ ⎟ ⎜

⎝ ⎠ ⎝
0x q x q G x q

G
τ ⎞+ ⎟
⎠

 (2.6) 

where ( )τG  is an imaginary-time dependent real symmetric and positive-definite matrix, ( )τq  the 

center of the Gaussian, and ( )γ τ  a real scalar function.  The parameters are governed by the 

equations of motion in imaginary time which were given explicitly in our previous paper23 and in 

other references44-46.  The matrix ( )τG  is a full 3 3N N×  matrix, where  is number of 

particles of the system.  To simplify the calculation further, in reference

N

45 Frantsuzov and 

Mandelshtam approximated the matrix ( )τG  by neglecting off-diagonal elements between different 

particles, so that it becomes a block diagonal matrix with  blocks of  real symmetric 

matrices, one for each particle.  We term the former (with the full G matrix) as the ‘Full-TGA’, and 

N 3 3×
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the latter (with the single particle approximation) as the ‘SP-TGA’.  Recent applications have shown 

the TGA to be a good approximation for the thermodynamic properties of some complex systems 

(neon clusters) even at very low temperature45,61,62. 

The TGA for the Boltzmann operator makes it possible to perform the Fourier transform 

necessary to construct the Wigner function of operator Âβ  analytically; specifically, ( )0 0,wAβ x p  

in Eq. (2.4) is given as follows23 

 

( )
( )

( )( )
( )

( )
( )( ) ( ) ( )( )( )

( )
( )

( )( )

( )( )

2

3 / 2 1/ 2

2

1
0 02 2 21/ 23 / 2

2

1/ 2

2 2
0 023 / 22

0 0 2

0 0 0

exp 21 1

4 det

1
exp

det

det
exp /

, ,

, N

T

N

T
N

TGA

A

w d
Z

f

A

β

β

β

β β β

β

β
β

β

β γ

π

π

π

−⋅ − −

⋅ −

⋅

= ∫ q
G

x q G x q
G

G
p G p

x p q

x p

−
 (2.7) 

where for two Kubo-transformed time correlation functions studied in this paper 

 ( )( ) ( ) ( )( )0 0 2,

12
02, ,TGA LSC IVR

A Kubo
f β

β β
β

− − −= − −x p q G x q 2
β

ˆ

 (2.8) 

for the force operator  with ( ) ( )ˆ ˆA V ′= = −f x x ( ) ( )ˆ ˆ1
0

ˆ ˆH H
KuboA d e

β β λ eβ λ
β λ − − −= ∫ f x , and 

 ( )( ) ( )20 0 2,
2

02, , ;TGA LSC IVR

A Kubo
f tβ

β β
β

− − =x p q MG p   (2.9) 

for the momentum operator  with ˆ ˆA = p ( ) ˆ ˆ1
0

ˆ ˆH H
KuboA d e

β β λ eβ λ
β λ − − −= ∫ p . 

Monte Carlo (MC) evaluation of Eq. (2.4) together with Eq. (2.7) is now straightforward, and we refer 

readers to Section IV of our recent paper23 for more details. 

Compared with the Feynman-Kleinert (FK) approximation used by Poulsen et al30 and the 

local harmonic approximation (LHA) of by Shi and Geva24, the TGA avoids the imaginary frequency 
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problem inherent in the former two approximations24,30,43,60.  Furthermore, the computational cost of 

the Full-TGA is dominated by the Cholesky factorization of a 3 3N N×  matrix while that of the FK 

approximation and the LHA is dominated by the diagonalization of such a matrix.  Also, in many 

cases the SP-TGA approximates the Full-TGA sufficiently well (as shown in next section), and this 

decreases the computational effort even further by having to deal only with the factorization of a 

block diagonal matrix (of   blocks, each of which represents a single particle). N 3 3

t

×

 In our previous paper the TGA/LSC-IVR was successfully applied to a one-dimensional 

anharmonic model and to liquid neon near its triple point23.  In next section, we use it to study two 

more challenging condensed phase systems. 

III. APPLICATIONS 

A. Ne13 Lennard-Jones cluster 

 Clusters, i.e., aggregates of atoms or molecules ranging from several monomer units up to 

nano-particles, which bridge the gap between our understanding of molecules and that of the bulk, 

have attracted much attentions in both experimental and theoretical research over the last decade48,63-68.  

Due to their finite size, structural and dynamical properties of clusters are usually distinct from those 

of bulk matter48,67-71.  Phase transitions have also been an active research topic of clusters for many 

years48,67,68.  Since a true phase transition can only occur in systems in the thermodynamic limit 

( and , where  is number of particles of the system and  is its 

volume)

, ,N V→∞ →∞ / constanN V = N V

72,73, the behavior of such phenomena is clusters is different from that in bulk matter48,67-71; 
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e.g., the melting transition shows an abrupt discontinuity in characteristic thermodynamic functions at 

the melting temperature, while in finite-sized clusters this behavior is smoothed out, with a remnant of 

such behavior persisting over a finite range of temperature67. 

 Because of the finite size of a small cluster, the temperature at constant energy may fluctuate 

dramatically.  Canonical simulations assume a statistical ensemble of non-interacting clusters in 

thermal contact with a macroscopic heat bath which defines the temperature of the cluster48.  The 

canonical ensemble has proved to be very useful to shed light on our detailed understanding of 

clusters48,67,68.  Quantum canonical simulations of small clusters tend to be a much more difficult task 

than those of bulk counterparts.  Although both a classical thermodynamic description of the Ar13
  

LJ cluster (where quantum effects are negligible) and a quantum canonical simulation of liquid bulk 

neon were available about twenty years ago67,74, it was not until several years ago that the quantum 

thermodynamic properties of the Ne13 LJ cluster were accurately calculated by the path integral Monte 

Carlo (PIMC)47 and by the TGA45.  The recent developed TGA/LSC-IVR method23 now enables us 

to simulate quantum dynamical effects in the Ne13 LJ cluster at thermal equilibrium for the first time. 

 We use the same potential energy function as in previous work45,47: the LJ parameters are 

35.6 Kε = and ; the mass of Ne atom is taken to be .  A confining 

constraint restricts the initial positions of the Gaussians used in the TGA to a spherical region which 

satisfies 

2.749 Aσ = 263.35 10 kgm −= ×

2i c σ− ≤q R , where  is the initial position of i-th neon atom in the initial Gaussian and 

 is the position of the center of mass of the cluster.  The authors of the reference

iq

cR 47 discussed the 
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necessity for applying the confining constraint and why the results are insensitive to the radius of the 

confining sphere so long as it is large enough.  To accelerate the imaginary time propagation in the 

TGA, we use the same fitting parameters as in the reference45, i.e., the LJ potential is fit by a linear 

combination of Gaussians: 

 
12 6

3
2 2

1

4 expp p
pij ij

c
r r
σ σε ε −

=

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥

ijrα σ⎡ ⎤− ≈ −⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑  (3.1) 

with ( ){ } ( ) ( ) ({ )}, 1840,6.65 , 1.48,0.79 , 23.2,2.6p pc α = − −  such that Gaussian integrals can be 

evaluated analytically. 

 The temperature range that we study is 4 K 14 KT≤ ≤ , which includes the melting transition 

(around ).  As in reference6 K 12 K− 45, the standard metropolis algorithm is used for the imaginary 

time propagation of Gaussians in the TGA.  Each initial Gaussian is selected by randomly shifting 

one of the particles so that the acceptance ratio of this random move is about 40%.  The initial 

inverse temperature of the Gaussians is 0.0001β  and they are propagated until imaginary time 

/ 2β .  The imaginary time step is ( ) 11/1456 KBd kβ −= , i.e., about 180 time steps are used for the 

temperature .  We first use  imaginary trajectories to equilibrate the system, then 

 imaginary trajectories with the Full-TGA are propagated to estimate thermodynamic 

properties.  When time correlation functions are to be calculated, 10 real time trajectories, according 

to the initial phase points generated by each imaginary trajectory, are propagated with the usual 

velocity Verlet algorithm with a time step of . 

4 KT = 45.2 10×

52.08 10×

0.5 fs

 The average energy per particle of the Ne13 LJ cluster system is shown in Fig. 1 for the entire 
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temperature range 4 K 14 KT≤ ≤  for three different methods: the PIMC, the Full-TGA and the 

classical Monte Carlo (CMC).  The most recent PIMC result is provided by Predescu75 .  Fig. 1 

shows that the Full-TGA results agree well with the PIMC results and that the remnant of the 

liquid-solid phase transition occurs in that temperature range for both the quantum system and the 

classical system, which is consistent with the results in reference45.  Comparison of the PIMC and 

Full-TGA results to the CMC results clearly reveals significant quantum statistical effects in the Ne13 

LJ cluster. 

 The TGA/LSC-IVR, however, enables one to study quantum dynamical behavior of the Ne13 

LJ cluster in the temperature region of the melting transition for the first time.  Three temperatures 

are chosen: (a)  in the liquid-like region; (b) 14 KT = 8 KT =  in the middle of the melting phase 

transition region; and (c)  in the solid-like region.  Fig. 2 shows the Kubo-transformed 

force autocorrelation function per particle, which reflects vibrations between particles and the 

structural information of the cluster.  The Kubo-transformed force autocorrelation function is 

calculated by Eq. 

4 KT =

(2.4) together with Eqs. (2.7) and (2.8).  The TGA/LSC-IVR and classical results 

are qualitatively similar in the liquid-like region (panel a), but show significant differences in the 

transition region (panel b) and the solid-like region (panel c).  Though the TGA/LSC-IVR 

correlation function shows some structure at longer time (past the minimum), it is much reduced from 

that given by the classical calculation, indicating that particles in the Ne13 LJ cluster in the solid-like 

region are much more mobile in the semiclassical treatment than in the classical case, due to 
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significant quantum dynamical effects. 

The major conclusion from these calculations, therefore, is that the phase transitional 

behavior in the Ne13 cluster shows up in thermodynamic properties to a very similar degree in 

classical and semiclassical treatments (cf. Fig. 1), with some quantitative differences, while the 

semiclassical description of dynamical properties (e.g., the force-force correlation functions in Fig. 2) 

shows significant qualitative differences from the classical treatment.  I.e., quantum effects in 

dynamical properties seem to be more significant than those in thermodynamic properties (apart from 

an energy scaling). 

B. Liquid para-hydrogen 

 Though H2 is the lightest and thus most quantum-like molecule, quantum effects due to 

exchange of identical molecules are negligible in its liquid phase.  This is because the temperature of 

liquid hydrogen is so high (above 13.8 K) that the de Broglie thermal wavelength 

 is not large enough to overlap the region of the normal distance between two 

interacting molecules (unlike the situation with liquid helium at ~ 2 K).  This greatly simplifies the 

treatment since the dynamical description of quantum exchange is not a trivial task. 

( 1/ 2/ 2 Bh mk Tλ π= )

 Liquid para-hydrogen is well described by the Silvera-Goldman (SG) model76, an isotropic 

pair potential in which the para-hydrogen molecule is treated as a sphere particle. (The spherical 

approximation is known to be accurate because the temperature of liquid para-hydrogen is much too 

low for any rotational state other than J = 0 to be populated.)  The SG potential takes the form 
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 ( ) ( ) ( ) ( )2 6 8 10 9
6 8 10 9exp c

C C C CV r r r f r f r
r r r r

α β γ ⎛ ⎞= − − − + + +⎜ ⎟
⎝ ⎠

c

)
c

 (3.2) 

where  

 ( ) ( )2exp / 1 ( )

1 (
c

c

c

r r r r
f r

r r

⎧ ⎡ ⎤− − ≤⎪ ⎣ ⎦= ⎨
>⎪⎩

 (3.3) 

with the parameters listed in Table 1.  The first term on the right-hand side of Eq. (3.2) represents the 

exponential SCF short-range repulsive interaction, the second one is the asymptotic long-range van 

der Waals attractive interaction, attenuated by ( )cf r  at short distances, and the third one is an 

effective two-body approximation to the three-body Axilrod-Teller-Muto triple-dipole dispersion 

interaction76.  The SG potential has been widely used to study thermodynamic properties and been 

shown to give reasonable agreement with experimental data77. 

 A variety of theoretical approaches have been used to calculate the self-diffusion constant of 

liquid para-hydrogen, e.g., maximum entropy (numerical) analytic continuation (MEAC)53, quantum 

mode-coupling theory (QMCT)52, centroid molecular dynamics (CMD)56,78,79, ring-polymer molecular 

dynamics (RPMD)55,56, forward-backward semiclasical dynamics (FBSD)54, and Feynman-Kleinert 

linearized path integral (FK-LPI)43.  The FK-LPI is in fact the LSC-IVR using the FK approximation 

for the Boltzmann operator.  Here we revisit the simulation of the self-diffusion constant of liquid 

para-hydrogen using the TGA/LSC-IVR and compare the results with experimental measurements 

and other theoretical predictions. 

 Our simulations (using periodic boundary conditions with 108 molecules per cell with the 
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minimum image convention) focus on two thermodynamic state points (25 K with molar volume 

 and 14 K with molar volume ) which were obtained from 

previous PIMC calculations under nearly zero external pressure

331.7 cm molυ = -1 -1

ij

325.6 cm molυ =

77.  To accelerate the imaginary time 

propagation in the TGA, we use the same fit of the SG potential to a linear combination of Gaussians 

as in reference43, 

 ( )
4

2

1

expp p
p

V r c rα
=

⎡ ⎤≈ −⎣ ⎦∑  (3.4) 

with 

 

( ){ } ( ) ( ){

( ) ( )}

5

3

, 0.30580,0.29074 , 6.1893 10 ,0.018674 ,

0.046165,0.16729 , 1.1568 10 ,0.055019

p pc α −

−

= − ×

− ×

 (3.5) 

in atomic units.  As in the previous application in Section IIIA, the standard metropolis algorithm is 

implemented and the acceptance ratio of new initial Gaussians is about 40%.  The initial inverse 

temperature of starting Gaussians is 0.0001β .  About  imaginary trajectories are used for 

initial equilibrations, then during the simulation of the correlation function, the total number of 

imaginary trajectories is  and the imaginary time step at the state point 25 K is 15 while that 

at 14 K is 20.  Both the Full-TGA and the SP-TGA are implemented.  Our calculation involves the 

Kubo-transformed momentum autocorrelation function (i.e., Eq. 

45 10×

62 10×

(2.4) together with Eqs. (2.7) and 

(2.9)), and it is easy to verify that the TGA/LSC-IVR formulation of the Kubo-transformed 

momentum autocorrelation function gives the exact quantum mechanical result obtained from Eq. 

(2.1) as t , i.e., 0→
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 ( ),0

3lim TGA LSC IVR
Kubot

C t
m
β

− −

→
=pp  (3.6) 

Only one real time trajectory with the use of the velocity Verlet algorithm with a time step of  

per imaginary time trajectory is sufficient to provide converged results. 

0.5 fs

 Fig. 3 shows our results for the Kubo-transformed momentum autocorrelation functions per 

molecule (divided by 2 Bmk ) performed by the LSC-IVR with the Full-TGA and with the SP-TGA.  

The error bars of the results are smaller than the widths of the plotted curves.  For comparison, Fig. 3 

also shows results of the RPMD55 and those of the recent improved version of the RPMD which 

combines it with the MEAC (RPMD+MEAC), as proposed by Manolopoulos and coworkers80.  

Panel (a) shows the results for the autocorrelation function at 25 KT = .  The Full-TGA and the 

SP-TGA are seen to be essentially identical, exhibiting a smooth and monotonic decay to zero at long 

time.  They agree well with the work of Poulsen et al (Figure 5 in reference43), which is expected 

since the latter is also an implementation of the LSC-IVR.  The results of the RPMD55 and CMD79 

(not shown, but similar) decay to zero significantly faster than the LSC-IVR results, while the 

RPMD+MEAC agrees with the TGA/LSC-IVR much better, deviating only slightly at long time. 

Panel (b) shows the results for the lower temperature, 14 KT = .  The SP-TGA still provides 

a good approximation to the Full-TGA.  The autocorrelation function decays much faster in this case 

and has a minimum at ~ 0.25 ps, indicating that impulsive, velocity-reversing collisions appear in this 

lower temperature and high density regime.  The RPMD55 and CMD79 (not shown) correlation 

functions show similar behavior but have a deeper minimum.  The RPMD+MEAC result again 
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agrees with the TGA/LSC-IVR result much better at short times and has a minimum that is 

intermediate between that of the RPMD and the LSC-IVR, though both the RPMD+MEAC and the 

RPMD results decay to zero much more slowly than the LSC-IVR. 

For both temperatures, the qualitative differences at longer times between these methods 

affect their prediction of the diffusion constant (see below) and simply demonstrate that the true 

behavior of the quantum correlation function at long time is still an open issue.  However, the good 

agreement between the TGA/LSC-IVR and the RPMD+MEAC at short times (≲ β ) is encouraging 

and suggests they are giving the correct result in this regime. 

 The Fourier transform relations in Eq. (2.2) enable one to express the average kinetic energy 

2ˆ / 2mp  in terms of the Kubo-transformed momentum autocorrelation function.  It is 

straightforward to show 

 
( ) ( )

2ˆ 1
2 4 1

i t kubod dt e C
m m e

ω
β ω

β ωω
π

∞ ∞
−

−
−∞ −∞

=
−∫ ∫ pp

p t  (3.7) 

In literature43,55, Eq. (3.7) has been used to test the behavior of the Kubo-transformed momentum 

autocorrelation function.  Recently Braams et al81 have shown that this test is only sensitive to the 

values of the Kubo-transformed correlation function for times on the order of β .  Table 2 lists the 

TGA/LSC-IVR Kubo-based average kinetic energies together with the PIMC results.  The 

TGA/LSC-IVR Kubo-based average kinetic energies deviate from the PIMC results by no more than 

4%.  The SP-TGA agrees well with the Full-TGA at 25 K and shows only a small difference at 14 K, 

verifying that the SP-TGA is an adequate approximation for the Kubo-transformed momentum 

 19



autocorrelation function.  In Table 2, the TGA/LSC-IVR results are directly compared with the 

FK-LPI result43 for  and the RPMD results25 KT = 55 for both state points, demonstrating that the 

TGA/LSC-IVR Kubo-transformed correlation function satisfies Eq. (3.7) quite well.  

     Recent work by Nakayama and Makri82 provides another more interesting way to test the 

behavior of the Kubo-transformed momentum autocorrelation function.  They have used the 

pair-product approximation to the complex time quantum mechanical propagator and computed 

accurate PIMC results for the first 0.2 ps of the symmetrized momentum autocorrelation function of 

liquid para-hydrogen at the state point, 3 -25 K, 31.7 cm molT 1υ= = ; these should very likely be the 

definitive quantum results for this system in this short time regime.  Using the Fourier transform 

relations in Eq. (2.2), the symmetrized autocorrelation function can be expressed in terms of the 

Kubo-transformed autocorrelation function , i.e.,  

 

( ) ( ) ( )

( ) ( )2

1 / 2
2 sinh / 2

-
sech

2

sym i t i t kubo

kubo

C t d e dt e C t

t t
dt C t

ω ωβ ωω
π β ω

ππ
β β

∞ ∞
′−

−∞ −∞

∞

−∞

′ ′=

′⎡ ⎤
′ ′= ⎢ ⎥

⎣ ⎦

∫ ∫

∫

pp pp

pp

 , (3.8) 

so that it is possible to convert all of the above Kubo-transformed correlation functions in Fig. 3 into 

their symmetrized versions and thus be able to compare them to these accurate complex time PIMC 

results of Nakayama and Makri80,82.  Fig. 4 shows these comparisons at 25 KT = .  One sees that 

the TGA/LSC-IVR, MEAC, and RPMD+MEAC results are all in very good agreement with the 

accurate PIMC correlation function for this short time period (≲ 0.2 ps), with the FBSD result only 

slightly further off and the RPMD somewhat more so.  Unfortunately, the complex time PIMC 
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results of Nakayama and Makri are not reliable beyond ~0.2 ps82 for 25 KT = , and accurate PIMC 

results are not available at present for the 14 KT =  state point.  Thus further work is needed to 

obtain accurate benchmark results for longer time and lower temperature. 

 The self-diffusion coefficient is given in terms of the time integral of the momentum 

autocorrelation function (for any of those in Eq. (2.1)), 

 ( )2
0

1
3

D C t dt
m N

∞

= ∫ pp  . (3.9)  

Table 3 gives the LSC-IVR (with the Full-TGA and with the SP-TGA) results so obtained for the  

diffusion coefficient at the two state points 3 -25 K, 31.7 cm molT 1υ= =  and 

3 -14 K, 25.6 cm molT 1υ= =  under nearly zero extent pressure, together with other theoretical and 

experimental results.  The various theoretical results show reasonable agreement with experimental 

values, with all of the approximate quantum results being in better agreement with each other than 

with the classical values.  Again, the SP-TGA is seen to be a good approximation to the Full-TGA. 

 Among trajectory-based methods, we note that the two simplest semiclassical methods (the 

LSC-IVR and the FBSD) overestimate the self-diffusion constants slightly at 25 K and by over 50% 

at 14 K, while the CMD and the RPMD underestimate the results at these two state points.  The 

differences come mainly from the long time behavior of the correlation functions.  As pointed out by 

Manolopoulos et al., however, one should not read too much into the comparison with experiment80, 

for there is some error in the use the SG potential, to which the dynamical behavior at long times is 

sensitive; e.g., the fact that the thermodynamic properties (e.g., molar volumes) obtained from the 
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PIMC simulations with the SG potential do not show precise agreement with experiments at either 

temperature77 is indicative that the potential is not highly accurate. 

IV. CONCLUSIONS 

 In this paper we have applied the TGA/LSC-IVR approach to study quantum dynamical 

effects in realistic models of two condensed phase systems: the Ne13 LJ cluster, the first such 

treatment of its quantum dynamics, and liquid para-hydrogen, which has been treated by a number of 

theoretical approaches and thus makes an excellent benchmark system.  Since quantum 

thermodynamic properties calculated for the Ne13 cluster by the PIMC and the TGA show liquid-solid 

phase transitional structure between 4 K and 14 K, this was the temperature region we investigated.  

The Kubo-transformed force autocorrelation functions calculated by the TGA/LSC-IVR in that region, 

however, show little of the solid-like structure that is seen in the classical correlation function; i.e., 

due to quantum dynamical effects, the TGA/LSC-IVR correlation function is much more liquid-like, 

indicating that the atoms are much more mobile quantum mechanically than they are classically.    

Liquid-solid phase transitional behavior in the Ne13 LJ cluster is thus not as evident in its dynamical 

properties as it is thermodynamically. 

     Liquid para-hydrogen was also studied at two state points, 3 -25 K, 31.7 cm molT 1υ= =  and 

3 -14 K; 25.6 cm molT 1υ= = , under nearly zero extent pressure.  The Kubo-transformed momentum 

autocorrelation functions were calculated by the LSC-IVR, both with the Full-TGA and with the 

simpler SP-TGA, and it was seen that the SP-TGA is a very good approximation to the Full-TGA also 
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in this case.  The kinetic energy obtained from the Kubo-transformed correlation function at each 

temperature agrees quite well with the PIMC result (no more than 4% error).  The symmetrized 

momentum autocorrelation function at  agrees essentially perfectly with the accurate PIMC 

results over the initial time period (≲ 0.2 ps) for which it is available, and the self-diffusion constants 

calculated from the TGA/LSC-IVR method show reasonably good agreements with experimental 

values and other theoretical results. 

25 K

 The TGA/LSC-IVR thus provides a practical and versatile method for studying dynamical 

processes semi-quantitatively in condensed phase systems where quantum mechanics play a 

significant role.  It will be interesting in future work to apply the TGA/LSC-IVR to study other 

problems, such as vibrational energy relaxation in molecular liquids, which involves correlation 

functions of highly nonlinear operators for which the LSC-IVR is still a good approximation24,60,83-85. 
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Tables 

Table. 1 Parameters of the Silvera-Goldman potential for para-hydrogen 

1.713α  
6 12.14C  

1.5671β  
8 215.2C  

0.00993γ  
9

c 10

143.1C  

8.32r  4813.9C  
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Table. 2 Average kinetic energy per molecule (divided by Bk ) of liquid para-hydrogen at  and 

 under nearly zero extent pressure (the statistical error of the TGA is less than 0.1 K) 

3 -25 K, 31.7 cm molT υ= = 1

13 -14 K; 25.6 cm molT υ= =

Temperature (K) Average kinetic energy per molecule (K) 

55 43 54Full-TGA Kubo SP-TGA Kubo RPMD  FK-LPI  PIMC  classical 

 61.9 37.5 25 64.5 64.5 64.3 61.3 1.2±

14 65.0 65.6 67.7 … 63.2 21 
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Table. 3 Diffusion contants for liquid para-hydrogen at  and  

under nearly zero extent pressure 

3 -25 K, 31.7 cm molT υ= = 1 13 -14 K; 25.6 cm molT υ= =

  

 

 

 

 

 

 

 

 

Diffusion constant (Å2/ps) 

N 25 K 14 K  

Experiment51  1.6 0.4 

  LSC-IVR Full-TGA 108 1.81 0.02± 0.63 0.01±

 SP-TGA 108 1.84 0.02± 0.65 0.01±
43FK-LPI  125 1.73 … 

54    108 FBSD 1.68 0.05± 0.75 0.07±

CMD56 216 1.50 0.32 

RPMD55 Linearly extroplated to ∞    1.59 0.01± 0.33 0.01±

80RPMD+MEAC  256 1.78 0.41 

53 108 1.47 0.28 MEAC

52 108 1.69 0.30 QMCT

Classical55 Linearly extroplated to ∞    0.56 0.02± 0.02 0.01±
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Figure Captions 

Fig. 1  (Color online). Average energy per particle of the Ne13 LJ cluster system. Solid line: the path integral Monte Carlo 

(PIMC) result. Circles with solid line: the fully thermal Gaussian approximation (Full-TGA) result. Triangles with 

dashed line: the Classical Monte Carlo (CMC) result. 

Fig. 2  (Color online). The Kubo-transformed force autocorrelation function per particle for the Ne13 LJ cluster system. 

Solid line: the classical result. Dotted line: the TGA-LSC-IVR result. Temperature in three panels are respectively: 

(a) ; (b) ; and (c) 14 KT = 8 KT = 4 KT = . 

Fig. 3  (Color online). The Kubo-transformed momentum autocorrelation function per particle (divided by 2 Bmk ) for the 

liquid para-H2 at two state points: (a)  and (b) . Solid 

line: the LSC-IVR result with the Full-TGA. Dashed line: the LSC-IVR result with the SP-TGA. Dot-dashed line: 

the RPMD result

3 -25 K, 31.7 cm molT υ= = 1 1

1

3 -14 K; 25.6 cm molT υ= =

80. Dotted line: the RPMD+MEAC result80. 

Fig. 4  (Color online). The normalized symmetrized momentum autocorrelation functions for the liquid para-H2 at the 

state point . Solid circles: the complex time PIMC results823 -25 K, 31.7 cm molT υ= = . Solid line: the 

TGA/LSC-IVR result. Dot-dashed line: the FBSD result82. Dotted line: the RPMD result80. Long-dashed line: the 

RPMD+MEAC result80. Short-dashed line: the MEAC result80. Panel (b) shows a blowup of the curves shown in 

(a). 
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