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ABSTRACT OF THE DISSERTATION

Non-Self-Adjoint Operators and Microlocal

Analysis in the Complex Domain

by

Francis White

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2022

Professor Michael Hitrik, Chair

In this thesis, we examine aspects of non-self-adjoint (NSA) operators using the theory of mi-

crolocal analysis in exponentially weighted spaces of holomorphic functions on Cn. We present four

main results. The first theorem, which is the result of joint work with L. Coburn, M. Hitrik, and J.

Sjöstrand, establishes a boundedness criterion for a class of Toeplitz operators acting on Bargmann

spaces with quadratic weights. The Toeplitz operators that this result applies to have symbols of

the form expQ(z), where Q(z) is an inhomogenous quadratic polynomial on Cn. The second and

third results of this thesis establish properties of solutions of time-dependent Schrödinger equa-

tions on Rn with NSA quadratic Hamiltonians. More specifically, these results pertain to solutions

u = u(t, x) of the initial value problem (∂t + qw(x,D))u(t, x) = 0, x ∈ Rn, t ≥ 0, on Rn, where

the initial data u|t=0 = u0 is a tempered distribution on Rn and qw(x,D) is the Weyl quantization

of a complex-valued quadratic form on the phase space R2n with non-negative real part Re q ≥ 0.

Our second result characterizes the propagation in time of global analytic singularities of initial

data u0 by this evolution, and our third result establishes Lp-bounds for the evolution semigroup

e−tqw(x,D) in the short 0 < t ≪ 1 and long t ≫ 1 time regimes under the assumption that the

so-called “singular space” of q(x, ξ) is trivial. In the fourth result of this thesis, we establish optimal

Lp-bounds for low-lying eigenfunctions of analytic NSA semiclassical pseudodifferential operators

with double characteristics, improving upon prior results in the field.
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Chapter 1

Introduction

1.1 Overview

The purpose of this dissertation is to address some problems related to the understanding of non-

self-adjoint (NSA) operators arising in the fields of mathematical physics and partial differential

equations. More specifically, this thesis is concerned with three major topics: (1) the boundedness

of Toeplitz operators on Bargmann spaces with quadratic exponential weights, (2) the behavior of

solutions of time-dependent Schrödinger equations on Rn with NSA quadratic Hamiltonians, and (3)

bounds for Lp-norms for low-lying eigenfunctions of analytic NSA semiclassical pseudodifferential

operators on Rn with double characteristics. In this dissertation, we present four main results. The

text is correspondingly divided into four sections:

1. Weyl Symbols and Boundedness of Toeplitz Operators

2. Propagation of Global Analytic Singularities for Schrödinger Equations with Quadratic Hamil-

tonians

3. Lp-Bounds for Semigroups Generated by Non-Elliptic Quadratic Differential Operators

4. Lp-Bounds for Eigenfunctions of Analytic Non-Self-Adjoint Operators with Double Character-

istics
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In this introduction, we give background and motivation for each of these works and provide informal

statements of our main results.

1.2 Boundedness of Toeplitz Operators and the Berger-Coburn Con-

jecture

Let Φ be a strictly plurisubharmonic quadratic form on Cn, let HΦ(Cn) = L2(Cn, e−2Φ(z) L(dz)) ∩

Hol(Cn), where Hol(Cn) denotes the space of entire functions on Cn, be the Bargmann space

associated to Φ, and let ΠΦ be the orthogonal projection from L2(Cn, e−2Φ(z) L(dz)) to HΦ(Cn).

Given a Lebesgue measurable function f on Cn, we may define the Toeplitz quantization of f as

the unbounded operator on HΦ(Cn) given by

Top(f) = ΠΦ ◦ f ◦ΠΦ (1.2.1)

equipped with its maximal domain. Here L(dz) denotes the Lebesgue measure on Cn. It is reason-

able to seek conditions on f that imply that the operator Top(f) is in fact bounded on HΦ(Cn).

Under fairly general assumptions on f (see, for instance, Theorem 13.10 in [63]), one may write

Top(f) as a complex Weyl pseudodifferential operator acting unboundedly on HΦ(Cn) whose symbol

is obtained by applying an apropriate ‘forwards heat flow’ to f . For detailed background information

regarding Toeplitz quantization and its relation to pseudodifferential quantization in the complex

domain, see Chapter 13 of [63]. In the work [6], Berger and Coburn conjectured, essentially, that a

Toeplitz operator Top(f) is bounded on HΦ(Cn) if and only if its associated Weyl symbol belongs to

L∞(Cn). This conjecture has remained open since the publication of [6] in 1994. Namely, if proven

true, the Berger-Coburn conjecture would provide a prime example of the classical — quantum

correspondence for NSA operators since it relates a fundamental property of the operator Top(f)

(boundedness) to a property of its associated classical Hamiltonian, f (boundedness of the corre-

sponding Weyl symbol). Thus, even partial progress towards the resolution of the Berger-Coburn

conjecture is of great interest. The following theorem establishes one direction of the conjecture

for Toeplitz operators whose symbols are of the form f(z) = eQ(z), with Q(z) a complex-valued

2



quadratic polynomial on Cn.

Theorem 1.2.1 (Coburn-Hitrik-Sjöstrand-White [13]). Let Φ be a strictly plurisubharmonic quadratic

form on Cn and let Q be a quadratic polynomial on Cn with the principal part q. Assume that

Re q(z) < ΦHerm(z) := (1/2)(Φ(z) + Φ(iz)), z ∕= 0, (1.2.2)

and

det ∂z∂z(2Φ− q) ∕= 0. (1.2.3)

If the Weyl symbol of the Toeplitz operator Top(eQ) is bounded, then the Toeplitz operator

Top(eQ) : HΦ(Cn) → HΦ(Cn) (1.2.4)

is bounded.

The proof of this theorem is accomplished by showing that any such Toeplitz operator may be

realized as a Fourier integral operator in the complex domain (see Appendix B of [9] and [12]) whose

underlying complex canonical transformation enjoys certain positivity properties. For a complete

proof, see Chapter 2 below.

1.3 Solutions of Schrödinger Equations with NSA Quadratic Hamil-

tonians

One major problem in the study of NSA operators is to understand, both qualitatively and quanti-

tatively, the behavior of solutions of time-dependent Schrödinger equations with NSA Hamiltonians.

The simplest example of such an evolution is the heat/Schrödinger equation,

!
""#

""$

(∂t + qw(x,D))u(t, x) = 0, x ∈ Rn, t ≥ 0,

u|t=0 = u0 ∈ S ′(Rn),

(1.3.1)

3



where qw(x,D) denotes the Weyl quantization of a complex-valued quadratic form q on R2n =

Rn
x × Rn

ξ with non-negative real part, Re q ≥ 0, and the initial data u0 is a tempered distribution

on Rn. The operator qw(x,D) is a differential operator with polynomial coefficients known as a

quadratic differential operator. Obtaining information about solutions to (1.3.1) is tantamount

to understanding properties of the contraction semigroup on L2(Rn) generated by qw(x,D), which

is a t-dependent family of Fourier integral operators on Rn associated to the complex Hamilton flow

exp (−itHq) on C2n generated by q at the imaginary times −it, t ≥ 0. In this thesis, we present

two results concerning the propagation of global analytic singularities and the size of Lp-norms

of solutions of the problem (1.3.1). The first of these concerns the propagation in time of the

global analytic or 1/2-Gelfand-Shilov wavefront set of u(t, ·) in terms of that of the initial

data. Roughly speaking, if u0 ∈ S ′(Rn) is a tempered distribution on Rn, then the global analytic

wavefront set WF1/2(u0), is a closed conic subset of R2n\{(0, 0)} that captures the microlocal failure

of u0 to behave like a Gaussian. For a precise definition, see either Section 6 of [30], the work [10],

or Section 3 of Chapter 3 below. Our principal result concerning the propagation of global analytic

singularities for the evolution equation (1.3.1) is the following theorem, which says that global

analytic singularities of the initial data that lie within a distinguished linear subspace of the phase

space of R2n, known as the singular space ([23]) of q are transported exactly by the Hamilton

flow of the imaginary part of q, while all other global analytic singularities are instantaneously

regularized. Dynamically, the singular space is important because it is precisely the set of points

X ∈ R2n such that exp (−itHq)(X) ∈ R2n for all t ∈ R. For a full discussion, see Chapter 3 below.

Theorem 1.3.1 (White [61]). Let q be a complex-valued quadratic form on R2n = Rn
x × Rn

ξ with

non-negative real part, Re q ≥ 0, let qw(x,D) denote the Weyl quantization of q, let
%
e−tqw(x,D)

&
t≥0

,

denote the 1-parameter contraction semigroup on L2(Rn) generated by qw(x,D), and let S be the

singular space of q. Then

WF1/2(e−tqw(x,D)u0) = exp (tHIm q)
'
WF1/2(u0) ∩ S

(
(1.3.2)

for all u0 ∈ S ′(Rn) and t > 0. Here, HIm q denotes the Hamilton vector field on R2n of the imaginary
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part of q, Im q, and exp (tHIm q) denotes the Hamilton flow on R2n of Im q.

Regarding the size of Lp-norms of solutions of the initial value problem (1.3.1), we prove bounds

for the propagator e−tqw(x,D) in the long and short time regimes when the singular space of q is

trivial, S = {0}. This case arises when, for instance, Re q is positive-definite. The following theorem

is the main result of Chapter 4.

Theorem 1.3.2 (White [62]). Let q, qw(x,D),
%
e−tqw(x,D)

&
t≥0

, and S be as in the statement of

Theorem 1.3.1. If S = {0}, then

1. there exists γ > 0 such that for every 1 ≤ p ≤ q ≤ ∞ and every ε > 0 there is C, c > 0 such

that

ce−γt ≤ ‖e−tqw(x,D)‖Lp→Lq ≤ Ce−γt, t ≥ ε, (1.3.3)

2. there exists an integer k0 ∈ {0, 1, . . . , 2n − 1} and a time 0 < t0 ≪ 1 such that for any

1 ≤ p ≤ q ≤ ∞ there is C, c > 0 such that

c ≤ ‖e−tqw(x,D)‖Lp→Lq ≤ Ct−(2k0+1)n, 0 < t ≤ t0. (1.3.4)

Our strategy for proving both of these theorems is to analyze the conjugation of e−tqw(x,D)

by a suitable global metaplectic Fourier-Bros-Iagolnitzer (FBI) transform. As a byproduct of this

approach, we obtain an alternative to Hörmander’s generalized Mehler formula [31] for representing

the semigroup e−tqw(x,D) that may be of independent interest. In particular, we determine an

integral formula for e−tqw(x,D) that is valid for all t ≥ 0.

1.4 Lp-Bounds for Eigenfunctions of Operators with Double Char-

acteristics

The goal of Chapter 5 of this thesis is to obtain Lp-bounds for low-lying eigenfunctions of analytic

NSA semiclassical operators on Rn whose principal symbols are complex-valued with non-negative

5



real part and vanish to second order at the origin 0 of the classical phase space R2n. While the topic

of eigenfunctions of self-adjoint operators is well explored and established within the literature (see,

for instance, [33] and [35] and the references therein for the subject of Lp-bounds of self-adjoint

operators), very little is known about eigenfunctions of NSA operators. Our main result in this

direction concerns optimal Lp-bounds for L2-normalized ground states u(h) of NSA semiclassical

pseudodifferential operators of the form P (h) = Opw
h (p0 + hp1) when the quadratic approximation

to the principal symbol p0 at 0 ∈ R2n is elliptic along its singular space and p0 and p1 are real

analytic. Here 0 < h ≤ 1 is a semiclassical parameter, and Opw
h denotes the semiclassical Weyl

quantization. This work is motivated by the fact that complete asymptotic expansions for the low-

lying eigenvalues of P (h) are known when p1 admits a suitable asymptotic expansion (see [25]). Our

result is in agreement with that of Krupchyk and Uhlmann [36], which established Lp-bounds for

ground states u(h) of P (h) under the stronger assumption that Re q is positive-definite.

Theorem 1.4.1 (White [60]). Let P (h) = Opwh (p0 + hp1), where p0 and p1 are real analytic,

Re p0 ≥ 0, p0(0) = ∇p0(0) = 0, and suppose that the quadratic approximation to p0 at 0 ∈ R2n is

elliptic along its singular space. Assume also that the real part of p0, Re p0, is suitably ellipic at

infinity. If P (h)u(h) ≡ 0, where ‖u(h)‖L2 ≡ 1, then there exists 0 < h0 ≤ 1 such that

‖u(h)‖Lp ≤ O(1)h
n
2p

−n
4 , 0 < h ≤ h0, (1.4.1)

for every 1 ≤ p ≤ ∞.

In contrast to the stationary approach taken in [?], the proof of Theorem 2.4 proceeds by

using the complex Hamiltonian dynamics generated by the holomorphic extension of p0 to establish

microlocal estimates for FBI transforms of the ground states u(h) that are sufficient to yield (1.4.1).

For a full discussion, see Chapter 5 below.

We remark that the proof of the bounds (1.4.1) given in the work [36] requires only that the

symbols p0 and p1 belong to C∞. As a consequence, our Theorem 1.4.1 generalizes the main result

of [36] in the case when p0 and p1 are real analytic. It is thus still an open question whether

Theorem 1.4.1 holds under the weaker assumption that p0, p1 ∈ C∞. We are planning to explore

6



this question in the future.
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Chapter 2

Weyl Symbols and Boundedness of

Toeplitz Operators

2.1 Introduction and Statement of Results

In the recent work [12], the authors have established some basic links between the theory of Toeplitz

operators acting on exponentially weighted spaces of entire holomorphic functions and Fourier inte-

gral operators (FIOs) in the complex domain. The point of view of complex FIOs was used in [12]

to show that the boundedness of a certain class of Toeplitz operators is implied by the boundedness

of their Weyl symbols, in agreement with a general conjecture made in [7]. The purpose of this

note is to obtain a slight, but perhaps natural, extension of this result, by taking a closer look at

the arguments of [12]. In a special case, we show that the boundedness of the Weyl symbols is also

a necessary condition for the boundedness of the corresponding Toeplitz operators. We shall now

proceed to describe the assumptions and state the main results.

Let Φ0 be a strictly plurisubharmonic quadratic form on Cn and let us set

ΛΦ0 =

)*
x,

2

i

∂Φ0

∂x
(x)

+
, x ∈ Cn

,
⊂ C2n. (2.1.1)

The real 2n-dimensional linear subspace ΛΦ0 is I-Lagrangian and R-symplectic, in the sense that the

restriction of the complex symplectic form on C2n to ΛΦ0 is real and non-degenerate. In particular,

8



ΛΦ0 is maximally totally real.

Let us introduce the Bargmann space

HΦ0(Cn) = L2(Cn, e−2Φ0L(dx)) ∩Hol(Cn), (2.1.2)

and the orthogonal projection

ΠΦ0 : L2(Cn, e−2Φ0L(dx)) → HΦ0(Cn). (2.1.3)

Here L(dx) is the Lebesgue measure on Cn. In this note we shall be concerned with the boundedness

properties of Toeplitz operators of the form

Top(eQ) = ΠΦ0 ◦ eQ ◦ΠΦ0 : HΦ0(Cn) → HΦ0(Cn), (2.1.4)

where Q is an inhomogeneous quadratic polynomial on Cn with complex coefficients. The following

is the main result of this work.

Theorem 2.1.1. Let Φ0 be a strictly plurisubharmonic quadratic form on Cn and let Q be a

quadratic polynomial on Cn with the principal part q. Assume that

Re q(x) < Φherm(x) := (1/2) (Φ0(x) + Φ0(ix)) , x ∕= 0 (2.1.5)

and

det ∂x∂x (2Φ0 − q) ∕= 0. (2.1.6)

Let a ∈ C∞(ΛΦ0) be the Weyl symbol of the operator Top(eQ) and assume that a ∈ L∞(ΛΦ0). Then

the Toeplitz operator

Top(eQ) : HΦ0(Cn) → HΦ0(Cn)

is bounded.

9



Remark 2.1.2. In the homogeneous case, when Q is a quadratic form, Theorem 2.1.1 was estab-

lished in [12]. In the general inhomogeneous case considered here, Theorem 2.1.1 provides further

evidence for the conjecture of [7], [14], stating that a Toeplitz operator is bounded on HΦ0(Cn) if

and only if the corresponding Weyl symbol is bounded on ΛΦ0 .

The plan of this note is as follows. In Section 2.2, we carry out the principal step in the proof of

Theorem 2.1.1 by characterizing boundedness properties of operators given as Weyl quantizations of

symbols of the form eiP (x,ξ), where P is a holomorphic inhomogeneous quadratic polynomial on C2n.

The homogeneous case was discussed in [12], and the only additional idea required here consists of

performing a factorization of a suitable complex affine canonical transformation associated to the

Weyl quantization above. The proof of Theorem 2.1.1 is then completed in Section 2.3 by passing

from the Toeplitz symbol to the Weyl one, along the lines of [12]. Section 2.4 is devoted to the

discussion of an explicit family of metaplectic Toeplitz operators in a quadratic Bargmann space,

where we also verify that the sufficient condition for the boundedness of the Toeplitz operator given

in Theorem 2.1.1 is in fact necessary, in agreement with the conjecture of [7], [14].

Acknowledgments. J.S. acknowledges the support from the 2018 Stefan Bergman award.

2.2 From bounded Weyl symbols to bounded Weyl quantizations

Let F (x, ξ) be a holomorphic quadratic form on C2n, let ℓ(x, ξ) be a complex linear function on

C2n, and let us consider formally the Weyl quantization of a symbol of the form

a(x, ξ) = exp(i(F (x, ξ) + ℓ(x, ξ))). (2.2.1)

We have

Au(x) = aw(x,Dx)u(x) =
1

(2π)n

!
ei((x−y)·θ+F ((x+y)/2,θ)+ℓ((x+y)/2,θ))u(y)dydθ. (2.2.2)

10



Following [12], we shall view A as a Fourier integral operator in the complex domain. The holomor-

phic quadratic polynomial

Φ(x, y, θ) = (x− y) · θ + F ((x+ y)/2, θ) + ℓ((x+ y)/2, θ) (2.2.3)

is a non-degenerate phase function in the sense of Hörmander and defines a canonical relation

κ : (y,−∂yΦ(x, y, θ)) 1→ (x, ∂xΦ(x, y, θ)), ∂θΦ(x, y, θ) = 0. (2.2.4)

Writing η = −∂yΦ(x, y, θ) and ξ = ∂xΦ(x, y, θ) we see that κ is given by (y, η) 1→ (x, ξ), where

x =
x+ y

2
− 1

2
F ′
ξ

*
x+ y

2
, θ

+
− 1

2
ℓ′ξ,

y =
x+ y

2
+

1

2
F ′
ξ

*
x+ y

2
, θ

+
+

1

2
ℓ′ξ,

ξ = θ +
1

2
F ′
x

*
x+ y

2
, θ

+
+

1

2
ℓ′x,

η = θ − 1

2
F ′
x

*
x+ y

2
, θ

+
− 1

2
ℓ′x.

(2.2.5)

Here ℓ′x, ℓ′ξ ∈ Cn are constant. The graph of κ is parametrized by the midpoint coordinate

ρ =

*
x+ y

2
, θ

+
∈ C2n,

and we may rewrite (2.2.5) in the form

κ : ρ+
1

2
HF+ℓ(ρ) 1→ ρ− 1

2
HF+ℓ(ρ). (2.2.6)

Here HF+ℓ(ρ) = (F ′
ξ(ρ) + ℓ′ξ,−F ′

x(ρ)− ℓ′x) is the Hamilton vector field of the holomorphic function

F + ℓ at ρ. Recalling as in [12] that the Hamilton vector field of F is given by HF (ρ) = Fρ, where

F =

-

./
F ′′
ξx F ′′

ξξ

−F ′′
xx −F ′′

xξ

0

12

11



is the fundamental matrix of F , we see that (2.2.6) takes the form

κ :

*
1 +

1

2
F
+
ρ+

1

2
Hℓ 1→

*
1− 1

2
F
+
ρ− 1

2
Hℓ. (2.2.7)

In what follows we shall assume that ±2 /∈ Spec(F), so that the canonical relation

κF :

*
1 +

1

2
F
+
ρ 1→

*
1− 1

2
F
+
ρ (2.2.8)

is a canonical transformation. We have

κ = exp

*
−1

2
Hℓ

+
◦ κF ◦ exp

*
−1

2
Hℓ

+
.

More explicitly, it follows from (2.2.7) that κ is a complex affine canonical transformation given by

κ : ρ 1→ κF (ρ)−
1

2
κF (Hℓ)−

1

2
Hℓ. (2.2.9)

In view of Jacobi’s theorem, the right hand side of (2.2.9) is given by

κF (ρ)−
1

2
Hℓ◦κ−1

F +ℓ,

and we conclude that the map κ admits the following factorization

κ = κℓ ◦ κF , (2.2.10)

where κF is given in (2.2.8) and κℓ is a complex phase space translation given by

κℓ(ρ) = ρ− 1

2
Hℓ◦κ−1

F +ℓ. (2.2.11)

Let Φ0 be a strictly plurisubharmonic quadratic form on Cn and let us recall the I-Lagrangian

R-symplectic linear manifold ΛΦ0 defined in (2.1.1). The following is the main result of this section.
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Theorem 2.2.1. Let F be a holomorphic quadratic form on C2n such that the fundamental matrix

of F does not have the eigenvalues ±2, and let ℓ be a complex linear form on C2n. Let Φ0 be a

strictly plurisubharmonic quadratic form on Cn. Let

a(x, ξ) = exp(i(F (x, ξ) + ℓ(x, ξ)))

and assume that a ∈ L∞(ΛΦ0). Then the operator

aw(x,Dx) : HΦ0(Cn) → HΦ0(Cn)

is bounded.

When proving Theorem 2.2.1, we shall rely on some results of [12], and it will also be convenient

to use the factorization (2.2.10). Our starting point is the following observation.

Lemma 2.2.2. Let m(x, ξ) be a complex linear form on C2n and let us consider the complex canon-

ical transformation exp(Hm)(ρ) = ρ+Hm, ρ ∈ C2n, (a complex phase space translation). Let Φ be

a strictly plurisubharmonic quadratic form on Cn. Then we have

exp(Hm) (ΛΦ) = ΛΨ,

where Ψ is a strictly plurisubharmonic quadratic polynomial on Cn given by

Ψ(x) = Φ(x) + Im

*
m

*
x,

2

i

∂Φ

∂x
(x)

++
, x ∈ Cn. (2.2.12)

Proof. While (2.2.12) can be established by a straightforward computation, here we would like to

indicate a more general approach, illustrating the point of view of evolution equations associated to

the operator mw(x,D). See also [52], [26]. Let us consider the real Hamilton-Jacobi equation

∂Ψ

∂t
(x, t)− Imm

*
x,

2

i

∂Ψ

∂x
(x, t)

+
= 0, Ψ(x, 0) = Φ(x), (2.2.13)

13



for x ∈ Cn, t ∈ R, t ≥ 0. Associated to the function Ψ(x, t) is the manifold

LΨ =

)*
t,
∂Ψ

∂t
, x,

2

i

∂Ψ

∂x

+,
⊂ R2

t,τ × C2n
x,ξ,

which is Lagrangian with respect to the real symplectic form

dτ ∧ dt− Imσ, (2.2.14)

where

σ =

n3

j=1

dξj ∧ dxj

is the complex symplectic (2,0)–form on C2n
x,ξ. The equation (2.2.13) tells us that

(τ − Imm) |LΨ
= 0,

and therefore the Hamilton vector field of the function τ − Imm, computed with respect to the real

symplectic form (2.2.14), is tangent to LΨ. Using the general relation

4Hm = H−Imσ
−Imm,

valid for any m(x, ξ) holomorphic, where 4Hm = Hm+Hm is the real vector field naturally associated

to the holomorphic vector field Hm, see [51], we conclude that the vector field

∂t +H−Imσ
−Imm = ∂t + 4Hm

is tangent to LΨ. Identifying 4Hm and Hm, we get

ΛΨ(·,t) = exp(tHm) (ΛΦ) .

It is now easy to obtain (2.2.12) and to this end, we claim that the unique solution of the equation

14



(2.2.13) is given by

Ψ(x, t) = Φ(x) + tIm

*
m

*
x,

2

i

∂Φ

∂x
(x)

++
+ Ct, (2.2.15)

where Ct depends on t only. When verifying the claim, let us write −Imm = p and choose real

linear coordinates on Cn so that (x, 2i ∂xΨ(x, t)) corresponds to (x, ∂xΨ(x, t)) in the usual R2n–sense.

Then (2.2.13) becomes

∂Ψ

∂t
(x, t) + p

*
x,

∂Ψ

∂x
(x, t)

+
= 0, Ψ(x, 0) = Φ(x). (2.2.16)

Here p(x, ξ) is real linear on R2n
x × R2n

ξ , p(x, ξ) = p′x · x + p′ξ · ξ and Φ(x) is a real quadratic form

on R2n,

Φ(x) =
1

2
A0x · x, x ∈ R2n,

with A0 real symmetric. With

Ψ(x, t) =
1

2
Atx · x+Bt · x+ Ct,

the equation (2.2.16) becomes

1

2
∂tAtx · x+ ∂tBt · x+ ∂tCt + p′x · x+ p′ξ · (Atx+Bt) = 0,

and we immediately get the unique solution

Ψ(x, t) =
1

2
A0x · x− t

%
p′x · x+ p′ξ ·A0x

&
+ Ct = Φ(x)− tp (x, ∂xΦ(x)) + Ct,

where

Ct =
t2

2
p′ξ ·

%
p′x +A0p

′
ξ

&

depends on t only. This shows (2.2.15) and completes the proof.

Remark. Associated to the canonical transformation exp(Hm) is the Fourier integral operator

15



e−imw(x,D), and from [54] we may recall the explicit description

e−imw(x,D) = e−
i
2
m′

x·x ◦ τm′
ξ
◦ e−

i
2
m′

x·x,

where τs is the operator of translation by s ∈ Cn, (τsu)(x) = u(x − s). We may then verify by an

explicit computation that the operator e−imw(x,D) is bounded,

e−imw(x,D) : HΦ(Cn) → HΨ(Cn),

where Ψ is given by (2.2.12). Here the weighted spaces of holomorphic functions HΦ(Cn), HΨ(Cn)

are defined analogously to (2.1.2).

Let a be of the form (2.2.1) and let us notice that a ∈ L∞(ΛΦ0) precisely when

ImF |ΛΦ0
≥ 0 (2.2.17)

and

ρ ∈ ΛΦ0 , ImF (ρ) = 0 =⇒ Im ℓ(ρ) = 0. (2.2.18)

It follows from (2.2.17) and Proposition B.1 in [12] that the canonical transformation κF in (2.2.8)

is positive relative to ΛΦ0 , and applying Theorem 1.1 of [12], we get

κF (ΛΦ0) = ΛΦ, (2.2.19)

where Φ is a strictly plurisubharmonic quadratic form such that Φ ≤ Φ0. We need to obtain an

explicit description of the (clean) intersection ΛΦ ∩ ΛΦ0 .

Proposition 2.2.3. We have

ΛΦ ∩ ΛΦ0 =

)*
1− 1

2
F
+
ρ; ρ ∈ ΛΦ0 , ImF (ρ) = 0

,
⊂ C2n. (2.2.20)
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Proof. It will be convenient to obtain a reduction to the case when ΛΦ0 is replaced by the real

phase space R2n. To this end, let T : L2(Rn) → HΦ0(Cn) be a unitary metaplectic Fourier integral

operator with the associated complex linear canonical transformation κT such that

κT (R2n) = ΛΦ0 .

We have

ΛΦ ∩ ΛΦ0 = κF (ΛΦ0) ∩ ΛΦ0 = κT
%
κG(R2n) ∩ R2n

&
,

where it follows from (2.2.8) that

κG :

*
1 +

1

2
G
+
ρ 1→

*
1− 1

2
G
+
ρ,

and G is the fundamental matrix of the quadratic form G = F ◦ κT . We have ImG|R2n ≥ 0 and

therefore *
1± 1

2
G
+
ρ ∈ R2n

precisely when ρ ∈ R2n, ImG(ρ) = 0. It follows that

κG(R2n) ∩ R2n =

)*
1− 1

2
G
+
ρ; ρ ∈ R2n, ImG(ρ) = 0

,
,

and we obtain (2.2.20).

In what follows we shall use the notation

L =

)*
1− 1

2
F
+
ρ; ρ ∈ ΛΦ0 , ImF (ρ) = 0

,
. (2.2.21)

Letting πx : C2n ∋ (x, ξ) 1→ x ∈ Cn be the projection map, we notice that

{x ∈ Cn;Φ0(x) = Φ(x)} = πx (ΛΦ ∩ ΛΦ0) = πxL, (2.2.22)
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and the quadratic form Φ0 − Φ ≥ 0 satisfies

Φ0(x)− Φ(x) ≃ dist(x,πxL)
2, x ∈ Cn. (2.2.23)

We shall now consider the I-Lagrangian R-symplectic affine plane κ(ΛΦ0), where κ is given by

(2.2.7). It follows from (2.2.10), (2.2.11), Lemma 2.2.2, and (2.2.19) that

κ(ΛΦ0) = ΛΨ, (2.2.24)

where Ψ is a strictly plurisubharmonic quadratic polynomial on Cn given by

Ψ(x) = Φ(x) + Im

*
m

*
x,

2

i

∂Φ

∂x
(x)

++
, (2.2.25)

where

m = −1

2

%
ℓ ◦ κ−1

F + ℓ
&
. (2.2.26)

We claim that the quadratic polynomial Φ0−Ψ vanishes along the real linear subspace πxL ⊂ Cn

and to this end, it suffices to check that the linear form m is real along L ⊂ ΛΦ. It follows from

(2.2.8), (2.2.18), and (2.2.26) that when ρ ∈ ΛΦ0 , ImF (ρ) = 0, we have

m

**
1− 1

2
F
+
ρ

+
= −ℓ(ρ)

is real. We have therefore verified the claim and using also (2.2.23) and (2.2.25) we conclude that

the inhomogeneous quadratic polynomial Φ0 −Ψ is bounded below on Cn. The general theory (see

[51],[9]), together with (2.2.24), allows us to conclude that the operator

aw(x,Dx) : HΦ0(Cn) → HΨ(Cn)

is bounded, and this completes the proof of Theorem 2.2.1.
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2.3 Toeplitz operators and proof of Theorem 2.1.1

The purpose of this section is to apply the results of Section 2.2 to the study of boundedness

properties of Toeplitz operators in the Bargmann space, establishing Theorem 2.1.1.

Let Φ0 be a strictly plurisubharmonic quadratic form on Cn and let Q be a quadratic polynomial

with complex coefficients on Cn, with the principal part q. Assume that the condition (2.1.5) holds.

Arguing as in Section 4 of [12], we then see that when equipped with the natural domain

D(Top(eQ)) =
5
u ∈ HΦ0(Cn); eQu ∈ L2(Cn, e−2Φ0L(dx))

6
, (2.3.1)

the Toeplitz operator

Top(eQ) = ΠΦ0 ◦ eQ ◦ΠΦ0 : HΦ0(Cn) → HΦ0(Cn) (2.3.2)

is densely defined.

Recalling the integral representation for the orthogonal projection ΠΦ0 and following [12], we

may write for u ∈ D(Top(eQ)),

Top(eQ)u(x) = C

ˆˆ

Γ
e2(Ψ0(x,θ)−Ψ0(y,θ))+Q(y,θ)u(y) dy dθ, (2.3.3)

where Ψ0 is the polarization of Φ0 and Γ is the contour in C2n, given by θ = y. Using the assumption

(2.1.6), we conclude as in [12] that the operator Top(eQ) can be viewed as a metaplectic Fourier

integral operator associated to a complex affine canonical transformation: C2n → C2n.

It is now easy to complete the proof of Theorem 2.1.1. Let us write, following [54], [12],

Top(eQ) = aw(x,Dx), (2.3.4)

where a ∈ C∞(ΛΦ0) is the Weyl symbol of the Toeplitz operator Top(eQ), given by

a (x, ξ) =

*
exp

*
1

4

%
Φ′′
0,xx

&−1
∂x · ∂x

+
eQ

+
(x), (x, ξ) ∈ ΛΦ0 . (2.3.5)
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In [12], we have seen that

a(x, ξ) = CΦ0

ˆ

Cn

exp(−4Φherm(x− y))eQ(y) L(dy), CΦ0 ∕= 0, (2.3.6)

where the integral converges thanks to (2.1.5). An application of the method of exact stationary

phase allows us therefore to conclude that

a(x, ξ) = C exp(i (F (x, ξ) + ℓ(x, ξ))), (x, ξ) ∈ ΛΦ0 , (2.3.7)

for some C ∕= 0, where F is a holomorphic quadratic form on C2n and ℓ is a complex linear function

on C2n. Theorem 2.1.1 follows therefore from Theorem 2.2.1.

2.4 Example: boundedness of a metaplectic Toeplitz operator

In the beginning of this section we shall illustrate Theorem 2.1.1 by applying it in the case when

Φ0(x) =
|x|2

4
, (2.4.1)

and

Q(x) = λ |x|2 + 1

2
c · x− 1

2
d · x. (2.4.2)

Here c, d ∈ Cn and λ ∈ C satisfies Reλ < 1/4, so that the conditions (2.1.5), (2.1.6) are satisfied.

It follows from (2.3.5) that the Weyl symbol a of the operator Top(eQ) is given by

a

*
x,

2

i

∂Φ0

∂x
(x)

+
=

*
exp

*
1

4
∆

+
eQ

+
(x) =

1

πn

ˆ

Cn

e−|x−y|2eQ(y) L(dy). (2.4.3)
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Here ∆ is the Laplacian on Cn ≃ R2n. The Gaussian integral in (2.4.3) can be computed by the

exact version of stationary phase and we get, after a straightforward computation,

a

*
x,

2

i

∂Φ0

∂x
(x)

+
= C exp

*
1

1− λ

*
λ |x|2 + 1

2
c · x− 1

2
d · x

++
. (2.4.4)

Here C ∕= 0 is a suitable constant depending on λ, c, d only.

Using (2.4.4), we may determine the explicit necessary and sufficient conditions for the bound-

edness of a along ΛΦ0 . When doing so, it is convenient to introduce the parameter

γ =
1

1− 2λ
, (2.4.5)

and to observe that

Re

*
λ

1− λ

+
=

1

4 |1− λ|2

*
1− 1

|γ|2

+
. (2.4.6)

It follows, in particular, that if |γ| < 1, then a ∈ L∞(ΛΦ0) for all c, d ∈ Cn, and if |γ| > 1, then a is

unbounded for all c, d ∈ Cn. In the “boundary” case when |γ| = 1, we have a ∈ L∞(ΛΦ0) precisely

when

Re

*
c

1− λ
· x− d

1− λ
· x

+
= 0, x ∈ Cn. (2.4.7)

Rewriting the condition (2.4.7) in the form

7
c

1− λ
− d

(1− λ)

8
· x+

7
c

(1− λ)
− d

1− λ

8
· x = 0, x ∈ Cn,

we conclude that a ∈ L∞(ΛΦ0) precisely when

c =
1− λ

1− λ
d ⇐⇒ c = γd.

An application of Theorem 2.1.1 gives the following result.
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Let Φ0(x) = |x|2 /4 and

Q(x) = λ |x|2 + 1

2
c · x− 1

2
d · x,

with c, d ∈ Cn and λ ∈ C, Reλ < 1/4. Let us define γ ∈ C as in (2.4.5). If |γ| < 1 then the operator

Top(eQ) : HΦ0(Cn) → HΦ0(Cn)

is bounded, for all c, d ∈ Cn. The same conclusion holds if |γ| = 1 and c = γd.

We shall finish this section by demonstrating that, in the special case at hand, the condition

a ∈ L∞(ΛΦ0) is in fact also necessary for the boundedness of the Toeplitz operator Top(eQ).

When doing so, we shall study the action of Top(eQ) on the normalized reproducing kernels for the

Bargmann space HΦ0(Cn). To this end, let us first recall from [54] that the orthogonal projection

ΠΦ0 : L2(Cn, e−2Φ0 L(dx)) → HΦ0(Cn) is given by

ΠΦ0u(x) = aΦ0

ˆ

e2Ψ0(x,y)u(y)e−2Φ0(y) L(dy), aΦ0 > 0. (2.4.8)

Here

Ψ0(x, y) =
1

4
x · y, x, y ∈ Cn, (2.4.9)

is the polarization of Φ0. We have

2ReΨ0(x, y)− Φ0(x)− Φ0(y) = −Φ′′
0,xx(x− y) · (x− y) = −1

4
|x− y|2 . (2.4.10)

Let us set

kw(x) = (2π)−n/2e2Ψ0(x,w)−Φ0(w), w ∈ Cn. (2.4.11)
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Using (2.4.10) we see that kw ∈ HΦ0(Cn) with

‖kw‖2HΦ0
(Cn) =

ˆ

|kw(x)|2 e−2Φ0(x) L(dx) = 1, w ∈ Cn. (2.4.12)

We shall now consider the operator Top(eQ) acting on kw. To this end, it will be convenient to

start by making the following observations. First, letting q(x) = λ |x|2 be the principal part of Q

in (2.4.2), we obtain, in view of (2.4.8) and the exact stationary phase,

'
Top(eq)e2Ψ0(·,w)

(
(x) = Cλe

2Ψ0(x,γw), w ∈ Cn, (2.4.13)

where Cλ is a constant depending on λ only, and the parameter γ has been defined in (2.4.5). Next,

let h be entire holomorphic such that he2Ψ0(·,w) ∈ L2(Cn, e−2Φ0L(dx)) for all w ∈ Cn. We then have

'
Top(h)e2Ψ0(·,w)

(
(x) = h(w)e2Ψ0(x,w). (2.4.14)

Indeed, it suffices to observe that in view of (2.4.8), the left hand side of (2.4.14) is equal to

%
Top(h)e2Ψ0(·,x)

&
(w).

Finally, let h be entire holomorphic such that

he2Ψ0(·,w), heqe2Ψ0(·,w) ∈ L2(Cn, e−2Φ0L(dx)),

for all w ∈ Cn. Directly from the definitions we then see that

Top(heq) = Top(h)Top(eq), (2.4.15)

when acting on the linear span of {e2Ψ0(·,w), w ∈ Cn} ⊂ HΦ0(Cn).
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Using (2.4.2), (2.4.11), (2.4.13), (2.4.14), and (2.4.15), we get

%
Top(eQ)kw

&
(x) = Cλ exp(2Ψ0(x, γ(w + c))− 2Ψ0(d, γ(w + c))− Φ0(w)). (2.4.16)

Here, as above, Cλ ∕= 0 is a constant which depends on λ only. Taking the norm in HΦ0(Cn) and

using (2.4.10), we obtain

‖Top(eQ)kw‖HΦ0
(Cn) = C exp(Φ0(γ(w + c))− Φ0(w)− 2ReΨ0(d, γw)). (2.4.17)

Here C ∕= 0 is a constant depending on λ, c, d only. It follows from (2.4.17) that if |γ| > 1, the

operator Top(eQ) is unbounded for all c, d ∈ Cn. If |γ| = 1, we get with a new constant,

‖Top(eQ)kw‖HΦ0
(Cn) = C exp(2ReΨ0(w, c)− 2ReΨ0(w, γd)), (2.4.18)

and it follows that if c ∕= γd, the operator Top(eQ) is unbounded.

The discussion above may be summarized in the following theorem.

Theorem 2.4.1. Let Φ0(x) = |x|2 /4 and Q(x) = λ |x|2 + 1
2c · x− 1

2d · x, with c, d ∈ Cn and λ ∈ C,

Reλ < 1/4. The Toeplitz operator

Top(eQ) : HΦ0(Cn) → HΦ0(Cn)

is bounded if and only if the Weyl symbol a ∈ C∞(ΛΦ0) of Top(eQ) satisfies a ∈ L∞(ΛΦ0).
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Chapter 3

Propagation of Global Analytic

Singularities for Schrödinger Equations

with Quadratic Hamiltonians

3.1 Introduction and Statement of Results

In this chapter we consider the initial value problem for the Schrödinger equation

!
""#

""$

∂tu+ qw(x,D)u = 0, t ≥ 0, x ∈ Rn,

u|t=0 = u0,

(3.1.1)

where the initial data u0 is a tempered distribution on Rn, q = q(x, ξ) is a complex-valued quadratic

form defined on the phase space T ∗Rn ∼= Rn
x×Rn

ξ with non-negative real part Re q ≥ 0 , and qw(x,D)

is the Weyl quantization of q given by

qw(x,D)u(x) =
1

(2π)n

ˆ ˆ

ei(x−y)·ξq

*
x+ y

2
, ξ

+
u(y) dy dξ, u ∈ S ′(Rn),

in the sense of distributions. This class of equations comprises a number of well-known examples,

including the free Schrödinger equation where q(x, ξ) = i |ξ|2, the harmonic oscillator where q(x, ξ) =
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i(|x|2+ |ξ|2), the heat equation where q(x, ξ) = |ξ|2, as well as the Kramers-Fokker-Planck equation

with quadratic potential where q(x, v, ξ, η) = η2 + 1/4v2 + i(v · ξ − ax · η) with (x, v, ξ, η) ∈ R4n =

R2n
x,v × R2n

ξ,η and a ∈ R\{0} a constant.

The problem has been studied by a number of authors, and the majority of works in this area

([44], [59], [43]) have focused on the propagation of Gabor singularities. The Gabor singularities of

a tempered distribution u ∈ S ′(Rn) are captured by the Gabor wavefront set of u, which may be

defined as follows: given u ∈ S ′(Rn), the Gabor wavefront of u, denoted WFG(u), is the complement

in R2n\{(0, 0)} of all points (x0, ξ0) for which there exists a symbol a ∈ C∞(R2n) satisfying

1. for all α,β ∈ Nn there exists C > 0 such that

999∂α
x ∂

β
ξ a(x, ξ)

999 ≤ C〈(x, ξ)〉−|α|−|β|, (x, ξ) ∈ R2n,

2. there exists an open conic neighborhood V of (x0, ξ0) in R2n\{(0, 0)} and c > 0 so that

|a(x, ξ)| ≥ c within V for all |(x, ξ)| large, and

3. aw(x,D)u ∈ S(Rn).

In particular, a tempered distribution is a Schwartz function if and only if its Gabor wavefront set

is empty. Thus, the Gabor wavefront set of a tempered distribution measures its deviation from

Schwartz regularity in the sense of both smoothness and decay as |x| → ∞. For more information,

see [46] or the recent survey article [45].

The propagation of exponential phase space singularities by the evolution (3.1.1) has also been

studied. In the work [10], the authors investigated the propagation of s-Gelfand-Shilov singularities

for s > 1/2 with initial data belonging to classes of distributions larger than S ′(Rn). For s > 1/2,

the s-Gelfand-Shilov wavefront of u ∈ S ′(Rn) is a closed conic subset of R2n\{(0, 0)} that may be

conveniently defined using metaplectic Fourier-Bros-Iagolnitzer (FBI) transforms. We recall (see

[27] or Chapter 13 of [63]) that a metaplectic FBI transform on Rn is a Fourier integral operator
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Tϕ : S ′(Rn) → Hol(Cn) of the form

Tϕu(z) = cϕ

ˆ

Rn

eiϕ(z,y)u(y) dy, u ∈ S ′(Rn), (3.1.2)

where cϕ ∕= 0 is a normalizing constant and ϕ(z, y) is a holomorphic quadratic form on C2n = Cn
z×Cn

y

such that det ∂2
zyϕ ∕= 0 and Im ∂2

yyϕ > 0. The phase function ϕ generates a complex linear canonical

transformation κϕ : C2n → C2n given implicitly by

κϕ : (y,−∂yϕ(z, y)) 1→ (z, ∂zϕ(z, y)), (z, y) ∈ C2n, (3.1.3)

and we have

κϕ(R2n) =

)*
z,

2

i
∂zΦ(z)

+
: z ∈ Cn

,
, (3.1.4)

where

Φ(z) = sup
y∈Rn

(−Im ϕ(z, y)) (3.1.5)

is the strictly plurisubharmonic weight associated to ϕ. If ϕ is a metaplectic FBI phase function

and κϕ : C2n → C2n is the complex linear canonical transformation generated by ϕ, let

κ-ϕ = π1 ◦ κϕ : C2n → Cn, (3.1.6)

where π1 : (z, ζ) 1→ z is the projection in C2n onto the first factor. We say that a point (x0, ξ0) ∈

R2n\{(0, 0)} does not belong to the s-Gelfand-Shilov wavefront set of u, denoted WFs(u), if there

exists a metaplectic FBI phase function ϕ = ϕ(z, y), (z, y) ∈ Cn ×Cn, with associated plurisubhar-

monic weight Φ, and complex canonical transformation κϕ : C2n → C2n such that

∃C > 0 : |Tϕu(z)| ≤ CeΦ(z)−c|z|1/s
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for all z in some open conic neighborhood of κ-ϕ(x0, ξ0) in Cn\{0} and all c > 0. For a review of

the basic properties of metaplectic FBI transforms on Rn, see Section 2 below.

In this work, we shall be primarily interested in the propagation of global analytic singularities or

1/2-Gelfand-Shilov singularities. The notion of the 1/2-Gelfand-Shilov or global analytic wavefront

set was originally introduced by L. Hörmander in the work [30] under the name ‘analytic wavefront

set.’ The 1/2-Gelfand-Shilov wavefront set WF1/2(u) of a tempered distribution u on Rn may

be defined as follows: a point (x0, ξ0) ∈ R2n\{(0, 0)} does not lie in WF1/2(u) if there exists a

metaplectic FBI phase function ϕ = ϕ(z, y), (z, y) ∈ Cn × Cn, with associated plurisubharmonic

weight Φ, and complex canonical transformation κϕ : C2n → C2n such that

∃C, c > 0 : |Tϕu(z)| ≤ CeΦ(z)−c|z|2

for all z in an open conic neighborhood of κ-ϕ(x0, ξ0) in Cn\{0}. Roughly speaking, if u ∈ S ′(Rn),

then WF1/2(u) measures the failure of u to admit an extension to a holomorphic function U on Cn

satisfying

|U(w)| ≤ Ce−c|x|2+C|y|2 , ∀w = x+ iy ∈ Cn, (3.1.7)

for some C, c > 0. A function u on Rn admitting an extension U ∈ Hol(Cn) obeying the estimate

(3.1.7) is called a Gelfand-Shilov test function. Thus, WF1/2(u) is a microlocal measure of how

a distribution u ∈ S ′(Rn) fails to be a Gelfand-Shilov test function. For additional information

concerning general Gelfand-Shilov wavefront sets and classes of Gelfand-Shilov ultradistributions,

see [10]. In the present work, our objective is to study the propagation in time of 1/2-Gelfand-

Shilov singularities by the evolution (3.1.1). To the best of our knowledge, this case has not yet

been explored.

We now proceed to state the main results of this chapter. Let R2n be equipped with the standard

symplectic form

σ((x, ξ), (y, η)) = ξ · y − x · η, (x, ξ), (y, η) ∈ R2n. (3.1.8)
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Suppose q : R2n → C is a complex-valued quadratic form and let q(·, ·) denote its symmetric

C-bilinear polarization. Because σ is non-degenerate, there is a unique F ∈ M2n×2n(C) such that

q((x, ξ), (y, η)) = σ((x, ξ), F (y, η))

for all (x, ξ), (y, η) ∈ R2n. This matrix F is called the Hamilton map or Hamilton matrix of q (see

Section 21.5 of [32]). Explicitly, the Hamilton matrix of q is given by

F = JQ

where

J =

-

./
0 I

−I 0

0

12

is the standard 2n × 2n symplectic matrix and Q ∈ M2n×2n(C) is the unique complex symmetric

matrix such that

q(X) = QX ·X, X ∈ R2n.

Let

Re F =
F + F

2
and Im F =

F − F

2i

be the real and imaginary parts of F respectively. The singular space S of q is defined as the

following finite intersection of kernels:

S =

-

/
2n−1:

j=0

ker
;
(Re F )(Im F )j

<
0

2 ∩ R2n. (3.1.9)

The singular space was first introduced by M. Hitrik and K. Pravda-Starov in [23] where it arose

naturally in the study of spectra and semi-group smoothing properties for non-self adjoint quadratic
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differential operators. The concept of the singular space has since been shown to play a key role

in the understanding of hypoelliptic and spectral properties of non-elliptic quadratic differential

operators. See for instance [24], [25], [41], [42], [57], and [58].

In the work [31], it was shown that when the quadratic form q has non-negative real part

Re q ≥ 0, the maximal closed realization of the quadratic differential operator qw(x,D) on L2(Rn)

is maximally accretive and generates a contraction semigroup (e−tqw(x,D))t≥0. In this same work

it was also proven that for each t ≥ 0 the operator e−tqw(x,D) both restricts to a continuous linear

transformation

S(Rn) → S(Rn) (3.1.10)

and admits a unique extension to a continuous linear transformation

S ′(Rn) → S ′(Rn). (3.1.11)

Consequently,

e−tqw(x,D)u0

is a well-defined element of S ′(Rn) for any u0 ∈ S ′(Rn) and t ≥ 0. Our goal is to understand the

relationship between WF1/2(e−tqw(x,D)u0) and WF1/2(u0) in terms of the Hamiltonian dynamics

generated by q.

Let us point out that the topic of the partial Gelfand-Shilov regularizing properties for the

semigroup e−tqw(x,D) has received considerable attention over the last several years. The general

aim of work in this direction has been to prove sharp microlocal Gelfand-Shilov smoothing estimates

in directions transverse to the singular space S for various time regimes. We mention the works

[26], [3], and [4]. In particular, it follows from Theorem 1.2 in [26] that

WF1/2
'
e−tqw(x,D)u0

(
= ∅
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for all u0 ∈ L2(Rn) and 0 < t ≪ 1 when S = {0}. In other words, if the singular space of the

quadratic form q is trivial, then the propagator for the evolution (3.1.1) is ‘instantaneously globally

analytically regularizing.’ Our main theorem extends this observation to the case of general S.

Theorem 3.1.1. Let q be a complex-valued quadratic form on R2n with Re q ≥ 0 and S be the

singular space of q. For every u0 ∈ S ′(Rn) and t > 0, we have

WF1/2(e−tqw(x,D)u0) = exp (tHIm q)(WF1/2(u0) ∩ S). (3.1.12)

Here HIm q denotes the Hamilton vector field of Im q on R2n taken with respect to the symplectic

form σ, and exp (tHIm q) is the Hamilton flow of Im q at time t.

Remark 3.1.2. In [44] it was shown that

WFG(e
−tqw(x,D)u0) ⊂ exp(tHIm q)(WFG(u0) ∩ S), ∀u0 ∈ S ′(Rn), ∀t > 0, (3.1.13)

and that equality need not hold for any t > 0. In [11], it was established that for s > 1/2, there is

the inclusion

WFs(e−tqw(x,D)u0) ⊂ exp (tHIm q)(WFs(u0) ∩ S) ∀u0 ∈ S ′(Rn), ∀t > 0. (3.1.14)

In contrast to these results, Theorem 3.1.1 shows that the propagator e−tqw(x,D) never regularizes

any of the 1/2-Gelfand-Shilov singularities of u0 that lie within S. Thus it is possible to recover

WF1/2(u0) ∩ S from knowledge of WF1/2(e−tqw(x,D)u0) for some t > 0. So far as we are aware, it

is not known if the inclusion in (3.1.14) is in general strict for s > 1/2. It would be of interest to

determine the range of s ≥ 1/2 for which equality holds in (3.1.14) for all u0 ∈ S ′(Rn) and t > 0.

Our approach to the proof of Theorem 3.1.1 is based entirely on FBI transform techniques. Let

ϕ(z, y), (z, y) ∈ C2n, be a metaplectic FBI phase function with associated plurisubharmonic weight

Φ(z), z ∈ Cn, and complex linear canonical transformation κϕ : C2n → C2n. Our strategy is to

31



study the conjugated propagator

Tϕ ◦ e−tqw(x,D) ◦ T ∗
ϕ , t ≥ 0, (3.1.15)

acting on the extended Bargmann space H−∞
Φ (Cn), which is the image of S ′(Rn) by Tϕ. The

extended Bargmann space H−∞
Φ (Cn) is the space of all u ∈ Hol(Cn) such that

ˆ

Cn

〈z〉2s |u(z)|2 e−2Φ(z) L(dz) < ∞,

for some s ∈ R. See Section 2 below for a full discussion of the space H−∞
Φ (Cn) and related

exponentially weighted spaces of entire functions. By Egorov’s theorem, the operator (3.1.15)

is the evolution semigroup generated by the complex Weyl differential operator q̃w(z,Dz), where

q̃ = q ◦ κ−1
ϕ . We note that this approach differs significantly from that of the works [44], [59], [11],

and [43], which rely heavily on representations of the Schwartz kernel of e−tqw(x,D) as a Gaussian

oscillatory integral in the sense of [31]. In the present work, we use an elementary geometrical

optics construction to show that the semigroup e−tq̃w(z,Dz) is a Fourier integral operator in the

complex domain in the sense of Sjöstrand [51]. Motivated by recent results concerning Bergman

representations of metaplectic Fourier integral operators in the work [12], we establish an integral

representation for the semigroup e−tq̃w(z,D) on the FBI transform side of the form

e−tq̃w(z,D)u(z) = â(t)

ˆ

Cn

e2Ψt(z,w)u(w)e−2Φ(w) L(dw), u ∈ HΦ(Cn), t ≥ 0, (3.1.16)

where â(t) ∈ C depends analytically on t and Ψt(·, ·) is a holomorphic quadratic form on C2n whose

coefficients depend analytically on t. Here we denote the Lebesgue measure on Cn = Cn
z by L(dz)

and HΦ(Cn) is the Bargmann space

HΦ(Cn) = L2(Cn, e−2Φ(z) L(dz)) ∩ Hol(Cn),

which is the unitary image of L2(Rn) under the FBI transform Tϕ. Writing (3.1.16) as the contour
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integral

e−tq̃w(z,D)u(z) = a(t)
!

Γ

e2Ψt(z,θ)−2Ψ(w,θ)u(w) dw ∧ dθ, u ∈ HΦ(Cn), (3.1.17)

where

Γ = {(w, θ) : θ = w} (3.1.18)

is the anti-diagonal in C2n, a(t) = (i/2)nâ(t), and Ψ(·, ·) is the polarization of Φ, i.e. the unique

holomorphic quadratic form on C2n such that Ψ(z, z) = Φ(z) for all z ∈ Cn, we find that e−tq̃w(z,D)

is a metaplectic Fourier integral operator in the complex domain whose phase function generates

the graph of the Hamilton flow κ̃t = exp (tH−iq̃) : C2n → C2n of −iq̃ at time t for each t ≥ 0. In

particular, for every t ≥ 0, the flow κ̃t is positive relative to the maximally totally real subspace

ΛΦ =

)*
z,

2

i
∂zΦ(z)

+
: z ∈ Cn

,
(3.1.19)

of C2n in the sense that

1

i
(σ(κ̃t(X), ιΛΦ

(κ̃t(X)))− σ(X, ιΛΦ
X)) ≥ 0, X ∈ C2n,

where ιΛΦ
is the unique antilinear involution of C2n fixing ΛΦ. By using some recent results from

[12] concerning complex canonical transformations of C2n that are positive relative to a pair of

maximally totally real subspaces of the form (3.1.19) for some strictly plurisubharmonic quadratic

form Φ on C2n, we show that it is possible to find â(t) and Ψt(·, ·) so that (3.1.16) is valid for all

non-negative times t ≥ 0. In particular, the Bergman representation (3.1.16) provides an alternative

to Hörmander’s generalized Mehler formula [31] for representing the semigroup e−tqw(x,D). We feel

that this result may be of independent interest, and we plan to explore additional applications in

the future.

Having established the representation (3.1.16), we can invoke some generalities concerning how

metaplectic Fourier integral operators associated to complex canonical transformations of C2n prop-
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agate and/or regularize 1/2-Gelfand-Shilov singularities. Given u ∈ H−∞
Φ (Cn), we define the 1/2-

Gelfand-Shilov wavefront set of u relative to Φ as the complement in Cn\{0} of all points z0 for

which there exist C, c > 0 such that

|u(z)| ≤ CeΦ(z)−c|z|2

for all z in some open conic neighborhood of z0 in Cn\{0}. Thus, if u = Tϕv where v ∈ S ′(Rn),

then

WF1/2
Φ (u) = κ-ϕ(WF1/2(v)),

where κ-ϕ is as in (3.1.6). Given a non-zero metaplectic Fourier integral operator G acting on

H−∞
Φ (Cn) whose underlying complex linear canonical transformation κ : C2n → C2n is positive rel-

ative to ΛΦ and such that ΛΦ∩κ(ΛΦ) is invariant under κ, one has the following general relationship

between WF1/2
Φ (Gu) and WF1/2

Φ (u):

WF1/2
Φ (Gu) = κ-(WF1/2

Φ (u)) ∩ π1(ΛΦ ∩ κ(ΛΦ)) (3.1.20)

where

κ- = π1 ◦ κ ◦ (π1|ΛΦ
)−1.

The proof of (3.1.20), which uses the result from [12] that every metaplectic Fourier integral operator

possesses a unique Bergman form, is given in Section 5 below. Using (3.1.20) with G = e−tq̃w(z,Dz),

κ = κ̃t, and the general geometric relationship

ΛΦ ∩ κ̃t(ΛΦ) = κϕ(S), t > 0, (3.1.21)

which we establish in Section 6, will complete the proof of Theorem 3.1.1.

The plan for this chapter is as follows. In Section 2, we review background material on meta-
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plectic FBI transforms and exponentially weighted spaces of entire functions. In Section 3, we recall

the definition of the 1/2-Gelfand-Shilov wavefront set and state some basic properties. In Section 4,

we discuss metaplectic Fourier integral operators acting on exponentially weighted spaces of entire

functions and recall some results from [12] concerning Bergman representations of such operators.

In Section 5, we prove some general results concerning how metaplectic Fourier integral operators

in the complex domain move and/or regularize global analytic singularities. Finally, in Section 6,

we establish the Bergman representation (3.1.16) for the evolution semigroup e−tqw(x,D) on the FBI

transform side and finish the proof of Theorem 3.1.1.
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Notation

• Constants. C and c stand for positive constants; C may increase from one inequality to the

next, while c may decrease from one inequality to the next if necessary.

• Dot Product. If z = (z1, . . . , zn) ∈ Cn and w = (w1, . . . , wn) ∈ Cn,

z · w = z1w1 + · · ·+ zn · wn.

• 〈z〉 = (1 + |z|2)1/2 denotes the Japanese bracket of z ∈ Cn.

• π1 : C2n → Cn is the projection onto the first factor (z, ζ) 1→ z.

• J ∈ M2n×2n(R) is the standard symplectic matrix

J =

-

./
0 I

−I 0

0

12 .
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• Conic Subsets . If X is a real vector space with norm ‖·‖ and V,W are conic subsets of X\{0},

we use the notation

V ⊂⊂ W

to mean that V ∩ {x ∈ X : ‖x‖ = 1} is compactly contained in W ∩ {x ∈ X : ‖x‖ = 1}.

• Radicals. If P is a non-negative quadratic form on RN , then the radical of P , denoted Rad(P ),

is the zero set of P ,

Rad(P ) =
5
X ∈ RN : P (X) = 0

6
.

• Derivatives. On Cn with coordinates z = (z1, . . . , zn),

∂zj =
1

2

*
∂

∂Re zj
− i

∂

∂Im zj

+
, j = 1, . . . , n

and

∂zj =
1

2

*
∂

∂Re zj
+ i

∂

∂Im zj

+
, j = 1, . . . , n.

For a sufficiently differentiable function f : Cn → C,

∂zf =

-

..../

∂f
∂z1
...
∂f
∂zn

0

11112
, ∂zf =

-

..../

∂f
∂z1
...
∂f
∂zn

0

11112

and

∂2
zzf =

*
∂2f

∂zj∂zk

+

1≤j,k≤n

, ∂2
zzf =

*
∂2f

∂zj∂zk

+

1≤j,k≤n

,

∂2
zzf =

*
∂2f

∂zj∂zk

+

1≤j,k≤n,

, ∂2
zzf =

*
∂2f

∂zj∂zk

+

1≤j,k≤n

.
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• Hamiltonian Dynamics in the Complex Domain. Write C2n = Cn
z ×Cn

ζ and let σ = dζ ∧dz be

the standard complex symplectic form on C2n. Given f ∈ Hol(C2n), the complex Hamilton

vector field of f is denoted

Hf = ∂ζf · ∂z − ∂zf · ∂ζ ,

This is a complex vector field on C2n of type (1, 0), which we identify with (∂ζf,−∂zf) ∈ C2n.

We note that Hf is the unique complex vector field on C2n of type (1, 0) such that σ(t,Hf ) =

df(t) for all complex vector fields t on C2n of type (1, 0). In this chapter we shall only ever

be interested in the case where f is a holomorphic quadratic form. In this case the Hamilton

flow of f is denoted by exp (tHf ), t ∈ R, and defined as follows: for (z0, ζ0) ∈ C2n and t ∈ R,

(z(t), ζ(t)) = exp (tHf )(z0, ζ0)

if and only if

!
""""""#

""""""$

z′(t) = ∂ζf(z(t), ζ(t))

ζ ′(t) = −∂zf(z(t), ζ(t)),

z(0) = z0, ζ(0) = ζ0.

• Schwartz Functions and Tempered Distributions. S(Rn) denotes class of Schwartz functions on

Rn equipped with its usual locally convex Frechét topology; S ′(Rn) is the space of tempered

distributions on Rn endowed with the weak* topology. The distributional pairing of u ∈ S ′(Rn)

and f ∈ S(Rn) is denoted 〈u, f〉.
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3.2 Review of FBI Tools and Exponentially Weighted Spaces of

Entire Functions

In this section we review basic definitions and facts concerning metaplectic Fourier-Bros-Iagolnitzer

(FBI) transforms on Rn. Standard references for this material include [27], Chapter 13 of [63], and

[54].

Let ϕ = ϕ(z, y) be a holomorphic quadratic form on C2n = Cn
z × Cn

y . Write

ϕ(z, y) =
1

2
Az · z +Bz · y + 1

2
Dy · y, (z, y) ∈ Cn × Cn,

where A,B,D ∈ Mn×n(C) with A = AT and D = DT . If detB ∕= 0 and Im D is positive-definite,

we say that ϕ is an FBI phase function or metaplectic FBI phase function. If ϕ is an FBI phase

function, the FBI transform associated to ϕ is the linear transformation Tϕ : S ′(Rn) → Hol(Cn)

defined by

Tϕu(z) = cϕ

ˆ

Rn

eiϕ(z,y)u(y) dy, u ∈ S ′(Rn), (3.2.1)

where

cϕ = 2−n/2π−3n/4(det Im D)−1/4 |detB| , (3.2.2)

and the integral (3.2.1) is interpreted in the sense of distributions.

Let ϕ be an FBI phase function. To describe the range of the FBI transform Tϕ, we introduce

the real-valued quadratic form

Φ(z) = sup
y∈Rn

(−Im ϕ(z, y)), z ∈ Cn. (3.2.3)

Since Im D is positive-definite, this supremum is really a maximum and we may write

Φ(z) = −Im ϕ(z, y(z))
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where y(z) ∈ Rn is an R-linear function of z ∈ Cn. Because Φ is equal to the maximum of the

family of pluriharmonic functions

Cn ∋ z 1→ −Im ϕ(z, y) ∈ R, y ∈ Rn,

the form Φ is itself plurisubharmonic. In fact, Φ is strictly plurisubharmonic, i.e. the Levi matrix

∂2
zzΦ is Hermitian positive-definite. We refer to Proposition 1.3.2 of [27] for a proof. In the sequel, if

ϕ is an FBI phase function, then we shall refer to Φ given by (3.2.3) as the strictly plurisubharmonic

weight associated to ϕ.

For s ∈ R, let

L2
Φ,s(Cn) = L2(Cn, 〈z〉2se−2Φ(z) L(dz)), (3.2.4)

equipped with the natural inner product,

(u1, u2)s =

ˆ

Cn

u1(z)u2(z)〈z〉2se−2Φ(z) L(dz), u1, u2 ∈ L2
Φ,s(Cn), (3.2.5)

and associated norm

‖u‖2s =
ˆ

Cn

|u(z)|2 〈z〉2se−2Φ(z) L(dz), u ∈ L2
Φ,s(Cn). (3.2.6)

For s ∈ R, let

Hs
Φ(Cn) = L2

Φ,s(Cn) ∩ Hol(Cn) (3.2.7)

be the closed linear subspace of entire functions in L2
Φ,s(Cn). By convention, when s = 0, we write

HΦ(Cn) in place of H0
Φ(Cn), and we write (·, ·) and ‖·‖ in place of (·, ·)0 and ‖·‖0 respectively. In the

literature, the space HΦ(Cn) is known as the Bargmann or Bargmann-Fock space of entire functions

on Cn. If s1 ≤ s2, then Hs2
Φ (Cn) ⊂ Hs1

Φ (Cn), and the natural inclusion map Hs2
Φ (Cn) ↩→ Hs1

Φ (Cn)
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is bounded. Thus, if we let

H−∞
Φ (Cn) =

=

s∈R
Hs

Φ(Cn), (3.2.8)

we obtain an inductive system of Hilbert spaces (H−∞
Φ (Cn), {Hs

Φ(Cn)}s∈R) (see [15] Chapter IV

Section 5). We equip H−∞
Φ (Cn) with the corresponding inductive limit topology (see [15] Chapter

IV Proposition 5.3 and Definition 5.4). We refer to H−∞
Φ (Cn) as the extended Bargmann space. We

also introduce the space

H∞
Φ (Cn) =

:

s∈R
Hs

Φ(Cn), (3.2.9)

equipped with the Frechét space topology induced by the family of norms {‖·‖s}s∈R. For every

s ∈ R, we have continuous inclusions

H∞
Φ (Cn) ↩→ Hs

Φ(Cn) ↩→ H−∞
Φ (Cn). (3.2.10)

Thanks to the mean-value property of holomorphic functions, we have the following lemma char-

acterizing functions in Hs
Φ(Cn) as holomorphic functions on Cn obeying suitable weighted L∞-

estimates.

Lemma 3.2.1. For any s ∈ R and ε > 0, there is C > 0 such that

‖u‖L2
Φ,s(Cn) ≤ C‖〈z〉s+n+εu(z)e−Φ(z)‖L∞(Cn) (3.2.11)

for all measurable u on Cn. For any N ∈ R, there is C > 0 such that

‖〈z〉n+Nu(z)e−Φ(z)‖L∞(Cn) ≤ C‖u‖L2
Φ,N+2n(Cn) (3.2.12)

for all u ∈ Hol(Cn). Consequently, for u ∈ Hol(Cn),

u ∈ H∞
Φ (Cn) ⇐⇒ ∀N ∈ R ∃C > 0 ∀z ∈ Cn : |u(z)| ≤ C〈z〉NeΦ(z) (3.2.13)
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and

u ∈ H−∞
Φ (Cn) ⇐⇒ ∃N ∈ R ∃C > 0 ∀z ∈ Cn : |u(z)| ≤ C〈z〉NeΦ(z). (3.2.14)

Proof. Let s ∈ R and ε > 0 be arbitrary. For any N ∈ R and measurable u on Cn,

‖u‖L2
Φ,s(Cn) ≤

*
ˆ

Cn

〈z〉2(s−N) L(dz)

+1/2

‖〈z〉Nu(z)e−Φ(z)‖L∞(Cn). (3.2.15)

Choosing N = s+ n+ ε gives

‖u‖L2
Φ,s(Cn) ≤ C‖〈z〉s+n+εu(z)e−Φ(z)‖L∞(Cn), (3.2.16)

where the constant C > 0 depends only on s, n, and ε. To prove the second claim, let N ∈ R and

u ∈ Hol(Cn) be arbitrary. By the mean-value theorem,

u(z) =
1

c2n
〈z〉2n

ˆ

|z−w|≤〈z〉−1

u(w)L(dw), z ∈ Cn, (3.2.17)

where c2n is the volume of the unit ball in Cn ∼= R2n. Since Φ is a real quadratic form on Cn, we

get by Taylor expansion that

Φ(w)− Φ(z) = ∂zΦ(z) · (w − z) + ∂zΦ(z) · (w − z) + Φ(w − z), w, z ∈ Cn. (3.2.18)

Because Φ is quadratic, both ∂zΦ and ∂zΦ are R-linear forms on Cn. Hence there is C > 0 such

that

|∂zΦ(z)| ≤ C〈z〉 and |∂zΦ(z)| ≤ C〈z〉, z ∈ Cn. (3.2.19)
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So when |z − w| ≤ 〈z〉−1, we may deduce from (3.2.18), (3.2.19), and Cauchy-Schwartz that

|Φ(w)− Φ(z)| ≤ C〈z〉−1 |z − w|+ C〈z〉−1 |z − w|+ |z − w|2

≤ C + C + 〈z〉−2

≤ C

(3.2.20)

for some large enough C > 0. Thus

〈z〉N |u(z)| e−Φ(z) ≤ C

ˆ

|z−w|≤〈z〉−1

〈z〉N+2n |u(w)| e−Φ(w) L(dw)

≤ C

ˆ

|z−w|≤〈z〉−1

〈z − w〉|N+2n|〈w〉N+2n |u(w)| e−Φ(w) L(dw)

≤ C

ˆ

|z−w|≤〈z〉−1

〈w〉N+2n |u(w)| e−Φ(w) L(dw)

≤ C〈z〉−n‖u‖HN+2n
Φ

(Cn)

(3.2.21)

for all z ∈ Cn, where the constant C > 0 does not depend on u. The bound (3.2.12) follows.

Next, we state a well-known proposition characterizing the range of a metaplectic FBI transform

Tϕ in terms of exponentially weighted spaces of entire functions on Cn.

Proposition 3.2.2. Let ϕ be an FBI phase function with associated FBI transform Tϕ and strictly

plurisubharmonic weight Φ. Then

Tϕ : L2(Rn) → HΦ(Cn) (3.2.22)

is a unitary transformation. Furthermore, Tϕ is bijective

S(Rn) → H∞
Φ (Cn) and S ′(Rn) → H−∞

Φ (Cn). (3.2.23)

Proof. There are many available proofs of the unitarity of Tϕ : L2(Rn) → HΦ(Cn). The reader may

consult, for instance, Theorem 13.7 of [63], Theorem 1.3.3 of [27], or Proposition 6.1 of [30]. The

bijectivity of Tϕ : S(Rn) → H∞
Φ (Cn) and Tϕ : S ′(Rn) → H−∞

Φ (Cn) is also well-known. It follows
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immediately from, for instance, Lemma 3.2.1 and Proposition 6.1 of [30]. See also Section 12.2 of

[55].

We next discuss some functional analytic aspects of the spaces Hs
Φ(Cn), s ∈ R. Let Φ be a

strictly plurisubharmonic quadratic form on Cn. Let Ψ(·, ·) be the polarization of Φ, i.e. the unique

holomorphic quadratic form on C2n such that Ψ(z, z) = Φ(z) for all z ∈ Cn. We recall (see [27]

or Chapter 13 of [63]) that the Bergman projection associated to Φ is the orthogonal projector

ΠΦ : L2
Φ,0(Cn) → HΦ(Cn). It is given explicitly by

ΠΦu(z) = CΦ

ˆ

Cn

e2Ψ(z,w)u(w)e−2Φ(w) L(dw), u ∈ HΦ(Cn), (3.2.24)

where

CΦ =

*
2

π

+n

det ∂2
zzΦ. (3.2.25)

We recall that Ψ(·, ·) satisfies the ‘fundamental estimate’

2Re Ψ(z, w)− Φ(z)− Φ(w) ≍ − |z − w|2 , z, w ∈ Cn. (3.2.26)

For a proof, see page 492 of [27] or the proof of Theorem 13.6 in [63]. From (5.2.68) and Schur’s

lemma, it follows that the operator (5.2.65) is bounded L2
Φ,s(Cn) → L2

Φ,s(Cn) for every s ∈ R. In

fact, ΠΦ defined by (5.2.65) coincides with the orthogonal projection L2
Φ,s(Cn) → Hs

Φ(Cn) (see [55]

Section 12.2), and we have

ΠΦu = u, ∀u ∈ H−∞
Φ (Cn). (3.2.27)

Using (3.2.27), one can prove

Proposition 3.2.3 ([55] Section 12.2). For any strictly plurisubharmonic quadratic form Φ on

Cn, the space H∞
Φ (Cn) is dense in Hs

Φ(Cn) for every s ∈ R. Consequently, H∞
Φ (Cn) is dense in

H−∞
Φ (Cn).
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Proof. Let Φ be a strictly plurisubharmonic quadratic form on Cn. Let s ∈ R and u ∈ Hs
Φ(Cn) be

arbitrary. Let χ ∈ C∞
0 (Cn) be such that 0 ≤ χ ≤ 1 and χ ≡ 1 in a neighborhood of 0 ∈ Cn. For

ε > 0, set

uε = ΠΦ(χ(εz)u), (3.2.28)

where ΠΦ is the Bergman projector (5.2.65). Using the fundamental estimate (5.2.68), we see that

for any ε > 0 and N > 0,

〈z〉N |uε(z)| e−Φ(z) ≤ C

ˆ

Cn

e−c|z−w|2〈z〉N |χ(εw)u(w)| e−Φ(w) L(dw)

≤ C

ˆ

Cn

e−c|z−w|2〈z − w〉N 〈w〉N |χ(εw)u(w)| e−Φ(w) L(dw)

≤ Cε,N

ˆ

Cn

e−c|z−w|2〈z − w〉N 〈w〉s |u(w)| e−Φ(w) L(dw),

(3.2.29)

where Cε,N > 0 depends only on ε and N . Applying Schur’s lemma, we find that uε ∈ HN
Φ (Cn) for

any ε > 0 and N > 0. Thus uε ∈ H∞
Φ (Cn) for all ε > 0. Now we claim that uε → u in Hs

Φ(Cn) as

ε → 0+. Indeed, from (3.2.27),

〈z〉s |u(z)− uε(z)| e−Φ(z) ≤ C

ˆ

Cn

e−c|z−w|2〈z〉s(1− χ(εw)) |u(w)| e−Φ(w) L(dw)

≤ C

ˆ

Cn

Ks(z, w)〈w〉s(1− χ(εw)) |u(w)| e−Φ(w) L(dw),

(3.2.30)

where

Ks(z, w) = 〈z − w〉|s|e−c|z−w|2 , z, w ∈ Cn. (3.2.31)

As

sup
z∈Cn

ˆ

Cn

|Ks(z, w)| L(dw) < ∞ and sup
w∈Cn

ˆ

Cn

|Ks(z, w)| L(dz) < ∞, (3.2.32)
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we deduce from Schur’s lemma that there is a C > 0 such that

‖u− uε‖Hs
Φ(Cn) ≤ C‖(1− χ(εz))u(z)‖L2

Φ,s(Cn) (3.2.33)

for all ε > 0. By dominated convergence, the righthand side of (3.2.33) converges to 0 as ε → 0+.

Therefore ‖u− uε‖Hs
Φ(Cn) → 0 as ε → 0+.

We conclude this section by establishing a proposition that identifies the dual space of Hs
Φ(Cn)

with H−s
Φ (Cn).

Proposition 3.2.4. Let Φ be a strictly plurisubharmonic quadratic form on Cn and let s ∈ R. For

every v ∈ H−s
Φ (Cn), the functional

ψv(u) =

ˆ

Cn

u(z)v(z)e−2Φ(z) L(dz), u ∈ Hs
Φ(Cn), (3.2.34)

defines an element of (Hs
Φ(Cn))′ with ‖ψv‖ ≤ ‖v‖−s. Moreover, the map v 1→ ψv is a bounded

antilinear isomorphism H−s
Φ (Cn) → (Hs

Φ(Cn))′.

Proof. Let s ∈ R be fixed. For v ∈ H−s
Φ (Cn), let ψv be as in (3.2.34). An application of the

Cauchy-Schwarz inequality gives

|ψv(u)| ≤ ‖v‖−s‖u‖s (3.2.35)

for all u ∈ Hs
Φ(Cn), and so it is clear that the map v 1→ ψv is a bounded antilinear mapping

H−s
Φ (Cn) → (Hs

Φ(Cn))′. To see that the map v 1→ ψv is injective, let v ∈ H−s
Φ (Cn) be such that

ψv ≡ 0 on Hs
Φ(Cn). Then, using (3.2.27) and the identity

Ψ(w, z) = Ψ(z, w), w, z ∈ Cn, (3.2.36)
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(see Lemma 13.1 in [63]), we get, for any u ∈ L2
Φ,s(Cn),

ˆ

Cn

u(z)v(z)e−2Φ(z) L(dz) =

ˆ

Cn

u(z)ΠΦv(z)e
−2Φ(z) L(dz)

=

ˆ

Cn

ΠΦu(z)v(z)e
−2Φ(z) L(dz) = 0.

(3.2.37)

In particular,

ˆ

Cn

u(z)v(z)e−2Φ(z) L(dz) = 0 (3.2.38)

for all u ∈ C∞
0 (Cn), and we deduce v = 0. To prove surjectivity, let ψ ∈ (Hs

Φ(Cn))′ be arbitrary.

By the Riesz representation theorem, there exists a unique v1 ∈ Hs
Φ(Cn) such that

ψ(u) =

ˆ

Cn

u(z)v1(z)〈z〉2se−2Φ(z) L(dz), u ∈ Hs
Φ(Cn). (3.2.39)

Let

v = ΠΦ(v1(z)〈z〉2s). (3.2.40)

Observing that

v1(z)〈z〉2s ∈ L2
Φ,−s(Cn), (3.2.41)

we see that v ∈ H−s
Φ (Cn) and hence

ψ = ψv. (3.2.42)

By the closed graph theorem, the map v 1→ ψv is a bounded antilinear isomorphism H−s
Φ (Cn) →

(Hs
Φ(Cn))′.
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3.3 The 1/2-Gelfand-Shilov Wavefront Set

In this section we recall the basic definition and properties of the 1/2-Gelfand-Shilov wavefront set.

For a full discussion, see [10] or [30].

Let C2n = Cn
z ×Cn

ζ and let σ = dζ ∧dz be the standard complex symplectic form on C2n. When

equipped with the form σ, the space C2n becomes a complex symplectic vector space. A C-linear

map κ : C2n → C2n is said to be a complex linear symplectomorphism or complex linear canonical

transformation if κ∗σ = σ. Note that if κ : C2n → C2n is a complex linear canonical transformation,

then detκ = 1, and hence κ is automatically bijective.

Associated to the complex symplectic form σ are the real 2-forms Re σ and Im σ. Suppose Σ

is a real linear subspace of C2n. We say Σ is R-symplectic if the restriction of Re σ to Σ is non-

degenerate, and we say that Σ is I-Lagrangian if Σ is a Lagrangian subspace of C2n with respect

to Im σ, i.e. dimRΣ = 2n and Im σ|Σ = 0. We say that Σ is totally real if Σ ∩ iΣ = {0}, and if, in

addition dimRΣ = 2n, we say Σ is maximally totally real. Any real linear subspace of C2n that is

I-Lagrangian and R-symplectic is automatically maximally totally real. For more background on

complex symplectic linear algebra, see [27].

Let ϕ be an FBI phase function. By Proposition 1.3.2 of [27], ϕ generates a complex linear

canonical transformation κϕ : C2n → C2n given implicitly by

C2n ∋ (y,−∂yϕ(z, y)) 1→ (z, ∂zϕ(z, y)) ∈ C2n, (z, y) ∈ C2n. (3.3.1)

It can be shown that the κϕ maps R2n bijectively onto the space

ΛΦ =

)*
z,

2

i
∂zΦ(z)

+
∈ C2n : z ∈ Cn

,
, (3.3.2)

where Φ is the strictly plurisubharmonic weight associated to ϕ. See [63] Theorem 13.5 for a

proof. Since κϕ is a complex linear canonical transformation, the space ΛΦ is I-Lagrangian and

R-symplectic. Hence ΛΦ is maximally totally real.

Suppose Φ is a strictly plurisubharmonic quadratic form on Cn. Let ΛΦ be as in (3.3.2) and let
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prΦ = π1|ΛΦ
. Since ΛΦ is the graph of the R-linear map 2

i ∂zΦ : Cn → Cn, the projection prΦ is an

R-linear isomorphism ΛΦ → Cn. If Φ is the strictly plurisubharmonic weight associated to an FBI

phase function ϕ and κϕ is the complex canonical transformation (3.3.1) generated by ϕ, then the

composition

κ-ϕ = prΦ ◦ κϕ (3.3.3)

is an R-linear isomorphism R2n → Cn.

Let X be a real vector space. A subset V of X\{0} is said to be conic if tx ∈ V whenever x ∈ V

and t > 0. If X and Y are real vector spaces, T : X → Y is a linear map, and V is a conic subset

of X\{0}, then T (V ) is a conic subset of Y . In particular, if V is a conic subset of R2n\{0}, ϕ is

an FBI phase function, and κ-ϕ is as in (3.3.3), then κ-ϕ(V ) is a conic subset of Cn\{0}.

Definition 3.3.1 ([10] Definition 3.1, [30] Definition 6.6). Let u ∈ S ′(Rn). The 1/2-Gelfand-Shilov

wavefront of u, denoted WF1/2(u), is the complement in R2n\{(0, 0)} of the set of points (x0, ξ0)

for which there exists an FBI phase function ϕ and constants C, c > 0 such that

|Tϕu(z)| ≤ CeΦ(z)−c|z|2 (3.3.4)

for all z within some open conic neighborhood V of κ-ϕ(x0, ξ0) in Cn\{0}. Here Φ is the strictly

plurisubharmonic weight associated to ϕ and κ-ϕ is as in (3.3.3).

As shown in [30] Proposition 6.4, one may use any FBI phase to determine if a point (x0, ξ0) ∈

R2n\{(0, 0)} lies in WF1/2(u). Indeed, suppose u ∈ S ′(Rn), (x0, ξ0) ∈ R2n\{(0, 0)}, and that there

is an FBI phase function ϕ, constants C, c > 0, and an open conic neighborhood V of κ-ϕ(x0, ξ0)

in Cn\{0} such that the estimate (3.3.4) holds in V . If ϕ1 is another FBI phase with associated

strictly plurisubharmonic weight Φ1 and associated canonical transformation κϕ1 , then there exists

an open conic neighborhood V1 of κ-ϕ1
(x0, ξ0) in Cn\{0} and constants C1, c1 > 0 such that

|Tϕ1u(z)| ≤ C1e
Φ1(z)−c1|z|2 , z ∈ V1.
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Thus we may reformulate the definition of WF1/2(u) as follows: if u ∈ S ′(Rn) and (x0, ξ0) ∈

R2n\{(0, 0)}, then (x0, ξ0) ∈ WF1/2(u) if and only if there is an FBI phase function ϕ such that for

every open conic neighborhood V of κ-ϕ(x0, ξ0) and every choice of constants C, c > 0 the estimate

(3.3.4) fails to hold for every z ∈ V . In particular, (x0, ξ0) ∈ WF1/2(u) if there is an FBI phase ϕ

with associated weight Φ and canonical transformation κϕ such that

Tϕu(λκ-ϕ(x0, ξ0))e−Φ(λκ"
ϕ(x0,ξ0)) ∕= o(1) as λ → ∞.

For notational purposes, it is convenient to introduce the notion of the 1/2-Gelfand-Shilov

wavefront set of elements of H−∞
Φ (Cn) relative to the plurisubharmonic weight Φ. This definition

appears to be original, but we feel its addition will help to make some of our results more transparent.

Definition 3.3.2. Let Φ be a strictly plurisubharmonic quadratic form on Cn. For u ∈ H−∞
Φ (Cn),

we define 1/2-Gelfand-Shilov wavefront set of u relative to Φ, denoted WF1/2
Φ (u), as the complement

in Cn\{0} of all z ∈ Cn\{0} for which there exists an open conic neighborhood V of z in Cn\{0}

and constants C, c > 0 such that

|u(z)| ≤ CeΦ(z)−c|z|2 , z ∈ V.

If u ∈ H−∞
Φ (Cn), then WF1/2

Φ (u) is a closed conic subset of Cn\{0}. Furthermore, using Def-

inition 3.3.2, we may restate the definition of the 1/2-Gelfand-Shilov wavefront set of tempered

distributions as follows: if u ∈ S ′(Rn), then a point (x0, ξ0) ∈ R2n\{(0, 0)} belongs to WF1/2(u)

if and only if there is an FBI phase ϕ with associated weight Φ and canonical transformation κϕ

such that κ-ϕ(x0, ξ0) ∈ WF1/2
Φ (Tϕu). If u ∈ S ′(Rn), (x0, ξ0) ∈ R2n, and ϕ is an FBI phase such that

κ-ϕ(x0, ξ0) ∈ WF1/2
Φ (Tϕu), then the same is true with ϕ replaced by any other FBI phase ϕ1 and with

Φ and κϕ replaced by the strictly plurisubharmonic weight and complex canonical transformation

associated to ϕ1 respectively.

Proposition 3.3.3 ([30] Proposition 6.9). Suppose u ∈ S ′(Rn). Then WF1/2(u) = ∅ if and only if
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u extends to a holomorphic function U(z) on Cn satisfying

|U(z)| ≤ CeC|y|2−c|x|2 , z = x+ iy ∈ Cn, (3.3.5)

for some C, c > 0.

A function u ∈ C∞(Rn) that extends to an entire analytic function on Cn and whose extension

satisfies the estimate (3.3.5) is known as a Gelfand-Shilov test function. For more information on

the Gelfand-Shilov space of test functions and its topological dual, we refer the reader to [10].

Proposition 3.3.3 is significant because it shows that the 1/2-Gelfand-Shilov wavefront of a

distribution u captures our intuition for what the set of global analytic singularities of a tempered

distribution u should be. Namely, for WF1/2(u) to be empty, u must not only be real analytic, but

also satisfy a Gaussian type decay estimate as |x| → ∞.

An elementary compactness argument also allows us to deduce a necessary and sufficient condi-

tion so that the 1/2-Gelfand-Shilov wavefront set of u ∈ H−∞
Φ (Cn) relative to Φ is empty.

Proposition 3.3.4. Let Φ be a strictly plurisubharmonic quadratic form on Cn. Suppose u ∈

H−∞
Φ (Cn). Then WF1/2

Φ (u) = ∅ if and only if there exist C, c > 0 such that

|u(z)| ≤ CeΦ(z)−c|z|2 , z ∈ Cn.

Combining Proposition 3.3.3 with Proposition 3.3.4 gives

Corollary 3.3.5. Suppose u ∈ S ′(Rn). Then u is a Gelfand-Shilov test function if and only if there

is an FBI phase ϕ with associated weight Φ and constants C, c > 0 such that

|Tϕu(z)| ≤ CeΦ(z)−c|z|2 , z ∈ Cn. (3.3.6)

If u ∈ S ′(Rn) and Tϕu satisfies (3.3.6), then for every other choice of FBI phase ϕ1 with associ-

ated weight Φ1, the function Tϕ1u satisfies the estimate (3.3.6) for a potentially different choice of

constants C, c > 0 and with Φ replaced by Φ1.
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3.4 Bergman Representations of Metaplectic Fourier Integral Op-

erators

In this section we consider metaplectic Fourier integral operators and their action on exponentially

weighted spaces of entire functions. Here, by ‘metaplectic Fourier integral operator’, we mean any

type of Fourier integral operator whose phase function is a (real or complex-valued) quadratic form.

There are several approaches available. For a treatment of semiclassical Fourier integral operators on

Rn with real quadratic phase functions, the reader may consult the appendix to Chapter 7 of [19]. For

the theory of Fourier integral operators on Rn whose phase functions are complex-valued quadratic

forms with non-negative imaginary parts (the so-called ‘Gaussian Fourier integral operators’), see

Section 5 of [31]. Here, we shall follow (and slightly extend) the approach detailed in Appendix B

of [9], which develops a calculus of Fourier integral operators with holomorphic quadratic phases

acting on the FBI transform side. For the general theory of Fourier integral operators acting on

exponentially weighted spaces of holomorphic functions, see the book [51].

We begin with a formal discussion. The metaplectic Fourier integral operators that we shall be

interested in are operators of the form

Gu(z) = a
!

eiφ(z,w,θ)u(w) dw ∧ dθ, z ∈ Cn, (3.4.1)

where a ∈ C is a constant, φ(z, w, θ) is a holomorphic quadratic form on C2n+N = Cn
z × Cn

w × CN
θ .

We assume that φ is a non-degenerate phase function in the sense of Hörmander [29], i.e.

d∂θ1φ, ..., d∂θNφ are linearly independent over C. (3.4.2)

Let

Cφ =
5
(z, w, θ) ∈ C2n+N : ∂θφ(z, w, θ) = 0

6

be the critical set of φ. Since ∂θφ is a C-linear function of (z, w, θ) ∈ C2n+N , the critical set of φ is

a linear subspace of C2n+N , and the non-degeneracy of φ implies that dimCCφ = 2n. We associate
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to G the complex canonical relation κ ⊂ C2n × C2n given implicitly by

κ : (w,−∂wφ(z, w, θ)) 1→ (z, ∂zφ(z, w, θ)), (z, w, θ) ∈ Cφ. (3.4.3)

In the sequel, we shall always assume that κ is the graph of a complex linear canonical transformation

C2n → C2n. In this situation, we say that G quantizes κ or that κ is the underlying canonical

transformation of G.

We will now discuss how the formal Fourier integral operator (3.4.1) may be realized as a bounded

linear operator between exponentially weighted spaces of entire functions by making an appropriate

choice of the contour of integration. Let Φ1 and Φ2 be strictly plurisubharmonic quadratic forms

on Cn and let HΦ1(Cn) and HΦ2(Cn) be their associated Bargmann spaces. Suppose that

κ(ΛΦ2) = ΛΦ1 , (3.4.4)

where ΛΦ1 and ΛΦ2 are as in (3.3.2) with Φ replaced by Φ1 and Φ2, respectively. Following [9]

Appendix B, the plurisubharmonic quadratic form

Cn × CN ∋ (w, θ) 1→ −Im φ(0, w, θ) + Φ2(w)

is non-degenerate of signature (n + N,n + N). Then, following either Proposition B.3 of [9] or

the general theory of [51], we may conclude that there exists a real, smooth, (n +N)-dimensional

contour Γ(z) in Cn+N , depending smoothly on z ∈ Cn, such that Gu, when equipped with Γ(z), is

well-defined as an element of HΦ1(Cn) for u ∈ HΦ2(Cn) and that (3.4.1) defines a bounded linear

transformation

G : HΦ2(Cn) → HΦ1(Cn). (3.4.5)

Next, we recount some recent results from [12] concerning the Bergman representation of a meta-

plectic Fourier integral operator G whose underlying complex canonical transformation κ satisfies

(3.4.4). The following proposition summarizes the main results that we shall need. Recall that if

52



Φ(z) is a strictly plurisubharmonic quadratic form on Cn, then the polarization Ψ(z, θ) of Φ(z) is

the unique holomorphic quadratic form on C2n = Cn
z ×Cn

θ such that Ψ(z, z) = Φ(z) for all z ∈ Cn.

Proposition 3.4.1. Let κ : C2n → C2n be a complex linear canonical transformation, let Φ1 and

Φ2 be strictly plurisubharmonic quadratic forms on Cn such that

κ(ΛΦ2) = ΛΦ1 , (3.4.6)

where

ΛΦj =

)*
z,

2

i
∂zΦj(z)

+
: z ∈ Cn

,
, j = 1, 2, (3.4.7)

and let G : HΦ2(Cn) → HΦ1(Cn) be a metaplectic Fourier integral operator quantizing κ. Let

prΦj
= π1|ΛΦj

, j = 1, 2, (3.4.8)

and let κ- be the R-linear isomorphism

κ- = prΦ1
◦ κ ◦ (prΦ2

)−1 : Cn → Cn. (3.4.9)

Then there exists a unique >a ∈ C and a unique holomorphic quadratic form Ψ(z, θ) on C2n = Cn
z×Cn

θ

such that

Gu(z) = â

ˆ

Cn

e2Ψ(z,w)u(w)e−2Φ2(w) L(dw), u ∈ HΦ2(Cn). (3.4.10)

The quadratic form Ψ(z, θ) has the following properties:

1. if Ψ2(z, θ) denotes the polarization of Φ2, then

φ(z, w, θ) =
2

i
Ψ(z, θ)− 2

i
Ψ2(w, θ), (z, w, θ) ∈ C3n, (3.4.11)
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is a non-degenerate holomorphic phase function generating graph(κ):

κ :

*
w,

2

i
∂wΨ2(w, θ)

+
1→

*
z,

2

i
∂zΨ(z, θ)

+
, ∂θΨ(z, θ) = ∂θΨ2(w, θ); (3.4.12)

2. The real part of Ψ(z, θ) satisfies

2Re Ψ(z, θ) = Φ1(z) + Φ2(θ)−R(z, θ), z, θ ∈ Cn, (3.4.13)

where R(z, θ) a non-negative quadratic form on C2n = Cn
z × Cn

θ such that

c
999z − κ-(θ)

999
2
≤ R(z, θ) ≤ C

999z − κ-(θ)
999
2
, z, θ ∈ Cn, (3.4.14)

for some C, c > 0.

If G is a metaplectic Fourier integral operator satisfying (3.4.5), then we refer to (3.4.10) as the

Bergman form of G.

Example 1. Consider the formal Fourier integral operator

Gu(z) =
1

(2π)n

!
ei(z−w)·θu(w) dw ∧ dθ, z ∈ Cn. (3.4.15)

The phase function

φ(z, w, θ) = (z − w) · θ, (z, w, θ) ∈ C3n, (3.4.16)

is easily seen to satisfy Hörmander’s non-degeneracy condition (3.4.2). A direct computation shows

that the complex linear canonical transformation κ : C2n → C2n generated by φ is the identity

κ(z, ζ) = (z, ζ), (z, ζ) ∈ C2n. (3.4.17)

If Φ is any strictly plurisubharmonic quadratic form on Cn, the formal Fourier integral operator

(3.4.15) may be realized as a bounded linear transformation HΦ(Cn) → HΦ(Cn) by integrating over
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the contour

Γ(z) : w 1→ θ =
2

i
∂zΦ(z) + iC(z − w), w ∈ Cn, (3.4.18)

where C ≫ 0 is sufficiently large. By the ‘complex Fourier inversion theorem’ (see the proof of

Proposition 1.3.4 in [27] or the proof of Theorem 13.6 in [63]),

Gu = u (3.4.19)

for all u ∈ HΦ(Cn). After an appropriate contour deformation and C-linear change of variables

(again, see the proof of Proposition 1.3.4 in [27] or the proof of Theorem 13.6 in [63]), the operator

(3.4.15) may be rewritten as

Gu(z) = CΦ

ˆ

Cn

e2Ψ(z,w)u(w)e−2Φ(w) L(dw), u ∈ HΦ(Cn), (3.4.20)

where Ψ(·, ·) is the polarization of Φ and CΦ = (2/π)n det ∂2
zzΦ. In other words, the Bergman form

of G that is guaranteed to exist by Proposition 3.4.1 is precisely the Bergman projector (5.2.65)

associated to the weight Φ. One may rewrite (3.4.20) in the form

Gu(z) = ?CΦ

!

Γ

e2Ψ(z,θ)−2Ψ(w,θ)u(w) dw ∧ dθ, u ∈ HΦ(Cn), (3.4.21)

where ?CΦ = (i/2)nCΦ and the contour of integration is the anti-diagonal

Γ =
5
(w, θ) ∈ C2n : θ = w

6
. (3.4.22)

The strict plurisubharmonicity of Φ implies that the phase function

2

i
Ψ(z, θ)− 2

i
Ψ(w, θ), (z, w, θ) ∈ C3n, (3.4.23)

satisfies the non-degeneracy condition (3.4.2), and one may easily verify that (3.4.23) generates the
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identity map (3.4.17).

Using Proposition 3.4.1, we can give a simple proof that metaplectic Fourier integral operators

extend uniquely to bounded linear transformations on Hs
Φ(Cn) for every s ∈ R.

Proposition 3.4.2. Let Φ1 and Φ2 be strictly plurisubharmonic quadratic forms on Cn and let κ :

C2n → C2n be a complex linear canonical transformation such that κ(ΛΦ2) = ΛΦ1 . If G : HΦ2(Cn) →

HΦ1(Cn) is a metaplectic Fourier integral operator quantizing κ, then G extends uniquely to a

bounded linear transformation

G : Hs
Φ2
(Cn) → Hs

Φ1
(Cn) (3.4.24)

for every s ∈ R. Consequently, G restricts to a continuous linear transformation H∞
Φ2
(Cn) →

H∞
Φ1
(Cn) and extends uniquely to a continuous linear transformation H−∞

Φ2
(Cn) → H−∞

Φ1
(Cn).

Proof. Let κ- : Cn → Cn be as in (3.4.9). By Proposition 3.4.1, we may write G uniquely in

Bergman form as

Gu(z) = â

ˆ

Cn

e2Ψ(z,w)u(w)e−2Φ2(w) L(dw), u ∈ HΦ2(Cn), (3.4.25)

where â ∈ C and Ψ(·, ·) is a holomorphic quadratic form on C2n such that

2Re Ψ(z, w)− Φ1(z)− Φ2(w) ≤ −c
999z − κ-(w)

999
2
, z, w ∈ Cn, (3.4.26)

for some c > 0. Now (3.4.25) may be rewritten as

Gu(z) =

ˆ

Cn

K(z, w)u(w)L(dw), u ∈ HΦ2(Cn), (3.4.27)

where

K(z, w) = âe2Ψ(z,w)−2Φ2(w), z, w ∈ Cn. (3.4.28)
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Let s ∈ R be arbitrary. To see that

G = O(1) : Hs
Φ2
(Cn) → Hs

Φ1
(Cn), (3.4.29)

we consider the reduced kernel

Kred(z, w) = 〈z〉se−Φ1(z)K(z, w)〈w〉−seΦ2(w), z, w ∈ Cn. (3.4.30)

Since κ- : Cn → Cn is an invertible linear transformation, there are C, c > 0 such that

c〈κ-(w)〉 ≤ 〈w〉 ≤ C〈κ-(w)〉 (3.4.31)

for all w ∈ Cn. From (3.4.26) and (3.4.31), we get that are C, c > 0 such that

|Kred(z, w)| ≤ C〈z − κ-(w)〉|s|e−c|z−κ"(w)|2 , z, w ∈ Cn. (3.4.32)

Because

sup
z∈Cn

ˆ

Cn

|Kred(z, w)| L(dw) < ∞ and sup
w∈Cn

ˆ

Cn

|Kred(z, w)| L(dz) < ∞, (3.4.33)

Schur’s lemma implies that the operator (3.4.25) is O(1) : Hs
Φ2
(Cn) → Hs

Φ1
(Cn). As H∞

Φ2
(Cn) is

dense in Hs
Φ2
(Cn) by Proposition 3.2.3, we conclude that G extends uniquely to a bounded linear

transformation Hs
Φ2
(Cn) → Hs

Φ1
(Cn). It follows immediately that G restricts to a continuous linear

transformation H∞
Φ2
(Cn) → H∞

Φ1
(Cn). To extend G to H−∞

Φ2
(Cn), we define Gu for u ∈ H−∞

Φ2
(Cn)

using the formula (3.4.25). To prove the continuity of G : H−∞
Φ2

(Cn) → H−∞
Φ1

(Cn) it suffices to show

that for every s ∈ R the restriction of G to Hs
Φ2
(Cn) is continuous Hs

Φ2
(Cn) → H−∞

Φ1
(Cn) (see [15]

Chapter IV Proposition 5.7). But this is immediate since we have already established the continuity

of G : Hs
Φ2
(Cn) → Hs

Φ1
(Cn) and the inclusion Hs

Φ1
(Cn) ↩→ H−∞

Φ1
(Cn) is continuous by definition of

the topology on H−∞
Φ1

(Cn). Since H∞
Φ2
(Cn) is dense in H−∞

Φ2
(Cn) by Proposition 3.2.3, it follows

that G extends uniquely to a continuous linear transformation H−∞
Φ2

(Cn) → H−∞
Φ1

(Cn).
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3.5 Metaplectic Fourier Integral Operators and Propagation of 1/2-

Gelfand-Shilov Singularities

Let C2n be equipped with the standard complex symplectic form σ and let Σ be a maximally

totally real subspace of C2n. Let ιΣ be the unique antilinear involution of C2n fixing Σ. Following

the terminology of [27], we say that a C-Lagrangian subspace Λ of C2n is positive relative to Σ if

1

i
σ(X, ιΣX) ≥ 0, X ∈ C2n. (3.5.1)

If equality holds in (3.5.1) only when X = 0, we say that Λ is strictly positive relative to Σ.

One may extend the notion of positivity to complex linear canonical transformations of C2n. If

κ : C2n → C2n is a complex linear canonical transformation and Σ1,Σ2 ⊂ C2n are maximally totally

real subspaces of C2n with associated antilinear involutions ιΣ1 and ιΣ2 , respectively, then we say

that κ is positive relative to (Σ1,Σ2) if

1

i
(σ(κ(X), ιΣ1κ(X))− σ(X, ιΣ2X)) ≥ 0, X ∈ C2n. (3.5.2)

If the inequality in (3.5.2) is strict for all X ∕= 0, then κ is said to be strictly positive relative to

(Σ1,Σ2). In the case when κ is positive, resp. strictly positive, relative to (Σ1,Σ2) and Σ1 = Σ2 = Σ,

then we simply say that κ is positive, resp. strictly positive, relative to Σ.

Let Φ1 and Φ2 be strictly plurisubharmonic quadratic forms on Cn. In [12], it was shown that

a complex linear canonical transformation κ : C2n → C2n is positive relative to (ΛΦ1 ,ΛΦ2) if and

only if

κ(ΛΦ2) = ΛΦ (3.5.3)

where Φ is a strictly plurisubharmonic quadratic form on C2n such that Φ ≤ Φ1. In particular, if Φ
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is a strictly plurisubharmonic quadratic form on Cn and κ is positive relative to ΛΦ, then

κ(ΛΦ) = ΛΦ̃ (3.5.4)

for some strictly plurisubharmonic quadratic form Φ̃ on Cn such that

Φ̃ ≤ Φ. (3.5.5)

In this case, there is a very useful characterization of the I-isotropic subspace ΛΦ ∩ κ(ΛΦ) in terms

of Φ and Φ̃. Namely, if Φ and Φ̃ are strictly plurisubharmonic quadratic forms on Cn satisfying

(3.5.4) and (3.5.5), then

π1(ΛΦ ∩ κ(ΛΦ)) = Rad(Φ− Φ̃). (3.5.6)

Indeed, since Φ− Φ̃ is a non-negative quadratic form, we have

Φ(z)− Φ̃(z) = 0 ⇐⇒ ∇Re z,Im z(Φ− Φ̃)(z) = 0 ⇐⇒ ∂z(Φ− Φ̃)(z) = 0. (3.5.7)

Hence

*
z,

2

i
∂zΦ(z)

+
=

*
z,

2

i
∂zΦ̃(z)

+
⇐⇒ z ∈ Rad(Φ− Φ̃). (3.5.8)

Suppose κ : C2n → C2n is a complex linear canonical transformation that is positive relative to

ΛΦ and let Φ̃ be as in (3.5.4). If G is a metaplectic Fourier integral operator quantizing κ, then

G is a continuous linear transformation H−∞
Φ (Cn) → H−∞

Φ̃
(Cn) by Proposition 3.4.2. Since also

H−∞
Φ̃

(Cn) ↩→ H−∞
Φ (Cn) continuously, we may regard G as a continuous linear transformation from

H−∞
Φ (Cn) to itself. Consequently, WF1/2

Φ (Gu) is well-defined for any u ∈ H−∞
Φ (Cn).

We wish to explore the relationship between WF1/2
Φ (u) and WF1/2

Φ (Gu) when u ∈ H−∞
Φ (Cn) and

G is a metaplectic Fourier integral operator whose underlying canonical transformation κ is positive

relative to Φ. The next theorem shows that G regularizes any 1/2-Gelfand-Shilov singularities of u

59



that are outside of Rad(Φ− Φ̃) and transports those that lie within Rad(Φ− Φ̃) by κ-, where κ- is

as in (3.4.9).

Theorem 3.5.1. Let Φ be a strictly plurisubharmonic quadratic form on Cn, let κ : C2n → C2n be

a complex linear canonical transformation that is positive relative to Φ, let Φ̃ be as in (3.5.4), and

let κ- : Cn → Cn be the R-linear isomorphism

κ- = prΦ̃ ◦ κ ◦ pr−1
Φ : Cn → Cn,

where prΦ and prΦ̃ are the restrictions of π1 to ΛΦ and ΛΦ̃ respectively. If G is a metaplectic Fourier

integral operator quantizing κ, realized as a continuous linear transformation from H−∞
Φ (Cn) to

itself, then, for any u ∈ H−∞
Φ (Cn), we have

WF1/2
Φ (Gu) ⊂ κ-(WF1/2

Φ (u)) ∩ Rad(Φ− Φ̃). (3.5.9)

If, in addition, G is non-zero and κ(ΛΦ ∩ ΛΦ̃) = ΛΦ ∩ ΛΦ̃, then

WF1/2
Φ (Gu) = κ-(WF1/2

Φ (u)) ∩ Rad(Φ− Φ̃) (3.5.10)

for every u ∈ H−∞
Φ (Cn).

We begin the proof of Theorem 3.5.1 by establishing the inclusion (3.5.9). It suffices to show

Cn\Rad(Φ− Φ̃) ⊂ Cn\WF1/2
Φ (Gu). (3.5.11)

and

κ-(Cn\WF1/2
Φ (u)) ⊂ Cn\WF1/2

Φ (Gu). (3.5.12)
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Let

Gu(z) = â

ˆ

Cn

e2Ψ(z,w)u(w)e−2Φ(w) L(dw), u ∈ H−∞
Φ (Cn),

where â ∕= 0, be the Bergman form of G given in Proposition 3.4.1. Suppose that z0 ∈ Cn\Rad(Φ−

Φ̃). There is an open conic neighborhood V of z0 in Cn\{0} such that

Φ(z)− Φ̃(z) ≥ c |z|2

for all z ∈ V . In view of (3.4.13) and (3.4.14), for all z ∈ V , we have

|Gu(z)| e−Φ(z) ≤ Ce−c|z|2
ˆ

Cn

e−Φ(w)−c|z−κ"(w)|2 |u(w)| L(dw)

≤ C‖u‖Hs
Φ(Cn)e

−c|z|2
*
ˆ

Cn

〈w〉−2se−c|z−κ"(w)|2 L(dw)
+1/2

,

where s ∈ R is such that u ∈ Hs
Φ(Cn). Since κ- is a R-linear isomorphism Cn → Cn, we see that

*
ˆ

Cn

〈w〉−2se−c|z−κ"(w)|2 L(dw)
+1/2

≤ C〈z〉s.

It follows

|Gu(z)| e−Φ(z) ≤ Ce−c|z|2 , z ∈ V.

Hence (3.5.11) holds.

Let z0 ∈ κ-(Cn\WF1/2
Φ (u)). If z0 = 0, then trivially z0 ∈ Cn\WF1/2

Φ (Gu). If z0 ∕= 0, write

z0 = κ-(w0) for some unique w0 ∈ Cn\WF1/2
Φ (u) and let V be an open conic neighborhood of w0 in

Cn\{0} such that

|u(w)| ≤ CeΦ(w)−c|w|2 , w ∈ V. (3.5.13)

Let Ṽ be an open conic neighborhood of z0 in Cn\{0} such that Ṽ ⊂⊂ κ-(V ). From Proposition
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3.4.1 and the fact that Φ̃ ≤ Φ, we get

999Gu(z)e−Φ(z)
999 ≤ C

7
ˆ

V
+

ˆ

Cn\V

8
e−c|z−κ"(w)|2 |u(w)| e−Φ(w) L(dw) =: I(z) + II(z), z ∈ Ṽ.

(3.5.14)

In view of (3.5.13),

I(z) ≤ C

ˆ

V
e−c|(κ")−1(z)−w|2−c|w|2 L(dw) ≤ Ce−c|z|2 , z ∈ Cn.

To estimate II(z), we observe that the quadratic form

(z, w) 1→
999z − κ-(w)

999
2

is non-vanishing for (z, w) ∈ Ṽ × (Cn\{0})\V . By homogeneity, there is a constant c > 0 such that

999z − κ-(w)
999
2
≥ c(|z|2 + |w|2)

for all z ∈ Ṽ and w ∈ Cn\V . As a result,

II(z) ≤ C‖u‖Hs
Φ(Cn)e

−c|z|2
*
ˆ

Cn

〈w〉−2se−c|w|2 L(dw)

+1/2

≤ Ce−c|z|2

for all z ∈ Ṽ . This establishes that

|Gu(z)| e−Φ(z) ≤ Ce−c|z|2 , z ∈ Ṽ.

Therefore (3.5.12) holds. We conclude that the inclusion (3.5.9) is true.

To establish the equality (3.5.10) under the additional assumption that κ(ΛΦ ∩ΛΦ̃) = ΛΦ ∩ΛΦ̃,

we first prove the following lemma.

Lemma 3.5.2. Let Φ, Φ̃, κ, and κ- be as in Theorem 3.5.1 and assume κ(ΛΦ ∩ ΛΦ̃) = ΛΦ ∩ ΛΦ̃.

Suppose that ?G is a metaplectic Fourier integral operator quantizing κ−1, realized as a continuous
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linear transformation H−∞
Φ̃

(Cn) → H−∞
Φ (Cn). Then, for any v ∈ H−∞

Φ̃
(Cn),

WF1/2
Φ ( ?Gv) ∩ Rad(Φ− Φ̃) ⊂ (κ-)−1(WF1/2

Φ (v)) ∩ Rad(Φ− Φ̃). (3.5.15)

Proof. Let v ∈ H−∞
Φ̃

(Cn) be arbitrary. It suffices to show that

Rad(Φ− Φ̃)\(κ-)−1
'
WF1/2

Φ (v)
(
⊂ Rad(Φ− Φ̃)\WF1/2

Φ ( ?Gv). (3.5.16)

Because (κ-)−1 : Cn → Cn is invertible,

Rad(Φ− Φ̃)\(κ-)−1
'
WF1/2

Φ (v)
(
= Rad(Φ− Φ̃) ∩

@
Cn\(κ-)−1(WF1/2

Φ (v))
A

= Rad(Φ− Φ̃) ∩ (κ-)−1
'
Cn\WF1/2

Φ (v)
(
.

(3.5.17)

Thus (3.5.16) is equivalent to

Rad(Φ− Φ̃) ∩ (κ-)−1
'
Cn\WF1/2

Φ (v)
(
⊂ Rad(Φ− Φ̃) ∩ Cn\WF1/2

Φ ( ?Gv). (3.5.18)

Let z0 ∈ Rad(Φ − Φ̃) ∩ (κ-)−1
'
Cn\WF1/2

Φ (v)
(
. If z0 = 0, then trivially z0 ∈ Rad(Φ − Φ̃) ∩

Cn\WF1/2
Φ ( ?Gv). If z0 ∕= 0, then we may write z0 = (κ-)−1w0 for some non-zero w0 ∈ Cn\WF1/2

Φ (v).

In view of (3.5.6) and our assumption that κ(ΛΦ ∩ ΛΦ̃) = ΛΦ ∩ ΛΦ̃, we have

κ-(Rad(Φ− Φ̃)) = π1(κ(ΛΦ ∩ ΛΦ̃)) = π1(ΛΦ ∩ ΛΦ̃) = Rad(Φ− Φ̃). (3.5.19)

It follows that w0 ∈ Rad(Φ− Φ̃) ∩ Cn\WF1/2
Φ (v). Let Ṽ ⊂ Cn\{0} be an open conic neighborhood

of w0 in Cn\{0} such that

|v(w)| e−Φ(w) ≤ Ce−δ|w|2 , w ∈ Ṽ, (3.5.20)

for some C, δ > 0. Since Φ(w0)− Φ̃(w0) = 0, we may ensure, by taking Ṽ smaller if necessary, that

Φ(w)− Φ̃(w) ≤ 1

2
δ |w|2 (3.5.21)
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holds for all w ∈ Ṽ . Let V be an open conic neighborhood of z0 in Cn\{0} such that

V ⊂⊂ (κ-)−1(Ṽ ). (3.5.22)

We claim that

999 ?Gv(z)
999 e−Φ(z) ≤ Ce−c|z|2 (3.5.23)

for all z ∈ V . Let

?Gu(z) = ã

ˆ

Cn

e2Ψ̃(z,w)u(w)e−2Φ̃(w) L(dw), u ∈ H−∞
Φ̃

(Cn),

where ã ∕= 0, be the Bergman form of ?G. Since there is c > 0 such that

2Re Ψ̃(z, w)− Φ(z)− Φ̃(w) ≤ −c
999z − (κ-)−1(w)

999
2
, z, w ∈ Cn, (3.5.24)

we get, for z ∈ V ,

999 ?Gv(z)e−Φ(z)
999 ≤ C

7
ˆ

Ṽ
+

ˆ

Cn\Ṽ

8
e−c|z−(κ")−1w|2 |v(w)| e−Φ̃(w) L(dw) =: I(z) + II(z). (3.5.25)

Because (3.5.20) and (3.5.21) hold within Ṽ ,

I(z) = C

ˆ

Ṽ
e−c|z−(κ")−1w|2eΦ(w)−Φ̃(w)e−δ|w|2 L(dw)

≤ C

ˆ

Cn

e−c|z−(κ")−1w|2e−
δ
2
|w|2 L(dw)

≤ Ce−c|z|2 , z ∈ Cn.

To estimate II(z), we notice that, thanks to (3.5.22), the quadratic form

(z, w) 1→
999z − (κ-)−1w

999
2
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is non-vanishing for (z, w) ∈ V × (Cn\{0})\Ṽ . By homogeneity, there is a constant γ > 0 such that

999z − (κ-)−1w
999
2
≥ γ(|z|2 + |w|2)

for all (z, w) ∈ V × Cn\Ṽ . Letting s ∈ R be such that v ∈ Hs
Φ̃
(Cn), we obtain

II(z) ≤ C

*
ˆ

Cn

e−2γ(|z|2+|w|2)〈w〉−2s L(dw)

+1/2

≤ Ce−γ|z|2 , z ∈ V.

This proves (3.5.23). Therefore z0 ∈ Rad(Φ− Φ̃) ∩ Cn\WF1/2
Φ ( ?Gv). The lemma is proved.

Now we can complete the proof of Theorem 3.5.1. Assume that κ(ΛΦ ∩ ΛΦ̃) = ΛΦ ∩ ΛΦ̃.

Let ?G be a non-zero metaplectic Fourier integral operator quantizing κ−1, realized as a con-

tinuous linear transformation H−∞
Φ̃

(Cn) → H−∞
Φ (Cn). By Proposition B.4 of [9], the operator

?GG : H−∞
Φ (Cn) → H−∞

Φ (Cn) is a metaplectic Fourier integral operator quantizing the identity map

on C2n. By Proposition 3.4.1 (see also Example 1), the Bergman form of ?GG must be

?GGu = b̂

ˆ

Cn

e2Ψ(z,w)u(w)e−2Φ(w) L(dw), u ∈ H−∞
Φ (Cn), (3.5.26)

where b̂ ∈ C and Ψ(z, θ) is the polarization of Φ. By multiplying ?G by a non-zero constant if

necessary, we may ensure that b̂ = 2nπ−n det ∂2
zzΦ. For this choice of b̂, the righthand side of

(3.5.26) is the Bergman projector (5.2.65). From (3.2.27), we have

?GG = I on H−∞
Φ (Cn). (3.5.27)

Let u ∈ H−∞
Φ (Cn) be given. By Lemma 3.5.2 and (3.5.27), we have

WF1/2
Φ (u) ∩ Rad(Φ− Φ̃) ⊂ (κ-)−1(WF1/2

Φ (Gu)) ∩ Rad(Φ− Φ̃). (3.5.28)
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By (3.5.9) and (3.5.19),

(κ-)−1(WF1/2
Φ (Gu)) ∩ Rad(Φ− Φ̃) ⊂ WF1/2

Φ (u) ∩ Rad(Φ− Φ̃). (3.5.29)

Combining (3.5.28) with (3.5.29) and using (3.5.19) gives

WF1/2
Φ (Gu) ∩ Rad(Φ− Φ̃) = κ-(WF1/2

Φ (u)) ∩ Rad(Φ− Φ̃). (3.5.30)

Since (3.5.9) also holds, we must have

WF1/2
Φ (Gu) = κ-(WF1/2

Φ (u)) ∩ Rad(Φ− Φ̃). (3.5.31)

The proof of Theorem 3.5.1 is complete.

3.6 The Bergman Representation of the Evolution Semigroup and

the Proof of Theorem 3.1.1

Let q = q(x, ξ) be a complex-valued quadratic form on R2n with Re q ≥ 0 and let qw(x,D) be the

Weyl quantization of q. We consider the Schrödinger initial value problem

!
""#

""$

∂tu(t, x) + qw(x,D)u(t, x) = 0, t ≥ 0, x ∈ Rn,

u|t=0 = u0 ∈ L2(Rn).

(3.6.1)

From the discussion on pages 425-426 of [31], we know that qw(x,D), regarded as an unbounded

operator on L2(Rn) equipped with its maximal domain

Dmax =
5
u ∈ L2(Rn) : qw(x,D)u ∈ L2(Rn)

6
, (3.6.2)

generates a strongly continuous one-parameter semigroup G(t) = e−tqw(x,D), t ≥ 0, on L2(Rn). We

may regard G(t) as the solution operator for the problem (3.6.1).
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Let ϕ be an FBI phase function with associated FBI transform Tϕ and strictly plurisubharmonic

weight Φ(z). Let κϕ : C2n → C2n be the complex canonical transformation generated by ϕ, and let

q̃ = q ◦ κ−1
ϕ . Applying Tϕ to (3.6.1) and using the complex Egorov theorem ([63] Theorem 13.9)

gives

!
""#

""$

∂tTϕu(t, z) + q̃w(z,D)Tϕu(t, z) = 0, t ≥ 0, z ∈ Cn,

Tϕu|t=0 = Tϕu0 ∈ HΦ(Cn).

(3.6.3)

Here

q̃w(z,Dz)u(z) =
1

(2π)n

!

ΓΦ(z)

ei(z−w)·θ q̃

*
z + w

2
, θ

+
u(w) dw ∧ dθ, (3.6.4)

where

ΓΦ(z) =

)
(w, θ) ∈ C2n : θ =

2

i

∂Φ

∂z

*
z + w

2

+,
, (3.6.5)

is the complex Weyl quantization of the symbol q̃. For further information regarding complex

Weyl quantization, we refer the reader to Section 1.4 of [27], Chapter 13 of [63], or Section 12.2

of [55]. In particular, since ‖∂αq̃‖L∞(C2n) < ∞ for all |α| ≥ 2, Proposition 12.6 of [55] implies

that q̃w(z,D) = O(1) : Hs
Φ(Cn) → Hs−2

Φ (Cn) for every s ∈ R. We also note that, since q̃(z, ζ) is

a holomorphic quadratic form, the operator q̃w(z,D) acts as a quadratic differential operator on

elements of H−∞
Φ (Cn). Indeed, if

q̃(z, ζ) =
1

2
A1z · z +A2z · ζ +

1

2
A3ζ · ζ, (z, ζ) ∈ C2n, (3.6.6)

where A1, A2, A3 ∈ Mn×n(C) with A1 = AT
1 and A3 = AT

3 , then

q̃w(z,D)u(z) =

*
1

2
A1z · z +A2z ·Dz +

1

2i
tr (A2) +

1

2
A3Dz ·Dz

+
u(z), z ∈ Cn, (3.6.7)

where Dz =
1
i ∂z, for all u ∈ H−∞

Φ (Cn).
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We may view q̃w(z,D) as an unbounded operator on HΦ(Cn) equipped with the maximal domain

?Dmax = {u ∈ HΦ(Cn) : q̃w(z,D)u ∈ HΦ(Cn)} . (3.6.8)

As a consequence of the complex Egorov theorem, we have ?Dmax = Tϕ (Dmax). Since also Tϕ :

L2(Rn) → HΦ(Cn) is unitary, it follows that q̃w(z,D) generates a strongly continuous one-parameter

semigroup ?G(t) = e−tq̃w(z,D), t ≥ 0, on HΦ(Cn). This semigroup is related to G(t) by

?G(t) = Tϕ ◦G(t) ◦ T ∗
ϕ , t ≥ 0. (3.6.9)

Our goal is to prove that, for all t ≥ 0, the semigroup ?G(t) is a metaplectic Fourier integral op-

erator in the sense of Section 4 whose underlying complex canonical transformation is the Hamilton

flow of −iq̃ at time t. To this end, we recall from [44] that κt := exp (tH−iq) : C2n → C2n, the

Hamilton flow of −iq, is positive relative to R2n for each t ≥ 0. To see this, write

q(X) = QX ·X, X ∈ C2n,

where Q ∈ M2n×2n(C) is symmetric. Let

F = JQ (3.6.10)

be the Hamilton matrix of q. We can express κt in terms of F as follows:

κt = e−2itF , t ∈ R. (3.6.11)

Because the unique antilinear involution of C2n fixing R2n is the usual map of complex conjugation

X 1→ X, the complex canonical transformation κt is positive relative to R2n for all t ≥ 0 if and only

if for every X ∈ C2n the real-valued function

r(t) =
1

i

'
σ(κt(X),κt(X))− σ(X,X)

(
, t ∈ R, (3.6.12)
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is non-negative for all t ≥ 0. Recalling that

σ(X,Y ) = JX · Y, X, Y ∈ Cn, (3.6.13)

we see that (3.6.12) may be rewritten as

r(t) =
1

i

'
Je−2itFX · e2itFX − JX ·X

(
, t ≥ 0. (3.6.14)

Differentiating (3.6.14) with respect to t gives

r′(t) = 2(F
T
J − JF )e−2itFX · e−2itFX. (3.6.15)

In view of (3.6.10), we have

F
T
J − JF = 2Re Q ≥ 0. (3.6.16)

Integrating (3.6.15) from 0 to t and using (3.6.16), we find that (3.6.12) is non-negative for t ≥ 0.

Thus

1

i

'
σ(κt(X),κt(X))− σ(X,X)

(
≥ 0, X ∈ C2n, t ≥ 0. (3.6.17)

Let κ̃t := exp (tH−iq̃), t ∈ R, be the Hamilton flow of −iq̃. From Jacobi’s theorem (see e.g.

Theorem 2.10 in [63]) it follows that

κ̃t = κϕ ◦ κt ◦ κ−1
ϕ , t ∈ R. (3.6.18)

Let ιΛΦ
be the unique antilinear involution of C2n fixing ΛΦ. Since complex conjugation Z 1→ Z is

the unique antilinear involution of C2n fixing R2n and κϕ(R2n) = ΛΦ, we have

ιΛΦ
(κϕ(X)) = κϕ(X), Z ∈ C2n. (3.6.19)
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From (3.6.17), (3.6.18), (3.6.19), and the invariance of σ under κϕ, we may deduce that

1

i
(σ(κ̃t(X), ιΛΦ

(κ̃t(X)))− σ(X, ιΛΦ
(X))) ≥ 0, X ∈ C2n, t ≥ 0. (3.6.20)

Hence the flow κ̃t is positive relative to ΛΦ for each t ≥ 0.

From the results of [12] (see also the discussion at the beginning of Section 5 above) there is a

one-parameter family Φt, t ≥ 0, of strictly plurisubharmonic quadratic forms on Cn with Φt ≤ Φ

for all t ≥ 0 such that Φ0 = Φ and

κ̃t(ΛΦ) = ΛΦt , t ≥ 0. (3.6.21)

It turns out that Φt, t ≥ 0, satisfies a natural eikonal equation associated to κ̃t. To the function

Φ(t, z) = Φt(z), we may associate the submanifold

)
(t, τ ; z, ζ) : t ≥ 0, z ∈ Cn, τ =

∂Φ

∂t
, ζ =

2

i

∂Φ

∂z

,

of R2
t,τ × C2n

z,ζ , which is Lagrangian with respect to the real symplectic form

dτ ∧ dt− Im σ. (3.6.22)

For g ∈ Hol(C2n), we denote by BHg the real vector field on C2n corresponding to the holomorphic

vector field Hg:

BHg = Hg +Hg.

From the discussion on pages 78-79 of [51], we know that

!H−iq̃ = H−Im σ
Re q̃ ,

where H−Im σ
Re q̃ denotes the Hamilton vector field of Re q̃ on C2n taken with respect to −Im σ.
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Applying the Hamilton-Jacobi theory (see Chapter 1 of [19]) with respect to the real symplectic

form (3.6.22), we find that Φ(t, z) satisfies the eikonal equation

!
""#

""$

∂Φ
∂t (t, z) + Re q̃

%
z, 2i

∂Φ
∂z (t, z)

&
= 0, t ≥ 0, z ∈ Cn,

Φ(0, ·) = Φ on Cn.
(3.6.23)

Now we prove that ?G(t), t ≥ 0, is a metaplectic Fourier integral operator in the complex domain

whose underlying complex canonical transformation at time t is κ̃t. For 0 ≤ t ≪ 1, this may be

accomplished by a standard geometrical optics construction (see for instance Section 3 of [23] or

Section 2 of [26]). However, it is actually possible to construct ?G(t) as a metaplectic Fourier integral

operator directly in the Bergman form (3.4.10) for all t ≥ 0. To the best of our knowledge, the

idea of representing evolution semigroups on the FBI transform side as Fourier integral operators

in Bergman form was introduced by J. Sjöstrand in the work [56]. The technique we present below

may be viewed as a linearized version of the construction given in [56], valid for all positive times

thanks to the positivity of κ̃t relative to ΛΦ.

We search for ?G(t) of the form

?G(t)u(z) = â(t)

ˆ

Cn

e2Ψt(z,w)u(w)e−2Φ(w) L(dw), u ∈ HΦ(Cn), (3.6.24)

where â ∈ C∞([0,∞);C) is non-vanishing and Ψt(·, ·) is a holomorphic quadratic form on C2n with

coefficients depending smoothly on t for t ≥ 0. Our objective is to choose â and Ψt(·, ·) so that ?G(t)

solves the operator initial value problem

!
""#

""$

∂t ?G(t) + q̃w(z,D) ?G(t) = 0, t ≥ 0,

?G(0) = I on HΦ(Cn).

(3.6.25)

To this end, let us rewrite (3.6.24) in the form

?G(t)u(z) = a(t)

ˆ

Γ
e2Ψt(z,θ)−2Ψ(w,θ)u(w) dw ∧ dθ, u ∈ HΦ(Cn), (3.6.26)
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where

Γ =
5
(w, θ) ∈ C2n : θ = w

6
(3.6.27)

is the anti-diagonal in C2n, a(t) = (i/2)nâ(t), t ≥ 0, and Ψ(·, ·) is the polarization of Φ. Thanks to

(3.6.7) and the well-known formula for the conjugation of a Weyl differential operator by a quadratic

exponential (see, for instance, the proof of Theorem 10.6 in [63]), we know that

e−2Ψt(z,θ) ◦ (∂t + q̃w(z,D)) ◦ e2Ψt(z,θ) = ∂t + 2∂tΨt(z, θ) + q̃w2
i
Ψt(·,θ)(z,D), θ ∈ Cn, (3.6.28)

where

q̃ 2
i
Ψt(·,θ)(z, ζ) = q̃

*
z, ζ +

2

i
∂zΨt(z, θ)

+
, (z, ζ) ∈ C2n, θ ∈ Cn. (3.6.29)

Assume that Ψt(·, θ) satisfies the eikonal equation

2∂tΨt(z, θ) + q̃

*
z,

2

i
∂zΨt(z, θ)

+
= 0, t ≥ 0, z ∈ Cn, θ ∈ Cn. (3.6.30)

Using that q̃ is quadratic, we see that the conjugated operator (3.6.28) is equal to

∂t +

*
∂ζ q̃

*
z,

2

i
∂zΨt(z, θ)

+
· ζ

+w

+
1

2

%
∂2
ζζ q̃

&
Dz ·Dz, z ∈ Cn, θ ∈ Cn, t ≥ 0. (3.6.31)

Introducing the holomorphic vector field

ν(z, ∂z) = ∂ζ q̃

*
z,

2

i
∂zΨt(z, θ)

+
· ∂z, z ∈ Cn, (3.6.32)

we deduce

e−2Ψt(z,θ) ◦ (∂t + q̃w(z,D)) ◦ e2Ψt(·,θ) = ∂t +
1

i
ν(z, ∂z) +

1

2i
div(ν) +

1

2

%
∂2
ζζ q̃

&
Dz ·Dz (3.6.33)
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for z ∈ Cn, θ ∈ Cn, and t ≥ 0. Here div(ν) denotes the holomorphic divergence of ν,

div(ν) =
n3

j=1

∂2
ζjzj

q̃ +

n3

j=1

n3

k=1

'
∂2
ζjζk

q̃
(*

2

i
∂2
zjzk

Ψt

+
= tr

*
∂2
ζz q̃ + ∂2

ζζ q̃ ·
2

i
∂2
zzΨt

+
. (3.6.34)

Thus, if we are to have

(∂t + q̃w(z,D))
'
e2Ψt(·,θ)a(t)

(
≡ 0 on Cn, θ ∈ Cn, t ≥ 0, (3.6.35)

it suffices to choose a(t) so that

a′(t) +
1

2i
β(t)a(t) = 0, t ≥ 0, (3.6.36)

where

β(t) = tr
*
∂2
ζz q̃ + ∂2

ζζ q̃ ·
2

i
∂2
zzΨt

+
, t ≥ 0. (3.6.37)

Demanding also that Ψt(z, θ)|t=0 = Ψ(z, θ) and a(0) = (i/2)nCΦ, where CΦ is as in (3.2.25), we

may ensure that ?G(0) coincides with the Bergman projection (5.2.65) and hence that the initial

condition ?G(0) = I on HΦ(Cn) is satisfied. We conclude that if we are to produce a solution ?G(t)

of the operator initial value problem (3.6.25) of the form (3.6.24), we should choose Ψt(·, ·) so that

!
""#

""$

2∂tΨt(z, θ) + q̃
%
z, 2i ∂zΨt(z, θ)

&
= 0, z, θ ∈ Cn, t ≥ 0,

Ψ0(z, θ) = Ψ(z, θ), z ∈ Cn, θ ∈ Cn,

(3.6.38)

and choose â(t) so that

!
""#

""$

â′(t) + 1
2iβ(t)â(t) = 0, t ≥ 0,

â(0) = CΦ.

(3.6.39)

As the initial value problem (3.6.39) can be solved by elementary methods once Ψt(·, ·) is known,
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we will focus our attention on solving the problem (3.6.38). We note that, since (3.6.39) is a linear

ordinary differential equation and CΦ ∕= 0, the solution â(t) of (3.6.39) will be non-vanishing for all

t ≥ 0. Taking the real part of (3.6.38) gives

!
""#

""$

∂t [2Re Ψt(z, θ)] + Re q̃
%
z, 2i ∂z [2Re Ψt(z, θ)]

&
= 0, z, θ ∈ Cn, t ≥ 0,

2Re Ψ0(z, θ) = 2Re Ψ(z, θ), z ∈ Cn, θ ∈ Cn.

(3.6.40)

Using Hamilton-Jacobi theory (see, for instance the proof of Lemma 2.2 in [13] or the proof of

Proposition 5.3.1 below), we may deduce from (3.6.40) that

Λ2Re Ψt(·,θ) = κ̃t
%
Λ2Re Ψ(·,θ)

&
, θ ∈ Cn, t ≥ 0, (3.6.41)

where Λ2Re Ψt(·,θ) and Λ2Re Ψ(·,θ) denote the C-Lagrangian subspaces of C2n given by

Λ2Re Ψt(·,θ) =

)*
z,

2

i
∂z [2Re Ψt(z, θ)]

+
: z ∈ Cn

,
, θ ∈ Cn, t ≥ 0, (3.6.42)

and

Λ2Re Ψ(·,θ) =

)*
z,

2

i
∂z [2Re Ψ(z, θ)]

+
: z ∈ Cn

,
, θ ∈ Cn, (3.6.43)

respectively. As a consequence of the fundamental estimate (5.2.68), there is a constant c > 0 such

that

2Re Ψ(z, 0) ≤ Φ(z)− c |z|2 , z ∈ Cn. (3.6.44)

From Theorem 2.1 of [12] it follows that the C-Lagrangian subspace Λ2Re Ψ(·,0) of C2n is positive

relative to ΛΦ. As κ̃t is positive relative to ΛΦ for all t ≥ 0, (3.6.41) implies that Λ2Re Ψt(·,0) is

positive relative to ΛΦ for all t ≥ 0. This observation, combined with Theorem 2.1 of [12], implies

that (3.6.40) may be solved for all t ≥ 0, first in the case θ = 0, and then for general θ ∈ Cn. Thus

we obtain a holomorphic quadratic form Ψt(·, ·) depending analytically on t for t ≥ 0 that solves

74



the initial value problem (3.6.38). It follows that ?G(t) given by (3.6.24) satisfies (3.6.25).

Finally, let us check that ?G(t) is a metaplectic Fourier integral operator in the sense of Section

4. Writing ?G(t) as the contour integral (3.6.26), we see that ?G(t) is of the form (3.4.1) with phase

function

φt(z, w, θ) =
2

i
Ψt(z, θ)−

2

i
Ψ(w, θ), (z, w, θ) ∈ C3n, t ≥ 0. (3.6.45)

Since Φ is strictly plurisubharmonic, the phase φt is easily seen to satisfy Hörmander’s non-

degeneracy condition (3.4.2) for every t ≥ 0. Moreover, the relation (3.6.41) implies that the phase

φt generates graph(κ̃t) in the sense of (3.4.3) for all t ≥ 0. As ∂θφt(z, w, θ) = 0 for (z, w, θ) ∈ C3n

and t ≥ 0 if and only if ∂θΨt(z, θ) = ∂θΨ(w, θ), it follows that κ̃t : C2n → C2n is given implicitly by

κ̃t :

*
w,

2

i
∂wΨ(w, θ)

+
1→

*
z,

2

i
∂zΨt(z, θ)

+
, ∂θΨt(z, θ) = ∂θΨ(w, θ), z, w, θ ∈ Cn, t ≥ 0.

(3.6.46)

We conclude that for all t ≥ 0 the operator ?G(t) is indeed a metaplectic Fourier integral operator

in the complex domain with underlying canonical transformation κ̃t. By Proposition 3.4.1, (3.6.24)

is the Bergman form of ?G(t) for every t ≥ 0.

Let us verify that

∀u ∈ S ′(Rn), ∀t ≥ 0 : TϕG(t)u = ?G(t)Tϕu. (3.6.47)

From the work [31], we know that for every t ≥ 0 the operator G(t) : L2(Rn) → L2(Rn) extends

uniquely to a sequentially continuous linear transformation G(t) : S ′(Rn) → S ′(Rn). Thus, by

Propositions 3.2.3, 3.2.4 and 3.4.2, it suffices to show that for every u ∈ S ′(Rn) and t ≥ 0, we have

ˆ

Cn

TϕG(t)u(z)v(z)e−2Φ(z) L(dz) =

ˆ

Cn

?G(t)Tϕu(z)v(z)e−2Φ(z) L(dz) (3.6.48)
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for all v ∈ H∞
Φ (Cn). For any u ∈ S ′(Rn), v ∈ H∞

Φ (Cn), and t ≥ 0, we have

ˆ

Cn

TϕG(t)u(z)v(z)e−2Φ(z) L(dz) =

ˆ

Cn

〈G(t)u, cϕe
iϕ(z,·)v(z)e−2Φ(z)〉L(dz)

= 〈G(t)u, T ∗
ϕ v〉

= 〈u,G(t)∗T ∗
ϕ v〉,

(3.6.49)

where T ∗
ϕ is the adjoint of Tϕ : L2(Rn) → HΦ(Cn) and G(t)∗ is the adjoint of G(t) taken in the

sense of distributions. The identity (3.6.9) implies

G(t)∗T ∗
ϕ v = (TϕG(t))∗v = ( ?G(t)Tϕ)∗v = T ∗

ϕ
?G(t)∗v. (3.6.50)

Thus

〈u,G(t)∗T ∗
ϕ v〉 = 〈u, T ∗

ϕ
?G(t)∗v〉 =

ˆ

Cn

Tϕu(w) ?G(t)∗v(w)e−2Φ(w) L(dw). (3.6.51)

As a consequence of (3.6.24),

?G(t)∗v(w) = â(t)

ˆ

Cn

e2Ψt(z,w)v(z)e−2Φ(z) L(dz). (3.6.52)

Putting (3.6.52) into (3.6.51), interchanging the order of integration, and using (3.6.24) gives

(3.6.48).

Having established that ?G(t) is a metaplectic Fourier integral operator whose underlying com-

plex canonical transformation at time t is κ̃t, we can apply the results of Section 5 to study the

propagation of 1/2-Gelfand-Shilov singularities by the semigroup G(t), via the identity (3.6.47). We

begin by giving a characterization of the singular space S of q in terms of the intersection ΛΦ ∩ΛΦt

for t > 0.

Proposition 3.6.1. For all t > 0,

S = κ−1
ϕ (ΛΦ ∩ ΛΦt). (3.6.53)
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Proof. By Theorem 1.1 of [12], the positivity of κ̃t relative to ΛΦ implies that the quadratic form

Φ− Φt is non-negative for all 0 ≤ t < ∞. Thus,

∀z ∈ Cn, ∀ 0 ≤ t < ∞ :

*
z,

2

i

∂Φ

∂z
(z)

+
∈ ΛΦt ⇐⇒ ∂Φ

∂z
(z) =

∂Φt

∂z
(z) ⇐⇒ Φ(z)− Φt(z) = 0.

(3.6.54)

According to (3.6.23),

∂Φt

∂t
(z) = −Re q̃

*
z,

2

i

∂Φt

∂z
(z)

+
, z ∈ Cn, 0 ≤ t < ∞. (3.6.55)

For any fixed z ∈ Cn and 0 ≤ t < ∞, the point
%
z, 2i

∂Φt
∂z (z)

&
belongs to ΛΦt = κ̃t(ΛΦ). It follows

that for any z ∈ Cn there is an X ∈ ΛΦ such that

*
z,

2

i

∂Φt

∂z
(z)

+
= κ̃t(X).

Since q̃ is invariant under the flow κ̃t,

Re q̃

*
z,

2

i

∂Φt

∂z
(z)

+
= Re q̃(X). (3.6.56)

As Re q̃|ΛΦ
≥ 0, (3.6.56) and (3.6.55) together imply that

∂Φt

∂t
(z) ≤ 0 (3.6.57)

for every z ∈ Cn and 0 ≤ t < ∞. Hence,

∀z ∈ Cn, ∀ 0 ≤ t < ∞ :

*
z,

2

i

∂Φ

∂z
(z)

+
∈ ΛΦt ⇐⇒ Φ(z)− Φs(z) = 0 for all 0 ≤ s ≤ t.

Because the quadratic form Φ−Φs is non-negative, Φ(z)−Φs(z) = 0 if and only if ∂zΦ(z) = ∂zΦs(z),
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and we have

∀z ∈ Cn, ∀ 0 ≤ t < ∞ :

*
z,

2

i

∂Φ

∂z
(z)

+
∈ ΛΦt ⇐⇒

*
z,

2

i

∂Φ

∂z
(z)

+
∈ ΛΦs for all 0 ≤ s ≤ t.

Therefore

ΛΦ ∩ ΛΦt =
:

0≤s≤t

ΛΦ ∩ ΛΦs (3.6.58)

for every t > 0. Applying κ−1
ϕ to both sides of (3.6.58) and using Jacobi’s theorem and (3.6.11), we

find that

κ−1
ϕ (ΛΦ ∩ ΛΦt) =

5
X ∈ R2n : e2isFX ∈ R2n for all 0 ≤ s ≤ t

6

for all t > 0. Thus, if X ∈ C2n, then

X ∈ κ−1
ϕ (ΛΦ ∩ ΛΦt) ⇐⇒ Im

%
e2isFX

&
= 0 (3.6.59)

for every 0 ≤ s ≤ t. From the discussion on page 22 of [44] and the real analyticity of the mapping

t 1→
%
Im e2itF

&
(X) for any fixed X ∈ R2n, we know that

S =
:

0≤s≤t

ker
%
Im e2isF

&
∩ R2n =

:

s∈R
ker (Im e2isF ) ∩ R2n (3.6.60)

for every t > 0. Therefore (3.6.53) must hold for every t > 0.

We now conclude the proof of Theorem 3.1.1. First, we verify that S is invariant under κt for

every t ∈ R. From (3.6.11) and (5.1.23), we see that

κt(X) = etHIm qX =

∞3

k=0

(2t)k

k!
(Im F )kX (3.6.61)
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for all X ∈ S and t ∈ R. Now, let X ∈ S, Y ∈ C2n, and t ∈ R be such that

κt(X) = Y. (3.6.62)

As a consequence of (3.6.60), we have Y ∈ R2n. Also, (3.6.61) and (5.1.23) together imply

(Re F )(Im F )jY =

∞3

k=0

(2t)k

k!
(Re F )(Im F )j+kX = 0, j ∈ N.

Thus

κt(S) ⊂ S, t ∈ R. (3.6.63)

Since (3.6.63) implies that

κ−t(S) ⊂ S, t ∈ R, (3.6.64)

holds as well, we deduce that

κt(S) = S, t ∈ R. (3.6.65)

The invariance of S under κt for every t ∈ R, Jacobi’s theorem, and Proposition 3.6.1 give

κ̃t(ΛΦ ∩ ΛΦt) = ΛΦ ∩ ΛΦt (3.6.66)

for every t ≥ 0. Thus, the metaplectic Fourier integral operator ?G(t) and its underlying canonical

transformation κ̃t satisfy the hypotheses of Theorem 3.5.1 for every t ≥ 0. Let prΦ = π1|ΛΦ
,

prΦt
= π1|ΛΦt

for t ≥ 0, and κ̃-t = prΦt
◦ κ̃t ◦ pr−1

Φ for t ≥ 0. By Theorem 3.5.1, we have

WF1/2
Φ ( ?G(t)u) = κ̃-t

'
WF1/2

Φ (u)
(
∩ Rad(Φ− Φt) (3.6.67)

for every u ∈ H−∞
Φ (Cn) and every t ≥ 0. Applying (prΦ ◦ κϕ|R2n)−1 to both sides of (3.6.67) and
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using Jacobi’s theorem, (3.6.47), (3.6.53), (3.6.65), and Proposition 3.2.2, we get

WF1/2(G(t)u0) = κt(WF1/2(u0) ∩ S) (3.6.68)

for every u0 ∈ S ′(Rn) and every t > 0. From (3.6.68) and (3.6.61), we may therefore deduce

WF1/2(G(t)u0) = exp (tHIm q)(WF1/2(u0) ∩ S) (3.6.69)

for every u0 ∈ S ′(Rn) and t > 0. The proof of Theorem 3.1.1 is complete.
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Chapter 4

Lp-Bounds for Semigroups Generated by

Non-Elliptic Quadratic Differential

Operators

4.1 Introduction and Statement of Results

In this chapter, we prove Lp-bounds for the solution operator e−tqw(x,D) of the Schrödinger initial

value problem

!
""#

""$

∂tu(t, x) + qw(x,D)u(t, x) = 0, (t, x) ∈ [0,∞)× Rn,

u(0, x) = u0(x), x ∈ Rn,

(4.1.1)

where u0 ∈ L2(Rn) is the initial data, q = q(x, ξ) is a complex-valued quadratic form on the phase

space R2n = Rn
x × Rn

ξ with non-negative real part Re q ≥ 0, and qw(x,D) is the Weyl quantization

of q(x, ξ), defined by

qw(x,D)v(x) = (2π)−n

ˆ

Rn

ˆ

Rn

ei(x−y)·ξq

*
x+ y

2
, ξ

+
v(y) dy dξ, v ∈ S ′(Rn), (4.1.2)
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in the sense of distributions. Operators of the form (4.1.2) are quadratic differential operators with

a simple, explicit expression. This is because the Weyl quantization of a quadratic monomial of the

form xαξβ , where α,β ∈ Nn, |α+ β| = 2, is

xαDβ +Dβxα

2
, D :=

1

i
∂. (4.1.3)

The class of evolution equations of the form (4.1.1) contains a number of familiar examples, such as

the free Schrödinger equation where q(x, ξ) = i |ξ|2, (x, ξ) ∈ R2n, the quantum harmonic oscillator,

where q(x, ξ) = i(|x|2+ |ξ|2), (x, ξ) ∈ R2n, the heat equation, where q(x, ξ) = |ξ|2, (x, ξ) ∈ R2n, and

the Kramers-Fokker-Planck equation with a quadratic potential, where q(x, v, ξ, η) = η2 + 1
4v

2 +

i(v · ξ− ax · η), for (x, v, ξ, η) ∈ R4n = R2n
x,v ×R2n

ξ,η and a ∈ R\{0} a constant. From the work [31], it

is known that the operator qw(x,D), regarded as an unbounded operator on L2(Rn) equipped with

the maximal domain

Dmax =
5
u ∈ L2(Rn) : qw(x,D)u ∈ L2(Rn)

6
, (4.1.4)

is maximally accretive and generates a strongly continuous contraction semigroup G(t) := e−tqw(x,D),

t ≥ 0, on L2(Rn). We may regard G(t) as the solution operator for the problem (4.1.1). Given

that a wide range of physical processes may be modeled by equations of the form (4.1.1), it is of

interest to understand the Lp → Lq mapping properties of the evolution semigroup G(t) and to

obtain bounds for the operator norm ‖G(t)‖Lp→Lq at various time regimes. Let us mention that

the study of Lp-bounds for semigroups generated by self-adjoint Schrödinger operators has a long

and rich tradition in the field of mathematical physics. We refer to [17], [18], [47], and [48] for some

fundamental results in this area. In particular, Lp-bounds for the propagator G(t) were obtained

in [34] in the case when (4.1.1) is the time evolution of the quantum harmonic oscillator. We also

mention that the topic of Lp-bounds for operators with Gaussian kernels is a classical subject. In

particular, it is known that the that the Lp → Lq norm of an operator on Rn with a Gaussian kernel

must be realized by a Gaussian. For more information, see [37].

In this note, we shall be primarily interested in obtaining Lp → Lq bounds for G(t) in the case
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when the quadratic form q is non-elliptic. In order to recount the known results in this direction,

we pause to recall the notion of the singular space of a complex-valued quadratic form q on R2n

with non-negative real part Re q ≥ 0. Let R2n be equipped with the standard symplectic form

σ((x, ξ), (y, η)) = ξ · y − x · η, (x, ξ), (y, η) ∈ R2n. (4.1.5)

Suppose q : R2n → C is a complex-valued quadratic form with Re q ≥ 0 and let q(·, ·) denote its

symmetric C-bilinear polarization. Because σ is nondegenerate, there is a unique F ∈ Mat2n×2n(C)

such that

q((x, ξ), (y, η)) = σ((x, ξ), F (y, η)) (4.1.6)

for all (x, ξ), (y, η) ∈ R2n. This matrix F is called the Hamilton map or Hamilton matrix of q (see

Section 21.5 of [32]). Explicitly, the Hamilton matrix of q is given by

F =
1

2
Hq, (4.1.7)

where Hq =
'
q′ξ,−q′x

(
is the Hamilton vector field of q, viewed as a linear map C2n → C2n. Let

Re F =
F + F

2
, Im F =

F − F

2i

be the real and imaginary parts of F respectively. The singular space S of q is defined as the

following finite intersection of kernels:

S =

-

/
2n−1:

j=0

ker
;
(Re F )(Im F )j

<
0

2 ∩ R2n. (4.1.8)

The singular space was first introduced by M. Hitrik and K. Pravda-Starov in [23] where it arose

naturally in the study of spectra and semi-group smoothing properties for non-self adjoint quadratic

differential operators. The concept of the singular space has since been shown to play a key role

in the understanding of hypoelliptic and spectral properties of non-elliptic quadratic differential
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operators. See for instance [24], [25], [41], [42], [57], and [58]. Recent work has also shown that

the singular space is vital for the description of the propagation of microlocal singularities for the

evolution (4.1.1). We refer the reader to [11], [43], [44], [59], and [61], as well as [3] and [4].

Let q be a complex-valued quadratic form on R2n with non-negative real part Re q ≥ 0. Let S

be the singular space of q. The quadratic form q is said to be elliptic if

q(X) = 0, X ∈ R2n =⇒ X = 0, (4.1.9)

If (4.1.9) fails to hold, then we say that q is non-elliptic. To the best of our knowledge, there are

currently only two general results regarding Lp → Lq bounds for the semigroup G(t) in the case

when q is non-elliptic. First, in Theorem 1.2.3 of [23], it was established that ‖G(t)‖L2→L2 decays

exponentially as t → ∞ whenever S is symplectic and distinct from the entire phase space R2n. In

other words, if S is symplectic and S ∕= R2n, then there are C, c > 0 such that

‖G(t)‖L2→L2 ≤ Ce−ct, t ≥ 0. (4.1.10)

Thanks to the subsequent work [40], it is also known that if S is trivial, i.e. S = {0}, then the

optimal rate of exponential decay of ‖G(t)‖L2→L2 is the quantity γ defined below in Theorem 4.1.1.

The second general result concerning Lp − Lq bounds for G(t) is Theorem 1.2 of [26], which yields

the following L2 − L∞ estimate: if S = {0}, then, for every s > n/2, there is C > 0 such that

‖G(t)‖L2→L∞ ≤ Ct−
1
2
(2k0+1)(2n+s), 0 < t ≪ 1, (4.1.11)

where k0 ∈ {0, 1, . . . , 2n− 1} is the smallest non-negative integer such that

k0:

j=0

ker
;
(Re F )(Im F )j

<
∩ R2n = {0}. (4.1.12)

Our goal in the present work is to prove bounds for the operator norm ‖G(t)‖Lp→Lq with (p, q)

more general than (2, 2) and (2,∞). The main result of this note refines and extends the bounds
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(4.1.10) and (4.1.11) under the assumption that S = {0}. We recall from Theorem 1.2.2 of [23]

that when S = {0} the spectrum of the quadratic differential operator qw(x,D) is only composed

of eigenvalues of finite algebraic multiplicity with

Spec(qw(x,D)) =

!
""#

""$

3

λ∈Spec(F )
Im(λ)>0

(rλ + 2kλ)(−iλ) : kλ ∈ N

C
""D

""E
, (4.1.13)

where rλ is the dimension of the space of generalized eigenvectors of the Hamilton matrix F of q in

C2n corresponding to the eigenvalue λ ∈ C. In particular, the eigenvalue of qw(x,D) obtained by

setting kλ = 0 for all λ ∈ Spec(F ) in (4.1.13) is

ρ =
3

λ∈Spec(F )
Im(λ)>0

−irλλ. (4.1.14)

We may think of ρ as the ‘lowest eigenvalue’ or ‘ground state energy’ of the operator qw(x,D).

Theorem 4.1.1. Let q, qw(x,D), G(t), S, and F be as above. Assume that S = {0}.

1. Let γ = Re(ρ) > 0. For every 1 ≤ p ≤ q ≤ ∞ and ε > 0, there are constants C = Cε,p,q > 0

and c = cp,q > 0, such that

ce−γt ≤ ‖G(t)‖Lp→Lq ≤ Ce−γt, t ≥ ε. (4.1.15)

2. Let k0 ∈ {0, 1, . . . , 2n−1} be the smallest non-negative integer such that (4.1.12) holds. There

is a time 0 < t0 ≪ 1 such that for any 1 ≤ p ≤ q ≤ ∞ we have

c ≤ ‖G(t)‖Lp→Lq ≤ Ct−(2k0+1)n, 0 < t ≤ t0, (4.1.16)

for some constants C = Cp,q > 0 and c = cp,q > 0.

Remark 4.1.2. For any 1 ≤ p ≤ q ≤ ∞, it is actually true that there is a constant c = cp,q > 0
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such that

ce−γt ≤ ‖G(t)‖Lp→Lq , 0 ≤ t < ∞. (4.1.17)

In fact, we have c ≥ ‖v‖Lq , where v ∈ S(Rn) is the Lp-normalized ‘ground state’ for the operator

qw(x,D). For a proof, see the derivation of (4.4.15) below.

Let us make some general comments regarding Theorem 4.1.1 First, the bounds (4.1.15) show

that for any 1 ≤ p ≤ q ≤ ∞ the operator norm ‖G(t)‖Lp→Lq decays exponentially as t → ∞, with γ

being the precise rate of decay, independent of (p, q). To prove that γ is the exact rate of exponential

decay, one may examine the action of the propagator G(t) on the ‘ground state’ eigenfunction

of qw(x,D) corresponding to the eigenvalue ρ (see Section 4 below). Regarding the short time

0 < t ≪ 1 bounds in Theorem 4.1.1, it is clear that (4.1.16) is not sharp for all 1 ≤ p ≤ q ≤ ∞.

For instance, (4.1.16) fails to reproduce (4.1.10) when p = q = 2. However, one may interpolate

(4.1.16) with the bound G(t) = OL2→L2(1) as t → 0+ to obtain more precise estimates at short

times. We also note that when (p, q) = (2,∞), the bound (4.1.16) gives G(t) = OL2→L∞(t−(2k0+1)n)

as t → 0+, which is an improvement over (4.1.11).

Finally, let us briefly touch on the main ideas involved in the proof of Theorem 4.1.1. In the

recent work [61], we showed that if Tϕ is a global metaplectic FBI transform on Rn, in the sense of

either Chapter 13 of [63] or the minicourse [27], then the conjugated propagator ?G(t) := Tϕ◦G(t)◦T ∗
ϕ

is, for each t ≥ 0, a metaplectic Fourier integral operator acting on the Bargmann space HΦ0(Cn),

which is the unitary image of L2(Rn) under Tϕ. In particular, we showed that the ‘Bergman form’

([12], [56]) of ?G(t) is given by

?G(t)u(z) = â(t)

ˆ

Cn

e2Ψt(z,w)u(w)e−2Φ0(w) L(dw), z ∈ Cn, u ∈ HΦ0(Cn), t ≥ 0, (4.1.18)

where L(dw) is the Lebesgue measure on Cn, Φ0(w) := supy∈Rn(−Im ϕ(w, y)), w ∈ Cn, is the

strictly plurisubharmonic quadratic form on Cn associated to ϕ, Ψt is a holomorphic quadratic

form on C2n = Cn × Cn depending analytically on t ≥ 0, and â ∈ Cω([0,∞);C) is a non-vanishing

amplitude. Moreover, we showed that Ψt and â are the solutions of an eikonal equation and a
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transport equation, respectively. In particular, we did not attempt to solve these equations explicitly

for Ψt and â. Now, thanks to the work [1], it is known that when the singular space is trivial S = {0}

it is possible to choose a metaplectic FBI transform Tϕ so that conjugated semigroup has the simple

form

?G(t)u(z) = e
i
2
tr(M)tu(eitMz), u ∈ HΦ0(Cn), t ≥ 0, (4.1.19)

where M ∈ Matn×n(C) is a suitable matrix. In the present work, we show that this choice of

Tϕ leads to equations for Ψt and â that may be easily solved. One may then show that (4.1.18)

coincides with (4.1.19), giving an alternative derivation of (4.1.19). Once the Bergman form of ?G(t)

is known and a basic estimate for the real part of its phase function is established, the bounds

(4.1.15) and (4.1.16) follow easily by writing down a formal expression for the Schwartz kernel of

the composition T ∗
ϕ ◦ ?G(t) ◦ Tϕ using (4.1.18) and applying Young’s integral inequality.

The plan for this chapter is as follows. In Section 2, we recall how to choose the FBI transform

Tϕ so that (4.1.19) holds. In Section 3, we determine the Bergman form (4.1.18) of ?G(t) for t ≥ 0

and prove some basic estimates. In Section 4, we conclude the proof of Theorem 4.1.1, as outlined

in this introduction.

Acknowledgements. The author would like to express gratitude to Michael Hitrik for reading

a preliminary draft of this manuscript and providing helpful feedback and suggestions. The author

would also like to thank Daniel Parker for a stimulating conversation.

4.2 Reduction to a Normal Form on the FBI Transform Side

In this section, we follow the approach of [28] and [58] for reducing qw(x,D) to a normal form via

a metaplectic FBI transform. We provide additional references where convenient.

Let q be a complex-valued quadratic form on R2n with non-negative real part Re q ≥ 0 and trivial

singular space S = {0}. Let C2n = Cn
z × Cn

ζ be equipped with the standard complex symplectic

form σ = dζ ∧ dz. Let F be the Hamilton matrix of q introduced in (4.1.6). From the work [23], it
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is known that the matrix F has no real eigenvalues. Consequently,

# {λ ∈ Spec(F ) : Imλ > 0} = # {λ ∈ Spec(F ) : Imλ < 0} , (4.2.1)

counting algebraic multiplicities. For λ ∈ Spec(F ), let

Vλ = ker
%
(F − λ)2n

&
⊂ C2n (4.2.2)

be the generalized eigenspace of F corresponding to λ. Let us also introduce the stable outgoing

and stable incoming manifolds for the quadratic form −iq given by

Λ+ =
F

λ∈Spec(F )
Im λ>0

Vλ, Λ− =
F

λ∈Spec(F )
Im λ<0

Vλ, (4.2.3)

respectively. By Proposition 2.1 of [58], Λ+ is a strictly positive C-Lagrangian subspace of C2n in

the sense that Λ+ is Lagrangian with respect to the complex symplectic form σ and

1

i
σ(Z,Z) > 0, Z ∈ Λ+\{0}, (4.2.4)

and Λ− is a strictly negative C-Lagrangian subspace of C2n in the sense that Λ− is Lagrangian

for the form σ and (4.2.4) holds for all Z ∈ Λ−\{0} with ‘>’ replaced by ‘<’. For background

information regarding positive and negative C-Lagrangian subspaces of C2n, we refer to either [27]

or [12]. In particular, from the discussion on pages 488-489 of [27], we know that there exists a

holomorphic quadratic form ϕ = ϕ(z, y) on C2n = Cn
z × Cn

y with

detϕ′′
zy ∕= 0, Im ϕ′′

yy > 0, (4.2.5)

such that the complex linear canonical transformation

κϕ : C2n ∋ (y,−ϕ′
y(z, y)) 1→ (z,ϕ′

z(z, y)) ∈ C2n, (z, y) ∈ C2n, (4.2.6)
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generated by ϕ satisfies

κϕ(Λ
+) = {(z, 0) : z ∈ Cn} , κϕ(Λ

−) = {(0, ζ) : ζ ∈ Cn} . (4.2.7)

Let

Φ0(z) = sup
y∈Rn

(−Im ϕ(z, y)) , z ∈ Cn, (4.2.8)

be the strictly plurisubharmonic quadratic form on Cn associated to the phase ϕ (see Chapter 13

of [63] or Section 1.3 of [27]), and let

ΛΦ0 =

)*
z,

2

i
Φ′
0,z(z)

+
: z ∈ Cn

,
. (4.2.9)

From either Theorem 13.5 of [63] or Proposition 1.3.2 of [27], we have

κϕ
%
R2n

&
= ΛΦ0 , (4.2.10)

and thus ΛΦ0 is I-Lagrangian and R-symplectic for the complex symplectic form σ. Also, the strict

positivity of Λ+ in conjunction with (4.2.7) gives that the base {(z, 0) : z ∈ Cn} is strictly positive

relative to ΛΦ0 (see e.g. [12]). It then follows, as explained in Chapter 11 of [51], that the quadratic

form Φ0 is strictly convex.

Let

q̃ = q ◦ κ−1
ϕ , (4.2.11)

regarded as a holomorphic quadratic form on C2n. Since Λ+ and Λ− are invariant under F and

Lagrangian with respect to σ, we have

q(X) = σ(X,FX) = 0, X ∈ Λ+ ∪ Λ−. (4.2.12)
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From (4.2.7) and (4.2.11), it follows that q̃ must be of the form

q̃(z, ζ) = Mz · ζ, (z, ζ) ∈ C2n, (4.2.13)

for some M ∈ Matn×n(Cn). In particular, the complex Hamilton vector field of q̃ with respect to σ

is

Hq̃ =
%
Mz,−MT ζ

&
, (z, ζ) ∈ C2n. (4.2.14)

The Hamilton map of q̃ is thus given by F̃ = 1
2Hq̃, and we have

F̃ =
1

2

-

./
M 0

0 −MT

0

12 . (4.2.15)

As a consequence of (4.2.11), (4.1.6), and the invariance of σ under κϕ, it is true that F̃ = κϕ◦F ◦κ−1
ϕ .

Since also F̃ maps (z, 0) ∈ κϕ(Λ
+) to 1

2(Mz, 0) ∈ κϕ(Λ
+), we have

Spec(M) = Spec(2F ) ∩ {Im λ > 0}, (4.2.16)

with agreement of algebraic multiplicities.

Let Tϕ : S ′(Rn) → Hol(Cn) be the metaplectic FBI transform on Rn associated to ϕ, given in

the sense of distributions by

Tϕu(z) = cϕ

ˆ

Rn

eiϕ(z,y)u(y)L(dy), u ∈ S ′(Rn), (4.2.17)

where

cϕ = 2−n/2π−3n/4(det Im ϕ′′
yy)

−1/4
99detϕ′′

zy

99 . (4.2.18)
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By Theorem 13.7 of [63], Tϕ is unitary L2(Rn) → HΦ0(Cn), where

HΦ0(Cn) := L2(Cn, e−2Φ0(z) L(dz)) ∩ Hol(Cn) (4.2.19)

is the Bargmann space associated to the weight Φ0, equipped with the natural Hilbert space struc-

ture inherited from L2(Cn, e−2Φ0(z) L(dz)). Here L(dz) denotes the Lebesgue measure on Cn. Let

q̃w(z,D) denote the complex Weyl quantization of the symbol q̃ with respect to the weight Φ0.

We recall that q̃w(z,D) is defined as an unbounded operator on HΦ0(Cn) that acts on suitable

u ∈ HΦ0(Cn) by

q̃w(z,D)u(z) =
1

(2π)n

!

ΓΦ0
(z)

ei(z−w)·ζ q̃w
*
z + w

2
, ζ

+
u(w) dw ∧ dζ, z ∈ Cn, (4.2.20)

for the contour of integration

ΓΦ0(z) : w 1→ ζ =
2

i
Φ′
0,z

*
z + w

2

+
, w ∈ Cn, z ∈ Cn. (4.2.21)

For more information on Weyl quantization in the complex domain, see Chapter 13 of [63] or Section

1.4 of [27]. By Egorov’s theorem (see Theorem 13.9 in [63] or Theorem 1.4.2 of [27]), we have

qw(x,D) = T ∗
ϕ ◦ q̃w(z,D) ◦ Tϕ (4.2.22)

when both sides are viewed as operators acting on the maximal domain of qw(x,D),

Dmax =
5
u ∈ L2(Rn) : qw(x,D)u ∈ L2(Rn)

6
. (4.2.23)

Let

?Dmax = {u ∈ HΦ0(Cn) : q̃w(z,D)u ∈ HΦ0(Cn)} (4.2.24)

be the maximal domain of q̃w(z,D), and let us view q̃w(z,D) as an unbounded operator on HΦ0(Cn)
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with the domain ?Dmax. Thanks to (4.2.22), we have

?Dmax = Tϕ(Dmax). (4.2.25)

Let G(t) = e−tqw(x,D), t ≥ 0, be the strongly continuous semigroup on L2(Rn) generated by

qw(x,D) (see [31]). From (4.2.22), (4.2.25), and the unitarity of Tϕ, it follows that q̃w(z,D) generates

a strongly continuous semigroup ?G(t) = e−tq̃w(z,D), t ≥ 0, on HΦ0(Cn). The semigroups G(t) and

?G(t) are related by

G(t) = T ∗
ϕ ◦ ?G(t) ◦ Tϕ (4.2.26)

for all t ≥ 0.

We have established the following proposition, which summarizes the discussion in this section.

Proposition 4.2.1. Let q be a complex-valued quadratic form on R2n with non-negative real part

Re q ≥ 0 and trivial singular space S = {0}. Let F be the Hamilton matrix of q, and let qw(x,D) be

the Weyl quantization of q, viewed as an unbounded operator on L2(Rn) equipped with its maximal

domain Dmax defined in (4.2.23). Let G(t) = e−tqw(x,D), t ≥ 0, be the strongly continuous semigroup

on L2(Rn) generated by qw(x,D).

1. There exists a holomorphic quadratic form ϕ on C2n satisfying (4.2.5) such that the quadratic

form Φ0 defined by (4.2.8) is strictly convex and the complex linear canonical transformation

κϕ : C2n → C2n defined implicitly by (4.2.6) has the property that

q̃(z, ζ) :=
%
q ◦ κ−1

ϕ

&
(z, ζ) = Mz · ζ, (z, ζ) ∈ C2n, (4.2.27)

where M ∈ Matn×n(C) is such that Spec(M) = Spec(2F ) ∩ {Im λ > 0} with agreement of

algebraic multiplicities.

2. Let q̃w(z,D) be the complex Weyl quantization (4.2.20) of q̃ with respect to the weight Φ0,

realized as an unbounded operator on the Bargmann space HΦ0(Cn) introduced in (4.2.19)
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equipped with the maximal domain ?Dmax defined in (4.2.24). The operator q̃w(z,D) gener-

ates a strongly continuous semigroup ?G(t) = e−tq̃w(z,D), t ≥ 0, on HΦ0(Cn) that is unitarily

equivalent to G(t) for each t ≥ 0. This unitary equivalence is given by the FBI transform Tϕ

introduced in (4.2.17), i.e.

G(t) = T ∗
ϕ ◦ ?G(t) ◦ Tϕ, t ≥ 0. (4.2.28)

4.3 The Evolution Semigroup on the FBI Transform Side

We now study the semigroup ?G(t), t ≥ 0. Let Ψ0 be the polarization of Φ0, i.e. Ψ0 is the unique

holomorphic quadratic form on C2n = Cn × Cn such that Ψ0(z, z) = Φ0(z) for all z ∈ Cn. Since

Φ0(z) =
1

2
Φ′′
0,zzz · z + Φ′′

0,zzz · z +
1

2
Φ′′
0,z zz · z, z ∈ Cn, (4.3.1)

we see that Ψ0 is given explicitly by

Ψ0(z, θ) =
1

2
Φ′′
0,zzz · z + Φ′′

0,zzz · θ +
1

2
Φ′′
0,z zθ · θ, (z, θ) ∈ C2n. (4.3.2)

In the work [61], we showed that for every t ≥ 0 the semigroup ?G(t) is a metaplectic Fourier

integral operator in the complex domain whose underlying complex canonical transformation is the

Hamilton flow κ̃t of the symbol q̃ at time t/i, i.e.

κ̃t = exp

*
t

i
Hq̃

+
, t ≥ 0. (4.3.3)

In view of (4.2.14), we have

κ̃t(z, ζ) =
'
e−itMz, eitM

T
ζ
(
, (z, ζ) ∈ C2n, t ≥ 0. (4.3.4)

For background information regarding metaplectic Fourier integral operators in the complex domain,

see Appendix B of [9]. In particular, in the work [12], it was shown that every such metaplectic
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Fourier integral operator in Cn possesses a unique ‘Bergman form.’ In Section 6 of [61], we proved

that the Bergman form of G̃(t) is given by

?G(t)u(z) = â(t)

ˆ

Cn

e2Ψt(z,w)u(w)e−2Φ0(w) L(dw), z ∈ Cn, u ∈ HΦ0(Cn), (4.3.5)

where Ψt is a holomorphic quadratic form on C2n, depending analytically on t ≥ 0, and â ∈

Cω([0,∞);C) is a non-vanishing amplitude. In addition, we showed that Ψt, t ≥ 0, is the unique

solution of the eikonal equation

!
""#

""$

2∂tΨt(z, θ) + q̃
%
z, 2iΨ

′
t,z(z, θ)

&
= 0, (z, θ) ∈ C2n, t ≥ 0,

Ψt(z, θ)|t=0 = Ψ0(z, θ), (z, θ) ∈ C2n,

(4.3.6)

and â is the unique solution of the transport equation

!
""#

""$

â′(t) + 1
2iβ(t)â(t) = 0, t ≥ 0,

â(0) = CΦ0 ,

(4.3.7)

where

β(t) = tr
*
q̃′′ζz + q̃′′ζζ ·

2

i
Ψ′′

t,zz

+
, t ≥ 0, (4.3.8)

and

CΦ0 = 2nπ−n detΦ′′
0,zz. (4.3.9)

We note that the initial conditions in (4.3.6) and (4.3.7) are chosen so that when t = 0 the righthand

side of (4.3.5) coincides with the orthogonal projector ΠΦ0 : L2(Cn, e−2Φ0(z) L(dz)) → HΦ0(Cn),

which has the explicit integral represenation

ΠΦ0u(z) = CΦ0

ˆ

Cn

e2Ψ0(z,w)u(w)e−2Φ0(w) L(dw), u ∈ L2(Cn, e−2Φ(z) L(dz)). (4.3.10)
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In the literature, the operator ΠΦ0 is known as the ‘Bergman projector’ associated to the weight

Φ0. For a proof of (4.3.10), see Theorem 13.6 of [63] or Proposition 1.3.4 of [27].

Since q̃ has the simple form (4.2.13), we may determine Ψt and â by solving (4.3.6) and (4.3.7)

explicitly. We begin by studying the transport equation (4.3.7). Thanks to (4.2.13), we see that

β(t) = tr (M) , t ≥ 0. (4.3.11)

The unique solution of (4.3.7) is

â(t) = CΦ0e
i
2
tr(M)t, t ≥ 0. (4.3.12)

Next, we solve (4.3.6) for Ψt. We search for a solution to (4.3.6) of the form

Ψt(z, θ) =
1

2
Atz · z +Btz · θ +

1

2
Dtθ · θ, (z, θ) ∈ C2n, t ≥ 0, (4.3.13)

where At, Bt, Dt ∈ Matn×n(C) depend smoothly on t and At = AT
t and Dt = DT

t for all t ≥ 0.

Inserting (4.3.13) into (4.3.6) and using (4.2.13) and (4.3.2), we see that Ψt will be a solution of

(4.3.6) provided At, Bt, and Dt satisfy

!
""#

""$

∂tAtz · z + 2
iAtMz · z = 0, z ∈ Cn, t ≥ 0,

A0 = Φ′′
0,zz,

(4.3.14)

!
""#

""$

∂tBtz · θ + 1
iBtMz · θ = 0, z, θ ∈ Cn, t ≥ 0,

B0 = Φ′′
0,zz,

(4.3.15)
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and

!
""#

""$

∂tCtθ · θ = 0, θ ∈ Cn, t ≥ 0,

C0 = Φ′′
0,zz,

(4.3.16)

respectively. The symmetry of At implies that

2AtMz · z =
%
AtM +MTAt

&
z · z, z ∈ Cn, t ≥ 0. (4.3.17)

Thus (4.3.14) holds if and only if

!
""#

""$

∂tAt +
1
iAtM + 1

iM
TAt = 0, t ≥ 0,

A0 = Φ′′
0,zz.

(4.3.18)

The unique solution of (4.3.18) is

At = eiM
T tΦ′′

0,zze
iMt, t ≥ 0. (4.3.19)

By inspection, the solutions of (4.3.15) and (4.3.16) are

Bt = Φ′′
0,zze

itM , Ct = Φ′′
0,zz, t ≥ 0, (4.3.20)

respectively. Using (4.3.2), we get

Ψt(z, θ) = Ψ0(e
itMz, θ), (z, θ) ∈ C2n, t ≥ 0. (4.3.21)

From (4.3.5), (4.3.10), (4.3.12), and (4.3.21), we deduce that

?G(t)u(z) = e
i
2
tr(M)tu

%
eitMz

&
, u ∈ HΦ0(Cn), t ≥ 0. (4.3.22)

The formula (4.3.22) for the semigroup ?G(t) was obtained by a different method in [1].
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For t ≥ 0, let us define

Φt(z) = Φ0

%
eitMz

&
, z ∈ Cn, t ≥ 0. (4.3.23)

Since Φ0 is strictly convex, Φt is a strictly convex quadratic form on Cn for all t ≥ 0. In addition,

we have Φt|t=0 = Φ0. For t ≥ 0, let

HΦt(Cn) = L2
'
Cn, e−2Φt(z) L(dz)

(
∩ Hol(Cn) (4.3.24)

be the Bargmann space associated to Φt, equipped with the natural Hilbert space structure induced

from L2
%
Cn, e−2Φt(z) L(dz)

&
. From (4.3.22), it is clear that ?G(t) is bounded HΦ0(Cn) → HΦt(Cn)

for every t ≥ 0, and a direct computation using (4.3.22), (4.3.23), and (4.2.16) gives

‖ ?G(t)u‖HΦt (Cn) = eγt‖u‖HΦ0
(Cn), u ∈ HΦ0(Cn), t ≥ 0, (4.3.25)

where γ > 0 is as in the statement of Theorem 4.1.1.

The following proposition summarizes the discussion so far in this section and establishes some

basic estimates that will be necessary for the proof of Theorem 4.1.1 in Section 4.

Proposition 4.3.1. Let q, q̃, M , Φ0, HΦ0(Cn), and ?G(t) be as in Proposition 4.2.1.

1. For every t ≥ 0, we have

?G(t)u(z) = e
i
2
tr(M)tu

%
eitMz

&
, u ∈ HΦ0(Cn). (4.3.26)

In addition,

‖ ?G(t)u‖HΦt (Cn) = eγt‖u‖HΦ0
(Cn), t ≥ 0, (4.3.27)

where

Φt(z) = Φ0

%
eitMz

&
, z ∈ Cn, t ≥ 0, (4.3.28)
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the norm ‖·‖HΦt (Cn) is the norm on the Bargmann space HΦt(Cn) introduced in (4.3.24), and

γ > 0 is as in the statement of Theorem 1.1.

2. Let Rt = Φ0 − Φt, t ≥ 0, and let α : [0,∞) → R be the continuous function defined by

α(t) = min|z|=1Rt(z), (4.3.29)

so that

Rt(z) ≥ α(t) |z|2 , z ∈ Cn, t ≥ 0. (4.3.30)

The function α has the following properties:

(a) α(0) = 0 and α(t) > 0 for all t > 0,

(b) α is non-decreasing,

(c) there is 0 < t0 ≪ 1 and c > 0 such that

α(t) ≥ ct2k0+1, 0 ≤ t ≤ t0, (4.3.31)

where k0 ∈ {0, 1, . . . , 2n−1} is the smallest non-negative integer such that (4.1.12) holds,

and

(d) α(t) → min|z|=1Φ0(z) > 0 as t → ∞.

3. Let Ψ0 be the polarization of Φ0 given by (4.3.2). For any t ≥ 0 and u ∈ HΦ0(Cn), we have

?G(t)u(z) = CΦ0e
i
2
tr(M)t

ˆ

Cn

e2Ψt(z,w)u(w)e−2Φ0(w) L(dw), z ∈ Cn, (4.3.32)

where

Ψt(z, θ) = Ψ0

%
eitMz, θ

&
, (z, θ) ∈ C2n, t ≥ 0. (4.3.33)
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Moreover, there are constants C, c > 0, independent of t, such that

−C
99w − eitMz

992 ≤ 2ReΨt(z, w)− Φt(z)− Φ0(w) ≤ −c
99w − eitMz

992 , z, w ∈ Cn, t ≥ 0.

(4.3.34)

Proof. It remains to establish Point 2 and the estimate (5.2.68). To this end, let

Rt(z) = Φ0(z)− Φt(z), z ∈ Cn, t ≥ 0, (4.3.35)

and let α : [0,∞) → ∞ be as in (4.3.29). We will begin by showing that

Rt(z) ≥ 0, z ∈ Cn, t ≥ 0. (4.3.36)

Let κ̃t, t ≥ 0, be as in (4.3.3). A straightforward computation using (4.2.9), (4.3.4), and (4.3.28)

gives that

κ̃t (ΛΦ0) = ΛΦt :=

)*
z,

2

i
Φ′
t,z(z)

+
: z ∈ Cn

,
, t ≥ 0. (4.3.37)

From either the discussion in Section 6 of [61] or a direct computation, we know that the family

(Φt)t≥0 satisfies the eikonal equation

!
""#

""$

∂tΦt(z) + Re q̃
%
z, 2iΦ

′
t,z(z)

&
= 0, z ∈ Cn, t ≥ 0,

Φt|t=0 = Φ0 on Cn.

(4.3.38)

As a consequence of (4.3.37), for every z ∈ Cn and t ≥ 0, there is a point Z ∈ ΛΦ0 such that

*
z,

2

i
Φ′
t,z(z)

+
= κ̃t(Z). (4.3.39)

Since q̃ is invariant under the flow κ̃t, for every t ≥ 0 and z ∈ Cn, there is Z ∈ ΛΦ0 such that

∂tΦt(z) = −Re q̃(Z). (4.3.40)
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Because Re q ≥ 0, (4.2.10) and (4.2.11) imply that Re q̃ ≥ 0 on ΛΦ0 , and we have

∂tΦt(z) ≤ 0, z ∈ Cn, t ≥ 0. (4.3.41)

Thus, for any fixed z ∈ Cn, the function

t 1→ Φ0(z)− Φt(z) (4.3.42)

is non-decreasing. It follows that Rt ≥ 0 for all t ≥ 0 and that the function α is non-decreasing.

We next recall from Proposition 6.1 of [61] that

ΛΦ0 ∩ ΛΦt = π1 (κϕ(S)) , t > 0, (4.3.43)

where S is the singular space of q, κϕ : C2n → C2n is the complex linear canonical transformation

defined by (4.2.6), and π1 : C2n → Cn is the projection π1 : (z, ζ) 1→ z. Since we assume that

S = {0}, we deduce from (4.3.43) that

ΛΦ0 ∩ ΛΦt = {0}, t > 0. (4.3.44)

Thus, for every t > 0 and z ∈ Cn,

2

i
Φ′
0,z(z)−

2

i
Φ′
t,z(z) = 0 ⇐⇒ z = 0. (4.3.45)

Because Rt is a non-negative quadratic form for each t ≥ 0, we have

Rt(z) = 0, z ∈ Cn, t > 0 ⇐⇒ ∇Re z,Im zRt(z) = 0 ⇐⇒ 2

i
Φ′
0,z(z)−

2

i
Φ′
t,z(z) = 0. (4.3.46)

Hence, for any z ∈ Cn and t > 0,

Rt(z) = 0 ⇐⇒ z = 0. (4.3.47)
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Thus α(t) > 0 for all t > 0.

To establish (4.3.31), we recall the main result of Section 2 of [26], which states that if the

singular space of q is trivial, S = {0}, then there is a small time 0 < t0 ≪ 1 and a constant c > 0

such that

Rt(z) ≥ ct2k0+1 |z|2 , z ∈ Cn, 0 ≤ t ≤ t0, (4.3.48)

where k0 ∈ {0, 1, . . . , 2n − 1} is the smallest non-negative integer such that (4.1.12) holds. It is

therefore true that

α(t) ≥ ct2k0+1, 0 ≤ t ≤ t0. (4.3.49)

To prove the claim regarding the behavior of α(t) as t → ∞, we note that (4.2.16) implies that

spec(iM) ⊂ {Reλ < 0}. Thus there is c > 0 such that

Rt(z) = Φ0(z) +O(e−ct |z|2) as t → ∞. (4.3.50)

It follows that

α(t) → min|z|=1Φ0(z) as t → ∞. (4.3.51)

The proof of Point 2 is complete.

Finally, we prove (5.2.68). Using (4.3.1), (4.3.2), (4.3.21), and (4.3.23), we obtain the following

identity by elementary algebraic manipulations:

2ReΨt(z, w)− Φt(z)− Φ0(w) = −Φ′′
0,zz

%
w − eiMtz

&
· (w − eiMtz), z, w ∈ Cn, t ≥ 0. (4.3.52)

Because Φ0 is a strictly plurisubharmonic quadratic form, the Levi matrix Φ′′
0,zz is Hermitian
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positive-definite. Consequently, there are constants C, c > 0, independent of t, such that

−C
99w − eitMz

992 ≤ 2ReΨt(z, w)− Φt(z)− Φ0(w) ≤ −c
99w − eitMz

992 , z, w ∈ Cn, t ≥ 0. (4.3.53)

This proves (5.2.68).

4.4 The Conclusion of the Proof of Theorem 4.1.1

In view of (4.2.26), (4.2.17), (4.3.5), and (4.3.12), the Schwartz kernel Kt(x, y) of G(t) is given,

formally, by

Kt(x, y) = c2ϕCΦ0e
i
2
tr(M)t

ˆ

Cn

ˆ

Cn

ePt(x,y,z,w) L(dw)L(dz), (x, y) ∈ R2n, t ≥ 0, (4.4.1)

where

Pt(x, y, z, w) := −iϕ(z, x)− 2Φ0(z) + 2Ψt(z, w)− 2Φ0(w) + iϕ(w, y), (4.4.2)

for x, y ∈ Rn, z, w ∈ Cn, and t ≥ 0. For z ∈ Cn, let r(z) ∈ Rn be the unique point such that

Φ0(z) = −Im ϕ(z, r(z)). (4.4.3)

We note that r(z) is an R-linear function of z ∈ Cn. Since Im ϕ′′
yy > 0, there is c > 0 such that

−Im ϕ(z, y)− Φ0(z) ≤ −c |y − r(z)|2 , z ∈ Cn, y ∈ Rn. (4.4.4)

Using (4.4.4) together with the estimate (5.2.68), we find that

Re Pt(x, y, z, w) ≤ −c |x− r(z)|2 −Rt(z)− c
99w − eitMz

992 − c |y − r(w)|2 , (4.4.5)
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for all x, y ∈ Rn, z, w ∈ Cn, and t ≥ 0, where Rt(z) is as in Proposition 4.3.1. Let α : [0,∞) → R

be as in (4.3.29). Since (4.3.30) holds, there is c > 0 such that

RePt(x, y, z, w) ≤ −c |x− r(z)|2 − α(t) |z|2 − c
99w − eitMz

992 − c |y − r(w)|2 (4.4.6)

for all x, y ∈ Rn, z, w ∈ Cn, and t ≥ 0.

Let γ be as in the statement of Theorem 4.1.1. Taking the absolute value of (4.4.1) and using

(4.4.6) and (4.2.16), we find that there are constants C, c > 0 such that

|Kt(x, y)| ≤ Ce−γt

ˆ

Cn

ˆ

Cn

e−c|x−r(z)|2−α(t)|z|2−c|w−exp (itM)z|2−c|y−r(w)|2 L(dw)L(dz) (4.4.7)

for every x, y ∈ Rn and t ≥ 0. Let 1 ≤ p ≤ q ≤ ∞ be given, and let 1 ≤ r ≤ ∞ be such that

1 +
1

q
=

1

p
+

1

r
. (4.4.8)

Using Minkowski’s integral inequality and the fact that α(t) > 0 for every t > 0, we get that

‖Kt(x, ·)‖Lr ≤ Ce−γt

ˆ

Cn

ˆ

Cn

e−c|x−r(z)|2−α(t)|z|2−c|w−exp (itM)z|2‖e−c|y−r(w)|2‖Lr
y
L(dw)L(dz)

≤ Cα(t)−ne−γt, x ∈ Rn, t > 0,

(4.4.9)

where C = Cp,q > 0 depends only on p and q. By similar reasoning, there is C = Cp,q > 0 such that

‖Kt(·, y)‖Lr ≤ Cα(t)−ne−γt, y ∈ Rn, t > 0. (4.4.10)

Applying Young’s integral inequality with (4.4.9) and (4.4.10) gives

‖G(t)‖Lp→Lq ≤ Cα(t)−ne−γt, t > 0, (4.4.11)

for some C = Cp,q > 0.

Let ε > 0 be arbitrary. From Proposition 4.3.1, we know that α is non-decreasing and α(t) > 0
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for all t > 0. Thus,

α(t) ≥ α(ε), t ≥ ε. (4.4.12)

In view of (4.4.11), we may deduce that there is C = Cε,p,q > 0 such that

‖G(t)‖Lp→Lq ≤ Ce−γt, t ≥ ε. (4.4.13)

To see that the bound (4.4.13) is sharp as t → ∞, we recall from Theorem 2.1 of [40] that the lowest

eigenvalue ρ of qw(x,D), introduced in (4.1.14), is simple and that the eigenspace of qw(x,D)

corresponding to ρ is spanned by a ‘ground state’ of the form

u0(x) = e−a(x), x ∈ Rn, (4.4.14)

where a is a complex-valued quadratic form on Rn with positive-definite real part Re a > 0. Let

v = ‖u0‖−1
Lp(Rn)u0. Since qw(x,D)v = ρv, is is clear that

‖e−tqw(x,D)v‖Lq = e−tγ‖v‖Lq , t ≥ 0. (4.4.15)

Hence there is a constant c = cp,q > 0 such that

‖e−tqw(x,D)‖Lp→Lq ≥ ce−γt, t ≥ 0. (4.4.16)

We conclude that there are constants C = Cε,p,q > 0 and c = cp,q > 0 such that (4.1.15) holds for

all t ≥ ε.

Finally, we prove the bound (4.1.16). From (4.3.31), (4.4.11), and (4.4.16), we get that there

are constants C = Cp,q > 0 and cp,q > 0 such that

c ≤ ‖G(t)‖Lp→Lq ≤ Ct−(2k0+1)n, 0 < t ≤ t0. (4.4.17)
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The proof of Theorem 4.1.1 is complete.
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Chapter 5

Lp-Bounds for Eigenfunctions of

Analytic Non-Self-Adjoint Operators

with Double Characteristics

5.1 Introduction and Statement of Results

This work is inspired by the recent progress [36] in the understanding of Lp-norms of low-lying

eigenfunctions of semiclassical pseudodifferential operators with double characteristics. More pre-

cisely, we are interested in eigenfunctions of semiclassical pseudodifferential operators on Rn of the

form

P = Opw
h (p0 + hp1) , 0 < h ≤ 1, (5.1.1)

where p0, p1 ∈ C∞(R2n) belong to a symbol class that we shall specify shortly. Here 0 < h ≤ 1 is a

semiclassical parameter, and Opw
h (a) denotes the semiclassical Weyl quantization of a symbol a on

R2n, which is defined formally by

Opw
h (a)u(x) =

1

(2πh)n

ˆ

Rn

ˆ

Rn

e
i
h
(x−y)·ξa

*
x+ y

2
, ξ;h

+
u(y) dy dξ, x ∈ Rn, (5.1.2)
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for u ∈ S ′(Rn). For background concerning semiclassical Weyl quantization on Rn, we refer to the

texts [63] and [19]. We make the following assumptions regarding the leading symbol p0:

1. p0 is h-independent,

2. p0 has non-negative real part,

Re p0 ≥ 0 on R2n, (5.1.3)

with

(Re p0)−1(0) = {0}, (5.1.4)

and

3. Im p0 vanishes to second order at 0 ∈ R2n, i.e.

Im p0(0) = 0 and ∇(Im p0)(0) = 0. (5.1.5)

Note that (5.1.3) and (5.1.4) imply that

∇(Re p0)(0) = 0, (5.1.6)

and hence p0 vanishes to second order at 0 ∈ R2n,

p0(0) = 0 and ∇p0(0) = 0. (5.1.7)

We summarize (5.1.7) by saying that p0 is doubly characteristic at 0 ∈ R2n. To state our assumptions

concerning the growth of p0 and p1 at infinity, we first recall that an order function on R2n is a

Lebesgue measurable function m : R2n → (0,∞) such that

∃C > 0, ∃N > 0 : m(X) ≤ C〈X − Y 〉Nm(Y ), X, Y ∈ R2n. (5.1.8)
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Here 〈X〉 = (1 + |X|2)1/2 denotes the Japanese bracket of X ∈ R2n. For any order function m on

R2n, we have the symbol class S(m) consisting of all a : R2n × (0, 1] → C such that

a(·;h) ∈ C∞(R2n), 0 < h ≤ 1, (5.1.9)

and

∀α ∈ N2n, ∃C > 0 : |∂α
Xa(X;h)| ≤ Cm(X), X ∈ R2n, 0 < h ≤ 1. (5.1.10)

Regarding the symbols p0 and p1, we assume that there is an order function m on R2n with

m ∈ S(m) and m ≥ 1 (5.1.11)

such that

p0, p1 ∈ S(m). (5.1.12)

We also assume that Re p0 is elliptic at infinity in the sense that

Re p0(X) ≥ 1

C
m(X), |X| ≥ C, (5.1.13)

for some C > 0.

Operators of the form (5.1.1) with p0 and p1 satisfying the above assumptions include, for

example, Schrödinger operators on Rn with complex potentials. Other examples of such semiclassical

operators may be found in areas of mathematical physics such as fluid dynamics, superconductivity,

and kinetic theory. See, for instance, [2], [16], and [21]. In many applications, the operator P arises

as an unbounded operator L2(Rn), and one is interested in determining the spectrum of P in the

semiclassical limit as h → 0+. We may realize P as an unbounded operator on L2(Rn) with the
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domain

Hh(m) := Opw
h (m)−1

%
L2(Rn)

&
, (5.1.14)

for h > 0 sufficiently small. When equipped with the domain (5.1.14), the operator P becomes

a closed and densely defined operator on L2(Rn). Concerning the spectrum of P , the assumption

(5.1.13) that Re p0 is elliptic at infinity implies that there is 0 < h0 ≤ 1 and C > 0 such that

Spec(P ) ∩D(0, C) is discrete and consists of eigenvalues

of finite algebraic multiplicity for every 0 < h ≤ h0.

(5.1.15)

Here D(0, r) denotes the open disc of radius r in r centered at the origin 0. For a proof of (5.1.15),

see Section 3 of [20]. The eigenvalues λ(h) of P that lie in a disc of the form D(0, Ch) for some C > 0

are known as low-lying eigenvalues of P . Thanks to the works [49], [8], [22], and [25], complete

asymptotic expansions for the low-lying eigenvalues of P are known when Weyl symbol of P admits

an asymptotic expansion in the class S(m), i.e. there exists a sequence of h-independent symbols

p1,j ∈ S(m), j ∈ N, such that

p1 ∼
∞3

j=0

hjp1,j in S(m), (5.1.16)

and the quadratic approximation to p0 at 0 ∈ R2n,

q(X) =
1

2
p′′0(0)X ·X, X ∈ R2n, (5.1.17)

satisfies suitable partial ellipticity hypotheses. Note that the sign assumption (5.1.3) implies that

the complex-valued quadratic form q defined by (5.1.17) has non-negative real part,

Re q ≥ 0. (5.1.18)

In this chapter, we are primarily interested in the eigenfunctions that correspond to low-lying
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eigenvalues of P . A low-lying eigenfunction of P is a family u = u(h) ∈ L2(Rn), 0 < h ≤ 1, such

that

!
""#

""$

Pu(h) = z(h)u(h),

‖u(h)‖L2(Rn) = 1,

(5.1.19)

where z(h) ∈ C satisfies

z(h) = O(h), h → 0+. (5.1.20)

When the operator P is non-self-adjoint, little is known about the low-lying eigenfunctions of P . In

particular, relationship between the quadratic form q and properties of the low-lying eigenfunctions

of P is not well-understood. In this work, our objective shall be to establish Lp-bounds for low-lying

eigenfunctions of P under minimal partial ellipticity assumptions on q.

Remark 5.1.1. We remark the study of Lp-bounds of eigenfunctions of self-adjoint semiclassical

pseudodifferential operators is well-established and has a long history. For more information, we

refer to the works [35], [33], and the references therein.

To the best of our knowledge, the first and only work to undertake a study of Lp-bounds for

low-lying eigenfunctions of non-self-adjoint semiclassical pseudodifferential operators of the above

type has been the work [36], which showed, under the assumption that Re q is positive-definite, that

any low-lying eigenfunction u of P satisfies the bound

‖u(h)‖Lp(Rn) ≤ O(1)h
n
2p

−n
4 , h → 0+, (5.1.21)

for p in the range 2 ≤ p ≤ ∞. In particular, the bound (5.1.21) is saturated by the eigenfunctions

of the semiclassical harmonic oscillator on Rn, and thus the bounds (5.1.21) are sharp within the

class of operators considered in [36].

In the present work, we will show that the bounds (5.1.21) also hold in cases where Re q need

not be positive-definite, provided we assume in addition that p0 and p1 admit suitable holomorphic
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extensions to a tubular neighborhood of R2n in C2n. This kind of result is of interest because in

many physical applications the real quadratic form Re q does indeed fail to be positive-definite.

Such a situation arises in, for example, the study of operators Kramers-Fokker-Planck type in

kinetic theory. For more information, see e.g. [22]. Actually, our main result will be somewhat

stronger than what we have just described. Namely, we will show that the low-lying eigenfunctions

of semiclassical operators of the kind we consider satisfy (5.1.21) for p in the entire range 1 ≤ p ≤ ∞.

Thus our main result improves that of [36] in the case when Re q is positive-definite and p0 and p1

belong to a suitable holomorphic symbol class.

In the work [25], asymptotic expansions for the low-lying eigenvalues of P were established

under the assumption that the quadratic approximation q to p0 at 0 ∈ R2n is elliptic only along a

certain, distinguished, subspace of R2n, known as the singular space of q. In the present work, we

aim to establish Lp-bounds for low-lying eigenfunctions of P under this very same partial ellipticity

assumption on q. In order to state our main result, we pause to recall the notion of the singular

space of a complex-valued quadratic form q on R2n with non-negative real part Re q ≥ 0.

Let R2n be equipped with the standard symplectic form

σ((x, ξ), (y, η)) = ξ · y − x · η, (x, ξ), (y, η) ∈ R2n. (5.1.22)

Suppose q : R2n → C is a complex-valued quadratic form with non-negative real part Re q ≥ 0. Let

q(·, ·) denote the symmetric C-bilinear polarization of q. Because σ is non-degenerate, there is a

unique F ∈ Mat2n×2n(C) such that

q((x, ξ), (y, η)) = σ((x, ξ), F (y, η)), (x, ξ), (y, η) ∈ R2n.

This matrix F is called the Hamilton map or Hamilton matrix of q (see Section 21.5 of [32]). The

singular space S of q is defined as the following finite intersection of kernels:

S =

-

/
2n−1:

j=0

ker
;
(Re F )(Im F )j

<
0

2 ∩ R2n. (5.1.23)
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The singular space was first introduced by M. Hitrik and K. Pravda-Starov in [23] where it arose

naturally in the study of spectra and semi-group smoothing properties for non-self adjoint quadratic

differential operators. The concept of the singular space has since been shown to play a key role

in the understanding of hypoelliptic and spectral properties of non-elliptic quadratic differential

operators. See for instance [24], [25], [41], [42], [57], and [58]. The notion of the singular space is

also crucial for the description of the propagation of global microlocal singularities for Schrödinger

equations on Rn with quadratic Hamiltonians. The interested reader may consult [44], [59], [43],

[11], and [61], as well as [3], [4], and [62].

Next, we recall the definition of the holomorphic symbol class SHol(m). If m is an order function

on R2n and W is a bounded open neighborhood of 0 ∈ C2n, we may extend m to a function m̃ on

the tubular neighborhood R2n +W of R2n in C2n by setting

m̃(Z) = m(Re(Z)), Z ∈ R2n +W. (5.1.24)

We define SHol(m) as the set of all a : R2n × (0, 1] → C for which there is a bounded open

neighborhood W of 0 in C2n and a function ã : (R2n +W )× (0, 1] → C extending a such that

ã(·;h) ∈ Hol(R2n +W ), 0 < h ≤ 1, (5.1.25)

and

∃C > 0 : |ã(Z;h)| ≤ Cm̃(Z), Z ∈ R2n +W, 0 < h ≤ 1. (5.1.26)

Note that by Cauchy’s inequalities, the derivatives of symbols in SHol(m) are controlled by m̃ in any

strictly smaller tubular neighborhood of R2n as well: if a ∈ SHol(m), then for any open W̃ ⊂⊂ W

we have

∀α ∈ N2n, ∃C = C(α) > 0 : |∂α
Z ã(Z;h)| ≤ Cm̃(Z), Z ∈ R2n + W̃, 0 < h ≤ 1, (5.1.27)

where ã is the holomporphic extension of a and ∂Z = 1
2 (∂ReZ − i∂ImZ). For additional background
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concerning the holomorphic symbol class SHol(m), see Section 12.3 of [55].

The following theorem is the main result of this work, which establishes Lp bounds for low-lying

eigenfunctions of the operator P defined in (5.1.1) under the assumption that p0, p1 ∈ SHol(m) and

that the quadratic form q introduced in (5.1.17) is elliptic along its singular space S, i.e.

q(X) = 0, X ∈ S =⇒ X = 0. (5.1.28)

In formulating our theorem, we shall be equivalently concerned with L2-normalized solutions u =

u(h) of an equation of the form Pu = 0. In the sequel, we shall refer to a family u = u(h) ∈ L2(Rn)

satisfying

!
""#

""$

Pu = 0 on Rn,

‖u‖L2(Rn) = 1,

(5.1.29)

for all 0 < h ≤ 1, as a ground state for the operator P .

Theorem 5.1.2. Suppose that P = Opwh (p0+hp1), where p0, p1 ∈ SHol(m) for an order function m

on R2n satisfying (5.1.11). Assume that p0 is h-independent and satisfies (5.1.3), (5.1.4), (5.1.5),

and (5.1.13). Assume, in addition, that the quadratic approximation q to p0 at 0 ∈ R2n, defined in

(5.1.17), is elliptic along its singular space S in the sense (5.1.28). If u = u(h) ∈ L2(Rn) is such

that

!
""#

""$

Pu = 0 on Rn, n ≥ 1,

‖u‖L2(Rn) = 1,

(5.1.30)

for all 0 < h ≤ 1, then there exists 0 < h0 ≤ 1 such that

‖u‖Lp(Rn) ≤ O(1)h
n
2p

−n
4 , 1 ≤ p ≤ ∞, (5.1.31)

for all 0 < h ≤ h0.

Example 2. As noted in [36], the bounds (5.1.31) are saturated by the L2-normalized eigenfunctions
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of the quantum harmonic oscillator on Rn. Let

P = −h2∆+ |x|2 , x ∈ Rn, n ≥ 1. (5.1.32)

The operator P , when viewed as an unbounded operator on L2(Rn) with the domain

D(P ) =
G
u ∈ L2(Rn) : xα∂β

xu ∈ L2(Rn), |α+ β| ≤ 2
H
, (5.1.33)

is self-adjoint and has a discrete spectrum. Explicitly, the eigenvalues of P are given by

λα(h) = (2 |α|+ n)h, α ∈ Nn, (5.1.34)

and the corresponding L2-normalized eigenfunctions have the form

uα(h)(x) = h−
n
4 pα(h

− 1
2x)e−

|x|2
2h , x ∈ Rn, (5.1.35)

where pα is a Hermite polynomial of degree |α|. For more information, see Section 6.1 of [63]. An

explicit computation gives that

‖uα(h)‖Lp(Rn) = C(α, p)h
n
2p

−n
4 , 0 < h ≤ 1, (5.1.36)

where

C(α, p) := ‖pα(·)e−
|·|2
2 ‖Lp(Rn), α ∈ Nn, 1 ≤ p ≤ ∞. (5.1.37)

Since

P = Opw
h (p0), (5.1.38)
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for

p0(x, ξ) = |x|2 + |ξ|2 , (x, ξ) ∈ R2n, (5.1.39)

which is a non-negative elliptic quadratic form on R2n, we see that the bound (5.1.31) is sharp within

the class of semiclassical pseudodifferential operators on Rn satisfying the hypotheses of Theorem

5.1.2.

Example 3. A more general class of semiclassical operators to which Theorem 5.1.2 applies are

Schödinger operators on Rn with analytic complex-valued potentials. Let

P = −h2∆+ V (x) on Rn, n ≥ 1, (5.1.40)

where V ∈ C∞(Rn;C) satisfies the following assumptions:

1. ReV ≥ 0,

2. (ReV )−1(0) = {0},

3. (ImV )(0) = 0 and ∇(ImV )(0) = 0,

4. detV ′′(0) ∕= 0,

5. there exists s ≥ 0 such that

ReV (x) ≥ 1

C
|x|s , |x| ≥ C, (5.1.41)

for some C > 0, and

6. there exists ε > 0 and a holomorphic extension Ṽ ∈ Hol(Rn + i(−ε, ε)n) of V satisfying

999Ṽ (z)
999 ≤ C〈Re z〉s, z ∈ Rn + i(−ε, ε)n, (5.1.42)

for some C > 0, where s is as in (5.1.41).
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We may view the operator P as a closed, densely defined operator on L2(Rn) with the the maximal

domain

D(P ) =
5
u ∈ L2(Rn) : (−h2∆+ V (x))u ∈ L2(Rn)

6
. (5.1.43)

The spectrum of P in an open disc D(0, Ch) of radius Ch, centered at 0 ∈ C, is discrete, and the

low-lying eigenfunctions of P correspond to eigenvalues z(h) ∈ D(0, Ch).

Let

p0(x, ξ) = |ξ|2 + V (x), (x, ξ) ∈ R2n. (5.1.44)

We observe that

P = Opw
h (p0). (5.1.45)

Thanks to our assumptions on V , the symbol p0 admits the holomorphic extension

p̃0(z, ζ) = ζ2 + Ṽ (z), (z, ζ) ∈ R2n + i(−ε, ε)2n, (5.1.46)

for any ε > 0. Clearly

Re p0 ≥ 0 on R2n, (5.1.47)

with

p0(0) = 0, ∇p0(0) = 0, (5.1.48)

and we have

p̃0 ∈ SHol(m) (5.1.49)
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for the order function

m(x, ξ) = 〈ξ〉2 + 〈x〉s, (x, ξ) ∈ R2n, (5.1.50)

where s is as in (5.1.41). Also, from (5.1.41), we see that there is C > 0 such that

Re p0(x, ξ) ≥
1

C
m(x, ξ), |(x, ξ)| ≥ C. (5.1.51)

The Hessian of p0 at 0 ∈ R2n is

p′′0(0) =

-

./
V ′′(0) 0

0 2In

0

12 , (5.1.52)

where In denotes the identity matrix of size n× n. Let

q(Z) =
1

2
p′′0(0)Z · Z, Z ∈ C2n, (5.1.53)

be the quadratic approximation to p0 at 0 ∈ C2n. A straightforward computation shows that the

Hamilton matrix of q is

F =

-

./
0 I

−1
2V

′′(0) 0

0

12 . (5.1.54)

Thus

ReF =

-

./
0 I

−1
2(ReV )′′(0) 0

0

12 , ImF =

-

./
0 0

−1
2(ImV )′′(0) 0

0

12 , (5.1.55)

and hence

(ReF )(ImF ) =

-

./
−1

2(ImV )′′(0) 0

0 0

0

12 , (ReF )(ImF )j = 0 for all j ≥ 2. (5.1.56)
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It follows that

ker (ReF ) = ker
;
(ReV )′′(0)

<
× {0}, ker [(ReF )(ImF )] = ker

;
(ImV )′′(0)

<
× Cn, (5.1.57)

and

ker
;
(ReF )(ImF )j

<
= C2n for all j ≥ 2. (5.1.58)

We thus see that the singular space of q is

S =
;
ker

%
V ′′(0)

&
∩ Rn

<
× {0}. (5.1.59)

Because detV ′′(0) ∕= 0, we may deduce that the singular space of q is trivial,

S = {0}. (5.1.60)

In particular, q is elliptic along S. By Theorem 5.1.2, any low-lying eigenfunction u of P must

satisfy the bounds (5.1.31).

We point out that computation of the singular space S above is essentially a special case of

Lemma 2.2 in [5]. We refer to this work for the related topic of magnetic Schrödinger operators

with complex-valued potentials.

Remark 5.1.3. Theorem 5.1.2 improves the main result of [36] in several ways when it is assumed

in addition that the symbols p0 and p1 belong to the holomorphic symbol class SHol(m). Most sig-

nificantly, the bound (5.1.31) holds under the weaker assumption that the quadratic approximation

q to p0 at 0 ∈ R2n is elliptic only along its singular space S. It is also of note that the work [36] only

establishes the bound (5.1.31) for p in the range 2 ≤ p ≤ ∞. By contrast, the approach we give in

this work yields the bound (5.1.31) for p in the entire range 1 ≤ p ≤ ∞. That the bound (5.1.31)

should also hold for p in the range 1 ≤ p < 2 is actually a very reasonable expectation in view of

Example 2. Finally, in [36], it is assumed that the symbols p0 and p1 grow at most quadratically as

118



|X| → ∞, i.e.

‖∂αp0‖L∞(Rn), ‖∂αp1‖L∞(Rn) = O(1), h → 0+, |α| ≥ 2, (5.1.61)

and that Re p0 grows at least quadratically as |X| → ∞, i.e. there exists C, c > 0 such that

Re p0(X) ≥ c〈X〉2, |X| ≥ C. (5.1.62)

Our main result, on the other hand, applies to operators whose symbols may grow faster than 〈X〉2

at infinity. For example, Theorem 5.1.2 applies to low-lying eigenfunctions of the operator

P = −h2∆+ |x|2 + h4∆2 + |x|4 , x ∈ Rn, n ≥ 1, (5.1.63)

whose Weyl symbol

p0(x, ξ) = |x|2 + |ξ|2 + |x|4 + |ξ|4 , (x, ξ) ∈ R2n, (5.1.64)

has size comparable to 〈(x, ξ)〉4 when |(x, ξ)| → ∞.

We conclude this introduction with an informal overview of the proof of Theorem 5.1.2. Since the

symbol p0 is elliptic away from 0, the ground states u of P are well microlocalized to any small but

fixed neighborhood of 0 in the phase space R2n. This fact may be expressed conveniently in terms

of any global metaplectic Fourier-Bros-Iagolnitzer (FBI) transform of u. Let ϕ be a holomorphic

quadratic form on C2n = Cn
z × Cn

y such that

detϕ′′
zy ∕= 0, Imϕ′′

yy > 0. (5.1.65)

We refer to such a holomorphic quadratic form as an FBI phase function on C2n ([63], [27], [54]).

Let Tϕ : S ′(Rn) → Hol(Cn), given by

Tϕv(z) = cϕh
−3n/4

ˆ

Rn

eiϕ(z,y)/hv(y) dy, v ∈ S ′(Rn), (5.1.66)
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where

cϕ = 2−n/2π−3n/4(det Im ϕ′′
yy)

−1/4
99detϕ′′

zy

99 , (5.1.67)

be the corresponding metaplectic FBI transform on Rn. Let C2n = Cn
z × Cn

ζ be equipped with the

standard complex symplectic form σ = dζ ∧dz ∈ Λ(2,0)(C2n). We recall that Tϕ is a Fourier integral

operator associated to the complex linear canonical transformation κϕ : C2n → C2n given implicitly

by

κϕ : (w,−∂wϕ(z, w)) 1→ (z, ∂zϕ(z, w)), (z, w) ∈ C2n, (5.1.68)

and that Tϕ maps L2(Rn) unitarily onto the Bargmann space

HΦ0(Cn) = L2(Cn, e−2Φ0(z)/h L(dz)) ∩ Hol(Cn). (5.1.69)

Here L(dz) is the Lebesgue measure on Cn, and Φ0(z) is the strictly plurisubharmonic quadratic

form on Cn given by

Φ0(z) = maxy∈Rn (−Im ϕ(z, y)) , z ∈ Cn. (5.1.70)

We also recall that κϕ maps the real phase space R2n isomorphically onto the I-Lagrangian, R-

symplectic subspace

ΛΦ0 :=

)*
z,

2

i
∂zΦ0(z)

+
: z ∈ Cn

,
, (5.1.71)

of C2n. Let π1 : C2n → Cn be the projection onto the first factor in C2n, π1 : (z, ζ) 1→ z, and

observe that π1 restricts to an R-linear isomorphism ΛΦ → Cn. Thus the map

κ-ϕ := π1 ◦ κϕ|R2n (5.1.72)
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is an R-linear isomorphism R2n → Cn. Since u is microlocalized near 0 in R2n, it follows from

standard arguments that the L1-mass of the function Tϕu(z)e−Φ0(z)/h with respect to L(dz) is O(h∞)

in the complement of any small but fixed neighborhood of 0 in Cn (see Proposition 5.2.2 below).

By combining this observation with the identity u = T ∗
ϕ Tϕu and applying the Minkowski integral

inequality, one can show that for any N ∈ N, δ > 0, and 1 ≤ p ≤ ∞, there is C = C(δ, N, p) > 0

and 0 < h0 ≤ 1, independent of p, such that

‖u‖Lp(Rn) ≤ Ch
n
2p

− 3n
4

ˆ

|z|<δ
|Tϕu(z)| e−Φ0(z)/h L(dz) + ChN , 0 < h ≤ h0. (5.1.73)

For a proof, see Proposition 5.2.3 below.

Establishing the validity of (5.1.73) for any FBI phase function ϕ is the first main step in the

proof of Theorem 5.1.2. The next step is to show that there exists an FBI phase function ϕ on C2n

and a real analytic strictly plurisubharmonic function Φ∗ ∈ Cω(neigh(0;Cn);R) such that

Φ0(z)− Φ∗(z) ≥ c |z|2 , z ∈ neigh(0;Cn), (5.1.74)

for some c > 0, and

‖Tϕu‖2L2
Φ∗ (neigh(0;Cn)) :=

ˆ

neigh(0;Cn)
|Tϕu(z)|2 e−2Φ∗(z)/h L(dz) = O(1), h → 0+. (5.1.75)

If such a weight Φ∗ can be found, then, for δ > 0 small enough, we have

ˆ

|z|<δ
|Tϕu(z)| e−Φ0(z)/h L(dz) =

ˆ

|z|<δ
|Tϕu(z)| e−Φ∗(z)/he−c|z|2/h L(dz) ≤ O(1)h

n
2 , (5.1.76)

by the Cauchy-Schwart inequality. Combining (5.1.73) and (5.1.76) gives the desired bound (5.1.31).

The construction of the strictly plurisubharmonic weight Φ∗ defined near 0 in Cn satisfying

(5.1.74) and (5.1.75) is purely dynamical. We give a rough sketch of the procedure. Let

p0 := p0 ◦ κ−1
ϕ ∈ Hol(ΛΦ0 +W ), (5.1.77)
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where W ⊂⊂ C2n is a sufficiently small open neighborhood of 0 in C2n. Let

Hp0 = p′0,ζ · ∂z − p′0,z · ∂ζ ∈ T (1,0)(ΛΦ0 +W )

be the complex Hamilton vector field of p0. For t ∈ C with |t| sufficiently small, we may define the

complex-time Hamilton flow κt = exp (tHp0) of p0 in a neighborhood of 0 ∈ C2n as follows:

(z(t), ζ(t)) = κt(z0, ζ0), (z0, ζ0) ∈ neigh(0;C2n), t ∈ neigh(0;C), (5.1.78)

if and only if z(t) and ζ(t) satisfy the complex Hamilton’s equations

!
""""""#

""""""$

∂tz(t) = ∂ζp0(z(t), ζ(t)),

∂tζ(t) = −∂zp0(z(t), ζ(t)),

z(0) = z0, ζ(0) = ζ0,

(5.1.79)

where ∂t =
1
2(∂Re t − i∂Im t). From the work [52], it is known that there is 0 < T ≪ 1 such that

κt(ΛΦ0 ∩ neigh(0;C2n)) ∩ neigh(0;C2n) = ΛΦt , 0 ≤ |t| < T, (5.1.80)

where (Φt)|t|<T is a family of real-valued, strictly plurisubharmonic functions defined in a neighbor-

hood of 0 ∈ Cn solving the complex-time eikonal equation

!
""#

""$

2∂tΦt(z) + ip0
%
z, 2i ∂zΦt(z)

&
= 0, |t| < T, z ∈ neigh(0;Cn),

Φt|t=0 (z) = Φ0(z), z ∈ neigh(0;Cn),

(5.1.81)

and (ΛΦt)|t|<T is the family of I-Lagrangian, R-symplectic submanifolds of C2n given by

ΛΦt :=

)*
z,

2

i
∂zΦt(z)

+
: z ∈ neigh(0;Cn)

,
, |t| < T. (5.1.82)

For a proof, see the discussion in Section 3 below. In particular, since p0 vanishes to second order

122



at 0 ∈ C2n and Φ0(0) = 0, and we have that

Φ0 − Φt vanishes to 2nd order at z = 0 for all 0 ≤ |t| < T.

For |t| < T , let Ξt be the quadratic approximation to Φt at 0, i.e. Ξt is the real quadratic form on

Cn that begins the Taylor expansion of Φt at 0 ∈ Cn,

Φt(z) = Ξt(z) +O(|z|3), |z| → 0+, 0 ≤ |t| < T. (5.1.83)

Taylor expanding (5.1.81) to second order about z = 0 shows that Ξt must satisfy the quadratic

complex-time eikonal equation

!
""#

""$

2∂tΞt(z) + iq
%
z, 2i ∂zΞt(z)

&
= 0, |t| < T, z ∈ Cn,

Ξt|t=0 = Φ0 on Cn,

(5.1.84)

where q := q ◦ κ−1
ϕ is the quadratic approximation to p0 at 0, i.e.

p0(Z) = q(Z) +O(|Z|3), Z ∈ C2n, |Z| → 0+. (5.1.85)

Using the assumption that q is elliptic along S, one can show that there exists an FBI phase function

ϕ on C2n with the property that for any 0 < T0 < T there exists a non-zero complex time t0 with

|t0| < T0 such that

Φ0(z)− Ξt0(z) > 0, z ∈ Cn\{0}. (5.1.86)

A proof of this claim is given in Proposition 5.4.2 below. Taking

Φ∗ := Φt0 , (5.1.87)

we obtain a strictly plurisubharmonic weight Φ∗ defined in a neighborhood of 0 in Cn so that (5.1.74)
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holds. Now, by Egorov’s theorem, Tϕu satisfies the FBI-side pseudodifferential equation

Opw
Φ0,h(p0 + hp1)Tϕu = 0, 0 < h ≤ 1, (5.1.88)

where pj := pj ◦ κ−1
ϕ ∈ Hol(ΛΦ0 + W ), j = 0, 1, and Opw

Φ0,h
(p0 + hp1) denotes the complex Weyl

quantization of p0 + hp1 with respect to the weight Φ0 (see the discussion in Section 2 below).

From (5.1.88) and (5.1.81), one may deduce that Tϕu satisfies the following dynamical bound in a

sufficiently small neighborhood of 0 in Cn:

∃0 < T0 < T, ∃δ > 0, ∃0 < h0 ≤ 1 : sup
0≤|t|<T0

0<h≤h0

‖Tϕu‖L2
Φt

({|z|<δ}) < ∞. (5.1.89)

The proof of (5.1.89), whose main ingredient is the quantization-multiplication theorem for pseu-

dodifferential operators with holomorphic symbols ([27], [55], [53]), is given in Section 3 below. In

particular, from (5.1.89), it follows that

sup
0<h≤h0

‖Tϕu‖L2
Φt0

({|z|<δ}) < ∞, (5.1.90)

where 0 < |t0| < T0 is such that (5.1.86) holds. Thus the weight Φ∗ defined by (5.1.87) satisfies

(5.1.74) and (5.1.75).

The plan for this chapter is as follows. In Section 2, we prove that the ground states u of P are

well microlocalized to any fixed neighborhood of 0 in R2n and we establish bounds for FBI transforms

of u. In Section 3, we give a self-contained derivation of the complex-time eikonal equation (5.1.81),

and we prove the dynamical bound (5.1.89). In Section 4, we conclude the proof of Theorem 5.1.2

as outlined in this introduction by proving the existence of an FBI phase function ϕ on C2n and a

small non-zero complex time t0 such that the weight Φ∗ defined by (5.1.87) satisfies (5.1.74).

Acknowledgements. The author would like to thank Michael Hitrik for reading an early draft

of this manuscript and offering helpful feedback and suggestions.
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5.2 Microlocalization of the Ground States

In this section, we establish that any ground state u = u(h) ∈ L2(Rn) of the operator P is well-

microlocalized to any small, but fixed, neighborhood of 0 ∈ R2n. We begin with an elementary

parametrix construction, which we carry out using the calculus of semiclassical pseudodifferential

operators on Rn with C∞-symbols. For background on semiclassical pseudodifferential calculus on

Rn, including standard notation, we refer to Chapters 4 and 8 of [63].

Proposition 5.2.1. Let p0, p1 ∈ S(m), where m is an order function on R2n satisfying (5.1.11).

Assume that p0 is h-independent and that p0 satisfies (5.1.3), (5.1.4), (5.1.5), and (5.1.13). If

P = Opwh (p0 + hp1) and u = u(h) ∈ L2(Rn) is such that

!
""#

""$

Pu = 0 on Rn, n ≥ 1,

‖u‖L2(Rn) = 1,

(5.2.1)

for all 0 < h ≤ 1, then, for any δ > 0, there exists ψ ∈ C∞
0 (R2n) with suppψ ⊂

5
X ∈ R2n : |X| < δ

6

and there exists R = OS′→S(h
∞) such that

u = Opwh (ψ)u+Ru, 0 < h ≤ h0, (5.2.2)

for some 0 < h0 ≤ 1.

Proof. Let δ > 0 be arbitrary and let χ ∈ C∞(R2n; [0, 1]) be such that

χ(X) ≡ 1, |X| ≤ δ

2
, (5.2.3)

and

suppχ ⊂
5
X ∈ R2n : |X| < δ

6
. (5.2.4)
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Set

p̃ := p0 + hp1 + χ, 0 < h ≤ 1. (5.2.5)

Note that p̃ ∈ S(m). Our objective is to construct a parametrix for the operator Opw
h (p̃). The

assumption (5.1.13) that Re p0 is elliptic in the class S(m) implies that there is c > 0 such that

Re p̃(X;h) ≥ cm(X), X ∈ R2n, (5.2.6)

for all h > 0 sufficiently small, depending on δ. Thus the symbol

e0 :=
1

p̃
(5.2.7)

is well-defined and belongs to the class S( 1
m). By the semiclassical composition calculus, there is a

symbol r0 ∈ S(1) such that

Opw
h (e0)Opw

h (p̃) = I + hOpw
h (r0) , (5.2.8)

As a consequence of the semiclassical Calderon-Vaillancourt theorem (see Theorem 4.23 in [63]),

we have Opw
h (r0) = OL2→L2(1) as h → 0+. Thus there is 0 < h0 ≤ 1 such that the operator

I + hOpw
h (r0) is boundedly invertible on L2(Rn) for all 0 < h ≤ h0. It follows that

(I + hOpw
h (r0))

−1Opw
h (e0)Opw

h (p̃) = I, 0 < h ≤ h0. (5.2.9)

By Beals’ Theorem (see the discussion on page 177 of [63]), there is r̃0 ∈ S(1) such that

Opw
h (r̃0) = (I + hOpw

h (r0))
−1 (5.2.10)
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for all h > 0 sufficiently small. By the composition calculus, we have

Opw
h (r̃0)Opw

h (e0) = Opw
h (e1) , (5.2.11)

where e1 = r̃0#e0 ∈ S( 1
m) is the Moyal product of r̃0 and e0. From (5.2.9), (5.2.10), and (5.2.11),

we deduce that

Opw
h (e1)Opw

h (p̃) = I. (5.2.12)

Since

Opw
h (p̃) = P + Opw

h (χ) , (5.2.13)

we have

u = Opw
h (e1)Opw

h (p̃)u = Opw
h (e1)Opw

h (χ)u (5.2.14)

for all h > 0 sufficiently small. Let ψ ∈ C∞
0 (R2n) be such that

ψ ≡ 1 in neigh(suppχ;R2n), suppψ ⊂
5
X ∈ R2n : |X| < δ

6
. (5.2.15)

Using (5.2.14), we get

u = Opw
h (ψ)Opw

h (e1)Opw
h (χ)u+ Opw

h (1− ψ)Opw
h (e1)Opw

h (χ)u

= Opw
h (ψ)u+ Opw

h (1− ψ)Opw
h (e1)Opw

h (χ)u.

(5.2.16)

Because suppχ is compact and supp (1 − ψ) ∩ suppχ = ∅, it follows from the general theory that

there is r ∈ h∞S(Rn) such that

R := Opw
h ((1− ψ))Opw

h (e1)Opw
h (χ) = Opw

h (r) . (5.2.17)
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Hence

R = OS′→S(h
∞). (5.2.18)

From (5.2.16) and (5.2.17), we conclude that

u = Opw
h (ψ)u+Ru, 0 < h ≤ h0. (5.2.19)

The proof of Proposition 5.2.1 is complete.

We next explore the consequences of Proposition 5.2.1 for any FBI transform of a ground state

u of P . Let C2n = Cn
ζ ×Cn

z be equipped with the standard complex symplectic form σ = dζ ∧ dz ∈

Λ(2,0)(C2n). Let ϕ = ϕ(z, y) be a holomorphic quadratic form on C2n = Cn
z × Cn

y such that

detϕ′′
zy ∕= 0, Imϕ′′

yy > 0, (5.2.20)

and let Tϕ : S ′(Rn) → Hol(Cn) be its associated FBI transform introduced in (5.1.66). Let

Φ0(z) := maxy∈Rn(−Imϕ(z, y)), z ∈ Cn. (5.2.21)

As the maximum of a family of pluriharmonic quadratic forms on Cn, the function Φ0 is a plurisub-

harmonic quadratic form on Cn. In fact, the quadratic form Φ0 is strictly plurisubharmonic, i.e.

Φ′′
0,zz > 0. See [63] or [27] for a proof. In the sequel, we shall refer to the quadratic form Φ0 defined

by (5.2.21) as the strictly plurisubharmonic weight associated to the FBI phase function ϕ. Let

ΛΦ0 :=

)*
z,

2

i
∂zΦ0(z)

+
∈ C2n : z ∈ Cn

,
, (5.2.22)

and let

HΦ0(Cn) = L2(Cn, e−2Φ0(z)/h L(dz)) ∩ Hol(Cn) (5.2.23)
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be the Bargmann space of entire functions on Cn associated to the weight Φ0. Here L(dz) denotes

the Lebesgue measure on Cn. It is well known that Tϕ is unitary L2(Rn) → HΦ0(Cn). For a proof,

see Theorem 13.7 in [63], Theorem 1.3.3 in [27], or Section 12.2 of [55].

Following the discussion in Section 12.2 of [55], we recall that an order function on ΛΦ0 is a

Lebesgue measurable function m : ΛΦ0 → (0,∞) such that

∃C > 0, ∃N ∈ R : m(Z) ≤ C〈Z −W 〉Nm(W ), Z,W ∈ ΛΦ0 . (5.2.24)

Given an order function m on ΛΦ0 , we may introduce the symbol class S(ΛΦ0 ,m) consisting of all

a ∈ C∞(ΛΦ0) such that

∀α,β ∈ Nn, ∃C > 0 :

9999∂
α
z ∂

β
z

*
a

*
z,

2

i
∂zΦ0(z)

++9999 ≤ Cm

*
z,

2

i
∂zΦ0(z)

+
, z ∈ Cn. (5.2.25)

Also, if m is an order function on ΛΦ0 , then we may define the Sobolev space

HΦ0,m(Cn) = L2

7
Cn,m

*
z,

2

i
∂zΦ0(z)

+2

e−2Φ0(z)/h L(dz)

8
∩ Hol(Cn), (5.2.26)

which is a Hilbert space equipped with the norm

‖v‖2L2
Φ0,m

(Cn) =

ˆ

Cn

|v(z)|2m
*
z,

2

i
∂zΦ0(z)

+2

e−2Φ0(z)/h L(dz). (5.2.27)

Note that HΦ0,1(Cn) = HΦ0(Cn). Given a symbol a ∈ S(ΛΦ0 ,m), where m is an order function on

ΛΦ0 , we define the complex Weyl quantization of a formally by

Opw
Φ0,h(a)v(z) =

1

(2πh)n

!

ΓΦ0
(z)

e
i
h
(z−w)·ζa

*
z + w

2
, ζ

+
v(w) dw ∧ dζ, (5.2.28)

for the contour of integration

ΓΦ0(z) : Cn ∋ w 1→ ζ =
2

i
∂zΦ0

*
z + w

2

+
, z ∈ Cn. (5.2.29)
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Initially, Opw
Φ0,h

(a)v is defined for v ∈ Hol(Cn) such that

∀h ∈ (0, 1], ∀N > 0, ∃C = C(N, h) > 0 : |v(z)| ≤ C〈z〉−NeΦ0(z)/h, z ∈ Cn. (5.2.30)

One may then show that for any order function m̃ on ΛΦ0 the operator Opw
Φ0,h

(a) defined by (5.2.28)

extends by density to an operator HΦ0,m̃(Cn) → HΦ0,
m̃
m
(Cn) whose norm is uniformly bounded with

respect to h, i.e.

Opw
Φ0,h(a) = O(1) : HΦ0,m̃(C

n) → HΦ0,
m̃
m
(Cn), h → 0+. (5.2.31)

For a proof, see Proposition 12.6 in [55].

We next review the relationship between the complex Weyl quantization and the ordinary Weyl

quantization on Rn. Let ϕ be an FBI phase function on C2n and let Φ0 be the strictly plurisubhar-

monic quadratic form on Cn associated to ϕ. The FBI phase function ϕ generates a complex linear

canonical transformation κϕ : C2n → C2n implicitly by

κϕ : (y,−ϕ′
y(z, y)) 1→ (z,ϕ′

z(z, y)), (z, y) ∈ C2n. (5.2.32)

In the sequel, we refer to κϕ as the complex linear canonical transformation generated by ϕ or as

the complex linear canonical transformation associated to ϕ. From either Theorem 13.5 of [63] or

Proposition 1.3.2 of [27], we know that

κϕ(R2n) = ΛΦ0 , (5.2.33)

and we have a version of Egorov’s theorem. Namely, if m is any order function on R2n and a ∈ S(m),

then

a := a ◦ κ−1
ϕ ∈ S(ΛΦ0 ,m), (5.2.34)
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where m is the order function on ΛΦ0 given by

m = m ◦ κ−1
ϕ , (5.2.35)

and we have

Opw
h (a) = T ∗

ϕ ◦ Opw
Φ0,h(a) ◦ Tϕ, (5.2.36)

where both sides are viewed as operators on S ′(Rn). For a proof, see Section 12.2 of [55].

Let P and u be as in the statement of Proposition 5.2.1, and let ϕ be an FBI phase function on

C2n with associated FBI transform Tϕ and strictly plurisubharmonic weight Φ0. In view of Proposi-

tion 5.2.1, it is natural to expect that the mass of the entire function Tϕu will be concentrated near

0 ∈ Cn. Equivalently, we expect that the mass of Tϕu in the complement of any fixed neighborhood

of 0 in Cn will be semiclassically negligible, i.e. O(h∞). The following proposition solidifies this

intuition.

Proposition 5.2.2. Let P and u ∈ L2(Rn) be as in the statement of Proposition 5.2.1, and let

ϕ be any FBI phase function on C2n with associated FBI transform Tϕ and associated strictly

plurisubharmonic weight Φ0. For any δ > 0, there is 0 < h0 ≤ 1 such that for any 1 ≤ p ≤ ∞ we

have

‖Tϕu(z)e−Φ0(z)/h‖Lp({|z|≥δ},L(dz)) ≤ ON (1)hN , 0 < h ≤ h0, (5.2.37)

for any N ∈ N.

Proof. By Hölder’s inequality, it suffices to prove the proposition in the cases p = 1 and p = ∞.

We begin by proving (5.2.37) in the case when p = 1. Let δ > 0 be given, let 0 < ρ < δ/2,

let ΛΦ0 be as in (5.2.22), let κϕ : C2n → C2n be the complex linear canonical transformation

generated by ϕ, let π1 : C2n → Cn be projection onto the first factor π1 : (z, ζ) 1→ z, and let
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κ-ϕ := π1 ◦ κϕ|R2n : R2n → Cn. By Proposition 5.2.1, there is ψ ∈ C∞
0 (R2n) such that

supp
I
ψ ◦

'
κ-ϕ

(−1
J
⊂ {z ∈ Cn : |z| < ρ} , (5.2.38)

and R = OS′→S(h
∞) such that

u = Opw
h (ψ)u+Ru, 0 < h ≤ h0, (5.2.39)

for some 0 < h0 ≤ 1. By Egorov’s theorem and (5.2.39),

Tϕu = Opw
Φ0,h(ψ̃)Tϕu+ Tϕ(Ru), (5.2.40)

where

ψ̃ := ψ ◦ κ−1
ϕ ∈ C∞

0 (ΛΦ0). (5.2.41)

Thus

ˆ

|z|≥δ
|Tϕu(z)| e−Φ0(z)/h L(dz) ≤ I(h) + II(h), (5.2.42)

where

I(h) :=

ˆ

|z|≥δ

999Opw
Φ0,h(ψ̃)Tϕu(z)

999 e−Φ0(z)/h L(dz) (5.2.43)

and

II(h) :=

ˆ

|z|≥δ
|Tϕ(Ru)(z)| e−Φ0(z)/h L(dz). (5.2.44)
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We first consider II(h). For J ∈ N, let ‖·‖J denote the Schwartz seminorm

‖f‖J :=
3

|α+β|≤J

‖xα∂βf‖L∞(Rn), f ∈ S(Rn). (5.2.45)

From Theorem 13.4 in [63], we know that for every N > 0 there exists J ∈ N and C > 0 such that

|TϕRu(z)| ≤ C‖Ru‖Jh−n/4〈z〉−NeΦ0(z)/h, z ∈ Cn, 0 < h ≤ 1. (5.2.46)

Since R = OS′→S(h
∞) and ‖u‖L2(Rn) = 1, we conclude that for every M,N > 0, there is C =

C(M,N) > 0 such that

|TϕRu(z)| ≤ ChM 〈z〉−NeΦ0(z)/h, z ∈ Cn, 0 < h ≤ h0. (5.2.47)

In particular, for any M > 0 there is C > 0 such that

|TϕRu(z)| ≤ ChM 〈z〉−2n−1eΦ0(z)/h, z ∈ Cn, 0 < h ≤ h0. (5.2.48)

Bounding (5.2.44) using (5.2.48) gives that

II(h) = O(hM ) (5.2.49)

for any M > 0. Therefore

II(h) = O(h∞). (5.2.50)

It remains to show that I(h) = O(h∞). From the definition (5.2.28) of the complex Weyl

quantization, we have

Opw
Φ0,h(ψ̃)Tϕu(z) =

1

(2πh)n

!

ΓΦ0
(z)

e
i
h
(z−w)·ζψ̃

*
z + w

2
, ζ

+
Tϕu(w) dw ∧ dζ, (5.2.51)
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where the contour of integration ΓΦ0(z) is given by

ΓΦ0(z) : Cn ∋ w 1→ ζ =
2

i
∂zΦ0

*
z + w

2

+
, z ∈ Cn. (5.2.52)

Let

L =
1 + (∂2

zzΦ0)
−1(z − w) · ∂w

1 + |z − w|2 /h
, z, w ∈ Cn. (5.2.53)

Observe that

Le
i
h
(z−w)·ζ = e

i
h
(z−w), z, w ∈ Cn, ζ =

2

i
∂zΦ0

*
z + w

2

+
. (5.2.54)

Thus for any z ∈ Cn such that |z| ≥ δ and any N ∈ N we have

Opw
Φ0,h(ψ̃)Tϕu(z) =

1

(2πh)n

!

ΓΦ0
(z)

e
i
h
(z−w)·ζ(LT )N ψ̃

*
z + w

2
, ζ

+
Tϕu(w) dw ∧ dζ, (5.2.55)

where LT denotes the transpose of the differential operator L. Since ψ̃ ∈ C∞
0 (ΛΦ0),

(LT )N ψ̃

*
z + w

2

+
= O

'
〈h−1/2(z − w)〉−N

(
, z, w ∈ Cn, 0 < h ≤ 1, (5.2.56)

for any N ∈ N . Now, it is true that

Re [i(z − w) · ζ] = Φ0(z)− Φ0(w), z, w ∈ Cn, ζ =
2

i
∂zΦ0

*
z + w

2

+
. (5.2.57)

For a proof, see Lemma 13.1 of [63]. From (5.2.43), (5.2.55), (5.2.56), and (5.2.57), it follows that

for any N ∈ N there is C > 0 such that

I(h) ≤ Ch−n

ˆ

|z|≥δ

ˆ

| z+w
2 |≤ρ

〈h−1/2(z − w)〉−N |Tϕu(w)| e−Φ0(w)/h L(dw)L(dz). (5.2.58)
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for all 0 < h ≤ h0. For any z, w ∈ Cn with |z| ≥ δ, we have

9999
z + w

2

9999 ≤ ρ =⇒ |z|− |z − w|
2

≤ ρ =⇒ 2 |z|− δ ≤ |z − w| =⇒ |z| ≤ |z − w| . (5.2.59)

Thus, from (5.2.58) we may deduce that for any N ∈ N there is C > 0 such that

I(h) ≤ Ch−n+N/2

ˆ

|z|≥δ

ˆ

| z+w
2 |≤ρ

|z|−N |Tϕu(w)| e−Φ0(w)/h L(dw)L(dz) (5.2.60)

for all 0 < h ≤ h0. Making the change of variables

z̃ = z, w̃ =
z + w

2
(5.2.61)

in (5.2.60) and applying Fubini’s theorem and the Cauchy-Schwarz inequality yields

I(h) ≤ Ch−n+N/2

ˆ

|z̃|≥δ

ˆ

|w̃|≤ρ
|z̃|−N |Tϕu(2w̃ − z̃)| e−

Φ0(2w̃−z̃)
h L(dw̃)L(dz̃)

≤ C‖u‖HΦ0
(Cn)h

−n+N/2

ˆ

|z̃|≥δ
|z̃|−N L(dz̃)

≤ Ch−n+N/2, 0 < h ≤ h0,

(5.2.62)

for any N > 2n. Thus

I(h) = O(h∞). (5.2.63)

From (5.2.42), (5.2.63), and (5.2.50), we conclude

ˆ

|z|≥δ
|Tϕu(z)| e−Φ0(z)/h L(dz) = O(h∞). (5.2.64)

Therefore the proposition is true when p = 1.

Next, we show that (5.2.37) holds when p = ∞. We recall that the orthogonal projection
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ΠΦ0 : L2
Φ0
(Cn) → HΦ0(Cn) is given by

ΠΦ0v(z) = CΦ0h
−n

ˆ

Cn

e
2
h
Ψ0(z,w)v(w)e−

2
h
Φ0(w) L(dw), v ∈ L2

Φ0
(Cn), (5.2.65)

where

CΦ0 =

*
2

π

+n

det ∂2
zzΦ0, (5.2.66)

and Ψ0(·, ·) is the polarization of Φ0, i.e. Ψ0(·, ·) is the unique holomorphic quadratic form on C2n

such that

Ψ0(z, z) = Φ0(z), z ∈ Cn, (5.2.67)

In the literature, ΠΦ0 is known as the Bergman projector associated to the strictly plurisubharmonic

weight Φ0. For a proof that the Bergman projector associated to Φ0 has the integral representation

(5.2.65), we refer the reader to either Theorem 13.6 of [63], Proposition 1.3.4 of [27], or Section 12.2

of [55]. In particular, the real part of the polarization Ψ0(·, ·) satisfies the ‘fundamental estimate’

2ReΨ0(z, w)− Φ0(z)− Φ0(w) ≍ − |z − w|2 . (5.2.68)

From (5.2.68) and the identity Tϕu = ΠΦ0Tϕu, it follows that

999Tϕu(z)e−Φ0(z)/h
999 ≤ CΦ0h

−n

ˆ

Cn

e−c|z−w|2/h
999Tϕu(w)e−Φ0(w)/h

999 L(dw), z ∈ Cn, 0 < h ≤ 1.

(5.2.69)

Let δ > 0 be arbitary. For |z| ≥ δ, we have

999Tϕu(z)e−Φ0(z)/h
999 ≤ CΦ0h

−n

ˆ

|w|<δ/2
e−cδ2/4h

999Tϕu(w)e−Φ0(w)/h
999 L(dw)

+O(1)h−n‖Tϕu(z)e−Φ0(z)/h‖L1({|z|≥δ/2},L(dz)).

(5.2.70)
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By the Cauchy-Schwarz inequality,

CΦ0h
−n

ˆ

|w|<δ/2
e−cδ2/4h

999Tϕu(w)e−Φ0(w)/h
999 L(dw) ≤ O(1)h−ne−c/h ≤ O(1)hN , 0 < h ≤ 1,

(5.2.71)

for any N ∈ N. Also, since the proposition has already been proven in the case p = 1, we know that

there is 0 < h0 ≤ 1 such that

‖Tϕu(z)e−Φ0(z)/h‖L1({|z|≥δ/2},L(dz)) ≤ O(1)hN , 0 < h ≤ h0, (5.2.72)

for any N ∈ N. From (5.2.70), (5.2.71), and (5.2.72), we conclude that there is 0 < h0 ≤ 1 such

that

‖Tϕu(z)e−Φ0(z)/h‖L∞({|z|≥δ},L(dz)) ≤ O(1)hN , 0 < h ≤ h0, (5.2.73)

for all N ∈ N. Thus (5.2.37) holds when p = ∞.

Using Proposition 5.2.2 and the unitarity of Tϕ, we can establish a simple upper bound for

‖u‖Lp(Rn) in terms of the L1-norm of Tϕu(z)e−Φ0(z)/h with respect to the Lebesgue measure L(dz)

over any bounded neighborhood of 0 in Cn.

Proposition 5.2.3. Let u ∈ L2(Rn) be as in the statement of Proposition 5.2.1. Let ϕ be any FBI

phase function on C2n with associated FBI transform Tϕ and associated strictly plurisubharmonic

weight Φ0. For any δ > 0 and N ∈ N, there is 0 < h0 ≤ 1 such that for any 1 ≤ p ≤ ∞ we have

‖u‖Lp(Rn) ≤ Ch
n
2p

− 3n
4

ˆ

|z|<δ
|Tϕu(z)| e−Φ0(z)/h L(dz) + ChN , 0 < h ≤ h0, (5.2.74)

for some constant C = C(δ, N, p) > 0.

Proof. Let ϕ be an FBI phase function on C2n with associated FBI transform Tϕ and strictly

plurisubharmonic weight Φ0. Let HΦ0(Cn) be the Bargmann space introduced in (5.2.23). Let

0 < h0 ≤ 1 be small enough so that the conclusions of Proposition 5.2.1 and Proposition 5.2.2 hold.
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Since Tϕ : L2(Rn) → HΦ0(Cn) is unitary, we have

u(x) = T ∗
ϕ Tϕu(x) = c2ϕh

−3n/4

ˆ

Cn

e−
i
h
ϕ(z,x)Tϕu(z)e−

2
h
Φ0(z) L(dz), x ∈ Rn. (5.2.75)

Because ϕ is quadratic and Imϕ′′
yy > 0, for every z ∈ Cn there is a unique x(z) ∈ Rn such that

Φ0(z) = −Imϕ(z, x(z)). (5.2.76)

Taking the absolute value of (5.2.75) and using (5.2.20), (5.2.21) and (5.2.76), we find that there

are constants C, c > 0 and 0 < h0 ≤ 1 such that

|u(x)| ≤ Ch−3n/4

ˆ

Cn

e−
c
h
|x−x(z)|2 |Tϕu(z)| e−Φ0(z)/h L(dz), x ∈ Rn, (5.2.77)

for all 0 < h ≤ h0. Note that the righthand side of (5.2.77) is finite for every x ∈ Rn since Proposition

5.2.1 implies that u ∈ S(Rn) for every 0 < h ≤ h0 and hence Tϕu(z)e−Φ0(z)/h = O(h−n/4〈z〉−N ) for

any N > 0 by Theorem 13.4 of [63]. By direct calculation, we have

‖e−
c
h
|·|2‖Lp(Rn) = O(h

n
2p ), (5.2.78)

with the convention that h
n
2p = 1 when p = ∞. Taking the Lp-norm on both sides of (5.2.77),

applying Minkowski’s integral inequality, and using (5.2.78) gives

‖u‖Lp(Rn) ≤ Ch
n
2p

− 3n
4

ˆ

Cn

|Tϕu(z)| e−Φ0(z)/h L(dz), 0 < h ≤ h0, (5.2.79)

for some C > 0. Let δ > 0 be arbitrary. By Proposition 5.2.2, for every N > 0, there is C > 0 and

0 < h0 ≤ 1 such that

ˆ

Cn

|Tϕu(z)| e−Φ0(z)/h L(dz) =

ˆ

|z|<δ
|Tϕu(z)| e−Φ0(z)/h L(dz) + ChN , 0 < h ≤ h0. (5.2.80)
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Thus, for every N ∈ N and 1 ≤ p ≤ ∞, there is C = C(δ, N, p) > 0 such that

‖u‖Lp(Rn) ≤ Ch
n
2p

− 3n
4

ˆ

|z|<δ
|Tϕu(z)| e−Φ0(z)/h L(dz) + ChN , 0 < h ≤ h0. (5.2.81)

In the sequel, it will also be useful to have pointwise estimates available for Tϕu(z)e−Φ0(z)/h in

compact subsets of Cn that do not contain the origin 0. When we assume that p0, p1 ∈ SHol(m),

it is actually true that Tϕu(z)e−Φ0(z)/h is exponentially small in any fixed compact subset K ⊂ Cn

that does not contain 0 ∈ Cn. This follows from standard analytic ellipticity arguments, which we

review below.

We recall the notion of the semiclassical analytic wavefront set. Let ϕ be an FBI phase function

on C2n with associated FBI transform Tϕ and strictly plurisubharmonic weight Φ0. Let κϕ : C2n →

C2n be the complex linear canonical transformation generated by ϕ, let π1 : C2n → Cn be projection

onto the first factor π1 : (z, ζ) 1→ z, and let κ-ϕ := π1 ◦ κϕ|R2n . For an h-dependent family

v = v(h) ∈ L2(Rn), 0 < h ≤ 1, such that ‖v‖L2(Rn) = O(1) as h → 0+, we can define the

semiclassical analytic wavefront set WFA,h(v) ⊂ R2n of v as follows: a point (x0, ξ0) ∈ R2n does

not lie in WFA,h(v) if there exist C, c > 0 and a bounded open neighborhood U0 of κ-ϕ(x0, ξ0) in Cn

such that

|Tϕu(z)| ≤ Ce−c/h+Φ0(z)/h, z ∈ U0, 0 < h ≤ 1. (5.2.82)

It can be shown WFA,h(v) is independent of the choice of FBI phase function ϕ. For more in-

formation regarding semiclassical analytic wavefront sets, we refer the reader to [51], [27], or [38].

The following corollary characterizes the semiclassical analytic wavefront set of any L2-normalized

ground state u of P .

Corollary 5.2.4. If u ∈ L2(Rn) is as in the statement of Theorem 5.1.2, then

WFA,h(u) = {0}. (5.2.83)
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Consequently, if ϕ is any FBI phase function on C2n with associated strictly plurisubharmonic weight

Φ0 and K is any compact subset of Cn such that 0 /∈ K, then there are C, c > 0 and 0 < h0 ≤ 1

such that

|Tϕu(z)| ≤ Ce−c/h+Φ0(z)/h, z ∈ K, 0 < h ≤ h0. (5.2.84)

Proof. Let P = Opw
h (p0 + hp1) be as in the statement of Theorem 5.1.2. Since p0, p1 ∈ SHol(m)

and p−1
0 (0) = {0}, semiclassical analytic elliptic regularity (see, for example, Theorem 4.2.2 in [38])

implies that

either WFA,h(u) = ∅ or WFA,h(u) = {0}. (5.2.85)

Let ϕ be an FBI phase function on C2n with associated FBI transform Tϕ and strictly plurisubhar-

monic weight Φ0. Suppose towards contradiction that WFA,h(u) = ∅. Then there exist C, c, δ > 0

and 0 < h0 ≤ 1 such that

sup
|z|<δ

999Tϕu(z)e−Φ0(z)/h
999 ≤ Ce−c/h, 0 < h ≤ h0. (5.2.86)

Proposition 5.2.3 with p = 2 gives

ˆ

|z|≥δ
|Tϕu(z)|2 e−2Φ0(z)/h L(dz) = O(h∞). (5.2.87)

Combining (5.2.86) and (5.2.87) and using the unitarity of Tϕ gives that

‖u‖L2(Rn) = O(h∞), (5.2.88)

which is impossible since ‖u‖L2(Rn) = 1 for all 0 < h ≤ 1. Therefore, it must be the case that

WFA,h(u) = {0}. (5.2.89)
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If K ⊂ Cn is a compact subset such that 0 /∈ K, then we can find a finite collection of bounded

open subsets Uj , 1 ≤ j ≤ k, of Cn, constants Cj , cj > 0, 1 ≤ j ≤ k, and 0 < h0 ≤ 1 such that

1. 0 /∈ Uj , 1 ≤ j ≤ k,

2. K ⊂
K

1≤j≤k Uj , and

3. |Tϕu(z)| ≤ Cje
−cj/h+Φ0(z)/h, z ∈ Uj , 1 ≤ j ≤ k, 0 < h ≤ h0.

Let U =
K

1≤j≤k Uj . We have

|Tϕu(z)| ≤ Ce−c/h+Φ0(z)/h, z ∈ U, 0 < h ≤ h0, (5.2.90)

where C = max1≤j≤kCj > 0 and c = min1≤j≤kcj > 0. Therefore Tϕu satisfies (5.2.84).

5.3 Dynamical Bounds on the FBI Transform Side

We begin this section a short review of Hamiltonian dynamics in the complex domain. For a

textbook treatment of these concepts, see Chapter 11 of [51]. Here C2n = Cn
z ×Cn

ζ is equipped with

the standard holomorphic symplectic form

σ = dζ ∧ dz ∈ Λ(2,0)(C2n). (5.3.1)

Let X ⊂ C2n be open and let f ∈ Hol(X). The complex Hamilton vector field of f is defined as the

unique holomorphic vector field Hf ∈ T 1,0(X) so that

Hf┘σ = −df in X. (5.3.2)

Explicitly,

Hf = ∂ζf · ∂z − ∂zf · ∂ζ in X. (5.3.3)
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From (5.3.2), it is clear that

σ(t,Hf ) = df(t), t ∈ T 1,0(X). (5.3.4)

Since df(t) = 0 whenever t ∈ T 0,1(X), the identity (5.3.4) also holds for every t ∈ T (X) ⊗ C. In

particular, (5.3.4) holds whenever t ∈ T (X). To Hf we associate the real vector field

BHf = Hf +Hf ∈ T (X), (5.3.5)

which is the unique real vector field on X such that Hf − BHf ∈ T 0,1(X). Because σ is a holomorphic

(2, 0)-form,

σ(t, BHf −Hf ) = 0, t ∈ T (X)⊗ C, (5.3.6)

and hence

BHf┘σ = −df in X. (5.3.7)

When we separate the real and imaginary parts of (5.3.7), we obtain

BHf┘Reσ = −d(Re f), BHf┘ Imσ = −d(Im f). (5.3.8)

Letting HReσ
Re f and HImσ

Im f denote Hamilton vector fields of Re f and Im f with respect to the real

symplectic forms Reσ and Imσ on C2n, respectively, we conclude from (5.3.8) that

BHf = HReσ
Re f = HImσ

Im f . (5.3.9)

Repeating this discussion with f replaced by if gives

4Hif = HImσ
Re f = −HReσ

Im f , (5.3.10)
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where HImσ
Re f , resp. HReσ

Im f , is the Hamilton vector field of Re f , resp. Im f , with respect to Imσ,

resp. Reσ.

Following [50], [39], and [51], we define the complex-time Hamilton flow κt, t ∈ C, of f as the

complex local 1-parameter family of holomorphic diffeomorphisms of X given by

κt = exp (14Htf ), t ∈ C. (5.3.11)

Here exp (14Htf ) denotes the flow of the real vector field 4Htf in X at time 1. By abuse of notation,

we shall often write exp (tHf ) in place of exp (14Htf ) so that the complex-time Hamilton flow κt

generated by Hf may be expressed as

κt = exp (tHf ), t ∈ C. (5.3.12)

Thanks to the Cauchy-Riemann equations, we have

[BHf ,4Hif ] = 0 (5.3.13)

for any f ∈ Hol(X). Also, if f ∈ Hol(X), it is true that

4Htf = (Re t)BHf + (Im t)4Hif (5.3.14)

for any t ∈ C. This observation, in conjunction with (5.3.11) and (5.3.13), shows that the complex-

time Hamilton flow κt on X generated by Hf is given by

κt = exp
@
(Re t)BHf

A
exp

@
(Im t)4Hif

A
, t ∈ C, (5.3.15)

whenever the righthand side is defined. It follows that the flow κt is given explicitly by

Z(t) = κt(Z0), Z0 ∈ X, t ∈ neigh(0;C), (5.3.16)
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if and only if Z(t) satisfies

!
""""""#

""""""$

∂Re tZ(t) = BHf (Z(t)) = (∂ζf(Z(t)),−∂zf(Z(t))),

∂Im tZ(t) = 4Hif (Z(t)) = (i∂ζf(Z(t)),−i∂zf(Z(t))),

Z(0) = Z0.

(5.3.17)

A straightforward verification shows that this description of the flow κt is equivalent to

(z(t), ζ(t)) = κt(z0, ζ0), (z0, ζ0) ∈ X, t ∈ neigh(0;C), (5.3.18)

if and only if z(t) and ζ(t) satisfy the complex Hamilton’s equations

!
""""""#

""""""$

∂tz(t) = ∂ζf(z(t), ζ(t)),

∂tζ(t) = −∂zf(z(t), ζ(t)),

z(0) = z0, ζ(0) = ζ0,

(5.3.19)

where ∂t = 1
2(∂Re t − i∂Im t). From (5.3.19), it is easy to check that κt preserves the complex

symplectic form σ,

κ∗tσ = σ, t ∈ C, (5.3.20)

whenever the lefthand side is well-defined. For this reason, we say that κt is a complex local 1-

parameter family of complex canonical transformations of X.

Let p0 ∈ SHol(m) be as in the statement of Theorem 5.1.2, let ϕ be an FBI phase function on

C2n with associated FBI transform Tϕ, let Φ0 be the strictly plurisubharmonic weight associated to

ϕ, let κϕ : C2n → C2n be the complex linear canonical transformation generated by ϕ, and let

p0 = p0 ◦ κ−1
ϕ ∈ Hol(ΛΦ0 +W ), (5.3.21)
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where

ΛΦ0 =

)*
z,

2

i
∂zΦ0(z)

+
: z ∈ Cn

,
, (5.3.22)

and W is a small bounded open neighborhood of (0, 0) in C2n. Let

Hp0 = ∂ζp0 · ∂z − ∂zp0 · ∂ζ ∈ T 1,0(ΛΦ0 +W ) (5.3.23)

be the complex Hamilton vector field of p0, and let

κt = exp (tHp0), t ∈ C, (5.3.24)

be the complex-time Hamilton flow of p0, defined locally in ΛΦ0 +W for sufficiently small complex

times t. In this section, we shall be interested in the evolution of the subspace ΛΦ0 by the flow κt in

a small, but fixed, neighborhood of the origin 0 ∈ C2n. Using Hamilton-Jacobi theory, it is possible

to obtain a real analytic generating function for this evolution. We describe this in detail below,

following essentially the discussion in [52].

Let C2+2n = C2
t,τ × C2n

z,ζ be equipped with the standard complex symplectic form

Ω = dτ ∧ dt+ σ ∈ Λ(2,0)(C2+2n), (5.3.25)

where σ is as in (5.3.1). Let

G(t, τ ; z, ζ) = τ + p0(z, ζ), (t, τ ; z, ζ) ∈ neigh((0, 0; 0, 0);C2 × C2n), (5.3.26)

and let

HΩ
G =

∂

∂t
+Hp0 (5.3.27)

be the complex Hamilton vector field of G with respect to Ω, defined in an open neighborhood of
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(0, 0; 0, 0) in C2 × C2n. Consider the following real 2n-dimensional submanifold of C2+2n:

L0 =

)*
0,−p0

*
z,

2

i
∂zΦ0(z)

+
; z,

2

i
∂zΦ0(z)

+
: z ∈ neigh(0;Cn)

,
(5.3.28)

Observe that L0 is isotropic with respect to the real symplectic form

Im(Ω) = Im(dτ ∧ dt) + Imσ (5.3.29)

on C2 × C2n and that

L0 ⊂ G−1(0). (5.3.30)

Let

exp (tHΩ
G), t ∈ neigh(0;C), (5.3.31)

be the complex-time Hamilton flow of G with respect to the complex symplectic form Ω, defined in

a neighborhood of (0, 0; 0, 0) ∈ C2×C2n for sufficiently small complex times t. We observe that the

complex-time flow generated by HΩ
G is given explicitly by

exp
%
tHΩ

G

&
(0, τ ; z, ζ) = (t, τ ;κt(z, ζ)), (t, τ ; z, ζ) ∈ neigh((0, 0; 0, 0);C2 × C2n). (5.3.32)

Let

L :=
=

t∈neigh(0;C)

exp (tHΩ
G) (L0) (5.3.33)

be the complex time flowout of the manifold L0 by exp (tHΩ
G). In view of (5.3.32), we have

L =

)*
t,−p0

*
z,

2

i
∂zΦ0(z)

+
;κt

*
z,

2

i
∂zΦ0(z)

++
: t ∈ neigh(0;C), z ∈ neigh(0;Cn)

,
, (5.3.34)

when the flowout (5.3.33) is restricted to sufficiently small complex times. Also, from (5.3.11),
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(5.3.13), and the identities (5.3.9) and (5.3.10), we see that

L =
=

t∈neigh(0;C)

exp
;
(Re t)HImΩ

ImG

<
exp

;
(Im t)HImΩ

ReG
<
(L0), (5.3.35)

where ReG and ImG are the real and imaginary parts of G, respectively. As is easily verified, the

vector fields HImΩ
ImG and HImΩ

ReG are linearly independent and nowhere tangent to L0 in a neighborhood

(0, 0; 0, 0) ∈ C2×C2n. Since dimL0 = 2n, it follows from Hamilton-Jacobi theory that the manifold

L is Lagrangian for the real symplectic form Im(Ω) on C2 × C2n.

Let

γ = Im(τ dt) + Im(ζ dz) ∈ Λ1(C2 × C2n). (5.3.36)

We observe that

dγ = Im(Ω). (5.3.37)

Because L is Lagrangian with respect to Im(Ω), we have

dγ|L ≡ 0. (5.3.38)

Let π : L → C × Cn be the restriction of the projection (t, τ ; z, ζ) 1→ (t, z) to L. Since ΛΦ0 is

transverse to the fiber {0}× Cn in C2n, the differential of π at (0, 0; 0, 0) ∈ L,

d(0,0;0,0)π : T(0,0;0,0)L → T(0;0)(C× Cn) ∼= C× Cn, (5.3.39)

is an invertible linear transformation. Thus we may parametrize L by (t, z) ∈ C × Cn in a neigh-

borhood of (0, 0; 0, 0) in L. By (5.3.38) and Poincaré’s lemma, there exists Φ ∈ Cω(neigh(0;C) ×

neigh(0;Cn);R), unique up to an overall additive constant, such that

γ(t, z) = −dΦ(t, z), t ∈ neigh(0;C), z ∈ neigh(0;Cn). (5.3.40)
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From (5.3.36), we see that

γ =
1

2i
(τ dt− τ dt) +

1

2i

%
ζ dz − ζ dz

&
, (t, τ ; z, ζ) ∈ C2 × C2n. (5.3.41)

We also have

−dΦ(t, z) = −∂tΦ(t, z) dt− ∂tΦ(t, z) dt

− ∂zΦ(t, z) dz − ∂zΦ(t, z) dz, t ∈ neigh(0;C), z ∈ neigh(0;Cn).

(5.3.42)

From (5.3.40), (5.3.41), and (5.3.42), it follows that

(t, τ ; z, ζ) ∈ neigh((0, 0; 0, 0);L) (5.3.43)

if and only if

t ∈ neigh(0;C), z ∈ neigh(0;Cn), and

!
""#

""$

τ = 2
i ∂tΦ(t, z),

ζ = 2
i ∂zΦ(t, z).

(5.3.44)

Thus there is 0 < T ≪ 1 and U = neigh(0;Cn) such that

κt(ΛΦ0 ∩ U × U) ∩ U × U = ΛΦt , t ∈ D(0, T ), (5.3.45)

where D(0, T ) denotes the open disc in C with radius T and center 0,

Φt := Φ(t, ·) ∈ Cω(U), t ∈ D(0, T ), (5.3.46)

and

ΛΦt =

)*
z,

2

i
∂zΦt(z)

+
: z ∈ U

,
, t ∈ D(0, T ). (5.3.47)
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Adjusting Φ by a real constant if necessary, we may assume that

Φt|t=0 = Φ0 in U. (5.3.48)

Also, it is true that Φt is the solution of a natural eikonal equation in D(0, T ) × U . Indeed, since

p0 is invariant under the flow κt, we have

p0

*
z,

2

i
∂zΦ0(z)

+
= p0

*
κt

*
z,

2

i
∂zΦ0(z)

++
, t ∈ D(0, T ), z ∈ U. (5.3.49)

From (5.3.34), (5.3.43), (5.3.44), (5.3.48), and (5.3.49), we deduce that Φt solves the initial value

problem

!
""#

""$

2∂tΦt(z) + ip0
%
z, 2i ∂zΦt(z)

&
= 0, t ∈ D(0, T ), z ∈ U,

Φt|t=0 = Φ0 in U,

(5.3.50)

where ∂t =
1
2 (∂Re t − i∂Im t). In the sequel, we shall refer to (5.3.50) as the complex-time eikonal

equation.

Finally, we note that the function Φt ∈ Cω(U) is strictly plurisubharmonic in U for every

t ∈ D(0, T ), i.e.

Φ′′
t,zz(z) > 0, t ∈ D(0, T ), z ∈ U. (5.3.51)

To see why, we observe that since κt preserves the complex symplectic form σ, the manifold ΛΦt is

I-Lagrangian and R-symplectic for every t ∈ D(0, T ). Parametrizing ΛΦt by z ∈ U , we find that

σ|ΛΦt
=

n3

j=1

d

*
2

i
∂zjΦ(z)

+
∧ dzj =

2

i

n3

k,j=1

∂2Φt

∂zk∂zj
dzk ∧ dzj . (5.3.52)
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Because the two-form on the righthand side of (5.3.52) is real, we see that

Reσ|ΛΦt
=

2

i

n3

k,j=1

∂2Φt

∂zk∂zj
dzk ∧ dzj . (5.3.53)

As Reσ|ΛΦt
is non-degenerate, we have

detΦ′′
t,zz(z) ∕= 0, t ∈ D(0, T ), z ∈ U. (5.3.54)

Because also Φ0,zz > 0 and Φ′′
t,zz depends continuously on t, it must therefore be the case that

Φ′′
t,zz(z) > 0, t ∈ D(0, T ), z ∈ U. (5.3.55)

This discussion is summarized by the following proposition.

Proposition 5.3.1 ([52]). Let p0 ∈ SHol(m) be as in the statement of Theorem 5.1.2, and let ϕ

be an FBI phase function on C2n with associated strictly plurisubharmonic weight Φ0 and complex

canonical transformation κϕ : C2n → C2n. Let

ΛΦ0 =

)*
z,

2

i
∂zΦ0(z)

+
: z ∈ Cn

,
, (5.3.56)

let p0 := p0 ◦ κ−1
ϕ ∈ Hol(ΛΦ0 +W ), where W is a suitably small open neighborhood of 0 in C2n, and

let κt = exp (tHp0), t ∈ C, be the complex-time Hamilton flow of p0, defined in ΛΦ0 + W . Then

there exists 0 < T ≪ 1, U = neigh(0;Cn), and a unique Φ ∈ Cω(D(0, T )× U ;R) such that

κt(ΛΦ0 ∩ U × U) ∩ U × U = ΛΦt , t ∈ D(0, T ), (5.3.57)

and

Φt|t=0 = Φ0 in U, (5.3.58)
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where

Φt := Φ(t, ·) ∈ Cω(U ;R), t ∈ D(0, T ), (5.3.59)

and

ΛΦt :=

)*
z,

2

i
∂zΦt(z)

+
: z ∈ U

,
, t ∈ D(0, T ). (5.3.60)

The function Φt is strictly plurisubharmonic in U for each t ∈ D(0, T ), and Φ is a solution of the

complex-time eikonal equation

!
""#

""$

2∂tΦt(z) + ip0
%
z, 2i ∂zΦt(z)

&
= 0, (t, z) ∈ D(0, T )× U,

Φt|t=0 = Φ0 in U,

(5.3.61)

where ∂t =
1
2 (∂Re t − i∂Im t).

Now we return our attention to eigenfunctions. Let P = Opw
h (p0 + hp1), and u ∈ L2(Rn) be as

in the statement of Theorem 5.1.2. Let ϕ be any FBI phase function on C2n with associated FBI

transformation Tϕ and strictly plurisubharmonic weight Φ0, and let κϕ : C2n → C2n be the complex

linear canonical transformation generated by ϕ. For j = 0, 1, let pj := pj ◦ κ−1
ϕ ∈ Hol(ΛΦ0 +W ),

where W is a suitably small bounded open neighborhood of 0 in C2n. Let κt = exp (tHp0), t ∈ C

be the complex-time Hamilton flow of p0, defined in ΛΦ0 + W . Suppose that 0 < T ≪ 1, U =

neigh(0;Cn), and Φ ∈ Cω(D(0, T )× U ;R) are as in the conclusion of Proposition 5.3.1.

For each t ∈ D(0, T ) and each open subset U0 ⊂ U , let HΦt(U0) be the Hilbert space

HΦt(U0) := L2(U0, e
−2Φt(z)/h L(dz)) ∩ Hol(U0), (5.3.62)

equipped with the norm

‖v‖2L2
Φt

(U0)
:=

ˆ

U0

|v(z)|2 e−2Φt(z)/h L(dz). (5.3.63)
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Here Φt = Φ(t, ·) ∈ Cω(U), t ∈ D(0, T ). The main goal of this section is to show that there exists

δ > 0, 0 < T0 < T , 0 < C < ∞, and 0 < h0 ≤ 1, such that

sup
t∈D(0,T0)
0<h≤h0

‖Tϕu‖L2
Φt

({|z|<δ}) ≤ C. (5.3.64)

To begin the proof, let

U(t, z;h) := Tϕu(h)(z), (t, z) ∈ C× Cn, 0 < h ≤ 1. (5.3.65)

Let

P̃ = Opw
Φ0,h(p0 + hp1). (5.3.66)

By Egorov’s theorem,

P̃U(t, z;h) = 0, (t, z) ∈ C× Cn, 0 < h ≤ 1. (5.3.67)

Thus U is trivially a solution of the semiclassical Schrödinger initial value problem

!
""#

""$

'
hDt + P̃

(
U(t, z;h) = 0, (t, z) ∈ C× Cn, 0 < h ≤ 1,

U(0, z;h) = Tϕu(h)(z), z ∈ Cn, 0 < h ≤ 1,

(5.3.68)

where

Dt :=
1

i
∂t, ∂t :=

1

2
(∂Re t − i∂Im t) . (5.3.69)

Let δ > 0 be small enough so that

{|z| < 5δ} ⊂⊂ U. (5.3.70)
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Let χ ∈ C∞
0 (Cn; [0, 1]) be such that

χ(z) = 1, |z| ≤ 2δ, and χ(z) = 0, |z| ≥ 3δ, (5.3.71)

and let ?χ ∈ C∞
0 (Cn; [0, 1]) be such that

?χ(z) = 1, |z| ≤ 4δ, and ?χ(z) = 0, |z| ≥ 5δ. (5.3.72)

Let

?Φt := (1− ?χ)Φ0 + ?χΦt, t ∈ D(0, T ). (5.3.73)

By construction, ?Φt ∈ C∞(Cn;R) for each t ∈ D(0, T ), and we have

?Φt(z) = Φt(z), |z| ≤ 2δ, t ∈ D(0, T ), (5.3.74)

and

?Φt(z) = Φ0(z), |z| ≥ 5δ, t ∈ D(0, T ). (5.3.75)

To each ?Φt, we associate the Hilbert space

H!Φt
(Cn) = L2(Cn, e−2!Φt(z)/h L(dz)) ∩ Hol(Cn), (5.3.76)

which is equipped with the inner product

(v1, v2)L2
!Φt

(Cn) :=

ˆ

Cn

v1(z)v2(z)e
−2!Φt(z)/h L(dz), v1, v2 ∈ L2

!Φt
(Cn), (5.3.77)

inherited from

L2
!Φt
(Cn) := L2(Cn, e−2!Φt(z)/h L(dz)). (5.3.78)
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Let

‖v‖2L2
!Φt

(Cn) =

ˆ

Cn

|v(z)|2 e−2!Φt(z)/h L(dz), v ∈ L2
!Φt
(Cn), (5.3.79)

denote the corresponding norm.

Consider the quantity

Mt := (χU ,U)L2
!Φt

(Cn), t ∈ D(0, T ). (5.3.80)

In view of (5.3.68), we have

hDtMt = −
'
χP̃U ,U

(

L2
!Φt

(Cn)
− 2

i

'
χ∂t?ΦtU ,U

(

L2
!Φt

(Cn)
(5.3.81)

Let 0 < T0 < T be small enough so that

Λ!Φt
:=

)*
z,

2

i
∂z?Φt(z)

+
: z ∈ Cn

,
⊂ ΛΦ0 +W, t ∈ D(0, T0) (5.3.82)

and

?Φ′′
t,zz(z) > 0, z ∈ Cn, t ∈ D(0, T0). (5.3.83)

By taking T0 smaller, we may make the quantity

max
k=0,1,2

sup
t∈D(0,T0)

‖∇k?Φt −∇kΦ0‖L∞(Cn) (5.3.84)

as small as we wish. Thus, if 0 < T0 < T is sufficiently small, the Hilbert spaces L2
!Φt
(Cn) and

L2
Φ0
(Cn) agree for every t ∈ D(0, T0) and have equivalent norms. We note, however, that these

norms are not uniformly equivalent as h → 0+. From Lemma 12.7 of [55], we know that

χP̃ = O(1) : H!Φt
(Cn) → L2

!Φt
(Cn), (5.3.85)
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uniformly for t ∈ D(0, T0) and 0 < h ≪ 1. By the quantization-multiplication theorem (Proposition

12.10 in [55]), there is 0 < h0 ≤ 1 such that

'
χP̃U ,U

(

L2
!Φt

(Cn)

=

ˆ

Cn

χ(z)

I
p0

*
z,

2

i
∂z?Φt(z)

+
+ hp1

*
z,

2

i
∂z?Φt(z);h

+J
|U(t, z;h)|2 e−2!Φt(z)/h L(dz)

+O
*
h‖U‖2L2

!Φt(Cn)

+
, t ∈ D(0, T0), 0 < h ≤ h0.

(5.3.86)

Thus

hDtMt = I(t;h) + II(t;h) + III(t;h), t ∈ D(0, T0), 0 < h ≤ h0, (5.3.87)

where

I(t;h) := i

ˆ

Cn

χ(z)

I
2∂t?Φt(z) + ip0

*
z,

2

i
∂z?Φt(z)

+J
|U(t, z;h)|2 e−2!Φt(z)/h L(dz),

II(t;h) := −h

ˆ

Cn

χ(z) p1

*
z,

2

i
∂z?Φt(z);h

+
|U(t, z;h)|2 e−2!Φt(z)/h L(dz),

(5.3.88)

and III(t;h) is such that

III(t;h) = O
*
h‖U‖2L2

!Φt(Cn)

+
, t ∈ D(0, T0), 0 < h ≤ h0. (5.3.89)

As a consequence of (5.3.72) and (5.3.73), we have

?Φt(z) = Φt(z), ∂z?Φt(z) = ∂zΦt(z), |z| ≤ 3δ, t ∈ D(0, T0). (5.3.90)

From (5.3.90), (5.3.71), and (5.3.61), we deduce

I(t;h) = i

ˆ

|z|≤3δ
χ(z)

I
2∂tΦt(z) + ip0

*
z,

2

i
∂zΦt(z)

+J
|U(t, z;h)|2 e−2Φt(z)/h L(dz) = 0 (5.3.91)

for all t ∈ D(0, T0) and 0 < h ≤ h0. Since p1 ∈ SHol(m) and κϕ : C2n → C2n is linear, there exists

155



C > 0 and N ∈ R such that

9999p1
*
z,

2

i
∂z?Φt(z);h

+9999 ≤ C〈z〉N , z ∈ Cn, t ∈ D(0, T0), 0 < h ≤ h0. (5.3.92)

In particular, there is C > 0 such that

9999p1
*
z,

2

i
∂z?Φt(z);h

+9999 ≤ C, |z| ≤ 3δ, t ∈ D(0, T0), 0 < h ≤ h0. (5.3.93)

It follows that

II(t;h) = O (hMt) , t ∈ D(0, T0), 0 < h ≤ h0. (5.3.94)

Next, observe that

‖U‖2L2
!Φt

(Cn) = Mt +

ˆ

Cn

(1− χ(z)) |Tϕu(z)|2 e−2!Φt(z)/h L(dz), t ∈ D(0, T0), 0 < h ≤ h0. (5.3.95)

Since χ satisfies (5.3.71), we have

ˆ

Cn

(1− χ(z)) |Tϕu(z)|2 e−2!Φt(z)/h L(dz) ≤
ˆ

|z|≥2δ
|Tϕu(z)|2 e−2!Φt(z)/h L(dz), (5.3.96)

for all t ∈ D(0, T0) and 0 < h ≤ h0. From (5.3.72) and (5.3.73), we see that

?Φt(z) = Φ0(z), |z| ≥ 5δ, t ∈ D(0, T0). (5.3.97)

Hence

ˆ

|z|≥2δ
|Tϕu(z)|2 e−2!Φt(z)/h L(dz) = A(t;h) +B(t;h), t ∈ D(0, T0), 0 < h ≤ h0, (5.3.98)

where

A(t;h) :=

ˆ

2δ≤|z|≤5δ
|Tϕu(z)|2 e−2"Φt(z)/h L(dz), t ∈ D(0, T0), 0 < h ≤ h0, (5.3.99)
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and

B(t;h) :=

ˆ

|z|>5δ
|Tϕu(z)|2 e−2Φ0(z)/h L(dz), t ∈ D(0, T0), 0 < h ≤ h0. (5.3.100)

We note that B(t;h) is independent of t. Taking h0 smaller if necessary, we get from Corollary 5.2.4

that there are constants C, c > 0 such that

|Tϕu(z)| ≤ Ce−c/h+Φ0(z)/h, 2δ ≤ |z| ≤ 5δ, 0 < h ≤ h0. (5.3.101)

Since ?Φt depends continuously on t and ?Φ0 = Φ0, we may assume, after taking T0 smaller if

necessary, that

999Φ0(z)− ?Φt(z)
999 ≤

c

2
, |z| ≤ 5δ, t ∈ D(0, T0). (5.3.102)

It follows that

|Tϕu(z)|2 e−2!Φt(4z)/h ≤ |Tϕu(z)|2 e−2Φ0(z)/hec/h = O(e−c/h), 2δ ≤ |z| ≤ 5δ, 0 < h ≤ h0.

(5.3.103)

Thus

A(t;h) = O(e−c/h), t ∈ D(0, T0), 0 < h ≤ h0. (5.3.104)

On the other hand, Proposition 5.2.2 gives

B(t;h) = O(h∞), t ∈ D(0, T0), 0 < h ≤ h0. (5.3.105)

Putting (5.3.95), (5.3.104), and (5.3.105) together, we obtain

‖U‖2L2
!Φt

(Cn) = Mt +O(h∞), t ∈ D(0, T0), 0 < h ≤ h0. (5.3.106)
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Then, from (5.3.89) and (5.3.106), we get

III(t;h) = O(hMt) +O(h∞), t ∈ D(0, T0), 0 < h ≤ h0. (5.3.107)

Combining (5.3.87), (5.3.91), (5.3.95), and (5.3.107) therefore yields

hDtMt = O(hMt) +O(h∞), t ∈ D(0, T0), 0 < h ≤ h0. (5.3.108)

We conclude that

∂tMt = O(Mt) +O(h∞), t ∈ D(0, T0), 0 < h ≤ h0. (5.3.109)

Let α ∈ {|z| = 1} be arbitrary. The function

(−T0, T0) ∋ s 1→ Mαs (5.3.110)

is smooth and real-valued. By the chain rule,

d

ds
Mαs = ∂tMt|t=αs α+ ∂tMt|t=αs α = 2Re (∂tMt|t=αs α) , s ∈ (−T0, T0). (5.3.111)

Bounding the righthand side of (5.3.111) using (5.3.109), we find that for any N > 0, there is C > 0,

independent of α, such that

d

ds
Mαs ≤ CMαs + ChN , s ∈ (−T0, T0), 0 < h ≤ h0. (5.3.112)

By Gronwall’s inequality, for any N > 0, there is C > 0, independent of α, such that

Mαs ≤ CM0 + ChN , s ∈ [0, T0), 0 < h ≤ h0. (5.3.113)
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Since

M0 ≤ ‖Tϕu‖2L2
Φ0

(Cn) = 1, 0 < h ≤ h0, (5.3.114)

and (5.3.113) holds for any α ∈ {|z| = 1}, we conclude, after taking h0 smaller if necessary, that

Mt ≤ C, t ∈ D(0, T0), 0 < h ≤ h0, (5.3.115)

for some constant 0 < C < ∞. In view of (5.3.71), (5.3.72), and (5.3.115), we have

‖Tϕu‖L2
Φt

({|z|<δ}) ≤ M
1/2
t < C1/2, t ∈ D(0, T0), 0 < h ≤ h0. (5.3.116)

Therefore it is true that (5.3.64) holds for some δ > 0 and 0 < T0 < T . We have proved the following

proposition.

Proposition 5.3.2. Let P = Opwh (p0 + hp1) and u ∈ L2(Rn) be as in the statement of Theorem

5.1.2. Let ϕ be any FBI phase function on C2n with associated FBI transformation Tϕ and strictly

plurisubharmonic weight Φ0, and let κϕ : C2n → C2n be the complex linear canonical transformation

generated by ϕ. Let pj := pj ◦ κ−1
ϕ ∈ Hol(ΛΦ0 +W ), j = 0, 1, where W is a suitably small bounded

open neighborhood of 0 in C2n, and let κt = exp (tHp0), t ∈ C be the complex-time Hamilton flow of

p0, defined in ΛΦ0 +W . Suppose that 0 < T ≪ 1, U = neigh(0;Cn), and Φ ∈ Cω(D(0, T ) × U ;R)

are such that

κt(ΛΦ0 ∩ U × U) ∩ U × U = ΛΦt , t ∈ D(0, T ), (5.3.117)

and

Φt|t=0 = Φ0 in U, (5.3.118)
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where

Φt = Φ(t, ·) ∈ Cω(U ;R), t ∈ D(0, T ), (5.3.119)

and

ΛΦt =

)*
z,

2

i
∂zΦt(z)

+
: z ∈ U

,
, t ∈ D(0, T ). (5.3.120)

Then there are constants δ > 0, 0 < T0 < T , 0 < C < ∞, and 0 < h0 ≤ 1 such that

sup
t∈D(0,T0)
0<h≤h0

‖Tϕu‖L2
Φt

({|z|<δ}) ≤ C. (5.3.121)

5.4 The Conclusion of the Proof of Theorem 5.1.2

Let p0 be as in the statement of Theorem 5.1.2. We start this section by showing that there

exists an FBI phase function ϕ on C2n whose associated complex linear canonical transformation

κϕ : C2n → C2n is such that the quadratic approximation q to p0 := p ◦ κ−1
ϕ at the origin 0 ∈ C2n

has the convenient form

q(z, ζ) = Mz · ζ, (z, ζ) ∈ C2n. (5.4.1)

where M is a suitable complex n× n matrix.

Let q be the quadratic approximation to p0 at 0 ∈ C2n. Since q is elliptic along its singular space

S, it follows from Proposition 2.0.1 of [23] that there exists a symplectic splitting of the coordinates

of R2n,

R2n = R2n′ × R2n′′
, n = n′ + n′′, 0 ≤ n′, n′′ ≤ n, (x, ξ) = (x′, ξ′;x′′, ξ′′), (5.4.2)
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and an R-linear canonical transformation κℜ : R2n → R2n such that

(q ◦ κ−1
ℜ )(x, ξ) = q1(x

′, ξ′) + q2(x
′′, ξ′′), (x, ξ) ∈ R2n, (5.4.3)

where q1 is a complex-valued quadratic form on R2n′ having non-negative real part Re q1 ≥ 0 and

trivial singular space, S1 = {0}, and q2 is a purely imaginary quadratic form on R2n′′ of the form

q2(x
′′, ξ′′) = iε

n′′3

j=1

λj(
99x′′j

992 +
99ξ′′j

992), (x′′, ξ′′) ∈ R2n′′
, (5.4.4)

where ε ∈ {±1} and λj > 0 for all 1 ≤ j ≤ n′′. We will show that there exist FBI phase functions

ϕ1 and ϕ2 on C2n′ and C2n′′ , respectively, with associated complex linear canonical transformations

κϕ1 : C2n′ → C2n′ and κϕ2 : C2n′′ → C2n′′ such that

q1(z
′, ζ ′) :=

%
q1 ◦ κ−1

ϕ1

&
(z′, ζ ′) = M1z

′ · ζ ′, (z′, ζ ′) ∈ C2n′
, (5.4.5)

and

q2(z
′′, ζ ′′) :=

%
q2 ◦ κ−1

ϕ2

&
(z′′, ζ ′′) = M2z

′′ · ζ ′′, (z′′, ζ ′′) ∈ C2n′′
, (5.4.6)

for some M1 ∈ Matn′×n′(C) and M2 ∈ Matn′′×n′′(C).

We begin by proving the existence of an FBI phase function ϕ1 on C2n′ such that (5.4.5) holds.

For this, we will closely follow the presentation of Section 2 of [62]. The method we employ originates

from the works [28] and [58]. Let C2n′
= Cn′

z′×Cn′
ζ′ be equipped with the standard complex symplectic

form σ(1) = dζ ′ ∧ dz′ ∈ Λ(2,0)(C2n′
). Let F1 be the Hamilton matrix of q1. Since the singular space

S1 of q1 is trivial, S1 = {0}, we know from the work [23] that F1 possesses no real eigenvalues. It

follows that

# {λ ∈ Spec(F1) : Imλ > 0} = # {λ ∈ Spec(F1) : Imλ < 0} , (5.4.7)

when counting algebraic multiplicities. For λ ∈ Spec(F1), let us denote the generalized eigenspace
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of F1 corresponding to λ ∈ Spec(F1) by

Vλ = ker((F1 − λI)2n) ⊂ C2n′
. (5.4.8)

Next, let

Λ+ :=
F

λ∈Spec(F1)
Imλ>0

Vλ, Λ− :=
F

λ∈Spec(F1)
Imλ<0

Vλ, (5.4.9)

denote the stable outgoing and stable incoming manifolds for the quadratic form −iq1, respectively.

From Proposition 2.1 of the work [58], we know that Λ+ is a strictly positive C-Lagrangian subspace

of C2n′ and that Λ− is a strictly negative C-Lagrangian subspace of C2n′ . For background on positive

and negative C-Lagrangian subspaces of C2n, see [27] and [12]. From the discussion on pages 488-

489 of [27], we may thus conclude that there is an FBI phase function ϕ1 on C2n′ such that the

complex linear canonical transformation κϕ1 : C2n′ → C2n′ generated by ϕ1 satisfies

κϕ1(Λ
+) =

G
(z′, 0) : z′ ∈ Cn′

H
, κϕ1(Λ

−) =
G
(0, ζ ′) : ζ ′ ∈ Cn′

H
. (5.4.10)

Let

Φ
(1)
0 (z′) := maxy′∈Rn′

%
−Imϕ1(z

′, y′)
&
, z′ ∈ Cn′

, (5.4.11)

be the strictly plurisubharmonic weight on Cn′ associated to ϕ1, and let

Λ
Φ

(1)
0

=

)*
z,

2

i
∂z′Φ

(1)
0 (z′)

+
: z′ ∈ Cn′

,
. (5.4.12)

The subspace Λ
Φ

(1)
0

of C2n′ is I-Lagrangian and R-symplectic for the complex symplectic form σ(1),

and we have

κϕ1(R2n′
) = Λ

Φ
(1)
0

. (5.4.13)
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Since Λ+ is a strictly positive C-Lagrangian subspace of C2n′ , the base
G
(z′, 0) : z′ ∈ Cn′

H
is a C-

Lagrangian subspace of C2n′ that is strictly positive relative to Λ
Φ

(1)
0

. As explained in Chapter 11

of [51], we may therefore conclude that the strictly plurisubharmonic quadratic form Φ
(1)
0 on Cn′ is

in fact strictly convex.

Let

q1 := q ◦ κ−1
ϕ1

∈ Hol(C2n′
). (5.4.14)

Since Vλ is invariant under F1 for every λ ∈ Spec(F1), we know that Λ+ and Λ− are both invariant

under F1. Since also Λ+ and Λ− are Lagrangian with respect to σ(1), we have

q1(Z
′) = σ(1)(Z ′, FZ ′) = 0, Z ′ ∈ Λ+ ∪ Λ−. (5.4.15)

From (5.4.10), (5.4.14), and (5.4.15), we deduce that

q1(z
′, ζ ′) = M1z

′ · ζ ′, (z′, ζ ′) ∈ C2n′
, (5.4.16)

for some M1 ∈ Matn′×n′(C). Thus ϕ1 is an FBI phase function on C2n′ satisfying (5.4.5).

Now we prove that there is an FBI phase function ϕ2 on C2n′′ satisfying (5.4.6). Let C2n′′
=

Cn′
z′ × Cn′

ζ′ be equipped with the complex symplectic form σ(2) = dζ ′′ ∧ dz′′ ∈ Λ(2,0)(C2n′′
). Let

ϕ2(z
′′, y′′) =

i

2
(z′′)2 − i

√
2z′′ · y′′ + i

2
y′′ · y′′, (z′′, y′′) ∈ C2n′′

, (5.4.17)

be the ‘standard FBI phase’ on C2n′′ (see the discussion on pages 304-306 of [63]). A straightforward

computation shows that the complex linear canonical transformation κϕ2 : C2n′′ → C2n′′ generated

by ϕ1 is

κϕ2(x
′′, ξ′′) =

1√
2
(x′′ − iξ′′, ξ′′ − ix′′), (x′′, ξ′′) ∈ C2n′′

. (5.4.18)
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The inverse of κϕ2 is then easily seen to be

κ−1
ϕ2

(z′′, ζ ′′) =
1√
2
(z′′ + iζ ′′, ζ ′′ + iz′′), (z′′, ζ ′′) ∈ C2n′′

. (5.4.19)

A direct computation using (5.4.17) shows that the strictly plurisubharmonic weight associated to

ϕ2 is

Φ
(2)
0 (z′′) :=

|z′′|2

2
, z′′ ∈ Cn′′

, (5.4.20)

and we have

κϕ2(R2n′′
) = Λ

Φ
(2)
0

:=

)*
z′′,

z′′

i

+
: z′′ ∈ Cn′′

,
. (5.4.21)

Using (5.4.4) and (5.4.19), we see that

q2(z
′′, ζ ′′) := (q2 ◦ κ−1

ϕ2
)(z′′, ζ ′′) = iε

n′′3

j=1

λj

7*
z′′j + iζ ′′j√

2

+2

+

*
ζ ′′j + iz′′j√

2

+2
8

= −2ε

n′′3

j=1

λjz
′′
j ζ

′′
j , (z′′, ζ ′′) ∈ C2n′′

.

(5.4.22)

Hence

q2(z
′′, ζ ′′) = M2z

′′ · ζ ′′, (z′′, ζ ′′) ∈ C2n′′
, (5.4.23)

where M2 ∈ Matn′′×n′′(C) is the diagonal matrix

M2 = diag(−2ελ1, . . . ,−2ελn′′). (5.4.24)

Write

C2n = C2n′ × C2n′′
, (z, ζ) = (z′, ζ ′; z′′, ζ ′′). (5.4.25)
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For j = 0, 1, let

pj := pj ◦ (κCℜ)−1 ◦ (κ−1
ϕ1

× κ−1
ϕ2

) ∈ Hol
'
Λ
Φ

(1)
0

× Λ
Φ

(2)
0

+W1 ×W2

(
, (5.4.26)

where W1 and W2 are sufficiently small bounded open neighborhoods of 0 in C2n′ and C2n′′ re-

spectively, and κCℜ : C2n → C2n is the complexification of κℜ : R2n → R2n. From (5.4.3), (5.4.16),

(5.4.22), and (5.4.23), we deduce that the quadratic approximation q to p0 at 0 ∈ C2n is given by

q(z, ζ) := Mz · ζ, (z, ζ) ∈ C2n, (5.4.27)

for the matrix

M =

-

./
M1 0

0 M2

0

12 ∈ Matn×n(C). (5.4.28)

Let

κ = (κϕ1 × κϕ2) ◦ κCℜ : C2n → C2n. (5.4.29)

We would like to introduce a metaplectic FBI transform Tϕ on Rn whose underlying complex linear

canonical transformation is κ. The existence of such an FBI transform is guaranteed by the following

proposition.

Proposition 5.4.1. There exists a unique FBI phase function ϕ on C2n whose associated complex

linear canonical transformation κϕ is precisely κ,

κϕ = κ. (5.4.30)

Proof. Let

Φ0(z) := Φ
(1)
0 (z′) + Φ

(2)
0 (z′′), z = (z′, z′′) ∈ Cn = Cn′ × Cn′′

. (5.4.31)
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Since Φ
(1)
0 and Φ

(2)
0 are strictly plurisubharmonic quadratic forms on Cn′ and Cn′′ , respectively, the

function Φ0 is a strictly plurisubharmonic quadratic form on Cn. Let

ΛΦ0 :=

)*
z,

2

i
∂zΦ0(z)

+
: z ∈ Cn

,
. (5.4.32)

Thus

ΛΦ0 = Λ
Φ

(1)
0

× Λ
Φ

(2)
0

. (5.4.33)

From (5.4.13), (5.4.21), and (5.4.33), we deduce that

(κϕ1 × κϕ2)(R2n) = ΛΦ0 . (5.4.34)

Since we also have

κCℜ(R2n) = R2n, (5.4.35)

it follows that

κ(R2n) = ΛΦ0 . (5.4.36)

The existence and uniqueness of an FBI phase function ϕ on C2n such that (5.4.30) holds now follows

from well-known arguments. For the details, the reader may consult, for instance, the discussion on

pages 393-394 of [52].

Having shown that κ is generated by an FBI phase function ϕ on C2n, we may now study the

evolution of the subspace ΛΦ0 introduced in (5.4.32) by the complex-time Hamilton flow generated

by p0 := p0 ◦ κ−1.

Proposition 5.4.2. Let p0 be as in the statement of Theorem 5.1.2, let ϕ be as in the statement of

Proposition 5.4.1, let Φ0 be the strictly plurisubharmonic weight associated to ϕ, let κϕ : C2n → C2n

be the complex linear canonical transformation generated by ϕ, let p0 = p0 ◦ κ−1
ϕ ∈ Hol(ΛΦ0 +W ),
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where W is a sufficiently small open bounded neighborhood of 0 in Cn, and let κt = exp (tHp0), t ∈ C,

be the complex-time Hamilton flow of p0 in ΛΦ0 +W . Suppose that 0 < T ≪ 1, U = neigh(0;Cn),

and Φ ∈ Cω(D(0, T )× U ;R) are such that

κt(ΛΦ0 ∩ U × U) ∩ U × U = ΛΦt , t ∈ D(0, T ), (5.4.37)

and

Φt|t=0 = Φ0 in U, (5.4.38)

where

Φt = Φ(t, ·) ∈ Cω(U ;R), t ∈ D(0, T ), (5.4.39)

and

ΛΦt =

)*
z,

2

i
∂zΦt(z)

+
: z ∈ U

,
, t ∈ D(0, T ). (5.4.40)

Then, for every 0 < T0 < T , there exists t0 ∈ D(0, T0)\{0}, δ > 0, and c > 0 such that

Φ0(z)− Φt0(z) ≥ c |z|2 , |z| < δ. (5.4.41)

Proof. By Proposition 5.3.1, the function Φ satisfies the complex-time eikonal equation

!
""#

""$

2∂tΦt(z) + ip0
%
z, 2i ∂zΦt(z)

&
= 0, (t, z) ∈ D(0, T )× U,

Φt|t=0 = Φ0 in U,

(5.4.42)

where ∂t = 1
2 (∂Re t − i∂Im t). Since p0 vanishes to second order at 0 ∈ C2n and κϕ(0) = 0, the

symbol p0 must also vanish to second order at 0 ∈ C2n. Thus the complex Hamilton vector field of
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Hp0 of p0 vanishes at 0 ∈ C2n,

Hp0 |0 = 0. (5.4.43)

Therefore

κt(0) = 0, t ∈ D(0, T ). (5.4.44)

This observation, in conjunction with (5.4.37), implies that

∂zΦt(0) = 0, t ∈ D(0, T ). (5.4.45)

Hence, when we take z = 0 in (5.4.42), we obtain that

∂tΦt(0) = 0, t ∈ D(0, T ). (5.4.46)

Because Φ0 is quadratic, we have Φ0(0) = 0, and so

Φt(0) = 0, t ∈ D(0, T ). (5.4.47)

We conclude that

Φt vanishes to 2nd order at z = 0 for all t ∈ D(0, T ). (5.4.48)

Let Ξ ∈ Cω(D(0, T )× Cn;R) be the unique analytic function on D(0, T )× Cn such that Ξt :=

Ξ(t, ·) is the quadratic approximation to Φt at z = 0 in Cn for each t ∈ D(0, T ), i.e. Ξt is the unique

real quadratic form on Cn such that

Φt(z) = Ξt(z) +O(|z|3), |z| → 0+, (5.4.49)

for each fixed t ∈ D(0, T ). Note that, by Proposition 5.3.1, Φt is strictly plurisubharmonic in U
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for each t ∈ D(0, T ), and hence Ξt is a strictly plurisubharmonic quadratic form on Cn for each

t ∈ D(0, T ), i.e.

Ξ′′
t,zz > 0, t ∈ D(0, T ). (5.4.50)

Taylor expanding (5.4.42) to second order about the origin z = 0 shows that Ξ is the unique solution

of the quadratic complex-time eikonal equation

!
""#

""$

2∂tΞt(z) + iq
%
z, 2i ∂zΞt(z)

&
= 0, (t, z) ∈ D(0, T )× Cn,

Ξt|t=0 = Φ0 on Cn,

(5.4.51)

where q is the quadratic approximation to p0 at 0 ∈ C2n. Let us make the following splitting of

coordinates in Cn:

Cn = Cn′ × Cn′′
, z = (z′, z′′), (5.4.52)

where 0 ≤ n′, n′′ ≤ n are as in (5.4.2). We search for a solution to (5.4.51) of the form

Ξ(t, z) = Ξ(1)(t, z′) + Ξ(2)(t, z′′), (t, z) ∈ D(0, T )× Cn, (5.4.53)

where Ξ(1) ∈ Cω(D(0, T ) × Cn′
;R), Ξ(2) ∈ Cω(D(0, T ) × Cn′′

;R), and Ξ
(1)
t := Ξ(1)(t, ·) and

Ξ
(2)
t := Ξ(2)(t, ·) are strictly plurisubharmonic quadratic forms on Cn′ and Cn′′ for each t ∈ D(0, T ),

respectively. Since q is of the form (5.4.1), where the matrix M is given by (5.4.28), and since the

strictly plurisubharmonic weight Φ0 has the form (5.4.31), we see that (5.4.53) will be a solution of

the problem (5.4.51) provided Ξ
(1)
t and Ξ

(2)
t solve the eikonal equations

!
""#

""$

∂tΞ
(1)
t (z′) +M1z

′ · ∂z′Ξ
(1)
t (z′) = 0, (t, z′) ∈ D(0, T )× Cn′

,

Ξ
(1)
0 = Φ

(1)
0 in Cn′

,

(5.4.54)
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and

!
""#

""$

∂tΞ
(2)
t (z′′) +M2z

′′ · ∂z′′Ξ
(2)
t (z′′) = 0, (t, z′′) ∈ D(0, T )× Cn′′

,

Ξ
(2)
0 = Φ

(2)
0 in Cn′′

,

(5.4.55)

respectively. The problems (5.4.54) and (5.4.55) are globally well-posed in time t ∈ C, and by

inspection we see that their solutions are

Ξ
(1)
t (z′) = Φ

(1)
0

%
e−tM1z′

&
, (t, z′) ∈ C× Cn′

(5.4.56)

and

Ξ
(2)
t (z′′) = Φ

(2)
0 (e−tM2z′′), (t, z′′) ∈ C× Cn′′

, (5.4.57)

respectively. Thus the unique solution to (5.4.51) is

Ξt(z) = Φ
(1)
0

%
e−tM1z′

&
+ Φ

(2)
0 (e−tM2z′′), (t, z) ∈ D(0, T )× Cn. (5.4.58)

In view of (5.4.20) and (5.4.24), we have

Ξt(z) = Φ
(1)
0

%
e−tM1z′

&
+

1

2

n′′3

j=1

e4Re(t)ελj
99z′′j

992 , (t, z) ∈ D(0, T )× Cn. (5.4.59)

Let 0 < T0 < T be arbitary. We claim that there exists t0 ∈ D(0, T0)\{0} such that

Φ0(z)− Ξt0(z) ≥ c |z|2 , z ∈ Cn, (5.4.60)

for some c > 0. Indeed, let us search for such a complex-time t0 of the form

t0 = −ερ− is (5.4.61)
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where 0 < s, ρ ≪ 1. Taking t = t0 in (5.4.59) gives

Ξt0(z) = Φ
(1)
0

%
eisM1+ερM1z′

&
+

1

2

n′′3

j=1

e−4ρλj
99z′′j

992 , z ∈ Cn. (5.4.62)

By Taylor expansion, we have

Φ
(1)
0

%
eisM1−ερM1z′

&
= Ξ

(1)
−is

%
e−ερM1z′

&
= Ξ

(1)
−is(z

′) +O(ρ
99z′

992), z′ ∈ Cn′
, 0 < s, ρ ≪ 1. (5.4.63)

From (5.4.54) and (5.4.16), we see that the s-dependent quadratic form Ξ−is is the unique solution

of the eikonal equation

!
""#

""$

∂sΞ
(1)
−is(z

′) + Re q1
%
z′, 2i ∂z′Ξ−is(z

′)
&
= 0, (s, z′) ∈ [0,∞)× Cn′

,

Ξ
(1)
−is

999
s=0

= Φ
(1)
0 on Cn′

.

(5.4.64)

Since the quadratic form q1 has trivial singular space, S1 = {0}, we know from the results of Section

2 of [26] that there is c > 0 such that

Φ
(1)
0 (z′)− Ξ

(1)
−is(z

′) ≥ cs2k
(1)
0 +1

99z′
992 , z′ ∈ Cn′

, 0 ≤ s ≪ 1, (5.4.65)

where k
(1)
0 is the smallest non-negative integer such that

k
(1)
0:

j=0

ker
;
(ReF1)(ImF1)

j
<
∩ R2n′

= {0}. (5.4.66)

From (5.4.31), (5.4.20), (5.4.59), (5.4.62), (5.4.63), and (5.4.65), we deduce that there is c > 0 such

that

Φ0(z)− Ξt0(z) ≥ cs2k
(1)
0 +1

99z′
992 +O(ρ

99z′
992) + 1

2

n′′3

j=1

'
1− e−4ρλj

( 99z′′j
992 , z ∈ Cn, (5.4.67)

whenever 0 < s, ρ ≪ 1 are sufficiently small. Since λj > 0 for all 1 ≤ j ≤ n′′, for any 0 < s ≪ 1

sufficiently small, we can choose 0 < ρ ≪ 1 small enough so that the righthand side of (5.4.67) is
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bounded below by c |z|2 for some c > 0. Thus, for any 0 < s ≪ 1, there is 0 < ρ ≪ 1 and c > 0

such that

Φ0(z)− Ξt0(z) ≥ c |z|2 , z ∈ Cn, (5.4.68)

for the non-zero complex time t0 given in (5.4.61). Taking s and ρ smaller if necessary, we may

ensure that |t0| < T0. From (5.4.49) and (5.4.68), we conclude that there is c > 0 and δ > 0 such

that

Φ0(z)− Φt0(z) ≥ c |z|2 , |z| < δ. (5.4.69)

Remark 5.4.3. An alternative derivation of the quadratic complex-time eikonal equation (5.4.51)

satisfied by Ξt may be obtained by considering the tangent spaces T0ΛΦt for t ∈ D(0, T ). Since

κt(0) = 0 for all t ∈ D(0, T ), we have

T0ΛΦt = d0κt (T0ΛΦ0) , t ∈ D(0, T ), (5.4.70)

where d0κt denotes the differential of κt at 0 ∈ C2n. Because Φt vanishes to second order at 0 ∈ Cn

for every t ∈ D(0, T ), we have a canonical identification

T0ΛΦt
∼= ΛΞt , t ∈ D(0, T ), (5.4.71)

where ΛΞt is the I-Lagrangian, R-symplectic, subspace of C2n given by

ΛΞt =

)*
z,

2

i
∂zΞt(z)

+
: z ∈ Cn

,
, t ∈ D(0, T ). (5.4.72)

Moreover, since p0 vanishes to second order at 0 ∈ C2n, we have

d0κt = exp (tHq), t ∈ D(0, T ), (5.4.73)
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when we view d0κt as a C-linear transformation C2n → C2n. From (5.4.70), (5.4.71), and (5.4.73),

it follows that the family of real quadratic forms (Ξt)t∈D(0,T ) satisfies

!
""#

""$

ΛΞt = exp (tHq)(ΛΦ0), t ∈ D(0, T ),

Ξt|t=0 = Φ0.

(5.4.74)

Reasoning similarly to the proof of Proposition 5.3.1, we find that Ξt solves the quadratic complex-

time eikonal equation (5.4.51).

We now conclude the proof of Theorem 5.1.2 following the argument sketched in the introduction

to this chapter. Let P = Opw
h (p0 + hp1) and u = u(h) ∈ L2(Rn) be as in the statement of Theorem

5.1.2, and let ϕ, Φ0, U , 0 < T ≪ 1, and Φ be as in the statement of Proposition 5.4.2. Let Tϕ be

the FBI transform on Rn associated to the FBI phase function ϕ. By Proposition 5.3.2, there are

constants δ > 0, 0 < T0 < T , 0 < C < ∞, and 0 < h0 ≤ 1 such that

sup
t∈D(0,T0)
0<h≤h0

‖Tϕu‖L2
Φt

({|z|<δ}) ≤ C, (5.4.75)

where ‖·‖L2
Φt

({|z|<δ}) is the norm

‖v‖2L2
Φt

({|z|<δ}) =

ˆ

|z|<δ
|v(z)|2 e−2Φt(z)/h L(dz). (5.4.76)

After taking δ > 0 smaller if necessary, we get from Proposition 5.4.2 that there is t0 ∈ D(0, T0)\{0}

and c > 0 such that

Φ0(z)− Φ∗(z) ≥ c |z|2 , |z| < δ, (5.4.77)

where

Φ∗ := Φt0 . (5.4.78)
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Let N be a positive integer that is strictly larger than n/4. After taking 0 < h0 ≤ 1 smaller if

necessary, we obtain from Proposition 5.2.3 that for any 1 ≤ p ≤ ∞ there is C > 0 such that

‖u‖Lp(Rn) ≤ Ch
n
2p

− 3n
4

ˆ

|z|<δ
|Tϕu(z)| e−Φ0(z)/h L(dz) + ChN , 0 < h ≤ h0. (5.4.79)

Thanks to (5.4.75), we have

sup
0<h≤h0

‖Tϕu‖L2
Φt0

({|z|<δ}) < C (5.4.80)

for some 0 < C < ∞. From (5.4.77) and (5.4.80), we may conclude that there is C > 0 such that

ˆ

|z|<δ
|Tϕu(z)| e−Φ0(z)/h L(dz) ≤

ˆ

|z|<δ
|Tϕu(z)| e−Φ∗(z)/he−c|z|2/h L(dz) ≤ Ch

n
2 , (5.4.81)

where the second inequality follows from an application of Cauchy-Schwarz and the fact that

7
ˆ

|z|<δ
e−c|z|2/h L(dz)

81/2

= O(h
n
2 ), (5.4.82)

which may be deduced from a direct calculation. Putting (5.4.79) and (5.4.81) together, we find

that there is 0 < h0 ≤ 1 such that for any 1 ≤ p ≤ ∞ we have

‖u‖Lp(Rn) ≤ O(1)h
n
2p

−n
4 +O(1)hN = O(1)h

n
2p

−n
4 , 0 < h ≤ h0. (5.4.83)

The proof of Theorem 5.1.2 is complete.
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