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Linking ‘omics measurements with biogeochemical cycles is a widespread
challenge in microbial community ecology. Here, we propose applying geno-
mic adaptation as ‘biosensors’ for microbial investments to overcome nutrient
stress. We then integrate this genomic information with a trait-based model
to predict regional shifts in the elemental composition of marine plankton
communities. We evaluated this approach usingmetagenomic and particulate
organic matter samples from the Atlantic, Indian and Pacific Oceans. We find
that our genome-based trait model significantly improves our prediction of
particulate C : P (carbon : phosphorus) across ocean regions. Furthermore,
we detect previously unrecognized ocean areas of iron, nitrogen and phospho-
rus stress. Inmany ecosystems, it can be very challenging to quantifymicrobial
stress. Thus, a carefully calibrated genomic approach could become a
widespread tool for understanding microbial responses to environmental
changes and the biogeochemical outcomes.

This article is part of the theme issue ‘Conceptual challenges in microbial
community ecology’.
1. Introduction
Linking genomics and other ‘omics measurements with biogeochemical cycles
is a widespread challenge in microbial community ecology. Currently, most
‘omics observations are used to quantify shifts in diversity and functional
potential. By contrast, we rarely use microbial ‘omics data to understand and
constrain large-scale energy or nutrient fluxes. This lack of convergence between
microbial ‘omics information and ecosystem or global models may limit our
ability to predict future changes to global biogeochemical cycles (table 1).

It is well-established that the cellular and community regulation of elemental
requirements and composition (i.e. carbon : nitrogen : phosphorus, C :N :P) are
important for linking the global carbon and nutrient cycles [1]. There is an intense
debate about the interaction between microbial diversity and environmental
changes in regulating C :N :P for both terrestrial and aquatic environments [1,2].
The chemical composition of a cell is affected by many environmental factors, but
nutrient availability is emerging as central [3]. Nutrient availability impacts the
elemental composition of a community in multipleways. Physiologically, the over-
all nutrient level impacts the growth rate [4]. In addition, cells are sensitive to the
supply ratio of N versus P (and other nutrients) relative to the biomass ratio [5].
Microbial lineages can also have unique resource requirements and thus experience
a shared environment differently at a physiological level. For example, the marine
cyanobacterium Prochlorococcus appears to have a lower P requirement compared
with larger phytoplankton [6] and co-existing diatoms can have unique N :P [7].
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Thus, the interaction between microbial diversity and nutrient
stress plays a complex role in regulating ecosystem C :N :P.

It is achallenge todefineandquantify thenutritional environ-
ment experiencedbymicroorganisms.First, the concentrationsof
inorganic phosphorus and nitrogen are commonly below detec-
tion limits in many marine environments [8]. Second, most
microorganisms can use multiple alternative forms of nutrients
[9–12]. Ammonium is energetically the most favoured form of
nitrogen. When ammonium is in low supply, microorganisms
can shift in some order to urea, nitrate, or organically bound
nitrogen [13]. There are several unknowns associated with the
use of alternative resources.We rarely quantify the concentration
and chemical formof alternative nutrients or the chemical nature
of organically boundN or P. Either assumptions aremade about
what substratemicroorganisms are using, or there are difficulties
measuring the uptake rate of diverse and poorly defined sub-
strates. Furthermore, the resource costs associated with the use
of many alternative nutrients are broadly unknown, leading to
ill-defined trade-offs for nutrient assimilation. For example,
cells need to invest N when upregulating acquisition proteins,
leading to trade-offs between nutrient investments and uptake
[14]. Finally, there is variation among individual lineages in the
extent they can rely on alternative nutrient forms [15]. Thus, it
is currently impossible to predict microbial nutrient use and
associated biogeochemical roles even with a perfect chemical
characterization of an environment.

Marine microorganisms show clear genomic evidence for
adaptation to specific nutritional environments through gene
gain and loss [16–18]. Such genomic changes reflect a shift
from simple to more complex nutrient forms under limiting
conditions. This pattern has been detected in many micro-
organisms but is clearly illustrated in marine cyanobacteria.
In regions with a replete inorganic phosphate supply, stream-
lined Prochlorococcus genomes mainly contain transporters
directly associated with inorganic phosphate uptake [19].
However, Prochlorococcus adapts to low phosphate supply via
the gain of genes associated with regulation and the use of
alternative forms. In regions with severe P stress, Prochlorococ-
cus genomes contain genes for alkaline phosphatase to cleave
off phosphate from organic molecules [20,21]. Here, alkaline
phosphatase and a few other proteins are highly induced to
use organic P as an alternative P source [19,22]. Prochlorococcus
adapts toN stress in a parallel fashion, whereby cells fromhigh
N areas only contain genes for ammonium uptake [23]. In
regions with stronger N stress, Prochlorococcus genomes
sequentially include genes for urea, nitrite and ultimately
nitrate assimilation. Thus, the genome content of Prochlorococ-
cus (and other marine microorganisms) closely corresponds
to the underlying environmental conditions and thereby
describes the cellular strategies for nutrient acquisition [24].

We propose using genomic shifts among microbial
communities as a ‘biosensor’ for in situ nutritional envi-
ronments in order to improve predictions of resource use and
C :N : P variability across ocean regions. Specifically, we com-
bine the distribution of genes with a trait model to simulate
cellular investment strategies and predict C :N : P. We assume
that genome streamlining in cyanobacteria will lead to clear
nutrient investment trends. However, increasing cell genomes
sizes in the larger cyanobacteria Synechococcus reveals a
more generalist lifestyle. We show that in comparison with
both traditional abiotic and common trait models, the
incorporation of nutrient trait variation quantified using
metagenomics greatly improves our ability to predict shifts in



royalsoc

3
C :N : P. This work illustrates how we can use microbial com-
munity ‘omics observations to improve our understanding
of global biogeochemical cycles in ways that would be
challenging to achieve with abiotic characterizations alone.
ietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190254
2. Material and methods
(a) Sample collection
Seawater samples were collected from the western Atlantic Ocean
(AE1319, Aug/Sep 2013; BV46, Oct 2011), central Pacific Ocean
(NH1418, Sep 2014) and the eastern Indian Ocean (IO9N, Mar/
Apr 2016) (electronic supplementary material, figure S1 and table
S1). On each cruise, samples for DNA, flow cytometry, particulate
organic matter, uptake rate kinetics and nutrient measurements
were collected as described previously [3,25–28] (table 1). Fifty-
four stations were selected for metagenomics analysis where these
correspondingmeasurements were taken. Selected data are already
available on BCO-DMO (uptake rate kinetics, nutrient concen-
trations, cell abundances and particulate elemental concentrations)
for the Atlantic AE1319 and BV46 (https://www.bco-dmo.org/
project/2178) and Indian Ocean I09N cruises (https://www.bco-
dmo.org/project/628972). Results have previously been reported
describing the cyanobacterialdiversity [28,29], cell quotas andabun-
dances [26,27], uptake rate kinetics [25,26] and particulate organic
matter ratios [3] along several transects.

(b) Particulate organic matter
All particulate organic matter samples for carbon (POC), nitrogen
(PON) and phosphorus (POP) were collected on pre-combusted
(4 h at 500°C) GF/F filters with a nominal pore size of 0.7 µm (elec-
tronic supplementarymaterial, tableS1).Anylonmeshprefilterwith
a pore size of 30 µm was used to remove rarer biomass such as
larger plankton and particles. POP filters were rinsed with 0.17 M
Na2SO4 at the timeof collection to remove residualdissolvedorganic
phosphorus.All filterswere stored frozenuntil analysis in the labora-
tory. POC/PON samples were measured using a Flash 1112 EA
elemental analyser (Thermo Scientific, Waltham, MA, USA) for the
I09 transect against an atropine (C17H23NO3) standard curve
(range 0.2–1.5 mg). For the NH1418, AE1319 and BV46 transects,
POC/PON samples were measured on either a control equipment
240-XAor440-XAelemental analyserusingacetanilide as a standard
[30]. POP samples were analysed using an ash/hydrolysis colori-
metric method described previously [31]. Briefly, 2 ml of 0.017 M
MgSO4 was added to the filter and KH2PO4 standards in acid-
washed scintillation vials and dried overnight at 90°C. The filters
were exposed to high temperature (500°C) for 2 h and acidified in
0.2 M HCl at 90°C. After a mixed reagent was added, the samples
were analysed on a spectrophotometer at 885 nm.

(c) Uptake rate kinetics
On the Atlantic (AE1319, BV46) and Pacific (NH1418) Ocean
transects, phosphate uptake rate kinetics were measured for whole
community and taxon-specific groups (e.g. Synechococcus and
Prochlorococcus) using methods previously described [25]. Incu-
bations were performed using 10 ml seawater aliquots within 3°C
of ambient temperature during the timeof collection (approximately
23°C). Kinetics experiments for phosphate were performed with
increasing dissolved inorganic phosphorus (DIP) additions up to
100 nM and ended at a final concentration of 100 µM.

On the Indian Ocean GO-SHIP transect (I09N), whole
community bottle incubations were performed for uptake of
15N-labelled ammonia, urea and nitrate [26]. The incubations were
performed in 2 l polycarbonate bottles over a 6 h period at ambient
seawater temperature. N incubations were mixed to a final concen-
tration of 0.03 µM, which is below the detection limit and reflective
of the N-limiting conditions throughout the I09N transect.
(d) Cell abundances using flow cytometry
Samples for flow cytometry and cell sorting were collected pre-
viously and are presented elsewhere [26–28]. Briefly, the samples
were sortedusingaFACSJazzor Influx flowcytometer (BD, Franklin
Lakes, NJ, USA). Samples were preserved using a 0.5% paraformal-
dehyde solution (final concentration), kept in thedark for 1 h to fix at
5°C and then stored frozen at −80°C until analysis. Populations of
Synechococcus were determined with a gate in orange (585 nm),
Prochlorococcus based on forward scatter and red fluorescence.

(e) Nutrients
For the NH1418, AE1319 and BV46 cruises, phosphate was
measured using the MAGIC-SRP high-sensitivity method [32].
Nitrate was measured by using a cadmium reduction assay as
previously described [28].

Nutrient data for the I09N cruise were provided by Jim Swift
(Scripps Institution of Oceanography, SIO) and Susan Becker
(SIO) and are available at https://cchdo.ucsd.edu.

( f ) Metagenomics: library and sequencing
For DNA, 4–10 l seawater samples were collected with a 0.22 µm
Sterivex filter and preserved with lysis buffer (50 mM Tris-HCl
pH 7.6, 20 mM EDTA pH 8.0, 400 mM NaCl, 0.75 M sucrose) and
frozen at −80˚C until further processing. Whereas a GF/D (2.7 µm
nominal pore size) glass fibre prefilter was used for all Pacific and
Atlantic sites [28], no prefilter was used for DNA collections for
Indian Ocean sites. As a minor percentage of the total community
is composed of eukaryotes [26], we assumed this was an acceptable
comparison. However, it is possible that we are missing particle
associations greater than 2.7 µm in the Atlantic and Pacific
Oceans. DNA was extracted as described previously [28,33,34]
and diluted (Atlantic and Pacific: 0.5 ng µl−1, Indian: 1 ng µl−1)
for sequencing. Metagenomic libraries were prepared using the
Nextera Library Prep Kit (Illumina, San Diego, CA) with a
modified PCR mixture. DNA with a concentration of between 0.5
and 1 ng µl−1 was tagmented using the Nextera DNA Prep Kit tag-
mentation enzyme and incubated for 10 min at 55°C. The Nextera
XT barcodes were annealed to metagenome fragments using the
followingPCRprotocol. For PCR,weused 20 µl of amastermix con-
taining 0.5 µl Phusion High Fidelity buffer (New England Biolabs,
Ipswich, MA), 0.5 µl dNTPs (New England Biolabs, Ipswich,
MA), 0.25 µl Phusion High Fidelity Polymerase (New England
Biolabs, Ipswich, MA) and 14.25 µl of PCR-gradewater. Equimolar
samples were pooled and the quality was checked and quantified
using a Bioanalyzer (Agilent, Santa Clara, CA). The pooled library
was sequenced on anHiSeq 4000 (Illumina, SanDiego, CA), produ-
cing paired end reads (2× 150 bp). Low-quality reads and adapters
were removed using Trimmomatic 0.35 [35] with a sliding window
of 4:15 and minimum length set to 36. PhiX was filtered out using
BBduk2 tool BBMap (https://sourceforge.net/projects/bbmap/,
k=31, hdist = 1). Sequences were aligned and mapped to a curated
reference database (electronic supplementary material, tables S2
and S3) using Bowtie 2 [36] with the following settings: -local -D
15 -R 2 -L 15 -N 1 -gbar 1 -mp 3. High-quality contigs were
assembled and processed with Anvi’o [37]. Pangenome gene
clusters were identified using the DIAMOND algorithm [38] and
summarized in Anvi’o. Metagenomes are available through
BioProject (SRA PRJNA598881) at the following link: https://
www.ncbi.nlm.nih.gov/sra/PRJNA598881.

(g) Nutrient assimilation gene frequencies
Prochlorococcus and Synechococcus genes associated with
assimilation for iron, nitrogen and phosphorus were identified
based on prior studies (electronic supplementary material, S1)
[17,21,23,24,39,40]. Several genes of unknown function are listed
as uknX, but are included because of their association with low P
availability in Prochlocococcus [41], and close proximity to known
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regulatory P assimilation genes in the MED4 genome. Based on
these past studies, we filtered out genes if present in all Synechococ-
cus and Prochlorococcus to detect variation in lineage coverage. We
found the relative gene frequency by scaling to the median cover-
age of single copy core genes (SCCGs) [41] across 54 stations. We
identified the relative gene frequency for each nutrient listed in
electronic supplementary material, S1, per station, and per taxon
(Synechococcus and Prochlorococcus) as follows:

relative gene frequencygene in taxon ¼

X
genomes
in taxa

gene coveragegene
median coverage of SCCGtaxa

� �
total readsgenome

total readstaxa

� �� �
:

Next, we conducted three separate principal component analyses
(PCAs) for N, P and Fe assimilation genes, respectively (electronic
supplementary material, figure S4). Each relative gene frequency
was scaled between 0 and 1 across the 54 stations as inputs to
each PCA (n x m matrix of n stations and m normalized gene fre-
quencies). A total of four gene indices were produced for each
station, where Ngene (or Pgene) = first component of PCA:

Ngene Prochlorococcus,

Pgene Synechococcus,

Ngene Prochlorococcus

and Pgene Synechococcus:

These N and P gene indices for Prochlorococcus and Synecho-
coccus were subsequently incorporated into a trait model to
predict C : P.
(h) ATOM-gene model
We developed the ATOM-gene model to predict phytoplankton
C :P ratios from temperature, irradiance and metagenomic data
on phosphorus and nitrogen nutrient uptake gene abundance. The
ATOM-genemodel shares itsbasic structurewith the trait-basedphy-
toplanktonmodeldevelopedbyMoreno et al. [42]. It predicts theC :P
of particulate organic matter in the surface ocean using a multi-step
process. ATOM-gene first characterizes phytoplankton according to
several key functional traits, namely their radius (r) and their allo-
cation of biomass to biosynthetic proteins and ribosomes (E), to
photosynthetic proteins (L), to structural components (S), and to
nutrient uptake proteins (A). ATOM-gene also represents a luxury
nutrient storage pool. Each trait combination corresponds both to a
functional response to environmental conditions, and to cell quotas
of C, N and P, which we derived from biophysics, physiology and
statistical modelling. The functional response determines the
growth rate of cells with each trait combination (r, E, L, A) in each
possible environment, which consists of temperature (T), irradiance
(L) and metagenomic uptake gene abundance indices Pgene and
Ngene. Traditionally, in trait-based phytoplankton models, the func-
tional response to environmental conditions requires nutrient
concentrations to calculate growth rates. However, nitrate+nitrite
and phosphate nutrient concentrations are frequently below stan-
dard assay detection limits. Furthermore, nutrient concentrations
were not great predictors across regions. Therefore, we needed
genes todetectunseennutrient stress variability.Here,we treatnutri-
ent concentrations as latent variables, which are not directly
observed, and model their concentration using the metagenomic
data.

Given the irradiance, temperature and nutrient uptake gene
abundances in a given sampling location, ATOM-gene uses the
functional responses to determine the trait combination with the
fastest growth rate and predicts that these traits and the resulting
C : P characterize the plankton community and particulate organic
matter at that sampling site.
ATOM-gene is part of a familyof trait-basedmodels thatwehave
developed topredictC : P ratios inphytoplankton, andwhich extend
themodel inMoreno et al. [42] in important ways. First, ATOM-gene
doesnot justmodelphosphorusavailability like [42], but alsomodels
nitrogen availability. ATOM-gene includes an additional resource
investment pool, representing variable allocations of biomass to sur-
face membrane and periplasmic proteins for nutrient uptake of
phosphorus. Secondly, we parameterized the trait-based model in
[42] using the point estimates of physiological parameters taken
from the literature, only using statistical methods to predict luxury
P storage. Here we integrated the entire ATOM-gene model into a
Bayesian statistical framework, allowing us to incorporate uncer-
tainty in our understanding of key physiological processes (such as
the temperature dependence or different biochemical processes).

Below we describe the model and its parameters. Sum-
maries of the model parameters, and the prior distributions
for statistical parameters, can be found in electronic supplemen-
tary material, tables S5, 6–S7. Phytoplankton traits determine
P : C according to:

(P : C)¼ EPE þ gPg þ Pstor

ECprot þ LCprot þ gCg þ aðCM þ ACprotÞ=2r ðmolC=molPÞ:

Here P :C is thephosphorus to carbon ratio. PE andPγ are the specific
fraction of phosphorus in the biosynthetic protein and structure pool,
respectively, with units of gPg−1. Their phosphorus content arises
from ribosomes in the case of the biosynthetic apparatus, which
we model as having a ribosome fraction of αE and from DNA/
RNA in the case of the structural pool,whichwemodel as occupying
a total fraction γDNA of cellular biomass. Pstor is the level of luxury P
storage, in units of gPg−1. The symbol Cprot is the specific fraction of
carbon in proteins, with units of gCg−1,CDNA is the specific fraction
of carbon in DNA, Cγ is composed of Clip and CDNA, Clip is the
specific fraction of carbon in lipids and γlip is the fraction of cellular
biomass in lipids. The fraction of cellular biomass in the inner and
outer membranes and periplasmic space is α/r, which we assume
is half membrane and half periplasmic space. A is the fraction of
the periplasmic space occupied by proteins. CM is the carbon frac-
tion of the inner and outer membranes, which we assume are
composed partially of proteins and partially of phospholipids.
molP and molC are the molar masses of phosphorus and carbon.

The traits must satisfy several constraints. The sum of allo-
cations to cytoplasmic components should equal the cytoplasmic
fraction of the cell:

Eþ Lþ gDNA þ glip ¼ 1� a

r
:

Furthermore, the fraction of the periplasmic volume allocated to
proteins satisfies 2rAmin<A<1.

To predict the stoichiometry in a given environment,
ATOM-gene selects the trait combination with the fastest
growth rates. Environmental conditions and traits translate into
rates of biosynthesis μE, photosynthesis μL, nitrogen uptake μN
and phosphorus uptake μP, with overall growth rate determined
by the slowest of these processes:

m ¼ min (mE,mL,mN,mP):

The biosynthesis rate depends linearly on the investment E:

mE ¼ kS(T)E,

where kS is the specific synthesis rate of the synthetic apparatus at
25°C, and the biosynthetic efficiency decreases with temperature
with a Q10k = 2 (where Q10 is the 10°C temperature dependence
of a process, Q10k being the Q10 for biosynthesis). The photosyn-
thesis functional response comes from Geider et al. [43] (see the
formulation in Moreno et al. [42]):

mL ¼ f (I,T)L
1þ fS

,
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where we allow the photosynthesis rate to have a non-trivial
temperature dependence. Here T is the temperature in degrees
centigrade, I is the irradiance measured in μmolphotons m−2 s−1

and ϕS is the carbon cost of synthesis in gCgC−1. The functional
response f (I,T ) to light is described in Moreno et al. [42]
and depends on temperature according to a Q10,photo (where
Q10,photo is the Q10 for light). We assume diffusion-limited
growth to derive the nitrogen- and phosphorus-dependent
growth rates:

mN ¼ 4pDN[Nmodel]r
QN

, mP ¼ 4pDP[Pmodel]rA
QP

:

QN ¼ 4pr3molN
3rpdry((Eþ Lþ aA=(2r))Nprot þ gDNANDNA þ a=(2r)NM)

and QP ¼ 4pr3molP
3rpdry(EPE þ gDNAPDNA)

:

We treat the concentrations of bioavailable nitrogen and
phosphate as latent variables, modelled using the gene frequen-
cies for nitrogen and phosphate uptake genes in Prochlorococcus
and Synechococcus, respectively.

log [Nmodel] ¼ log [N0]� cNNgene,

log [Pmodel] ¼ log [P0]� cPPgene:

The terms N0, P0, cN and cP are model parameters, and Ngene and
Pgene are the gene indices introduced earlier. The diffusion coef-
ficients (DN,DP) decrease with temperature using Q10D = 1.5
(where Q10D is the Q10 for diffusion). ATOM-gene then finds
the trait combination with the largest μ. At the optimal solution
either

mE ¼ mL ¼ mN , mP ðN limitationÞ,
mE ¼ mL ¼ mP , mN ðP limitationÞ,

or mE ¼ mL ¼ mP ¼ mN ðco-limitationÞ:

ATOM-gene subsequently determines C :P from this optimal
strategy. If the strategy is N-limited, then we assume that the cell
does luxury P storage proportional to themodelled P concentration:

Pstor ¼ Cstor[Pmodel]max (0,mc � m),

where μc is a growth rate cutoff above which luxury storage stops.
We selected a prior probability distribution over model par-

ameters (electronic supplementary material, table S3) and
implemented ATOM-gene within the STAN probabilistic pro-
gramming language [44]. We integrated C : P, N and P gene
indices, temperature and irradiance (averaged over the top
50 m) and calculated the posterior probability distribution over
model parameters assuming a log-normal probability distri-
bution for C : P:

(C : P)obs � lognormal((C : P)ATOM-gene(I,T,Ngene,Pgene,s)):

We performed this Bayesian optimization for the gene indices
computed from both Prochlorococcus and Synechococcus, leading
to a statistical model of C : P.

(i) Galbraith–Martiny and P-regression model
The Galbraith–Martiny model [45] calculates P : C as a linear
function of phosphate concentration:

(P : C)GM ¼ 6:9� 103[Pobs]þ 6:0� 10�3:

We also created a P-regression based model (Preg) by refitting
the Galbraith–Martiny (G-M) model just to the dataset gathered
here, assuming a log-normal error model:

(P : C)Preg � lognormal(k[Pobs]þ ½P0�,s):
( j) Yvon-Durocher model and T-regression model
The Yvon-Durocher model [46] expresses phytoplankton C : P as
an exponential function of temperature:

log ðC : PÞYD ¼ P(T � 15)þ b,

where Π=0.037°C−1 and b=5.010. We also created a T-regression
based model by refitting the Yvon-Durocher model to the dataset
gathered here, assuming log-normal errors:

(C : P)Treg � lognormal(P(T � 15)þ b,s):
(k) Moreno–Hagstrom model
The Moreno–Hagstrom model [42] uses the radius (r) and allo-
cation of biomass to biosynthesis (E) and photosynthesis (L) to
model C : P, by calculating the trait combination that leads to
maximal growth for each combination of irradiance (I), tempera-
ture (T) and phosphorus (P). The Moreno–Hagstrom model
models luxury P storage as a linear function of P, so that:

(C : P)MH ¼ 1
(C:P)structure þ fstor[Pobs]

:

It should be noted the relationship between polyphosphate sto-
rage and ambient P concentrations has been demonstrated to
have an inverse correlation in subtropical North Atlantic Synecho-
coccus [47], but the direction appears to be regionally dependent
[48].
3. Results
We quantified the variation in the carbon to phosphorus
(C : P) elemental stoichiometry across ocean environmental
gradients in the Atlantic, Indian and Pacific Oceans (figure 1).
Generally, C : P ratios decreased towards colder water and
higher nutrient concentrations. This pattern was present in
the temperate region in the North Atlantic (figure 1a) and
equatorial upwelling region in the Pacific Ocean (figure 1b).
In the Indian Ocean C : P decreased toward lower phosphate
concentrations and warmer water (figure 1c) and thus
showed the opposite relationship to temperature [3]. Statisti-
cal models based solely on phosphate (G-M) or temperature
(Y-D) were unable to capture the C : P trends in the Indian
Ocean and showed significant biases (figure 2). All models
overestimated C : P in large parts of the Indian Ocean and
either over- or underestimated C : P in the equatorial Pacific
Ocean. This bias remained even if we refitted the G-M and
Y-D models’ observations from this study suggesting a struc-
tural bias. We next tested a more complex previously
published trait-based model [42], but this model had strong
bias, too. Thus, existing models driven by common abiotic
factors were unable to predict shifts in the elemental stoichi-
ometry of marine communities.

The incorporation of genomically derived resource
acquisition traits into our model greatly improved the
prediction of regional shifts in elemental stoichiometry
(figure 2, R2 = 0.51 for ATOM-Syn. gene, R2 = 0.26 for ATOM-
Pro. gene). The models incorporating genomically derived
traits remained superior in a comparison based on information
criteria computed using cross-validation [49] (electronic
supplementary material, table S7). We derived resource acqui-
sition traits in Prochlorococcus and Synechococcus (the two most
abundant phytoplankton in these samples) [26–28] frommeta-
genomes.We then used relative gene frequency of nitrogen and
phosphorus acquisition genes to develop an index for the
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induction of nutrient acquisition machinery for each nutrient
and lineage (electronic supplementary material, figure S4).
This index assumes cyanobacterial lineages adapt to their
environment through genome streamlining and the presence
or absence of nutrient acquisition genes is directly related to
nutrient stress. We found that shifts in adaptation and invest-
ment strategies for nutrient uptake led to lower bias in all the
regions (figures 1 and 2). For example, this was the only
model that captured the latitudinal gradient in C : P in the
Indian Ocean (figure 1). ATOM-gene is a nonlinear model
and predicts elevated C : P when either the N or P gene indices
are close to the maximum. The difference between the North
Atlantic subtropical gyre and the North Indian is that the
gene indices diverge more in the subtropical North Atlantic.
The P gene index is notably higher in the subtropical North
Atlantic than the north Indian Ocean. Thus, the nutrient limit-
ation is more extreme in the subtropical North Atlantic,
compared with the north Indian Ocean. Similarly, the south
Indian Ocean has higher C : P because the N gene index
peaks there (and the same is true in a few North Pacific data
points). Thus, the ATOM-gene model was able to incorporate
a previously unknown pattern of nutrient gene frequencies to
predict the regional shifts in C : P.

The frequency of nutrient acquisition genes helped
resolve variation in nutrient stress at very low nutrient con-
centrations. We observed a significant correlation between
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shifts in nutrient acquisition gene frequencies and the ambi-
ent nutrient concentration (figure 3). This was seen for both
phosphorus and nitrogen acquisition genes and their
respective inorganic nutrient concentrations. However, the
ambient nutrient concentration of phosphorus and
especially nitrogen was below detection limit in many
samples. Additionally, we observed higher relative gene fre-
quencies for iron in the subtropical Indian Ocean, equatorial
Pacific and the North Atlantic in Prochlorococcus metagen-
omes (figure 4a). Whereas higher iron stress in the Indian
Ocean overlaps with low macronutrient availability, high
macronutrient availability is typical of the equatorial Pacific
and temperate North Atlantic, as shown by N and P relative
gene frequencies (figure 4). Here we detected large vari-
ations in gene frequencies, suggesting corresponding shifts
in nutrient stress. Thus, metagenomic analyses across
diverse ocean regions provided a high-sensitivity quantifi-
cation of nutrient stress.
The frequency of Prochlorococcus acquisition genes
suggested regional shifts in nutrient stress by both a single
and multiple nutrients. As seen in earlier studies, we detected
a high frequency of P acquisition genes for Prochlorococcus in
the subtropicalNorthAtlanticOcean below 39°N,where phos-
phate concentrations were low (figure 4a) [41]. This included
genes responsible for the regulation and uptake of dissolved
organic P, and for arsenate detoxification, and several of
unknown function. We also saw elevated P acquisition genes
for Prochlorococcus in the north Indian Ocean and Bay of
Bengal (between 1° and 17°N). By contrast, P acquisition
genes were low in all samples from the Pacific Ocean and
south Indian Ocean. Prochlorococcus N acquisition genes
showed a different biogeographical pattern. Urea acquisition
genes were frequent in all samples with the exception of the
high nitrate areas in the equatorial Pacific Ocean and temperate
waters in the North Atlantic Ocean. Nitrite and nitrate acqui-
sition genes were frequent throughout the Indian Ocean
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(with the exception of samples on the Equator) and in the
northern part of the Pacific Ocean transect. However, nitrite
and nitrate genes were less common in the North Atlantic sub-
tropical waters. Iron acquisition genes were common in the
equatorial Pacific Ocean. Thus, we detected a clear biogeogra-
phy of genes involved in N, P and Fe in Prochlorococcus.

We observed a partial correspondence between the fre-
quency of nutrient acquisition genes in Prochlorococcus and
Synechococcus, suggesting some lineage-specific adaptations to
specific ocean environmental conditions (figure 4a). Overall,
the regional shifts in Prochlorococcus and Synechococcus
genome content were significantly correlated (Mantel test
R=0.65, p-value< 0.001). In Synechococcus, there was also a
high frequency of P acquisition genes in the subtropical
North Atlantic Ocean and north Indian Ocean (figure 4c).
However, it appeared that the Indian Ocean area with high
P acquisition genes spread further south in Synechococcus com-
pared with Prochlorococcus. N acquisition genes were also
frequent in nearly all samples for Synechococcus, whereas the
genes were more geographically restricted in Prochlorococcus.
There was some evidence of increase in Synechococcus iron
acquisition genes in the equatorial Pacific Ocean, but the pat-
tern was not strong. This method is favourable within the
relatively stable environments inhabited by Synechococcus
and Prochlorococcus, leading to the selection for specialized
genotypes. The gene index results are more distinct for Pro-
chlorococcus (figure 4), likely owing to their higher degree of
genomic streamlining. Thus, the biogeographical shifts in
nutrient acquisition genes were more pronounced for Prochlor-
ococcus compared with Synechococcus.

The variation in nutrient acquisition genesmay be linked to
shifts in stress by one or more nutrients (figure 4b,d; electronic
supplementary material, figure S4). The frequency of nutrient
acquisition genes suggested P stress but also some N co-stress
in the western North Atlantic Ocean and north Indian Ocean.
The North Pacific Ocean and south Indian Ocean appeared
to beN stressed. The equatorial Pacific Oceanwas iron stressed.
However, the gene frequencies suggested that a brief transition
region around 10°N in theNorth Pacific Ocean experienced co-
stress by N and Fe. Synechococcus appeared to be stressed by N
in temperate North Atlantic Ocean waters whereas Prochloro-
coccus appeared more stressed by iron. Similarly,
Synechococcus showed evidence of P stress in parts of the
south Indian Ocean but this was not seen in Prochlorococcus.
Shifts in the relative gene frequency corresponded to shifts in
clade ecotypes (electronic supplementary material, figure S2).
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Thus, metagenomic analyses of phytoplankton populations
suggested regional shifts in stress by one or multiple nutrients.

We used additional ecosystem measurements to verify the
predictions from ATOM-gene and the overall resource invest-
ment strategies. In the Indian Ocean, uptake kinetics for the
ATOM-gene model were positively correlated with observed
uptake rates for nitrate, ammonium and urea (figure 5; elec-
tronic supplementary material, table S4). The implied nutrient
distributions matched our observations of increasing N north-
wards and vice versa for P into the subtropical Indian Ocean
gyre. Increases in N and P uptake rates, cellular investment in
photosynthesis andbiosynthesis, and cell volume corresponded
to reduced nitrogen stress (electronic supplementary material,
table S3). The aforementioned parameters were significantly
correlated to higher in situ N uptake rates and lower relative
N gene frequency for Prochlorococcus and Synechococcus.
Phosphorus stress appeared to have little impact on C :P and
cellular uptake traits in the Indian Ocean, unlike the other two
ocean basins (electronic supplementary material, figure S5).
Draws from the posterior-predictive distribution are shown
for model parameters (electronic supplementary material,
figures S6 and S7) and C : P (electronic supplementarymaterial,
figures S8 and S9). We give summaries of the posterior distri-
bution over model parameters in electronic supplementary
material, tables S8 and S9,where R̂=1 suggests the convergence
of theMarkov chainMonte Carlo integrator. Although P invest-
ment increased into the subtropical Indian Ocean gyre, there
was little influence on P luxury uptake and storage (electronic
supplementary material, figure S10). Only larger cells in the
temperate North Atlantic exhibited P storage in the ATOM-
genemodel. The small numberof data pointswithmetagenome
information prevented tight inference of parameter values, but
the posterior distribution favours the hypothesis that the effect
of nutrient stress on cell size and ribosomal content is the
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strongest driver of C : P in the regions sampled, with smaller
than expected roles for temperature and luxury storage. This
is reflected by the posterior favouring small values of the
luxurystorageparameterandhighervaluesof theQ10 forphoto-
synthetic processes. Consequently, the interaction between N
and P stress as seen in the genomic observations could be the
underlying mechanism leading to latitudinal shifts in C : P.
ing.org/journal/rstb
Phil.Trans.R.Soc.B
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4. Discussion
Linking ‘omicswith global biogeochemistry is amajor research
challenge and opportunity [51–54]. A great deal of molecular
data are being generated [55,56], but there is limited current
application of this new knowledge towards understanding
large-scale changes in the Earth system [57]. Trait-based
approaches are attractive for scaling from individual organ-
isms to key ecosystem functions using a model intermediate
[58,59]. We here use this approach as an intermediate for
linking genomic information with ocean biogeochemical pro-
cesses. By quantifying the spatial variation due to differences
in nutrient assimilation genes, we improved our predictions
of C : P across three major ocean basins (figures 1 and 2). The
ATOM-gene model allowed for multiple nutrient indexes
(N and P), where in situ nutrient concentrations were undetect-
able, resulting in significant improvements to the existing trait
model [42]. Importantly, the gene index quantifies cyanobacter-
ial adaptation to nutrient stressors in regions forwhichwe have
limited knowledge (e.g. the central Indian Ocean). Nutrient
stress may occur through diffusive limitation at low ambient
concentrations, the magnitude of nutrient fluxes, the ratio of
nutrient supply or nutrient co-limitation. Additionally, both
Synechococcus and Prochlorococcus can use different P and N
sources [60]. Thus, genome shifts integrate these unknowns
through the selective pressure to retain particular genes in
nutrient-poor biomes.

The frequency of nutrient assimilation genes greatly
improved our spatial understanding of nutrient stress and
elemental stoichiometry of marine communities. In particular,
the results showed surprising patterns of P and N stress in the
less studied IndianOcean.Our results support a recent analysis
of Synechococcus and Prochlorococcus elemental quotas,
suggesting a gradient of N, P and Fe stress in the Indian
Ocean [61]. The Bay of Bengal showed evidence of P stress
but lower N : P and C : P ratios. We attribute this contradictory
observation to an interaction between N and P stress as the
upregulation of P uptake proteins is restricted by N stress
[62]. Culture studies have shown that N and P stress interact
in controlling the overall cellular physiology and C :N : P [5].
However, it has been a challenge to translate these findings
to field communities. Some of this confusion originates from
difficulties in constraining external N and possibly P sources
from atmospheric deposition and N-fixation. This leads to a
poorly constrained in situ N:P supply ratio. It is unclear why
we see the evidence of increased P stress near the Bay of
Bengal, but it is tempting to attribute it to elevated N-fixation
[8,63]. Similar to recent observations of dissolved and particu-
late Fe, we saw indications of Fe stress via Prochlorococcus Fe
assimilation genes in the subtropical Indian Ocean gyre
[61,64]. We also saw a high presence of Fe assimilation genes
in regions with low C : P, where Synechococcus and Prochlorococ-
cus cell abundances remained elevated [28]. As expected, this
was seen for the equatorial Pacific high nutrient–low
chlorophyll (HNLC) region [65]. Our data also support past
studies indicating that the temperate western North Atlantic
Ocean [66] and the southern Indian Ocean [61] could experi-
ence some iron stress. Thus, our genomic techniques are
unveiling regions where we have a limited understanding of
trace-metal stress.

Our approach is based on an assumption of rapid adap-
tation leading to direct association between genome content
and environmental conditions [67–70]. Tropical and subtropi-
cal ocean regions have fast bacterial turnover, leading to
rapid selection and genome streamlining [71]. However,
environments with slow bacterial turnover may include eco-
types or genes that reflect past environmental conditions.
Different lineages may also experience unique stress [72],
whereas we here only analysed the abundant marine cyano-
bacteria. Our dataset includes few representative stations
from high latitudes, where light or temperature may be the
dominant selective factors [73,74]. In such conditions, tran-
scriptomics or proteomics may be more applicable. However,
these techniques suffer from their own caveats like strong
diel cycles [75,76] or low correlation between RNA and protein
expression [77,78]. Thus, the exact link between ‘omics
measurements and biogeochemical processes needs to be tai-
lored to the system of interest.

‘Omics techniques can be powerful for understanding the
environmental conditions experienced by microorganisms.
This principle is also applied in other ecosystem settings.
A high presence of proteobacteria in the human gut may
be an indicator of an imbalance in the redox potential and ‘eco-
system’ dysbiosis [79]. Similarly, the presence of ammonia
monooxygenase may be indicative of nitrification [80]. In
many ecosystems, it can be very challenging to quantify
microbial physiology and stress. Thus, a carefully calibrated
genomic approach could become a widespread tool to under-
stand microbial responses to environmental changes and the
biogeochemical outcomes.

Data accessibility. Uptake rate kinetics, nutrient concentrations, cell abun-
dances and particulate elemental concentrations are available on BCO-
DMO for the Atlantic AE1319 and BV46 cruises (https://www.bco-
dmo.org/project/2178) and for the Indian I09 cruise (https://www.
bco-dmo.org/project/628972). Nutrient data for the I09N cruise were
provided by Jim Swift (Scripps Institution of Oceanography, SIO) and
Susan Becker (SIO) and are available at https://cchdo.ucsd.edu. Meta-
genomes are available through BioProject (SRA PRJNA598881) at the
following link: https://www.ncbi.nlm.nih.gov/sra/PRJNA598881.
Additional environmental data and particulate elemental concen-
trations are available in the electronic supplementary material. A table
of gene information and genomes is provided as well.
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