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Abstract 

Aim: In order to successfully detect, classify, prognosticate, and develop targeted therapies for patients with disor-
ders of consciousness (DOC), it is crucial to improve our mechanistic understanding of how severe brain injuries result 
in these disorders.

Methods: To address this need, the Curing Coma Campaign convened a Mechanisms Sub-Group of the Coma Sci-
ence Work Group (CSWG), aiming to identify the most pressing knowledge gaps and the most promising approaches 
to bridge them.

Results: We identified a key conceptual gap in the need to differentiate the neural mechanisms of consciousness 
per se, from those underpinning connectedness to the environment and behavioral responsiveness. Further, we 
characterised three fundamental gaps in DOC research: (1) a lack of mechanistic integration between structural brain 
damage and abnormal brain function in DOC; (2) a lack of translational bridges between micro- and macro-scale 
neural phenomena; and (3) an incomplete exploration of possible synergies between data-driven and theory-driven 
approaches.

Conclusion: In this white paper, we discuss research priorities that would enable us to begin to close these knowl-
edge gaps. We propose that a fundamental step towards this goal will be to combine translational, multi-scale, and 
multimodal data, with new biomarkers, theory-driven approaches, and computational models, to produce an inte-
grated account of neural mechanisms in DOC. Importantly, we envision that reciprocal interaction between domains 
will establish a “virtuous cycle,” leading towards a critical vantage point of integrated knowledge that will enable the 
advancement of the scientific understanding of DOC and consequently, an improvement of clinical practice.
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Introduction and Current State of Science
The last two decades have seen growing interest in the 
neuroscience of disorders of consciousness (DOC). Sig-
nificant progress has led to the differentiation of clinical 
phenotypes, including the discovery of new syndromic 
entities such as cognitive-motor dissociation (CMD) 
syndrome, a condition characterized by behavioral unre-
sponsiveness paired with evidence of covert conscious-
ness (voluntary brain activity). At the same time, this 
progress has also highlighted the critical limitations in 
our practical ability to diagnose covert consciousness at 
the bedside, predict long-term trajectories and outcomes, 
and enhance neurological recovery with therapies that 
target specific biological mechanisms.

The discovery through functional magnetic resonance 
imaging (fMRI) studies [1–3] and scalp electroencepha-
lography (EEG) [4] that ~15–20% of patients with DOC 
who lack overt behavioral responsiveness may neverthe-
less be covertly conscious highlights the critical need for 
diagnostic tools that rely on brain activity. Although some 
theory-driven approaches already seem promising [5, 6], 
further elucidation of the mechanisms underlying uncon-
sciousness in DOC, as distinct from responsiveness, is 
a fundamental requirement to guide the development 
of new accurate bedside diagnostic tools. Additionally, 
almost 90% of patients with chronic DOC do not recover 
1 year post injury [7]. Accordingly, there is a need to draw 
on large-scale and, ideally, longitudinal clinical stud-
ies to properly model prognostic trajectories. Although 
some new pharmacological (e.g., amantadine, zolpidem) 
and interventional therapies (e.g., deep brain stimulation 
[8], low-intensity-focused ultrasound [9]) have recently 
emerged for patients with DOC, both case reports and 
randomized controlled trials demonstrate only moderate 
success. Thus, a better mechanistic understanding of the 
different pathways leading to altered consciousness after 
brain injury could help develop more effective therapies 
as well as tailor more personalized treatment options to 
specific patients.

In the present white paper, we aim to identify the most 
pressing current gaps in our understanding of DOC and 

strategies for closing those gaps. Because DOCs are char-
acterized by heterogeneity, both in phenotype (arousal 
and cognitive and motor functions) and brain function, 
understanding the specific neural mechanisms of DOC 
will require investigation using integrative perspectives. 
Specifically, we conceptualize three targets for such 
integration: linking brain structure and function, link-
ing microscale and macroscale levels of analysis, and 
combining theory-driven and data-driven approaches to 
scientific discovery. We further envision that enhanced 
synergy between these three domains will provide a 
critical vantage point from which to empower diagnosis, 
prognosis, and treatment of patients, thereby establishing 
a virtuous cycle between scientific advances and clinical 
practice (highlighted in Fig. 1).

Methodology
A 13-member Mechanisms Work Group (co-authors 
of the present white paper) was convened as part of the 
Curing Coma Campaign, Coma Science Work Group to 
identify research gaps and approaches to address these 
gaps. The work group met weekly from June 19, 2020, to 
September 4, 2020, to develop consensus recommenda-
tions and on an as-needed basis while authoring the cur-
rent article.

First, literature review and expert discussion were per-
formed by clinical syndrome: coma, vegetative state/
unresponsive wakefulness syndrome (VS/UWS), mini-
mally conscious state (MCS), and CMD. After a meeting 
with the Coma Science Work Group endotype subgroup, 
a second round of literature review and expert discussion 
was organized to draft the current recommendations, 
grouped by research gap theme. The mechanisms are cast 
in terms of consciousness vs. environmental connected-
ness vs. responsiveness (see below). To make progress on 
understanding the relevant mechanisms, we have iden-
tified three key gaps that need to be filled (Fig.  1): (1) 
brain structure vs. brain function, (2) micro- vs macro-
scale neural mechanisms, and (3) theories vs. data-driven 
approaches.

Fig. 1 Overview of white paper recommendations. In this article, we have subdivided the gaps that exist in the field of disorders of consciousness 
(DOC) research into subdisciplines while stressing their mutual interdependence. The term “subdiscipline” is used for each branch of knowledge 
that makes up the study of DOC. Specifically, we suggest that efforts should be made to integrate structural and functional correlates, micro- and 
macroscale phenomena, and data- and theory-driven perspectives. Within each discipline (e.g., structural correlates), specific gaps should be identi-
fied and novel methods should be selected to answer these gaps and to reach an improved state of the science. Throughout this process, iterative 
integration with other disciplines is desired (bottom; note disciplines “A” and “B” can be replaced by any given subdiscipline of DOC research). Collec-
tively, improved integration between these subfields of DOC is likely to provide the best avenue toward the clinical goals of DOC science: improved 
diagnosis, prognosis, and treatment (center circle). Circular arrows represent iterative processes, whereas two-headed arrows represent bidirection-
ality, e.g., improved diagnosis is likely to allow for more fine-tuned structural and functional correlates of DOC and vice versa

(See figure on next page.)



Fig. 1 (See legend on previous page.)



Results of Gap Analysis
Mechanisms of Interest and Current Gaps: Consciousness, 
Environmental Connectedness, and Responsiveness
Disorders of consciousness are characterized by a wide 
array of symptoms and etiologies. Consequently, a num-
ber of classification schemes across different dimensions 
have been proposed that are based on aspects such as 
cognitive functions [10], awareness [11] and sensory, 
motor, and arousal behavioral functions [12]. With the 
acknowledgment that any one framework cannot fully 
capture all the constructs relevant to DOC, we propose 
to contextualize our recommendations within the frame-
work provided by Sanders et al. [13], which distinguishes 
between consciousness, environmental connectedness, 
and responsiveness (C-EC-R), as outlined below.

Lack of responsiveness remains the clinical criterion 
for DOC. However, there is a clear conceptual distinc-
tion between responsiveness (specifically, nonreflexive 
behavioral responses) and consciousness (presence of 
subjective experience, regardless of what the experience 
is about [13]; note that here we will use this term to also 
encompass awareness). The possibility for a dissociation 
between these two dimensions is sharply illustrated by 
the (rare) case of patients experiencing intraoperative 
awareness during anesthesia, whose unresponsiveness 
due to paralysis is mistaken for evidence of unconscious-
ness [14–16]. Likewise, independent studies during sleep 
and anesthesia (in which retrospective reports can be 
obtained on awakening) demonstrate that subjective 
experience frequently occurs even in the absence of any 
behavioral responsiveness [17, 18]. Within DOC, routine 
assessment based on overt responsiveness may be miss-
ing covert consciousness in about ~15–20% of patients 
[3, 4], a fact that has practical and ethical implications for 
the management of these patients.

In addition to consciousness and responsiveness, a 
third relevant dimension is environmental connected-
ness (as originally proposed in the context of anesthesia 
[13]). Environmental connectedness corresponds to con-
sciousness of the external environment so that what hap-
pens in the environment influences the contents of one’s 
consciousness (unlike, e.g., during some dream states). 
On the basis of this framework of C-EC-R, patients with 
CMD can be characterized as being conscious and envi-
ronmentally connected but not (overtly) responsive. An 
intriguingly similar example of dissociation between 
consciousness and responsiveness is found in patients 
studied under anesthesia by using the isolated forearm 
technique, whereby an inflated cuff on the arm prevents 
it from being paralyzed during general anesthesia [13]. 
Despite the absence of spontaneous behaviors, such 
patients can perform simple commands, such as squeez-
ing the physician’s hand (although the potential confound 

of arousing nociception due to the inflated cuff should 
also be considered). Examples of conscious but environ-
mentally disconnected states include dreaming and dis-
sociative states induced by ketamine; examples of states 
that are conscious and environmentally connected but 
unresponsive are awareness during general anesthesia 
and sleep paralysis, whereby the paralysis that naturally 
occurs during rapid eye movement (REM) sleep persists 
for a short time after awakening [19]. Of course, it is also 
important to consider the notion of behavioral arousal; 
although likely neither sufficient for consciousness 
(given the presence of sleep–wake cycles in patients with 
VS/UWS) nor necessary for it (given the possibility of 
dreams during deep non-REM sleep), arousal may nev-
ertheless be a background prerequisite for responsiveness 
and possibly also for full-fledged environmental connect-
edness (Fig. 2).

Current Gaps in Coma Science
Correctly characterizing each patient in terms of the 
three dimensions described in the C-EC-R framework 
may be valuable for improving diagnosis and determin-
ing the prognosis and appropriate standards of care; for 
instance, it is especially pressing to establish communi-
cation with unresponsive but connected patients and not 
only identify reliable biomarkers for conscious contents, 
such as emotional distress or pain (i.e., the conscious 
processing of nociceptive information), but also identify 
whether some environmental stimuli trigger them (envi-
ronmental connectedness). Additionally, by capitalizing 
on the availability of subjective reports after awakening 
from sleep or anesthesia in the laboratory environment, 
it will be crucial to identify ways to detect environmental 
connectedness based on brain function alone.

By identifying the neural mechanisms that determine 
transitions between the dimensions of the C-EC-R 
framework, it may be feasible to devise targeted treat-
ment strategies aimed at restoring each in their own 
right and to identify which personalized avenues may 
be the most advantageous for a given patient. Specifi-
cally, efforts should be made not only to investigate 
whether specific mechanisms identified from studies of 
anesthesia and sleep [13] could also apply to patients 
with DOC (e.g., to what extent could the isolated fore-
arm scenario constitute a good model for CMD?) but 
also to investigate how these different states differ from 
one another (anesthesia is reversible on a short time 
scale, but DOC may not always be). Additionally, inves-
tigations should seek to identify possible dissociations 
between each of these aspects in subgroups of patients 
with DOC.

Crucially, the limitations of our present ability to dis-
criminate between elements of the C-EC-R framework in 



clinical practice are symptomatic of deeper gaps that need 
to be addressed to obtain a mechanistic understanding of 
DOC. DOC can arise from a variety of causes, highlight-
ing the need for a more comprehensive understanding 
of the intricate interactions between structure and func-
tion and of their temporary vs. permanent nature. How 
brain function in turn determines C-EC-R also needs to 
be clarified, with clear diagnostic utility and prognostic 
value for recovery. Likewise, a complete understanding 
of the mechanisms underlying the presence vs. absence 
of C-EC-R will need to span multiple levels of analysis 
[20] and biological detail: from the cellular and molecular 

microscale to macroscale systems and networks. Recon-
ciling the distinct levels of analysis will require the con-
certed interaction of data-driven approaches combining 
multimodal data from large-scale studies with theoretical 
approaches able to integrate their findings into a coherent 
framework, as well as synthesis through computational 
modeling. Thus, against the backdrop of the clinical need 
to discriminate between consciousness, connectedness, 
and responsiveness in patients with DOC, we envision 
these complementary approaches as establishing a virtu-
ous cycle to drive forward both scientific understanding 
and clinical practice.

Fig. 2 Putative relationships between consciousness, environmental connectedness, and responsiveness (C-EC-R). Illustrative examples are shown 
pertaining to sleep (top ellipse), general anesthesia (bottom ellipse), and disorders of consciousness (middle ellipse). Note that this is not an exhaus-
tive mapping of all possible states of altered consciousness; likewise, this framework does not directly address the question of quantifying residual 
cognitive function, as this can only be properly assessed in responsive patients. Also note that the relative size of the colored circles is not intended 
to reflect relative prevalence



Box 1 Brain connectivity and networks

The term “functional connectivity” (FC) (Fig. 3a) reflects the notion that 
similarity between patterns of activity of different brain regions (in 
terms of statistical dependency) may arise from interactions between 
those regions. At the spatial and temporal resolutions afforded by 
noninvasive neuroimaging techniques in humans, neural activity is 
most frequently estimated in terms of electrophysiology (using EEG or 
magnetoencephalography) or from the blood-oxygen-level-depend-
ent signal measured by fMRI. Activity is simultaneously measured for 
each sensor (for EEG/magnetoencephalography) or each voxel (for 
fMRI) over a period of time.

On the basis of these measurements of brain activity, the most common 
ways to quantify FC are measures of linear association between pairs 
of regional time series (primarily, Pearson correlation, but also methods 
based on phase coherence or spectral properties of the signals), which 
are therefore agnostic to interactions between more than two ele-
ments and ignore the direction of information flow between the two 
regions. However, more sophisticated measures also exist, capable of 
addressing various shortcomings of traditional FC (although often at 
the expense of computational feasibility) [21–26].

Distinct sets of brain regions, termed “resting-state networks,” spontane-
ously organize into consistently cofluctuating assemblies during both 
tasks and also at rest. Prominent among these resting-state networks 
are the frontoparietal control network and the default mode network: 
these networks typically exhibit inversely correlated time courses at rest 
[27, 28], but their interactions are consistently perturbed in uncon-
scious individuals [29, 30].

Box 1 Brain connectivity and networks

Measures of effective connectivity have also been introduced to identify 
directed information flow (from region A to region B and not vice 
versa). Some effective connectivity approaches rely on probabilistic 
accounts to infer the direction of interactions from statistical relation-
ships in the data (e.g., transfer entropy, Granger causality [31–33]). 
Another approach to characterize the directionality and strength of 
interactions, albeit limited to a small number of brain areas, is dynamic 
causal modeling (DCM), which has also been applied to patients with 
DOC [34]. The DCM framework is used to infer the direction of connec-
tivity between regions by comparing possible models of how regional 
signals were generated. First, alternative models are constructed on 
the basis of possible coupling between regions, viewed as nodes in a 
directed network. In a second step, the models are compared through 
Bayesian model selection to identify the model that best explains the 
empirically observed data [35]. Finally, effective connectivity can be 
assessed by a perturb-and-measure approach, in which causal interac-
tions are measured by directly stimulating a subset of neurons and by 
measuring the responses of the rest of the system. In addition to func-
tional and effective connectivity, structural connectivity can also be 
measured in vivo in humans from diffusion magnetic resonance imag-
ing data (Fig. 3b), for instance, through diffusion tensor imaging (DTI), 
which can measure the relative diffusion of water molecules along 
white matter fibers connecting different regions (although without 
providing information about directionality) [36]. Thus, structural con-
nectivity and FC can be related in the same individual [24, 25, 37, 38].

Whether functional or structural, the interactions between brain regions 
can be conceived as a network (Fig. 3c), and the mathematical study of 
networks, known as graph theory, can be used to obtain insights about 
such networks at multiple levels of resolution [39, 40]: from properties 
of individual nodes (e.g., degree, measuring how well connected they 
are [41, 42]) to network modules [26] to macroscale properties such as 
small-world organization [24, 25, 30, 43–45].

Fig. 3 Connectivity in the human brain. a Functional connectivity can be quantified from functional neuroimaging, for example, as the Pearson 
correlation between regional blood-oxygen-level-dependent time series from functional magnetic resonance imaging (MRI). b Structural con-
nectivity can be quantified from structural imaging, for example, as the number of streamlines between regions, estimated by using diffusion MRI. c 
Network analysis can provide information about individual nodes (e.g., identification of high-degree nodes, or “hubs”) as well as mesoscopic proper-
ties (e.g., modular organization) and macroscale (e.g., average length of shortest path between nodes)



Brain Structure vs. Brain Function
Advancing the science of DOC requires a precise map-
ping of the heterogenous structural and functional brain 
alterations observed in DOC to clinically relevant dimen-
sions (e.g., C-EC-R) across a variety of temporal and spa-
tial scales. Although it is sometimes possible to precisely 
map neurological dysfunction to a specific location of 
damaged tissue, it is important to emphasize that brain 
regions are intricately interconnected, such that local 
structural or functional changes may well have far-reach-
ing or even global repercussions on other components 
of the network (diaschisis [46]). Classical lesion-based 
methods have found success focusing on specific regions 
of interest (ROI); however, future work should attempt 
an integration of these approaches with the notion that 
there exists a many-to-many mapping between brain 
structure and functional brain states [47]. A full mapping 
between structural and functional correlates of DOC will 
require the leveraging of multimodal neuroimaging and 
neurophysiological techniques, combined with novel 
analytical methods for integrating them, including the 
emerging approach of whole-brain computational mod-
eling (Box 2).

Historically, circumscribed lesions and changes in 
activity within damaged brains have been used to identify 
ROI and model simplified circuits that may be relevant to 
DOC symptoms. For instance, the influential mesocircuit 
model proposes that because of pathological changes fol-
lowing severe brain injuries, a reduction of thalamocor-
tical and thalamostriatal outflow withdraws drive to the 
frontal cortex and striatum, thus implicating basal gan-
glia–thalamocortical circuits in the symptoms of DOC 
[10]. Compared to network or computational perspec-
tives, these focal lesion-based models have the benefit 
of providing clear targets for treatment (e.g., via deep 
brain stimulation, low-intensity-focused ultrasound, 
pharmacological). For instance, emphasis on the role of 
the thalamus in DOC has compelled the development of 
techniques for its stimulation, which have been associ-
ated with improved behavioral responsiveness in a subset 
of patients with DOC [9, 48]. Yet the precise functional 
roles of key ROI, such as the thalamus, remain far from 
fully characterized; indeed, it remains unclear why nearly 
full ablation of the thalamus does not appear to result in 
a loss of consciousness in rodent models [49] despite its 
consistent association with DOC. Thus, focal characteri-
zation of structure–function relationships retains unique 
value but must continue to be refined.

For instance, although the original mesocircuit model 
emphasizes pallido-thalamo-cortical communication, 
this model has been updated by the recent discovery of 

direct structural connections between the globus pal-
lidus and the cortex, first in rodents [50] and then in 
humans [51] by using DTI. In parallel, DCM (see Box 1) 
was applied to the mesocircuit and specifically implicated 
pallidocortical communication in the transition between 
states of consciousness under anesthesia [52]. This exam-
ple illustrates the kind of multidisciplinary workflow 
that should inform the placement of ROI within increas-
ingly complex frameworks (network, computational) for 
understanding the structural and functional relationships 
underlying DOC.

Compared to ROI approaches, the structural correlates 
of DOC may be further detailed by employing mass-uni-
variate, voxel-wise analysis, which can produce mappings 
of behavioral symptoms to structural alterations at the 
millimeter scale (e.g., voxel-level symptom mapping [53, 
54]; also see voxel-level shape analysis [55, 56]). Similar 
approaches have been applied to the structural connec-
tome derived from DTI (known as connectome-based 
lesion symptoms mapping [57, 58]). Although these 
methods allow for a more spatially precise connection 
between large-scale functions (e.g., behavioral arousal) 
and structural damage, they do not capture the perhaps 
more elusive reorganizations in functional networks that 
often follow structural insult and that ultimately produce 
changes in behavior (e.g., diaschisis) as well as inadequate 
or maladaptive compensatory mechanisms, which may 
also produce DOC symptoms. Indeed, regions that are 
only secondarily affected may be particularly promising 
treatment targets because of their relative retained struc-
tural integrity, which may hold greater potential to reach 
preinjury levels of functioning. To capture the relation-
ship between gray matter atrophy, white matter discon-
nection, and functional interactions, there is a need to 
better integrate structural correlates with the full range of 
functional modalities available to us instead of behavioral 
symptoms alone.

A jumping-off point for multimodal integration in 
DOC may be to overlay the structural correlates of DOC 
with the healthy human connectome (both structural 
and functional) to derive likely locations for a diaschisis 
effect, a method that avoids the often challenging process 
of multimodal data collection within patients themselves 
[59, 60]. Such an approach could be used to build whole-
brain computational models, including the known struc-
tural correlates of DOC and known large-scale functional 
correlates (Box 2).



Box 2 Whole-brain computational models

Whole-brain computational models represent a pow-
erful set of tools to study macroscale mechanistic 
questions in neuroscience [62–64]. Such models 
typically combine two fundamental ingredients 
(Fig. 4a): (1) information about brain network 
structure (e.g., obtained from diffusion-weighted 
imaging in humans or invasive tract tracing in 
animals) and (2) a model of regional neural activity, 
ranging from Kuramoto or Hopf oscillators to the 
dynamic mean-field model obtained by mean-field 
reduction of integrate-and-fire spiking neurons 
with excitatory and inhibitory populations [65]. The 
complex interactions of these two key compo-
nents can give rise to rich and biologically realistic 
functional dynamics analogous to those observed 
from fMRI and EEG [65, 66]. Although the required 
level of neurobiological detail will vary according to 
the specific question under investigation, the more 
biologically inspired models (e.g., dynamic mean-
field) can also be enriched with further informa-
tion, such as regional myelination or the regional 
distribution of specific receptors obtained from 
positron-emission tomography (PET) [64, 67–70]

Importantly, in silico computational models offer sev-
eral advantages: their parameters are fully available 
to inspection and manipulation by the researcher, 
and they can be perturbed in ways that would not 
be possible in either humans or animals [67–70]. 
Computational modeling allows formulation and 
testing of specific mechanisms, a key feature not 
provided by other techniques (e.g., neuroimag-
ing). Moreover, the same model can be subjected 
to different kinds of perturbations to investigate 
which pharmacological or structural interventions 
have equivalent results on the model’s function 
(Fig. 4b), a powerful avenue to interrogate potential 
similarities between anesthesia and DOC. Finally, 
the advent of computational models offers the 
unique promise to develop personalized models 
from each patient’s multimodal neuroimaging data, 
and subsequently perform systematic perturbation 
of the model to evaluate the potential effects of 
different treatment approaches, with the ultimate 
goal of informing which therapeutic modalities 
may be applicable for a patient

However, multimodal data collection in patients with 
DOC—and new methods for merging modalities with 
minimal information loss [60]—will be necessary to 
account for the inevitable translational gaps between 
healthy patients, computational models, and real patients 
with DOC. Some recent studies have pioneered these 
approaches; for instance, EEG markers have been linked 
to subcortical damage in acute [71] and chronic [72] 
DOC, and recent evidence indicates that preserved frac-
tal (self-similar) character of structural brain networks is 
associated with covert consciousness on the basis of fMRI 
response to mental imagery tasks [73]. Inspiration for 
future joint investigations of structure and function may 
be drawn from other models of disrupted consciousness, 

such as anesthesia, in which links between structural and 
functional networks have recently been identified [24, 
38].

To achieve clinical relevance, it will be crucial not only 
to collect increasingly abundant and multimodal data 
but also to distill from them the biomarkers that are 
most predictive of consciousness, connectedness, and 
responsiveness, either in terms of brain states or infor-
mation structures, which may better explain how func-
tions such as C-EC-R emerge instead of only from where 
[62]. For instance, the framework of connectome har-
monic decomposition [47, 74] allows for functional brain 
activity to be decomposed in terms of different contri-
butions of the human structural connectome [47]. Such 
connectome harmonics are wave-like patterns of spatial 
oscillations that represent how information spreads over 
the structural connectivity of the human brain. Through 
this approach, a common neural signature was recently 
identified between reduced consciousness in DOC and 
under anesthesia [74] and thus may represent a general 
signature of consciousness that can inform theoretical 
interpretations.

Of course, a plethora of other measures have emerged 
in recent years to describe network properties, including 
graph-theoretic and information-theory-based meas-
ures. The perturbational complexity index (PCI), which 
measures the complexity of EEG signals following causal 
perturbation by pulses of transcranial magnetic stimula-
tion (TMS), appears particularly adept at detecting cov-
ert consciousness during sleep and anesthesia, as well 
as in patients with DOC, without the need for behavio-
ral response [6]. Other measures of this kind, although 
perhaps less accurate for diagnosis, have also shown 
significant prognostic value [41, 75]. Future approaches 
should seek relationships and convergence between met-
rics derived from information theory, graph theory, and 
dynamical systems theory and strive to connect them 
with structural measures. Contemporary examples 
include the recent link found between PCI and subcorti-
cal atrophy [76] and the recent association between focal 
cortical lesions and the generation of pathological slow 
waves, disconnection, and lost complexity [77, 78].

Alongside sleep or anesthesia, seizures present yet 
another way to interrogate the generalizability of brain 
states to the C-EC-R framework in unique contexts (e.g., 
presence of fast-spiking high metabolism in seizures 
compared with anesthesia and DOC). This is especially 
relevant given that specific deficits in C-EC-R can all 
present during seizures in patients with chronic epilepsy 
[79–81]. The loss of informational complexity typically 
observed during seizures [82] and the restored behavioral 



Fig. 4 Overview of whole-brain computational modeling to integrate multimodal and multiscale data. a Whole-brain models combine a model 
of local regional activity with information about connectivity between regions. Additional information can be provided about neuroanatomy (from 
structural magnetic resonance imaging [MRI]), brain function (from functional MRI), and neurobiology (e.g., receptor density distribution obtained 
from in vivo positron-emission tomography [PET]). b Models can be systematically perturbed at different spatial and temporal scales, intervening at 
the level of individual regions or their connections



arousal following subcortical (pons, thalamus) stimula-
tion during focal seizures in rats [83] suggests that gen-
eralizability is likely to be found; however, this area is ripe 
for more investigation.

Importantly, the first steps toward the integration of 
structure and function in DOC are largely taking place 
by experimental, analytic, and computational integration 
of the various neuroimaging methods that probe macro-
scale phenomena. However, a full mapping of structure–
function relationships must inevitably dive deeper into 
the microscale neural substrate on which macroscale net-
works arise. Indeed, modeling the biological correlates 
of DOC across all spatial scales is likely to improve the 
location of individual patients within the heterogeneous 
space of DOC manifestations (e.g., as defined by C-EC-
R). Thus, in the next section, we detail the gaps that exist 
in our understanding of microscale neural underpinnings 
of DOC and coma and how macro and micro levels of 
understanding may be bridged.

Linking Micro‑ and Macroscales
A comprehensive understanding of DOC requires that 
insights from macroscopic and mesoscopic levels of 
inquiry sampled by neuroimaging are integrated with 
insights from more microscopic scales: the relevant con-
tributions at the systems, cellular, genetic, and molecular 
levels. Because these can largely only be studied directly 
in animal models, bridging this gap necessitates a closer 
association of preclinical and clinical research and the 
generation of hypotheses that can be bidirectionally 
tested in both animal and human research approaches.

Animal models that allow relevant direct measure-
ments of such microscopic facets remain limited for 
coma [84] and fully absent for VS/UWS and MCS. The 
development of functionally relevant animal models 
will need to distinguish between the various neurologi-
cal events (e.g., traumatic brain injury, anoxia, hypoxia 
among others) associated with DOC and the subsequent 
neurological syndromes of DOC (e.g., MCS, UWS/
VS) [85, 86] to characterize both etiology-specific and 
generalizable DOC mechanisms. This could be further 
enhanced through comparison with results from sleep 
and anesthesia research, in which microscopic mecha-
nisms have been more comprehensively probed in pre-
clinical work [87], producing mechanistic frameworks 
that span from whole-brain phenomena, such as indi-
vidual susceptibility, to anesthetic-state transitions (neu-
ral inertia), all the way to genetic susceptibility factors for 
anesthesia [38, 88, 89]. Indeed, work in rodents and corti-
cal slices alike has recently demonstrated that neuronal 
“off” periods determine a dramatic collapse of large-scale 
interactions and complexity during non-REM sleep and 
anesthesia [90–92], which can also be assessed by using 

EEG coupled with TMS in humans with brain damage 
[77, 78].

In terms of experimental approaches, novel noninva-
sive in vivo optogenetic techniques allow for the modula-
tion of very specific and deeply seated targets in animal 
models [93, 94]. Leveraging these technological develop-
ments will enable systematic hypothesis-driven investi-
gations of mechanisms that have been suggested both in 
previous anesthetic, sleep, and lesion studies in both ani-
mals and humans. Importantly, combining optogenetic 
stimulation with simultaneous high-resolution neuro-
imaging [95] could provide biomarkers to serve as direct 
translational interfaces between animal and human 
research.

Firstly, a systems-level microscopic perspective 
requires a comprehensive investigation of subcorti-
cal structures in neuroimaging given the implications 
of these structures in animal and translational research 
across trauma, anesthesia, and sleep. Specifically, the 
historical dichotomy between the cortex as the sub-
strate of contents of consciousness and the thalamus 
and brainstem as substrates of arousal has oversimpli-
fied the various and diverse roles of subcortical systems 
[96]. As a first step, efforts should be directed toward a 
detailed mapping of how key subcortical structures (e.g., 
thalamus, brainstem nuclei, and basal ganglia) interact 
with specific cortical layers by using high-field structural 
and functional neuroimaging and complementary ani-
mal models [97, 98]. A relevant example of how current 
oversimplified views of the subcortical–cortical interplay 
can be refined into region- and lamina-specific accounts 
is provided by Redinbaugh et  al. [97], who used tha-
lamic stimulation in the anesthetized macaque to reveal 
that consciousness-relevant thalamic influence differs 
between deep and superficial cortical layers.

Similarly, critical insights at the microscopic systems 
level are to be gained from the brainstem neuromodula-
tory nuclei, which have been extensively studied in ani-
mals by using anesthetic and lesion approaches [99–101]. 
Their associated transmitter systems and brain-wide neu-
romodulatory projections have been variously implicated 
as causing coma [60, 102, 103]. In healthy patients, they 
have been found to possibly drive both tonic and phasic 
large-scale in  vivo brain activity [104–106]. Established 
and novel single-photon emission computed tomogra-
phy approaches [107] and innovative magnetic resonance 
sequences (e.g., magnetization transfer images [108]), 
combined with increased magnetic resonance field 
strengths, will allow these nuclei and their brain-wide 
projections to be more directly probed. These approaches 
should delineate whether dysfunction of these nuclei 
alters their modulation of the whole-brain connec-
tome, which in turn may cause the striking macroscopic 



network disruptions commonly observed in DOC. This 
should use complementary approaches in both animal 
and patient research as well as computational modeling. 
Specifically, recent identification of the dopaminergic 
system’s relevance for wakefulness from anesthesia mod-
els has begun to provide a mechanistic foundation of why 
dopamine may have emerged as a key pharmacological 
treatment target in DOC [99, 109–112]. To maximize 
therapeutic potential, comprehensive assessments of 
associated brainstem nuclei should also aim to delineate 
whether their dysfunctions in patients with DOC are pre- 
or postsynaptic using approaches, such as those dem-
onstrated by Fridman et  al. [113], combining PET with 
bolus administrations of pre- or postsynaptically acting 
pharmacological agents to characterize a presynaptic 
dopaminergic release deficit in patients with DOC.

Further progress along the microscopic perspective 
requires that differential involvements of particular neu-
ronal types and subtypes in consciousness alterations be 
delineated. These studies will largely have to be delivered 
by using single-unit recordings and conditional expres-
sion approaches in novel animal models to delineate 
the relevance of neuronal types, e.g., pyramidal neu-
rons [114]. For instance, anesthetic-induced decoupling 
between apical and basal compartments of layer 5 pyram-
idal neurons in rodents impairs large-scale functional 
integration in the brain [115]. These animal experiments 
can, however, also be complemented by work in human 
neuroimaging by using whole-brain transcriptomic maps 
from microarray data, as demonstrated by Craig et  al. 
[116], who used this approach to delineate that GABAe-
rgic cortical interneuron subtypes are differently affected 
in anesthesia.

Indeed, it is key to not only characterize the involve-
ment of different neuronal subtypes but equally charac-
terize the role of glia and glial subtypes in DOC [117], 
especially given that widespread white matter damage is 
commonly associated with these conditions [118, 119]. 
Both animal models of glial modulation and alteration in 
response to trauma/anoxia [120] and new approaches in 
future neuroimaging studies [121] will have to construc-
tively integrate white matter structure and function [121, 
122]. An area of particular promise is the study of how 
microglia mediate systemic and regional inflammation 
following both traumatic brain injury and anoxia [123], 
leading to DOC. PET ligands for activated microglia and 
concomitant longitudinal collection of inflammatory 
and cell death markers in blood and/or cerebrospinal 
fluid should also distinguish inflammation in acute and 
chronic phases of DOC [124]. Animal models should aim 
to distinguish neuroprotective and pathogenic inflamma-
tory effects in  vivo [125] and distinguish whether phar-
macological intervention can induce neuroprotective 

states, leading to more favorable outcomes. Similar mul-
timodal techniques can also be used to begin to probe the 
roles of other glial cell types, such as astrocytes, whose 
role in overall homeostasis of the central nervous system 
has been demonstrated in traumatic brain injury and 
thus may play a similar role on the DOC spectrum [126, 
127].

Finally, the subcellular and thus most microscopic level 
holds great promise for future explorations. In particular, 
it is necessary to identify genetic and molecular media-
tors of clinical progression and outcome in DOC. Beyond 
relying on analogies from anesthesia, it is required to 
delineate specific receptors and particular pathways 
that may be associated with the development or persis-
tence of DOC. Although no specific genetic factors have 
yet been associated with DOC, genetic risk factors for 
adverse outcomes in traumatic brain injury/anoxia serve 
as useful and possibly intertwined starting points [128]. 
However, because human genome-wide association stud-
ies require prohibitively large population sizes, insights 
across all other levels of microscopic analysis (see Fig. 5) 
should be combined into biologically and physiologically 
relevant collections of gene candidates to be assessed 
with approaches such as transcriptome-wide association 
studies [129]. These could identify viable genetic candi-
dates that in turn could be incorporated into both animal 
(assessing, e.g., loss-of-function and gain-of-function 
alterations) and human experiments (e.g., using micro-
array data [116]), thereby feeding back relevant, testable 
knowledge across all levels of analysis at which we need 
to consider DOC mechanisms as well as the theoretical 
frameworks that build on them. 

Theory vs. Data‑Driven Approaches
Recent research continues to enable a better understand-
ing of the neuronal causes and clinical manifestations of 
DOC. Among the approaches that have recently been 
developed, we may distinguish purely empirical ones and 
those driven by assumptions of certain theories of con-
sciousness. However, in their current state, it seems that 
both theories and data-driven approaches are unable to 
make predictions precise enough to enable a clear dis-
tinction between the neural mechanisms of the three 
dimensions of the C-EC-R framework. Yet this mecha-
nistic understanding would carry immense clinical and 
ethical significance. For example, one of the key issues 
for clinicians is the ability to better predict the presence 
vs. absence of pain in unresponsive patients [130] and 
what may trigger it. Obtaining such diagnostic biomark-
ers would require a mechanistic understanding of the 
foundations of presence vs. absence of both conscious-
ness and environmental connectedness [13] without reli-
ance on behavior alone. Thus, a convergence between 



data-driven metrics (behavioral and neural) and theo-
retical perspectives on consciousness and environmental 
connectedness is needed to improve our ability to esti-
mate the degree of residual consciousness and environ-
mental connectedness (e.g., the presence of suffering) in 
unresponsive patients.

Recently, we have witnessed a formidable growth of 
new metrics based on neuroimaging [131] for the diag-
nosis of consciousness and the prognosis of recovery 
after severe brain injury. For example, various studies 
have shown a reduction in entropy (a measure of sig-
nal diversity or unpredictability) when consciousness 
fades, e.g., in sleep, anesthesia, and DOC [30, 61, 132, 
133]. Although measures of this kind may demonstrate 
impressive predictive power, it remains unclear if certain 
metrics are relevant for consciousness per se or rather 
only represent epiphenomenal correlates (e.g., decline in 
entropy might be observed when transitioning from fast 
to slow oscillatory activity during anesthesia), and the 
above-mentioned EEG complexity has also been dissoci-
ated from responsiveness in anesthetized rodents [134]. 
Thus, although appealing, relying on promising but theo-
retically ambiguous data-driven metrics in a clinical set-
ting runs the risk of introducing a discrepancy between 
what is intended to be detected (e.g., consciousness) and 
what is being measured; a similar problem is the so-called 
black box in medical artificial intelligence [135], whereby 

classification (diagnosis) and prediction (prognosis) can 
be successful but for opaque reasons [135].

Various prominent theories of consciousness tend to 
emphasize different neurophysiological underpinnings. 
For example, integrated information theory (IIT) sug-
gests that consciousness requires a specific kind of causal 
interaction between elements of the system capable of 
supporting the integration of information [136]. On the 
basis of its early theoretical concepts [137–139] that 
explicitly linked consciousness to complexity, defined as 
coexistence of functional differentiation and functional 
integration in the brain, measurement of EEG responses 
to magnetic perturbation (TMS) led to successful detec-
tion of residual awareness after brain injury (PCI [5]). 
Alternatively, the global neuronal workspace theory pro-
poses that information processed in parallel by special-
ized modules needs to compete for access to a global 
workspace of frontoparietal circuits, whereupon it is 
integrated and subsequently broadcasted to the entire 
brain, becoming available for conscious processing [140–
142]. Some measures derived from graph theory (e.g., 
“small-worldness,” which reflects the balance of local seg-
regation and global integration in a network [40]) have 
been argued to capture a decrease in such broadcasting 
in conditions of fading responsiveness [30, 43, 45, 143, 
144]. However, there is still a need to more specifically 
associate these theoretical frameworks (among the many 

Fig. 5 Conceptual overview of levels of analysis to be considered in disorders of consciousness (DOC) research across the microscopic-to-macro-
scopic spectrum. Gradients indicate the capability of a technique to make measurements relevant to the level indicated above, thus highlighting 
gaps and possible translational interfaces. Human neuroimaging has produced macroscopic network biomarkers and certain regions/layers whose 
disruption is associated with DOC. For inquiries at more microscopic scale, animal models are indispensable, in which experimental manipulations 
(DREADD, optogenetics, lesion approaches, etc.) allow for direct mechanistic investigations, which can produce insights that can in turn be tested in 
humans in vivo (e.g., by using pharmacological approaches). The wider usage of high-field neuroimaging in both humans and animals will produce 
particularly relevant integrations of these levels, which will also serve to produce the type of data required to enable the generation of truly mecha-
nistic computational approaches (e.g., whole-brain modeling). Altogether, these levels of analyses and models are complementary and synergistic 
for the discovery of the biological mechanisms of DOC



others) with concrete biomarkers so that empirical data 
may more clearly inform on the validity of particular 
theoretical interpretations over others. To do so, there 
is a pressing need to explicitly clarify, for example, the 
constructs of integration and information, as featured in 
different theoretical accounts, as well as their underlying 
assumptions.

In response to the current gaps and inconsisten-
cies identified above, both data- and theory-driven 
approaches should advance toward unified terminol-
ogy and contents that can be readily compared. First, 
we should aim for precise theoretical predictions for 
environmental disconnection and unconsciousness 
that are distinct from behavioral responsiveness, both 
at the information level and in terms of possible bio-
logical mechanisms. Indeed, there can be distinct bio-
logical mechanisms leading to the same functional or 
informational end point (e.g., multiple possible causes 
leading to brain states of low complexity). Both data- and 
theory-driven biomarkers for DOC should first be veri-
fied in conditions in which subjective reports are avail-
able (sleep, anesthesia, seizures) and then be precisely 
described in relation to their target: the distinction in 
C-EC-R (see Fig. 2).

To ameliorate the inconsistencies outlined here, theo-
ries should help to identify markers that may be most 
discriminative, and in the case of existing data-driven 
markers, their proponents should be able to explain their 
relevance to particular theoretical perspectives. Ideally, 
data-driven approaches should focus on a comprehensive 
set of markers indexing different biological levels, e.g., 
from metabolism and resting-state EEG/fMRI measures 
to effective connectivity or task-based paradigms. Simi-
larly, comprehensive theoretical frameworks should span 
different descriptive levels (e.g., circuit level, information 
level, and topological level) and explicitly connect their 
predictions to different types of empirical markers.

We acknowledge that comparisons between existing 
theories are challenging because they sometimes oper-
ate on different definitions of consciousness. Further-
more, biological mechanistic frameworks, such as the 
mesocircuit hypothesis [10], may be compatible with a 
mathematical framework, such as IIT, when viewed as 
providing the required background conditions (e.g., neu-
romodulators maintaining adequate excitability) that 
enable the physical substrate of consciousness itself to 
function [76, 145]. Although some recent efforts have 
attempted to reconcile concepts derived from different 
theories of consciousness [146, 152], a direct involve-
ment of the proponents of each theory in an adversarial 
context is most helpful to identify commonalities and 
differences in theoretical predictions and come up with 
specific experiments through which their predictions can 

be explicitly compared. For example, some incompat-
ible predictions of global neuronal workspace and IIT 
are now being explicitly tested [147]. Ultimately, such 
adversarial collaboration may provide different degrees of 
data-driven support for different theoretical frameworks 
to make inferences about the presence of consciousness 
and/or environmental connectedness in patients with 
DOC.

Conclusion and Future Directions
In this position paper, we suggest that bringing together 
and integrating different levels of analyses and modali-
ties, different scales, and different approaches, while at 
the same time attending to discrete relevant dimensions 
(C-EC-R), will prove a challenging but vital approach 
to push forward our mechanistic understanding of 
DOC (Table 1).

To achieve these ambitious goals, the field will need to 
leverage multimodal data in the same patients over time 
but also in diverse patients and across different states of 
altered consciousness (e.g., sleep, anesthesia, seizures), 
as well as in animal models, to enable the generalization 
of results. Several categories of techniques stand out for 
their ability to provide both improvements within each 
area and further integration between them, namely, (1) 
increasingly multilevel animal models, (2) analytic tech-
niques for aggregating the various neural correlates of 
DOC (e.g., machine learning), and (3) increasingly multi-
level whole-brain computational models.

Although direct animal models of DOC remain absent 
and our ability to disentangle consciousness from respon-
siveness in animals remains limited because of subjective 
reports being unattainable, animal models continue to 
be an important avenue for expanding our understand-
ing of the biological mechanisms of DOC. Specifically, 
the expansion of multimodal methods for experimen-
tal manipulation in animals provides opportunities to 
selectively probe mechanisms and neuronal populations 
in the brain. Such work in animals could provide trans-
lational bridges from foundational microscale alterations 
and effectors to the neuroimaging findings commonly 
observed in patients with DOC [148] and thus catalyze 
the identification of translatable treatment targets and 
strategies.

To make sense of the wealth of data that such increas-
ingly multimodal and multivariate approaches will pro-
duce, interrogation through new analytic tools will also be 
called for. Machine learning based on neuroimaging data 
has already been used to predict prognosis in patients 
with DOC [41, 42] as well as to differentiate states of con-
sciousness (wakefulness from DOC or anesthesia) [75]. 
Nevertheless, predictive models derived from machine 
learning can help to both reduce redundancy between 



metrics and identify synergy between many identifiable 
neural correlates of DOC to distill clinically relevant pre-
dictions (e.g., probability of recovery, likelihood of covert 
consciousness).

In this vein, the increasing richness of empirical data 
can be leveraged to develop increasingly realistic com-
putational models of DOC. In silico whole-brain models 
offer an especially promising avenue, with their potential 
to combine macroscale information about brain structure 
and function with considerations of microscale neurobi-
ology [62–64] (Box  2) as well as related empirical data 
and theoretical perspectives at multiple levels (e.g., how 
systems-level accounts of DOC interact with information 
perspectives). Indeed, successful models of anesthetic 
states have already been put forth [149–151]. Therefore, 
computational models could provide means to address 
each of the three gaps we have identified, with the poten-
tial to aid personalized medicine.

Throughout this article, we have emphasized that 
closing the gaps we have identified must be understood 
as a synergistic endeavor. Addressing gaps at one level 
(e.g., the relationship between micro- and macroscale) 
will also inform our understanding of the interactions 
between brain structure and function. At the same time, 
closer translational interfaces between these areas of 
study will thereby inevitably emerge. Likewise, in addi-
tion to addressing the specific questions and challenges 
outlined here, large-scale multimodal data sets across 
humans and animals will provide the basis on which 
data-driven approaches and subsequent modeling can 
be developed further and refined. Finally, bidirectional 

interaction between scientific investigation and clinical 
practice will continue to play a fundamental role, with 
models and biomarkers informing prognosis and treat-
ment while being informed by clinical insight, engender-
ing a virtuous cycle. Nevertheless, we do not consider 
bridging these gaps as the end point of coma science but 
only as a new vantage point—a vantage point of inte-
grated knowledge across levels, imaging modalities, and 
theoretical approaches—from which to pursue our goal: 
curing coma.
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Table 1 Future research needs for  investigating mechanisms of  consciousness toward  improved diagnosis, prognosis, 
and treatment of DOC

C-EC-R consciousness, environmental connectedness, and responsiveness, DOC disorders of consciousness

Research need: establish a framework for differentiating clinical subtypes of DOC with concepts of C-EC-R

Research need: identify links between structural brain damage and abnormal brain function in DOC
Form a complete mapping of DOC structural damage to functions of interest across multiple temporal and spatial scales

Identify structural correlates of relevant biomarkers of brain function in DOC patients derived from different approaches, e.g., information theory, graph 
theory, and dynamical systems theory

Research need: provide an integrated understanding of DOC across biological micro‑ and macroscales
Develop clinically relevant animal models of DOC for translational research approaches

Identify the role of subcortical structures and their interplay with the cortex in heterogeneous DOC

Associate microscale (neuronal and nonneuronal), and subcellular (molecular and genetic) mediators, with in vivo manifestations in patients with DOC

Research need: induce integration between theory‑driven and data‑driven approaches
Develop precise theoretical predictions and further biomarkers to address each dimension of the C-EC-R framework

Build a comprehensive set of data-driven and theory-driven biomarkers addressing different levels of analysis

Compare and develop existing theories in adversarial collaboration between theory leaders

Research need: integrate levels of description, imaging modalities, and theoretical approaches
Analyze multilevel and multimodal data from large-scale data sets to construct more realistic computational models of DOC

Develop personalized medicine models to guide treatment based on individual patients’ multimodal data
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