
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Spike-Train Level Direct Feedback Alignment: Sidestepping Backpropagation for On-
Chip Training of Spiking Neural Nets.

Permalink
https://escholarship.org/uc/item/8p75854t

Authors
Lee, Jeongjun
Zhang, Renqian
Zhang, Wenrui
et al.

Publication Date
2020

DOI
10.3389/fnins.2020.00143

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8p75854t
https://escholarship.org/uc/item/8p75854t#author
https://escholarship.org
http://www.cdlib.org/

ORIGINAL RESEARCH
published: 13 March 2020

doi: 10.3389/fnins.2020.00143

Frontiers in Neuroscience | www.frontiersin.org 1 March 2020 | Volume 14 | Article 143

Edited by:

Kaushik Roy,

Purdue University, United States

Reviewed by:

Priyadarshini Panda,

Yale University, United States

Junxiu Liu,

Ulster University, United Kingdom

*Correspondence:

Peng Li

lip@ucsb.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 07 September 2020

Accepted: 04 February 2020

Published: 13 March 2020

Citation:

Lee J, Zhang R, Zhang W, Liu Y and

Li P (2020) Spike-Train Level Direct

Feedback Alignment: Sidestepping

Backpropagation for On-Chip Training

of Spiking Neural Nets.

Front. Neurosci. 14:143.

doi: 10.3389/fnins.2020.00143

Spike-Train Level Direct Feedback
Alignment: Sidestepping
Backpropagation for On-Chip
Training of Spiking Neural Nets

Jeongjun Lee 1, Renqian Zhang 2, Wenrui Zhang 1, Yu Liu 2 and Peng Li 1*

1Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA,

United States, 2Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States

Spiking neural networks (SNNs) present a promising computing model and

enable bio-plausible information processing and event-driven based ultra-low power

neuromorphic hardware. However, training SNNs to reach the same performances

of conventional deep artificial neural networks (ANNs), particularly with error

backpropagation (BP) algorithms, poses a significant challenge due to inherent complex

dynamics and non-differentiable spike activities of spiking neurons. In this paper, we

present the first study on realizing competitive spike-train level backpropagation (BP) like

algorithms to enable on-chip training of SNNs. We propose a novel spike-train level direct

feedback alignment (ST-DFA) algorithm, which is much more bio-plausible and hardware

friendly than BP. Algorithm and hardware co-optimization and efficient online neural signal

computation are explored for on-chip implementation of ST-DFA. On the Xilinx ZC706

FPGA board, the proposed hardware-efficient ST-DFA shows excellent performance vs.

overhead tradeoffs for real-world speech and image classification applications. SNN

neural processors with on-chip ST-DFA training show competitive classification accuracy

of 96.27% for the MNIST dataset with 4× input resolution reduction and 84.88% for the

challenging 16-speaker TI46 speech corpus, respectively. Compared to the hardware

implementation of the state-of-the-art BP algorithm HM2-BP, the design of the proposed

ST-DFA reduces functional resources by 76.7% and backward training latency by 31.6%

while gracefully trading off classification performance.

Keywords: spiking neural networks, backpropagation, on-chip training, hardware neural processor, FPGA

1. INTRODUCTION

As a brain-inspired computational model, spiking neural networks (SNNs) have gathered
significant research interests during recent years. The spike-based operational principles of SNNs
support a variety of information coding schemes including temporal codes and have rendered
energy-efficient VLSI neuromorphic chips, such as IBM’s TrueNorth (Akopyan et al., 2015) and
Intel’s Loihi (Davies et al., 2018). Despite the recent progresses in SNNs and neuromorphic
processor designs, fully leveraging the theoretical computing advantages of SNNs over traditional
artificial neural networks (ANNs) (Maass, 1997) to achieve the state-of-the-art performance for
real-world applications remains challenging. One chief difficulty here lies in training of SNNs in
terms of achievable performance and computational complexity.

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00143
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00143&domain=pdf&date_stamp=2020-03-13
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lip@ucsb.edu
https://doi.org/10.3389/fnins.2020.00143
https://www.frontiersin.org/articles/10.3389/fnins.2020.00143/full
http://loop.frontiersin.org/people/781970/overview
http://loop.frontiersin.org/people/869523/overview
http://loop.frontiersin.org/people/601652/overview

Lee et al. ST-DFA On-Chip Training

In terms of the learning algorithm of SNNs, there are
several algorithms, such as Spike-timing-dependent plasticity
(STDP)/binary/probabilistic and error backpropagation (BP).
Each algorithm has gathered significant research interests
with the advantages of each algorithm. For example, STDP
mimics biological behavior using the timing between pre-
and post-synaptic spikes, and BP has shown the state-of-the-
art performance in ANNs, implying its potential to be used
in SNNs for achieving excellent accuracy. While the above
algorithms provide a rich set of learning mechanisms that can
be explored, as of now, SNNs exploiting a non-BP algorithm,
such as a STDP/binary/probabilistic method have demonstrated
limited success in competitive real-world applications. Recent
advances in BP have provided algorithms for overcoming
non-differentiability of spike events and capturing temporal
dynamics, and have made it possible to achieve the state-of-the-
art performances among many other algorithms.

Inspired by the success of BP and its variants, such
as stochastic gradient decent in training conventional
ANNs (Rumelhart et al., 1988a), various SNN BP methods
have emerged, aiming at attaining the same level of
performance (Bohte et al., 2002; Lee et al., 2016; Jin et al.,
2018; Wu et al., 2018; Chankyu et al., 2019; Panda et al., 2019).
The major challenges in BP training of SNNs stem from the
non-differentiability of spike events and temporal dynamics
that prevent straightforward derivative computation. SpikeProp
(Bohte et al., 2002) is the first BP algorithm to train SNNs by
BP. However, SpikeProp is limited to single-spike training for
learning simple functions like XOR. Lee et al. (2016) proposes a
BP algorithm which differentiates neuron’s membrane potential
instead of discrete output spikes. Wu et al. (2018) improves Lee
et al. (2016) by capturing temporal effects with backpropagation
through time (BPTT) (Werbos, 1990). However, the error
gradient is still computed by differentiating the membrane
potential, leading to inconsistency w.r.t the rate-coded loss
function. More recently, Panda et al. (2019) provides the hybrid
neural network architecture for approximate gradient descent
(AGD) training methodology achieving good accuracy with large
datasets, such as Imagenet, and Chankyu et al. (2019) proposes
differentiable activation for leaky integrate-and-fire (LIF) spiking
neurons using a spike-based BP algorithm achieving good
classification accuracies with various datasets.

This paper is motivated by one of these approaches (i.e., Jin
et al., 2018), which showed a spike-train level BP algorithm that
achieves the state-of-the-art performance on SNNs. Jin et al.
(2018) proposes a hybrid macro/micro level backpropagation
(HM2-BP) algorithm for training multi-layer SNNs, which
addresses the aforementioned issues. HM2-BP precisely captures
the temporal behavior of the SNN at the microscopic level and
directly computes the gradient of the rate-coded loss function
w.r.t tunable parameters. As a result, HM2-BP demonstrates
the state-of-the art learning performances on widely adopted
SNN benchmarks, such as MNIST (LeCun et al., 1998) and
Neuromorphic-MNIST (N-MNIST) (Orchard et al., 2015),
outperforming all other existing BP algorithms based on the leaky
integrate-and-fire model.

While achieving excellent results, the aforementioned SNNBP
algorithms are hampered by several limitations. The error signal
is propagated backward layer by layer through weights symmetric
to the feed-forward weights. This is considered not biologically-
plausible. Furthermore, BP algorithms involve complex layer-by-
layer backward computations, which is expensive to implement
on-chip and introduces high training latency. For instance, while
HM2-BP improves the scalability of BPTT (Wu et al., 2018) by
operating on the spike-train level, i.e., application of BP does
not discretize time, it still involves complex computations and its
latency in the backward phase is proportional to network depth.

This work aims to answer the following questions: (1)
Can biologically plausible mechanisms be developed to
sidestep complex BP algorithms while delivering competitive
performance? (2) Can such mechanisms be leveraged for efficient
on-chip training of multi-layer SNNs?

We are motivated by the recent direct feedback alignment
(DFA) method developed for conventional ANNs (Nøkland,
2016), where the error is more biologically-plausibly fed back to
each hidden layer through fixed random feedback connections
directly from the output layer, reducing a bulk of the BP
complexity. Furthermore, DFA can be performed for all hidden
layers concurrently, reducing the backward phase latency.

By extending the DFA concept proposed by Nøkland (2016)
for SNNs, we significantly reduce hardware overhead and latency
of the network, while maintaining the advantage of a well-
defined BP-like algorithm in terms of accuracy. Although many
algorithms, such as gradient descent (GD), AGD, and BP, have
been proposed for SNNs, this is the first work presenting
algorithm-hardware co-optimization and demonstrating the
realization of DFA for SNNs with significantly reduced hardware
cost while maintaining competitive accuracies for image/speech
recognition tasks. The main contributions of this work are:

• We demonstrate the first direct feedback alignment algorithm
for training multi-layer SNNs by extending the DFA concept
developed for conventional ANNs;

• Our spiking DFA algorithm is embodied at the spike-train
level, dubbed ST-DFA, to further improve scalability by
avoiding involved error feedback over time;

• We perform algorithm-hardware co-optimization and
demonstrate the first hardware realization of DFA for
SNNs with significantly reduced hardware overhead,
energy dissipation, and latency while achieving competitive
performances for image/speech recognition tasks.

On the Xilinx ZC706 FPGA board, the proposed ST-DFA with
optimized implementation shows excellent cost-effectiveness for
on-chip SNN training. Hardware SNNs with ST-DFA deliver
competitive accuracy of 96.27% for the MNIST (LeCun et al.,
1998) with 4× input resolution reduction and 84.88% for the
challenging 16-speaker TI46 (Liberman et al., 1991) speech
corpus, respectively. Compared to the hardware implementation
of the state-of-the-art BP algorithm HM2-BP, the design of the
proposed ST-DFA reduces functional resources by 76.7% and
backward training latency by 31.6% while gracefully trading off
classification performance.

Frontiers in Neuroscience | www.frontiersin.org 2 March 2020 | Volume 14 | Article 143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. ST-DFA On-Chip Training

2. MATERIALS AND METHODS

2.1. Background
2.1.1. Direct Feedback Alignment
Backpropagation (BP) has been widely applied to train neural
networks. It is based upon computing a global error at the output
layer and then propagating the error signal to hidden neurons
layer by layer. During this process, the errors of a preceding
layer are multiplied with a weight matrix that is completely
symmetric to the one for the feed-forward connections. This fact
is not considered biologically plausible. A recent discovery called
Feedback Alignment (FA) (Lillicrap et al., 2016) demonstrates
that the weights used for propagating the error layer by layer need
not be symmetric to the weights used for forward propagation to
achieve good performance. The feedback weight matrix can be
randomly generated and then stay unchanged since the network
can learn how to make feedback useful through training. Neftci
et al. (2017) applies FA for training SNNs.

A more disruptive approach called Direct Feedback
Alignment (DFA) is proposed in DNNs (Nøkland, 2016).
DFA is compared with BP in Figure 1. Unlike propagating the
error back layer by layer in BP and FA, DFA feeds back the error
through fixed random feedback connections directly from the
output layer to each hidden layer, eliminating the need for layer-
by-layer error backpropagation or feedback. DFA is considered
more biologically plausible because the error is generated
almost completely local with no long backpropagation/feed back
train and symmetric weights are not required. Nøkland (2016)
shows that for conventional multi-layer ANNs like DNNs, the
use of DFA can achieve competitive results with insignificant
performance drops when compared with the state-of-the-art
BP methods.

In this paper, we extend the DFA for conventional ANNs
(Nøkland, 2016) for SNNs. To the best of our knowledge, this
is the first work applying DFA to SNNs. Furthermore, our
DFA approach, dubbed ST-DFA, operates on the spike-train
level, hence offering improved scalability in both space (network
depth) and time.

2.1.2. Spike-Train Level Post-synaptic Potential
Before describing the proposed ST-DFA in section 2.2, we present
the concept of Spike-train Level Post-synaptic Potential (S-PSP)
that is behind the spike-train level computation of ST-DFA.

The widely adopted leaky integrate-and-fire (LIF) model for
spiking neurons is given by (Gerstner and Kistler, 2002):

τm
ui(t)

dt
= −ui(t)+ R αi(t), (1)

with

τs
αi(t)

dt
= −αi(t)+

∑

j

wij

∑

t
(f)
j

D
(

t − t
(f)
j

)

, (2)

where ui(t) is the membrane potential of the neuron i, αi(t) is
the first order synaptic model with time constant τs, and τm is
the time constant of membrane potential with value τm = RC.
R and C are the effective leaky resistance and effective membrane

capacitance.wij is the weight of the synapse from the pre-synaptic

neuron j to the neuron i. t
(f)
j denotes a particular firing time of the

neuron j. D(t) is the Dirac delta function. R is set to 1 since it can
be absorbed into synaptic weights.

Integrating (1) and (2) gives the spike response model
(SRM) (Jin et al., 2018):

ui(t) =
∑

j

wij

∑

t
(f)
j

ǫ

(

t − t̂
(f)
i , t − t

(f)
j

)

, (3)

where t̂
(f)
i denotes the last firing time of the neuron i. ǫ(s, t)

specifies the normalized time course of the post-synaptic potential
evoked by a single firing spike of the pre-synaptic neuron:

ǫ(s, t) =
1

C

∫ s

0
exp

(

−
t′

τm

)

αi

(

t − t′
)

dt′. (4)

Integrating (4) gives:

ǫ(s, t) =
e(−max(t−s,0)/τs)

1− τs
τm

[

e

(

−min(s,t)
τm

)

− e

(

−min(s,t)
τs

)]

H(s)H(t),

(5)
where H(t) is the Heaviside step function.

The sum of the (normalized) post-synaptic potential of the
neuron i evaluated right before all the neuron i’s firing times
evoked by the spike train of the pre-synaptic neuron j defines the
(normalized) spike-train level post-synaptic potential (S-PSP) ei|j,
which is given by:

ei|j =
∑

t
(f)
i

∑

t
(f)
j

ǫ(t
(f)
i − t̂

(f)
i , t

(f)
i − t

(f)
j). (6)

S-PSP specifies the aggregated effect of the spike train of the
pre-synaptic neuron j on the membrane potential of the post-
synaptic neuron i, providing a basis for relating firing counts to
spike events.

Summing the weighted S-PSPs from all pre-synaptic neurons
of the neuron i gives the total post-synaptic potential (T-PSP)
ai, which is directly correlated to the neuron i’s firing count oi
through the firing threshold voltage ν:

ai =
∑

j

wij ei|j. oi = g(ai) ≈
ai

ν
(7)

2.2. Proposed Spike-Train Level Direct
Feedback Alignment (ST-DFA)
2.2.1. Proposed ST-DFA Algorithm
For a conventional (non-spiking) ANN, the squared error for one
training example can be defined at the output layer by:

E =
1

2
||o− y||22, (8)

where y and o are vectors specifying the desired output (label)
and the actual output, respectively. The output oi of each neuron

Frontiers in Neuroscience | www.frontiersin.org 3 March 2020 | Volume 14 | Article 143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. ST-DFA On-Chip Training

FIGURE 1 | (A) Backpropagation (BP) vs. (B) Direct feedback alignment (DFA). Solid arrows indicate feedforward paths and dashed arrows indicate feedback paths.

The feedback matrices B1 and B2 need not be symmetric to W2 or W3.

i is determined by the activation function φi: oi = φi(
∑

j wijxj),

where xj is the input value from the presynaptic neuron j and wij

is the weight between the neurons j and i.
The well-known BP algorithm for an ANN (Rumelhart et al.,

1988b), which is ubiquitously used in deep learning, is:

1wij = η
∂E

∂wk
ij

= ηδki φ
k−1
j

δki =

{

oi − yi for output layer,

φ′k+1
i

∑rk+1

l=1 δk+1
l

wk+1
li

for hidden layers,

(9)

where η is the learning rate, δki the error for the ith neuron of the

kth layer, rk the number of neurons in the kth layer.
It has been demonstrated recently that training SNNs using BP

with respect to a rate-coded loss function has produced highly
competitive performances (Lee et al., 2016; Jin et al., 2018; Wu
et al., 2018). Rate-coded loss functions are also adopted for our
ST-DFA. Different from BP, the proposed ST-DFA algorithm for
SSNs computes each error δ by direct feedback from the output
layer on the spike-train level, giving to the following update rule:

1wij = η
∂E

∂wij
= ηδki e

k
i|j,

δki =

{

ooi −yoi
ν

for output layer,
∑ro

l=1 δo
l
bk
li

for hidden layers,

(10)

where η is the learning rate, δki the error of the neuron i in the kth

hidden layer, eki|j the S-PSP from the neuron i to neuron j, ooi the

actual firing count of neuron i in the output layer, yoi the desired
firing count for the neuron i, ν the firing threshold, ro the number
of neurons in the output layer, δo

l
the error of the neuron l in the

output layer, and bk
li
the value of the fixed random feedback.

The last equation of (10) is based on the concept of DFA. As
in Figure 2, with ST-DFA, the output layer is fully connected
to each hidden layer through a different matrix which is called
the random feedback matrix B. The weights (values) in these
matrices are randomly generated and then stay fixed. The error
vector δ

k of the hidden layer k is directly obtained from the error
vector of the output layer δ

o and the random feedback matrix

FIGURE 2 | The proposed spike-train level DFA (ST-DFA).

Bk as: δ
k = Bk × δ

o. The detailed derivation of ST-DFA is
introduced next.

2.2.2. Derivation of ST-DFA
Similar to (8) and using (7), we define the rate-coded loss
function as:

E =
1

2
||o− y||22 =

1

2
||
a

ν
− y||22, (11)

where y, o, and a are vectors specifying the desired firing
counts (label), the actual firing counts, and the T-PSP of the
output neurons, respectively. Differentiating the loss function
with respect to each trainable weight wij leads to:

∂E

∂wij
=

∂E

∂aki

∂aki
∂wij

= δki
∂aki
∂wij

, (12)

where aki is the T-PSP of the neuron i in the kth layer.
It is instrumental to note that each S-PSP ei|j depends on both

rate and temporal information of the pre/post-spike trains, i.e.,
ei|j depends on the pre/post-synaptic firing counts oi and oj and

pre/post-synaptic firing times t
(f)
j and t

(f)
i :

ei|j = f (oj, oi, t
(f)
j , t

(f)
i). (13)

Frontiers in Neuroscience | www.frontiersin.org 4 March 2020 | Volume 14 | Article 143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. ST-DFA On-Chip Training

For the ith output neuron, δoi can be obtained from (12) and (7):

δoi =
∂E

∂aoi
= (oi − yi)

∂oi

∂ai
=

oi − yi

ν
. (14)

For each ith neuron in the hidden layer k, δki is derived from the
chain rule based on (7):

δki =
∂E

∂aki
=

rk+1
∑

l=1

∂E

∂ak+1
l

∂ak+1
l

∂aki
=

rk+1
∑

l=1

δk+1
l

∂ak+1
l

∂aki

=

rk+1
∑

l=1

δk+1
l

wk+1
li

∂ek+1
l|i

∂aki
.

(15)

The first key development in ST-DFA is that the way in which
the error δki is calculated in each hidden layer changes from
∑rk+1

l=1 δk+1
l

wk+1
li

∂ek+1
l|i

∂aki
to

∑ro

l=1 δo
l
dk
li

∂ek+1
l|i

∂aki
, where dk

li
is the direct

feedback alignment from the output neuron l to the hidden layer
neuron i. dk

li
is a randomized and fixed value. In this process, we

replace the wk+1
li

from (k + 1)th layer to kth layer in (15) by dk
li
,

leading to:

δki = δol d
k
li

∂ek+1
l|i

∂aki
. (16)

As such, the error δ
k of each hidden neuron is directly

determined by the output layer error vector δ
o rather than by the

error vector δ
k+1 of the next layer.

Moreover, we have the following key observation. In (16),

since dk
li
is randomly generated,

∂ek+1
l|i

∂aki
can be absorbed into dk

li

to further simplify ST-DFA. Denote the new DFA parameter

absorbing
∂ek+1

l|i

∂aki
by bk

li
= dk

li

∂ek+1
l|i

∂aki
, the simplified error

computation becomes:

δki =

{

ooi −yoi
ν

for output layer,
∑ro

l=1 δo
l
bk
li

for hidden layers,
(17)

where bk
li

is one entry of the random feedback matrix B

in Figure 2.
Thus, ST-DFA reduces the computational complexity by not

only avoiding layer-by-layer propagation but also the additional
simplification via the use of bk

li
.

2.2.3. Simplification for Hardware Friendliness
The last term on the right-hand side of (12) differentiates the
total post-synaptic potential (T-PSP) aki . Considering (7), it can
be written as:

∂aki
∂wij

=
∂

∂wij

rk−1
∑

j=1

wij e
k
i|j

 = eki|j +

rk−1
∑

l=1

wil

∂ek
i|l

∂oki

∂oki
∂wij

= eki|j +
eki|j

ν

rk−1
∑

l=1

wil

∂ek
i|l

∂oki
.

(18)

The exact evaluation of the above expression requires multiple
additions, multiplications, and divisions, introducing high
hardware overhead and additional latency.

The first term eki|j on the right-hand side of (18) can be

interpreted as the direct influence exerted on the T-PSP aki
by changing the synaptic weight wij as seen from (7). The

second term
eki|j
ν

∑rk−1

l=1 wil
∂ek

i|l

∂oki
comes from the fact that changing

the weight wij leads to variation in the post-synaptic spike

train. Thus, the S-PSP ek
i|l

to the neuron i also varies as

it depends on the firing times of the post-synaptic neuron.
Nevertheless, we have observed that the first term dominates
the second term. By dropping the second term, we reach the
final hardware-friendly ST-DFA algorithm of (10), which also
maintains good performance.

In comparison, the spike-train level BP algorithm HM2-BP
is (Jin et al., 2018):

1wij = ηδki e
k
i|j

1+
1

ν

rk−1
∑

l=1

wil

∂ek
i|l

∂oki

 ,

δki =

oki −yki
ν

for output layer,

1
ν

∑rk+1

l=1 δk+1
l

wli
∂ek+1

l|i

∂oki
for hidden layers.

(19)

While HM2-BP delivers the state-of-the-art performance, it
would be very costly to implement on hardware if ever feasible.

In all, compared to HM2-BP in (19), ST-DFA in (10) is much
more hardware friendly. With ST-DFA, direct error feedback to
each hidden layer is accomplished without layer-by-layer back
propagation while HM2 requires high-resolution multiplications
with the transpose of the forward weights and other expensive
operations layer by layer. In the next section, we efficiently realize
the ST-DFA algorithm on digital hardware.

2.3. SNN Accelerators With ST-DFA
On-Chip Training
2.3.1. Architecture
Figure 3 shows the architecture of the proposed multi-layer feed-
forward spiking neural processors with the proposed ST-DFA on-
chip training. Only two hidden layers are shown for illustration
purpose. Architecturally, the processor is comprised of an input
spike buffer feeding multiple hidden layers composed of hidden
neuron elements (HEs). The last hidden layer connects to the
output layer which consists of a set of output neuron elements
(OEs). A modular design approach is taken where each spiking
neuron is implemented in the form of HE or OE. As such, a
proper number of HEs and OEs can be instantiated to form a
multi-layer SNN with arbitrary depth and width.

Both inference and training are supported. Training over an
input example splits into two phases: forward pass and backward
pass. The computation of S-PSPs required for ST-DFA training
are computed in an online manner in the forward pass of
training. The remaining computations of the forward pass are
identical to those performed in inference. To support ST-DFA
training, the error generator utilizes an array of subtractors to

Frontiers in Neuroscience | www.frontiersin.org 5 March 2020 | Volume 14 | Article 143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. ST-DFA On-Chip Training

FIGURE 3 | Proposed architecture of multi-layer SNNs with onchip ST-DFA training. HE represents a digital hidden neuron element; and OE represents a digital output

neuron element.

compute the difference between the actual OE output spike
counts with expected ones (label). At each hidden layer, this
output-layer error vector is multiplied with the associated ST-
DFA random feedback matrix inside each layer to allow weight
updates performed by each neuron.

- On-chip training

For each training example, the forward and backward passes of
the training are controlled by a global controller (FSM) as shown
in Figure 3. Neurons at the same layer process information in
parallel to exploit the inherent parallelism of the hardware SNN
processor architecture. In the forward pass and at each biological
time step, layers are activated by the global controller one at
a time from the input to the output. After output spikes are
generated for the current time step, the global controller pushes
the training forward to the next time step. This process repeats
until the current training example has been entirely learned by
the network. Then, the backward pass starts, in which the first
step is to calculate the output error δo

l
in (10). After that, all

hidden layers start to perform ST-DFA for weight updating at
the same time. The weight update latency of each hidden layer
may be different due to the differences in the number of input
synaptic connections (i.e., the preceding layer width). After all
hidden layers finish ST-DFA weight updates, the training process
moves onto the next training example.

- Neuron unit design

Each HE or OE contains several functional blocks categorized
into feed-forward functional blocks and feedback functional
blocks as shown in Figure 3. OEs are identical to HEs except
that no ST-DFA module is included since the error δki defined
for output neurons is computed by the Error Generator module.
Each neuron unit contains two memory modules that store
the synaptic weights and all its spike-train level post-synaptic
potentials (S-PSPs), respectively. We implement the weight
memory with block RAM (BRAM) and the S-PSP memory with
a 2-D array of flip flops (FFs) on the FPGA. A neuron-level
local controller (FSM) controls the detailed inference/training
steps. The local controller also communicates with the global

controller for synchronizing processes between different layers
and inference/training stages.

In the forward pass of training, first, the synaptic current x
through each synapse is calculated, followed by the spike-train
level post-synaptic potential (S-PSP) update for the same synapse.
The synaptic current update and the S-PSP update modules
shown in Figure 3 are shared by all input synapses. Hence,
processing of all synapses are done in series. After all synaptic
responses are generated, the spike generation module calculates
the neuron’s membrane potential and makes the firing decision
based on the leaky integrate-and-fire (LIF) spiking neuronmodel.
In the backward pass of training, the ST-DFAmodule implements
the proposed on-chip ST-DFA training algorithm, the output
of which is then fed to the weight update module. Finally, the
corresponding synaptic weight is updated and stored back to the
weight memory. Similar to the feedforward blocks, the feedback
functional modules are also shared among all input synapses.

2.3.2. Efficient On-Chip S-PSP Calculation
One important component in the proposed ST-DFA algorithm is
the spike-train level post-synaptic potential (S-PSP), ei|j, in (10).
As demonstrated in (6), by definition, ei|j is the effect of all firing
events of the pre-synaptic neuron j on the post-synaptic neuron i.
However, direct implementation of (6) on hardware is very costly;
all firing events of the pre- and post-synaptic neurons need to be
stored and excessive multiplication, division and exponentiation
operations are involved, incurring much logic complexity and
memory usage.

Instead, we propose an online S-PSP calculation approach
with dramatically reduced hardware overhead. Rather than
recording all firing events of the two neurons and computing ei|j
at once in the backward pass, in the forward pass we accumulate
and update ei|j at the arrival of each firing event and store the
updated ei|j in the S-PSP memory of each neuron element.

Inspecting (3) and (6) reveals that ei|j is the normalized (by
weight) of the contribution from the post-synaptic neuron j to
the aggregated membrane potential of the post-synaptic neuron
i. While the aggregated post-synaptic membrane potential is
effectively tracked by the LIFmodel, each individual contribution

Frontiers in Neuroscience | www.frontiersin.org 6 March 2020 | Volume 14 | Article 143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. ST-DFA On-Chip Training

ei|j to it can be accumulated exactly using the following equations:

τs
pi|j(t)

dt
= −pi|j(t)+

∑

t
(f)
j

D(t − t
(f)
j),

τm
qi|j(t)

dt
= −qi|j(t)+ pi|j(t),

ei|j(t) =
∑

t
(f)
i

qi|j(t
(f)
i),

(20)

where pi|j(t) is the (normalized) synaptic input from the neuron
j to neuron i, which is part of (2), and qi|j(t) is interpreted as the
(normalized) post-synaptic membrane voltage contribution from
the neuron j to neuron i, which shall be reset to zero when the

neuron i fires at a particular firing time t
(f)
i .

The hardware realization of (20) is based on discretizing it
using the first-order Euler method with a fixed stepsize:

qi|j[t + 1] = (1−
1

τm
)qi|j[t]+ pi|j[t + 1]

pi|j[t + 1] = (1−
1

τs
)pi|j[t]+

1

τs

∑

t
(f)
j

Dn(t − t
(f)
j)

{

ei|j[t + 1]+ = qi|j[t + 1]

qi|j[t + 1] = 0
if t + 1 = t

(f)
i ,

(21)

where Dn(·) is the unit sample function and we have abused the
notation by using t and t + 1 to indicate a discrete time step and
the step after that.

(21) allows ei|j to be accumulated in an online manner with
great hardware efficiency and its implementation is shown in
Figure 4. At each time step, we first update the value of pi|j,
followed by the updates of qi|j and ei|j, controlled by the FSM
states of the local controller shown in Figure 3. The shaded
blocks in Figure 4 are registers used to store the current-time
variable values. We set both decay constants τs and τm to be
a power of 2 such that multiplications/divisions are realized
efficiently using shift operations. The updated ei|j is stored in the
S-PSP memory and retrieved by the ST-DFA module during the
backward training pass.

2.3.3. Efficient On-Chip ST-DFA Implementation
Figure 5 depicts the ST-DFAmodule in hidden neurons shown in
Figure 3. As in (10), for each hidden neuron i, the inner product
between the error vector δo

l
from the output layer and the ith

column of the random feedback matrix B of the corresponding
layer is computed. The inner product is then multiplied with ei|j
to produce the weight update value1wij for the jth input synapse.
All these inner products for different synapses are computed in
series and would result in large hardware and power overheads.
Furthermore, if each entry of the feedback matrix is set to be
a high-bit resolution random number, high memory usage is
required for storage.

To mitigate the above design complexity, we propose a
hardware-friendly realization of ST-DFA, named ST-DFA-2.

FIGURE 4 | On-line S-PSP calculation onchip.

FIGURE 5 | On-chip ST-DFA weight update computation.

ST-DFA-2 is based on the key observation from extensive
algorithmic experiments that the feedback matrix B need not be
generated in a true random manner; setting each entry bli of B
to one of a small set of fixed numbers at random is sufficient
for achieving good training performance. Furthermore, the set
of fixed numbers can be optimized for hardware efficiency. For
this, we construct this set by making each number a signed power
of 2 with low-bit resolution such that the multiplications in (10)
can be implemented by shift operations and storage for B is kept
at minimal.

Figure 5 illustrates the computation of each weight update.
The corresponding inner product is computed by accumulating
the element-wise products. The idx signal selects a particular
element in the error vector δo

l
and its shift amount mil, which

is set by the corresponding bli in the B matrix according to
|bli| = 2mil . If bli is negative, the shift result is converted to
its compliment before added to δi. Finally, the resulting δi is
multiplied with the S-PSP ei|j to get the weight update value 1wij

for the current synapse.

3. RESULTS

3.1. Experimental Settings and
Benchmarks
Performance evaluation is divided into two parts:

(1) Section 3.2 devotes to evaluate the performance of proposed
ST-DFA and ST-DFA-2 compared to HM2-BP only with

Frontiers in Neuroscience | www.frontiersin.org 7 March 2020 | Volume 14 | Article 143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. ST-DFA On-Chip Training

software simulation. The classification performances are
evaluated by simulation of the digital computations with the
actual bit resolutions implemented on FPGA. Major SNN
variables, for example synaptic weight w, S-PSP ei|j and
membrane potential v, are in the fixed-point representation.
Each w is a signed 17-bit variable with 12-bit fractional.
11 bits are used for each unsigned variable ei|j with 6-bit
fractional and 9 bits are used for each signed variable v with
3-bit fractional.

(2) In section 3.3, we measure various aspects of the SNN neural
processor based on the pure hardware platform (on-board
measurement). We measure the performance vs. hardware
overhead tradeoffs of the proposed on-chip ST-DFA
training on several feed-forward SNN neural processors.
Using multiple SNNs models with varying depths and
widths, we demonstrate competitive performance of pure
hardware (on-board) simulation. Compared to hardware
implementation of HM2-BP, proposed ST-DFA significantly
reduces hardware overhead which proves hardware-
friendliness. FPGA prototypes of SNN neural accelerators
are designed on the Xilinx ZC706 platform for performance
evaluation, design overhead, and power/energy analysis.

Three datasets are employed for evaluation: MNIST (LeCun
et al., 1998), N-MNIST, or the neuromorphic version of
MNIST (Orchard et al., 2015), and the 16-speaker English letter
subset of the TI46 speech corpus (Liberman et al., 1991). The
MNIST handwritten digit dataset (LeCun et al., 1998) contains
60k training and 10k testing examples, each of which is a
28 × 28 grayscale image. Each pixel value of the MNIST image
is converted into a spike train using Poisson sampling and
the probability of spike generation is proportional to the pixel
intensity. Due to the limited hardware resources available on the
Xilinx Zynq ZC706 board, we crop each image to include only the
14× 14 pixels around the center for FPGA evaluation.

The N-MNIST dataset (Orchard et al., 2015) is a
neuromorphic version of MNIST. The static digit images
of MNIST are converted into spike trains using a dynamic vision
sensor (DVS) (Lichtsteiner et al., 2008) moving on a pan-tilt
unit. The image is resized to 34 × 34 since the relative shift of
images during the saccade process is required. Two kinds of
spike events, ON and OFF, are recorded since the intensity can
either increase or decrease. Thus, each N-MNIST image has
34 × 34 × 2 = 2, 312 spike sequences lasting for about 300 ms.
We reduce the time resolution of the N-MNIST images by 500×
to speed up the processing.

The TI46 Speech corpus (Liberman et al., 1991) contains
spoken English letters from 16 speaker. There are 4,142 and 6,628
spoken English letters for training and testing, respectively. The
continuous temporal speech waveforms are first preprocessed
by the Lyon’s ear model (Lyon, 1982) and then encoded
into 78 spike trains using the BSA algorithm (Schrauwen and
Van Campenhout, 2003).

Among these datasets, MNIST and TI46 are tested on
both software and hardware while N-MNIST is only tested on
software simulation due to that the available FPGA resources
are not sufficient to support the large number of spike trains.

Moreover, to thoroughly assess the classification performance
and hardware benefits of our proposed spike-train level direct
feedback alignment (ST-DFA), we build multiple SNNs with
different network depths and widths.

3.2. Classification Accuracies (Software
Simulation)
The proposed spike-train level direct feedback alignment
(ST-DFA) algorithm is inspired by the spike-train level
backpropagation HM2-BP algorithm. In Jin et al. (2018), HM2-
BP is compared with other state-of-the-art spiking or non-
spiking BP methods, such as spike-based BP (Lee et al., 2016),
STBP (Wu et al., 2018), temporal coding BP (Mostafa, 2018),
and non-spiking BP (Neil et al., 2016) on MNIST and N-
MNIST. Apart from its high efficiency due to the spike-train level
processing, HM2-BP outperforms or is on a par with all these
recently developed algorithms. For example, with a single hidden
layer of 800 neurons, HM2-BP can achieve 98.93% accuracy on
MNIST while Neil et al. (2016) gets up to 98.30%. HM2-BP
obtains 98.88% accuracy on N-MNIST compared with 97.80%
by Mostafa (2018). Moreover, HM2-BP delivers competitive
performance on challenging benchmarks, such as the 16-speaker
spoken English letters of TI46 Speech corpus (Liberman et al.,
1991) and 47-class image recognition dataset Extended MNIST
(EMNIST) (Cohen et al., 2017).

As presented in section 2.2, ST-DFA propagates the errors
δ from the output layer to each hidden layer directly without
layer by layer error backpropagation through symmetric weights
matrices. In section 2.3.3, we further optimize ST-DFA by setting
each entry of the random feedback matrix B to a power of 2,
leading to the hardware-friendly ST-DFA-2 algorithm. In this
work, feedback matrix entries are randomly chosen from the set
{−4,−2,−1, 0, 1, 2, 4} for ST-DFA-2.

Table 1 compares the inference accuracies of HM2-BP, ST-
DFA, and ST-DFA-2 on MNIST, N-MNIST, and TI46. Compared
to HM2-BP, ST-DFA, and ST-DFA-2 still maintain rather
competitive performance while the low computational cost and
hardware-friendliness of ST-DFA-2 translate into huge hardware
resources and energy overhead savings as shown later. It shall
be noted that in comparison with ST-DFA, ST-DFA-2 does not
necessarily degrade performance; it can even slightly outperform
ST-DFA in practice.

3.3. FPGA Hardware Evaluations (On-Board
Measurement)
We build several FPGA SNN accelerators on the targeted Xilinx
ZC706 platform, the sizes of which are decided considering the
available resources on-chip. Tables 2, 3 shows the resource and
energy overhead as well as the inference accuracies of these
SNN accelerators with on-chip ST-DFA-2. Training powers are
estimated by the Xilinx Power Analyzer based on application-
specific workloads. With the result of behavioral simulation
using a binary-converted input data sample, the tool measures
the dynamic power of neural processors clocked at 100MHz as
presented in Table 2. Compared hardware cost in two different
designs, i.e., ST-DFA-2 and HM2-BP, is shown in Table 4.

Frontiers in Neuroscience | www.frontiersin.org 8 March 2020 | Volume 14 | Article 143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. ST-DFA On-Chip Training

TABLE 1 | Inference accuracy comparison of HM2BP, ST-DFA, and ST-DFA-2

derived by software simulation.

Dataset Learning rule and network structure Accuracy (%)

MNIST HM2-BP: 784-800-10 98.93

MNIST ST-DFA: 784-800-10 98.64

MNIST ST-DFA-2: 784-800-10 98.74

N-MNIST HM2-BP: 2312-800-10 98.88

N-MNIST ST-DFA: 2312-800-10 98.47

N-MNIST ST-DFA-2: 2312-800-10 98.59

TI46 HM2-BP: 78-800-26 89.92

TI46 ST-DFA: 78-800-26 87.00

TI46 ST-DFA-2: 78-800-26 87.31

All SNNs are fully connected networks with a single hidden layer of 800 neurons. MNIST:

28 × 28 input resolution; N-MNIST: 2,312 input spike trains; 16-speaker TI46: 78 input

spike trains.

TABLE 2 | Overheads of the fully-connected SNNs with on-chip ST-DFA-2

implemented on Xilinx ZC706 board.

MNIST (14 × 14 input resolution) @100 MHz

Resource utilization Training

power

(mW)

Training

latency

(mS)

Training

energy

(mJ)LUTs FFs DSPs

196-50-10 33484 6836 60 113 3.998 0.452

196-50-50-10 62989 12516 110 125 4.836 0.604

196-100-10 73027 12329 110 224 4.802 1.076

196-100-100-10 126482 23331 210 275 6.445 1.772

TI46 (16-speaker Spoken English Letters) @100 MHz

Resource utilization Training

power

(mW)

Training

latency

(mS)

Training

energy

(mJ)LUTs FFs DSPs

78-50-26 38220 8826 76 73 3.688 0.269

78-50-50-26 74709 14641 126 87 5.123 0.445

78-100-26 64280 14096 126 113 5.089 0.575

78-100-100-26 145452 30546 226 185 7.929 1.467

As shown in Tables 2, 3, the implemented networks have
either one or two hidden layer(s), and each hidden layer has
50 or 100 neurons. Numbers of input and output neurons
are application-dependent. The training latency and training
energy are for training a representative input example of
the corresponding dataset using one iteration of forward and
backward passes. Table 2 indicates that the SNNs integrated with
ST-DFA-2 in general have efficient FPGA resource utilization as
well as low training energy dissipation.

Furthermore, with a trimmed down input size and/or
constrained network size, the FPGA SNNs with on-chip ST-
DFA-2 can still deliver competitive classification performance in
reference to the simulated accuracies achieved at full input size
and by larger networks reported in Table 1. For instance, the
accuracy of MNIST in Table 1 is based on full input resolution

TABLE 3 | Inference performances of the fully-connected SNNs with on-chip

ST-DFA-2 measured on Xilinx ZC706 FPGA board.

MNIST (14 × 14 resolution) @100 MHz

Accuracy (On-board) (%)

196-50-10 94.34

196-50-50-10 94.51

196-100-10 95.72

196-100-100-10 96.27

TI46 (16-speaker English Letters) @100 MHz

Accuracy (On-board) (%)

78-50-26 71.63

78-50-50-26 74.95

78-100-26 75.19

78-100-100-26 84.88

TABLE 4 | Overheads of an FPGA SNN with on-chip HM2-BP vs. ST-DFA-2

(Network size:196-100-100-10).

LUTs FFs DSPs Backward phase

latency (uS)

HM2-BP 154477 23462 900 17.560

ST-DFA 126482 23331 210 12.010

Normalized

LUTs (%)

Normalized

FFs (%)

Normalized

DSPs (%)

Normalized B-P

latency (%)

HM2-BP 122 101 429 146

ST-DFA 100 100 100 100

which is 28×28 with a hidden layer of 800 neurons. However, we
implemented on-board simulation with reduced input resolution
and smaller networks due to the Xilinx ZC706 board resource
limitation. We cropped each data of MNIST into 14 × 14
which causes 4X input resolution reduction and built smaller
networks consists of 50 or 100 hidden neurons as shown in
Table 3. Despite the low resolution and the small network size,
SNN neural processors with on-chip ST-DFA training show
competitive classification accuracy of 96.27% for MNIST, 84.88%
for TI46 speech corpus, respectively.

To better illustrate the cost-effectiveness of the proposed ST-
DFA algorithm, we also compare the overheads of implementing
HM2-BP vs. ST-DFA-2 in a fully-connected SNN FPGA with
two hidden layers in Table 4. Since the main difference between
HM2-BP and ST-DFA is the backward pass algorithm, we
designed HM2-BP in hardware based on the weight updating
algorithm represented in Jin et al. (2018). Training latency of
the backward pass of the corresponding SNN neural processor
is also presented in the table. We do not consider forward pass
latency and inference latency since they do not differ significantly
in the two cases. The results in the table indicate that ST-DFA
is much more efficient in terms of hardware implementation on

Frontiers in Neuroscience | www.frontiersin.org 9 March 2020 | Volume 14 | Article 143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. ST-DFA On-Chip Training

both resource utilization and backward pass latency compared
with HM2-BP. The ST-DFA-2 based SNN neural processor saves
18% on LUTs, 76.7% on DSPs and 31.6% on backward phase
latency compared with the HM2-BP based SNN.

4. DISCUSSIONS

While Direct Feedback Alignment (DFA) has been attempted,
this work present first novel approach for implementing
hardware spiking neural networks (SNNs) on FPGA board. This
work aims to build efficient on-chip training FPGA SNN neural
processor with reduced backward training latency and hardware
cost while gracefully trading off classification performance. To be
specific, Table 3 shows competitive software/hardware inference
accuracy despite reduce input resolution and small network size.
Comparing the accuracy of ST-DFA and ST-DFA-2, performance
using ST-DFA can be slightly better than using ST-DFA-2 and vice
versa. This fact shows that the error may vary based on randomly
initialized feedback weight matrix, which makes ST-DFA-2 still
powerful. Table 4 shows the advantages of ST-DFA-2 over HM2-
BP in terms of hardware resource utilization through the DFA
algorithm and the efficient design of the hardware design units.
As shown in Tables 1, 3, this result proves the practicality of the
DFA algorithm and the feasibility of implementing the ST-DFA
algorithm for on-chip training of the SNN processor.

The large additional hardware overhead and backward
latency of HM2-BP mainly come from the layer-by-layer
error propagation and the required multiplication operations.
Moreover, as the network goes deeper, the backward phase
latency grows proportionally in HM2-BP, while in ST-DFA
the backward latency will not affect by the network depth
since the error processing is concurrently executed in all
hidden layers. This property assures the scalability of ST-
DFA which is promising for deeper networks. With the
proposed ST-DFA algorithm, we have sidestepped the complex
backpropagation and enabled cost-effective on-chip training for
multi-layer SNNs.

As discussed in section 1, implementing training of SNNs
using a BP algorithm suffers from high computing complexity
and thus high resource utilization, while a hardware-friendly,
non-BP algorithm, such as STDP, suffers from achieving good
accuracies. We argue that our approach avoids high computation
complexity by extending a BP-like algorithm (i.e., DFA) for
SNNs while maintaining the advantage of a well-defined BP-like
algorithm in terms of accuracy. To the best of our knowledge, this
is the first work presenting algorithm-hardware co-optimization
and demonstrating the realization of DFA, which is an efficient
on-chip training algorithm, for SNNs.

For example, to compare with existing onchip works, Yin
et al. (2017) presented a new BP based training algorithm for
discrete-time SNNs by using a LIF neuron model with a gradient
estimator. This paper introduced a ReLU-like gradient estimation
method to avoid the zero-gradient issue in conventional SNNs
using LIF neurons. However, as the experiment results in Yin
et al. (2017) are based on off-chip training, we guess that this
new BP algorithm still suffers from an efficient on-chip training

method. We think that the main difference of Yin et al. (2017)
and our work is that Yin et al. (2017) proposed a new BP-
based learning algorithm while our work proposes a new BP-
like learning algorithm (i.e., DFA) based on a state-of-the-art
BP algorithm and efficiently implement it in hardware while
delivering competitive accuracy. As a small scale low-power
accelerator, Zheng and Pinaki (2018) proposed a hardware-
friendly STDP on-chip training algorithm. This paper focuses on
capturing the estimated gradients concerning STDP behaviors.
By simplifying the calculation of STDP based gradient for weight
updating, this work presented an efficient on-chip learning
algorithm that can be implemented on hardware. However, this
paper still suffers from accuracy, and the main difference is that
our work is focusing on BP-like training algorithms which have
demonstrated excellent performance in recent years.

However, several challenges should be addressed to achieve
more practical application. Although this paper proposes
hardware-efficient designs, the resource limitation of the FPGA
board does not allow large networks. For instance, we reduced
the input resolution of MNIST dataset from 784 to 196 due to
the limitation. While the proposed DFA based on-chip learning
is demonstrated using relatively small SNNs on FPGA due to
hardware resource limitations, our future work will explore a
number of techniques, such as more advanced neuron model
simplification, architectural level optimization, and/or a larger
FPGA board to demonstrate larger-scale SNNs.

Nevertheless, the main focuses of this paper have been
on extending the DFA concept proposed by Nøkland (2016)
to efficient training of SNNs, and significantly reducing the
hardware cost by algorithm-hardware co-optimization while
maintaining a competitive accuracy. This paper proposes a
novel spike-level direct feedback alignment (ST-DFA) algorithm
for training multi-layer spiking neural networks (SNNs)
with improved bio-plausibility and scalability over traditional
backpropagation algorithms. Moreover, it is demonstrated that
the ST-DFA algorithm with its hardware-friendly optimized
implementation enable efficient on-chip training of FPGA SNN
neural processors while delivering competitive classification
performance for practical speech and image recognition tasks.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

JL implemented the on-board simulation and performed
experimental studies on the Xilinx ZC706 FPGA board. JL and
RZ co-designed the hardware architecture of ST-DFA including
all hardware units, such as S-PSP calculation block and ST-
DFA weight update block. WZ and PL developed the theoretical
approach of Direct Feedback Alignment and provided software
simulation. PL defined and directed the overall research. JL, RZ,
WZ, YL, and PL wrote the paper. RZ and YL performed this work
while being at Texas A&M University.

Frontiers in Neuroscience | www.frontiersin.org 10 March 2020 | Volume 14 | Article 143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. ST-DFA On-Chip Training

FUNDING

This material is based upon work supported by the National

Science Foundation (NSF) under Grant Nos. 1639995 and
1948201, and the Semiconductor Research Corporation (SRC)

under task #2692.001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of NSF, SRC,
University of California Santa Barbara, Texas A&M University
and their contractors. The authors declare that this study received
funding from the Semiconductor Research Corporation. The
funder was not involved in the study design, collection, analysis,
interpretation of data, the writing of this article or the decision to
submit it for publication.

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr.

Circuits Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002). Error-backpropagation in

temporally encoded networks of spiking neurons. Neurocomputing 48, 17–37.

doi: 10.1016/S0925-2312(01)00658-0

Chankyu, L., Syed Shakib, S., and Kaushik, R. (2019). Enabling spike-based

backpropagation in state-of-the-art deep neural network architectures. arXiv

[Preprint]. arXiv:1903.06379.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. (2017). EMNIST: an

extension of mnist to handwritten letters. arXiv [Preprint]. arXiv:1702.05373

doi: 10.1109/IJCNN.2017.7966217

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge: Cambridge University Press.

Jin, Y., Zhang, W., and Li, P. (2018). Hybrid macro/micro level backpropagation

for training deep spiking neural networks. In Advances in Neural Information

Processing Systems, pages 7005–7015.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proc. IEEE 86, 2278–2324.

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Liberman, M., Amsler, R., Church, K., Fox, E., Hafner, C., Klavans, J., et al. (1991).

TI 46-word LDC93S9.

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128 ×128 120 db 15µs

latency asynchronous temporal contrast vision sensor. IEEE J. Solid State

Circuits 43, 566–576. doi: 10.1109/JSSC.2007.914337

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Random

synaptic feedback weights support error backpropagation for deep learning.

Nat. Commun. 7:13276. doi: 10.1038/ncomms13276

Lyon, R. (1982). “A computational model of filtering, detection, and compression

in the cochlea,” in Acoustics, Speech, and Signal Processing, IEEE International

Conference on ICASSP’82, Vol. 7 (Paris: IEEE), 1282–1285.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural

network models. Neural Netw. 10, 1659–1671.

Mostafa, H. (2018). Supervised learning based on temporal coding in spiking

neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235.

doi: 10.1109/TNNLS.2017.2726060

Neftci, E. O., Augustine, C., Paul, S., and Detorakis, G. (2017). Event-driven

random back-propagation: enabling neuromorphic deep learning machines.

Front. Neurosci. 11:324. doi: 10.3389/fnins.2017.00324

Neil, D., Pfeiffer, M., and Liu, S.-C. (2016). “Phased lstm: accelerating recurrent

network training for long or event-based sequences,” in Advances in Neural

Information Processing Systems, eds D. D. Lee, M. Sugiyama, U. V. Luxburg,

I. Guyon, and R. Garnett (Curran Associates, Inc), 3882–3890.

Nøkland, A. (2016). “Direct feedback alignment provides learning in deep neural

networks,” in Advances in Neural Information Processing Systems, eds D. D. Lee,

M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Curran Associates, Inc),

1037–1045.

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015).

Converting static image datasets to spiking neuromorphic datasets

using saccades. Front. Neurosci. 9:437. doi: 10.3389/fnins.2015.

00437

Panda, P., Aparna, A., and Kaushik, R. (2019). Towards scalable, efficient and

accurate deep spiking neural networks with backward residual connections,

stochastic softmax and hybridization. arXiv [Preprint]. arXiv:1910.13931.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988a). Learning

representations by back-propagating errors. Cogn. Model. 5:1.

Rumelhart, D. E., McClelland, J. L., and Group, P. R. (1988b). Parallel Distributed

Processing, Vol. 1. Cambridge, MA: MIT Press.

Schrauwen, B., and Van Campenhout, J. (2003). “BSA, a fast and accurate spike

train encoding scheme,” in Proceedings of the International Joint Conference on

Neural Networks, Vol. 4 (Portland, OR: IEEE), 2825–2830.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do

it. Proc. IEEE 78, 1550–1560.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal

backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 12:331. doi: 10.3389/fnins.2018.00331

Yin, S., Venkataramanaiah, S. K., Chen, G. K., Krishnamurthy, R., Cao,

Y., Chakrabarti, C., et al. (2017). “Algorithm and hardware design of

discrete-time spiking neural networks based on back propagation with

binary activations,” in IEEE Biomedical Circuits and Systems Conference

(BioCAS), (Turin), 1–5.

Zheng, N., and Pinaki, M. (2018). “A low-power hardware architecture for on-line

supervised learning in multi-layer spiking neural networks,” in International

Symposium on Circuits and Systems (ISCAS), (Florence), 1–5.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Lee, Zhang, Zhang, Liu and Li. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 11 March 2020 | Volume 14 | Article 143

https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1109/IJCNN.2017.7966217
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.3389/fnins.2018.00331
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Spike-Train Level Direct Feedback Alignment: Sidestepping Backpropagation for On-Chip Training of Spiking Neural Nets
	1. Introduction
	2. Materials and Methods
	2.1. Background
	2.1.1. Direct Feedback Alignment
	2.1.2. Spike-Train Level Post-synaptic Potential

	2.2. Proposed Spike-Train Level Direct Feedback Alignment (ST-DFA)
	2.2.1. Proposed ST-DFA Algorithm
	2.2.2. Derivation of ST-DFA
	2.2.3. Simplification for Hardware Friendliness

	2.3. SNN Accelerators With ST-DFA On-Chip Training
	2.3.1. Architecture
	2.3.2. Efficient On-Chip S-PSP Calculation
	2.3.3. Efficient On-Chip ST-DFA Implementation

	3. Results
	3.1. Experimental Settings and Benchmarks
	3.2. Classification Accuracies (Software Simulation)
	3.3. FPGA Hardware Evaluations (On-Board Measurement)

	4. Discussions
	Data Availability Statement
	Author Contributions
	Funding
	References

