
UC Davis
UC Davis Previously Published Works

Title
Meltos: Multi-Sample Tumor Phylogeny Reconstruction for Structural Variants

Permalink
https://escholarship.org/uc/item/8p91r6sx

Journal
Bioinformatics, 36(4)

ISSN
1367-4803

Authors
Ricketts, Camir
Seidman, Daniel
Popic, Victoria
et al.

Publication Date
2020-02-15

DOI
10.1093/bioinformatics/btz737
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8p91r6sx
https://escholarship.org/uc/item/8p91r6sx#author
https://escholarship.org
http://www.cdlib.org/


Phylogenetics

Meltos: multi-sample tumor phylogeny reconstruction

for structural variants

Camir Ricketts1,2,†, Daniel Seidman1,†, Victoria Popic3, Fereydoun Hormozdiari4,

Serafim Batzoglou3 and Iman Hajirasouliha2,*

1Tri-Institutional Training Program in Computational Biology & Medicine, New York, NY 10065, 2Department of Physiology and Biophysics,

Institute for Computational Biomedicine, Englander Institute for Precision Medicine, The Meyer Cancer Center, Weill Cornell Medicine

of Cornell University, New York, NY 10021, 3Department of Computer Science, Stanford University, Stanford, CA 94305 and 4Department

of Biochemistry and Molecular Medicine, MIND Institute and Genome Center, University of California, Davis, CA 95616, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that in their opinion, the first two authors should be regarded as joint First Authors.

Associate Editor: Alfonso Valencia

Received on December 15, 2018; revised on August 10, 2019; editorial decision on September 19, 2019; accepted on September 25, 2019

Abstract

Motivation: We propose Meltos, a novel computational framework to address the challenging problem of building
tumor phylogeny trees using somatic structural variants (SVs) among multiple samples. Meltos leverages the tumor
phylogeny tree built on somatic single nucleotide variants (SNVs) to identify high confidence SVs and produce a
comprehensive tumor lineage tree, using a novel optimization formulation. While we do not assume the evolution-
ary progression of SVs is necessarily the same as SNVs, we show that a tumor phylogeny tree using high-quality
somatic SNVs can act as a guide for calling and assigning somatic SVs on a tree. Meltos utilizes multiple genomic
read signals for potential SV breakpoints in whole genome sequencing data and proposes a probabilistic formula-
tion for estimating variant allele fractions (VAFs) of SV events.

Results: In order to assess the ability of Meltos to correctly refine SNV trees with SV information, we tested Meltos
on two simulated datasets with five genomes in both. We also assessed Meltos on two real cancer datasets. We
tested Meltos on multiple samples from a liposarcoma tumor and on a multi-sample breast cancer data (Yates et al.,
2015), where the authors provide validated structural variation events together with deep, targeted sequencing for a
collection of somatic SNVs. We show Meltos has the ability to place high confidence validated SV calls on a refined
tumor phylogeny tree. We also showed the flexibility of Meltos to either estimate VAFs directly from genomic data
or to use copy number corrected estimates.

Availability and implementation: Meltos is available at https://github.com/ih-lab/Meltos.

Contact: imh2003@med.cornell.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

While many investigations into cancer-driving genomic variants
focus on somatic single-nucleotide variants (SNVs) due to their rela-
tive ease of identification, somatic structural variants (SVs) have
also been shown to be a driving force behind common cancers such
as triple-negative breast (Kawazu et al., 2017), small-cell lung
(Govindan et al., 2012), neuroblastoma (Pugh et al., 2013), high-
grade serous ovarian (Network, 2011), esophageal (Cheng et al.,
2016) and castration-resistant prostate cancers (Viswanathan et al.,
2018).

Unfortunately, accurate SV detection is a challenging task, especial-
ly in cancer datasets, where it is additionally confounded by tumor

heterogeneity. Spatial heterogeneity in tumor samples often results in
the need for multiple biopsies to more accurately characterize the diver-
sity of somatic mutations. Indeed recent studies have shown that this
heterogeneity can lead to ineffective patient treatments (Bozic and
Nowak, 2014; Diaz et al., 2012). For these reasons, it is imperative
that any genome-wide analysis carried out on cancer samples be done
with a holistic view of the tumor evolutionary history and with special
attention given to the possibility of subclonal somatic variations. This
has inspired efforts in presenting both SNVs and SVs as joint contribu-
tors to variation (Easton et al., 2017). Both SNVs and SVs can contrib-
ute to malignant transformation of tumors and there have been
examples of there being a high correlation between SVs and SNVs.
Both classes of variation have also been shown to sometimes arise from
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the same underlying mechanism such as homologous recombination
deficiency in breast and ovarian cancer (Funnell et al., 2018). These
studies have suggested that incorporating both classes of variants can
lead to more accurate results. Therefore, as personalized medicine
begins to drive the shifting paradigm in cancer therapy, identifying ac-
tionable driver mutations in a robust way is highly important. Thus,
leveraging multi-sample whole genome sequencing (WGS) to also iden-
tify somatic SVs as part of the whole spectrum of somatic mutations, is
increasingly becoming valuable. Especially when considering that sin-
gle cell sequencing presents the ideal potential for assessing heterogen-
eity but the sparsity of the data, allelic dropout and costs remain a
significant limitation of this approach (Yuan et al., 2017). Current
tools that aim to cluster SNVs and SVs highlight the need for an ap-
proach that captures phylogenetic information and provide insights
into joint intra-clonal evolution of SNVs and SVs (Cmero et al., 2017;
Easton et al., 2017; Eaton et al., 2018).

Additionally, characterizing early and late somatic mutations
only present in subclones is integral to informing potential successful
combination therapies for tumors and avoiding the selection of re-
sistant subclones (Morrissy et al., 2016; Wang et al., 2016). The
ability to detect mutations and subclones that occur at a low preva-
lence and frequency is also a significant issue in downstream variant
analysis. While standard short-read sequencing platforms revolu-
tionized our capacity to sequence whole genomes of tumor samples
in recent years, identifying low prevalence somatic variations is still
a very challenging task. This is particularly the case for structural
variation discovery because of the fundamental limitations of stand-
ard short-reads (Alkan et al., 2011). As a result, call sets produced
by the state-of-the-art SV discovery methods such as (Hormozdiari
et al., 2009; Layer et al., 2014; Rausch et al., 2012) and their succes-
sors suffer from a high false discovery rate and predictions from dif-
ferent tools often do not agree with each other even in germline
genomes (Alkan et al., 2011). Indeed the somatic SV discovery prob-
lem in cancer genomes is more complex and challenging in the pres-
ence of tumor heterogeneity and complex rearrangements.

While the phylogenetic relationship between somatic SNVs has
been utilized to study the sub-clonal structure of heterogeneous
tumors, this same relationship among SVs has not been studied to
date due to several additional challenges. In particular: (a) difficultly
in detecting SVs and estimating their variant allele fractions (VAFs)
(b) presence of simultaneous catastrophic events such as chromo-
thripsis, as well as dramatic copy number changes or loss of hetero-
zygosity (c) poor detection signals in low-coverage WGS.

Indeed in recent years, several algorithms for automatic recon-
struction of cancer phylogeny trees has been developed by focusing
on SNVs (Deshwar et al., 2015; Donmez et al., 2017; El-Kebir et al.,
2015; Hajirasouliha et al., 2014; Jiao et al., 2014; Malikic et al.,
2015; Marass et al., 2016; Popic et al., 2015; Satas and Raphael,
2017; Yuan et al., 2015; Zare et al., 2014). While a limited number
of clonality studies on CNVs and SVs in tumor samples exist, they
all either do not consider the structural changes (i.e. just use changes
in copy number profiles) or do not utilize cancer phylogenetic rela-
tionships (Deshwar et al., 2015; Eaton et al., 2018; Ha et al., 2014;
McPherson et al., 2017; Oesper et al., 2014; Roth et al., 2014).

Cancer phylogeny trees, which will also be referred to as lineage
trees throughout this paper, are a means of organizing a series of
mutations, in this case both SNVs and SVs, into a data structure
that represents an order in which the mutations occurred within the
cell lines of the samples in question. Each node in the tree contains a
series of mutations that share the same presence profile across the
samples, which means that these mutations were called in the exact
same set of samples, along with similar variant allele frequencies.

These nodes are connected by directional edges, and the edges
can only be formed if the nodes involved follow these set of rules
that we refer to as evolutionary constraints and are mathematically
presented in Equations (9), (10) and (11):

• A predecessor mutation cannot be present in a smaller subset of

these samples.
• A mutation cannot have a VAF higher than that of its predeces-

sor mutation (except due to CNVs).

• The sum of the VAFs of mutations cannot exceed the VAF of a

common predecessor mutation.

In this study, we employ algorithmic and heuristic innovations
to tackle the problem of reconstructing cancer phylogeny trees using
SVs and address several challenging issues connected to this prob-
lem. In particular, we aim to utilize lineage trees built more reliably
from somatic SNVs to learn about the evolution of SVs in a
multiple-sample scenario. We also aim to use this a means of helping
to reduce the current false discovery rate of existing somatic SV call-
ers, especially for subclonal and relatively low-frequency SVs. This
indeed allows us to advance our understanding of the entire land-
scape of somatic variations present within heterogeneous tumors.
We attempt to cluster both somatic SNVs and SVs to explain the
evolution of somatic variation and identify subpopulations of muta-
tions that may be informative when designing targeted treatment for
tumors. We do these developments using multi-region WGS data to-
gether with deep, targeted sequencing data when available, allowing
us to more accurately assess the diverse genetic profile of tumors
and provide more precise insights than those concluded using a sin-
gle sample from the primary tumor.

In this work, we explore the hypothesis that many somatic SV
events (e.g. midsize deletions, inversions, short interspersed nuclear
elements insertions), similar to somatic SNVs, are the result of clo-
nal evolution in cancer samples and correspond to tumor phylogeny.
Thus, if we build the tumor lineage tree using high-quality SNVs,
where potentially detection, VAF estimation and tree reconstruction
is much easier, the tree can act as a guide for SV assignments. The
approach of integrating SNV and SV signatures has been shown to
be beneficial by other groups as well (Funnell et al., 2018).

To that end, we present Meltos, a novel approach to estimate the
variant allele frequency of somatic SVs from multi-region WGS sig-
nals and producing the most likely tumor lineage tree containing
SNVs and SVs based on the data. Our probabilistic framework
allows us to assess multiple types of signals taken from the data sim-
ultaneously and more accurately calculate the VAF of SV events
while also allowing for the use of VAF and cancer cell fraction
(CCF) estimates taken from other tools. Meltos uses a novel frame-
work to assign SV clusters on the branches of the given lineage tree,
while augmenting the tree topology if needed to allow for cases of
independent evolution of SVs.

We tested Meltos on simulated datasets to ensure that Meltos is
able to place SV events at the appropriate location in a lineage tree
provided the existence of the ground truth. We also assessed the
VAF estimation method through this process and used SVClone
(Cmero et al., 2017) generated VAFs as well to investigate Meltos
assignments using corrected VAF estimates. To ensure the utility of
our method in real data scenarios, we applied it to multi-region
breast tumor samples obtained from patient PD9770 in a study by
Yates et al. (Yates et al., 2015). Tumor regions and matched normal
samples were sequenced and SV calls were further validated by asso-
ciated copy number changes and used as a measure of true positive
and false positive calls in this individual (Section 3.2). We also
applied Meltos on a multi-sample liposarcoma dataset collected and
sequenced at Stanford University School of Medicine that is believed
to have undergone chromothripsis. This dataset consists of seven
spatially distinct samples on which variant calling was done.

2 Materials and methods

2.1 Overview
The Meltos algorithm is designed to augment a lineage tree that was
built using SNV data with SVs from the same dataset, in order to le-
verage the higher confidence lineage tree made from SNVs as evi-
dence for the presence of the SVs in question. To do this, the
algorithm takes as input the BAM file of spatially distinct samples
from which it extracts necessary read counts, as well as sets of SV
calls and SNV calls from the same dataset, along with the precon-
structed lineage tree on those same SNVs. It then filters the input for
confidence based on read depth, and calculates variant allele
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frequencies (VAFs) from the read data. From there, the distribution
of SV and SNV VAFs are matched and clustered together. SVs that
have similar VAFs to clusters of SNVs are assigned to the lineage
tree where their presence profile allows. Then, clusters of leftover
SVs are made into new potential nodes for the tree, and evolutionary
constraints (Section 1) are used to see if there are any viable loca-
tions within the tree to insert the new nodes. This assignment pro-
cess is summarized in Supplementary Figure S3. The underlying
assumption being that there is a true underlying clonal structure of
the tumor, of which a tree with only SNVs is just a subset.
Therefore, the result of this approach is a more complete lineage
tree with both SNVs and SVs represented within the phylogeny.
Supplementary Figure S1 demonstrates the general workflow of our
method.

2.2 Input and preprocessing
Given a collection of WGS samples, ideally obtained from several spa-
tially distinct regions and a matched normal sample, an SV caller is
used to identify a list of potential calls among these samples. For ex-
ample, we can use an enhanced version of TARDIS (Soylev et al.,
2017), a standalone SV discovery tool capable of clustering signals for
a wide range of SV event types, or LUMPY (Layer et al., 2014) another
widely-used SV calling tool. TARDIS is based on our previously pub-
lished tools Variation Hunter/CommonLAW (Hormozdiari et al.,
2011), and can leverage multiple samples simultaneously. In addition
to discordant read-pairs, it integrates split-read and read-depth signals
to further improve the precision of SV calls.

Note that while we utilized TARDIS, other SV callers can be also
used in this step. Some other notable SV callers with specific focus
on somatic events include NovoBreak, a local assembly based tool
(Chong et al., 2017), or Weaver (Li et al., 2016), an allele-specific
quantifier of structural variations.

Somatic single nucleotide variants (SNVs) and their associated vari-
ant allele frequencies (VAF) are also obtained from the same dataset. A
common strategy for obtaining a high-quality set of SNVs is perform-
ing extra targeted deep sequencing on the SNVs sites initially detected
using WGS (Ding et al., 2012). When additional deep sequence data
are available, the VAF of SNVs can be estimated more robustly and
with higher precision. Given a high quality set of SNVs and their esti-
mated VAFs across different samples, we then build an accurate SNV
tumor lineage tree where nodes correspond to clusters of SNVs. This
step can be done using available methods such as LICHeE (Popic et al.,
2015). A list of potential SV events and their associated WGS signals
together with a lineage tree built from SNVs, is the final input to our
method, Meltos. A script for preparing input for Meltos in the correct
format is also provided in Meltos repository.

2.3 VAF estimation for SVs
Meltos is designed as a multi-purpose tool. It first estimates the vari-
ant allele frequencies of SVs using the given information from
whole-genome signals that are combined within a maximum likeli-
hood formulation. The signals are obtained by quantification of
reads after realignment in the region of a given SV event. Discordant
read pairs, concordant read pairs, breakpoint read depth and split
read information are all considered for an accurate estimation of the
VAF of each SV.

This implementation extends the number of signals used for VAF
calculation in order to provide better estimates than what we have
seen with other tools such as Breakdown (Fan et al., 2014).
Breakdown uses maximum likelihood estimation approach but does
not utilize breakpoint read depth in its estimate. Moreover, the util-
ity of Breakdown is unfortunately limited to only large-scale dele-
tion events and not other types of SVs.

In each sample i, we first estimate the variant allele frequency,
vi,j of the candidate SV j from the whole genome sequence signals.
We use a maximum likelihood approach, by first calculating the
probability of seeing the SV j, given the observed number of support-
ing discordant paired-end reads di,j, the average observed depth of
coverage ni;jðaÞ and ni;jðbÞ, the observed number of concordant reads

ci,j and the observed number of split reads si, j. We obtain ni;jðaÞ and
ni;jðbÞ by the alignment of concordant reads over breakpoints of the
candidate SV [similar to the method used in (Sindi et al., 2012)].
Note that, for simplicity, we just consider somatic SV events in
regions where polyploidy was not reported. We also expect that the
vast majority of somatic events are indeed heterozygous. While this
approach is still a simplified model (e.g. it does not account for
multi-breakpoint overlapping events or complex SVs such as chro-
mothripsis), we demonstrate its utility as a first step.

Let Pi;j;k be the probability that the candidate SV j has a variant
allele frequency equal to kð0 � k � 0:5Þ in a given sample i.
Assuming the well-defined Poisson distribution model form whole-
genome sequencing data, we extend the approaches presented in
(Fan et al., 2014; Sindi et al., 2012), in particular to utilize more sig-
nals taken from the data such that:

Pi;j;k ¼ Pðni;jðaÞjkÞ � Pðni;jðbÞjkÞ � Pðsi;jjkÞ � Pðdi;jjkÞ � Pðci;jjkÞ (1)

where ni;jðaÞ and ni;jðbÞ are the number of reads covering left and
right breakpoints of the candidate SV, respectively, si,j is the number
of split reads supporting the variant, di,j is the number of discordant-
ly mapped read pairs and ci,j is the number of normal read pairs in
the candidate SV interval. Counts can be modeled using a Poisson
distribution, across multiple sequencing libraries for each sample, so
that the likelihood function for SV j in sample i having VAF k can be
described as:

Poisðkn; nðaÞÞ � Poisðkn; nðbÞÞ � Poisðks; sÞ � Poisðkd; dÞ � Poisðkc; cÞ
(2)

Each lambda parameter is estimated separately using the follow-
ing functions, where t is the total number of reads, ‘avg is the average
fragment length, k is the variant allele frequency, r is read length, g
is the haploid genome length and w is the window size. It is import-
ant to note that GC correction is also implemented where necessary
and the deepTools (Ramrez et al., 2016) software package is used to
create GC-corrected bams.

kn ¼
t

g
� r � ð1� kÞ (3)

ks ¼
t

g
� 2r � k (4)

kd ¼
t

g
� ð‘avg � 2rÞ � k (5)

kc ¼
t

g
�w � ð1� kÞ (6)

Using a discrete list of possible values of k, we identify the value of k
which maximizes the likelihood of what we observe in the data.

Once we have estimated the VAFs for the input SVs, we deter-
mine the mean and SD in each sample over all input SVs. We then
do the same for the SNVs used to construct the lineage tree. We map
the distribution of SNV VAFs onto the distribution of the SV VAFs
by replacing the mean and SD of the SNV VAFs with that of the
SVs. This is accomplished by treating each sample overall as a
Gaussian distribution for SNVs and SVs. We modify the values of
the SV VAFs so that they correspond to a value from the SNV distri-
bution for the same sample with the same number of SDs from the
mean as the SV had in its own distribution. We do this in order to
make comparisons between the distribution of VAFs from SVs and
SNVs possible, as the equations for each of the two types of VAFs
are quite different.

VAF0i;SV ¼ li;SNV þ
ðVAFi;SV � li;SVÞ

ri;SV
� ri;SNV (7)

Where i is a particular sample from the input, l represents the
mean of the VAF values for sample i, either from the SVs or SNVs
and r is the SD.
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2.4 SV assignment algorithm
We present our SV assignment technique in multiple steps below:

Step 1. Creation of presence profiles from SV VAFs

First, we create presence profiles for each SV in the input based on
the estimated VAF for each SV in each sample. This is done by com-
paring each of the VAFs to a pair of experimentally determined
thresholds. If the VAF in question is below the lower threshold, we
assign an absence in that sample and if the VAF in question is above
the upper threshold, we assign a presence in that sample. If it falls
between the two, we assign an ambiguity to that presence profile,
which is resolved in a later step. The set of all non-ambiguous SVs
will be referred to as R and the set of all ambiguous SVs as A.
These thresholds are tunable parameters and protect against mis-
calls by SV callers. These profiles define the subset of samples a
variant occurs in where the underlying assumption is that a variant
present is more samples is more likely to have occurred before those
in less samples. The parameters govern the binary profile assigned
to an SV and therefore can have an important effect on which clus-
ters/nodes it is assigned to. We expect that it captures most of the
topology of the true underlying evolutionary tree. Parameter values
that result in too large of a range then subclonal SVs can be inter-
preted as clonal due to being falsely called as positive in some
samples.

Step 2. Initial clustering

We take the VAFs from the centroids of the nodes in the input SNV
lineage tree, pool them with the VAFs from R and we bin all of these
values based on matching presence profiles. We cluster the VAFs
within each of these bins with a Gaussian EM algorithm. Each of
these clusters now has a corresponding Gaussian distribution as a
bi-product of the clustering process, which is used to make future
comparisons.

Step 3. Resolution of ambiguous SV profiles

We take the SVs from A and the SVs from R that formed a cluster
with a number of members below a user-given threshold, call this
union of sets U and we compare the SVs in U to the remaining clus-
ters made from R, call this set of clusters C, using a heuristic based
on the Gaussian distribution of the cluster from C, which approxi-
mates the probability that the distribution of that cluster could have
produced the VAFs from the member of U in question: for a com-
parison between an SV x 2 U and an existing cluster n 2 C with
sample set S:

Dðx; nÞ ¼
Y

8 i2S

1

2pn:r2
i

e
�ðxi�n:li Þ2

2n:r2
i (8)

If this probability is high enough, we modify the presence profile
of x to match the profile of n. If there is no cluster for which x is suf-
ficiently probable, x is omitted from the rest of the process and is
not assigned to the final tree, as we have insufficient evidence to
place it into the phylogeny.

Step 4. SV assignment to nodes

With the new presence profiles for SVs in place, we repeat the clus-
tering process from Step 2, but the remaining SVs into ambiguous
and non-ambiguous are not separated. We then iterate through the
clusters produced by this method, and find the clusters containing
centroids from the SNV lineage tree. All SVs that share a cluster
with one of those centroids are considered sufficiently probable to
have been produced by the same Gaussian distribution as the VAFs
from the SNVs. We therefore conclude that they belong in the same
node, and we place the SVs into the lineage tree in the node corre-
sponding to that centroid. We then take the remaining clusters that
did not contain one of the original tree’s centroids, and we create
tree nodes for all such clusters which have more members than the
user-given threshold from Step 2. SVs still in clusters below this

threshold are not considered for addition to the tree, and are omit-
ted from further analysis.

Step 5. Determining possible node additions

We convert the remaining clusters into lineage tree nodes, preserving their
mean and variance from the Gaussian process, as well as all SV assign-
ments from the cluster. We then collect all of these nodes into a set, P.

Step 6. Producing valid tree modifications

8p 2 P, we then find all the locations in the tree at where p could po-
tentially be added to the tree by assigning p as a child of a node al-
ready present in the lineage tree, and reassigning a subset of that
node’s children as p’s children by breaking edges in the existing tree
and creating new edges. Let’s call the total set of all edges needing to
be broken and needing to be made to make a change to the tree E.

We confirm whether or not each of the edges that would be
formed by enacting E meets the same evolutionary constraints used
to create the original lineage tree. Suppose u and v are two possible
nodes, one of which is already present in lineage tree T and the other
is being investigated as a possible addition. The edge u! v is only
possible if the two nodes satisfy the following three conditions 8i:

u:VAFi � v:VAFi � �uv (9)

if u:VAFi ¼ 0; then v:VAFi ¼ 0 (10)

X

c s:t: ðu!cÞ2T

c:VAFi � u:VAFi þ � (11)

Where � and �uv are experimentally determined allowed error
parameters. If all such edges to be created in E meet all three con-
straints, we add that set of tree modifications to a set N.

Step 7. Assignment of heuristic values

8E 2 N we assign a value based on a summation of a heuristic for each
edge made by enacting E, and a heuristic for each edge broken by enact-
ing E. For a comparison between 2 nodes n and m with sample set S:

Dðm; nÞ ¼
Y

i2S

1

2pn:r2
i

e

�ðm:li�n:li Þ2

2n:r2
i

Y

i2S

1

2pm:r2
i

e

�ðn:li�m:li Þ2

2m:r2
i (12)

This heuristic is based on the probability of the Gaussian distri-
bution of each node on the edge producing the centroid of the other
node. When considering all the edges that are made or broken in E,
we create a heuristic value via the following formula:

h ¼
X

u;v s:t: ðu!vÞ2M

Dðu; vÞ �
X

u;v s:t: ðu!vÞ2B

Dðu; vÞ (13)

where M is the set of edges to be made in the current change, and B
is the set of edges to be removed from the tree in the current change.
The values of the newly created edges in E are added to the total,
while the values of edges broken in E are subtracted from the total.
By attempting to maximize this heuristic, we are trying to make the
changes to the tree which result in creating the most probable edges
while breaking the least probable edges.

Step 8. Addition of new nodes

We find the set E 2 N with the maximum value generated by
Equation (13), and now we make the modifications to the tree listed
in it. We then remove all E in N that contained the node which was
just added to the tree. Finally, we return to Step 6. It is important to
note here that SV-only nodes are allowed by Meltos to be added to a
tree in various locations as shown in Supplementary Figure S2. SV-
only nodes contain, as the name suggests, no SNVs and only SVs
that cluster together and cannot be placed in an existing SNV node.
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3 Results

3.1 Experimental simulated data
3.1.1 Simulated dataset 1—SV assignment

We sought to assess Meltos’ ability to make SV assignments using
simulated genomes containing SNVs and SVs. We developed a new
method based on the POMEGRANATE (https://github.com/viq854/
pomegranate) algorithm that would allow us to carry out the initial
cell population simulations with both SNVs and SVs. We utilize this
new approach in our pipeline to generate simulated trees.

The algorithm creates a germline cell population containing no
explicit mutations, and treats this as the root of the phylogenetic
tree being generated. In a series of iterations, the algorithm chooses
with a given probability whether or not a cell line mutates, thereby
producing a child branch in the tree, or dies and is removed from the
simulation. We create a baseline tree of cell populations containing
simulated SNVs (Table 1) in this fashion. We then choose a sub-
sample of cell populations in this tree to serve as the sample set for
our later analyses, and we introduce known deletions given in the in-
put into those samples. These deletion breakpoints were taken from
TARDIS calls on a breast cancer dataset and used to propagate SVs
down the tree from the initial cell population into any offspring cell
populations, thus keeping the tree consistent with its own muta-
tions. The mutations in these sample simulations, as well as the tree
structure of the simulated phylogenetic tree, serves as the truth set
for our later analyses.

We take those cell populations with lists of mutations, and pro-
duce a fasta file based on the hg19 reference genome, modifying var-
iants at sites dictated by the simulation for SNVs and applying
deletions according to the specifications in the input set of SVs by
omitting sequence from the fasta. We use this process to create five
simulated single-cell-line samples from the same lineage with an
average of 33 SVs per sample (Table 1). We then use DWGSIM
(https://github.com/nh13/DWGSIM) to generate reads with an aver-
age coverage of 50x from the fasta sequences modified with our
simulated mutations. A fraction of reads cover each variant pro-
duced by the simulator and the resulting VAFs are also affected by
variance in simulated coverage.

Finally, we align the generated reads to the reference genome
using bwa (Li and Durbin, 2009) and create bam files using sam-
tools (Li et al., 2009). These serve as the input to TARDIS (Soylev
et al., 2017), which produces the SV calls we use to test our own
algorithm.

We then compare the mutations successfully placed into nodes in
Meltos output with the original truth set, and check to see if the tree
structure is consistent. We then count the number of SVs that
appeared in corresponding correct locations in the final tree based
on their presence in our simulated truth set.

Meltos was able to successfully assign 156 of 185 SVs (84%) in
simulated genomes (Fig. 1) to nodes that correspond to the nodes
those mutations belonged to in the true tree from the simulation.

Initially, 199 deletions were generated in the five simulated
genomes but 185 of the SVs were recovered TARDIS SV calling.
These 185 were then used as input into the Meltos pipeline. Further
refinement of the VAF estimation may be necessary in order to as-
sign the 29 SVs that Meltos was not able to assign to the tree. CNVs
were not simulated in this dataset so does not lead to variability in
estimates.

It is important that Meltos is able to place a majority of SVs that
fit within the evolutionary context of the tumor in the correct nodes.
As a novel approach to this new problem, Meltos is clearly able to
place a large number of SVs in the tree. One limitation of Meltos’
approach is that these assignments are dependent on the accuracy of
VAF estimates. It is important that Meltos is able to not only infer
VAFs but also use VAF estimates from other tools. Variant allele fre-
quency estimation for SVs is still a largely unexplored problem,
SVClone (Cmero et al., 2017) is one of the few tools outside of
Meltos to tackle SV VAF estimation. SVClone (Cmero et al., 2017)
is an available tool which estimates variant allele frequency for SVs
using a different approach. SVClone infers and clusters CCFs of SV
breakpoints and is able to take into account purity, ploidy and copy-
number information. It uses a decision tree to infer SV directionality
and counts supporting and non-supporting reads utilizing a linear
adjustment factor for purity where necessary. These counts are then
used in calculating a VAF using a Bayesian Dirichlet Process mixture
model that is implemented using Markov-Chain Monte-Carlo. This
provided the opportunity to explore Meltos assignments with VAFs
corrected for associated copy-number.

SVClone estimated VAFs were obtained for simulated SVs and
used for assignment. Meltos was able to assign 167 of 185 SVs
(90%). Therefore with both approaches Meltos is able to capture a
vast majority of the SVs and their appropriate relation to the SNVs
in the tree. Given that VAF estimation for SVs is still prone to incur-
ring error, having the ability to fit this large majority of the SVs is a
promising step.

3.1.2 Simulated dataset 2—Joint CNV and SV assignment

Using a similar simulation architecture to the previous, we simulate
a set of 11 genomes with POMEGRANATE. We do this by creating
a phylogenetic tree with random SNV mutations, and then inserting
deletions and duplications into the tree based on positions and
lengths taken from known SVs in an input dataset, as previously
described in Section 3.1.1. The 11 genomes come from 5 randomly
selected regions of that simulated phylogenetic tree, and each of the
genomes in these regions is collected together into a simulated tumor
sample. These sampled genomes work as approximations of related
cell populations found in different regions of a tumor as the tumor’s
phylogeny progresses, and are meant to serve as a proxy for tumor
samples of a real analysis. We created fasta files for each of these 11
genomes, sampled reads from each and collected the reads together
in a ratio that matches the expected cell fraction ratio for each of the
tumor samples, with greater than half of the reads of each sample
taken from a mutation free fasta file reference genome to help simu-
late the heterozygosity of each of the tumor mutations. The result of
this is the 5 genomes represented in the final simulated tree (Fig. 2).

We added functionality to POMEGRANATE so that it could
simulate sequence amplification events to represent DNA-gain
SCNVs and performed a series of analyses using multiple combina-
tions of events called by TARDIS from the above simulated samples

Table 1. Simulation statistics

Sample

no.

# of

SNVs

# of SVs

placed

# of SVs

recovered

% recovered

1 280 37 28 76

2 322 46 38 83

3 265 34 28 82

4 278 37 31 84

5 315 45 38 84

Fig. 1. (A) Representation of topology of the true tree for the five simulated

genomes. (B) Meltos assignments of SVs in the simulated genomes. Nodes with

numbers separated by a ‘|’ show the number of SNVs on the left and the SVs on

the right and represent the only previously existing nodes affected by Meltos.

GL—germline healthy cell
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as input to Meltos. This was done to observe Meltos’ ability to place
SVs in the presence of others types of alterations.

The ability of Meltos to refine the SNV tree with CNVs indicat-
ing gain or loss of DNA is a unique approach when compared with
tools such as CANOPY (Jiang et al., 2016) and SPRUCE (El-Kebir
et al., 2016). Especially when considering the complexity of the
simulated tree and the number of events Meltos is able to place onto
the tree. While both CANOPY and SPRUCE utilize less restrictive
models at this point, Meltos is able to achieve >50% assignments
(Table 2) in a highly complex phylogenetic context utilizing
Gaussian clustering of estimated input VAFs of both SNVs and
CNVs (Fig. 2).

Table 2 shows the results of our combinations of simulations.
We experimented both with letting MELTOS itself handle its VAF
estimates for mutations, and with SVClone performing that analysis
instead and giving those VAFs to MELTOS instead. The tests consist
of runs on deletions as input, runs with large duplication events as
DNA-gain copy number alterations (min size of 1000 bp), and runs
with combinations of both classes.

Meltos is dependent on the higher-confidence lineage tree given
to it as input by way of LICHeE, and in cases where mutations may
be misplaced due the inaccuracies in the SNV tree prior, it can cause
other clusters from meeting their necessary phylogenetic constraints
and decreases the ability of Meltos to make assignments.
Supplementary Table S1 shows the contents of nodes that MELTOS
created through clustering, but failed to place into the tree in Step 6
of the MELTOS pipeline due to their being no possible location
where they meet all three perfect phylogeny constraints.

While combining the two classes of events saw a decrease in as-
signment percentage (Table 2), combining the two together resulted
in a larger number of mutations being regarded as significant, and
more SVs and duplications were placed into nodes. Some of these
nodes were not assigned to tree, but with some additional refine-
ment of the initial ssnv tree scaffold, it is possible that Meltos assign-
ment of the combined events would be benefited as with MELTOS’s
clustering technique, all mutations provide additional signal to help
support the validity of other, lower confidence mutations with simi-
lar VAFs.

3.2 Experimental real data
We evaluated Meltos on two different real datasets: (a) Three multi-
region breast cancer whole genome samples from patient PD9770 in
a large study (Yates et al., 2015) were obtained, along with matched
normal (approximately 40� sequence coverage). (b) Seven Illumina
sequenced multi-region whole genomes taken from a chromothriptic
liposarcoma and their matched normal sample at 35� coverage
(Spies et al., 2017), generated by our collaborators at Stanford
University School of Medicine.

TARDIS was used to identify SVs within each sample and the
matched normal. The candidate SVs found in samples from patient
PD9770 consisted of an average of 2412 deletions, 141 inversions
and 2206 mobile element insertions (MEIs) among the tumor sam-
ples and 2181 deletions, 111 inversions and 943 MEIs in the
matched normal (Supplementary Table S2). The candidate SV calls
for the liposarcoma contained an average of 2128 deletions, 172
inversions and 5141 MEIs among the tumor samples
(Supplementary Table S3). In all cases, calls were filtered using a
threshold of at least four pieces of evidence supporting the variant.
As has come to be common among SV callers, the results can vary
significantly depending on the caller and the signals they use. For in-
stance, LUMPY identified 1703 deletions not previously character-
ized in the 1000 Genomes project and not called by TARDIS
(Supplementary Fig. S6). Conversely, TARDIS identified 199 dele-
tions not in either dataset. This trend continues in all other samples,
exemplified by Supplementary Figure S6B and C and this varying de-
gree of sensitivity allows for false positive calls to cause issues with
accuracy of call sets.

Table 2. Meltos mutation assignments

Simulation test Total tardis

calls

True SV no. # of deletions

placed

# of duplications

placed

% SVs

recovered (%)

False

positives

Deletions (no SVClone) 326 290 162 0 56 15

Deletions (profiled) 263 219 138 0 63 13

Duplications (profiled) 95 69 0 43 62 0

Mixed (profiled) 358 310 117 40 51 25

Notes: Table of how many of the simulated deletions and duplications (amplifications) were assigned to the tree during each of the tests run during the second

Meltos simulation. ‘Deletions’ tests were exclusively run with simulated deletions. ‘Duplications’ tests were exclusively run with simulated copy number amplifica-

tions. ‘Mixed’ runs contained both deletions and duplication events. Rows with ‘No SVClone’ allowed Meltos to calculate its own VAF values. ‘Profiled’ runs uti-

lized SVClone with the appropriate presence profiles.

Fig. 2. (A) Representation of topology of the SNV tree for the five simulated

genomes. (B) Meltos assignments of SVs including copy number variants in

the simulated genomes. Nodes with numbers separated by ‘|’ contain SNVs (number

on the left), SVs (middle) and DNA-gain CNVs (right). GL—germline healthy

cell, Diamond node—SV only node which was added by Meltos and contains

no SNVs. Corresponds to the mixed (profiled) run in Table 2 and Supplementary

Table S1
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Meltos is primarily devised to identify the evolutionary context
for somatic SVs. This is done not only to identify genetic differences
between subpopulations within the tumor but also presents a pos-
sible technique through which falsely called somatic events can be
identified through their lack of fit within the established evolution-
ary context of the tumor based on our assumptions.

In samples obtained from PD9770 (Yates et al., 2015), 160 high-
quality somatic SNVs were detected. To build a representative
tumor lineage for this tumor, we first used LICHeE (Popic et al.,
2015) on this data. These somatic SNVs clustered into five nodes:
node 1 with 43 SNVs, node 2 with 51 SNVs, node 3 with 18 SNVs,
node 4 with 33 SNVs and node 5 with 15 SNVs (Fig. 3). The Meltos
workflow was then applied to utilize this tree as an evolutionary
prior (Supplementary Fig. S1).

3.2.1 SV assignment in patient PD9770

3.2.1.1 Applying the Meltos workflow. Yates et al. (Yates et al.,
2015) validated 86 deletions using breakpoint associated copy num-
ber changes within the WGS data. These regions were compared
with somatic deletions identified by TARDIS within the tumor sam-
ples (samples A, C and D). Sixty-three deletions called by TARDIS
were found to be present in these validated regions and represented
a true somatic call set.

Meltos was then applied to this call set in order to assess its abil-
ity to assign these SVs (min size: 102 bp, max size: 31 kb) to the
inferred lineage tree inferred from SNVs (Fig. 3A). Meltos estimated
the variant allele frequency of each SV in each sample it was found
to be present. A majority of these deletions were found to have
VAFs � 0.5 (Fig. 4). This aligns with the assumption that most
somatic deletions tumors are indeed heterozygous. The Meltos algo-
rithm was able to successfully place 41 of the 63 validated deletions
onto the tree alongside SNVs and represents a unique step towards
explaining SVs and SNVs together (Table 3). Nineteen SVs were
assigned to existing nodes while twenty-two SVs were placed into
two SV-only nodes that represent new additions to the tree. This ap-
proach is also meant to discern false positive calls because these calls
are less likely to fit within the evolutionary context provided by the
lineage tree. Yates et al. were able to identify 63 deletion regions in
their own calls that were unvalidated when considering copy num-
ber changes. These were considered false positive calls. Using this set
of unvalidated calls along with visual inspection of the deletions in
the Integrative Genomics Viewer (http://software.broadinstitute.org/
software/igv/), we also identified 14 TARDIS calls deemed false
positives.

These 14 calls were combined with the 63 true positive calls and
provided as input to Meltos. This run once again yielded true posi-
tive assignments of 41/63 (65%) (Table 1) while only 2/14 (14%)
false positive were assigned to the lineage tree. Both false positive
clustered within SV only nodes and were not assigned to a previous-
ly existing node on the tree. By comparison, 14 other TARDIS calls
were randomly selected and used to replace the false positives as in-
put and Meltos was able to place 7/14 (50%) onto the tree. This
highlights the ability of Meltos to assign true events onto the tree
and signifies an important step towards comprehensively assessing
the variety of mutations within a tumor and order in which they
arose. As Meltos goes through further development, it will play an
important role in assessing not only the quality of SV calls but how
we can use this to explore the clonality of the tumor. Based on
Figure 3, we were able to identify 12 SVs that emerged within the
tumor genome with similar presence and VAF as 51 SNVs and 7
additional SVs which were acquired afterwards.

3.2.1.2 Exploring VAF estimation using SVClone. For each dataset,
we estimate VAF using not only the VAF algorithm developed for
Meltos but also using SVClone so as to explore the approaches to
VAF estimation. This also allowed us to compare SV assignment to
the tree using these sets of estimates.

In order to correct estimates for not only copy number but also
tumor purity and ploidy for the Breast Cancer dataset, we ran
TitanCNA (Yates and Campbell, 2012) in order to identify the opti-
mal model that describes the ploidy of each multi-region sample
within PD9770 tumor and also copy number segments to correct
VAF estimates and reduce error (Table 4).

There is a positive correlation between Meltos and SVClone
VAFs in each case although estimates do vary between both
approaches. The spearman correlation coefficient between each set
of estimates are as follows: PD9770A—0.9825753, PD9770C—
0.8520243, PD9770D–0.8739152. The positive correlation signifies
that SVs for which SVClone estimates a higher VAF, Meltos is likely

Table 3. SV tree assignments–PD9770

Deletion size Existing node Valid SV-only node Invalid SV-only node

50–500 bp 6 2 1

501–5000 bp 5 5 1

>5000 bp 8 15 3

Fig. 3. (A) LICHeE lineage tree built from somatic SNVs used as a prior for our

novel SV placement algorithm. (B) Meltos assignments of SVs to tree. Nodes with

values separated by ‘|’ show the SNVs on the left and SVs on the right. Some new

nodes not linked to their associated samples to simplify diagram. GL—germline

healthy cell, Diamond node—SV only node which was added by Meltos and

contains no SNVs

Fig. 4. (A) Assignment of SVs using Meltos VAF estimates. (B) Assignment of SVs

using SVClone VAF estimate. Nodes with values separated by ‘|’ show the SNVs on

the left and SVs on the right. Some new nodes not linked to their associated samples

to simplify diagram. GL—germline healthy cell, Diamond node—SV only node

which was added by Meltos and contains no SNVs
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to estimate a higher VAF for such an SV as well and vice versa. In
each case, Pearson correlation coefficients were lower—0.7497379,
0.4679937, 0.5722435—indicating that the difference between esti-
mates were not consistent in value.

These results were not particularly surprising as the purpose of
introducing SVClone into the pipeline presents an opportunity to
correct VAFs for copy number and tumor purity before using
Meltos to then do tree assignments of SVs onto the SNV tumor lin-
eage tree.

To further investigate Meltos’ ability to cluster SVs using copy
number corrected SVClone VAFs, we selected 14 SVs with consist-
ent estimated presence profiles across both Meltos and SVClone.
Meltos assigned 12 of the 14 SVs (85%) to the tree when using
Meltos estimated VAFs while 13 of 14 SVs (93%) were able to be
placed onto the SNV lineage tree when using SVClone VAFs
(Fig. 4). Meltos is only able to place an SV into the tree once it
passes phylogenetic constraints. Using SVClone consistently allowed
for SVs to fit within the lineage tree at lower levels where previously
Meltos estimated VAFs only could fit these SVs as SV only nodes.
An example of this is shown in Figure 4 where node containing SVs
highlighted in yellow is able to be placed more correctly as a child to
an existing node in the SNV tree. In Figure 4A, this SV-only node
cannot pass constraints as a child to an existing node, so although it
contains SVs that arose in Sample d, it is placed as a separate lineage
to Sample d. This trend was consistent in our experiments as we
increased the number of SVs being assigned to the tree. These results
show that there is indeed value in using SVClone to estimate cor-
rected VAFs that account for copy number in samples.

3.2.2 SV assignment in chromothriptic liposarcoma. For this dataset,
SV calling was done on all seven samples with TARDIS and poten-
tial somatic deletions were identified by comparison with matched
control. From this 40 deletions were randomly selected as input into
Meltos to investigate the ability to of Meltos to assign SVs to a lin-
eage tree built on relatively lower quality SNVs and a chromothrip-
tic genetic evolutionary history.

As shown in Figure 5B, 19 of the 40 SVs were successfully placed
onto the tree by Meltos. These SVs were compared with the GROC-
SV calls that were published for this liposarcoma dataset (Spies
et al., 2017). Of the assigned calls, 11/19 (58%) overlap with
GROC-SV calls while of the unassigned calls, 4/21 (19%) overlap
with GROC-SV calls. However, in this case no SVs were able to
cluster with a pre-existing node. This speaks to the reliance of
Meltos on an accurate tree built on deeply sequenced SNVs. Note
that inaccuracy in the SNV VAFs used to build the tree resulted in
little space being left within node clusters to fit new additions/SVs
based on the perfect phylogeny constraints. While this is believed to
contribute to the observed assignments, it is worth noting that this
observation is in agreement with observations made by Spies et al.
(Spies et al., 2017), where SVs were not found to cluster with SNVs
in an evolutionary context for the same dataset.

4 Discussion

In this work, we showed that phylogenetic information from SNV
trees increases our ability to identify true somatic SVs among mul-
tiple related samples and provide a more comprehensive view of the
somatic mutation profile of tumors. We were able identify SVs in a
breast cancer patient that appear to follow a similar evolutionary
pattern as called SNVs as well as identify subclonal SVs that clus-
tered into SV-only nodes and arose later in the evolution of the

tumor. We also saw the tendency of true calls to get placed into the
phylogeny tree over false, unvalidated calls. Signifying the important
potential of this approach to building tumor phylogeny trees and fil-
tering SVs.

Our model will indeed benefit from more robust and accurate
somatic SV callers. While there is an on-going effort in the commu-
nity to improve somatic callers both from technology and algo-
rithms perspectives, there is still a lot of room for improvements.
For example, integrative methods to handle data from different
sequencing platforms simultaneously have the potential to further
improve quality of call sets. While we used the GROC-SVs calls
from linked-read data to assess tree assignments where applicable,
we also identify that incorporating standard short-read and linked-
read data together in a future work for reconstruction of lineage
trees may also be beneficial and lead to increased accuracy.
Furthermore, our model for VAF calculation is simple and a more
sophisticated model will help better capture complexity of cancer
genomes and determine whole cancer genomes.

For some SVs, Meltos was able to cluster them together in possible
SV only clusters but was not able to assign these clusters to the tree
based on the constraints. A majority of these were less than 500 bp in
size and may be a result of difficulty in accurately estimating the VAF
of these small SVs. Further work will aim to rectify these issues by
building higher quality datasets through which we can tune the algo-
rithm and utilize experimental validation of assigned SVs. However,
we do expect there to be cases where the constraints of perfect phyl-
ogeny are violated due to the complexity of cancer genomes. For ex-
ample, back mutations cannot be accounted for by Meltos currently
due to the restrictions of its perfect phylogeny constraints. Cancers can
exhibit loss of SNVs due to CNVs so Meltos attempts to correctly
place copy number variants on the tree as well as employ other tools

Table 4. TitanCNA estimates

Sample Purity Ploidy

PD9770A 0.4976 3.01

PD9770C 0.4952 3.059

PD9770D 0.3807 3.223

Fig. 5. (A) LICHeE lineage tree built from somatic SNVs for sarcoma. (B) Meltos

assignments of SVs to tree. GL—germline healthy cell, Diamond node—SV only

node which was added by Meltos and contains no SNVs
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for correction (El-Kebir, 2018). We showed the value of incorporating
copy number correction through tools such as SVClone and using that
along with Meltos for lineage tree refinement. We also highlighted the
potential of this approach to aid in identifying false positive calls by
using their fit within the evolutionary structure of the tumor as a filter-
ing mechanism.
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