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The Crust and the ��Skeleton� Combinatorial

Curve Reconstruction

Nina Amenta� Marshall Berny David Eppstein z

December �� ����

Abstract

We construct a graph on a planar point set� which captures its shape in

the following sense� if a smooth curve is sampled densely enough� the graph

on the samples is a polygonalization of the curve� with no extraneous edges�

The required sampling density varies with the Local Feature Size on the curve�

so that areas of less detail can be sampled less densely� We give two di�erent

graphs that� in this sense� reconstruct smooth curves� a simple new construction

which we call the crust� and the ��skeleton� using a speci�c value of ��

� Introduction

There are many situations in which a set of sample points lying on or near a surface
is used to reconstruct a polygonal approximation to the surface� In the plane� this
problem becomes a sort of unlabeled version of connect�the�dots� we are given a set of
points and asked to connect them into the most likely polygonal curve� We show that
under fairly generous and well�de�ned sampling conditions either of two proximity�
based graphs de�ned on the set of points is guaranteed to reconstruct a smooth curve�
These two graphs are the crust� which we de�ne below� and the ��skeleton� de�ned
ten years ago by Kirkpatrick and Radke �KR���� with an appropriately chosen value
of ��

Figure � shows an example of a point set and its crust� The points were chosen
by hand� Notice that fewer samples are required on the goose	s back than on its head
and foot�
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�

yXerox PARC� 



 Coyote Hill Road� Palo Alto� CA ��
	�� USA�
zDepartment of Information and Computer Science� University of California� Irvine� CA ������

Work supported in part by NSF grant CCR�����
�� and by matching funds from Xerox Corp� and
performed in part while visiting Xerox PARC�

�



Figure �� A point set and its crust�

The reconstruction of curves in the plane is important in computer vision� Simple
edge detectors select image pixels which are likely to belong to edges� often delimiting
the boundaries of objects� Grouping these pixels into likely curves is an area of active
research� Extension of our ideas to three dimensions would be useful for constructing
three�dimensional models from laser range data� stereo measurements� and medical
images�

� De�nitions

In this paper� we will consider closed� compact� twice�di
erentiable ��manifolds� with�
out boundary� embedded in the plane� we shall call such a manifold a smooth curve�
According to our de�nition� then� a smooth curve can have several connected com�
ponents� but no endpoints� branches or self�intersections� Let F be a smooth curve
and S � F a �nite set of sample points on F �

De�nition� A polygonal reconstruction of F from S is a graph that connects every
pair of samples adjacent along F � and no others�

Clearly no algorithm can reconstruct any curve from any set of samples� we need
some condition on the quality of S� Our condition will be that the distance from any
point p on F to the nearest sample s � S is at most a constant factor r times the
Local Feature Size at p� which we de�ne to be the distance from p to the medial axis
of F �see section �� This condition has the nice property that less detailed sections
of the curve do not have to be sampled as densely�

Given a sample S from a smooth curve which meets the sampling condition for
an appropriately small value of r� we show that a polygonal reconstruction is given
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by either of the two graphs de�ned below�

We shall say that a disk B touches an object x if the intersection B�x is a subset
of the boundary of B �that is� we mean that B �just touches� x�� We say that B is
empty of points in x if its interior contains no points of x� The graph de�nitions are
both related to the Voronoi diagram and Delaunay triangulation of S �� and we shall
refer to the following well�known property�

Empty Circle Property� Two points in S determine an edge of the Delaunay
triangulation if there is a disk B� empty of points in S� which touches them both�

We now de�ne the graphs we will use for reconstruction�

De�nition� Let S be a �nite set of points in the plane� and let V be the vertices
of the Voronoi diagram of S� Let S � be the union S � V � and consider the Delaunay
triangulation of S �� An edge of the Delaunay triangulation of S � belongs to the crust
of S if both of its endpoints belong to S�

An alternate de�nition can be given using the Empty Circle Property�

Figure �� A Voronoi diagram of a point set S� and the Delaunay triangulation of
S � V � with the crust highlighted�

Alternate De�nition� Let S be a �nite set of points in the plane� and let V be
the vertices of the Voronoi diagram of S� An edge between points s�� s� � S belongs
to the crust of S if there is a disk� empty of points in S � V � touching s� and s��

The intuition behind the de�nition of the crust is that the vertices V of the Voronoi
diagram of S approximate the medial axis of F � and the Voronoi disks of S � � S � V
approximate empty circles between F and its medial axis� Note that if an edge

�For more on the Voronoi diagram and Delaunay triangulation see any of the standard compu�
tational geometry texts� eg� PS����E��� or O����
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between two points of S belongs to the Delaunay triangulation of S � it certainly
belongs to the Delaunay triangulation of S� and hence the crust of S is a subset of
the Delaunay triangulation of S�

We now review the de�nition of the ��skeleton� An edge is present in the ��
skeleton if the following forbidden region is empty of points of S� Let � � � be a
constant�

De�nition� Let s�� s� be a pair of points in the plane� at distance d�s�� s��� The
forbidden region of s�� s� is the union of the two disks of radius � d�s�� s���� touching
s� and s��

Examples of the forbidden region for di
erent values of � are shown in Figure ��
Reasonable de�nitions for � � � can also be made� see �KR����

Figure �� Forbidden regions for � � �� ���� �

De�nition� Let S be a �nite set of points in the plane� An edge between s�� s� � S
belongs to the ��skeleton of S if the forbidden region of s�� s� is empty�

The ��skeleton� like the crust� is a subset of the Delaunay triangulation� Values of
� which are either too large or too small require denser sampling� and hence smaller
values of r� to guarantee reconstruction� The largest value of r for which we can can
guarantee reconstruction corresponds to a value of � � �����

Both the crust and the ��skeleton are very easy to compute� given a good program
for the Delaunay triangulation and Voronoi diagram of points in the plane� for which
see �Sh�� among others� To compute the crust� one computes the Voronoi diagram of
S� combines S with the set V of Voronoi vertices to make S � � S � V � computes the
Delaunay triangulation of S �� and �nally selects from the result all those edges whose
two endpoints lie in S� For the ��skeleton� one computes the Delaunay triangulation
of S and then selects each edge e for which the circumcircles of the adjacent triangles
are centered on opposite sides of e and both have radius greater than ��� times the





length of e� In either case the running time is bounded by the time required to
compute the Voronoi diagram and Delaunay triangulation� which is O�n logn�� for
n � jSj�

� Previous Work

Our work draws on a variety of sources� The closest line of research concerns shape
recognition for computer vision� The emphasis there is on the closely related problem
of estimating the medial axis from a set of boundary points� Brandt and Algazi �BA���
showed that the Delaunay triangulation of a su�ciently dense set of samples contains
a reconstruction of the boundary as a subset of its edges �a slightly weaker version
of our Theorem ���� Robinson� Colchester� Gri�n and Hawkes �RCGH��� propose
selecting the boundary reconstruction edges by comparing the length of dual Voronoi
and Delaunay edges� our paper essentially gives two equally easy and provably better
�ltering algorithms� Ogniewicz �O�� studies the computation of an approximate
medial axis from a densely sampled boundary� and uses the approximate medial axis
to produce successively simpler representations of the boundary� Similar ideas were
used by O	Rourke� Booth and Washington �O��� who proposed reconstructing simple
closed polygons in the plane from a set of points by choosing a subset of the Delaunay
triangulation so as to optimize the approximate medial axis of the resulting polygon�

A successful earlier computational geometric approach to de�ning the shape of
a set of points is the ��shape� introduced by Edelsbrunner� Kirkpatrick and Seidel
�EKS���� and studied extensively by Edelsbrunner and others� The ��shape is a
simplicial complex de�ned on a set of points in arbitrary dimension d� each k � d��
points are connected into a �k����simplex if they touch an empty ball of radius �����
The ��shape tends to work well for sample points which are evenly distributed in the
interior of an object� and has proved particularly useful for modeling molecules� But
��shapes are often unsatisfying for reconstructing surfaces� the user needs to �nd the
correct value of the threshold �� and the same � has to apply to the whole data set�

In this paper we continue the study of the ��skeleton� which was de�ned by Kirk�
patrick and Radke �KR���� Up until now it has been assumed that the parameter
�� like �� needs to be found by the user� For our reconstruction problem� we give a
value for � which is guaranteed to work when S meets the sampling condition�

The ��neighborhood graph� introduced by Veltkamp �Vel���� is a generalization
of the ��skeleton in which the two forbidden disks may have di
erent radii� We
believe that results similar to ours can be proved for a suitably de�ned family of
��neighborhood graphs� in which the angle between the two circles at the point of
intersection �see Observation ��� is �xed at an optimal value� probably a bit more
than ����

We have recently become aware of two concurrent independent research e
orts re�
lated to ours� Attali �A��� proves that uniformly sampled curves can be reconstructed
by �essentially� the above�mentioned family of ��neighborhood graphs� She requires
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the sampling density be everywhere great enough to resolve the �nest detail of the
curve� Our results are better in that they allow the sampling density to vary along
with the level of detail� Melkemi �Mel��� de�nes an A�shape on a set S of points as
follows� let S � be the union of S with an arbitrary set of points A� An edge of the
Delaunay triangulation of S � belongs to the A�shape if both of its endpoints belong
to S� Our crust is an A�shape for which A is the set of Voronoi vertices� A�shapes
for other choices of A may also have interesting provable properties�

� The Medial Axis

In this section we review the de�nition of the medial axis �B���� and prove some
useful lemmata about it� The medial axis can be thought of as the Voronoi diagram
generalized to an in�nite set of input points�

De�nition� The medial axis of a curve F is closure of the set of points in the plane
which have two or more closest points in F �

Figure  shows the medial axis of a smooth curve� Note that we include components

Figure � The light curves are the medial axis of the heavy curves�

of the medial axis on either side of the curve� so that some components of the medial
axis may extend to in�nity� Note also that since we de�ne the medial axis to be
a closed set� it includes the centers of all empty osculating disks �the empty disks
tangent to F with matching curvature�� which are its limit points� The medial axis
can be de�ned similarly for a �d� ���dimensional surface in Rd �

Many of our arguments will be based on the following topological Lemma� Note
that it concerns two distinct kinds of disks� circular Euclidian disks and topological
��disks� that is� curve segments�

Lemma � Any �Euclidean� disk containing at least two points of a smooth curve in
the plane either intersects the curve in a topological ��disk or contains a point of the
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medial axis �or both��

Proof� If B � F is a topological disk there is nothing to prove� so assume that B � F
is not a topological disk� If some connected component C of B � F is a closed loop�
forming a Jordan curve in the interior of B� then there is a connected component of
the medial axis interior to C which is entirely contained in B� and we are done�

Otherwise B � F consists of two or more connected components of F � Let c
be the center of B� and let p be the nearest point on F to c� If p is not unique�
then c is a point of the medial axis and we are done� Otherwise p lies in a unique
connected component fp of B � F � Consider the point q nearest c in some other
connected component fq� Any point x on the line segment cq is closer to q than to
any point outside B� so the closest point of F to x is always some point on one of
the connected components of B � F � Since at one end of the segment the nearest
connected component is fp� and at the other it is fq� at some point x the nearest
connected component must change� Point x has two nearest points on two distinct
connected components� and so is a point of the medial axis� �

A Voronoi disk of a �nite set S of points is a maximal empty disk centered at a
Voronoi vertex of S� Each Voronoi disk has at least three points of S on its boundary�
and none in its interior�

Lemma � In the plane� any Voronoi disk of a �nite set S � F � where F is a smooth
curve� must contain a point of the medial axis of F �

Proof� Assume �rst that in the neighborhood of one of the samples s � S on the
boundary of B� F � s is contained completely in B� Then either B � F is entirely
contained in the boundary of B and the center of B is a point of the medial axis� or
shrinking B around s will produce a smaller disk B�� contained in B� with B� � F
consisting of at least two connected components� By Lemma � B� contains a point
of the medial axis� If there is no such s� then the intersection of F with B already
consists of at least two connected components� and B contains a point of the medial
axis by Lemma �� �

Note� This lemma does not hold in dimension three� an arbitrarily dense sample S
on a smooth surface F can have very small Voronoi balls centered on the surface F
itself �or anywhere else�� which are very far from the medial axis� Such a ball can be
constructed as follows� select a point p on the surface F � p �� S� Construct a small
ball B around p� empty of samples� and add four new samples to S on the intersection
B � F � Such examples arise naturally with grid�like sample sets�
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� Sampling

In this section we de�ne our sampling condition� Our condition is based on a Local
Feature Size function� which in some sense quanti�es the local �level of detail� at a
point on smooth curve� Local Feature Size functions are used in the computational
geometry literature on mesh generation� the term was �rst used� to the best of our
knowledge� by Ruppert �R��� �with a similar de�nition��

De�nition� The Local Feature Size� LFS�p�� of a point p � F is the Euclidean
distance from p to the closest point m on the medial axis�

The segment of length LFS�p� between a point p � F and the closest point m on the
medial axis of F is perpendicular to the medial axis� not to F � as in �gure ��

m

p

m’

Figure �� LFS�p� is the distance d�p�m�� not the perpendicular distance d�p�m�� to
the center of the largest empty tangent ball at p�

Notice that� because it uses the medial axis� this de�nition of Local Feature Size
depends on both the curvature at p and the proximity of nearby features�

We can now de�ne the sampling condition we will require for curve reconstruction
in terms of the LFS function�

De�nition� F is r�sampled by a set of sample points S if every p � F is within
distance r LFS�p� of a sample s � S�

We shall be concerned with values of r � ��

Armed with this de�nition of Local Feature Size� we can clarify the intuition that
a small enough disk intersects a curve in a topological ��disk� The following are
corollaries of Lemma ��

Corollary � A disk containing a point p � F � with diameter at most LFS�p�� inter�
sects F in a topological disk�
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Proof� Consider the contrapositive� any disk B containing p that does not intersect F
in a topological disk contains a point m of the medial axis� by Lemma �� The nearest
point to p on the medial axis is at distance LFS�p� from p� so d�p�m� � LFS�p��
Since B contains the segment �p�m�� its diameter is greater than LFS�p�� �

Corollary � A disk centered at a point p � F � with radius at most LFS�p�� intersects
F in a topological disk�

Proof� Similar to Corollary �� �

The following objects were de�ned by Chew �C���� from whom we borrow the idea
of polygonalizing a curve using empty disks centered on the boundary� We take
responsibility for the names�

De�nition� A Curve Voronoi Disk is a maximal disk� empty of sample points�
centered at a point of the curve� A Curve Voronoi Vertex is the center of a Curve
Voronoi Disk�

Note that a Curve Voronoi Vertex is the restriction of an edge of the Voronoi diagram
of S to the curve F �

Corollary � A Curve Voronoi Disk on an r�sampled smooth curve F � r � �� inter�
sects F in a topological disk�

Proof� Follows from Corollary � �

For large r� it is possible for there to be a set S of points that r�samples two
topologically di
erent curves� as in Figure �� The sample points are placed at the
vertices of two regular octagons� positioned so that two adjacent pairs of vertices form
a square� The points ��sample two di
erent curves� one having a single connected
component and the other two�

Observation � Let S be a set of points in the plane� There may not be a unique
graph on S that is the polygonal reconstruction of a smooth curve r�sampled by S� for
r � ��

For considerably smaller r� we shall show that there is only one possible reconstruc�
tion� and our graphs �nd it�

� Flatness

Considering the de�nition of the medial axis� and referring back to Figure �� we
observe the following�
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Figure �� The �� points ��sample both heavy curves� The light lines are the medial
axes�

Lemma � A disk tangent to a smooth curve F at a point p with radius at most
LFS�p� contains no points of F in its interior�

Proof� The perpendicular distance from p to the point m� on the medial axis that is
the center of the largest empty tangent disk at p is at least LFS�p�� The tangent
disk of radius LFS�p� at p must therefore be contained in the largest tangent disk
and hence is also empty� �

We use this lemma to show quantitatively that the intersection of a smooth curve with
a small enough disk is not only a topological disk but also rather �at� The calculations
will be based on simple geometric facts about the angles and points labeled in Figure
�� Roughly speaking� we can think of s as a sample and p as an adjacent Curve
Voronoi Vertex� Let r be the distance from s to p� and let the distance from s to c�
and the distance from p to c� equal one�

Observation 	 It is easy to verify the following�

i� The length of segment �s� x� is sin����

ii� r � d�s� p� � � sin������ so � � � arcsin�r����

iii� The angle � � ��� � arcsin�r����

iv� The angle between the tangent line L at p and the segment �s� p� is � � arcsin�r����

Lemma 
 For an r�sampled curve in the plane� r � �� the angle formed at a Curve
Voronoi Vertex between two adjacent samples is at least � � � arcsin�r����
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p

c

s
x

L

Figure �� Line L is tangent to the circle at p� d�c� p� � d�c� s� � � and d�s� p� � r�

Proof� Let p� in Figure �� be the Curve Voronoi Vertex� and let the disk B centered at
c be a tangent disk of radius LFS�p�� which we assume without loss of generality to be
equal to one� The curve F does not intersect the interior of B� so the sharpest angle is
achieved when the adjacent sample points lie on the boundary of B at distance r from
p� as does s in the �gure� The angle formed at p is then � � �� � � � � arcsin�r���
�Observation ��� �

A very similar argument shows

Lemma �� For an r�sampled curve in the plane� r � �� the angle spanned by three
adjacent samples is least � �  arcsin�r����

� Polygonal Reconstruction

We now begin our study of curve reconstruction by showing that for a densely r�
sampled curve� the Delaunay triangulation of the samples contains� as a subset of its
edges� a polygonal reconstruction of the curve�

Lemma �� Let F be an r�sampled smooth curve in the plane� r � �� There is a
Curve Voronoi Disk touching each pair of adjacent samples�

Proof� Let s�� s� be two samples adjacent along F � The interval of F between s� and
s� crosses the bisector of s�� s� at least once� so let p be one such crossing point� Let
B be the maximal disk centered at p which has no sample in its interior� If s� and s�
are on the boundary of B� then B is a Curve Voronoi Disk touching s� and s��
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Otherwise the maximality of B implies that B touches some third sample si� Since
p lies between s� and s� on F � si does not lie between s� and s� on F � p is inside
B� s� and s� are outside B� and B touches si� B must intersect F in at least two
connected components� In that case B must contain a point of the medial axis� by
Lemma �� and the radius of B is greater than LFS�p�� by the de�nition of Local
Feature Size� Since there is no sample within distance LFS�p� of p� this contradicts
the assumption that F is r�sampled� with r � �� �

Theorem �� Let F be an r�sampled smooth curve in the plane� r � �� The Delaunay
triangulation of the set S of samples contains an edge between every adjacent pair of
samples�

Proof� Implied immediately by Lemma �� and the Empty Circle Property� �

Note� Brandt and Algazi �BA��� also show that adjacent points on a densely
sampled curve are separated by a Voronoi edge �the dual statement of Theorem ����
Let d� be the minimum� over all points p � F � of LFS�p�� Their sampling condition
is that every point p must have a sample within distance d��

The polygonal reconstruction is close to the curve in the following sense�

Theorem �� The distance from a point p on an r�sampled smooth curve F to some
point on the polygonal reconstruction of the samples is at most �r����LFS�p��

Proof� Let p be the point of F between two samples s� and s� which is farthest from
the reconstruction� Assuming without loss of generality that LFS�p� � �� then the
distance from p to the nearer of the two samples� say s�� is at most r� Since the
curve is smooth and p is maximally distant from the segment �s�� s��� the tangent at
p is parallel to �s�� s��� The disk of radius one tangent to the curve at p is empty of
sample points� so the maximal distance from p to �s�� s�� is achieved when s� lies on
the surface of the disk� at distance r from p� once again as in Figure �� The distance
d�p� x� there is r sin� � r sin ��� � r sin�arcsin�r���� �Observation ��� �

Note� The distance from the reconstruction to F is� like the required sampling
density� scale invariant� the reconstruction in areas of less detail� which are sampled
less densely� can be farther away from the curve� Theorem �� implies that to obtain
a reconstruction that is everywhere within a constant distance d of F � every point p
on F should have a sample within distance

p
�d LFS�p��

In the following sections we give criteria for selecting the edges of the polygonal
reconstruction from the Delaunay triangulation�

� The Crust

We now prove that for small enough r� the crust edges fall exactly between adjacent
vertices� First we show that all the desired edges belong to the crust� and then that
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no undesired edges do�

Theorem �� The crust of an r�sampled smooth curve� r � ���� contains an edge
between every pair of adjacent samples�

Proof� An edge appears in the crust if and only if there is a circle touching its
endpoints which is empty of both sample points and Voronoi vertices� We claim that
this is true of every Curve Voronoi Disk on an r�sampled smooth curve� There is
a Curve Voronoi Disk touching every pair of adjacent vertices �Lemma ���� so this
claim establishes the theorem�

p

B

V

ψ

v?

B’

R r

Figure �� The construction of Theorem ��

Let B be a Curve Voronoi Disk centered at p� By de�nition� B cannot contain
a sample point� To see that B cannot contain a Voronoi vertex� consider Figure ��
The point v is a Voronoi vertex which� we assume for the purpose of contradiction�
falls within B� We assume� once again without loss of generality� that LFS�p� � ��

Since v is a Voronoi vertex� the radius R of the Voronoi circle V around v is at
most the distance to the nearer of the two samples inducing p� This Voronoi circle
must contain a point of the medial axis �Lemma ��� On the other hand� the disk
B� of radius LFS�p� � � around p cannot contain a point of the medial axis� by the
de�nition of Local Feature Size�

We now choose r so that V lies entirely within B�� establishing the contradiction�
Any point in V is at most distance r�R from p� and R is maximized when v lies on
the boundary of B� In this case R is length of the base of an isosceles triangle whose
other two edges have length r� Since the curve is pretty �at at p �Lemma ��� the
angle � at p opposite the base is at most �

�
�� � � arcsin�r����� and R�� � r sin����

So we want

r � �r sin�
� � � arcsin�r���


� � �
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The parenthetical quantity is less than ��� for r in the interval ��� ��� so the left�
hand side is increasing in that interval� Choosing r � ��� satis�es the inequality�
�

Theorem �� The crust of an r�sampled smooth curve does not contain any edge
between non�adjacent vertices� for r � ������

Proof� We need to show that there is no circle� empty of both Voronoi and sample
points� touching any two non�adjacent sample points s and t� We assume� for the
purpose of contradiction� that there is such a circle B� as in Figure ��

Β

V
t

s
s1

s2

p

vv’

V’

Figure �� The construction of the contradiction in Lemma ���

Consider the two circles V� V � touching s and t and centered at the points v� v� at
which B intersects the perpendicular bisector of s and t�

We claim that if B is empty of Voronoi points� then V and V � are empty of sample
points� For if one of them were nonempty� it would contain a sample s� determining
a minimal circle touching s� t and s�� empty of all other samples and hence inducing
a Voronoi vertex inside of B�

Consider for a moment Figure ��� which is a closeup of the situation at s� The
angle 	 between the tangents to the circles V� V � at s is equal to ��� �since the lower
half�circle of B� containing s� is the locus of points which form a right angle with v
and v�� and the tangents are perpendicular to �v� s� and �v�� s���

The angle ��s�� s� s�� is at least � �  arcsin�r��� �Lemma ���� Without loss of
generality let V be the circle such that the angle � between the tangent to V at s

�



ωs1

s

s2
ψ

Figure ��� The angle � between the tangent and the chord is greater than the corre�
sponding angle on the other side�

and the chord �s� s�� or �s� s�� is greater than the corresponding angle on the other
side� Then � � ����� �  arcsin�r��� � ���� � �� � � arcsin�r���� If we assume�
once again with no loss of generality� that the radius of V is equal to one� this bound
on � implies �Observation �� that d�s� s�� � � sin���� � arcsin�r�����

There is a Curve Voronoi Vertex p between s and s� �Lemma ���� and hence�
since the curve is r�sampled� sin���� � arcsin�r���� � r LFS�p��

We now give an upper bound for LFS�p�� so as to derive a contradiction� The
samples s and t are on two di
erent connected components of the intersection F �V �
so V contains a point of the medial axis �Lemma ��� The point p lies in V � which
has radius one� so LFS�p� � �� Thus

sin���� � arcsin�r���� � �r

The right hand side is increasing in r� while the left hand side is decreasing in r
in the range ��� ��� Choosing � � r � ����� violates the inequality� producing a
contradiction� �

	 The �
Skeleton

In this section� we show that with an appropriately chosen value of �� the ��skeleton
of the samples on an r�sampled smooth curve forms a polygonal reconstruction of the
curve� To simplify our calculations� we shall sometimes de�ne the forbidden region
of an edge in terms of the angle between the two forbidden circles� rather than the
length of the edge �see Figure ����

Observation �� Let s�� s� be a pair of points in the plane� let � � �� and let 
 �
arcsin ���� The tangents to the two disks of radius d�s�� s����� touching s� and s�
form an angle of �
 at s� and s��

��
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Figure ��� Forbidden regions can be de�ned by � or 


Lemma �� Let s�� s�� s� be three successive samples on an r�sampled smooth curve�
When 
 �  arcsin�r���� s� cannot lie in the forbidden region of the edge �s�� s���

Proof� If we choose 
 so that the angle ��s�� s�� s�� � � � 
� then s� cannot lie in
the forbidden region of �s�� s��� Since the curve is r�sampled� ��s�� s�� s�� is at least
� �  arcsin�r��� �Lemma ���� �

s2

p

s1

Figure ��� The construction of Lemma ��

Lemma �	 The forbidden region of an edge between two adjacent samples on an r�
sampled smooth curve cannot contain a point of the medial axis� when 
 �arcsin�� sin�� arcsin�r������

Proof� Let s� and s� be adjacent samples� Let p be a Curve Voronoi Vertex between
s� and s� �Lemma ���� We assume without loss of generality that LFS�p� � ��

We begin by choosing 
 so that the radius R of the circles de�ning the forbid�
den region of �s�� s�� is at most ���� R � d�s�� s����� sin
�� And� since LFS�p� � ��
d�s�� s�� � � sin�� arcsin�r���� �Observation ��� so we choose 
 � arcsin�� sin�� arcsin�r������

��



The samples s� and s� must lie outside the interior of the two tangent circles of
radius one at p� so there is a circle of radius at least one� touching p� s� and s�� Since
R � �� and the forbidden disks also touch s� and s�� p must lie in the interior of both
of the forbidden disks� as in Figure ��� Since R � ���� the forbidden region lies
entirely within the circle of radius one around p� which by the de�nition of the Local
Feature Size does not contain a point of the medial axis� �

Lemma �
 The ��skeleton of an r�sampled smooth curve does not contain an edge
between any pair of non�adjacent samples� when 
 � arccos��r�� � arcsin�r����

Proof� The proof of this theorem is similar to that of Theorem ��� so this presentation
is somewhat sketchy� We let s� t � S be two samples� not adjacent on F � and replace
the circles V and V � in that proof with the forbidden circles B and B� of the potential
edge �s� t�� as in Figure ���

t

p s1

ψ

s2

B B’

s

Figure ��� The forbidden region is drawn horizontally

The angle between the tangents of B and B� at s is �
� The angle ��s�� s� s�� is
at least � �  arcsin�r��� �Lemma ���� One one side of s� without loss of generality
the side of s�� the angle � between the chord �s� s�� and the tangent to B at s
is at least ��� � � arcsin�r��� � 
� Assuming without loss of generality that the
radius of B is equal to one� we �nd �Observation �� that the length d�s� s�� �
� sin���� � � arcsin�r��� � 
� � � cos�� arcsin�r��� � 
�� and that at the Surface
Voronoi Vertex p between s and s�� r LFS�p� � cos�� arcsin�r��� � 
��

Again� since B has radius one and intersects the curve F in two connected com�
ponents� LFS�p� � � �Lemma � and the de�nition of LFS�p�� so we have�

cos�� arcsin�r��� � 
� � �r

To produce a contradiction� we choose 
 so as to violate this inequality�


 � arccos��r�� � arcsin�r���

��



�

Theorem �� Let S r�sample a smooth curve� with r � ������ The ��skeleton of S
contains exactly the edges between adjacent vertices� for � � �����

Proof� Lemma �� established that the ��skeleton contains no edges between non�
adjacent vertices for


 � arccos��r�� � arcsin�r��� ���

Let s�� s� be two adjacent samples� and let s� and s� be the other samples adjacent
to s�� s� respectively� There would fail to be an edge between s� and s� if some third
sample fell into the forbidden region� Lemma �� implies that neither s� nor s� can
lie in the forbidden region when


 �  arcsin�r��� ���

If some other sample si lay in the forbidden region� but s� and s� did not� that
would imply that one of the forbidden circles intersects F in at least two connected
components �one containing s� and the other containing si�� and hence must contain
a point of the medial axis �Lemma ��� This cannot occur when


 � arcsin � sin � arcsin�r��� ���

�Lemma ���� These three functions are plotted in Figure �� All three inequalities
are satis�ed in the shaded region� There is a feasible choice of 
 for any r � ������
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Figure �� The three functions from Theorem ��� plotted in Mathematica and an�
notated with idraw�

The value of 
 which allows the sparsest sampling� maximizing r� is roughly 
 � ������
which corresponds to � � ����� �

Note that this value for � is not likely to be the optimal one� it is just the value
corresponding to the largest r for which our somewhat crude bounds allow us to
prove that an r�sampling yields a correct reconstruction�

��



�� Implementation and Examples

We implemented the two reconstruction algorithms using the Delaunay triangulation
and Voronoi diagram programs in Shewchuk	s Triangle package �Sh�� generating data
with an interactive Java front end� Here are some examples of point sets� with their
crusts in the center and their ��skeletons on the right�

The crust and the ��skeleton are identical on any point set S which is a ������sample
of a smooth curve F � since they both produce a correct reconstruction� They are
often identical in practice for larger values of r� in the example above� r � ����

On more sparsely sampled curves� the crust is usually more liberal in adding edges�
Note that ��skeletons and crusts can contain vertices of degree one or degree three�
Vertices of degree four or greater cannot occur in crusts� while the maximum degree
in a ��skeleton depends on the choice of ��

��



A curve can be reconstructed fairly well in the presence of sparse added noise� Notice
the unusual occurrence� in this last example� of an edge in the ��skeleton which is
not in the crust�

�� Conclusion and Open Questions

We can summarize our main results as follows� Let S be an r�sample from a smooth
curve F � For r � �� the Delaunay triangulation of S contains the polygonal recon�
struction of F � For r � ���� the crust of S contains the polygonal reconstruction of
F � For r � ������ the ��skeleton of S is the polygonal reconstruction of F � and for
r � ����� the crust of S is the polygonal reconstruction of F �

The minimum required sample density that we can show for the ��skeleton is
somewhat better than the density that we can show for the crust� The crust tends
to err on the side of adding edges� which can be useful� But the ��skeleton could be
biased towards adding edges� at the cost of increasing the required sampling density�
by tuning the parameter ��

The main open question is the polygonal reconstruction of two�dimensional sur�
faces in R� � This is an important problem in graphics� and a series of Siggraph papers
have presented e
ective practical algorithms �HDDMS���� �TL��� �BBX���� �CL����
Neither of our planar graphs gives a polygonal reconstruction when generalized to
R
� in a straightforward way� although it seems possible that either idea could be

elaborated into a working algorithm�

Many questions remain about two�dimensional reconstruction� There should be
results on the quality of the reconstruction of curves with branches and endpoints�
There are probably versions of our theorems that do not require smoothness� but only
that any angles be bounded away from zero by a function of r� It should be possible
to prove something about the quality of the reconstruction in the presence of small
errors in sample positions and of additive noise�

Better lower bounds would also be interesting� None of our constants are tight�
and they are far from the lower bound r � � of Observation �� The comparison is
not really fair here� since our graphs also reconstruct some curves with branches and
endpoints� An algorithm that produced only reconstructions of smooth closed curves
could perhaps get by with a larger value of r�

The work in �RCGH���� �BA���� �O��� dealt with the polygonal analog of the
medial axis� consisting of those edges of the Voronoi diagram of S whose dual Delau�
nay edges do not belong to the polygonal reconstruction of the boundary� see Figure
��� One can think of this graph as the anti�crust� Our bounds on the quality of the
polygonal reconstruction of the boundary should imply something about the quality
of the anti�crust as a reconstruction of the medial axis�

��



Figure ��� A point set� its crust� and the corresponding polygonal analog of the
medial axis�

Frequently piecewise�linear reconstruction is only a step towards smooth recon�
struction� Since the LFS gives an upper bound on the curvature� it should be possible
to reconstruct F with spline rather than line segments in such a way as to improve
Theorem ��� This might give a near�minimal representation of F which does not
sacri�ce any important features�
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