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Molecular Pathogenesis of Human Immunodeficiency
Virus-Associated Disease of Oropharyngeal Mucosal Epithelium
Sharof M. Tugizov

Department of Medicine, School of Medicine, University of California, San Francisco, CA 94143, USA;
sharof.tugizov@ucsf.edu; Tel.: +1-(415)-514-3177

Abstract: The oropharyngeal mucosal epithelia have a polarized organization, which is critical for
maintaining a highly efficient barrier as well as innate immune functions. In human immunodefi-
ciency virus (HIV)/acquired immune deficiency syndrome (AIDS) disease, the barrier and innate
immune functions of the oral mucosa are impaired via a number of mechanisms. The goal of this
review was to discuss the molecular mechanisms of HIV/AIDS-associated changes in the oropharyn-
geal mucosa and their role in promoting HIV transmission and disease pathogenesis, notably the
development of opportunistic infections, including human cytomegalovirus, herpes simplex virus,
and Epstein-Barr virus. In addition, the significance of adult and newborn/infant oral mucosa in HIV
resistance and transmission was analyzed. HIV/AIDS-associated changes in the oropharyngeal mu-
cosal epithelium and their role in promoting human papillomavirus-positive and negative neoplastic
malignancy are also discussed.

Keywords: human immunodeficiency virus; oropharyngeal mucosal epithelium; reactivation of
opportunistic infections; disruption of epithelial junctions

1. Introduction

Four decades ago, the HIV/AIDS pandemic began. Global spread led to 75 million
infections and 32 million deaths. Today, highly effective prevention strategies are avail-
able to reduce the likelihood of HIV transmission via sexual intercourse. Furthermore,
antiretroviral therapy for people living with HIV/AIDS can reduce viral loads to levels
that cannot be detected or transmitted. However, despite the availability of these highly
effective agents, HIV/AIDS continues to be a lethal disease. HIV/AIDS was responsible
for one death each minute in 2021; every two minutes, a young woman becomes newly
infected with HIV. Likewise, approximately 200,000 cases of mother-to-child transmission
are reported each year. Thus, HIV/AIDS remains an unsolved problem; additional new
knowledge may help improve treatment and prophylaxis.

The surface of the oropharyngeal cavity is covered with a multilayer stratified squa-
mous epithelium supported by the lamina propria, which is a layer of fibrous connective
tissue [1,2]. Stratified oropharyngeal epithelial cells from the parabasal to the granulosum
layers have well-developed lateral adherens and tight junctions, indicating a polarized
organization [3–6]. The lateral localization of adherens and tight junctions between neigh-
boring cells of oral epithelium contribute to a physical barrier that protects the body from
penetration by viruses and other pathogens [4,5].

The oropharyngeal mucosa also contains a broad population of adaptive and innate
immune cells, including T and B cells, macrophages, dendritic/Langerhans cells (DC/LCs), and
natural killer (NK) cells that are distributed within the epithelium and lamina propria [2,7–16].
Intraepithelial DC/LCs and macrophages in the oral mucosa are critical components of the
innate immune system. These cells defend against pathogens that enter the body via the oral
cavity [2,13,14,16–22]. Intraepithelial macrophages and DC/LCs are also antigen-presenting
cells that are capable of activating an adaptive immune response. Thus, these cells may serve
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as “bridges” between the innate and adaptive immune systems [2,14,23–25]. In addition, oral
mucosal epithelial cells express toll-like receptors (TLRs) 2, 3, 4, 5, 6, and 9, which are critical
facilitators of innate immune responses against numerous pathogens [26,27].

Intraepithelial oral mucosal DC/LC and macrophages originate from peripheral blood
CD14+ monocytes [28,29]. Recruitment of circulating monocytes into the mucosal epithe-
lium is mediated by monocyte chemotactic protein-1 (MCP-1), MCP-2, macrophage inflam-
matory protein-1 alpha (MIP-1α), and MIP-1β [30–32]. Expression and secretion of these
mediators in the mucosal epithelium are modulated by multiple chemokine/cytokines,
including interferon-G(IFN-G), tumor necrosis factor-α (TNF-α), and interleukins (ILs),
including IL-1, IL-1β, IL-4, IL-6, IL-8, IL10, IL-13, and IL-15 [14,32–36]. MCP-1 is secreted
from the basolateral membranes of polarized epithelial cells [37,38]; the polarized release
of MCP-1 may generate a gradient toward blood vessels that serve to recruit monocytes
into the epithelium. Once they have transited across the endothelial layer, monocytes dif-
ferentiate into macrophages and DC/LCs [11]. Further traffic of monocytes/macrophages,
DCs, and T lymphocytes within the mucosal epithelium is coordinated by the formation of
transient tight junctions between immune and epithelial cells [39–42]. Migrating immune
cells, particularly DC/LCs, express the tight junction proteins known as claudin-1 and
occludin. Transient association of these proteins with cell junctions promotes the migration
of immune cells without disrupting epithelial barrier functions [39,41,43,44]. This allows
DC/LCs to reach the mucosal surface [39,43]. The absence of epithelial junctions may
reduce the efficiency of epithelial–lymphocyte interactions, thereby leading to dysfunction
(i.e., little to no retention of interepithelial lymphocytes and DC/LCs and thus their de-
pletion) [45–47]. Interactions of polarized mucosal epithelial cells with DC/LCs and other
cells of the adaptive and innate immune systems are critical for maintaining oral mucosal
immune homeostasis.

The oropharyngeal mucosal epithelium and its intraepithelial and subepithelial adap-
tive and innate immune cells play critical roles in promoting protection against numerous
pathogens, including viruses, bacteria, and fungi. However, in HIV/AIDS, various chronic
disorders can develop with a significant impact on the oral mucosal epithelium. These
include inflammation, necrotizing mucosal ulcers, and malignant and nonmalignant lesions
that may impair the barrier as well as the innate and acquired immune functions of the oral
mucosa [48–55].

Systemic HIV/AIDS is accompanied by the spread of cell-free and cell-associated HIV-1 in
the oral mucosal environment. There are several reports of viral DNA/RNA, cell-free HIV-1
virions, and tat and gp120 proteins isolated from oral mucosal tissue and saliva of HIV/AIDS
patients [6,56–64]. HIV-infected DC/LCs, lymphocytes, and macrophages were also detected in
the mucosal and submucosal layers of the oropharyngeal epithelium [6,56,57,62,63,65]. Electron
microscopy revealed that HIV virions could be found within the tight junctions of the oral
epithelium [62]. The presence of both cell-free and cell-associated HIV-1 both around and within
oropharyngeal mucosa may result in numerous changes that impair its innate immune and
barrier functions.

2. Role of Oropharyngeal Mucosal Epithelium in HIV-1 Transmission in Adults
and Children

Oral HIV-1 transmission in the adult population may occur during oral sex, in newborn
children and infants during delivery and breastfeeding [66–73]. The rate of adult oral HIV-
1 transmission has been estimated at ~0.004% per exposure (i.e., not a highly efficient
process) [66–68]. By contrast, the rate of mother-to-child transmission (MTCT) of HIV-1 in
the absence of antiretroviral therapy (ART) may be as high as 15% in Europe and 25–30%
in Asian and African countries [74–76].

The oropharyngeal and tonsillar mucosal epithelium may express one or more co-
receptors or non-canonical HIV-1 receptors that may facilitate virus binding and entry,
including CC chemokine receptor type 5 (CCR5), CXC chemokine receptor type 4 (CXCR4),
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heparan sulfate proteoglycans (HSPGs), mannose receptor, galactosylceramide (GalCer),
and T-cell immunoglobulin and mucin domain 1 (TIM-1) [3,77–84].

Results of studies featuring ex vivo adult and fetal/infant tissue explants revealed that
HIV-1 transmission through the adult oral epithelium was less efficient than fetal/infant
epithelial tissues, which supported rapid viral transmigration through the mucosal epithelium
and infection of virus-susceptible intraepithelial and subepithelial cells [3,85]. The resistance
provided by the adult tissues was primarily due to the presence of multiple epithelial layers
and tissue stratification (20–30) with highly-effective tight junctions (Figure 1). The highly
stratified adult oral epithelial cells limit viral penetration more efficiently than the less stratified
fetal/neonatal/infant counterparts (i.e., with 3–5 layers) [3].
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Figure 1. Model of HIV transmigration in the infant/fetal and adult oral epithelium. (a) Adult oral 
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virus is unable to spread to the lower layers or the lamina propria. (b) By contrast, the infant/fetal 
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The spread of HIV-infected macrophages and cell-free virions across infant/fetal oral epithelial cells 
may result in the infection of HIV-susceptible epithelial and submucosal cells, including macro-
phages, LC/DCs, and T lymphocytes. Thus, fetal/infant oropharyngeal epithelial cells may serve as 
a critical portal for HIV entry during MTCT. Increased rates of HIV transmission across the fetal/in-
fant oral epithelium compared to that of adults may represent both reduced barrier function (asso-
ciated with pauci-stratification) as well as lower levels of innate immune proteins. The models in 
this and other figures were created by the authors using Adobe® Illustrator (San Jose, CA, USA). 
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result in elevated levels of intracellular calcium and activation of mitogen-activated pro-
tein kinase (MAPK) and PI3K signaling [93–95]. In addition, HIV-1 envelope protein 
gp120-induced activation of MAPK and NF-κB signaling reduced the expression of ZO-1, 
occludin, and claudin-1 in oral epithelial cells, leading to the disruption of tight junctions 
[96–98]; this may facilitate paracellular penetration of HIV-1 virions. HIV/AIDS-associ-
ated production and release of proinflammatory cytokines, including TNF-α and IFN-γ, 
may also disrupt tight junctions of oral epithelial cells and lead to paracellular penetration 
of HIV-1 [4,5]. 

Oral epithelial cells may also support non-replicative HIV-1 infection and virus trans-
fer to CD4+ T lymphocytes [99] and immobilize the infectious virions on their surfaces to 
facilitate their transfer to permissive cells [100]. Likewise, ex vivo HIV-1 infection of ton-
sillar explants can lead to a productive infection of intraepithelial and submucosal macro-
phages and lymphocytes [65,96,101,102]. 
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3.1. HIV/AIDS Reactivates Opportunistic Infections of the Oral Mucosa  

The oral cavity of a healthy individual maintains abundant flora, including many 
commensal and potentially opportunistic organisms. Inflammatory lesions and opportun-
istic infections are relatively infrequent, suggesting that the oral mucosa has highly effi-
cient biological and immunological barrier functions [14,16,103,104]. The innate immune 

Figure 1. Model of HIV transmigration in the infant/fetal and adult oral epithelium. (a) Adult oral
epithelial cells are stratified into numerous layers. While cell-free HIV can transmigrate to some
extent across the upper regions of the intact adult oral epithelium (across two to five layers), the virus
is unable to spread to the lower layers or the lamina propria. (b) By contrast, the infant/fetal oral
mucosal epithelium contains only two to five epithelial layers and is not completely stratified. The
spread of HIV-infected macrophages and cell-free virions across infant/fetal oral epithelial cells may
result in the infection of HIV-susceptible epithelial and submucosal cells, including macrophages,
LC/DCs, and T lymphocytes. Thus, fetal/infant oropharyngeal epithelial cells may serve as a critical
portal for HIV entry during MTCT. Increased rates of HIV transmission across the fetal/infant oral
epithelium compared to that of adults may represent both reduced barrier function (associated with
pauci-stratification) as well as lower levels of innate immune proteins. The models in this and other
figures were created by the authors using Adobe® Illustrator (San Jose, CA, USA).

Furthermore, adult oral epithelial cells express high levels of anti-HIV-1 innate pro-
teins, including human beta-defensin (hBD)2 and hBD3. These cells also express secretory
leukocyte protease inhibitor that inactivates intraepithelial virions and reduces oral trans-
mission of HIV-1 [79,82,85]. By contrast, fetal/infant oral epithelial cells do not express high
levels of these proteins, which may be among the factors contributing to the comparatively
high rate of HIV-1 MTCT [79,82,85]. HBDs tagged with the HIV-1 protein transduction do-
main known as Tat were delivered to HIV-1-infected infant tonsillar epithelial cells, which
facilitated efficient penetration and virus inactivation [85]. PTD-mediated internalization of
these proteins in infant tonsillar epithelial cells was followed by their penetration into MVBs
and vacuoles containing HIV-1. PTD also promoted the fusion of HIV-containing vesicles
with lysosomes which led to the degradation of gp120 and p24 and viral inactivation [85].
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Ex vivo PTD-mediated internalization of hBD2 and hBD3 into tonsillar tissue explants
from infants also reduced virus spread from epithelial cells to CD68+ macrophages, CD4+

T lymphocytes, and CD1c+ DCs [85].
HIV-1 internalization through the apical surface into infant tonsillar epithelial cells

can be initiated by multiple entry pathways, including micropinocytosis as well as clathrin
and caveolin/lipid raft-associated endocytosis [83]. An evaluation of HIV-1 transmission
through polarized tonsillar epithelial cells revealed that approximately 0.05% of inocu-
lated virions underwent transcytosis across the epithelium [86]. More than 90% of the
internalized virions were sequestered in epithelial endosomes that included multivesicular
bodies (MVBs) and vacuoles. Sequestration of HIV-1 in the endosomal compartment of
tonsillar epithelial cells was observed both in the single layer of polarized cells as well as
ex vivo in explants of tonsillar epithelial tissue [83,85,86]. Intraepithelial HIV-1 remained
infectious for several days, although no virion release was observed [86]. Interactions of
HIV-1-containing epithelial cells with activated peripheral blood mononuclear cells and
CD4+ T lymphocytes led to the disruption of epithelial cortical actin and the spread of
the virus from epithelial cells to the lymphocytes. IFN-Gand TNF-α treatment of tonsil-
lar epithelial cells also induced reorganization of cortical actin and intracellular virion
release [86].

The release of HIV-1 from oropharyngeal mucosal epithelial cells may result in the
virus spreading into intraepithelial and subepithelial macrophages, DC/LCs, and CD4
T+ lymphocytes. This is the first step in establishing systemic HIV-1 infection. Mucosal
macrophages, DC/LCs, and intraepithelial T lymphocytes, DC/LCs may then transmit
HIV-1 across the mucosal epithelium into regional lymph nodes [87–92].

Oral transmission of HIV-1 may also result from paracellular virus penetration if the
integrity of the oral mucosal epithelium is impaired. HIV-1 gp120 binding to GalCer can
result in elevated levels of intracellular calcium and activation of mitogen-activated protein
kinase (MAPK) and PI3K signaling [93–95]. In addition, HIV-1 envelope protein gp120-
induced activation of MAPK and NF-κB signaling reduced the expression of ZO-1, occludin,
and claudin-1 in oral epithelial cells, leading to the disruption of tight junctions [96–98]; this
may facilitate paracellular penetration of HIV-1 virions. HIV/AIDS-associated production
and release of proinflammatory cytokines, including TNF-α and IFN-γ, may also disrupt
tight junctions of oral epithelial cells and lead to paracellular penetration of HIV-1 [4,5].

Oral epithelial cells may also support non-replicative HIV-1 infection and virus transfer
to CD4+ T lymphocytes [99] and immobilize the infectious virions on their surfaces to
facilitate their transfer to permissive cells [100]. Likewise, ex vivo HIV-1 infection of
tonsillar explants can lead to a productive infection of intraepithelial and submucosal
macrophages and lymphocytes [65,96,101,102].

3. Manifestations of HIV/AIDS in the Oropharyngeal Mucosal Epithelium
3.1. HIV/AIDS Reactivates Opportunistic Infections of the Oral Mucosa

The oral cavity of a healthy individual maintains abundant flora, including many com-
mensal and potentially opportunistic organisms. Inflammatory lesions and opportunistic
infections are relatively infrequent, suggesting that the oral mucosa has highly efficient
biological and immunological barrier functions [14,16,103,104]. The innate immune and
barrier functions of the oral mucosal epithelium may become severely impaired in individu-
als with HIV/AIDS, which will permit the development of opportunistic infections. Herpes
simplex virus-1 (HSV-1), Epstein-Barr Virus (EBV), and human cytomegalovirus (HCMV)
are common oral pathogens that can lead to various chronic disorders in the oral mucosal
epithelium, including necrotizing mucosal ulcers and nonmalignant lesions [48–53,105].
All three of these viruses can infect children early in life via the oral mucosa and persist
throughout their lifetimes [106–108]. Reactivation of EBV, HSV-1, and HCMV in individuals
diagnosed with HIV/AIDS leads to viral shedding into various body fluids, including
saliva and cervicovaginal secretions [55,109–112]. Numerous human herpes viruses (in-
cluding EBV, HSV-1, and HCMV) were detected in the saliva of HIV-infected individuals
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despite the availability of ART [109]. These viruses can be transmitted to neonates and
infants through maternal saliva and/or breast milk [106,113–117]. Oropharyngeal shedding
of HSV and HCMV was also reported in HIV-infected children [118,119].

3.1.1. Synergistic Contributions of HIV-1 and EBV to the Nonmalignant Oral Lesion,
Hairy Leukoplakia

White epithelial lesions on the side of the tongue, a condition known as hairy leuko-
plakia (HL), are well-known oral mucosal manifestations of HIV/AIDS. These lesions,
which feature epithelial acanthosis and hyperkeratosis without inflammation [120–122],
are associated with high-level replication of EBV [120–122]. HL lesions consistently demon-
strate severe depletion of intraepithelial LCs, suggesting the critical role of these cells
in disease pathogenesis [123–125]. Ex vivo experiments targeting buccal explants and
tongue tissue revealed that EBV infection occurs first in submucosal CD14+ monocytes.
The virus then spreads via migration to the epithelium. This series of events will initiate
a productive EBV infection within terminally-differentiated cells of the spinosum and
granulosum layers [126]. Exposure of EBV-infected oral explants or EBV-infected mono-
cytes with specific antibodies that target CC chemokine receptor 2 (CCR2) and MCP-1
prevented monocyte entry and blocked keratinocytes infection. Interestingly, EBV-infected
B-lymphocytes played only a small role in EBV spread to keratinocytes in an ex vivo oral tis-
sue explant model [126]. However, co-cultivation experiments performed in vitro revealed
that infected B-lymphocytes may promote EBV spread to previously uninfected monocytes.
Circulating EBV-positive monocytes are present in most HIV-infected individuals. This
finding is consistent with a pathway in which EBV spreads from B-lymphocytes to mono-
cytes. Infected monocytes entering the epithelium will then differentiate into macrophages
and/or LCs. These cells will elicit a productive keratinocyte infection and thus promote
the development of the characteristic HL lesions [126] (Figure 2). It is also possible that
CD14-negative precursors of LCs may disseminate EBV within oral mucosal epithelial
cells [127].

Both EBV and HIV-1 can infect macrophages, monocytes, and DCs [65,128–134]. Cir-
culating monocytes serve as reservoirs for HIV-1 infection [135]. Circulating monocytes
in patients undergoing highly active ART (HAART) may harbor replication-competent,
non-latent HIV-1 [128]. EBV-infected macrophages were also detected in healthy asymp-
tomatic individuals. This finding suggested that macrophages may be a reservoir for this
opportunistic pathogen [136].

HIV-1 infection of monocytes may increase the surface transport of adhesion molecules
and integrins, including the α5β1 and αvβ3 integrins [137–141]. The EBV envelope pro-
tein BMRF-2 uses β1 and α5β1 integrins as receptors to infect polarized oral epithelial
cells [142,143]. EBV entry into monocytes may also be mediated by an EBV BMRF-2– inte-
grin interaction because monocytes do not express the primary EBV receptor, CD21 [144].
Thus, HIV/AIDS-associated activation of surface integrin expression in peripheral blood
monocytes may facilitate their infection by EBV. In addition, the HIV tat protein induces
endothelial cell expression of intercellular adhesion molecule (ICAM), vascular cell adhe-
sion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule (E-selectin) [145].
The synergy between HIV tat protein and TNF-α detected in elevated levels in association
with HIV/AIDS increases β2 integrin expression in monocytes; these responses may lead
to active translocation of monocytes from the circulation into tissue sites where they differ-
entiate into LCs [146,147]. This may lead to the migration of HIV-1 and/or EBV-infected
monocytes from the circulation into mucosal sites, thereby initiating EBV spread from LCs
to differentiated epithelial cells capable of supporting productive virus replication [126,127].
EBV BMRF-2/BDLF-2 facilitates virus spread between oral epithelial cells and establishes
foci of virus-infected epithelial tissue [148,149]. This may promote epithelial cell prolif-
eration and lead to the development of HL. EBV BHRF-1 delays or inhibits apoptosis of
cells in the differentiated granulosum layers, which may permit enhanced proliferation of
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epithelial cells, thereby increasing the thickness and hyperplasia characteristic of the HL
epithelium [150].
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Figure 2. Role of HIV-1 and EBV infection in stratified oral mucosal epithelial cells and development
of HL. Latent EBV may be reactivated in immunocompromised hosts. This response can be seen
in individuals with immunodeficiency secondary to HIV and will lead to virus replication in B-
lymphocytes. Infectious virions that are generated in and released from B-lymphocytes will then
infect peripheral blood monocytes and/or cells in the lamina propria of the mucosal epithelium in
the oral cavity; the monocytes will then become EBV-positive macrophages and LCs. EBV-infected
LCs and macrophages will migrate into the mucosal epithelium, where they will transmit the virus
to epithelial cells in the spinosum layer. The terminally-differentiated epithelial cells in this layer
support lytic EBV infection and can produce and release large amounts of infectious progeny virions.
Productive EBV infection in this locale may also result in virus spread to the upper granulosum layers
of oral epithelium and thus to the development of HL, with characteristic acanthosis, hyperkeratosis,
and ballooning morphology. Symbols in the figure include GR—stratum granulosum; SP—stratum
spinosum; BL—stratum basale.

HIV-1 infection of monocytes/macrophages and DC/LCs may impair their critical
functions, including activation, maturation, antigen presentation, and interactions with
T cells [151–155]. HIV and/or EBV infection of DC/LCs may ultimately result in their
dysfunction. This may lead to the depletion of oral mucosal intraepithelial LCs, as has been
shown for HIV/AIDS-associated HL lesions [123–125,156]. HIV-1 gp120 and tat proteins
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are also capable of disrupting epithelial adherens and tight junctions [96–98]. This may
reduce the intraepithelial retention of LCs and lead to local depletion [39,41,43,44,157].

ART for HIV-1 and treatments effective against EBV typically lead to the resolution of
HL in most patients [124,158]. These findings indicate the synergistic roles of HIV and EBV
in the development of HL. However, although the introduction of ART has reduced the
frequency of HL, this lesion has not been completely eliminated [159,160]. This suggests
that residual HIV-associated mechanisms may contribute to HL development.

3.1.2. HIV-Induced Disruption of Tight and Adherens Junctions of Oral Epithelial Cells
Facilitates the Spread of HSV-1

Herpes simplex virus (HSV) type 1 and HSV type 2 are both opportunistic infections
that are frequently associated with HIV/AIDS [105]. HSV-1 reactivates and replicates in the
oral epithelium of HIV/AIDS-associated immunocompromised individuals and can lead
to oral ulcers, gingivitis, and necrotic lesions [55]. HSV-1 reactivation may occur despite
ongoing HAART [161,162]. Although the increased risk of developing HSV infection may
be mediated in part by HIV-induced immune dysfunction, they may also be associated
with direct and/or indirect molecular interactions between these two viruses.

HIV-infected LC/DCs, CD4+ T lymphocytes, and macrophages infiltrating the mu-
cosal epithelium can release virions as well as the viral proteins, gp120 and tat. Interactions
of virions and viral proteins with one or more HIV-coreceptors (i.e., CXCR4, CCR5, HSPG,
and/or GalCer), TLR-2/4, integrins, and/or mannose receptors on epithelial cells induces
the activation of PI3K, MAPK, TLR, and NF-κB signaling pathways, resulting in the expres-
sion of proinflammatory cytokines (TNF-α, IFN-G, IL-1, IL-1β, IL-2, IL-6, IL-8, and IL-13),
matrix metalloproteinases (MMPs-2 and -9), and caspases (caspase-3 and -6) [6,98,163–165].
In addition, activation of these pathways will downregulate the expression and/or promote
aberrant internalization and degradation of epithelial adherens and tight junctions.

Prolonged interactions of polarized epithelial cells from the oral cavity with tat and
gp120 can lead to the disruption of adherens and tight junctions via activation of the
MAPK signaling pathway [97]. HIV-associated activation of MAPK leads to upregulation
of MMP-9 and NF-κB which induces the disruption of adherens and tight junctions [98].
Furthermore, HIV-induced disruption of oral epithelial junctions facilitates the paracellular
spread of HSV-1 [97] (Figure 3).

The HSV-1 envelope glycoprotein gD binds to nectin-1, which is a cell adhesion
protein [166] sequestered within the intercellular junctions and limits HSV access to mucosal
epithelial cells [167]. HIV-mediated disruption of adherens junctions will liberate nectin-1,
thereby promoting HSV-1 binding to gD. HSV-1 infection is substantially increased in
epithelial cells whose junctions have been disrupted compared to those with junctions
that remain intact [97]. Exposure of nectin-1 due to disruptions in adherens junctions
may also accelerate the cell-to-cell spread of HSV-1 from oral epithelial cells infected to
those uninfected. Exposure to anti-nectin-1 and anti-HSV-1 gD antibodies will result
in a substantial reduction in the extent of HSV-1 infection as well as cell-to-cell spread.
Collectively, these findings suggest that HIV-1-mediated HSV spread and ongoing infection
are facilitated by HSV gD interactions with exposed nectin-1 [97].

HSV is latent in sensory neurons in healthy individuals with intact immune func-
tion [168]. HIV/AIDS may induce HSV reactivation in neurons, thereby leading to the
development of mucosal disorders [161]. In addition, HIV-mediated release of nectin-1
from cells with disrupted adherens junctions may also promote the spread of HSV-1 from
neurons to epithelial cells (Figure 3). Thus, HIV-mediated disruption of intercellular junc-
tions potentiates HSV-1 infection as well as cell-to-cell and paracellular spread within the
oral mucosal epithelium. This mechanism may contribute to the rapid development of
HSV-associated oral lesions in HIV-infected individuals.
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Figure 3. HIV/AIDS-associated disruption of mucosal epithelium facilitates the spread of HSV
infection. (a) HIV-infected LC/DCs, macrophages, and CD4+ T lymphocytes infiltrate the mucosal
epithelium, where they release virions as well as gp120 and tat. Viruses and viral proteins mediate the
disruption of epithelial adherens and tight junctions, thereby impairing epithelial integrity. (b) HIV-
associated immune dysfunction leads to the reactivation of HSV-1 in sensory neurons. The reactivated
virus infects epithelial cells via interactions of viral envelope glycoprotein D with its receptor known
as nectin-1. Nectin-1 is sequestered within the regions associated with intact adherens junctions in
the lateral membranes of epithelial cells. HIV-induced disruption of adherens junctions liberates
sequestered nectin-1, thereby facilitating its interactions with HSV glycoprotein D. This promotes
HSV infection and cell-to-cell spread from neurons to epithelial cells as well as between cells in the
oral epithelium. Virus spread leads to the rapid progression of HSV-mediated mucosal lesions and
ulcers. Symbols in the figure include GR—granulosum; SP—spinosum; BL—basal.

3.1.3. HIV-1 and HCMV Mother-to-Child Transmission (MTCT) through the Infant
tonsillar Epithelium Synergistically Promote the Spread of Both HIV-1 and HCMV

Despite the availability of effective ART, 100,000–240,000 cases of MTCT of HIV-1 are
reported each year [76,169–172]. Most cases of MTCT (40–50%) result from breastfeed-
ing [76]. Breast milk may contain cell-free and cell-associated HIV-1 [69–73], which may
initiate mucosal transmission of the virus via the child’s oropharyngeal and gastrointestinal
mucosae [3,6,79,173]. Breast milk may also contain HCMV that has been activated in
response to HIV/AIDS [174], which can promote the development of oral mucosal lesions,
retinitis, hepatitis, esophagitis, pneumonia, encephalopathy, and/or gastrointestinal inflam-
mation [175–179]. Nearly all HIV-infected individuals, including pregnant women, exhibit
HCMV co-infection [108,180]. MTCT of HCMV can occur in utero via the placenta and
during labor by exposure to secretions from the cervix and the vagina [119,181]. However,
most HCMV MTCT is observed postpartum by virion transfer in infected breast milk and
transmission through the oral and/or gut mucosal epithelium [119,181,182]. Almost all
cases of HCMV activation in HCMV-seropositive, HIV-uninfected women occur secondary
to lactation [183]. The virus can be found in breast milk for only a few weeks postpar-
tum [184,185]. By contrast, HCMV shedding into breast milk of HIV-infected women
may increase significantly during the postpartum period and can last for six months or
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longer. Persistent viral shedding can facilitate MTCT via the infant’s oropharyngeal and
gastrointestinal mucosal epithelium [186]. Low maternal CD4+ T cell counts and high levels
of HIV RNA in breast milk correlate with comparatively high levels of HCMV genomic
DNA in breast milk [186,187]. HCMV transmission (perinatal and postnatal) may occur in
as many as 90% of children who acquire the virus during early childhood [119,176,188,189].
Primary HCMV infection or disease reactivation in HIV-infected pregnant women may
also contribute to the MTCT of HIV-1. Several groups have shown that elevated levels
of HCMV in breast milk are associated with an increased risk of postpartum MTCT of
HIV-1 [186,189–191].

Exposure to cell-free forms of HIV-1 or HIV-1 proteins gp120 and tat will lead to the
disruption of the tight junctions characteristic of epithelial cells from the tonsils. This will
also increase paracellular transfer through polarized epithelial cells from infant tonsils as
well as ex vivo tissue explants. This will also facilitate HCMV spread within the tonsil
epithelial cells [96]. Furthermore, HIV-1 gp120 and tat-induced activation of NF-κB and
MAPK signaling in these cells increases the extent of HCMV infection. NF-κB activation
is a requirement for transactivation of the major immediate early HCMV promoter and
promotes the expression of viral IE proteins [192–194]. By contrast, MAPK activation is
required for HCMV replication and the generation of viral progeny [195].

HCMV infection of epithelial cells from human tonsils may also result in the disruption
of tight junctions. This will increase paracellular transfer and thus facilitate HIV-1 spread
into the mucosal layers [96] (Figure 4). HCMV-induced paracellular spread of HIV-1
in tonsil tissue also enhances virus access to macrophages, dendritic cells, and CD4+

T lymphocytes. In addition, HIV-1-enhanced HCMV infection via paracellular spread
to epithelial cells will also lead to HCMV infection of tonsillar DCs and macrophages.
Thus, HIV-1- and HCMV-mediated disruption of the tight junctions of the infant tonsillar
mucosal epithelial cell tight junctions may impair their barrier function, thereby facilitating
paracellular penetration and the initiation of MTCT (Figure 4).

HIV-1- and HCMV-co-infected tonsillar explant tissues showed higher levels of tar-
get cell infection with both viruses than was observed in tissues infected independently
with either virus alone [96]. These results highlight the synergistic effects of both HIV-1
and HCMV with respect to promoting infection. This synergism may result in critical
contributions to HIV-1 and HCMV transmission via breast milk when both viruses are
present [186,187] and can interact simultaneously with the infant/newborn oral mucosa.
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Figure 4. Co-infection of tonsil tissues with HIV-1 and HCMV may amplify both viral infections
in a synergistic fashion [96]. (a) Tonsillar and oropharyngeal epithelial cells have well-developed
tight and adherens junctions that contribute to the barrier preventing the paracellular spread of
HCMV and HIV-1. (b) Most MTCT of these viruses occurs during childbirth and breastfeeding. At
these times, the viruses may have the opportunity for simultaneous interactions with oral mucosal
epithelial cells and can thereby disrupt their integrity. Cell-free HIV-1 and viral gp120 found in breast
milk and cervicovaginal secretions may promote the disruption of junctions in epithelial cells in the
oropharynx and the tonsils. Secreted tat protein may also promote disruption of tight junctions in
HIV-infected infants. Collectively, these interactions may promote MTCT of HCMV and may also
amplify its paracellular spread. HCMV infection of the mucosal epithelial cells of the oropharynx also
enhances the paracellular spread of HIV-1 and initiates HIV-1 MTCT. (c) Virus-mediated disruption of
the integrity of the epithelial mucosa may promote HIV-1 paracellular spread by providing increased
access to intramucosal and submucosal DCs, macrophages, and CD4+ T lymphocytes. Virus-induced
mucosal epithelial disruption may also promote infection via HCMV paracellular spread. HCMV can
then spread to intraepithelial and submucosal DCs and macrophages. Thus, HIV-1 and HCMV may
act synergistically to promote MTCT through the infant tonsillar mucosal epithelium.

4. HIV-1 Proteins gp120 and Tat Promote Invasiveness of Both Human Papillomavirus
(HPV)-Positive and HPV-Negative Neoplastic Oral and Genital Epithelial Cells

HIV/AIDS may increase the risk of developing cancer. Results from recent studies
have revealed that the incidence of HPV-associated oropharyngeal, cervical, and anal cancer
is 6, 22, and 80 times higher, respectively, in HIV-infected compared to HIV-uninfected
individuals [196–198]. HPV is the etiological agent of most oral-genital epithelial carcino-
mas [199,200]. Although anti-HPV vaccination strategies are effective in preventing virus
infection, the value of this approach is limited in people living with HIV (PLWH) because
most of these individuals have experienced multiple HPV exposures. HIV-1 may also be a
risk factor associated with head and neck as well as HPV-negative oral cancer [201–205].
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HIV may increase the risk of developing HPV-associated cancers by attenuating local and
systemic immune responses. Moreover, HIV-associated epithelial disruption may promote
HPV infection of oral and genital epithelial cells [6]. The addition of HPV-16 pseudovirions
(PsVs) to the mucosal surfaces of disrupted tissues led to their paracellular penetration into
the epithelium [6]. HPV-16 PsV entry into the basal/parabasal cells (i.e., the site of initiation
of the HPV life cycle) was observed. These findings suggest that HIV-associated disruption of
mucosal epithelial junctions facilitates paracellular spread by oncogenic HPV virions through
strata spinosum and granulosum layers, leading to the infection of basal/parabasal cells.
Initiation of this infection can lead to HPV-associated neoplasia.

HIV-1-induced disruptions of the tight and adherens junctions in mucosal epithelial
cells may also lead to epithelial-mesenchymal transition (EMT) [206]. EMT, which is a phys-
iologic process, regulates the development of cell lineage identity and cell differentiation
associated with embryonic development [207]. EMT also promotes neoplasia, including
the growth and metastasis of invasive epithelial cancers [208]. EMT associated with the
development of epithelial cell cancer involves multiple steps, beginning with the loss of
apicobasal polarity. This event may be followed by loss of adherens and tight junctions as
well as critical cell-adhesive properties. Cells in transition develop a spindle cell-type shape.
During the final stages of EMT, these cells will also express mesenchymal markers [209–214].
While in the intermediate stages of EMT, the cells may express both mesenchymal (i.e.,
vimentin) and epithelial (i.e., E-cadherin) markers, which are critical factors contributing to
cancer cell invasiveness [209–214].

The dominant network involving the transforming growth factor (TGF)-β signaling
pathway regulates EMT leading to cancer [215]. The mature form of TGF-β binds to
TGFβ−R2 and promotes a signaling cascade leading to Smad family transcription factor
complex activation. These events lead to the activation of several specific transcriptional reg-
ulators, including Slug, Twist1, and Snail. Activation will be followed by the upregulation
of N-cadherin, fibronectin, and vimentin and the downregulation of E-cadherin [216,217].

Prolonged interactions (five to seven days) with HPV-16-immortalized anal AKC-2
and cervical CaSki epithelial cells with cell-free-HIV-1 virions and/or viral proteins gp120
and tat leads to the development of increased invasiveness and EMT [218] (Figure 5).
Furthermore, adding these viral proteins to cultures of oral epithelial cells, including HPV-
16-infected SCC-47 and HPV-16-negative HSC-3 cells, resulted in similar responses. While
gp120- and tat-induced EMT resulted in the detachment of poorly-adherent cells, these
same cells could undergo reattachment under appropriate conditions. Reattached cells
co-expressed vimentin and E-cadherin. This result suggested that these cells had reached
the intermediate stage of EMT [218]. Reattached cells also expressed stem cell markers
CD44 and CD133 that may contribute to cancer-associated metastasis and invasion. Once E-
cadherin expression was restored, and vimentin expression was inhibited, the HIV-induced
EMT was reduced, as well as the invasiveness of HPV-16 immortalized anal epithelial and
cervical cells [218].

Taken together, these results suggest that direct interactions of extracellular HIV-1
virions and/or gp120 and tat with neoplastic genital or oral mucosal epithelial cells may
lead to the development of an EMT phenotype that accelerates the development of HPV-
associated malignancies (Figure 5). Recent findings also suggest that the HIV-1 tat protein
contributes to the induction of EMT and the increased invasiveness of HPV-negative cancer
cells derived from the lung epithelium [219]. In addition, other studies have highlighted
the impact of HIV-associated reductions in adherens and tight junction protein expression
in both lung and intestinal epithelial cells [220,221]. Collectively, these results suggest that
HIV-1 infection may promote the development of malignancy in both HPV-negative and
HPV-infected neoplastic epithelial cells.
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Figure 5. A model of EMT induced by HIV [218]. (a) Oropharyngeal and genital epithelial cells
display a polarized organization with distinct basolateral and apical membranes as well as well-
developed adherens and tight junctions. (b) Cell-free HIV-1 virions and gp120 and tat interact with
epithelial cells, which leads to the activation of TGF-β and MAPK signaling and the induction of
an EMT phenotype. As part of this phenotype, epithelial cells lose adherens and tight junctions
and apicobasal polarity, as well as their cobblestone-like morphology. These epithelial cells also
express vimentin and E-cadherin. Cells exhibiting this phenotype may also express markers of
stem cells and thus may undergo conversion to cancer stem cells that are capable of generating
invasive metastatic disease by migrating into systemic circulation through basement membranes.
(c) Additional progression of EMT may result in upregulated N-cadherin and vimentin expression
associated with loss of E-cadherin in association with the aforementioned spindle-like morphology.
These mesenchymal cells are highly invasive and capable of migration. Thus, this transition may
ultimately promote the spread of malignant cells within tissues and organs. Collectively, these results
permit us to create a model of accelerated HIV-associated neoplasia that features both premalignant
and malignant HPV-uninfected and HPV-infected mucosal epithelial cells.
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5. Conclusions

The multi-layer adult oral mucosal epithelium expresses high levels of anti-HIV innate
immune proteins hBD2, hBD3, and secretory leukocyte protease inhibitors that inactivate
the virus and thus reduce the rate of oral transmission. By contrast, the oral mucosal
epithelia of newborns and infants cannot efficiently prevent HIV-1 penetration because of
its minimal stratification and inability to produce sufficient innate immune proteins.

HIV-1 infection leads to EBV infection of circulating monocytes, followed by their
migration into the oral mucosal epithelium and differentiation into DC/LCs. The spread
of EBV from macrophages and LCs into differentiated oral epithelial cells may lead to
productive viral replication and extensive cell-to-cell spread of virus progeny within the
stratum granulosum of the oral mucosal epithelium, thereby initiating the development
of HL.

MAPK activation in oral epithelial cells by HIV-1 gp120 and tat leads to the upregula-
tion of NF-κB and MMP-9, thereby disrupting tight and adherens junctions and facilitating
HSV-1 paracellular spread. In addition, HIV-induced disruption of epithelial junctions also
liberates sequestered nectin-1 and thus facilitates its binding to HSV-1 gD, which promotes
HSV-1 spread within the epithelial cells.

Disruption of infant tonsil epithelial tight junctions by HIV-1 and HCMV may impair
the barrier function of mucosal epithelium and permit paracellular penetration of both
viruses and the initiation of MTCT.

Extended interactions between HIV-1 cell-free virions or the HIV-1 proteins gp120
and tat with HPV-positive and -negative oral neoplastic epithelial cells increase their EMT
phenotype and invasiveness.

Altogether, these studies show the molecular mechanism of the interaction between
HIV-1 and other pathogens, including EBV, HCMV, HSV-1, and HPV, in the oropharyngeal
mucosal epithelium. These interactions impair the barrier and innate immune functions of
oropharyngeal epithelium, leading to the increased spread of these viruses within the oral
mucosal environment and the progression of existing neoplastic processes of epithelial cells.
Additional research may help improve treatment and prophylaxis for HIV/AIDS infection.
New approaches could eliminate/reduce the reactivation and spread of opportunistic
infections in the oral cavity and maintain the barrier and innate immune functions of the
oropharyngeal mucosal epithelium
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