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Categorization and the Parsing of Objects
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rpevtzow@ucs.indiana.edu

Abstract

Several models of categorization suggest that fixed
inputs (features) are combined together to create cat-
egorization rules. It is also possible that categorization
influences what features are perceived and used. This
experiment explored the possibility that categorization
training influences how an object is decomposed into
parts. In the first part of this experiment, subjects leamed
to categorize objects based on particular sets of line
segments. Following categorization training, subjects
were tested in a whole-part decomposition task, making
speeded judgments of "does whole X contain probe Y."
All diagnostic and nondiagnostic category parts were used
as parts within the whole objects, and as probes.
Categorization training in the first part of the experiment
affected performance on the second task. In particular,
subjects were faster to respond when the whole object
contained a part that was diagnostic for categorization
than when it contained a nondiagnostic part. When the
probe was a diagnostic category part subjects were faster
to respond that it was present than absent, and when the
probe was a nondiagnostic part, subjects were faster to
respond that it was absent than that it was present. These
results are discussed in terms of perceptual sensitivity,
response bias, and the modulating influence of
experience.

Introduction

In many traditional models of categorization, a fixed set
of primitive features is used to determine categories.
However, it is not obvious how these features are defined.
Perhaps we perceive the lowest level of properties into
which an object can be decomposed (such as line seg-
ments), or maybe we perceive some higher level (such as
angles formed by line segments). One possibility is that
the categories we use determine what the primitive inputs
are. If this is the case, then learning, particularly learning
new categories, may influence what features are perceived.

Evidence exists which suggests that, to some extent, we
learn how to perceive; that is, our perceptions are influ-
enced by experience. Gibson and colleagues (Gibson,
1969; Gibson & Walk, 1956: Gibson & Gibson, 1955)
discussed ways in which perceptual learning can occur.
One of these methods, pre-differentiation, involves in-
creased ability to differentiate objects as a result of experi-
ence with them. In one study (Gibson & Walk, 1956), a
group of rats were exposed to circles and triangles, but were
not required to respond to these shapes. These rats were
later able to learn to discriminate between these shapes
much easier than a control group of rats which did not have
this experience. Pre-differentiation of the shapes increased
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performance in a task which involved distinguishing be-
tween them. Another form of perceptual learning involves
detection of distinctive features (Gibson, 1969). In this
type of learning, features which are diagnostic of a particu-
lar object are learned. These features may not have been
immediately distinguished, upon first experience with the
object. Through experience, however, the observer learns
which features can be used to determine the object's iden-
tity. These features may be created from more primitive
features. In this case, learning can be said to be diagnostic-
ity driven. An example of diagnosticity driven learning
comes from an experiment performed by Waller (1970). A
group of rats were trained to discriminate between floors of
different colors and textures. These rats, trained to differen-
tiate between a rough, black floor and a smooth, white
floor, were later able to learn a new discrimination task that
required them to distinguish between rough and smooth
floors faster than a control group that received no prior
training. In this study, the experimental group demon-
strated diagnosticity driven learning. As a result of the
training, they were able to learn to discriminate between
different textures in a later transfer task.

Diagnosticity driven learning was further investigated by
Goldstone (in press). He examined the effect of categoriza-
tion on perceptual sensitivity to single feature dimensions,
such as brightness and size. In these experiments, the is-
sue was whether or not people can become more sensitive
to dimensions that are diagnostic for a categorization task.
One manner in which categorization was found to influence
perceptual sensitivity was through acquired distinctiveness.
In one experiment, the stimuli consisted of squares of
varying size. Size differences between any two adjacently
sized squares were scaled such that the perceived difference
between any two adjacently sized squares were equal. A
group of subjects underwent categorization training using
size as the diagnostic feature, with Objects 1 and 2 belong-
ing to one category and Objects 3 and 4 belonging to the
other category. Subjects receiving this categorization train-
ing were later able to discriminate between Objects 2 and 3
better than those who did not receive this categorization
training. In addition, subjects receiving categorization
training became more perceptually sensitive to size differ-
ences between categories than within categories, such that
they were better at detecting size differences between
Objects 2 and 3 than between Objects 1 and 2.

This study examined perceptual learning along single
stimulus dimensions, However, it does not necessarily
imply that the same type of learning can occur for more
complex features, involving multiple stimulus dimensions.
Is it possible for something varying along multiple dimen-
sions to be treated as a single feature? Czerwinski,
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Lightfoot, & Shiffrin (1992) demonstrated that complex
stimuli, conjunctions of values along multiple dimensions,
can become unitized through extensive practice. They
found another type of perceptual learning: perceptual uniti-
zation of multiple dimensions, to form a single feature.

One difference between experts and novices scems to be
perceptual unitization. For example, people who are chess
experts divide the board into features differently than do
novices (Chase & Simon, 1973). They found that
whereas a novice may perceive only a random collection of
pieces, an expert may perceive an ordered arrangement.
This is analogous to Czerwinski et al.'s work on perceptual
unitization. The individual pieces and their locations can
be likened to basic stimulus dimensions. The experts cre-
ate and perceive the complex features based on their unitiza-
tion of the dimensions. This unitization may allow them
to extract more information from the board than novices
can,

There is some evidence that people can become sensitized
to complex features. Experts perceive structures in x-rays
(Norman, Brooks, Coblentz, & Babcook, 1992), beers
(Peron & Allen, 1988), and infant chickens (Biederman &
Shiffrar, 1987) that are missed by novices. As people learn
to distinguish between and categorize objects, they learn
which features are relevant for these tasks. One demand of
these tasks is to learn to perceive diagnostic features which
may not be immediately apparent to absolute novices.

Parsing and Part Decomposition

There is frequently more than one way to parse an object
into its component parts. Palmer (1977, 1978) argued that
some parts are inherently better than others, and that this
parsing will naturally occur in such a way as to create the
best parts. He developed a set of converging measures de-
signed to gauge the "goodness” of a part. One of these in-
volved part-whole verification: Palmer assumed that as
goodness of a part increases, less time would be necessary
to identify whether or not the part was present in the
whole. For example, in Figure 1, subjects saw the whole
object on the left, and one of the four parts on the right. It
usually took subjects less time to confirm that one of the
good parts was contained in the whole than that one of the
poor parts was. In another method, subjects performed a
"mental synthesis" task. In this task, subjects were given
two non-overlapping parts, similar to the ones in Figure 1.
They were asked to create a whole object, by imagining the
two parts overlapping. After they completed this task,
they were shown a whole object and asked whether it was
the same as the object they mentally constructed. In this
task, it was assumed that better parts would be synthesized
more quickly and accurately than poorer parts. A third
method used subjects' ratings of the goodness of parts, and
the last method examined how subjects spontaneously
parsed objects. All four methods converged, showing that
the good parts in Figure 1 are better than the poor parts.
Palmer created a model to compute a rating of goodness of
parts. The criteria used in this model include connectedness
and continuity of two lines, as well as the location, length,
and orientation of individual lines. Using his formula, he
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was able to model the obtained data with considerable accu-
racy.

Palmer's model assumes that the goodness of a part is
completely constrained by stimulus factors. It computes
part goodness using only characteristics of the whole and
part. It does not say anything about the possible influence
of subject factors on goodness ratings of parts. Palmer did
not say that subject factors were unimportant, but they
were not a part of his model. However, it may be possi-
ble for subject factors to influence the measured goodness
of a part, such that the empirically observed best parts
would differ from Palmer's calculated goodness values. As
discussed above, it may be possible that people can learn
features, and become more perceptually sensitive to them.
If this is true, the rating of goodness may change as a func-
tion of the experimental training without modifying the
part or whole in any way. For example, using a part-
whole decomposition task, subjects may be able to respond
more quickly to features if they have become more sensi-
tive to them. Palmer used response time in a part-whole
decomposition task as one measure of a part's goodness.

If categorization influences perceptual sensitivity and ob-
ject parsing, then Palmer's model cannot be complete, al-
though it would still be valuable. In this experiment, we
tested his model by examining the influence of categoriza-
tion on performance in a whole-part decomposition task.
We used this task because it is largely a perceptual test.
Subjects underwent categorization training, learning two 3-
line segment parts which were diagnostic for the categories.
Subjects were divided randomly into two categorization
groups, with each group learning different diagnostic parts.
Both groups then participated in a whole-part decomposi-
tion task, determining whether a given probe was present
within the whole. Response latencies of subjects in differ-
ent categorization conditions were compared, to determine
how diagnosticity influenced performance during the de-
composition task.

There are a couple of ways that categorization training
might affect performance in the whole-part decomposition
task. It is possible that perceptual learning might cause a
general increase in sensitivity to diagnostic parts. If this
were the case, then we would expect faster response times
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Figure 1: Stimuli similar to those used by
Palmer (1977, 1978).



when the whole object contains a diagnostic part, or when
the probe is a diagnostic part. Another possibility is that
perceptual learning might induce a response bias. Subjects
might be inclined to respond "present” when a diagnostic
part is present in the display. and "absent” when a nondiag-
nostic part is present (or vice versa). Finally, some com-
bination of these effects might be found.

Method

Subjects

The subjects were 45 undergraduate students at Indiana
University. They received class credit for their participa-
tion.

Apparatus

This experiment was conducted using Macintosh IIsi com-
puters. Subjects were seated 42cm from the display.

Materials

Stimuli were made up of line segments connecting dots on
a 3 by 3 grid (Figure 2). The distance between any two
horizontally or vertically adjacent dots was approximately
2cm. Diagonal line segments were approximately 2.5cm
long. The dots and line segments were black, presented on
a white background.

Procedure

There were two tasks in the experiment: categorization
and whole-part decomposition. In the categorization phase
of the experiment, subjects were shown distortions of
Objects 1, 2, 3, 4, 5, 6, 7, and 8 as shown in Figure 2.
Distortions were created by adding a black line segment at a
random location. Subjects were asked to place an object
into one of three categories. In one categorization condi-
tion, Objects 1 and 2 belonged to one category, with A as
the defining feature, and Objects 3 and 4 belonged to the
other category, with B as the defining feature. In this con-
dition, A and B were diagnostic because they were used to
discriminate between two categories, while A' and B' were
nondiagnostic. In the other categorization condition,
Objects 1 and 3 belonged to the same category (A'"), and
Objects 2 and 4 belonged to the other category (B'). In this
condition, A' and B’ were diagnostic for categorization, and
A and B were nondiagnostic. Subjects were randomly as-
signed to the two categorization conditions. Objects 5, 6.
7, and 8 were always members of the third category.
Subjects responded using the 'z' and '/ keys and the space-
bar to indicate whether the object presented was a member
of category 1, 2, or 3, respectively. Following the re-
sponse, a check was displayed if the subject was correct,
and an 'X' appeared if the subject was incorrect. The stim-
ulus was presented in approximately the center of the dis-
play. It remained on the screen for the entire trial, and was
cleared 500 ms after the feedback was presented.

In the second phase of the experiment, trials consisted of
displays with 'wholes' and ‘probes’. The wholes consisted
of one of the four category-defining features (A, B, A', or
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Figure 2: stimuli for categorization phase of experiment

B') from the categorization task, plus three connected line
segments (complements), which were connected to the cat-
egory part. The complements were constrained by the rule
that they could have no lines overlapping with any of the
category parts. They served as a control for the category
parts. There were a total of 36 possible complements, pro-
ducing 144 whole objects. The probes were either cate-
gory-defining features, or complements.

There were four types of trials in whole-part decomposi-
tion task: present category probe, absent category probe,
present complement, and absent complement (Figure 3).
For each of the trials shown in Figure 3, the object on the
left is the whole, and the object on the right is the probe.
In the first type of trial, the probe is a category part which
is contained within the whole object. In the second, the
probe is the complement to the category-defining part. In
the absent category part trials, the probe is a category part,
but is not contained within the whole object. For the last
type of trial, absent complement, the probe is a randomly
chosen complement from another object. On these trials,
the probe and whole would have between zero and three line
segments in the same (relative) locations.

Wholes were presented alone for 1000ms, and then a
probe was added to the display. The wholes were displayed
in the same location as the object during the categorization
training, and the probes were placed 4.5cm to the right and
.5cm down from the right, top edge of the whole, displaced
about 5cm to the right of the whole. The subjects’ task
was to decide, as quickly and accurately as possible,
whether or not the whole contained the part. Subjects re-
sponded 'present’ by pressing 'z', and '/ was used for
‘absent' responses. Both stimuli remained visible until the



Table 1: Conditions in whole-part decomposition task

Category part in Presence of Probe number of
Tﬁ of Probe whole 0b'|ﬁCl Probe within whole object trials
b e S
Category Nondiagnostic Nondiagnostic absent 12
Category Nondiagnostic Nondiagnostic present 24
Category Nondiagnostic Diagnostic absent 12
Category Diagnostic Nondiagnostic absent 12
Category Diagnostic Diagnostic absent 12
Category Diagnostic Diagnostic present A
Complement Nondiagnostic not applicable absent 24
Complement Nondiagnostic not applicable present A4
Complement Diagnostic not applicable absent A4
Complement Diagnostic not applicable present 24

subject responded. After the response was made, subjects
were told whether or not they were correct.

In the whole-part decomposition task, there were four
stimulus properties of interest: whether the probe is a cate-
gory part or a complement;whether the whole contains a
diagnostic part; whether the probe is a diagnostic category
part; and whether or not the probe is contained within the
whole. The ten conditions formed by these properties are
presented in Table 1. These conditions form a complete set
of logically possible combinations of the relevant proper-
ties.

The tasks were blocked: subjects performed a block of
categorization training, followed by a block of whole-part
decomposition, The blocks alternated, and were repeated
three times each. Before each block, subjects were shown
the instructions for the task. In order to continue to the de-
composition task, subjects had t0 meet a minimum crite-
rion of 90% accuracy over 24 trials of categorization.
Subjects were told about this requirement, and received
feedback regarding their accuracy rate after every 24 trials.
In addition, in the first block of categorization training,
subjects performed 48 practice trials. Thus, each subject
participated in at least 120 categorization trials. Category
1, 2, and 3 trials occurred equally often. The experiment
took approximately an hour to complete.

Results and Discussion

Only trials in which the subject responded comrectly were
included in the analyses. Trials with response times faster
than 100ms and slower than 10 seconds were excluded.
Figure 4a shows the mean response times to decide whether
or not the part was present in the whole, as a function of
whether or not the whole contained a diagnostic category
part. When the probe is a category part, response times are
faster when the whole object contains a diagnostic category
part than a nondiagnostic part. This advantage is seen for
both present and absent category parts, although it is
greater when the probe is part of the whole. A different
pattern is seen when the probe is a complement. In this
case. present probes elicit faster responses when the cate-
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gory part in the whole is nondiagnostic than when it is di-
agnostic, while absent probes are associated with faster re-
sponse latencies when the whole contains a diagnostic part
than when it contains a nondiagnostic part.

Response times (o respond to category parts were faster
(F(1,44)=3.93, p=.05) for wholes containing a diagnostic
category part than for those containing an nondiagnostic
part. This diagnosticity advantage was significant only for
present category parts (1=2.02, p<.05, df=44), although a
similar trend was also seen on absent category part trials
(t=1.11, p>.05, df=44).

For complements, there was a main effect of presence
(F(1,44)=5.73, p<.05), with faster response latencies to
present than absent complements. Unlike category parts,
however, there were no main effects of diagnosticity
(F(1,44)=84, p>.05), nor was there an interaction of diag-
nosticity and presence (F(1,44)=1.13, p>.05).

While Figure 4a showed response times as a function of
the diagnosticity of the category parts within the whole,
Figure 4b shows the mean response times of category
probes as a function of whether or not they were diagnos-
tic. That is, in Figure 4a, it was the parts within the
whole that were diagnostic and nondiagnostic, while in
Figure 4b it is the probes themselves that were diagnostic
and nondiagnostic. As can be seen, diagnosticity again in-
fluenced response latencies. However, the influence of di-
agnosticity varied, depending on whether or not the probe
was present. When the probe was absent, probes that were
nondiagnostic during categorization training had an advan-
tage over ones that were diagnostic. On the other hand,

times were faster for diagnostic present probes than
nondiagnostic present probes.

There was a significant interaction of diagnosticity and
presence of the probe (F(1,44)=6.61, p<.05). Diagnostic
category probes show an advantage for response latencies
(1=2.02, p<.05, df=44) over nondiagnostic category probes.
On the other hand, when subjects have to decide that a di-
agnostic probe is not present, there is a slight tendency to
be slower to respond than when the probe is nondiagnostc
(t=-1.2, p>.05, df=44),
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Figure 4: Response times graphed as a function of diagnosticity of category part within whole (A), and
as a function of diagnosticity of probe (B).

There were main effects of part type (F(1,44) =10.31,
p<.0l) and presence of part (F(1,44)=5.93, p<.05).
Subjects were, in general, quicker to respond to category
parts than complements. They were also faster to respond
"present” than "absent."

Conclusions

Subjects underwent categorization training, learning two
parts that were diagnostic for the categories. One group of
subjects used parts A and B (from Figure 2) as the diagnos-
tic parts, while another group used A' and B'. When these
two groups were compared, it was found that subjects were
able to respond more quickly when the whole object con-
tained a diagnostic part than when the object contained an
nondiagnostic part. In one method used by Palmer (1977,
1978) to measure a part's "goodness”, response times in a
part-whole decomposition task were compared for different
parts. His conclusion was that better parts were associated
with lower response times. Using this same method we
can conclude that because diagnostic parts are associated
with faster response times than nondiagnostic parts,
diagnostic parts acquire some extra amount of goodness.
Thus, we can conclude that Palmer's model is incomplete.
It is necessary to incorporate subject factors into this
model, as well as stimulus factors.

When the whole object contained a diagnostic part, sub-
jects were faster to respond than to wholes containing
nondiagnostic parts. We used two categorization groups.
The only thing that differed for these groups was whether
the parts were diagnostic; both groups saw the same
stimuli. According to Palmer's model, the two
categorization groups should have the same response times
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for any given whole/probe judgment. An increase in
perceptual sensitivity to diagnostic parts could explain the
difference in "goodness.” When subjects see a diagnostic
part within an object, the part may "pop out" as a feature.
As a result, when subjects parse the whole object it is
more natural for the diagnostic part to become one of the
resulting parts. According to Palmer's model, an object is
naturally parsed into its best parts. Therefore, it seems that
diagnostic parts increase their "goodness" when compared
to nondiagnostic parts.

Signal detection theory is a way of assessing how peo-
ple respond to information. There are two response dimen-
sions, sensitivity and response bias. Sensitivity refers to
the ability to know when to respond, and when not to re-
spond. Response bias, on the other hand, is a tendency to
respond in a particular way. Both of these dimensions
could be subject to learning. We use the terms
"sensitivity" and "bias” in a manner analogous to their use
in signal detection theory. In this experiment, sensitivity
is the ability to correctly respond "present” and "absent."
Bias is the tendency to respond "present” or "absent."

Response bias can partially explain the results found for
the presented category probes. As with complements, re-'
sponses to present diagnostic probes are faster than present
nondiagnostic probes, and absent nondiagnostic probes
elicit faster responses than do absent diagnostic ones. It
seems that when a diagnostic probe is presented, there is a
bias to say "present”, regardless of whether it's actually
present within the whole. Likewise, subjects showed a
bias to respond “absent" to nondiagnostic probes. If the
correct response is consistent with the bias, subjects are
fast to respond. However, if the correct response goes
against their bias, it takes longer to respond.



Both a change in perceptual sensitivity and a response
bias were found. Subjects increased their sensitivity to di-
agnostic parts. Regardless of the probe, subjects were able
to respond more quickly when the whole object contained a
diagnostic part. Subjects viewed the whole object for
1000ms before the probe was presented. This time would
give them the chance to mentally parse the object into its
best parts. Parts which were diagnostic during the
categorization training may stand out as the best parts,
allowing subjects to respond faster than when the whole
contains an nondiagnostic part. The response bias, on the
other hand, was determined by the probe. When the probe
was a nondiagnostic category part, subjects were faster to
respond “present” than "absent.," Conversely, when the
probe was a nondiagnostic category part, subjects were
faster to respond "absent" than "present." So, sensitivity
changes with the diagnosticity of the category part within
the whole, while diagnosticity of the probe affects response
bias.

The parsing of an object into its best component parts is
influenced by both stimulus and subject factors. The stim-
ulus factors defining "goodness" of parts, as described by
Palmer, include Gestalt properties such as connectedness.
However, this model does not completely determine how
an object is parsed. The categorization training influenced
perceptual sensitivity and response bias to parts, and thus
changed their "goodness.” The concepts we create influ-
ence sensitivity not only to our preexisting features, but
also to features that we have not yet created.
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