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ABSTRACT: Here, we present the synthesis and characterization
of statistical and block copolymers containing α-lipoic acid (LA)
using reversible addition−fragmentation chain-transfer (RAFT)
polymerization. LA, a readily available nutritional supplement,
undergoes efficient radical ring-opening copolymerization with
vinyl monomers in a controlled manner with predictable molecular
weights and low molar-mass dispersities. Because lipoic acid diads
present in the resulting copolymers include disulfide bonds, these
materials efficiently and rapidly degrade when exposed to mild
reducing agents such as tris(2-carboxyethyl)phosphine (Mn =
56→ 3.6 kg mol−1). This scalable and versatile polymerization
method affords a facile way to synthesize degradable polymers with
controlled architectures, molecular weights, and molar-mass
dispersities from α-lipoic acid, a commercially available and renewable monomer.

■ INTRODUCTION
The concept of controlled-radical polymerization has trans-
formed polymer science, allowing for the synthesis of polymers
with well-defined architectures, functional chain ends,
predictable molecular weights, and narrow dispersities.1−4

The ability to control these parameters is crucial when
designing polymers for a host of applications ranging from
biomedicine to lithography and functional nanomaterials.5−7

Although the development of controlled-radical (co)-
polymerization has transformed polymer science and beyond,
a major limitation of this technique relates to the use of
traditional vinyl monomers that form backbones composed
entirely of carbon−carbon bonds. As a result, vinyl polymers
are difficult to degrade and create issues associated with long-
lived plastic and rubber waste in the environment.
One solution to improve the sustainability of soft materials

involves synthesizing degradable polymers containing cleavable
functional groups along the polymer backbone, with
polyesters8,9 and associated derivatives being prime exam-
ples.10,11 For common vinyl monomers such as acrylates that
are broadly available and applicable, the lack of intrinsic
degradability has necessitated the development of novel
comonomers that undergo radical ring-opening polymerization
(rROP) to impart degradability. Since the 1980s, this concept
has gained significant attention as a method to incorporate
degradable building blocks into the backbone of otherwise
intractable vinyl-based polymers.12,13 A variety of cyclic
compounds such as macrocyclic allyl sulfides (MAS)14−18

have emerged as candidates to impart degradability into
various polymers. Another classic example is the copolymeriza-
tion of acrylates with cyclic ketene acetals (CKA) as a method
of introducing cleavable ester bonds.19−25 Despite their utility,
CKAs have modest copolymerization reactivity leading to low
yields and nonrandom incorporation. Recently, Gutekunst26

and Roth27,28 pioneered a thionolactone monomer, dibenzo-
[c,e]-oxepane-5-thione (DOT), that efficiently copolymerizes
with acrylate derivatives and inserts degradable thioesters into
the polymer backbone. Following these studies, the Guilla-
neuf29 and Johnson30 groups further extended the applicability
of DOT by copolymerization with other monomer families
such as styrenics. While pioneering, a challenge with all the
systems described above is the necessity for multistep synthesis
to prepare the cyclic comonomers (Figure 1).
Inspired by the aforementioned literature and a desire to

simplify the synthesis of degradable comonomers for
controlled rROP, we were drawn to α-lipoic acid (LA) − a
commercially available and naturally occurring small molecule
building block that is available on a multikilogram scale due to
its wide use as a dietary supplement.31−40 LA features a 1,2-
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dithiolane ring that undergoes ring-opening polymerization in
the presence of acid, base, or radicals, resulting in dynamic and
degradable disulfide bonds.41 Tsarevsky36,37 and Endo42,43

previously demonstrated the rROP of LA derivatives with
acrylates via a conventional free-radical process. Qu,44

Matile,45,46 Moore,40 and Waymouth39 extended the utility
of LA through anionic and cationic ring-opening polymer-
ization techniques.47,48

To demonstrate the utility of LA in designing functional,
degradable materials, we present the controlled copolymeriza-
tion of LA with a range of acrylate comonomers via reversible
addition−fragmentation chain-transfer polymerization
(RAFT). The resulting materials exhibit low molar-mass

dispersities as well as excellent chain-end fidelity that enables
reinitiation and block copolymer formation. Copolymerization
kinetics were investigated to maximize the formation of
degradable disulfide bonds along the polymer backbone.
Upon exposure to mild reducing agents, these disulfide
bonds are readily degraded, leading to oligomers with
significantly reduced molar mass (e.g., Mn = 56 → 3.6 kg
mol−1). In summary, the controlled-radical polymerization of
α-lipoic acid creates opportunities to design and synthesize
degradable polymers with a high degree of control over the
architecture, molecular weight, and molar-mass dispersity using
commercially available starting materials.

■ RESULTS AND DISCUSSION
We hypothesized that the controlled-radical polymerization of
DL-α-lipoic acid (LA) would proceed most readily using RAFT
in contrast to techniques involving metal catalysts such as
atom-transfer radical polymerization (ATRP) that may suffer
from sulfur chelation leading to uncontrolled or no polymer-
ization.49 Initially, butyl acrylate (nBA) was selected as a model
comonomer because of its ability to undergo copolymerization
with LA via conventional (uncontrolled) conditions.36,37,42 2-
(Dodecylthiocarbonothioylthio)-2-methylpropionic acid
(DTT), a trithiocarbonate chain transfer agent (CTA), was
chosen for these copolymerizations of LA and nBA (Figures S1
and S2)50 as examined at 70 °C in the presence of
azobis(isobutyronitrile) (AIBN, Figure 2a). To aid character-
ization, lipoic acid repeat units were quantitatively methylated
by treatment with trimethylsilyldiazomethane to give the
corresponding methyl esters. Following purification, the lipoic
acid copolymer was analyzed via 1H NMR spectroscopy.
Distinct resonances for both the lipoate (3.6 ppm) and butyl
acrylate repeat units allowed for the LA content in these
poly(butyl acrylate)-co-(α-lipoic acid) copolymers to be
quantified (Figure 2b). In addition, 1H NMR spectroscopy

Figure 1. (a) Schematic of controlled copolymerization via rROP. (b)
Building blocks previously used in controlled copolymerization impart
degradable functionality. (c) This work uses α-lipoic acid as a
commercially available, degradable building block in the controlled
copolymerization of acrylate derivatives.

Figure 2. (a) Synthesis of nBA-co-LA. (b) Methylation of the nBA-co-LA copolymer for quantitative characterization of LA content. (c) 1H NMR
(600 MHz) with unique resonances highlighted. Note that the rROP of LA is not regioregular.
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indicates that the trithiocarbonate chain end remains intact
(0.86 ppm, Figure 2c) with a broadening of the thioether
resonances around 2.75 ppm resulting from ring-opening of
the LA dithiolane ring. Size-exclusion chromatography (SEC)
of the lipoate copolymers all show a monomodal distribution
with low molar-mass dispersity (Đ = 1.08, Figure S2), further
supporting a controlled polymerization. Notably, dithioben-
zoate CTAs also lead to well-controlled copolymers (Mn = 8 kg
mol−1, Đ = 1.11, Figure S3), whereas the use of
dithiocarbamate and xanthate RAFT agents results in
uncontrolled polymerization with high dispersities (Figures
S4 and S5). Because RAFT is a controlled polymerization
process, a range of molar masses (Mn = 12−56 kg mol−1)
could be accurately targeted by varying the monomer-to-chain
transfer agent, yielding well-defined copolymers with up to
30% LA in the feed (Figures S6 and S7 and Table S1). Further
increasing the feed ratio of LA to 40 mol % was also successful,
although lower monomer conversions were observed (Figure
S8).
Livingness was further probed by using nBA (90%) and LA

(10%) as a model system. A linear relationship was observed
between the molar mass of the copolymer and conversion,
resulting in first-order kinetics that are typical of controlled
polymerizations (Figure 3a). A semilogarithmic plot derived
from these kinetic experiments was used to monitor the
incorporation of nBA and LA as the reaction proceeds (Figure
3b). The results indicate faster incorporation of lipoic acid
compared to nBA with values similar to uncontrolled free-
radical copolymerization of nBA and LA (Figure S9).51 This
kinetic behavior not only favors LA incorporation but also is
necessary for efficiently forming disulfides within diads along
the polymer backbone that enable reductive degradation.
To verify the presence of disulfide bonds along the

backbone, poly(butyl acrylate-co-α-lipoic acid) copolymers
were degraded with tris(2-carboxyethyl)phosphine (TCEP, 1
equiv relative to disulfide content), a mild reducing agent
commonly used in biochemical applications.52,53 In a solution
of THF/water (4:1) at 60 °C, the copolymer readily degrades
into oligomers as evidenced by SEC (Figure 4 and Table 1).
Alternative reagents are also capable of degrading disulfide
bonds (e.g., NaBH4, Figure S14) and even the thioether bonds
along the backbone are susceptible to degradation using
AgNO3 (Figure S15).

54

Similar to previously reported studies, the degraded species
can be repolymerized through oxidation of the reactive thiol
chain ends.30,51 First, a discrete poly(butyl acrylate-co-methyl
lipoate) (nBA-co-MLp) copolymer (Mn = 55 kg mol−1, Đ =
1.46) (see Supporting Information for further discussion,
Figures S12 and S13) was synthesized via RAFT that on
degradation with TCEP results in oligomers with decreasing
molar mass (Mn = 11 kg mol−1, Đ = 1.70). After purification,

Figure 3. (a) Linear increase in overall molar mass as a function of conversion for the copolymerization of butyl acrylate and α-lipoic acid is
consistent with a controlled polymerization. (b) First-order kinetics of nBA-LA copolymerization demonstrate LA incorporates faster than nBA,
which favors the formation of disulfides along the backbone.

Figure 4. Degradability of LA-containing copolymers increases with
the LA content in the feed.

Table 1. Molecular Characterization of nBA-co-LAa

LA feed (%) Mn,total
b mol %nBa

c mol %LA
c Đb Mn,deg

b

5 47 91 9 1.27 23
10 45 87 13 1.35 15
20 55 78 22 1.56 9.1
30 56 64 36 1.35 3.6

aCompositions are based on reactions stopped at 70% conversion.
bTHF SEC analysis with PS standards and reported in kg mol−1.
cDetermined using end-group analysis via 1H NMR and reported in
kg mol−1.
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the oligomers were oxidatively repolymerized using I2 and
pyridine to reform disulfide bonds in a step-growth fashion to
recover a high molar mass polymer (Mn = 66 kg mol−1, Đ =
1.78).
To further demonstrate the tunability of this system, nBA-co-

LA with different feed ratios of LA was synthesized and
degraded for analysis. As shown in Figure 4, increasing LA in
the feed to 30 mol % proportionally increases the number of
disulfides along the backbone (36 mol %) and yields even
lower-molar-mass oligomers by SEC (Mn = 56 → 3.6 kg
mol−1). This tunability provides control over the incorporation
level of lipoic acid repeat units for targeted applications.
LA also smoothly and controllably copolymerizes with a

variety of functional acrylate and acrylamide derivatives
(Figure S17) to yield materials with a range of physical and
chemical properties (Figure S18). For example, using a feed
ratio of 30% LA, copolymers were prepared exhibiting low
dispersity (Đ = 1.12−1.25) and efficient incorporation of LA
(Figure 5 and Table 2). However, the radical reactivity of
lipoic acid was not compatible with styrene and methyl
methacrylate and resulted in homopolymerization of the
respective vinyl monomers (Figures S20−S23).

To further accentuate the utility of using controlled
polymerizations to create LA-based materials, we synthesized
a variety of degradable block copolymers that would otherwise
be inaccessible using conventional free-radical polymerization.
First, chain extension of a poly(trifluoroethyl acrylate−co−α-
lipoic acid) macroinitiator (TFA-co-LA, 6 kg mol−1, Đ = 1.12)
with dodecyl acrylate (DA) yielded the corresponding diblock
copolymer, poly[(trifluoroethyl acrylate−co−α-lipoic acid)−
block−dodecyl acrylate] (Figure S24). As depicted in Figure 6,
SEC analysis showed a clear shift to lower retention times and
higher molar mass (Mn = 15 kg mol−1) upon chain extension
when compared to the starting lipoic acid copolymer with little
or no residual macroinitiator. This result indicates excellent
end-group fidelity of the starting macroinitiator. Furthermore,
when the diblock copolymer was treated with TCEP and
analyzed by SEC, a bimodal distribution was observed. At
higher retention times, a broad peak corresponding to the
degraded lipoic acid copolymer was observed (Mn = 2.2 kg
mol−1, Đ = 1.7) with the remaining dodecyl acrylate block
appearing as a well-defined, low dispersity peak (Mn = 10 kg
mol−1, Đ = 1.10). This behavior is expected, given the presence
of only vinyl (C−C) repeat units in the dodecyl acrylate block.

Figure 5. Efficient copolymerization of LA with a variety of acrylate comonomers. The acrylic acid copolymer was methylated prior to SEC
analysis.

Table 2. Molecular Characterization of the α-Lipoic Acid-co-Acrylate Copolymersa

acrylate LA feed (%) Mn,total
b mol %acrylate

c mol %LA
c Đb Mn,deg

b

trifluoroethyl acrylate 30 10 66 34 1.24 2.1
butyl acrylate 30 6.2 65 35 1.12 1.8
isobornyl acrylate 30 11 69 31 1.20 5.0
acrylic acid 30 7.0 d d 1.25 3.2
dodecyl acrylate 30 16 73 27 1.20 6.2
PEG-acrylate 30 8.2 58 42 1.23 7.0
benzyl acrylate 30 10 73 27 1.20 5.6
methyl acrylate 30 9 78 22 1.19 4.6

aCompositions are based on reactions stopped at 70% conversion. bTHF SEC analysis with PS standards in kg mol−1. cDetermined using end-
group analysis via 1H NMR and reported in kg mol−1. dNo unique resonance in the 1H NMR spectrum.
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Significantly, after fractional precipitation in methanol, the
resulting dodecyl acrylate block (Mn = 10 kg mol−1, Đ = 1.10)
appears almost indistinguishable from its distribution in the
crude reaction mixture (after degradation, Figure 6). The
observation of characteristic resonances for dodecyl acrylate
(4.0 ppm) and the absence of a unique resonance at 4.5 ppm
for TFA repeat units via 1H NMR further supports the
controlled incorporation of LA units in only one block during
the RAFT block copolymerization process (Figure S25).
To further illustrate the ability to prepare degradable

systems, amphiphilic block copolymers were designed based
on poly(ethylene glycol) (PEG). Upon self-assembly in
aqueous solutions, micelles form with a PEG corona and a
degradable, hydrophobic core that can encapsulate and then

release a hydrophobic dye, Nile red. In a stepwise fashion, the
RAFT chain-transfer agent DTT was coupled to mono-
methoxy PEG (Mn = 1.8 kg mol−1, Đ = 1.04) followed by chain
extension with a mixture of nBA (80%) and LA (20%) to yield
PEG-b-(nBA-co-LA) diblock copolymers (Mn = 8.4 kg mol−1,
Đ = 1.08, see Figures 7a and S26−S30). In an aqueous
medium containing Nile red, the diblock copolymer self-
assembles into micelles (Figure S31), with the disassembly
process monitored via the photoluminescence of Nile red
before and after degradation (see Supporting Information).
Before degradation, the micelle assembly shows a weak
emission (λ = 624 nm) that is consistent with Nile red
molecules confined to the hydrophobic interior of the micelle
cores (Figure 7b,c). After degradation and cleavage of the LA-
containing domains, the intensity increased dramatically (∼10-
fold) as a result of Nile red molecules being released from the
disrupted micelles.55

■ CONCLUSIONS
In conclusion, we have demonstrated the controlled-radical
ring-opening copolymerization of α-lipoic acid − a commer-
cially available and degradable building block − with a variety
of acrylate and acrylamide comonomers via RAFT. The
resulting copolymers exhibit low dispersities (Đ = 1.1−1.3)
and tunable molecular weights (Mn = 6−56 kg mol−1), with
the reactivity of lipoic acid favoring the formation of
degradable lipoic acid−lipoic acid diads along the backbone.
As a result, these copolymers readily degrade into low−
molecular-weight species under mild reducing conditions (e.g.,
Mn = 56→ 3.6 kg mol−1). The molar mass after degradation
can be tuned by changing the feed ratio of LA (up to 30%)
during the polymerization. In summary, the controlled-radical
ring-opening of lipoic acid is compatible with a wide variety of
vinyl comonomers and represents a scalable and versatile
synthetic platform for controlling the degradability of
polyacrylates − a popular family of materials across many
applications. While compatible vinyl comonomers are currently
limited to acrylates and acrylamides, this work can be used to
design other ring-opening monomers based on a dithiolane
motif that may undergo copolymerization with a wider range
of vinyl monomer families.

Figure 6. Controlled polymerization of LA enables the synthesis of
degradable block copolymers. SEC traces of TFA-co-LA (top), the
(TFA-co-LA)-b-DA diblock (middle), the degraded diblock copoly-
mer (middle), and the isolated DA homopolymer (bottom).

Figure 7. (a) Synthesis of micelle-forming diblock copolymers, PEG-b-(nBA-co-LA), that are degradable in aqueous solution. (b) Illustration of
self-assembly in water to encapsulate Nile red, a hydrophobic dye (represented graphically as red spheres) that releases upon degradation of the
core. (c) Photoluminescence of micelles before and after degradation.
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