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Scale- and Context-Aware Convolutional
Non-Intrusive Load Monitoring

Kunjin Chen , Yu Zhang, Member, IEEE, Qin Wang, Jun Hu , Member, IEEE,
Hang Fan, and Jinliang He , Fellow, IEEE

Abstract—Non-intrusive load monitoring addresses the chal-
lenging task of decomposing the aggregate signal of a household’s
electricity consumption into appliance-level data without installing
dedicated meters. By detecting load malfunction and recommend-
ing energy reduction programs, cost-effective non-intrusive load
monitoring provides intelligent demand-side management for util-
ities and end users. In this paper, we boost the accuracy of energy
disaggregation with a novel neural network structure named scale-
and context-aware network, which exploits multi-scale features and
contextual information. Specifically, we develop a multi-branch
architecture with multiple receptive field sizes and branch-wise
gates that connect the branches in the sub-networks. We build a
self-attention module to facilitate the integration of global context,
and we incorporate an adversarial loss and on-state augmentation
to further improve the model’s performance. Extensive simulation
results tested on open datasets corroborate the merits of the pro-
posed approach, which significantly outperforms state-of-the-art
methods.

Index Terms—Non-intrusive load monitoring (NILM),
convolutional neural network, self-attention, generative
adversarial network, energy disaggregation.

I. INTRODUCTION

NON-INTRUSIVE load monitoring (NILM) is the task
of estimating the power demand of a specific appliance

from the aggregate consumption of a household measured by a
single meter [1]. As the task requires breaking down the total
energy consumed by multiple appliances into appliance-level
energy consumption records, NILM is synonymous with the
phrase “energy disaggregation” [2]. A direct benefit of NILM is
that energy end-users can acquire appliance-level consumption
feedbacks and optimize their energy consumption behaviours
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accordingly. It is estimated that up to 12% residential energy sav-
ing can be achieved by providing appliance-level feedback [3].
NILM benefits consumers, the research community and utilities
in domains including residential and commercial energy use,
appliance innovation, energy efficient marketing and program
evaluation [4].

The approaches for NILM can be generally divided into super-
vised methods and unsupervised methods [5]. In the supervised
setting, the power consumptions of individual appliances are
collected and can be used to train the models. For unsupervised
methods, however, only the aggregate power comsumption data
can be used. Approaches for unsupervised NILM include hidden
Markov models (HMM)[6], [7], factorial hidden Markov mod-
els (FHMM) [8], [9] and methods based event detection and
clustering [10], [11]. Comprehensive reviews of unsupervised
NILM approaches can be found in [5], [12].

With the development of deep neural networks, various neural
network-based supervised NILM approaches have been pro-
posed [13], [14]. A substantial progress has been made recently
thanks to convolutional neural networks (CNN) [2], [15]. For
the task of NILM, the power consumption patterns of different
appliances generally have varied scales. The aggregate con-
sumption of multiple appliances is prone to have more com-
plicated shapes, hence requiring the ability to deal with scale
variation. In addition to local information within a small time
range, it is also important to consider the context dependencies of
consumption patterns as energy consumption behaviours contain
higher-level semantics (e.g., the dryer works after the washer,
and one may turn on the microwave multiple times until cooking
is finished). However, existing CNN-based models fail to exploit
those aspects, which yield high rates of false positive/negative
errors in the disaggregation results. In light of this, we propose
a scale- and context-aware network (SCANet) structure to in-
corporate the above-mentioned ideas. In this paper, we compare
the performance of SCANet with state-of-the-art models and
conduct empirical analyses on the advantages of the proposed
structure. The contributions of this work are twofold:
� A scale- and context-aware CNN structure is designed for

the task of NILM, which greatly improves the disaggrega-
tion results for multiple appliances.

� We show that adding adversarial loss or on-state augmen-
tation can help the model produce more accurate results
and increase generalizability.

The organization of the rest of the paper is as follows:
we introduce the related work of this study in Section II.
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The modules for scale and context awareness, the adversarial
loss and the on-state augmentation are described in detail in
Section III. The effectiveness of the proposed SCANet model
is validated in Section IV with extensive comparisons and vi-
sualizations. An additional experiment setting that uses partial
ground truth is also introduced and implemented. Finally, Sec-
tion V concludes the paper and points out some future works.

II. RELATED WORK

1) Neural Non-Intrusive Load Monitoring: The application
of neural networks in NILM started with recurrent neural net-
works (RNN), CNN, and denoising auto-encoders (DAE) with
relatively simple structures [13], [14]. Various CNN models have
been proposed thanks to the flexibility of CNN structures, such
as sequence-to-point, sequence-to-sequence, and fully convolu-
tional models [15]–[17].

The integration of domain knowledge further enriches the
design of CNN architectures. An on/off state classification sub-
network can be added in parallel to the regression sub-network
so that the model can learn from on/off state information di-
rectly [2], [18]. The work in this paper adopts the structure of
subtask gated network (SGN) [2] as a starting point.

2) Multi-Scale Features in CNNs: CNNs are widely used in
computer vision tasks including object detection and semantic
segmentation, for which capturing multi-scale information is of
crucial significance. When features of various scales exist in a
CNN structure, these features can be combined by upsampling
higher layers [19] or adopting different sampling strategies
(e.g., use either max pooling or deconvolution) for different
layers [20]. The association of multi-scale features can also be
achieved by building pyramid-like network structures such as
U-NET [21], FPN [22], and PANet [23]. While U-NET con-
catenates low-level features and upsampled high-level features
using skip-connections in a sequential manner and uses the last
layer for prediction, features of multiple layers are used by FPN
to produce predictions of various scales.

Another way to create features of multiple scales is to use
dilated convolutions [24], which is adopted by TridentNet [25]
to generate multi-scale features in several parallel branches with
different dilation rates. Scale awareness is obtained by training
the branches separately with objects within certain scale ranges.
In this work, we use a multi-branch structure similar to that of
TridentNet. Unlike TridentNet, however, we use gating signals
generated by branches in the on/off state classification network
to selectively keep feature maps in the regression sub-network,
which facilitates scale awareness.

3) Self-Attention Mechanism: The attention mechanism is
useful when additional information can be provided by global
context [26]. For self-attention, the output value at a position
in a sequence is calculated by attending to all positions in
the sequence [27]. Applications including machine translation
and video classification greatly benefit from the usage of self-
attention [28], [29]. In this work, we adopt the self-attention
module proposed by Zhang et al. [27].

4) Generative Adversarial Networks: Generative adversarial
networks (GAN) are a family of generative models that are

Fig. 1. An illustration of the NILM task: Recovering the power consumption
signal of a dishwasher from the aggregate consumption profile.

capable of generating realistic data [30], and different exten-
sions of GANs have been applied to tasks including image-
to-image translation [31], image inpainting [32], text-to-image
synthesis [33], music generation [34], etc. Other works focus
on stabilizing the training of GANs and improve the quality
of generated samples [35]–[38]. Applying GANs to NILM is
a relatively new idea [39], where a disaggregator is used to
produce latent representations for a specific appliance, followed
by a generator that produces the load sequence of the appliance.
Different from [39], we directly formulate the generator as a
mapping from the aggregate consumption to the appliance-level
consumption without producing the latent representations.

III. PROPOSED MODEL AND TRAINING TECHNIQUES

In this section, we first formally define the NILM task con-
sidered in the paper. We then briefly introduce existing CNN-
based models and elaborate on the building blocks of SCANet.
Techniques that can facilitate the training of the model are also
introduced.

A. Problem Formulation

Consider a household with a given aggregate power consump-
tion signal x̃ = (x1, . . . , xT ). Let ỹi = (yi1, . . . , y

i
T ) and ũ =

(u1, . . . , uT ) denote the power consumption of the ith appliance
being considered and the total consumption of all remaining ap-
pliances, respectively. Then, we have xt =

∑Na

i=1 y
i
t + ut + εt,

where Na is the number of appliances and εt is the additive
noise. Given the aggregate signal x̃, the task of NILM is to
recover the power consumption sequences ỹ1, ỹ2, . . . , ỹNa of
the appliances under consideration [2]. An illustration of the task
is provided in Fig. 1.

B. Model Design

Estimating the power consumption sequence of an appliance
with length s using the aggregate consumption signal corre-
sponding to the same time window is difficult as contextual
information outside the window is not considered. Thus, it
is suggested to add windows of length w to both sides for
the input aggregate sequence [2], [16]. Specifically, with input
sequence xt := (xt−w, . . . , xt+s+w−1), yi

t := (yit, . . . , y
i
t+s−1)

is the output sequence for the ith appliance.
It is straightforward to formulate sequence-to-sequence neu-

ral network models with stacked convolutional layers and
fully-connected (FC) layers for the task ŷi

t = f(xt), where
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Fig. 2. The CNN structure with two sub-networks proposed in [2].

Fig. 3. The proposed scale- and context-aware structure.

ŷi
t is the predicted sequence [15]. In order to exploit the

on/off state information, two sub-networks, namely, fpower :
Rs+2w

+ → Rs
+ and fon : Rs+2w

+ → [0, 1]s, are formulated [2].
An auxiliary sequence oi

t := (oit, . . . , o
i
t+s−1) ∈ {0, 1}s repre-

senting the on/off state of the ith appliance is added and the pre-
dicted sequence of on-state probability is given as ôi

t = fon(xt).
Hence, the final output of the model is

ŷi
t = f i

output(xt) = f i
on(xt)� f i

power(xt), (1)

where � is the element-wise multiplication. For simplicity, we
omit the superscript i and subscript t hereafter.

The structure of the two sub-networks proposed in [2], [15] is
illustrated in Fig. 2. We build our model featuring scale and
context awareness based on this structure (see Fig. 3). The
additional components are added based on two observations
of existing works: first, the convolutional layers are unable to
explicitly extract features with different time scales, and second,
the features of the convolutional layers for a given time step are
produced based on neighbouring input values without referring
to the context. The details of the scare and context awareness
modules are elaborated as follows:

1) Scale-Aware Feature Extraction: The scale awareness of
SCANet is obtained by adding parallel branches with different
dilation rates to the original network and connecting the branches
in the two sub-networks by a simple gating mechanism, which
allows the regression network keep only the most important

Fig. 4. An illustration of dilated convolution with different dilation rates.

feature maps at different scales. An illustration of dilated con-
volution with different dilation rates (rd = 1, 2, 3) is shown in
Fig. 4. With the same number of layers and parameters, a larger
rd allows the output nodes respond to wider time ranges at the
input. Thus, the outputs at the branches with different rd will
reflect elements (e.g., shapes or edges) of different time scales
at the input. At the same time, an element at the input will affect
more output nodes when a larger rd is used.

Let (p(1)
1 ,p

(1)
2 ,p

(1)
3 ) be the outputs of the branches in fpower

and let (s̃(1)1 , s̃
(1)
2 , s̃

(1)
3 ) be the outputs of the branches in fon with

the sigmoid activation function. Then, the gating mechanism
associating the two sub-networks is given by

p
(2)
j = p

(1)
j � s̃

(1)
j , j = 1, 2, 3. (2)

As the gating operation is separately performed for each dilation
rate, a rich combination of features at different time scales
can be achieved. We then concatenate (p

(2)
1 ,p

(2)
2 ,p

(2)
3 ) and

(s
(1)
1 , s

(1)
2 , s

(1)
3 ) and obtain p(2) and s(2) (note that s(2) con-

tains features with the rectified linear unit (ReLU) activation
function instead of the sigmoid function). Both p(2) and s(2)

are processed by a convolutional layer with a kernel size of 1,
yielding p(3) and s(3), the inputs to the self-attention modules.

2) Context-Aware Feature Integration: The integration of
contextual information is achieved by the self-attention module,
which takes an input z ∈ RC×L with L time steps and C chan-
nels. The module learns an additional feature map r ∈ RC×L

whose values at each time step are obtained by attending to all
the time steps in z. We first map the input z with g(z) = Wgz
and h(z) = Whz, and an entry aj,i in the attention matrix A is
calculated as

aj,i =
exp(ãi,j)

∑L
l=1 exp(ãl,j)

, where ãi,j =
[
g(z)�h(z)

]
i,j

. (3)

The additional feature map r is then calculated by

r = d(z)A, where d(z) = Wdz. (4)

Note that aj,i is the attention assigned to the ith time step when
the response of the jth time step is being calculated. The output
of the self-attention module is defined as z+ γr, where γ is
initialized as 0 and updated when the model is trained, so that
the model can rely on the local context at first and gradually
learn to pick up the dependencies in the global context [27].
Specifically, weight matrices Wg ∈ RC̄×C , Wh ∈ RC̄×C , and
Wd ∈ RC×C are implemented as convolutional layers with a
kernel size of 1. For the two sub-networks, the self-attention
modules can be represented as p(4) = p(3) + γprp and s(4) =
s(3) + γsrs, where rp and rs are the additional feature maps and
γp and γs are the corresponding coefficients.
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Fig. 5. The complete SCANet model with the additional critic module when
adversarial loss is added.

The loss function of the model with two sub-networks is
given byL = Loutput + Lon, whereLoutput is the mean squared
error (MSE) measuring the overall disaggregation error of the
model, andLon is the binary cross-entropy (BCE) measuring the
classification error of the on/off state classification sub-network.

C. Training Techniques That Improve Accuracy

1) Training With Adversarial Loss: The performance of
SCANet can be further improved by adding an adversarial loss
to the model. As is illustrated in Fig. 5, a critic network is
added to the model so that we can train the model partially as a
Wasserstein GAN with gradient penalty (WGAN-GP) [36]. The
original GAN is formulated by the minimax game between the
generator G and the discriminator D [30]:

min
G

max
D

E
a∼Pr

[log (D(a))] + E
ã∼Pg

[log (1−D(ã))] , (5)

where Pr is the distribution of the real data and Pg is the dis-
tribution of data generated by ã = G(b),b ∼ p(b), indicating
that the input of G is sampled from some noise distribution.
Briefly speaking, the goal of the discriminator is to gain the
ability to distinguish between real and generated samples, while
the generator tries to confuse the discriminator by learning to
generate realistic data samples. Training the generator and the
discriminator in turn allows the generator gradually obtain the
ability to generate realistic samples.

The WGAN-GP model used in this work is modification to
the WGAN model proposed in [35], which adopts the Wasser-
stein distance to stabilize the training of GANs. The gradient
penalty in WGAN-GP further stabilizes the training process by
penalizing the norm of the gradient of D instead of clipping the
weights in D (Here, D is named critic instead of discriminator
as the task of D is not classification of real or generated data).
The loss of WGAN-GP (also referred to as the adversarial loss
in this paper) is formulated as

Ladv= E
ã∼Pg

[D (ã)]− E
a∼Pr

[D (a)]+λ E
â∼Pâ

[
(‖∇âD (â)‖2−1)2

]
,

(6)
where the first two terms measure the Wasserstein distance
between Pr and Pg . The last term is the gradient penalty and
â ∼ Pâ refers to uniformly sampling from the line segment
connecting point pairs sampled from Pr and Pg (see [36]). In
this paper, instead of generating samples from a noise distribu-
tion, we directly use the network producing foutput(xt) as the
generator. Specifically, we add the adversarial loss Ladv so that

the overall loss function becomes

L = Loutput + Lon + λadvLadv, (7)

where λadv is the weight for the adversarial loss. It is expected
that the adversarial loss can help the model produce more real-
istic output sequences, especially when the size of the training
dataset is relatively small.

2) On-State Augmentation: We propose on-state augmenta-
tion to deal with the variance of on-state power consumption of
appliances (e.g., the peak power of two fridge models may be
different even if they have the same operation pattern). Given an
appliance, the maximum offset values e− ∈ R− and e+ ∈ R+

are decided, and each output sequence y is replaced by y + eo,
where e ∼ U(e−, e+). The same amount of on-state offset is also
added to the corresponding input sequence x. The augmentation
is applied during the training of the model.

In this work, we apply on-state augmentation to fridge, for
which biased estimation of on-state power is a major source of
disaggregation error. As expected, the model is able to estimate
the on-state power of fridge more accurately after on-state
augmentation is implemented.

IV. RESULTS AND ANALYSIS

In this section, we introduce the datasets used in this paper and
the implementation details of the models. Experiment results are
presented together with empirical analyses of the advantages of
SCANet.

A. Experiment Settings

1) Datasets: Two real-world datasets, REDD [40] and UK-
DALE1 [41] are used to evaluate the performance of SCANet in
this paper. The REDD dataset contains measurement data from
six households in the US and the time span of the dataset ranges
from 23 to 48 days for different houses. The mains consumption
was recorded every 1 second, while the appliance-wise con-
sumption was recorded every 3 seconds. The UK-DALE dataset
includes data from five UK households, and measurements for
the aggregate consumption as well as consumptions of individual
appliances were recorded every 6 seconds. The monitoring of
house 1 lasted for over 600 days, while the time spans for the
other houses range from 39 to 234 days. Detailed descriptions of
the households and the monitored individual appliances in the
datasets can be found in [40], [41].

Following previous studies [2], [15], we use data of houses
2–6 to create the training set and leave the data for house 1 as the
test set for the REDD dataset. Disaggregation is implemented
for fridge, dishwasher, and microwave. The pre-processed data
for the REDD dataset used in this work is provided by the
authors of [2]. For the UK-DALE dataset, we use houses 1 and
5 for training, and house 2 for testing. Disaggregation results
for fridge, dishwasher, microwave, washing machine, and kettle
are reported. In order to normalize the data, we follow the
practice in [2] and divide the power consumption values of both

1[Online]. Available: http://jack-kelly.com/data/
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TABLE I
EXPERIMENT RESULTS ON THE EVALUATION METRICS FOR THE REDD DATASET

TABLE II
EXPERIMENT RESULTS ON THE EVALUATION METRICS FOR THE UK-DALE DATASET

datasets by 612, which is the standard deviation of the aggregate
consumption for houses 2–5 in the REDD dataset.

2) Implementation Details: The SGN backbone [2] has 6
convolutional layers followed by 2 FC layers in each sub-
network. Specifically, the numbers of filters in each layer are 30,
30, 40, 50, 50, and 50, and the kernel sizes are 10, 8, 6, 5, 5, and
5, respectively. All convolutional layers are implemented with a
stride of 1 and “same” padding, and the weights are initialized
with “He normal” initializer [42]. The first FC layer has 1024
hidden nodes, and the second FC layer has the same number
of nodes as the output of the model. All but the last layer uses
ReLU activation function. For the REDD dataset, the output
sequence size s is 64 and the additional window size w is 400,
while s and w are 32 and 200 for the UK-DALE dataset. As
the sizes of the input and the output are reduced by half for
the UK-DALE dataset, we also change the kernel sizes to 5, 4,
3, 3, 3, and 3 while other hyper-parameters remain the same.
Adam optimizer with initial learning rate 0.0001 is adopted and
we train the models for 5 epochs with a batch size of 16. For
SCANet, we add two parallel branches with rd = 2 and rd = 3 to
each sub-network starting from the 4th convolutional layer. The
layer producing p(3) and s(3) has 64 filters, thus C = 64 for the
self-attention modules, and we set C̄ to 32. We adopt most of
the hyper-parameters from [2] such that we can focus on ensur-
ing the effectiveness of the proposed model components rather
than tuning the hyper-parameters. All models are implemented
in Python 3.6 with Keras 2.1.6.

The input samples are produced by a sliding window running
over the input sequences with specific step sizes, which is set to 2
for the REDD dataset. The step sizes for microwave, dishwasher,
fridge, washing machine, and kettle are 4, 8, 32, 32, and 32 for the
UK-DALE dataset. We choose the step sizes by ensuring that the
SGN model performs no worse than its reported results [2]. For
testing, a sliding window with a step size of 2 generates the input
samples. Multiple overlapping output sequences are averaged to
produce the final output. Further, as on-state events are relatively

rare for some appliances, the imbalance of on and off states
may bring difficulties to the training of the models. Thus, we
randomly remove off-state samples from the training dataset
for some appliances. For the REDD dataset, the probablity of
keeping an off-state sample (i.e., the entire output of the sample is
off-state) is 0.2 for dishwasher. The probabilities for dishwasher,
microwave, and kettle are 0.02, 0.05, and 0.1, respectively, for
the UK-DALE dataset. The same settings are shared by the
Seq2point model [15] and SGN when applicable.

For the implementation of WGAN-GP, a simple critic with 4
convolutional layers and 32 filters at each layer is formulated.
The kernel sizes are set to 3, an FC layer with 256 hidden
nodes bridges the convolutional layers and the output node,
and the weight λadv for Ladv is 0.5. We train the model with
a batch size of 32. Specifically, we implement the model with
Ladv for appliances other than fridges. On-state augmentation
is implemented in the training of the model for fridges with
e− = −0.1 and e+ = 0.1 for the REDD dataset and e− = −0.03
and e+ = 0.03 for the UK-DALE dataset.

Mean absolute error (MAE) and signal aggregate error (SAE)
are used as the evaluation metrics for each appliance [2]. Specif-
ically, given a predicted output sequence with T time steps,
SAE = 1

N

∑N
τ=1

1
M |rτ − r̂τ |, where N is the number of dis-

joint time periods with length M , T = N ×M , r̂τ is the total
predicted power consumption in the τ th time period, and rτ is
the corresponding ground truth. In this work, we set N = 1200,
thus each time period corresponds to approximately one hour
for the REDD dataset, and two hours for the UK-DALE dataset.

B. Experiment Results

We report the results of the evaluation metrics for the REDD
and the UK-DALE datasets in Table I and Table II, respectively.
Each value is obtained by averaging results from 3 trials. It is seen
in the two tables that SCANet achieves lower MAEs and SAEs
than SGN for all of the appliances, especially for the REDD
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Fig. 6. Samples of disaggregation results for the REDD dataset.

Fig. 7. Samples of disaggregation results for the UK-DALE dataset.

dataset, for which the improvements are 22.39% and 28.60%
for averaged MAEs and SAEs. The average improvements for
the UK-DALE dataset are also greater than 10%.

The comparison of SCANet with SGN is further presented
in Fig. 6 and Fig. 7, and we can see that SCANet produces
more accurate disaggregation results than SGN. In Fig. 6(a), it is
observed that on-state augmentation helps the model capture the
on-state power consumption of fridges. We further showcase the
advantage of SCANet in Fig. 8, in which two cases are illustrated
for microwave in the REDD dataset. A false positive case of SGN
is shown in Fig. 8(a). Fig. 8(b) shows that SCANet is able to
identify that the microwave consumes power for multiple short
durations successively while SGN fails to tell that the microwave
is on. In Fig. 9, the disaggregation results of the SGN and the
SCANet models for microwave are illustrated. The two cases in
Fig. 8 are also marked in Fig. 9. In general, the SCANet model
is more accurate in terms of power consumption level and has
fewer false false positive cases.

The activations at the end of the branches in the two sub-
networks for the case in Fig. 6(b) are visualized in Fig. 10.
For the sample used for the visualization, only the 256 time
steps in the middle are plotted. Specifically, each feature map
contains values of 256 time steps (the horizontal axis) and 50
channels (the longitudinal axis). It is clear that the branches are
all responding to the rising and falling edges in the microwave
consumption signal (the signal is added to the feature maps of
s̃
(1)
1 and p

(1)
1 for comparison), and that a large proportion of the

gating signals are actually suppressing the high activations in the
regression sub-network (s̃(1)1 to s̃

(1)
3 are used as gating signals

for p(1)
1 to p

(1)
3 ). As a result, the feature map p(3) is much less

activated in general.
We also use the cases in Fig. 6(b) and Fig. 8(b) to illustrate the

mechanism of the self-attention module. We first visualize the
attention matrix in the classification sub-network for the case of
Fig. 6(b) in Fig. 11(a). Clearly, the model mainly focuses on the
edges in this time range (note that the assignment of attention
is row-wise), and the highest attention values are observed for
the three rising edges, i.e., the model refers to all the rising
edges when looking at one of the rising edges. For instance,
we highlight the row corresponding to the first rising edge in
A�, and the high values in the row mainly belong to the three
rising edges in the signal including the first rising edge itself.
Further, the attention matrix for Fig. 8(b) is shown in Fig. 11(b).
Similarly, the main feature of the matrix is that high attention
values are found for the time steps corresponding to rising edges
and the rising edges are attending to all rising edges within the
time range.

In Fig. 12, we plot the input and output of the self-attention
module for the case of Fig. 6(b) for the classification sub-network
as well as the additional feature map rs, which is highly activated
at all three rising edges. As s(4) = s(3) + γsrs and λs = 0.0764
for the sample, the activations at the edges are reflected in s(4).
Thus, it is of interest to investigate the effect of λsrs in s(4). To
this end, we bypass the self-attention network and directly feed
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Fig. 8. Additional samples of disaggregation results for microwave in the
REDD dataset.

Fig. 9. Comparison of the performance of SGN and SCANet for microwave
in the REDD dataset. The time span for the figure is roughly 100 hours.

s(3) to the FC layers to obtain the output of the classification sub-
network and compare it with the original output in Fig. 13, which
shows that rs helps suppress the on-state probability where the
microwave is not consuming electricity. Note that this can be
a hard task as the microwave is turned on shortly before and
after. Thus, in this case, the regression sub-network only needs
to produce an output sequence with approximately the same
value and the classification sub-network alone is able to produce
desirable results.

We use the case in Fig. 8(b) to show that the regression sub-
network is not obsolete. Specifically, we plot the feature maps

Fig. 10. Visualization of feature maps of multiple scales for microwave in

the REDD dataset. s̃(1)1 to s̃
(1)
3 and p

(1)
1 to p

(1)
3 are the feature maps at the

end of the three branches in the classification sub-network and the regression

sub-network, respectively. Note that the sigmoid function is used for s̃(1)1 to s̃(1)3
as the activation function.

Fig. 11. Visualization of the self-attention matrix A� in the on/off state
classification sub-network for microwave in the REDD dataset.

p(4) and s(4), the outputs of the sub-networks as well as the
output of the model in Fig. 14, which shows that p(4) is actively
responding to both rising and falling edges of the input, forming
a repetitive pattern. As a result, the output of the regression
sub-network predicts the right trends of the power consumption
in the time period.
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Fig. 12. Visualization of feature maps in the on/off state classification sub-
network for microwave in the REDD dataset.

Fig. 13. Outputs of the on/off state classification sub-network with and without
the SA module for the input in Fig. 12.

Fig. 14. Visualization of feature maps of a rare case for microwave in the
REDD dataset. Two types of vertical dashed lines are added to highlight the
rising and falling edges in the first three sub-figures.

C. Ablation Study and Discussion

We carry out an ablation study for the appliances in the REDD
dataset and report the MAEs in Table III (each MAE value is
averaged over 3 trials). The first row corresponds to SGN. It is
observed in the table that each component we add can reduce
the MAE and that the components are mutually compatible,

TABLE III
ABLATION STUDY RESULTS FOR APPLIANCES IN THE REDD DATASET IN

TERMS OF MAE. MS, SA, AL, AND OA ARE THE ACRONYM FOR

“MULTI-SCALE,” “SELF-ATTENTION,” “ADVERSARIAL LOSS,” AND

“ON-STATE AUGMENTATION”

as lower MAEs can be achieved when they are combined.
Specifically, the combination of the additional modules and the
adversarial loss greatly improves the performance of the model.
The improvement for fridge is mainly contributed by on-state
augmentation, which helps the model adapt to a different power
consumption level in the test data.

It is then of great interest to analyze the mechanism behind the
accuracy boost when the additional modules are combined with
adversarial loss. After some investigation, we find out that the
adversarial loss helps the model capture the power consumption
modes as expected, and that the branch-wise gates allow the
model to avoid the mode collapse phenomenon (see [43] for
an introduction to mode collapse of GAN). The effect of the
adversarial loss is demonstrated in Fig. 15 with dishwashers
in the REDD dataset as an example. Specifically, we plot the
first two principal components of the 64-time-step sequences
of y (real samples) and ŷ (generated samples) after principal
component analysis (PCA). Only complete on-state sequences
are considered for simplicity and clarity. Four modes of y in
the training set are identified, and it is expected that ŷ in the
training set would have the same distribution. Although ŷ in the
test set may not have exactly the same distribution as y in the
training set (different dishwashers may have varied consumption
levels), it would be problematic if the distributions differ too
much. In Fig. 15(a), the SGN model produces sequences close
to modes 1 and 2, but fails to cover modes 3 and 4 (only a
small fraction gets close to mode 3). By contrast, the complete
SCANet model covers all the modes (Fig. 15(c)). However, it is
shown in Fig. 15(b) that the SCANet fails to cover modes 3 and 4
when the branch-wise gates are removed. Note that the branch-
wise gates are not specifically designed for avoiding the mode
collapse phenomenon. Nevertheless, the empirical observation
for dishwasher in the REDD dataset shows that the branch-wise
gates facilitates the incorporation of the adversarial loss.

D. Practicability Verification With Limited Data and Partial
Ground Truth

The aforementioned experiments are carried out with at least
several weeks of data from multiple houses and measurements
of power consumptions of individual appliances are available.
The individual-appliance-level measurements, however, may be
impractical to obtain. In order to verify the performance of the
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Fig. 15. Two-dimensional visualization of on-state samples for dishwashers in the REDD dataset with different models: (a) SGN, (b) SCANet without branch-wise
gates, and (c) SCANet with branch-wise gates. We show 10% of the samples of y (blue dots) in the training set and their corresponding ŷ (green dots). The red
crosses correspond to ŷ for the test set. Four modes with high-density blue dots are identified in (a), each representing a power consumption level. Only SCANet
with branch-wise gates can cover all the modes for ŷ in the test set.

proposed SCANet model when there is no access to fully labelled
datasets (i.e., datasets containing consumptions of individual
appliances) with large time spans, a different setting that uses
less data with partial ground truth is adopted. More specifically,
the new setting has the following features:
� We use the training data of the REDD dataset and test with

the test data of the UK-DALE dataset, which puts higher
demands on the generalization ability of the models.

� It is assumed that appliance-level power consumption sig-
nals are inaccessible, but the on/off states of the appliances
being considered are labelled. Thus, only the ground truth
of on/off states are available.

� Only a small proportion of training data is used to train the
models.

As the ground truths for appliance-level consumptions are
unavailable, we modify the structures of SGN and SCANet
and keep only the on/off state classification sub-networks in
the models. As a result, the outputs of the models only contain
on/off state predictions. The data in the REDD dataset is down-
sampled by a factor of 2 to match the sampling frequency of the
UK-DALE dataset (i.e., s is 32 and w is 200). The step sizes for
the REDD and the UK-DALE datasets are 4 and 2, respectively.
Other hyper-parameters of the models remain unchanged. The
adversarial losses are not added as the consumption values are
unknown. Specifically, the experiments for the three appliances
in the REDD dataset are designed as follows:
� Fridge: Two proportions, namely, 5% and 10% of the

training data are used (the first 5% or 10% of each section
in the training data as there are multiple sections). The
total time span for the training data is roughly 3 days
for the proportion of 10%. On-state augmentation with
e− = −0.15 and e+ = 0.15 is used.

� Dishwasher: 20% of the training data is used, which con-
tains only 2 events of usage. On-state augmentation with
e− = −1 and e+ = 1 is used.

� Microwave: for microwave, 20% of the training data is used
and 12 microwave usage events are included. On-state aug-
mentation with e− = −1 and e+ = 1 is used. In addition to
this setting, we also experiment with adding part of the test
data into the training data to mimic the process of gradually
improving the model with the help of additional partially
labelled data from the household being tested (e.g., from

TABLE IV
PERFORMANCE OF THE MODELS ON THE STATE CLASSIFICATION

TASK FOR FRIDGE

Fig. 16. Visualization of on/off states for fridge in the UK-DALE dataset. The
models are trained using only 10% of the training data from the REDD dataset.

user feedbacks). Specifically, the additional data is taken
from the beginning of the test data and is not used for
evaluation. For the additional data, on-stage augmentation
is also added with e− = −0.2 and e+ = 0.2.

For performance evaluation, we use the F1-score which is
defined as

F1 =
2PR

P +R
, (8)

whereP = TP
TP+FP is the precision andR = TP

TP+FN is the recall
of the predictions for all the time steps. TP, FP, and FN stand
for true positive, false positive, and false negative, respectively.
For the predicted on/off state probabilities, values lower than
0.5 are considered as off and values greater or equal to 0.5 are
considered as on.

The performance of the models for fridge is shown in Table IV,
and the on/off states are visualized in Fig. 16. It is clear in the
results that the SCANet has higher recall than SGN, and the
F1-score of SCANet is much higher. Specifically, the SGN
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TABLE V
PERFORMANCE OF THE MODELS ON THE STATE CLASSIFICATION TASK

FOR DISHWASHER WITH 20% OF TRAINING DATA

Fig. 17. Visualization of on/off states for dishwasher in the UK-DALE dataset.
The models are trained using 20% of the training data from the REDD dataset
and only 2 on-state events are covered.

TABLE VI
PERFORMANCE OF THE MODELS ON THE STATE CLASSIFICATION TASK

FOR MICROWAVE WITH 20% OF TRAINING DATA

model predicts a lot of off states when the fridge is working. The
results for dishwasher are shown in Table V and Fig. 17. With
only two usage events in the training data, it is quite impressive
that the SCANet model is able to have high precision and recall
at the same time. For the time range of Fig. 17, there are 29 usage
events for the ground truth, and the SCANet model responses to
27 of them. Meanwhile, only 2 false positive cases are produced.

The results for microwave are shown in Table VI and Fig. 18.
When no data from the test dataset is added, the performances of
both models are not satisfactory. This indicates that transferring
a model learned on the REDD dataset to the UK-DALE dataset
is problematic for microwave. The reason transferring the model
of fridge is easier is that fridges generally have a unique cyclic
power consumption pattern with a relatively low consumption
level. The consumption pattern of dishwashers is also quite
unique and the time span for a single usage is relatively long.
The usage pattern of microwaves, however, may be confused
with other appliances as it mainly consists of sparse, short
windows with high power consumptions. As a result, adding
partially labelled data from the test data greatly improves the
performance of the SCANet model. When the data of a week
containing 19 microwave usage events is added, the F1-score
of the model increases to 0.689. Further, if we consider the

Fig. 18. Visualization of on/off states for microwave in the UK-DALE dataset.
The models are trained with 20% of the training data from the REDD dataset
and some of the models have additional training data from the household being
tested.

number of events recorded in Fig. 18, the precision and recall are
63/65 ≈ 0.969 and 63/77 ≈ 0.818 for the model trained with
data of 7 additional days in the test data.

In short, we have shown that the proposed SCANet model has
a better performance than SGN in the new experiment setting.
In addition, a model trained in this manner may also be used to
facilitate unsupervised NILM approaches (e.g., help assign the
disaggregation results to specific appliances).

V. CONCLUSION

We develop a scale- and context-aware CNN model, namely
SCANet, for the task of NILM in this paper. Experiment results
show that the proposed SCANet significantly reduces the esti-
mation error of the disaggregated appliance-level power con-
sumption. Adding adversarial loss and on-state augmentation
are proven to be useful for certain appliances. In addition to
the comparisons with the state-of-the-art, we also provide some
observations on the working mechanisms of the modules by
diving into the intermediate network layers. We show that the
scale- and context-aware modules are functioning as expected,
which contribute to the improvement in disaggregation accuracy.

In order for NILM techniques to function properly for real-
world applications, an important path for future work is to
combine the merits of supervised and unsupervised learning.
One possibility is to combine the results from supervised and
unsupervised models to produce better results. Another direction
is to design a practical setting for semi-supervised learning and
try to incorporate unlabelled or partially labelled data into the
training process of a model.
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