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Abstract

Introduction: Cognitive impairment is a common symptom of Parkinson’s disease (PD) 

associated with reduced quality of life and a more severe disease state. Previous research has 

shown an association between visuospatial dysfunction and worse disease course; however, it is 

not clear whether this is separable from executive dysfunction and/or dementia. This study sought 

to determine whether distinct cognitive factors could be measured in a large PD cohort, and if 

those factors were differentially associated with other PD-related features, specifically to provide 

insight into visuospatial dysfunction.

Methods: Non-demented participants with PD from the Pacific Udall Center were enrolled (n = 

197). Co-participants (n = 104) completed questionnaires when available. Principal components 

factor analysis (PCFA) was utilized to group the neuropsychological test scores into independent 

factors by considering those with big factor loading (>=.40). Linear and logistic regression 

analyses were performed to examine the relationship between the cognitive factors identified in 

the PCFA and other clinical features of PD.

Results: Six factors were extracted from the PCFA: 1) executive/processing speed, 2) visual 

learning & memory/visuospatial, 3) auditory working memory, 4) contextual verbal memory, 5) 
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semantic learning & memory, and 6) visuospatial. Motor severity (p = 0.001), mood (p <0.001), 

and performance on activities of daily living scores (informant: p<0.001, patient: p=0.009) were 

primarily associated with frontal and executive factors. General sleep disturbance (p <0.006) and 

hallucinations (p=0.002) were primarily associated with visuospatial functioning and visual 

learning/memory.

Conclusions: Motor symptoms, mood, and performance on activities of daily living were 

primarily associated with frontal/executive factors. Sleep disturbance and hallucinations were 

associated with visuospatial functioning and visual learning/memory only, over and above 

executive functioning and regardless of cognitive disease severity. These findings support that 

visuospatial function in PD may indicate a more severe disease course, and that symptom 

management should be guided accordingly.
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Introduction

Cognitive impairment is a common non-motor symptom of Parkinson’s disease (PD) and is 

associated with reduced quality of life, loss of independence, and increased mortality 

(Aarsland, Larsen, Tandberg, & Laake, 2000; Levy et al., 2002; Schrag, Jahanshahi, & 

Quinn, 2000). The nature and extent of cognitive impairment within PD is variable, however, 

and specific cognitive deficits may be differentially associated with severity of other disease-

related features (Caballol, Marti, & Tolosa, 2007). Given the variability in PD symptom 

presentation, a precision medicine approach, in which treatment strategies are tailored to an 

individual’s specific disease-related characteristics, may be particularly appropriate for PD 

(B. Cholerton et al., 2016; Titova and Chaudhuri, 2017). The identification of distinct 

cognitive factors and their associations with other PD-related clinical features may thus 

provide a foundation for specific interventions aimed at alleviating distress associated with 

non-motor symptoms in PD.

Visuospatial dysfunction is commonly reported in PD (Armstrong, 2017; Curtis, Masellis, 

Camicioli, Davidson, & Tierney, 2018). Previous reports have shown an association between 

visuospatial dysfunction and severity of visual hallucinations, gait dysfunction, REM sleep 

behavior disorder, and dementia, all of which may impact quality of life and independence 

and are markers for more severe disease (Factor et al., 2014; Jozwiak et al., 2017; Kelly et 

al., 2015). The etiology of visuospatial dysfunction in PD is multifactorial and not well-

understood, with some evidence that deficits on visuospatial tasks are largely related either 

to the increased task demand associated with impaired executive function, or to the presence 

of more advanced disease and dementia associated with cortical Lewy body accumulation 

(Pal et al., 2018; Papagno and Trojano, 2018). Alternatively, visuospatial dysfunction may 

be separable from executive function in PD and largely the result of disruptions in striatal 

pathways to occipital and/or parietal lobes (Pereira et al., 2009; Siepel et al., 2014).

We previously reported a relationship between reduced visuospatial performance and the 

presence of glucocerebrosidase (GBA) gene variants in the PD Cognitive Genetics 
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Consortium (PDCGC), a large cohort of cognitively and clinically characterized participants 

with PD (Mata et al., 2016). Given this association and to better assess visuospatial 

functioning, we implemented an expanded cognitive battery, with augmented visuospatial 

and visual learning and memory measures in the Pacific Udall Center, a subset of the 

PDCGC. Here, we aim to determine the underlying cognitive factors measured by the 

expanded cognitive battery in non-demented participants with PD, and specifically whether 

distinct visuospatial factors are identified. Secondly, we sought to identify whether the 

resulting cognitive factors are differentially associated with other clinical features of PD, and 

whether these associations can provide insight into visuospatial dysfunction in PD.

Materials and Methods

Participants

Participants were drawn from the Pacific Udall Center of Excellence in Parkinson’s Disease 

Research, a multicenter collaboration with a focus on harmonized clinical and 

neuropsychological evaluation among a prevalent PD cohort (B. A. Cholerton et al., 2013). 

The current study enrolled participants from two Pacific Udall Center sites: the University of 

Washington/Veterans Affairs Puget Sound Health Care System and Oregon Health Sciences 

University/Veterans Affairs Portland Health Care System. All participants met the United 

Kingdom Parkinson’s Disease Society Brain Bank (UKBB) clinical diagnostic criteria for 

PD and were assigned a cognitive diagnosis at a consensus diagnosis conference as 

previously described (B. A. Cholerton, et al., 2013). Those participants aged 50–85 who 

completed at least one visit with an extended cognitive battery (see below) were included (n 

= 248). Thirty-five participants with a dementia diagnosis were excluded and 16 were 

missing cognitive test data, for a total of 197 participants included in the analyses. Co-

participants (n=104) were enlisted to complete questionnaires when available. The 

institutional review board at both sites provided formal approval for the study. All 

participants and co-participants provided written informed consent.

Cognitive variables

The original PUC neuropsychological battery included the Montreal Cognitive Assessment 

(MoCA)(Nasreddine et al., 2005), Hopkins Verbal Learning Test-Revised (HVLT-R)

(Benedict, Schretlen, Groninger, & Brandt, 1998), Logical Memory I and II from the 

Wechsler Memory Scale-Revised(Wechsler, 1987b), Letter-Number Sequencing from the 

Wechsler Adult Intelligence Scale – III (Wechsler, 1997), Digit Symbol and Digit Span 

subtests from the Wechsler Adult Intelligence Scale-Revised (Wechsler, 1987a), Trailmaking 

Test, parts A and B (Strauss, Sherman, & Spreen, 2006), Stroop test (Golden version) 

(Golden, 1978), semantic verbal fluency (animals and vegetables), phonemic verbal fluency 

(FAS) (Strauss, et al., 2006), Boston Naming Test (BNT) (Kaplan, Goodglass, & Weintraub, 

1983), and Benton Judgment of Line Orientation (Benton, Sivan, Hamsher, Varney, & 

Spreen, 1994). Participants included in the current analyses completed an extended 

neuropsychological battery with additional visuospatial and visual learning and memory 

measures: the Brief Visual Memory Test-Revised (BVMT-R) learning trials, recall, and 

copy(Benedict, Schretlen, Groninger, Dobraski, & Sphritz, 1996), a 10-point command 
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clock drawing test, and a 10-point clock copy test (Rouleau, Salmon, Butters, Kennedy, & 

McGuire, 1992) (Supplemental table).

Clinical variables and covariates

Participants and study partners completed a variety of questionnaires and clinical measures 

to assess neuropsychiatric status and performance of activities of daily living. Part 1 of the 

Unified Parkinson’s Disease Rating Scale, Movement Disorders Society revision (MDS-

UPDRS) (Goetz et al., 2008) briefly assesses hallucinations, depression, anxiety, sleep 

problems, and apathy among participants. Depression was further evaluated using the 15-

item Geriatric Depression Scale (GDS) (Yesavage et al., 1982). The 12-item 

Neuropsychiatric Inventory (NPI) (Cummings, 1997) was administered to co-participants to 

assess participant delusions, hallucinations, agitation/aggression, dysphoria, anxiety, 

euphoria, apathy, disinhibition, irritability/lability, aberrant motor activity, sleep 

disturbances, and appetite/eating abnormalities (npitest.net). Detailed sleep information was 

gathered from the co-participant using the Mayo Sleep Questionnaire (Boeve et al., 2013; 

Boeve et al., 2011). The Penn Parkinson’s Daily Activities Questionnaire – 15 (PDAQ-15) 

(Brennan et al., 2016) was completed separately by the participant and co-participant to 

assess impairment in daily activities.

A movement disorders specialist assessed the severity of motor symptoms using the MDS-

UPDRS Part III. Levodopa equivalent daily dose (LEDD) was calculated as described by 

Tomlinson et al. (Tomlinson et al., 2010). The entire coding region of the GBA gene was 

sequenced and APOE alleles ε2/ε3/ε4 were genotyped as previously described (Mata, et al., 

2016; Mata et al., 2014). The presence of GBA variants and APOE ε4 were included in the 

analyses due to previous associations with cognitive decline.

Statistical analyses

Principal components factor analysis (PCFA) was used to reduce the 23 neuropsychological 

test scores into a smaller number of independent factors that account for most of the 

variation and the underlying correlation pattern. Raw test scores were treated as dependent 

variables in linear regression analyses that adjusted for age, education, disease duration, and 

sex, and the resulting standardized residuals were entered into the PCFA. Factors with an 

eigenvalue of 1 or greater were extracted and rotated using a varimax orthogonal rotation. 

Factors were interpreted by considering those with a factor loading magnitude >=.40. Factor 

scores were calculated using the regression method (Thompson, 1951). In the subsequent 

analyses examining the association between the identified factors and other clinical features, 

linear and logistic regression analyses were performed as appropriate with factor scores as 

the independent variables, additionally controlling for total MoCA score, site, APOE ε4, and 

GDS score. Results are presented both before and after controlling for LEDD. Due to 

missing values in GBA carrier status and MDS-UPDRS, these variables were not adjusted in 

the main analyses. However, we include them in follow up sensitivity analyses by excluding 

observations with missing values. The Bonferroni adjustment was used to control the family 

wise type I error set a priori at 0.05; since there were six factor scores, a significance level of 

0.05/6 = 0.008 was used. All analyses were performed in Stata 15.1.
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Results

Participant demographics, clinical characteristics, and cognitive test scores are detailed in 

Table 1. From the 23 cognitive variables, 6 factors were extracted from an independent 

PCFA. These factors accounted for 63% of the total variance and were characterized by 

those measures with the strongest factor loadings: 1) executive/processing speed, 2) visual 

learning & memory/visuospatial, 3) auditory working memory, 4) contextual verbal memory, 

5) semantic learning & memory, and 6) visuospatial. PCFA results are presented in Table 2.

The relationship between factor scores resulting from the PCFA and several concomitantly 

collected clinical measures were evaluated (Figure 1):

Motor

Factor 1 (executive/processing speed) was significantly negatively associated with the MDS-

UPDRS, Part III, the primary measure of motor severity (β = −0.22, SE = 0.81, p = 0.001). 

This relationship remained after controlling for LEDD (β = −0.24, SE = 0.85, p = 0.001).

Mood

Factor 3 (auditory working memory) was significantly negatively associated with 

depression, as measured by the GDS (β = −0.26, SE=0.10, p <0.001). This association 

remained after controlling for LEDD (β = −0.29, SE = 0.10, p <0.001). GDS score was also 

associated with Factor 5 (semantic learning & memory; β = −0.15, SE=0.10, p = 0.04), but 

the association is not significant after correcting for multiple comparisons or controlling for 

LEDD. Mood items from the MDS-UPDRS Part I and NPI were not significantly associated 

with the cognitive factors.

Sleep

Section K (“Nighttime Behaviors”) on the NPI was negatively associated with Factor 6 

(visuospatial) only (OR = 2.4, 95% CI 1.4 – 4.0, p = 0.001), an association that remained 

after controlling for LEDD (OR = 2.1, 95% CI 1.2 – 3.6, p = 0.006). NPI-K subquestions 

indicated that Factor 6 (visuospatial) was significantly negatively associated with difficulty 

falling asleep (OR = 2.9, 95% CI 1.6 – 5.4, p < 0.001; after controlling for LEDD: OR = 2.3, 

95% CI 1.2 – 4.4, p = 0.009) and getting up during the night (OR = 2.2, 95% CI 1.3 – 3.7, p 

= 0.002; after controlling for LEDD: OR = 2.1, 95% CI 1.2 – 3.7, p = 0.009). Factor 5 

(semantic learning and memory) was significantly positively associated with waking the 

spouse/partner during the night (OR=2.8, 95% CI 1.1 – 7.2, p = 0.01); however, this was not 

significant after correcting for multiple comparisons.

The sleep item from the MDS-UPDRS was also significantly associated with Factor 6 when 

a binary variable (none/slight/mild = 0, moderate/severe = 1) was the dependent variable 

(OR = 1.7, 95% CI 1.2 – 2.5, p = 0.004; after controlling for LEDD: OR = 1.5, 95% CI 1.0–

2.2, p = 0.04).

Internal consistency for the Mayo Sleep questionnaire items was low (Cronbach’s α = 0.49), 

thus items for this measure were examined individually. There were no significant 

associations between the cognitive factors and questions related to REM behavior disorder 
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(RBD), sleepwalking, or disrupted breathing. There was a pattern of a negative relationship 

between reported restless leg-associated symptoms and Factor 6 (although none is 

statistically significant after correcting for multiple comparisons): 1) “Do the patient’s legs 

repeatedly jerk or twist during sleep?” (OR = 1.8, 95% CI 1.1 – 3.0, p = 0.02); 2) “Does the 

patient complain of a restless, nervous, tingly, or creepy-crawly feeling in his/her legs that 

disrupts his/her ability to fall asleep?” (OR = 1.8, 95% CI 1.1 – 3.1, p = 0.03); and 3) “Does 

the patient have leg cramps at night?” (OR = 1.7, 95% CI 1.1 – 2.8, p = 0.03). However, 

after controlling for LEDD, the first two questions were no longer significantly associated 

with any of the cognitive factors. General level of daytime alertness was positively 

associated with Factor 1 (more alert = better executive function/processing speed, OR = 1.5, 

95% CI 1.0 – 2.2, p=0.04) and negatively associated with Factor 2 (more alert = worse 

performance on visual learning and memory/visuospatial, OR=1.6 95% CI 1.1 – 2.4, p = 

0.02), both before and after controlling for LEDD, although these associations were not 

significant after correcting for multiple comparisons.

Hallucinations

The presence of co-participant reported hallucinations on the NPI (Y, N) was significantly 

negatively associated with Factor 2 (visual learning & memory/visuospatial; OR=3.0, 95% 

CI 1.4 – 6.6, p=0.006). This association remained after controlling for LEDD (OR = 12.1, 

95% CI 2.5 – 57.6, p = 0.002)

NPI subquestions indicated that Factors 2 (visual learning & memory/visuospatial; OR = 2.6 

95% CI 1.2 – 6.1, p <0.02; after controlling for LEDD: OR = 8.3 95% CI = 1.6 – 43.1, p = 

0.01) and 6 (visuospatial; OR = 2.4, 95% CI 1.1 – 4.9, p = 0.02; after controlling for LEDD, 

not significantly associated with Factor 6) were negatively associated with the presence of 

visual hallucinations, although these do not meet significance after correcting for multiple 

comparisons.

Activities of daily living

For both patient and informant, Factor 1 (executive/processing speed) was significantly 

associated with PDAQ score, both before (informant: β = 0.35, SE=0.91, p=0.001, patient: β 
= .21, 95% CI SE=0.61, p=0.005) and after (informant: β = 0.39, SE=0.90, p<0.001, patient: 

β = .21, 95% CI SE=0.62, p=0.009) controlling for LEDD. For the informant scores only, 

Factor 6 (visuospatial) was also associated with activities of daily living (β = 0.28, SE=0.77, 

p=0.007; after controlling for LEDD: β = 0.25, SE=0.81, p=0.02). However, these 

association are not statistically significant after correcting for multiple comparisons.

GBA status was not associated with any of the cognitive factors, while the presence of an 

APOE ε4 allele was associated with Factors 1 (p=0.03) and 2 (p=0.007); thus APOE allele 

was included as a covariate in all analyses. Follow up sensitivity analyses that additionally 

adjusting for MDS-UPDRS and GBA status did not substantially change the results for the 

above analyses.
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Discussion

In the current study, we sought to identify the underlying cognitive factors in non-demented 

participants diagnosed with PD and specifically hypothesized that distinct visuospatial 

factors would be identified. Our analyses showed that the 23 cognitive variables loaded 

predominantly on six factors, including those associated most strongly with visual learning 

and memory and visuospatial function. Secondly, we hypothesized that the cognitive factors 

would be differentially associated with concomitantly collected disease-related features. We 

found that motor, mood, and performance on activities of daily living scores were primarily 

associated with frontal/executive factors, while sleep and hallucinations were primarily 

associated with visuospatial functioning and visual learning/memory.

As expected in participants with PD, the executive/processing speed factor accounted for the 

largest proportion of variance of all cognitive factors (Dirnberger and Jahanshahi, 2013), 

while the other factors, including visual learning and memory/visuoperceptual, verbal 

contextual memory, auditory working memory, semantic learning and memory, and 

visuospatial function, highlight the variability of cognitive profiles in PD(Kehagia, Barker, 

& Robbins, 2010). Interestingly, the BNT, a measure of confrontational naming, loaded on 

Factor 2 along with visual learning and memory. This is consistent, however, with prior 

literature that found the BNT to correlate more strongly with visuoperceptual skills than 

other naming tasks (Yochim, Kane, & Mueller, 2009). In addition, Mitrushina and Satz 

(Mitrushina and Satz, 1995) examined repeated BNT testing in older adults and found a shift 

between predominantly verbal information processing on the BNT during the first testing to 

predominantly visuospatial processing by the third administration. In the current study, the 

expanded visuospatial battery was implemented at the third or later visit for 60% of sample. 

Impaired confrontational naming in PD is rare (Hoogland et al., 2018), thus it is not 

surprising that reduced performance on the BNT in this sample may be more closely related 

to visual perception than to pure language per se.

We found that the most common cognitive features reported in PD (executive function, 

processing speed, and working memory) were associated most strongly with motor symptom 

severity, depression, and performance of activities of daily living. This is unsurprising, as the 

fronto-striatal circuit disruption from nigro-striatal dopaminergic depletion, which is a 

hallmark of the disease, has previously been associated with both the near-ubiquitous 

executive function decline and myriad motor deficits reported early in PD (Elgh et al., 2009; 

Foltynie, Brayne, Robbins, & Barker, 2004; Kudlicka, Clare, & Hindle, 2011; Uekermann et 

al., 2004). Prior studies have also shown a relationship between depression and worse motor 

function in PD, likely due to dopamine loss in the caudate and subsequent impaired 

signaling in fronto-striatal circuits (Borgonovo et al., 2017; Larsen, Dalen, Pedersen, & 

Tysnes, 2017; Vriend et al., 2014). Finally, performance of activities of daily living are 

associated with executive function and control in both demented and nondemented 

participants with PD (Giovannetti et al., 2012; Higginson, Lanni, Sigvardt, & Disbrow, 

2013; Koerts, Van Beilen, Tucha, Leenders, & Brouwer, 2011).

Of primary interest in the current study, however, were the identified visuospatial factors. 

Outside of executive functions, these cognitive factors were most strongly associated with 
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the clinical measures examined, and were the only factors associated with both sleep 

problems and hallucinations over and above all the other factors. We found significant 

associations between reduced visuospatial function and measures of general sleep 

disturbance (e.g., the NPI and MDS-UPDRS), both before and after controlling for LEDD. 

A wide range of sleep problems, including insomnia, RBD, fragmentation of sleep, and 

daytime drowsiness, are common in PD (Chahine, Amara, & Videnovic, 2016), and reduced 

cognition has been reported in both PD and non-PD populations with sleep disorders (Ju et 

al., 2013; Stavitsky, Neargarder, Bogdanova, McNamara, & Cronin-Golomb, 2012; 

Tsapanou et al., 2016; Tsapanou et al., 2017). Although many studies report primary 

associations between impaired sleep and executive/attention dysfunction, daytime 

sleepiness, fatigue, restless leg symptoms, and obstructive sleep apnea have also been 

correlated with visuospatial dysfunction (Goldman et al., 2013; Kluger et al., 2017; Li et al., 

2018; Olaithe, Bucks, Hillman, & Eastwood, 2018). Visuospatial deficits in PD are related to 

pathology in posterior cerebral regions, including decreased dopamine uptake in the 

occipital lobes and synucleinopathy/Lewy body spreading from subcortical regions to the 

posterior cortex (Armstrong, 2017; Bayram et al., 2019). Posterior lesions have also been 

associated with sleep dysfunction (Radziunas et al., 2018) which may coincide with 

visuospatial deficits in PD. Indeed, Latreille et al. (Latreille et al., 2015) found that lower 

sleep spindle amplitude on EEG in the parietal and occipital areas was specifically 

associated with poorer visuospatial function in participants with PDD.

In contrast to general measures of sleep disturbance, our investigation into specific sleep 

problems commonly associated with PD (e.g., RBD and restless leg symptoms) either found 

no association with the cognitive factors or weak associations that disappeared after 

controlling for LEDD. This is contrary to findings by others, who report reduced cognitive 

function in participants in both RBD alone and among participants with both PD and RBD, 

including attention/executive function, episodic verbal memory, nonverbal learning, and 

visuospatial performance (Chahine et al., 2018; Chahine et al., 2016; Jozwiak, et al., 2017; 

Manni et al., 2013). Generally, however, the presence of RBD is associated with more severe 

overall cognitive impairment, and the combination of cognitive impairment and RBD may 

be a marker for disease severity (Huang et al., 2018; Jozwiak, et al., 2017; Meles et al., 

2018). Our analyses did not include participants with dementia and controlled for global 

cognitive status. Finally, the questions related specifically or non-specifically to restless leg 

syndrome (e.g., leg cramps), may also be associated with influences outside of the central 

nervous system; thus, our weak associations might be spurious. Additional investigation into 

the relationship between RBD, restless leg syndrome, and cognition in nondemented patients 

with PD is needed.

We further report a relationship between visual learning/memory and visuoperception and 

hallucinations. This is consistent with previous literature, where associations between 

visuospatial dysfunction, visual memory, and visuoperception and severity and incidence of 

visual hallucinations have been reported (Factor, et al., 2014; Ramirez-Ruiz, Junque, Marti, 

Valldeoriola, & Tolosa, 2007). However, previous reports commonly included participants 

with dementia in their analyses; as such, visual hallucinations may simply signal a more 

advanced disease state. Importantly, we excluded participants with dementia, controlled for 

executive dysfunction and global cognitive status, and still found a relationship between 

Specketer et al. Page 8

J Clin Exp Neuropsychol. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hallucinations and reduced visual learning/memory and visuoperception. A meta-analysis of 

neuroimaging in PD with visual hallucinations by Lenka et al. (Lenka, Jhunjhunwala, Saini, 

& Pal, 2015) gives insight into the possible underlying pathology, suggesting that visual 

hallucinations may arise from dysfunction in more than one region, but almost uniformly 

result from abnormal top-down visual processes in combination with aberrant functioning in 

frontal lobe structures and frontostriatal circuits. In our study we found that a visual learning 

and memory task loaded on Factor 2 which supports a possible role for the medial temporal 

lobe in visual memory and visual hallucinations in nondemented participants with PD. 

Dopamine signaling modulates long-term potentiation in the hippocampus and hippocampal-

striatal circuits have been shown to be important in visual learning and memory (DeCoteau 

et al., 2007; Frey, Schroeder, & Matthies, 1990), and participants with PD and visual 

hallucinations have reduced hippocampal size and connectivity with the occipital lobe as 

well as reduced metabolism in the temporal lobes (Ibarretxe-Bilbao et al., 2008; Park et al., 

2013). Our results support that, at least prior to dementia onset, visual hallucinations may be 

associated with disruptions in hippocampal-striatal pathways. As hallucinations may also 

occur in response to antiparkinsonian treatments (Factor, Molho, Podskalny, & Brown, 

1995), it is important to note that these associations remained significant after controlling for 

LEDD.

This study has limitations. First, as this is a prevalent sample, we were unable to evaluate 

most participants de novo. Further, although data collection is ongoing, the expanded 

neuropsychological battery was only recently implemented and we were not able to assess 

the progression of cognitive impairment and concomitant changes in clinical symptoms. 

Additionally, co-participant inclusion was limited, thus we did not have data for the full 

sample for the NPI or Mayo Sleep Questionnaire. Those with co-participant data were older 

and had worse motor function than those without co-participant data. Thus, the results 

reported here may be less applicable in certain groups. Alternatively, the reason we did not 

see more associations with NPI data, unlike other studies, may be largely due to reduced 

power or failure to collect in the entire sample. Further, the Mayo Sleep Questionnaire has 

not been validated as a full instrument, and thus may not have sufficiently queried sleep 

issues associated with PD. Finally, we did not find an association between GBA carrier 

status and cognition; however, we previously found this association in a much larger sample 

and the lack of association in the current study is likely due to inadequate power.

In this study, we found that principal cognitive domains, including visuospatial ability, can 

be assessed with an expanded neuropsychological battery in the Pacific Udall Center. 

Interestingly, we found that visuospatial dysfunction relates to sleep impairment and 

hallucinations. These symptoms are associated with a worse disease outcome and cognitive 

profile over and above executive functioning and in the absence of dementia. Our findings 

suggest that clinicians should be attuned to changes in visuospatial function in PD as this 

may indicate a more severe disease course. Hopefully, these findings will help guide 

potential cognitive interventions and lead to treatments that can simultaneously address 

multiple distressing symptoms of PD.
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Figure 1. 
Associations between cognitive factors and clinical features in Pacific Udall Center 

participants with PD.
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Table 1.

Pacific Udall Center participant characteristics

Demographic characteristics n = 197

Age at visit, years mean (sd)
range

67.5 (7.4)
50.1 – 84.8

Education, years mean (sd)
range

16.3 (2.3)
12 – 20

Gender n male (% male) 127 (64.1%)

Disease duration, years mean (sd)
range

11.7 (6.7)
1 – 41

MDS-UPDRS, part 3 mean (sd)
range

23.9 (12.0)
1 – 63

Hoehn & Yahr median
range

2
1 – 4

Geriatric Depression Scale mean (sd)
range

5.5 (1.4)
1 – 10

LEDD, mg mean (sd)
range

730.0 (563.3)
0 – 2960.0

Cognitive tests

MoCA mean (sd)
range

25.9 (2.7)
19 – 30

HVLT-R immediate recall mean (sd)
range

24.7 (5.0)
12 – 35

HVLT-R delayed recall mean (sd)
range

8.8 (2.4)
1 – 12

Logical Memory I mean (sd)
range

12.9 (3.9)
3 – 23

Logical Memory II mean (sd)
range

11.8 (4.1)
2 – 22

BVMT-R immediate recall mean (sd)
range

19.2 (6.8)
2 – 35

BVMT-R delayed recall mean (sd)
range

8.1 (2.7)
2 – 12

BVMT-R copy mean (sd)
range

11.6 (0.7)
8 – 12

Clock-copy mean (sd)
range

9.3 (1.0)
4 – 10

Clock-command mean (sd)
range

9.0 (1.3)
0 – 10

Judgment of Line Orientation mean (sd)
range

12.4 (2.1)
5 – 15

Stroop – words mean (sd)
range

86.9 (17.1)
32 – 139

Stroop – colors mean (sd)
range

61.2 (12.4)
26 – 107

Stroop – color/word mean (sd)
range

35.1 (9.8)
8 – 72

Trailmaking, Part A, seconds mean (sd)
range

34.1 (18.5)
15 – 150

Trailmaking, Part B, seconds mean (sd)
range

88.1 (46.0)
26 – 300

Digit Span Forward mean (sd) 9.0 (1.8)
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Demographic characteristics n = 197

range 4 – 12

Digit Span Backward mean (sd)
range

6.6 (2.2)
2 – 12

Digit Symbol mean (sd)
range

44.4 (11.3)
12 – 75

Letter-Number Sequencing mean (sd)
range

9.9 (2.2)
3 – 16

Verbal fluency: animals mean (sd)
range

19.8 (5.9)
5 – 34

Verbal fluency: vegetables mean (sd)
range

13.1 (4.2)
2 – 24

Verbal fluency: letter mean (sd)
range

45.5 (13.6)
20 – 105

Boston Naming Test mean (sd)
range

28.8 (1.3)
24 – 30

Abbreviations: BVMT-R, Brief Visual Memory Test, Revised; LEDD, levodopa equivalent daily dose; MoCA, Montreal Cognitive Assessment; 
HVLT-R, Hopkins Verbal Learning Test, Revised; sd, standard deviation; MDS-UPDRS, United Parkinson’s Disease Rating Scale, Movement 
Disorders Society revision
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Table 2.

Principal component factor analysis: Results from the Pacific Udall Center

Factor 1: 
Executive/
processing 

speed

Factor 2: 
Visual 

learning/
memory & 
visuospatial

Factor 3: 
Auditory 
working 
memory

Factor 4: 
Contextual 

verbal 
memory

Factor 
5:Semantic 
learning & 

memory

Factor 6: Visuospatial

HVLT-immediate recall 0.16 0.03 0.11 0.38 0.72 0.16

HVLT-delayed recall 0.03 0.11 −0.20 0.32 0.71 0.23

Logical Memory I 0.08 0.10 0.12 0.90 0.14 −0.003

Logical Memory II 0.04 0.19 0.07 0.91 0.14 0.01

BVMT-R immediate recall 0.19 0.85 0.06 0.17 0.07 0.08

BVMT-R delayed recall 0.11 0.87 −0.02 0.20 0.07 0.05

BVMT-R copy 0.05 0.46 0.20 −0.05 0.01 0.35

Clock-copy 0.18 0.16 0.11 0.01 0.17 0.75

Clock-command 0.17 0.15 0.01 −0.10 0.33 0.50

Benton JLO 0.19 0.47 −0.12 0.08 −0.08 0.40

Stroop - word 0.72 0.07 0.33 −0.06 0.14 0.10

Stroop – color 0.80 0.13 0.22 −0.03 0.08 −0.004

Stroop – color/word 0.73 0.22 0.24 0.10 0.07 0.02

Trailmaking, Part A −0.69 0.02 0.20 −0.03 −0.11 −0.30

Trailmaking, Part B −0.66 −0.05 −0.07 −0.15 −0.11 −0.15

Digit Symbol 0.80 0.19 0.04 0.18 0.01 0.10

Digit Span Forward 0.14 −0.04 0.81 0.08 −0.13 −0.03

Digit Span Backward 0.15 0.07 0.75 0.20 0.01 0.09

Letter-Number Sequencing 0.27 0.09 0.60 0.12 0.29 0.08

Verbal fluency: animals 0.51 0.15 −0.07 0.16 0.44 −0.34

Verbal fluency: vegetables 0.41 0.14 0.11 −0.03 0.52 −0.28

Verbal fluency: letter 0.47 0.08 0.36 −0.10 0.32 −0.11

Boston Naming Test 0.08 0.46 0.19 −0.05 0.27 −0.35

Total proportion of variance 0.18 0.10 0.10 0.09 0.09 0.07

Raw test scores were entered into a linear regression that adjusted for age, education, disease duration, and sex, and the resulting standardized 
residuals were entered into the PCFA. Factors with an eigenvalue of 1 or greater were extracted and rotated using a varimax orthogonal rotation. 
Factors were interpreted by considering those with a factor loading magnitude >=.40.

Abbreviations: BVMT-R, Brief Visual Memory Test, Revised; HVLT-R, Hopkins Verbal Learning Test, Revised; JLO, Judgment of Line 
Orientation
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