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ABSTRACT OF THE DISSERTATION

Microphone Array Processing for Speech: Dual Channel Localization, Robust
Beamforming, and ICA Analysis

by

Wenyi Zhang

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California, San Diego, 2010

Professor Bhaskar D. Rao, Chair

Compared with single channel speech processing, multi-microphone based

speech processing methods are capable of high interference suppression in noisy en-

vironments because of their spatial filtering capability. This dissertation develops novel

microphone array speech processing methods in a variety of configurations and also an-

alyzes and provides insights into existing popular techniques. First we develop a two

microphone based source localization technique for multiple speech sources utilizing

speech specific properties and the generalized mixture decomposition clustering algo-

rithm. Voiced speech is sparse in the frequency domain and can be represented by

sinusoidal tracks via sinusoidal modeling which provides high local SNR. By utilizing

the inter-channel phase differences (IPD) between the dual channels on the sinusoidal

tracks, the source localization of the mixed multiple speech sources is turned into a clus-

tering problem on the IPD vs. frequency plot. The generalized mixture decomposition

algorithm (GMDA) is used to cluster the groups of points corresponding to multiple

sources and thus estimate the DOA of the sources.

Our next work considers data dependent adaptive beamformers, which are

xvi



known to have high resolution and interference rejection capability when the array steer-

ing vector is accurately known. However, these methods degrade severely if steering

vector error exists and so robust variants are needy to remedy this sensitivity. We com-

pare and analyze recent developments in adaptive beamforming. We then develop a

robust broadband adaptive beamforming algorithm which combined the robustness of

the delay-and-sum beamforming in the look direction with the high interference rejec-

tion capability of adaptive beamforming algorithm. Based on J. Li and P. Stoica’s work

on robust Capon beamforming, we develop variants of the constrained robust Capon

beamformer that attempt to limit the search in the underlying optimization problem to a

feasible set of steering vectors thereby achieving improved performance.

Another class of promising multi-channel signal separation algorithms that com-

plement beamforming methods are blind source separation methods. We analyze and

provide insight into one such class of blind source separation methods,independent com-

ponent analysis (ICA) methods. For separating convolutively mixed source signals, the

frequency domain ICA approach is often used because it simplifies the time domain con-

volutive mixing problem into the instantaneous mixing problem in each frequency bin.

We examine and provide insights into the frequency domain ICA methods for source

separation in reverberant environments. Concentrating on the bin-wise ICA methods,

a significant contribution of this work is to show that signals modeled using Gaussian

scale mixtures (GSM) density can be separated using ICA even though they might be

dependent on each other as long as the the frame dynamics of the source signals are dif-

ferent almost surely. We also analyze the stability conditions of the complex maximum

likelihood ICA/IVA.

Lastly, in an attempt to make the best of ICA and beamforming methods, we

propose two approaches for combining geometric information with ICA algorithms to

solve the permutation problem in a scenario where approximate information about the

direction of the desired source is known.

xvii



1 Introduction

1.1 Challenges

Array processing has been developed for many years and has gained important

applications in various fields such as radar/sonar systems, wireless communication sys-

tems, biomedical apparatus, seismic engineering and microphone array speech process-

ing systems. In recent years, microphone array speech processing has attracted a lot

of attention not only because of the recent development of robust adaptive beamform-

ing algorithms and blind source separation algorithms based on independent component

analysis (ICA), but also because of the advances in computer engineering and semi-

conductor industry which provide sufficient computational power and make real time

implementation of array processing algorithms possible.

Microphone array processing for speech may be used for different purposes such

as source localization, tracking, building situation awareness, speech enhancement and

noise suppression, boosting automatic speech recognition system, and source separa-

tion. Because of the spatial distribution of multiple microphone sensors, the signals

emitting from a sound source may arrive at different sensors with different time delays

and magnitudes (or different channels if reverberation exist). These differences are the

real factors which make all the array processing methods work.

Despite the many years of development of antenna array processing techniques

in radar/sonar applications, microphone array speech processing brings up new chal-

lenges because of its specific characteristics. First of all, speech is a broadband signal

covering several octaves, while many antenna processing algorithms have been focus-

ing on narrowband signals. Even though a broadband signal can be decomposed into a

bank of narrowband signals and be processed therein by narrowband algorithms, there

1
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are many other difficulties such as decomposing and synthesizing without distortion,

possible permutation and scaling ambiguities between the different narrowband signals,

etc. All these problems should be considered carefully and handled properly before we

apply narrowband array processing algorithms to process a broadband signal.

Secondly, speech is not a white signal. It exhibits special spectral characteristics.

It is highly dynamic with a rapid varying spectrum. It is usually considered as non-

stationary (In chapter 5, we take a different point of view and model it as a dynamic

random process which is stationary at the frame and ensemble level and exhibits non-

stationarity characteristics at the realization level). What’s more, in speech enhancement

or speech separation applications, the interference signals (or called noise signals) to be

suppressed may also be speech signals which exhibit the same dynamic characteristics

as the desired signal. Speech’s non-white and non-stationary properties make many

array processing algorithms which take Gaussian white signals inapplicable. Hence

special algorithms are desired. Although speech proposes new challenges because of the

special characteristics, it may also provide specific opportunities which are not available

in general signal processing. For example, speech signal’s sparsity in the time-frequency

domain and the harmonic structure in the spectrum have been used in single channel or

dual channel speech separation. Specifically, in chapter 2, we design a two microphone

based source localization technique for multiple speech sources utilizing speech specific

properties such as the sparsity in the time-frequency domain and sinusoidal modeling.

Another challenge in microphone array speech processing is the high level of

room reverberations often encountered in many applications. Many microphone arrays

are developed to work in a room environment where there is no reverberation. The

reverberation time of a room is usually long such that the room impulse response filter

may have a length which is more than one thousand of samples. In such a case, the array

processing filters may be even longer. This is different from the antenna array processing

where a few taps are enough to model the transfer function of the channel. Furthermore,

the room impulse response are usually modeled as a dynamic channel where besides

the fixed strong reverberation paths, the rest of the channel is modeled as a random

process. All these factors already put forward big challenges, not to mention the room

impulse response is often sensitive to environment changes such as subject moving or
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facing in different directions. Due tothese factors, learning the transfer function of the

channel through a training process usually is not possible for array speech processing.

Therefore, the transfer functions of the channels can only be learned through a blind

process, which in general is a very hard problem.

Furthermore, microphone arrays for speech processing are limited in deployment

freedom. In real applications, microphone arrays are often supposed to be inobtrusive

and can only be deployed in specific locations, such as on walls or roofs. When the

array is far away from the sound sources, some voices will have low signal to noise ratio

(SNR), partly because of the huge dynamic range in human voice volume. Also, the

size of a microphone array is usually constrained by the environment and by the budget.

Boosting the speech enhancement performance using a limited number of sensors is

another challenge.

Based on whether geometric information is utilized explicitly, the microphone

array processing techniques can be classified into two general classes. The first class

demands prior knowledge about the array geometry, and uses the geometric informa-

tion directly in the processing algorithms. This class includes localization algorithms,

source tracking, and beamforming algorithms. The second class is the blind source sep-

aration which includes blind equalization and independent component analysis (ICA).

No geometric information is needed in these algorithms.

Motivated by the challenges in microphone array processing for speech, in this

dissertation, we focus our efforts in improving the robustness of the beamforming al-

gorithms, analyzing the blind source separation techniques, making the best of both

worlds and exploiting speech specific properties. In the next section, we provide some

background in these areas and summarize our contributions.

1.2 Geometric Array Processing

1.2.1 Source Localization

Source localization is an important component of a multichannel speech signal

processing system which in addition to localization may include other functions such as

tracking, speech enhancement and noise suppression. The estimated source direction or
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location can then be used by the beamforming algorithms to enhance the desired signal

and suppress the interference signals. Source localization using microphone array can

also be combined with other systems such as a video camera system to provide more

complete information about an environment.

Depending on how localization is achieved, it may be alternatively referred to as

time delay estimation (TDE), time difference of arrival (TDOA) estimation and direction

of arrival (DOA) estimation, in various fields. For wideband signals, source localization

is generally based on inter-channel time difference (ITD) or inter-channel intensity dif-

ference (IID). For far field source scenario, which assumes the sources are far away

from sensors such that each source’s contribution at all sensors have the same intensity,

only ITD is used in localization. A number of source localization algorithms have been

developed, e.g. MUSIC, ESPRIT, spatial power spectrum based approach, maximum

likelihood method, correlation based approach, and adaptive multichannel time delay

estimation method based on blind equalization [1, Ch.9] [2]. These algorithms usually

assume the number of sensors is greater than the number of sources.

However, in some applications, the number of microphone sensors may be lim-

ited. For example, on a hand held device or a laptop computer, we may only be able to

install 2 to 4 microphones. In chapter 2 of this dissertation, DOA estimation based on

only two microphones is considered, and methods in this context can be broadly cate-

gorized into two classes: time domain approaches and frequency domain approaches.

The time domain algorithms include time domain cross correlation method, average-

magnitude-difference function method [3], LMS-type adaptive TDE algorithm [4], and

adaptive eigenvalue decomposition algorithm associated with blind channel identifica-

tion [5, 6]. The frequency domain algorithms include linear regression method [7, 8],

blind channel identification based method [9] and the well known generalized cross-

correlation (GCC) family of methods, which includes many variations, the smoothed

coherence transform, the phase transform, the maximum likelihood approach, and so

forth [10, 11, 12, 13, 14, 15, 16, 17]. However, most of the these algorithms are based

on single source signal model and can not locate multiple sources. Surprisingly, the hu-

man auditory system as a binaural system has shown its high efficiency in locating mul-

tiple speech sources simultaneously [18]. Research on human auditory system shows
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speech’s specific properties such as the sparsity in the time-frequency domain and the

harmonic structure in the voiced speech have been utilized extensively for this purpose.

This provides us with new opportunities in developing localization algorithms based on

two microphones. Our contribution is summarized in section 1.4 and fully described in

chapter 2.

1.2.2 Robust Beamforming

In an array processing system for speech, after the sources are localized, usually

a speech enhancement stage is employed to extract the desired speech signal and sup-

press any interference signal or noise. Compared with single channel speech processing,

multi-microphone speech processing has high interference suppression in noisy environ-

ment because of its spatial filtering capability. Array processing algorithms usually try

to form a spatial response pattern which has a peak in the direction of the desired signal

and nulls in the directions of the interference signals. The spatial patterns are referred

to as beams and the systems as beamformers or beamforming algorithms.

Beamformers can be classified into data dependent (adaptive) beamformers or

data independent (fixed) beamformers. The standard data independent beamformers

such as the delay-and-sum (DS) beamformer is robust to the signal of interest (SOI)

steering vector errors, which may be due to look direction error, array sensor position

error, and small mismatches in the sensor responses. Yet those beamformers suffer from

low resolution and high sidelobes, inducing bad interference rejection capability, es-

pecially when the number of sensors is limited. In contrast, data dependent adaptive

beamformers can learn the environment and places nulls in the interference direction,

thus having high resolution and interference rejection capability when the array steering

vector is accurately known. However, the performance of the traditional adaptive beam-

former can degrade severely in practice when there exist SOI steering vector errors.

In such cases, the SOI might be mistaken as an interference signal and be suppressed.

Fig.1.1 demonstrates a look direction error in a uniform linear array system. In this ex-

ample, the look direction is the broadside direction, i.e. 0◦. However, the true desired

signal incidence angle is 5◦, which means there’s a 5◦ look direction error. In this case,

the traditional adaptive beamformer will take the desired signal as an interference signal
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Figure 1.1: A demonstration of the look direction error problem

and suppress it. This SOI steering vector error problem should be addressed before the

adaptive beamforming algorithms can be applied to process real world speech data.

Broadband beamforming

Based on the signals processed, beamformers can be categorized into broad-

band beamformers or narrowband beamformers. Since speech is a broadband signal,

the broadband beamformer is a natural choice.

Frost Beamformer: Optimum Solution and LMS Algorithm

Among the broadband adaptive beamformer, the Frost beamformer is one of the

most extensively studied [19]. The Frost beamformer has a multichannel tapped-delay-

line structure (Fig. 1.2), and a set of linear constraints are introduced to ensure a desired

frequency response in the look direction. Thereby it is also called linear constrained

minimum variance (LCMV) beamformer. Suppose a Frost beamformer use a linear

array with K sensors and J taps. The first step is to pre-steer the array in the look
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Figure 1.2: A broadband beamformer with K sensors and J taps.

direction. The Frost beamforming problem is then mathematically formulated as,

min
w

wT RXXw, subject to CT w = F (1.1)

where w is the KJ dimension concatenated weight vector for all the taps. RXX is the KJ

dimension covariance matrix. F = [ f1, f2, · · · , fJ]T is the vector of weights of the look-

direction-equivalent tapped delay line, a simple choice for F will be F = [1, 0, · · · , 0]T .

C is the constraint matrix with KJ rows and J columns, in which the jth column picks up

the jth column of the array elements in the array matrix. The optimum solution to the the

Frost beamforming problem (Eq. (1.1)) can be obtained using the Lagrange multiplier

method and corresponding LMS algorithm is developed (section 3.2).

The performance of the Frost beamformer (optimum solution) can degrade

severely in practice when the steering vector errors exist. However, experiments also

illustrate the Frost LMS algorithm is robust to the look direction error when the adap-

tation does not go through too many iterations (i.e. the speech source length is not too

long). Motivated by these observations, we analyze the effect that the signal incidence

angle has on the convergence rate of the Frost LMS beamforming weight vector. Our

analysis confirms that the Frost LMS algorithm is robust to the look direction error when

the adaptation does not go through too many iterations. Our contributions in this context
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are summarized in section 1.4 and fully described in chapter 3.

Narrowband beamforming

Because of the high sampling rate in the time domain, broadband beam-

forming algorithms usually are computationally intensive. Besides the broadband

processing, speech can also be decomposed into narrowband signals by a bank of

filters. In each narrowband, the narrowband beamformer is applied to enhance the

desired signal. Then the enhanced narrowband signal can be synthesized into the

time domain signal. Among the adaptive narrowband beamformers, the minimum

variance distortionless response (MVDR) beamformer is probably the most popular one.

Standard MVDR Beamformer (MVDR)

The MVDR beamforming is also called Capon beamforming [20]. The problem

is formulated as minimizing the output energy of the beamformer while maintaining a

constant response in the look direction, i.e.

min
w

wHRw, s.t. wHa = 1. (1.2)

where R is the signal correlation matrix. a is the SOI steering vector. w is the beam-

former weight vector. The solution to this optimization problem is given by

w =
R−1a

aHR−1a
. (1.3)

The performance of standard MVDR beamformer can degrade severely in prac-

tice when there exist SOI steering vector errors. Many robust beamforming algorithms

have been proposed to address this problem [21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39]. Derivative constraint in the look direction is pro-

posed in [22, 23]. Er and Cantoni proposed a robust beamforming algorithm which

restricts the error between the desired and actual beam pattern of the array over a small

spatial region around the array’s look direction, allowing for uncertainty in the look

direction [40]. Linearly constrained minimum variance (LCMV) beamforming is pro-

posed in [41, 42]. Bell proposed a Bayesian approach to robust adaptive beamforming

in [24]. Norm constrained and white noise gain constrained adaptive beamformer are
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studied in [21, 43, 44] and widely used thereafter. These beamformers use diagonal

loading to improve robustness, however, the selection of the diagonal loading parameter

is subjective and problematic.

Recently some new robust adaptive beamformers with theoretical background

have been proposed. Robust adaptive beamforming using worst-case performance op-

timization is proposed in [25, 45, 46]. The problem is formulated as minimizing a

quadratic function subject to infinitely many quadratic constraints, but is reduced to a

second-order cone programming problem which can be solved by interior point meth-

ods. Li and Stoica proposed the robust Capon beamformer (RCB) [47, 26, 48] where

a spherical uncertainty set constraint is enforced on the array steering vector. They

also developed a doubly constrained robust Capon beamformer (DCRCB) [26] based

on RCB, wherein a norm constraint on the beamformer steering vector is added. A

comparison of these two beamformers is given in [49] and a geometrical explanation is

provided.

RCB and DCRCB solve the SOI cancellation problem by searching for the

MVDR beamformer with maximum energy output in a spherical uncertainty set. If

the true SOI steering vector exists in the spherical uncertainty set, RCB and DCRCB

is supposed to find that steering vector as the minimizer of a quadratic optimization

problem. However, the minimizer of the quadratic optimization problem may not be a

feasible steering vector. A feasible steering vector generally satisfies some geometrical

constraints and has a physical meaning. Not all the vectors in the spherical uncertainty

set have such physical meaning and are set to be valid steering vectors. Our contribu-

tions in this context are summarized in section 1.4 and fully described in chapter 4.

1.3 Blind Source Separation

Besides robustness to steering vector errors, another significant problem with

adaptive beamforming algorithms is the signal cancelation problem in strong reverberant

environments. In a reverberant environment, the signal from a reverberation path is a

delayed version of the signal from the direct path. These signals are coherent. If an

adaptive beamformer is employed, it will try to cancel the desired signal from the output
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using the correlation between its reverberant components. This is the well-known signal

cancelation problem in adaptive beamforming [50]. There have been efforts to solve

the signal cancelation problem [51, 52, 53], but none of them is successful enough in a

strong reverberant environment.

1.3.1 Blind Equalization

Even though multi-channel blind source separation (BSS) does not utilize ge-

ometric information explicitly, they are more successful in a reverberant environment

compared to the beamforming algorithms. One famous class of BSS is the blind chan-

nel identification and blind equalization algorithms [54, 55, 56]. But many algorithms

in this class are designed for Gaussian, white or constant modulus signals, and they are

only suitable for short channel filter length. As we mentioned before, speech is non-

white, non-Gaussian and non-stationary. What’s more, the reverberation channel filter

length is long which may contain thousands of samples. Therefore, those popular blind

equalization algorithms are usually not appropriate to be applied on reverberated speech.

1.3.2 Independent Component Analysis

Another class of promising multi-channel BSS algorithms is independent com-

ponent analysis (ICA). ICA only utilizes the statistical independence between several

sources to separate them from their mixtures [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83]. Assuming an N by N linear

instantaneous mixing system (N sources, N sensors),

x = As (1.4)

x =


x1
...

xM

 A =


a11 · · · a1N
...

. . .
...

aN1 · · · aNN

 s =


s1
...

sN

 (1.5)

x is the observation vector. A is an unknown mixing matrix assumed to have full column

rank. s is a vector of latent variables which are assume to be non-Gaussian (or at most

one is Gaussian) and mutually independent. The de-mixing system can be written as,

y = Wx (1.6)
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where y =
[
y1, · · · , yN

]T is the outputs and W is a N by N de-mixing matrix. Assuming

source signals s are independent signals, ICA attempts to solve the BSS problem by

determining a de-mixing matrix W such that the outputs y approximate source signals

s under permutation and scaling ambiguity [81]. Most ICA algorithms try to find a de-

mixing matrix W so that the components in y are statistically as independent as possible.

The ICA signal model has inherent ambiguities in the permutation and scaling

of the source signals. Suppose P is a permutation matrix with scalings on non-zero

elements, then we get the following equation,

x = As = AP−1Ps = A′s′ (1.7)

where A′ = AP−1, s′ = Ps. It is easy to see that after the permutation and scaling,

the components in s are still independent. This intrinsic ambiguity problem can not be

resolved by ICA itself because ICA only utilize independence.

1.3.3 Frequency domain ICA approach

For separating convolutive mixed source signals, the frequency domain ICA ap-

proach is often used because it simplifies the time domain convolutive mixing problem

into the instantaneous mixing ICA problem in each frequency bin. The frequency do-

main ICA approach is elaborated in Table 1.1. It has been widely used and has become

a conventional blind source separation (BSS) approach for de-mixing convolutive mix-

tures. However, permutation problem across different frequency bins is an important

problem that needs to be solved before the frequency domain ICA approach can be used

to separate mixed sources in real applications [84, 72, 85, 86, 87, 88, 89, 90, 87, 91, 92,

93, 94, 95]. Independent vector analysis (IVA) was proposed to circumvent the permuta-

tion problem [96, 97, 98, 99, 100, 101, 102, 103]. Instead of solving the mixing problem

in each frequency bin independently, IVA considers the frequency domain source signal

linked together as a vector source and attempts to resolve the mixing problem in the

frequency bins in an integrated manner.

For convolutive mixed blind source separation, Pham et al. argued that in the

frequency domain the source signal at each fixed frame and frequency is a Gaussian

signal, therefore ICA is not applicable [104]. Parra, Pham, and Choi et al. all proposed
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Table 1.1: The conventional frequency domain ICA approach

(1) Apply short time Fourier transform (STFT) on each time domain mixture based

on consecutive frames. Thus the convolutive mixing problem in the time domain is

transformed into an instantaneous mixing problem in each frequency bin.

(2) On each frequency bin, apply batch ICA algorithm (instantaneous mixing ICA)

to separate the source signals.

(3) Use appropriate permutation and scaling correction method to solve the permu-

tation and scaling ambiguity across all frequency bins, so that the spectrum of the

source signals can be recovered.

(4) Apply inverse discrete Fourier transform (DFT) on the recovered source spec-

trum and use overlap-and-save (or overlap-and-add) method to obtain the time do-

main signal.

to utilize the non-stationarity of source signals for instantaneous mixing blind source

separation [105, 67, 106, 107, 66, 108, 109, 110]. In the frequency domain approach for

de-mixing convolutive mixtures, if Parra, Pham, and Choi et al.’s methods are applied

in each frequency bin to separate the mixed source signals therein, the source signals

in each frequency bin are implicitly assumed to be non-stationary. By simultaneously

diagonalizing several covariance matrices (second order statistics) at different times in

each frequency bin, the mixed source signals in each frequency bin are separated. How-

ever, the permutation problem stills need to be solved in order to obtain each source’s

spectrum for reconstructing the time domain source signal. One shortcoming of this

approach is the need for a large amount of data so that the covariance matrices in each

frequency bin can be estimated robustly (remember several covariance matrices have to

be estimated in each frequency bin). For instance, for convolutive mixed blind speech

signal separation more than 20 to 30 seconds of data is necessary to obtain satisfactory

results [105].

However, the conventional frequency domain ICA approach (Table 1.1) is

widely used and many experiments on convolutive mixing blind source separation

demonstrate good separation performance (assuming the permutation problem is cor-

rectly solved) no matter what kind of instantaneous mixing ICA algorithms is employed
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in separating the mixed source signals in each frequency bin. For example, maximizing

neg-entropy (FastICA) algorithm, maximum likelihood algorithm, and Infomax algo-

rithm [58, 60, 61, 63, 62] have been tested in the frequency domain ICA approach and

all of them illustrate good separation results. An advantage of these ICA algorithms is

that their performance is not too sensitive to the amount of data. For example, in convo-

lutive mixing speech separation, a few seconds of data is enough to provide satisfactory

separation result. Inspired by their broad success, we examine and provide insight into

frequency domain ICA methods for source separation in reverberant environments. Our

contributions in this context are summarized in section 1.4 and fully described in chap-

ter 5.

1.3.4 Make the Best of Both Worlds

ICA assumes no knowledge about the mixing process except the independence

between sources. However, sometimes extra information is available and can be utilized

to aid the ICA process. For example, in microphone array speech processing, speech’s

temporal structure or geometric information with the array may be employed to solve the

permutation problem. Many recent works have been developed to combine ICA with

geometric information to solve the permutation problem [85, 86, 87, 88, 89, 91, 95].

In [85, 86], beam pattern of the ICA processor is utilized to figure out the directions of

the sources to solve the permutation problem. These methods become too complicated

and are not robust when the number of sources exceed 2. Parra and Alvino proposed the

geometrically constrained (or initialized) ICA algorithm [87], but accurate source num-

ber is required and correct permutation is not guaranteed. Knaak and Araki proposed an

ICA algorithm with a hard linear geometric constraint [88]. However, accurate source

number is mandatory for the algorithm to perform properly.

In microphone array speech processing, the geometry of the array and rough in-

formation about the direction of the desired signal may be known a priori, for instance,

the direction of the desired signal may be assumed to be the broadside direction for a lin-

ear array, or be acquired by some direction of arrival (DOA) estimation algorithms [1].

In an attempt to make the best of ICA and beamforming methods, we propose two ap-

proaches for combining DOA information of the desired source with ICA algorithm to
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solve the permutation problem. Our contributions in this context are summarized in

section 1.4 and fully described in chapter 7.

1.4 Contributions of the Thesis

This thesis contributes to many aspects of microphone array based speech pro-

cessing; robust beamforming algorithms, insights into blind source separation (BSS)

methods, algorithms that make use of speech specific properties and make best use of

the features of beamforming and BSS methods. The contributions are summarized be-

low.

1. First we consider DOA estimation for multiple speech signals based on only two

microphones. Most of the popular dual channel DOA estimation algorithms are

based on single source signal model and can not locate multiple sources. Sur-

prisingly, the human auditory system as a binaural system has shown its high

efficiency in locating multiple speech sources simultaneously. Research on hu-

man auditory system shows speech’s specific properties such as the sparsity in the

time-frequency domain and the harmonic structure in the voiced speech have been

utilized extensively for this purpose. This provides us with new opportunities in

developing localization algorithms based on two microphones. Utilizing speech’s

specific properties such as the sparsity in the time-frequency domain and the sinu-

soidal modeling, we propose a two microphone based DOA estimation technique

for multiple speech sources using the generalized mixture decomposition clus-

tering algorithm. Voiced speech is sparse in the frequency domain and can be

represented by sinusoidal tracks via sinusoidal modeling which provides high lo-

cal SNR. By utilizing the inter-channel phase differences (IPD) between the dual

channels on the sinusoidal tracks, the source localization of the mixed multiple

speech sources is turned into a clustering problem on the IPD vs. frequency plot.

The generalized mixture decomposition algorithm (GMDA) is used to cluster the

groups of points corresponding to multiple sources and thus estimate the DOA

of the sources. Experiments illustrate the proposed GMDA algorithm with the

Laplacian noise model can estimate the number of sources accurately and exhibits
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smaller DOA estimation error than the baseline histogram based DOA estimation

algorithm in various scenarios including reverberant and additive white noise en-

vironments. Experiments suggest that appropriate power thresholding can be a

simple and good approximation to the sinusoidal modeling, for the purpose of

selecting time-frequency points with high local SNR, with slight loss in perfor-

mance. The details are presented in Chapter 2.

2. Despite the high resolution and interference rejection capability, the conventional

data dependent adaptive beamformers are very sensitive to the steering vector

errors. The performance of the Frost beamformer (optimum solution) can degrade

severely in practice when the steering vector errors exist. However, experiments

also illustrate the Frost LMS algorithm is robust to the look direction error when

the adaptation does not go through too many iterations (i.e. the speech source

length is not too long). Motivated by these observations, we analyze the effect

that the signal incidence angle has on the convergence rate of the Frost LMS

beamforming weight vector. Our analysis confirms that the Frost LMS algorithm

is robust to the look direction error when the adaptation does not go through too

many iterations.

We develop a robust broadband adaptive beamforming algorithm which combines

the robustness of the DS beamforming in the look direction with the high inter-

ference rejection capability of the conventional adaptive beamforming algorithm.

A quadratic constraint is employed to deal with the uncertainty in the look direc-

tion. In order to address the ill-conditioning associated with the constraint matrix,

a diagonal loading (DL) is added to the constraint matrix thereby ensuring a ro-

bust solution to the quadratic constraint beamforming problem. The advantage

of adding DL to constraint matrix is that the constraint matrix is only determined

by the geometry of the array thereby allowing the DL level to be chosen offline.

This is superior to adding DL to the signal covariance matrix where the DL level

has to be chosen online. It is shown that the diagonal loading is equivalent to an

additional norm constraint without introducing it explicitly. We also develop an

iterative algorithm (and corresponding adaptive algorithm) to solve for the robust

beamformer coefficients. The developed algorithm is applied to the problem of
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beamforming using microphone arrays for speech recognition and shown to be

superior to existing algorithms. The details are presented in Chapter 3.

3. Motivated by recent work in robust MVDR beamforming (RCB&DCRCB) [26],

we develop variants of the constrained robust MVDR beamformer that attempts to

limit the search in the underlying optimization problem to a feasible set of steering

vectors, thereby achieving improved performance. The robustness against steering

vector error is provided through a spherical uncertainty set constraint, while a set

of magnitude constraints are enforced on each element of the steering vector to

constrain the search in the space of feasible steering vectors in a better fashion. By

appropriately changing the variables, the optimization problem is modified such

that the need for the magnitude constraints are avoided.

We also develop adaptive algorithms for the RCB and the time delay based robust

MVDR beamformer. The adaptive algorithms have two updating steps. The first

step updates the steering vector estimation or the time delay estimation; the second

step updates the beamformer’s weight vector given an estimated steering vector.

The developed algorithms are tested in the context of speech enhancement using

a microphone array. The details are presented in Chapter 4.

4. Inspired by the broad success of ICA methods, we examine and provide insight

into frequency domain ICA methods for source separation in reverberant envi-

ronments. For the modeling of the source signals, we develop the concept of a

dynamic random process to model the source signals. It formalizes the concept

of signals that are stationary in a frame but exhibit dynamics at the frame level.

Frame dynamics is an important characteristics of these signals and prove impor-

tant to the success of the ICA methods. With suitable assumptions, the dynamic

random process is stationary in the ensemble sense while a given realization may

in an engineering sense exhibit ‘non-stationarity’. We show for dynamic random

processes, the unconditional distribution of the source signal in each frequency

bin is a Gaussian scale mixture (GSM). The non-Gaussianity, which is critical

to ICA [57], of the source signal in each frequency bin is shown to be a direct

consequence of the frame dynamics. Furthermore, the independence between the
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unconditional distributions of the source signals in each frequency bin is related

to the independence of the frame dynamics of the mixed time domain source sig-

nals. The GSM mathematical modeling is extended to the vector random pro-

cesses formed by stacking the different frequency components of a source. This

provides insights into the mathematical models suitable for the frequency domain

independent vector analysis (IVA) type approaches. A special case of the distribu-

tion turns out to be the ‘spherical distribution’ employed in IVA source modeling

providing support to their use in source separation. Concentrating on the bin-wise

ICA methods, a significant contribution of this dissertation is to show that sig-

nals modeled using GSM density can be separated using ICA even though they

might be dependent on each other as long as the the frame dynamics of the source

signals are different almost surely. In particular, we show that Kurtosis and neg-

entropy type measures can be used to separate variance correlated GSM signals.

The details are presented in Chapter 5.

5. In an attempt to make the best of ICA and beamforming methods, we propose

two approaches for combining DOA information of the desired source with ICA

algorithm to solve the permutation problem. The first approach is a new blind ex-

traction algorithm with a soft quadratic geometric constraint. The quadratic con-

straint restricts the weighted square error between the desired and actual response

of the processor over a small spatial uncertainty region chosen to deal with look

direction uncertainty. Thereby the desired source is guaranteed to be conveyed to

the output with little distortion and the negentropy maximization criterion is used

to ensure that the other sources get suppressed at the output. The second approach

employs a quadratic geometric test as a post-processing step to pickup the desired

source after ICA processing. In every frequency bin, the ICA algorithm separates

instantaneously mixed source signals, then the quadratic geometric test will pick

up the desired source. An advantage of the proposed two approaches is that they

do not require accurate knowledge of the number of sources in the mixtures to

recover the desired source, in contrast, other geometric ICA approaches usually

fail if the number of sources is not known accurately. The details are presented in

Chapter 7.



2 A Two Microphone Based Approach

for Source Localization of Multiple

Speech Sources

In this chapter we propose a two microphone based source localization technique

for multiple speech sources utilizing speech specific properties and the generalized mix-

ture decomposition clustering algorithm. Voiced speech is sparse in the frequency do-

main and can be represented by sinusoidal tracks via sinusoidal modeling and provide

high local SNR. Furthermore, the sinusoidal tracks of different speech signals are usu-

ally disjoint in the time-frequency domain. When multiple speech signals are mixed

in the two microphone system, the inter-channel phase differences (IPD) between the

dual channels on the sinusoidal tracks will be dominated by the spatial information of

the most powerful source at that specific time-frequency point because of the spectrum

sparsity and masking effects. Thereby, the source localization problem is turned into a

clustering problem on the IPD vs. frequency plot. The generalized mixture decomposi-

tion algorithm (GMDA) is used to cluster the groups of points corresponding to multiple

sources and thus estimate the DOA of the sources. Two variants, one based on Gaussian

modeling of the noise (GMDA Gauss) and another based on a Laplacian noise model

(GMDA Laplace), are developed. Experiments illustrate the proposed GMDA Laplace

algorithm to be very effective. It estimates the number of sources accurately and exhibits

smaller DOA estimation error than the baseline histogram based DOA estimation algo-

rithm in various scenarios including reverberant and additive white noise environments.

Experiments suggest that appropriate power thresholding can be a simple and good ap-

proximation to the sinusoidal modeling, for the purpose of selecting time-frequency

18
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points with high local SNR, with slight loss in performance.

2.1 Introduction to Source Localization

Source localization is an important component of a multichannel signal pro-

cessing system which in addition to localization may include other functions such as

tracking, signal separation, enhancement and noise suppression. Depending on how lo-

calization is achieved, it may be alternatively referred to as time delay estimation (TDE),

time difference of arrival (TDOA) estimation and direction of arrival (DOA) estimation,

in various fields. For wideband signals, source localization is generally based on inter-

channel time difference (ITD) or inter-channel intensity difference (IID). For far field

source scenario, which assumes the sources are far away from sensors such that each

source’s contribution at all sensors have the same intensity, only ITD is used in local-

ization. A number of source localization algorithms have been developed, e.g. MU-

SIC, ESPRIT, spatial power spectrum based approach, maximum likelihood method,

and adaptive multichannel time delay estimation method based on blind equalization [1,

Ch.9] [2]. These algorithms usually assume the number of sensors is greater than the

number of sources.

In this work, DOA estimation based on only two microphones is considered, and

methods in this context can be broadly categorized into two classes: time domain ap-

proaches and frequency domain approaches. The time domain algorithms include time

domain cross correlation method, average-magnitude-difference function method [3],

LMS-type adaptive TDE algorithm [4], and adaptive eigenvalue decomposition algo-

rithm associated with blind channel identification [5, 6]. The frequency domain al-

gorithms include linear regression method [7, 8], blind channel identification based

method [9] and the well known generalized cross-correlation (GCC) family of methods,

which includes many variations, the smoothed coherence transform, the phase trans-

form, the maximum likelihood approach, and so forth [10, 11, 12, 13, 14, 15, 16, 17].

However, most of the these algorithms are based on single source signal model and can

not locate multiple sources. The human auditory systems is an efficient binaural sys-

tem which can locate multiple speech sources simultaneously [18]. It has been shown
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that speech specific attributes, i.e. sparsity in time-frequency domain, can be utilized

to locate multiple speech sources using dual channels [111, 112, 113, 114, 115, 116,

117, 118, 119, 120]. For instance, in [113] the presence of gaps in the spectrum of

each source at different times and frequencies is exploited and an image processing

method is employed to detect vertical segments in the frequency vs. path difference plot

to locate two sound sources. In [114, 115], harmonic sound stream segregation using

localization is considered and a rough localization method based on IPD, IID and har-

monic streams is proposed. The sparse speech assumption is explicitly used in [116]

for localization and a histogram based method is proposed to locate multiple sources

through the frequency vs. DOA plot. The algorithms in [117, 118] can be considered

as variations to [116] wherein the inter-microphone distance is restricted to be small so

as to avoid spatial aliasing. In [117], a histogram generated using both ITD and IID is

utilized. In [118], the algorithm is extended to multiple microphones to estimate ‘the

3-dimensional absolute DOA’. In [120], a statistical noise model on ITD was introduced

and a posterior distribution on discretized ITD was estimated to localize the sources.

In this work, we follow this tradition and propose a two microphone based

DOA estimation technique for multiple speech sources utilizing the speech’s sparsity at-

tribute and the generalized mixture decomposition clustering algorithm. Voiced speech

is sparse in the frequency (spectrum) domain and can be represented by sinusoidal tracks

via sinusoidal modeling [121]. Furthermore, the sinusoidal tracks of different speech

signals are usually disjoint in the time-frequency domain. An advantage of utilizing the

sinusoidal tracks is that they represent regions where speech energy is concentrated lead-

ing to reliable, i.e. high signal to noise ratio (SNR), data points for further analysis. This

also suggests the consideration of power thresholding as a simple alternative to sinu-

soidal tracks for identifying locally high SNR points. When multiple speech signals are

mixed in the two microphone system, the inter-channel phase differences (IPD) between

the dual channels on the sinusoidal tracks will be dominated by the spatial information of

the most powerful source at that specific time-frequency point because of the spectrum

sparsity and masking effects (Sec. 2.2). The error between the IPD between the dual

channel signals and the IPD between a source signal’s contributions at the dual channels

is modeled as a random variable and a statistical signal model for the IPD error based
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on speech’s sparsity attribute and masking effects is proposed. The source localization

problem is shown to be a clustering problem on the IPD vs. frequency plot. General-

ized mixture decomposition algorithm (GMDA), one based on Gaussian modeling of the

noise (GMDA Gauss) and another based on a Laplacian noise model (GMDA Laplace),

is used to cluster the groups of points corresponding to multiple sources. The direction

of each source is derived from the parameters of each cluster. Generalized hard clus-

tering algorithm (GHCA) is also developed to avoid the need for a probabilistic model

in GMDA. Depending on the inter-microphone spacing, spatial aliasing effect is taken

into consideration by proper phase unwrapping. A minimum description length (MDL)

algorithm is used to determine the number of sources. Experimental results show the

scheme to be very effective.

The rest of this chapter is organized as follows. In section 2.2, we describe

the two microphone based source localization technique for multiple speech sources

based on IPD and sparsity of speech in the time-frequency domain. In section 2.3, a

generalized mixture decomposition algorithm (GMDA) is developed for clustering and

estimation of the directions of multiple sources. Generalized hard clustering algorithm

(GHCA) is also developed to avoid the use of probabilistic models in GMDA. In sec-

tion 2.4, experiments on localization of multiple speech sources are presented and they

provide support to the method developed. The following notation is adopted throughout

this chapter: (.)T for transpose, and |.| for modulus.

2.2 Two Microphone Based Source Localization for

Multiple Speech Sources

We first describe a two microphone based DOA estimation method for a single

source using inter-channel phase difference. The methodology discussed will then be

combined with speech sparsity characteristics to estimate DOA for multiple sources.
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2.2.1 Inter-channel Phase Difference Based DOA Estimation

Assuming a far field source scenario, a simple DOA estimation algorithm using

two microphones can be developed based on inter-channel phase difference (IPD) or

inter-channel time difference (ITD). Denoting the desired source signal by s[k], the two

microphone signals x1[k] and x2[k] can be expressed as,

x1[k] = s[k] + n1[k] (2.1a)

x2[k] = s[k − τ] + n2[k] (2.1b)

where s[k − τ] represents a delayed version of s[k], τ is the time delay of the desired

source. n1[k] and n2[k] represent ambient noise and more generally also include inter-

ference signals at the two channels.

The short time discrete Fourier transform (DFT) of x1[k] and x2[k] is denoted by

X1(ω) and X2(ω) respectively. Generally, they are also a function of the frame number.

To simplify notations, we ignore this dependence. X1(ω) and X2(ω) are given by (This

is a reasonable approximation if the delay is sufficiently smaller than the frame length),

X1(ω) = S (ω) + N1(ω) (2.2a)

X2(ω) = S (ω)e− jωτ + N2(ω) (2.2b)

where ω represents angular frequency, S (ω) is the DFT of s[n], N1(ω) and N2(ω) repre-

sent DFT of the noise component n1[k] and n2[k] respectively.

In the absence of noise, the inter-channel phase difference can be used for esti-

mating the DOA. The presence of noise introduces errors in the estimates of the phase

and hence the phase difference. The IPD ψX(ω) between the two channel signals X1(ω)

and X2(ω) is computed as

ψX(ω) = ∠X1(ω) − ∠X2(ω) (2.3)

and is constrained to be in the range [−π, π] after the mod(2π) operation. ∠X1(ω) and

∠X2(ω) is the phase of X1(ω) and X2(ω) respectively. If noise components n1[k] and

n2[k] are much weaker than the source signal s[k], in other words, if N1(ω) and N2(ω)

have much smaller magnitudes than the magnitude of S (ω), then

ψX(ω) = ωτ + 2πn + v(ω) (2.4)
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where τ is the time delay of the desired source. n is an integer number and 2πn rep-

resents possible phase unwrapping. v(ω) denotes the IPD error, which is dependent on

the signal to noise ratio (SNR). If N1(ω) and N2(ω) are modeled as complex Gaussian

random variables, then the IPD error v(ω) is also a random variable whose probability

density function (PDF) is denoted by p(v(ω)). Though it is difficult to find a closed

form expression, it is not difficult to deduce that the PDF p(v(ω)) is symmetric and is

concentrated around 0. A similar problem is considered in noncoherent detection in

communication [122, Ch.4], where a Gaussian distribution is proposed to approximate

the PDF p(v(ω)) at high SNR. In this work we also approximate the PDF p(v(ω)) by a

Gaussian distribution. In addition, a Laplacian distribution is also considered because of

its robustness to outliers, a situation likely to occur in the multi-source scenario. Alter-

nately, the IPD ψX(ω) can be approximated by a Gaussian or Laplacian random variable

with mean ωτ + 2πn. The DOA of the desired source can be derived from τ using the

following equation,

τ = d sin θ/c (2.5)

where d represents inter-microphone distance, c the sound speed, and θ the DOA of the

desired source (assume broadside direction of the 2 microphone array as 0◦).

Using the IPDs at different frequencies, ωl, l = 1, .., L, and different frames,

linear regression [7, 8] can be employed to estimate the slope of curve IPD ψX(ω) with

respect to ω in the IPD vs. frequency plot, thereby estimating τ and hence the DOA of

the source. To enhance robustness, it is useful to account for the SNR at each frequency

and frame and it is preferable to use only those data points with high SNR. The inclusion

of only reliable points in the estimation will be an important component of the method

proposed in the paper.

2.2.2 Speech’s Sparsity Attribute and Inter-channel Phase Differ-

ence

The DOA estimation method based on IPD, as discussed in Sec. 2.2.1, performs

well when there is only one source and the SNR is high. It is unable to locate multiple

sources particularly when there are multiple white sources spectrally flat with similar
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power level. Expanding the signal model shown in Eq. (2.2) to multiple sources, it can

be readily seen that if there are two white sources with similar power, the IPD ψX(ω) in

Eq. (2.3) does not have any simple relationship to the DOA of either source.

In this work, we develop a method that exploits source specific knowledge and

attempts to retain the simplicity of the IPD technique. The speech signal is not a white

signal. It has a special property, namely sparsity in the time-frequency domain, which

enables the possibility of estimating the DOA of multiple sources using dual chan-

nels [113, 114, 115, 116]. To elaborate, there are two kinds of sparsity that are often

present.

1. Sparsity in time domain. Natural speech generally has many short pauses and

silent segments, which may occupy more than half of the total observation inter-

val [123].

2. Sparsity in frequency domain. Speech is not a white signal and exhibits strong

short time correlation, especially for voiced speech. In the frequency domain,

the signal power is not equally distributed across the whole frequency range even

though it is a wideband signal. For voiced speech, the signal power is concentrated

on a set of equally distributed discrete frequency points, i.e. harmonics of the pitch

frequency [121, 124, 125].

Collectively the above two attributes make the speech sound sparse in the time-

frequency domain. When a recording contains multiple speakers, there are segments of

time when only one speaker is active and other speakers are inactive (in the state of short

pauses or silent breaks). Even though there are segments of time when more than one

speaker is active, the signal power of different speakers in the frequency domain may

occupy different sets of discrete frequencies.

At a specific time-frequency point, there is a high likelihood that at most one

source is dominating (in power) and the contributions from the other sources is negligi-

ble. As a consequence, the IPD ψX(ω) (Eq. (2.3)) will be dominated by the IPD ψS (ω)

of the dominating source, where ψS (ω) is defined as the IPD between the source’s con-

tribution at the two channels, ψS (ω) = ∠S (ω) − ∠{S (ω)e− jωτ} = ωτ. So the IPD ψX(ω)

contains DOA information of the dominating source at that time-frequency point and
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Figure 2.1: Magnitude spectrum of one frame. Dashed, dotted, and real line curve
denotes the spectrum for source s1, source s2, and the mixed signal respectively.

can be used for the DOA estimation. This is denoted as masking effect in this paper

(the most powerful source will mask the less powerful interference signals and ambient

noise). A similar masking effect defined on the power spectrum is widely used in single

microphone speech sources separation [124, 125]. We hasten to add that this masking

effect is not to be confused with the masking effects commonly discussed in the con-

text of psychology of hearing where it denotes a powerful signal at one frequency will

mask weaker signals at adjacent frequencies [126, Ch.3]. Fig. 2.1 illustrates the mag-

nitude spectrum of one frame for speech sources s1, s2 and the mixed signal (the signal

received at one microphone, xi, i ∈ {1, 2}). The masking effect is evident. When one

source has much bigger power than the other at some frequencies, the spectrum of the

mixed signal X(ω) is approximated by the spectrum of the source with significant power.

Only when the two sources has similar power at some frequencies, a rare event, does the

mixed signal X(ω) deviates from either one of the sources.

When masking comes into effect at a specific time-frequency point, the noise
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components N1(ω) and N2(ω) (including the less powerful interference signals and am-

bient noise) being masked by the dominating source S (ω) can be modeled as indepen-

dent and identically distributed complex Gaussian random variables [127, Ch.4] leading

to the single source model of the previous section. Consequently, the IPD ψX(ω) at this

time-frequency point can be approximated by a Gaussian or Laplacian random variable

following the discussion in Sec. 2.2.1.

Speech’s sparsity attribute and the masking effect combined leads to the idea

of DOA estimation using only data points with high local SNR in the time-frequency

domain, e.g. DOA estimation based on sinusoidal modeling [121]. In [121], it is ob-

served that speech usually has power focused on a set of discrete frequencies and can

be modeled by a set of sinusoidal tracks. Sinusoidal tracks are defined to be contin-

uous local peaks in the time-frequency domain which satisfy a set of constraints such

as power level, continuity in consecutive time frames, starting and ending constraints,

etc. By the sparsity and masking properties of the speech signal, the sinusoidal tracks

extracted from one channel of a mixed signal can be approximated as a disjoint union

of the sinusoidal tracks from each of the different source signals, i.e. a track of the

mixed signal can be associated with one of the source signals. This association is not

known and will be dealt with in the next section. When two or more sources have sim-

ilar power level at a time-frequency area, the interaction between source signals will

cause the mixed signal X(ω) to fluctuate frequently resulting in no sinusoidal tracks in

the corresponding time-frequency area (the frequency locations of the local spectrum

peaks change a lot from frame to frame in this time-frequency area, hence the continuity

condition for sinusoidal tracks will not be satisfied). Consequently, the sinusoidal tracks

extracted from the mixed signal will be close to the sinusoidal tracks from one source

in one time-frequency area, and be close to the sinusoidal tracks from another source

in another time-frequency area. The points on the sinusoidal tracks will implicitly have

high SNR. Fig. 2.2 shows the spectrum and extracted sinusoidal tracks for one example

mixed signal.

We propose to use the IPD ψX(ω) between the two channel signals X1(ω) and

X2(ω) on points of the sinusoidal tracks for the two microphone multiple speech sources

DOA estimation. As previously discussed, the IPD ψX(ω) on points of the sinusoidal
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Figure 2.2: Spectrum and sinusoidal tracks of source s1, s2, and one channel of mixed
signal. The red lines overlapping on the spectrum are the sinusoidal tracks.

tracks is dominated by the IPD ψS (ω) of one source among multiple sources (it can be

any one of the multiple sources depending on which source contributes to the sinusoidal

track). As an example, the IPD ψX(ω) on points of the sinusoidal tracks is plotted in a

IPD vs. frequency plot (Fig. 2.3 (a)). For comparison, the IPD ψX(ω) for all spectrum

points is also plotted (Fig. 2.3 (b)). The sources are two speech sources with sampling

rate 8kHz. The DOA of the two sources are 60◦ and −45◦ respectively. The inter-

microphone spacing is 4cm. There is no spatial aliasing [117] in this example (methods

for compensating for spatial aliasing are discussed in Sec. 2.3.3). From Fig. 2.3 (a), it is

clear there are two clusters of points which can be fitted by two lines. The two clusters

represent the two sources and the DOA of the two sources can be derived from the slopes

of the two lines. When the IPD ψX(ω) for all spectrum points are plotted on a IPD vs.

frequency plot (Fig. 2.3 (b)), the cluster information is obscured and overwhelmed by

noise although some cluster information can still be deduced from the plot.

In summary, the steps of the proposed dual channel multiple speech sources

DOA estimation method are enumerated in the following.

1. Calculate the time-frequency spectrum X1(ω) and X2(ω) of the two microphone

signals using short time discrete Fourier transform.

2. Extract sinusoidal tracks from the two microphone channels [128], and the final

sinusoidal track set employed in the next step is the joint set comprised of the

tracks extracted from the two microphone channels.

3. Calculate the IPD ψX(ω) between the two channel signals X1(ω) and X2(ω) on
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Figure 2.3: Inter-channel phase difference vs. frequency. There are 2 speech sources,
whose DOAs are 60◦ and −45◦ respectively. The inter-microphone spacing is 4cm.

points of the sinusoidal tracks.

4. Cluster the points on the IPD vs. frequency plot, employ line fitting techniques to

fit set of lines, and derive the DOAs of the sources from the slopes of the lines.

The last step, clustering and line fitting, is discussed in the next section.

In retrospect, though sinusoidal modeling is a natural fit to speech signals, it

may be beneficial to view the approach as selecting time-frequency points with high

local SNR. This allows one to consider a more general class of methods for identifying

locally high SNR points. An alternative to sinusoidal modeling, and potentially simpler,

is to use a simple power thresholding to select the time-frequency points in the above

proposed algorithm. For example, the time-frequency points can be sorted in power and

the top X% selected, where X maybe scenario specific. By the source signal’s sparsity

attribute and the masking effect, one is expected to acquire time-frequency points with

high local SNR even using simple power thresholding. The performance of the DOA

estimation algorithm under different levels of simple power thresholding is compared in

the experiments section.
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2.3 Clustering and Line Fitting

2.3.1 Generalized Mixture Decomposition Algorithm

As previously discussed, the points on the IPD vs. frequency plot is naturally

distributed and grouped into several lines based on the DOA information of the sources.

Once the grouping is done, a line can be fitted to estimate the DOA. We now describe a

procedure that does the clustering and line fitting jointly. For this purpose, the IPD error

v(ω) in Eq. (2.4) (on the IPD vs. frequency plot, it is the distance from a data point to

the center of its underlying cluster, i.e. a line) is modeled as a Gaussian or Laplacian

random variable. A mixture model is then employed to fit the data and the generalized

mixture decomposition algorithm (GMDA) [129, Ch.14] is used to cluster the data.

Assume there are m clusters, C j, j = 1, ..,m, i.e. m speech sources, and m is

assumed to be known. Assume there are N data points yi (i is the data sample index,

i = 1, ..,N). Each data point yi is a 2-dimension vector which denotes a point on the

IPD vs. frequency plot, yi = [ωi, ψX,i(ωi)]T . A mixture model can be used to fit the

data points. Each component of the mixture is a line, and the distance from each data

point to its underlying line is modeled as a random variable with the PDF p(yi|C j; θ j),

where θ j is the parameter vector characterizing the line corresponding to the jth cluster.

θ = [θT
1 , .., θ

T
m]T encompasses the parameter vectors for all the clusters. Suppose P =

[P1, .., Pm]T , with P j being the a-priori probability for the jth cluster.

The parameters of the mixture model are to be learned from the data points. By

using the maximum likelihood approach and employing the Expectation-Maximization

(EM) algorithm, the conditional expectation of complete data log-likelihood given the

observed data under the previous parameter value is,

Q(Θ; Θ(t)) =

N∑
i=1

m∑
j=1

P(C j|yi; Θ(t)) ln (p(yi|C j; θ)P j) (2.6)

where Θ = [θT , PT ]T is the parameters for the whole mixture model. P(C j|yi; Θ(t)) is the

posterior probability for class C j given data point yi and the previous parameter value

Θ(t). t is the iteration number for the learning process. The complete EM algorithm can

be written as,

Generalized Mixture Decomposition Algorithm (GMDA)
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• t = 0. Choose initial estimates for the model parameters, θ = θ(0), P = P(0).

• Repeat until convergence

– Compute

P(C j|yi; Θ(t)) =
p(yi|C j; θ j(t))P j(t)∑m

k=1 p(yi|Ck; θk(t))Pk(t)
, i = 1, ..,N, j = 1, ..,m. (2.7)

– Set θ j(t + 1) equal to the solution of the equation

N∑
i=1

P(C j|yi; Θ(t))
∂

∂θ j
ln (p(yi|C j; θ)P j) = 0 (2.8)

with respect to θ j, for j = 1, ..,m.

– Set

P j(t + 1) =
1
N

N∑
i=1

P(C j|yi; Θ(t)), j = 1, ..,m. (2.9)

– t = t + 1.

• Convergence Criteria: ||Θ(t + 1) −Θ(t)|| < ε, where ε is a small threshold.

The algorithm described above is very general. To get more specific update rules for

the GMDA, an explicit form for the PDF p(yi|C j; θ j) is necessary. As previously dis-

cussed in Sec. 2.2, an appropriate form is either a Gaussian distribution or Laplacian

distribution. We now specialize the GMDA algorithm for these two forms.

PDF p(yi|C j; θ j) chosen to be Gaussian distribution

p(yi|C j; θ j) =
1

√
2πσ j

exp{−
(ψX,i(ωi) − α j · ωi)2

2σ2
j

} (2.10)

recall yi = [ωi, ψX,i(ωi)]T . The parameter of the cluster is θ j = [α j, σ
2
j]

T . α j denotes the

slope of the line. σ2
j is the variance of the model.

By equation (2.8), we can obtain,

α j(t + 1) =

∑N
i=1 P(C j|yi; Θ(t)) · ωi · ψX,i(ωi)∑N

i=1 P(C j|yi; Θ(t)) · ω2
i

(2.11)
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σ2
j(t + 1) =

∑N
i=1 P(C j|yi; Θ(t))(ψX,i(ωi) − α j(t + 1) · ωi)2∑N

i=1 P(C j|yi; Θ(t))
(2.12)

If the variance of all clusters are assumed to be the same, i.e. σ2
j ≡ σ

2, then

σ2(t + 1) =

∑N
i=1

∑m
j=1 P(C j|yi; Θ(t))(ψX,i(ωi) − α j(t + 1) · ωi)2

N
(2.13)

PDF p(yi|C j; θ j) chosen to be a Laplacian distribution

p(yi|C j; θ j) =
1

2b j
exp{−

|ψX,i(ωi) − α j · ωi|

b j
} (2.14)

The parameter of the cluster θ j = [α j, b j]T , where α j denotes the slope of the line. b j

is a parameter related to the variance of the model. By equation (2.8), we obtain the

updating equation for α j,

N∑
i=1

P(C j|yi; Θ(t)) ·
1
b j
· sgn(ψX,i(ωi) − α j(t + 1) · ωi) · ωi = 0 (2.15)

This equation can be solved by Newton type numerical optimization algorithm. The

updating equation for b j is,

b j(t + 1) =

∑N
i=1 P(C j|yi; Θ(t))|ψX,i(ωi) − α j(t + 1) · ωi|∑N

i=1 P(C j|yi; Θ(t))
(2.16)

If the variance of all clusters are assumed to be the same, i.e. b j ≡ b, then

b(t + 1) =

∑N
i=1

∑m
j=1 P(C j|yi; Θ(t))|ψX,i(ωi) − α j(t + 1) · ωi|

N
(2.17)

2.3.2 Generalized Hard Clustering Algorithm

One of the difficulties associated with the previously discussed GMDA is the

involvement of the PDF’s, for which a suitable model has to be assumed. To avoid such

problems, a generalized hard clustering algorithm (GHCA) is developed. The detailed

steps of the GHCA is,

Generalized Hard Clustering Algorithm (GHCA)

• t = 0. Choose initial estimates for the clusters’ parameters, θ = θ(0).
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• Repeat until convergence

– Decide which cluster each data point belongs to.

– Update each cluster’s parameter θ j from the data points belonging to that

cluster.

– t = t + 1.

• Convergence criteria: ||θ(t + 1) − θ(t)|| < ε, where ε is a small threshold.

In our line fitting problem, each cluster’s parameter θ j is only a scalar α j, which

denotes the slope of the line. For deciding which cluster each data point belongs to, the

least “point to line distance” is used. The distances of a data point yi to each of the lines

di j(t) = |ψX,i(ωi) − α j(t) · ωi| is computed and the data point is determined to belong to

the cluster with minimum distance arg min j di j(t). After each data point is assigned to a

cluster, linear regression is used to update the slope α j for the jth cluster using all data

points belonging to the jth cluster. The iterative process continues until convergence.

In reality, GHCA is closely related to GMDA. In Sec. 2.3.1, when the PDF

p(yi|C j; θ j) is modeled as a Gaussian distribution, if a data point is close to a cluster k,

then P(C j|yi; Θ(t)) will be close to 1 for j = k and be close to 0 for all other j, j , k.

This is effectively equivalent to assigning the data point to a single cluster in the hard

clustering approach.

2.3.3 Clustering and Line Fitting under Spatial aliasing Scenario

In the previous discussion of clustering and line fitting algorithms (GMDA and

GHCA in Sec. 2.3.1 and Sec. 2.3.2), it is assumed the inter-microphone spacing is small

such that there is no spatial aliasing [117]. One example IPD vs. frequency plot under

such scenario is shown in Fig. 2.3 (a). With the increasing of the inter-microphone dis-

tance spatial aliasing may exist. Fig. 2.4 (a) shows the IPD vs. frequency plot for the

same scenario as in Fig. 2.3 (a) except that the inter-microphone spacing is increased to

12cm. Recall the IPD on the original IPD vs. frequency plot is always confined to be

in the range of [−π, π]. Two sources can still be observed in Fig. 2.4 (a), however, the

two lines corresponding to the two sources are broken into parallel segments because



33

500 1000 1500 2000 2500 3000 3500

−3

−2

−1

0

1

2

3

Frequency (Hz)

P
ha

se

Inter−channel phase difference vs. frequency

(a) Original

0 500 1000 1500 2000 2500 3000 3500 4000

−6

−4

−2

0

2

4

6

Frequency (Hz)

P
ha

se

Inter−channel phase difference vs. frequency

(b) After adjusting phase

Figure 2.4: Inter-channel phase difference vs. frequency. There are 2 speech sources,
whose DOAs are 60◦ and −45◦ respectively. The inter-microphone spacing is 12cm
(spatial aliasing scenrio).

of phase wrapping effect. The two lines are easier to be observed if we do phase un-

wrapping and move the broken line segments parallelly and properly. This is shown in

Fig. 2.4 (b). Note that the phase is no longer confined to [−π, π].

Through analysis of the Cramer-Rao Lower Bounds of the DOA estimation [1],

better accuracy in the DOA estimation is expected if high frequency band is used. To

utilize the high frequency band, the previously discussed GMDA and GHCA are now

modified to handle spatial aliasing properly. Recall the IPD ψX(ω) = ∠X1(ω) − ∠X2(ω)

is confined to be in the range of [−π, π] after the mod(2π) operation (in Sec. 2.2.1).

Define a new IPD ψ′X(ω) = ψX(ω) + 2πn, where n is an integer and 2πn represents

possible phase unwrapping. After appropriate phase unwrapping, the new data point

y′i = [ωi, ψ
′
X,i(ωi)]T will lie around its true underlying line. Fig. 2.4 (b) shows all the

new data points y′i after proper phase unwrapping for each IPD ψX,i(ωi). For GMDA,

we propose to choose the phase unwrapping which yields the highest probability for

the observed data point. In Sec. 2.3.1, the PDF of observing data point yi given the jth

cluster is defined to be Gaussian (Eq. (2.10)). To look for a proper phase unwrapping

factor 2πn for the IPD ψX,i(ωi), this PDF is revised to be,

p′(yi|C j; θ j) = max
n

1
√

2πσ j

exp{−
(ψX,i(ωi) + 2πni − α j · ωi)2

2σ2
j

} (2.18)
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Denote

n j
i = arg max

ni

1
√

2πσ j

exp{−
(ψX,i(ωi) + 2πni − α j · ωi)2

2σ2
j

}, j = 1, ..,m (2.19)

Let

J = arg max
j

p′(yi|C j; θ j) (2.20)

then y′i is chosen as,

y′i = [ωi, ψX,i(ωi) + 2πnJ
i ]T (2.21)

For GHCA, the phase compensation can be done similarly. The smallest “point

to line distance” is utilized to select appropriate phase compensation.

2.3.4 Model Selection: Determining the Number of Sources

In the previous discussion of GMDA, the number of sources and hence the

number of clusters is assumed to be known. However, the number of clusters is not

known in reality and has to be estimated from the data. This is the model selection

step. Since GMDA falls into the maximum likelihood framework, minimum description

length (MDL) method can be used to estimate the model order [130]. MDL is defined

to be,

MDL(m) = −

N∑
i=1

ln p(yi|Θ̂(m)) +
1
2

kp(m) ln N (2.22)

where m is the model order, Θ̂(m) is the maximum likelihood estimation of Θ(m), which

denotes all the parameters of the model. kp(m) is the number of freely adjusted parame-

ters in Θ(m). N is the number of data points. −
∑N

i=1 ln p(yi|Θ̂(m)) denotes the negative

log likelihood of the model and 1
2kp(m) ln N denotes a penalty term. The model order is

chosen to be the value yielding the smallest MDL(m).

m̂ = arg min
m

MDL(m) (2.23)

Experiments indicate the MDL method may over-estimate the number of clus-

ters. This could be attributed to several factors: first, the Gaussian or Laplacian distribu-

tion model used in GMDA (Sec. 2.3.1, Sec. 2.3.1) is an approximation to the true IPD

error statistical model; second, the independent and identically distributed assumption
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(used in deriving MDL rule) may not be satisfied exactly; third, Fig. 2.3 (a) shows that

the IPD error may be frequency dependent, however, frequency independent Gaussian or

Laplacian distribution model is used for tractability reasons in this article. To rectify the

over-estimation problem, the penalty item 1
2kp(m) ln N in the MDL function MDL(m) is

modified to βkp(m) ln N, where β is a scalar parameter bigger than 1
2 , and whose value

is determined by training.

For GHCA approach, likelihood function is not defined, but a model selection

function similar to MDL(m) can still be defined based on the summation of all “points

to line distance” and a properly designed penalty term.

2.4 Experiments

2.4.1 Implementation Issues

Initialization of Parameters

Initialization is important to GMDA and GHCA for fast and proper convergence.

For the GMDA approach, the variance parameter σ2
j , j = 1, ..,m does not appear to be

sensitive to the initialization value. Only the initialization of the slopes of the lines

α j, j = 1, ..,m, which is associated with the DOA, is considered here. There are several

kinds of initialization methods for α j.

• Initialization based on ITD histogram. Recall the inter-channel time difference

(ITD) is τ = ψX(ω)/ω, which can be derived from IPD. Therefore, by switch-

ing variables, a ITD histogram can be derived from the IPD vs. frequency plot.

Fig. 2.5 shows the ITD histogram derived from Fig. 2.3 (a). 20 histogram bins are

used in Fig. 2.5. Initialization values for the slope of the line α j are chosen to be

the local peaks in the ITD histogram.

• Random initialization. Choose α j randomly from its valid range.

• Equally distributed initialization. The DOAs of the m sources are initialized to be

uniformly distributed in space ([−90◦, 90◦]).
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Figure 2.5: Inter-channel Time difference (ITD) histogram

In most instances, for example, when the DOAs of the sources are well separated,

the ITD histogram method can estimate the rough directions of the sources, the initial-

ization based on ITD histogram leads to proper convergence for GMDA and GHCA.

However, in some instances, e.g. when the DOAs of the sources are too close to each

other such that the ITD histogram method fails in estimating the rough directions of the

sources, the other two initialization methods are better. In our algorithm, all the three

initialization methods are utilized and the result with the method yielding the maximum

likelihood score is retained.

Two step clustering for spatial aliasing scenario

Sec. 2.3.3 discussed clustering and line fitting under the spatial aliasing scenario.

It is easy to see from Fig. 2.4 (a), even under spatial aliasing scenario, for data points

with frequency ω below a threshold ωd there is no phase unwrapping needed for the IPD

ψX(ω). Therefore, phase compensation as described in Sec. 2.3.3 is not necessary for

the data points with frequency ω below the threshold ωd. Consequently, a two step clus-

tering algorithm is developed to learn the clusters from the data. The first step clustering
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only utilizes data points with frequency ω < ωd (without considering spatial aliasing)

to learn model parameters. Then the second step clustering employs the approach in

Sec. 2.3.3 using all the data points, with the parameters learnt in the first step as initial-

ization.

2.4.2 Experimental Setup

Several experiments are conducted to study the performance of the proposed

algorithms in various scenarios. All the experiments use dual microphone channels. The

source signals are speech sounds from the TIMIT database [131], with 8kHz sampling

rate. The duration of each speech source is 3 seconds. The short time DFT is applied to

the microphone signals to obtain the signal spectra. A window size of 25 ms is used with

overlapping frames where the frames are shifted in time by 10 ms resulting in an overlap

of 15 ms. The DFT length used is 256 points. The root mean squared (RMS) error in

the DOA estimates are used to measure the performance of the various algorithms.

The following acronyms are used for the various algorithms.

• GMDA Gauss: GMDA with Gaussian model (Sec. 2.3.1).

• GMDA Laplace: GMDA with Laplacian model (Sec. 2.3.1).

• GHCA: GHCA (Sec. 2.3.2).

• ITDh: Inter-channel time difference (ITD) histogram based algorithm with the

stencil filter being used to handle spatial aliasing [116].

• ITDh NA: ITD histogram based algorithm, only data points without spatial alias-

ing (phase wrapping) are used to create the histogram.

One shortcoming of the ITDh method is that the stencil filters may create false peaks

on the ITD histogram depending on the source signals’ directions. The ITDh NA ( NA

stands for non-aliasing) algorithm is developed utilizing the fact that there is no phase

wrapping in IPD for data points with frequency ω below some threshold ωd. Only data

points with frequency ω below threshold ωd are used to create the ITD histogram. The

ITDh and ITDh NA algorithms smooth the ITD histogram with low pass filtering, then
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find the local peaks (surpassing a threshold) on the smoothed ITD histogram to estimate

the DOAs of the sources. 180 histogram bins are used to construct the histogram in our

experiments.

Two experiment setups are frequently used in this section.

• 2-source experiment: The 2-source experiment evaluates the performance of vari-

ous algorithms using two speech sources. The inter-microphone spacing is 12cm.

The first source is fixed at the angular direction of 0◦ (the broadside direction),

while the other source’s angular direction varies from 5◦ to 90◦ (the lateral direc-

tion). The signal to white noise ratio (SNR) is 30 dB. The experiment is repeated

100 times with speech sources randomly selected from the TIMIT database.

• 3-source experiment: The 3-source experiment is almost the same as the 2-source

experiment except that three speech sources are used. The first source is fixed at

the direction of 0◦, while the other two sources are positioned symmetrically on

both sides of the first source and the DOA varies from 5◦ to 90◦.

2.4.3 Experiment 1: A Study of Power Thresholding Methods

In section 2.2.2, we proposed using sinusoidal modeling to select data points

with high local SNR in the time-frequency domain. From a high local SNR perspec-

tive, sinusoidal modeling can be viewed as a power thresholding method to select the

appropriate time-frequency points. This suggests experimenting and comparing with

other simpler power thresholding methods to select the time-frequency points for DOA

processing. For example, the time-frequency points can be sorted by power and the top

X% is selected, where X is a user selected parameter. The performance of the DOA

estimation algorithms with different levels of simple power thresholding is studied in

this experiment.

Different power thresholding methods can be utilized such as using a single

power threshold across the whole spectrum, or using a different threshold for each fre-

quency bin. Experiments show that the simple power thresholding using a single power

threshold across the whole spectrum is consistent, requires less tuning and hence less

subjective than using a different threshold for each frequency bin. Only results of the
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experiments that select the top X% in power across the whole time-frequency domain,

for various choices for X, are shown in the evaluations.

Fig. 2.6, Fig. 2.7, Fig. 2.8 demonstrates the performance of the ITDh NA, ITDh,

and GMDA Laplace algorithm respectively as a function of the angular separation be-

tween the sources with different levels of simple power thresholding in an anechoic

environment. In each figure the first row shows the results under the 2-source exper-

iment, while the second row shows the results under the 3-source experiment. The

suffix ‘ PT XX’ in the legend denotes the top ‘XX’ percent of the spectrum points in

power are used. The suffix ‘ PT 100’ in the legend denotes the top 100 percent of the

spectrum points, i.e. all spectrum points, are used. The legend ‘ITDh NA’, ‘ITDh’,

‘GMDA Laplace’ without any further suffix denotes the sinusoidal modeling is used.

In each figure, plot (a) and (d) shows the root mean squared (RMS) DOA estimation

error as a function of the source angular separation, plot (b) and (e) (resp. (c) and (f))

demonstrate the percentage of trials in which the number of sources is overestimated

(resp. underestimated) vs. source angular separation.

When the number of sources is estimated incorrectly, the DOA estimation er-

ror is calculated based on the best match between the estimated and true DOAs of the

sources for each true DOA. For example, given 2 sources at locations r1 = 30◦ and

r2 = −20◦ and 3 estimated DOAs at e1 = 32◦, e2 = 25◦, and e3 = −20◦. The DOA

estimation RMSE is obtained based only on dist(r1, e1) and dist(r2, e3), ignoring e2 alto-

gether. This metric is selected based on the fact that the underestimation of the number

of sources is usually considered as more detrimental than the overestimation in many

real applications. Thereby, we try to control the error in underestimating the number of

sources while keeping the overestimation low at the same time in all the experiments.

The best-match DOA RMSE metric combined with the overestimation and underesti-

mation metrics can demonstrate different aspects of a DOA estimation algorithm. One

thing to note about the best-match DOA RMSE metric is that it will favor the overesti-

mation of the number of sources since any poor matches will be ignored if a good match

exists.

For the ITD histogram based algorithms (ITDh and ITDh NA), the parameters

of the smoothing low pass filter control the estimation of the number of sources. The
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parameters of the low pass filter have to be balanced between false alarm (spurious peaks

in the histogram) and the DOA estimation resolution. The narrower the bandwidth of

the low pass filter, the smoother the histogram curve. This results in less spurious peaks

in the histogram and more accurate estimation of the number of sources. However, if

the bandwidth of the low pass filter is narrow and the separation between two sources

is small, the two peaks in the histogram representing the two sources may merge into

one peak, or the two peaks may exhibit bias thus increasing the DOA estimation error

and decreasing the resolution. This explains the relatively large percentage of error in

underestimating the number of sources and the relatively large DOA estimation error for

the ITDh NA and ITDh algorithm when the source separation is 5◦ in the experiments.

In Fig. 2.6 and Fig. 2.7, the ITDh NA and ITDh algorithm tend to overesti-

mate the number of sources. The ITDh NA algorithm demonstrates similar performance

when the simple power thresholding method selects the top 10% to 40% time-frequency

points in power. It also shows similar performance when all the spectrum points are

used, i.e. no thresholding. This can be understood by noting that ITDh NA uses only

the time-frequency points in the low frequency band (ω < ωd), which typically have

significant power among all the spectrum points as the power of speech signals mainly

resides in the low frequency band. The ITDh NA and ITDh algorithm show less error in

underestimating the number of sources when the sinusoidal modeling is used compared

to the simple power thresholding, hence the smaller DOA estimation error when the si-

nusoidal modeling is used. Fig. 2.7 (b), (e) shows for the ITDh algorithm the error in

overestimating of the number of sources is correlated with the directions of the source

signals. This is to be expected since the stencil filters may create false peaks on the ITD

histogram depending on the directions of the source signals.

Fig. 2.8 illustrates that the GMDA Laplace algorithm only has a few errors in

overestimating and underestimating the number of sources (except when all the spec-

trum points are used). When all the spectrum points are used, the GMDA Laplace

algorithm may not converge properly and therefore exhibits poor performance. The

GMDA Laplace algorithm using the sinusoidal modeling shows better performance than

using the simple power thresholding considering the balance between the overestimation

and underestimation of the number of sources.
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Table 2.1: Average DOA RMSE (degrees), comparison of power thresholding methods

PT 100 PT 10 PT 20 PT 30 PT 40 Sinusoidal

ITDh NA 7.44 5.62 5.68 6.25 6.41 2.74

ITDh 2.94 3.95 2.68 2.20 2.08 1.50

GMDA Laplace 25.04 1.20 1.76 1.88 2.04 0.61

Table 2.1 summarizes the average DOA RMSE performance across all angles

of the three different algorithms used in Fig. 2.6, Fig. 2.7, and Fig. 2.8. In summary,

we can conclude the simple power thresholding is a good approximation to the sinu-

soidal modeling in our proposed DOA estimation system, while the sinusoidal mod-

eling achieves better performance at the expense of more complicated implementation.

The GMDA Laplace algorithm shows the best performance among the ITDh NA, ITDh,

and GMDA Laplace algorithm, i.e. it shows the smallest DOA estimation error and the

smallest error in overestimating and underestimating the number of sources among the

three.

2.4.4 Experiment 2: Anechoic Environment

Fig. 2.9 illustrates the performance of various algorithms as a function of the an-

gular separation between the sources in an anechoic environment. The first row shows

the results in the 2-source experiment, while the second row shows the results in the

3-source experiment. The suffix ‘ PT 100’ in the legend denotes all the spectrum points

are used. The legends without the suffix ‘ PT 100’ denotes the sinusoidal modeling is

used. Plot (a) and (d) shows the DOA estimation RMS error vs. source angular separa-

tion, plot (b) and (e) (resp. (c) and (f)) demonstrate the percentage of trials the number of

sources is overestimated (resp. underestimated) vs. source angular separation. Table 2.2

summarizes the average DOA RMSE performance across all angles of the algorithms

used in Fig. 2.9.

When the source is close to the lateral direction (90◦), the DOA estimation er-

ror for all the algorithms increases. This is to be expected because a fixed difference

in ITD represents a larger difference in angle when it is close to the broadside direc-

tion (0◦) than when it is close to the lateral direction (90◦). Among the various algo-
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(a) RMS DOA estimation error
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(b) Overestimation
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(c) Underestimation
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(d) RMS DOA estimation error
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(e) Overestimation
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Figure 2.6: Performance of the ITDh NA algorithms as a function of angular separation
of the sources with different levels of power thresholding. The first row shows the
results in the 2-source experiment, while the second row shows the results in the 3-
source experiment.

rithms, GMDA Laplace has the smallest DOA estimation error and also estimates the

number of sources accurately most of the time. There are still a few occasions when

the GMDA Laplace algorithm may overestimate the number of sources. This happens

if one of the two sources is weak (in power), which results in increased outliers in

clustering and an extra model order increases the likelihood considerably. A further

post-processing step for removing outliers or an improvement on the sinusoidal tracks

extraction program [128] may alleviate this problem, but it will complicate the system

and we do not pursue it further in this chapter. The GMDA Gauss algorithm has a high

probability of overestimating the number of sources. As is known, the Gaussian distri-

bution as a noise model is sensitive to outliers in model learning [8][132, Ch.2], while

the Laplacian distribution has a heavier tail and is more robust to outliers. The GHCA

algorithm estimates the number of sources as accurately as the GMDA Gauss algorithm

does, while its DOA estimation error is a little higher.
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(a) RMS DOA estimation error
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(b) Overestimation
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(c) Underestimation
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(d) RMS DOA estimation error
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(e) Overestimation
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(f) Underestimation

Figure 2.7: Performance of the ITDh algorithms as a function of the angular separation
of the sources with different levels of power thresholding. The experiment setup is the
same as used in creating Fig. 2.6.

Table 2.2: Average DOA RMSE (degrees), anechoic environment

GMDA Gauss GMDA Laplace GHCA ITDh ITDh PT 100

1.08 0.61 0.97 1.50 2.94

2.4.5 Experiment 3: Echoic Environment

In this experiment, we study the robustness of the proposed algorithm to room

modeling assumption where instead of a simple direct path, the environment is rever-

berant. Since the proposed algorithm is based on inter-channel time difference, it falls

into the same category as GCC and the analysis on GCC under reverberant environ-

ment also applies to the proposed algorithm [8, 133, 14, 15]. Therefore, the reverbera-

tion paths of the sources can be considered as extra noise components and if the signal

to reverberation ratio (SRR) is high, the proposed algorithm can still work to localize

the sources. This experiment used the room impulse response generated by the image

method [134]. The simulated room dimension is [8, 5, 3.5]m, and the reflection coeffi-
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(a) RMS DOA estimation error
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(b) Overestimation
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(c) Underestimation
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(d) RMS DOA estimation error
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(e) Overestimation
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(f) Underestimation

Figure 2.8: Performance of the GMDA Laplace algorithm as a function of the angular
separation of the sources with different levels of power thresholding. The experiment
setup is the same as used in creating Fig. 2.6.

cient is −0.4 which results in a reverberation time of approximately 220ms.

Fig. 2.10 shows one example of the data resulting from the GMDA Laplace al-

gorithm under reverberation. There are 2 speech sources with DOA of 60◦ and −45◦

respectively. The inter-microphone spacing is 12cm. The estimated DOA of the sources

are (57.43◦,−42.65◦). By comparing Fig. 2.4 and Fig. 2.10, it is evident the reverbera-

tion causes the data points to be more dispersed on the IPD vs. frequency plot, which

makes the DOA estimation task more challenging.

Fig. 2.11 illustrates the performance of the various algorithms as a function of

angular separation between the sources in an echoic environment. The experiment setup

is the same as used in creating Fig. 2.9. By comparing Fig. 2.9 and Fig. 2.11, it is

apparent the performance of various algorithms deteriorate under reverberation. The

GMDA Laplace algorithm still has the best performance among compared algorithms

without significantly overestimating or underestimating the number of sources. The

DOA estimation error for the GMDA Laplace algorithm is sometimes worse than the

GMDA Gauss and GHCA algorithm when the separation angle is large. This can be ex-



45

10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

Separation (degree)

D
O

A
 e

st
im

at
io

n 
R

M
S

 e
rr

or
 (

de
gr

ee
)

 

 

GMDA_Gauss
GMDA_Laplace
GHCA
ITDh
ITDh_PT_100

(a) RMS DOA estimation error
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(b) Overestimation
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(c) Underestimation
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(d) RMS DOA estimation error
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(e) Overestimation
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(f) Underestimation

Figure 2.9: Performance of various algorithms as a function of the angular separation
of the sources in an anechoic environment. The first row shows the results under the
2-source experiment setup, while the second row shows the results under the 3-source
experiment setup.

plained by noting that the GMDA Gauss and GHCA algorithm overestimate the number

of sources and in our analysis the DOA estimation error is calculated based on the best

match between the estimated and true DOAs.

2.4.6 Experiment 4: Additive White Noise

In this experiment, the robustness of the proposed algorithms to ambient white

noise is studied. High local signal to white noise ratio (SNR) on points of the sinusoidal

tracks (or on the points selected by the simple power thresholding) is expected even

though the global SNR across the whole spectrum might be low. Therefore, good DOA

estimation would be expected even when the white noise level is high. This experiment

uses 2 speech sources, and the DOA of the two sources are 30◦ and −45◦ respectively.

The inter-microphone spacing is 12cm. The white Gaussian noises at the two micro-

phones is independent. Experiments demonstrate that when the SNR is higher than 10
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(b) GMDA Laplace for line fitting

Figure 2.10: Inter-channel phase difference vs. frequency. Clustering using GMDA
Laplace algorithm. It is in a reverberant environment with 220ms reverberation time.

There are 2 speech sources, whose DOAs are 60◦ and −45◦ respectively. The inter-
microphone spacing is 12cm.

dB, the DOA estimation of the proposed algorithms using sinusoidal modeling is quite

accurate with the average DOA estimation error lower than 0.5◦. However, when the

SNR is lower than 5 dB, the DOA estimation error is large. Closer inspection of the data

reveals that the problem is a result of poor sinusoidal track extraction. When the SNR is

low, the sinusoidal track extraction program used [128] may fail to pick up the true sinu-

soidal tracks from the spectrum. By adjusting the parameters of the sinusoidal tracking

program, true sinusoidal tracks can be extracted from the spectrum resulting in small

average DOA estimation error. The performance of various algorithms under sinusoidal

modeling is illustrated in the first row of Fig. 2.12 after adjusting the parameters of the

sinusoidal tracking program.

The results show that the ITDh algorithm almost always overestimates the num-

ber of sources when the SNR is low. The GMDA Laplace algorithm has the smallest

DOA estimation error and estimates the number of sources accurately when the SNR is

higher than 5 dB. There is almost no underestimation of the number of sources except

when the SNR is at 0 dB, when the GMDA Gauss (resp. GMDA Laplace) algorithm un-

derestimates the number of sources in 13 (resp. 7) percent of the trials. A closer inspec-

tion of the data shows that sometimes one source is weak compared to the other source

resulting in a disparity in SNR. This results in the weaker source being masked and not
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(a) RMS DOA estimation error
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(b) Overestimation
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(c) Underestimation
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(d) RMS DOA estimation error
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(e) Overestimation
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(f) Underestimation

Figure 2.11: Performance of various algorithms as a function of the angular separation
of the sources in an echoic environment. The first row shows the results under the 2-
source experiment setup, while the second row shows the results under the 3-source
experiment setup.

enough sinusoidal tracks can be extracted leading to the underestimation of the number

of sources. The relatively large RMS DOA estimation error for the GMDA Laplace

algorithm at 0 dB is contributed by the 7 percent of trials when underestimation of the

number of sources occured. Increasing the length of the speech sources alleviates the

underestimation problem since there is a higher chance more sinusoidal tracks are ex-

tracted thereby increasing the number of data points on the IPD vs. frequency plot. The

GHCA algorithm estimates the DOAs accurately and consistently across all SNR level

at the expense of overestimation of the number of sources at low SNR. Not surpris-

ingly, the proposed DOA estimation algorithms depend on the successful extraction of

sinusoidal tracks from the spectrum. Better sinusoidal track extraction algorithm will

enhance the performance of the proposed DOA estimation algorithms.

The second (resp. third) row of Fig. 2.12 shows the results using simple power

thresholding which selects the top 10% (resp. 20%) time-frequency points in power. The

performance of the GMDA Laplace algorithm using the simple power thresholding se-
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(a) RMS DOA estimation error
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(b) Overestimation
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(c) Underestimation
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(d) RMS DOA estimation error
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(e) Overestimation
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(f) Underestimation
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(g) RMS DOA estimation error
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(h) Overestimation
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(i) Underestimation

Figure 2.12: Performance of various algorithms versus SNR. There are 2 speech sources,
whose DOAs are 30◦ and −45◦ respectively. The inter-microphone spacing is 12cm.

lecting top 10% points in power is similar to the performance when using the sinusoidal

modeling. When the power thresholding is lowered to select the top 20% time-frequency

points in power, the GMDA Laplace algorithm underestimates the number of sources

in many trials when the SNR is at 0 dB. When the simple power thresholding selects

the top 20% time-frequency points in power, a lot of noisy points are included degrad-

ing the GMDA Laplace algorithm. The experiments suggest that the GMDA Laplace

algorithm with sinusoidal modeling or with simple power thresholding selecting the top

10% time-frequency points in power is the best choice for DOA estimation in low SNR

environments.
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2.5 Conclusion

This chapter proposes a two microphone based source localization technique

for multiple speech sources utilizing speech specific properties and clustering and line

fitting techniques. Speech’s sparsity in time-frequency domain, the masking effects

and sinusoidal modeling are combined together and utilized for dual channel DOA

estimation. Two key ideas form the basis of the method developed: one is selecting

time-frequency points with high local SNR using sinusoidal modeling and the other is

using GMDA clustering algorithm for DOA estimation. Experiments show that power

thresholding might be a simple and good approximation to the sinusoidal modeling in

selecting points with high local SNR. The sinusoidal modeling however exhibits better

performance at the expense of a more complicated implementation. The proposed

GMDA Laplace algorithm performs better than the baseline ITD histogram based

DOA estimation algorithm. It estimates the number of sources accurately in different

scenarios and shows smaller DOA estimation error than the ITDh algorithm which

tends to overestimate the number of sources. Compared with GMDA Laplace, the

GMDA Gauss algorithm exhibits worse performance and confirms the robustness of

the Laplacian distribution to outliers. Experiments confirm that the proposed DOA

estimation system is robust to the additive white noise because of the high local SNR

on points of the sinusoidal tracks (or on the points selected by the simple power

thresholding) even though the global SNR across the whole spectrum is low. The

proposed DOA estimation system depends on the successful extraction of the sinusoidal

tracks. A robust sinusoidal tracks extraction algorithm would result in the proposed

DOA estimation system also being robust. Finally, in the appendix of this chapter, we

propose a fast adaptive MVDR beamformer for dual channel speech signal separation

based on speech’s sparsity attribute and non-stationarity. Experiment shows the method

to be very promising.
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2.6 Appendix for Chapter 2

2.6.1 Fast Adaptive MVDR Beamformer for Source Separation

In a complete dual channel speech processing system, after estimating the DOAs

of the speech sources, one may want to separate these speech sources, i.e. enhance

the desired source and suppress the interfering signals. In this section, a fast adap-

tive MVDR (minimum variance distortionless response) beamformer [20, 21, 1] for

dual channel speech signal separation based on speech’s sparsity attribute and non-

stationarity is described. A narrowband beamformer is employed for each frequency

bin.

For dual channel microphone array, the weight vector w of the standard MVDR

beamformer (section 4.2.1) has one free dimension and can fully suppress one interfer-

ing signal [1]. However, if there are more than one interfering signals, the standard batch

algorithm based MVDR beamformer can not fully cancel all interfering signals. There-

fore, it may not be an efficient interference suppression algorithm for the dual channel

multiple speech sources scenario.

However, as emphasized in Sec. 2.2, speech is a sparse signal in time-frequency

domain. At a specific time-frequency point, there is a high likelihood that at most one

interference signal is significant (in power) and the contributions from other interfering

signals is negligible. Therefore, to enhance the desired speech signal, it is not necessary

to put nulls in all the interfering signals’ directions. Only the most powerful interfer-

ence at that time-frequency point is to be suppressed. Since speech is a fast changing

quasi-stationary process (each phoneme usually last a few frames), the sparsity property

affected by quasi-stationarity of speech implies that the beamformer must be adapted

rapidly. In standard batch algorithm based MVDR beamformer, the signal correlation

matrix R is calculated based on a long segment of data which can be considered as inde-
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pendent of the time index k (frame number). Instead, we propose a fast adaptive MVDR

beamformer wherein the correlation matrix is dependent on the time index k (frame

number). The beamformer’s weight vector wk at time index k is

wk =
R−1

k a
aHR−1

k a
. (2.24)

a is the steering vector of the desired source. To adapt to the fast changing statistics of

speech signals, the correlation matrix Rk only depends on a few data vector z j around

current time index k. For example,

Rk =

j=k+L∑
j=k−L

z jzH
j (2.25)

z j = [X1(ω, j), X2(ω, j)]T denotes the 2 sensor array’s data vector at frequency ω and

frame number j. Note frequency ω is ignored in above formulas to simplify notation.

L is a small integer to control the time window size for calculating Rk. Rk can also

be calculated in other ways as long as it represents a short time statistics around current

time k. Since the array only has two sensors, the limited data problem and look direction

error problem do not pose serious problems for the MVDR beamformer [21, 1].

The following experiment demonstrates the performance of the fast adaptive

MVDR algorithm based on speech’s sparsity and non-stationarity. The DOA of the

three sources are 60◦, 0◦ and −45◦ respectively. The inter-microphone spacing is 12cm.

Fig. 2.13 (a)(b)(c)(d) shows the original sources, mixed signals, batch algorithm based

MVDR beamformer outputs, and fast adaptive MVDR beamformer outputs respectively.

The cepstral distance (smaller is better) [135] between original sources and batch algo-

rithm based MVDR beamformer outputs is 0.69, while the cepstral distance between

original sources and fast adaptive MVDR beamformer outputs is 0.56. The fast adaptive

MVDR beamformer shows better performance than the standard batch algorithm based

MVDR beamformer. Informal listening also indicates the output to be perceptually bet-

ter.



52

0.5 1 1.5 2 2.5 3 3.5

x 10
4

−2

0

2

x 10
4

0.5 1 1.5 2 2.5 3 3.5

x 10
4

−2

0

2

x 10
4

0.5 1 1.5 2 2.5 3 3.5

x 10
4

−2

0

2

x 10
4

(a) Original source signals

0.5 1 1.5 2 2.5 3 3.5

x 10
4

−4

−2

0

2

4

x 10
4

0.5 1 1.5 2 2.5 3 3.5

x 10
4

−3

−2

−1

0

1

2

3

4

x 10
4

(b) Mixed signals

0.5 1 1.5 2 2.5 3 3.5

x 10
4

−2

0

2

x 10
4

0.5 1 1.5 2 2.5 3 3.5

x 10
4

−2

0

2

4
x 10

4

0.5 1 1.5 2 2.5 3 3.5

x 10
4

−2

0

2

x 10
4

(c) MVDR BF (batch Alg) outputs
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(d) Fast adaptive MVDR BF outputs

Figure 2.13: Performance of the fast adaptive MVDR beamforming algorithm



3 Robust Adaptive Broadband

Beamformer

Compared with single channel speech processing, multi-microphone speech pro-

cessing has high interference suppression in noisy environment because of the spatial

filtering capability. The standard data independent beamformers such as delay-and-sum

(DS) beamformer is robust to the signal of interest (SOI) steering vector errors, which

may be due to look direction error, array sensor position error, and small mismatches in

the sensor responses. Yet those beamformers suffer from low resolution and high side-

lobes, inducing bad interference rejection capability. In contrast, data dependent adap-

tive beamformers have high resolution and interference rejection capability when the

array steering vector is accurately known. However, the performance of the traditional

adaptive beamformer can degrade severely in practice when there exist SOI steering

vector errors. In such cases, the SOI might be mistaken as an interference signal and be

suppressed. Fig.3.1 demonstrates a look direction error in a linear array system. In this

example, the look direction is the broadside direction, i.e. 0◦. However, the true desired

signal incidence angle is 5◦, which means there’s a 5◦ look direction error. In this case,

the traditional adaptive beamformer will take the desired signal as an interference signal

and suppress it. This SOI steering vector error problem should be addressed before the

adaptive beamforming algorithms can be applied to process real world speech data.

In this chapter, we focus on developing broadband beamforming algorithms

which are robust to the steering vector errors. Later on in chapter 4, we will concentrate

on developing robust narrowband beamforming algorithms. In this work, we analyze the

convergence of the Frost iterative and LMS algorithm for signals of different incidence

angles. Our analysis exhibits that the Frost LMS algorithm is robust to the look direc-

53
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Figure 3.1: A demonstration of the look direction error problem

tion error when the adaptation does not go through too many iterations (i.e. the speech

source length is not too long). We develop a robust broadband adaptive beamforming

algorithm which combines the robustness of the DS beamforming in the look direction

with the high interference rejection capability of the conventional adaptive beamform-

ing algorithm. We test the proposed algorithm on the real world recorded Multi-channel

Overlapping Numbers Corpus (MONC) [136] and show that it has better performance

compared to other existing algorithms.

3.1 Introduction to Robust Broadband Beamforming

In this work, we consider the development of robust wideband adaptive beam-

forming algorithms for speech enhancement and noise suppression. An adaptive beam-

former is able to adjust its beam pattern based on the input statistics to place deep

nulls in the direction of interferences. Among the broadband adaptive beamformer,

the Frost beamformer is one of the most extensively studied [19]. The Frost beam-

former has a multichannel tapped-delay-line structure (Fig.3.2) with a set of linear
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constraints that are introduced to ensure a desired frequency response in the look di-

rection. However, the performance of the Frost beamformer can degrade severely in

practice when steering vector errors exist, which may be due to look direction er-

ror, array sensor position error, and small mismatches in the sensor response. In

such cases, the desired signal might be mistaken as an interference signal and be sup-

pressed [21, 137]. Several robust beamforming algorithms have been proposed to ad-

dress this problem [137, 138, 23, 139, 140, 141, 142, 143, 144, 37]. In [139], the steering

vector errors are modelled by “time-delay errors” and compensated for by self-adjusted

interpolation filtering. In [140], a method is proposed to optimize the worst-case per-

formance. The problem is formulated as minimizing a quadratic function subject to

infinitely many quadratic constraints. It is reduced to a second-order cone programming

problem which can be solved by interior point methods. In [23], derivative constraint

are used to provide look direction robustness.

Er and Cantoni proposed a robust broadband beamforming algorithm which re-

stricts the error between the desired and actual beam pattern of the array over the fre-

quency band of interest and over a small spatial region around the array’s look direction,

allowing for uncertainty in the look direction [137, 138]. The constraint thus obtained

can be a quadratic constraint or reduced to a set of linear constraints. Zheng proposed

another robust broadband adaptive beamforming algorithm recently [141]. Her paper

assumed a near field signal model and took sufficient sampling points in the look direc-

tion. For each sampling point, a constraint is constructed. The compact form of all the

constraints is AT w = g, where every column of matrix A represent a constraint. Then

SVD is used to get a low rank matrix AL approximating A. And the constraint is approx-

imated by AT
Lw = g. In fact, Zheng’s algorithm is close to Er’s, as summation can be

viewed as an integration if the number of sampling points is large enough. Then Zheng’s

constraint is the same as Er’s constraint. However, Er’s linear constraint algorithm is an

approximation because the quadratic constraint is not strictly equal to the set of linear

constraints. An additional norm constraint is imposed to overcome this limitation and

this complicates the optimization problem.

In this work, we analyze the convergence of the Frost iterative and LMS algo-

rithm for signals of different incidence angles. Our analysis exhibits that the Frost LMS
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algorithm is robust to the look direction error when the adaptation does not go through

too many iterations (i.e. the speech source length is not too long). We also develop

a quadratic constraint based robust broadband beamforming algorithm to deal with the

uncertainty in the look direction. In order to address the ill-conditioning associated with

the constraint matrix, a diagonal loading (DL) is added to the constraint matrix thereby

ensuring a robust solution to the quadratic constraint beamforming problem. The advan-

tage of adding DL to constraint matrix is that the constraint matrix is only determined

by the geometry of the array thereby allowing the DL level to be chosen offline. This

is superior to adding DL to the signal covariance matrix where the DL level has to be

chosen online. It is shown that the diagonal loading is equivalent to an additional norm

constraint without introducing it explicitly. We also develop an iterative algorithm (and

corresponding adaptive algorithm) to solve for the robust beamformer coefficients. The

developed algorithm is applied to the problem of beamforming using microphone arrays

for speech recognition and shown to be superior to existing algorithms.

This chapter is organized as follows. In section 3.2 we discuss the classical Frost

beamforming problem, including the optimum, the iterative and the LMS algorithm. We

also analyze the convergence of the Frost iterative and LMS algorithm for signals of dif-

ferent incidence angles. Section 3.3 exhibits the development of the quadratic constraint

robust broadband beamforming problem and discusses the mathematical solutions to the

problem. Section 3.4 proposes the diagonally loaded quadratic constraint robust broad-

band beamforming algorithm. Section 3.5 illustrates the experiment results.

3.2 Frost Beamformer

3.2.1 Frost Beamformer: Optimum Solution

Among the broadband adaptive beamformer, the Frost beamformer is one of the

most extensively studied [19]. The Frost beamformer has a multichannel tapped-delay-

line structure (Fig. 3.2), and a set of linear constraints are introduced to ensure a desired

frequency response in the look direction. Thereby it is also called linear constrained

minimum variance (LCMV) beamformer.

Suppose a Frost beamformer use a linear array with K sensors and J taps. The
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Figure 3.2: A broadband beamformer with K sensors and J taps.

first step is to pre-steer the array in the look direction. The Frost beamforming problem

is then mathematically formulated as,

min
w

wT RXXw, subject to CT w = F (3.1)

where w is the KJ dimension concatenated weight vector for all the taps. RXX is the KJ

dimension covariance matrix. F = [ f1, f2, · · · , fJ]T is the vector of weights of the look-

direction-equivalent tapped delay line, a simple choice for F will be F = [1, 0, · · · , 0]T .

C is the constraint matrix with KJ rows and J columns, in which the jth column picks

up the jth column of the array elements in the array matrix.

Using the Lagrange multiplier method, the solution to the Frost beamforming

problem (Eq. (3.1)) can be obtained,

wopt = R−1
XXC[CT R−1

XXC]−1F (3.2)

3.2.2 Frost Beamformer: Iterative Solution

In this subsection, the iterative solution to the Frost beamforming problem is de-

rived [19]. Using constrained gradient-descent optimization at each iteration, the weight
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vector is updated as follows,

w(k + 1) = w(k) − µ∇wH[w(k)] (3.3)

where H(w) = 1
2wT RXXw + λT (CT w − F) is the constrained cost function. Thus we can

get,

w(k + 1) = w(k) − µ[I −C(CTC)−1CT ]RXXw(k) + C(CTC)−1[F −CT w(k)] (3.4)

The last term is not assumed to be zero. It is kept to prevent arithmetic inaccuracy

from accumulation and growth. Define G = C(CTC)−1F and P = I − C(CTC)−1CT , the

iterative equation can be written as,

w(k + 1) = P[w(k) − µRXXw(k)] + G (3.5)

3.2.3 Frost Beamformer: LMS Algorithm

Equation (3.5) defines an iterative constrained gradient descent algorithm. The

corresponding LMS algorithm is derived as

w(0) = G (3.6)

w(k + 1) = P[w(k) − µy(k)X(k)] + G (3.7)

3.2.4 Convergence Analysis of the Frost Iterative and LMS Algo-

rithm for Signals of Different Incidence Angles

In this subsection, we analyze the convergence speed of the iterative Frost al-

gorithm for signals of different incidence angles. Define the difference process v(k) =

w(k) − wopt, where wopt is defined in equation (3.2). Subtracting wopt from both sides

of equation (3.5), and using the knowledge that G = (I − P)wopt and PRXXwopt = 0, the

equation for the difference process is obtained,

v(k + 1) = Pv(k) − µPRXXv(k) (3.8)

Since P2 = P,

Pv(k + 1) = P2v(k) − µP2RXXv(k) = v(k + 1) (3.9)
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The following can be derived,

v(k + 1) = Pv(k) − µPRXXv(k) (3.10a)

= v(k) − µPRXXPv(k) (3.10b)

= [I − µPRXXP]v(k) (3.10c)

= [I − µPRXXP]k+1v(0) (3.10d)

It is obvious that the convergence of the iterative Frost algorithm is controlled by the ma-

trix PRXXP. It is easy to prove that PRXXP has J zero eigenvalues, whose corresponding

eigenvectors are the column vectors of the constraint matrix C. It can also be shown

that PRXXP has KJ − J nonzero eigenvalues σi whose values are bounded between the

smallest and largest eigenvalues (λmin and λmax) of RXX (see Appendix 3.6.1),

λmin ≤ σmin ≤ σmax ≤ λmax (3.11)

In regard to the robust beamforming problem, we analyze the effect that the

signal incidence angle has on the convergence rate of the beamforming weight vector.

Suppose only the desired signal is present, and the pre-steering is perfect, the signal

vector can be written as,

X = C


x[n]
...

x[n − J + 1]

 (3.12)

The correlation matrix Rs for the signal can be written as,

Rs = E{XXT } (3.13a)

= C


r(0) r(1) · · · r(J − 1)

r(1) r(0) · · · r(J − 2)
...

...
...

r(J − 1) r(J − 2) · · · r(0)


CT (3.13b)

Since P is a projection which is orthogonal to C, PRsP is a zero matrix, and I − µPRsP

is an identity matrix, which means the desired signal is untouched and passes through

the beamforming system no matter how many iterations are taken for the weight vector

w(k).
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Table 3.1: Maximum eigenvalue of the projected correlation matrix PRXXP versus the
signal incidence angle θ

θ 0◦ 2◦ 3◦ 10◦ 30◦ 45◦

max eigenvalue 0 2.4 ∗ 105 5.4 ∗ 105 4.9 ∗ 106 1.7 ∗ 107 2.5 ∗ 107

If we suppose the pre-steering is not perfect, i.e. there is a look direction error,

the correlation matrix RXX will be close to the correlation matrix Rs shown in equa-

tion (3.13). This means that the eigenvector of the correlation matrix RXX will be close

to the column vectors of C. Since P is orthogonal to C, the eigenvalues of PRXXP will

be close to zero. Accordingly, the eigenvalues of I − µPRXXP will be close to 1, which

means the iteration process described in equation (3.10) will converge very slowly.

Now consider an interference signal coming from a direction far away from the

look direction. For such cases, generally, the eigenvectors of the interference signal

correlation matrix RI will be far away from the column vectors of C. So the eigenvalues

of the matrix PRIP are relatively large and the eigenvalues of I−µPRXXP will be close to

zero. Thus the components corresponding to these eigenvalues in the difference process

v(k) will converge fast. We note that in all the above discussion the parameter µ is

assumed to be appropriately chosen so that convergence is assured.

The above discussion is confirmed in the following example. Assume a 8 ele-

ments linear array with 20 taps, the look direction is the broadside, i.e. 0◦. Only one

signal is present at the array. Table 3.1 lists the maximum eigenvalue of the matrix

PRXXP with regard to the different signal incidence angle θ.

The different convergence rates of the v(k) process with respect to the signal’s

incidence angle are important in the analysis of the robustness of iterative Frost algo-

rithm. Fast convergence of the weight vector of the beamformer corresponding to the

interference signal which is far away from the look direction means the weight vector

is adapted to suppress the interference after a moderate number of iterations. Yet the

slow convergence corresponding to the desired signal with a small look direction error

assures that the desired signal is not suppressed with a moderate number of adaptation

iterations. However, the desired signal will be suppressed if a lot more iterations is done.

The analysis of Frost LMS algorithm’s convergence property with regard to the

signal incidence angle is similar to that of the Frost iterative algorithm. It can be shown
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that these two algorithms will have similar property. This explains why the Frost LMS

algorithm is robust to look direction error when the sentence is not too long. When the

adaptation of the weight vector of the Frost LMS beamformer goes through a moder-

ate number of adaptation iterations (i.e. the speech source length is not too long), the

suppression of the desired signal (which may have a small look direction error) is not

significant, while the suppression of the interference signals (which are supposed to be

far away from the look direction) is critical. Therefore, the Frost LMS algorithm ex-

hibits good suppression capability for the interference signal while still being robust to

small look direction error in the desired signal. However, when the adaptation of the

weight vector goes through a large number of adaptation iterations, the desired signal

will get suppressed significantly if there is a look direction error.

The above analysis is verified by the following simulation for speech enhance-

ment. We simulate an 8 element linear array with 4cm equal spacing between adjacent

elements. The sampling rate of the speech sources is 8K Hz. We consider the simple

case where all the source signals and the linear array exist in the same plane. A Monte

Carlo simulation of 20 independent runs was performed for different adaptation lengths.

The data for testing performance is 100 seconds long. The result shown in the follow-

ing is the mean value of those 20 independent Monte Carlo runs. (To be more specific:

for every fixed adaptation length, the same experiment is repeated 20 times based on

random data selection. That is, for every fixed adaptation length, we pick 20 segments

of data of that fixed length from the database, run a beamforming algorithm on those

segments, get 20 weight vectors, then test those 20 weight vectors on the test data, which

is 100 seconds. We got 20 cepstral distances for each fixed adaptation length. The final

results shown on the performance plots are the mean value of those 20 passes.)

The performances of the Frost LMS beamformer with 20 taps for different adap-

tation lengths are illustrated in Fig.3.3 and Fig.3.4. Fig.3.3 shows the scenario when

there is only one interference signal. The signal of interest (SOI, i.e. the desired sig-

nal) direction is 5◦, while the interference signal comes from 45◦. The look direction is

the broadside direction (0◦), which means a 5◦ look direction error. On the sub-figure

(a) where the energy output is illustrated, the line with legend S 1 (X1, DS , and LMS

respectively) denotes the energy of the desired source signal (the first channel of the



62

(a) Energy output (b) Cepstral distance

Figure 3.3: The performance of the Frost LMS beamformer vs. adaptation length, one
interference signal

mixed signal, the delay-and-sum beamformer output, and the Frost LMS beamformer

output respectively). Sub-figure (b) demonstrates the cepstral distance between the SOI

and the first channel of the mixed signal (the delay-and-sum beamformer output, and

the Frost LMS beamformer output respectively). From Fig.3.3 we can see that the best

performance of Frost LMS beamformer is reached when the adaptation length is 10s. In

this case, the output energy matches that of the SOI and the cepstral distance reaches the

minimum point. After 10s, with the adaptation of the weight vector, the performance

degrades to a greater extent. The reason for such degradation is that the desired sig-

nal begins to get suppressed with the on going adaptation (because of the existence of

the look direction error). Fig.3.3 shows the scenario when there exist two interference

signals. The observation is similar to that in the case of one interference signal.

The convergence analysis of Frost LMS algorithm can also be shown to be cor-

rect in the speech recognition experiment with the real recording MONC database [136].

When the Frost LMS beamforming algorithm is applied to every sentence, which is 1 –

5 seconds long, the speech recognition rate is 76.9. If we concatenate all our test sen-

tences, which is about 1 hour of data, and apply the Frost LMS on that long data file,

the speech recognition rate is much lower 57.6. It is apparent that the long-time Frost

LMS is not so good as its short-time counterpart. Listening directly to the beamform-

ing outputs also verifies the desired signal was suppressed more in the long data file

experiment.
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(a) Energy output (b) Cepstral distance

Figure 3.4: The performance of the Frost LMS beamformer vs. adaptation length, two
interference signals

3.3 Quadratic Constrained Robust Beamformer

The idea of Frost beamformer is to minimize output energy of the beamformer

subject to a look direction constraint which restricts response of the beamformer to

signal coming from the look direction to be always unity. The underlying assumption of

Frost beamformer is the desired signal comes exactly from the look direction. Yet in the

real world, generally there’s a small discrepancy between desired signal’s true incidence

direction and its assumed direction.

We found in our experiments that a small look direction error can decrease the

performance of Frost beamformer greatly. The reason is that Frost beamformer will take

the desired signal as an interference signal and try to suppress it when there’s a small

look direction error.

A quadratic constraint broadband beamformer which is robust to DOA error is

proposed by Er [137]. Consider a pre-steered Frost beamformer with K sensors and J

taps (Fig.3.2). The weighted square error between desired and actual beam pattern of

Frost beamformer over the interested frequency range and a small spatial region, chosen

to deal with look direction uncertainty (Fig.3.1 illustrates an example of an uncertainty
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region on a linear array), can be written as

e2 =

∫ θ+∆θ

θ−∆θ

∫
ω

f (θ)
∣∣∣wHV(θ, ω) − wH

d V(θ, ω)
∣∣∣2 dωdθ (3.14a)

= (w − wd)H
∫ θ+∆θ

θ−∆θ

∫
ω

f (θ)V(θ, ω)V(θ, ω)Hdωdθ(w − wd) (3.14b)

= (w − wd)HΦ(w − wd), (3.14c)

with Φ =

∫ θ+∆θ

θ−∆θ

∫
ω

f (θ)V(θ, ω)V(θ, ω)Hdωdθ. (3.15)

θ is the assumed look direction, ∆θ is a measure of uncertainty in the assumed look

direction, f (θ) is a spatial weighting function, ω is the frequency variable and V(θ, ω)

is the array steering vector. Φ is the positive semi-definite constraint matrix which can

be calculated by either mathematical integration or by numerical techniques. w is the

pursued beamformer’s weight vector, and wd is the desired beamformer’s weight vector.

Generally, Delay and Sum beamformer is used as the desired beamformer because of its

robustness in the look direction.

The robust beamforming problem can be mathematically formulated as the fol-

lowing optimization problem

min
w

wHRXXw, subject to (w − wd)HΦ(w − wd) ≤ ε (3.16)

where RXX is the correlation matrix of the concatenated data vector X as in [19], and ε

is a parameter chosen to control the tightness of the quadratic constraint. The weight

vector w is a real vector, and Φ is a positive definite complex matrix. The constraint

function (w −wd)HΦ(w −wd) will always be a real number. Let Φ = Φr + jΦi, then the

constraint function (w−wd)HΦ(w−wd) = (w−wd)T Φr(w−wd). Hence we always replace

Φ with its real part Φr and assume no difference between Φ and Φr. Let we = w − wd.

Problem (3.16) can be written as

min
we

(wd + we)T RXX(wd + we), subject to wT
e Φwe ≤ ε (3.17)

Two methods will be developed to solve this quadratic constraint beamforming

problem.
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3.3.1 Lagrangian Multiplier Method

The Lagrange function is defined as,

L(λ) = (wd + we)T RXX(wd + we) + λ(wT
e Φwe − ε) (3.18)

Take partial derivative to we, the optimal solution is derived,

we = −(RXX + λΦ)−1RXXwd (3.19)

The parameter λ can be obtained from the following equation,

h(λ) = wT
e Φwe = wdRXX(RXX + λΦ)−1Φ(RXX + λΦ)−1RXXwd = ε (3.20)

Using eigenvalue decomposition, suppose,

VΓVT = R−1/2
XX ΦR−1/2

XX (3.21)

Equation (3.20) can be written,

h(λ) = zT (I + λΓ)−1Γ(I + λΓ)−1z = ε (3.22)

and

h(λ) =

KJ∑
i=1

|zi|
2 γi

(1 + λγi)2 = ε (3.23)

where γi is the diagonal elements of matrix Γ, and

z = VT R1/2
XX wd (3.24)

Note that h(λ) is a monotonically decreasing function of λ, and h(λ → 0) > ε, h(λ →

∞) < ε. Hence there is a unique solution to equation (3.23), which can be solved

efficiently via Newton’s method.

3.3.2 Iterative Algorithm

We develop an iterative algorithm using the approach discussed in [145].

In [145], an iterative solution (also adaptive algorithm) was developed to solve the fol-

lowing constrained optimization problem:

min
w∈S

{
1
2

wT Rw − wT b
}
, S = {w : ‖w‖ ≤ ε} (3.25)
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The iterative algorithm is given by

wk+1 = P[(I − µR)wk + µb], (3.26)

where

P(w) =


w, if ‖w‖ ≤ ε

w
√
ε

‖w‖ , ‖w‖ > ε.
(3.27)

We now manipulate the robust beamforming problem (3.17) into a form compatible

with (3.25), enabling development of the iterative algorithm. Using eigenvalue decom-

position, the matrix Φ in equation (3.17) can be written as,

Φ = UΛUT = (UΛ1/2)(UΛ1/2)T (3.28)

Let w̃e = (UΛ1/2)T we. After some manipulation, equation (3.17) can be written as

min
w̃e
{
1
2

w̃T
e R̃w̃e − w̃T

e b̃}, subject to w̃T
e w̃e ≤ ε (3.29)

where R̃ = Λ−1/2UT RXXUΛ−1/2, and b̃ = −Λ−1/2UT RXXwd. Now the iterative algorithm

(3.26) can be applied to solve this problem [145]. The corresponding adaptive algorithm

is obtained by substituting the instantaneous estimates R̂k and b̂k into (3.26), where R̂k =

Λ−1/2UT XkXT
k UΛ−1/2 and b̂ = −Λ−1/2UT XkXT

k wd, respectively.

3.4 Diagonally Loaded Robust Beamformer

Since the dimension of matrix Φ is large and Φ is obtained by an integration

of matrices based on steering vector over a small region, it is generally a low rank

matrix and is close to singular. This leads to numerical problems and hence unreliable

weights when solving (3.17). Specifically, for the iterative algorithm, the eigenvalue

decomposition in equation (3.28) won’t be stable because Φ is ill-conditioned. One

option is to approximate matrix Φ by a low rank matrix, i.e.

Φ =

[
U1; U2

] Λ1 0

0 Λ2


UT

1

UT
2

 (3.30a)

≈ U1Λ1UT
1 = (U1Λ

1/2
1 )(U1Λ

1/2
1 )T (3.30b)
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where Λ2 is small compared with Λ1. Define w̃1 = Λ
1/2
1 UT

1 we, w̃2 = UT
2 we, w̃ =

[w̃T
1 , w̃

T
2 ]T . Then

we = U1Λ
−1/2
1 w̃1 + U2w̃2 (3.31)

The original problem (equation (3.17)) can be transformed into the following

format,

min
w̃
{
1
2

w̃T R̃w̃ − w̃T b̃}, subject to w̃T
1 w̃1 ≤ ε (3.32)

To make the constraints wT
e Φwe ≤ ε and w̃T

1 w̃1 ≤ ε be equal, the contribution

of w̃2 is ignored and U2w̃2 is set to ~0, thus wT
e Φwe = w̃T

1 w̃1, and we = U1Λ
−1/2
1 w̃1.

Substitute this back into equation (3.17), the obtained problem is only related to w̃1.

Now Krieger’s iterative method can be applied to this problem. Because too much

freedom related to w̃2 is sacrificed, this method may suffer from insufficient freedom

when many interferences are to be suppressed. This is confirmed by our observations in

the experiments.

In [137], Er proposed a method wherein the original quadratic constraint is re-

placed by a set of linear constraints. Assume matrix Φ is a low rank matrix which can be

represented by its eigen-decomposition Φ = U1Λ1UT
1 . The original quadratic constraint

in equation (3.17) can be approximated by a set of linear constraints UT
1 we = 0. The lin-

ear constraint algorithm is an approximation because the quadratic constraint wT
e Φwe ≤

ε is not equivalent to the linear constraints UT
1 we = 0. Often matrix Φ is only approxi-

mated by U1Λ1UT
1 but is not exactly equal to it. In general, Φ = U1Λ1UT

1 + U2Λ2UT
2 .

Although the norm of Λ2 is small, if the norm of w is big enough, wT
e U2Λ2UT

2 we may

exceed ε. In such cases, the original quadratic constraint is not satisfied.

In [137], an extra norm constraint on w was proposed to ensure that the quadratic

constraint and the set of linear constraints are equivalent. However, it complicates the

optimization problem and was not pursued in detail. The other disadvantage of the al-

gorithm is that to ensure better approximation to matrix Φ, the dimension of Λ1 has to

be increased, which increases the number of linear constraints. Consequently, the de-

grees of freedom of the weight vector are reduced compromising the ability to suppress

interferences.

In view of the low rank property of the matrix Φ, a method which can robustly

solve equation (3.17) is now proposed. The idea is to add a diagonal loading to Φ to
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restore it to a full rank matrix, i.e. construct a new matrix Φ′ such that Φ′ = Φ +λI. The

diagonal loading method here is close to the diagonal loading method in [21] except that

the diagonal loading is added to the constraint matrix Φ instead of the signal covariance

matrix RXX. Substituting Φ′ for Φ in (3.17), the problem can be rewritten as

min
we

(wd + we)T RXX(wd + we), s.t. wT
e Φ′we ≤ ε (3.33)

where Φ′ = Φ + λI. The above optimization problem can be solved robustly by the

Lagrangian method in section 3.3.1 or by the iterative algorithm in section 3.3.2. Since

Φ is totally determined by the array geometry, it can be calculated beforehand as well

as the DL level λ. It can be chosen optimally offline with respect to Φ. In contrast, in

diagonal loading of the signal covariance matrix RXX, the DL level has to be adjusted

online with respect to different values of RXX. Furthermore, the new well-conditioned

constraint matrix Φ′ ensures a robust eigenvalue decomposition such that the iterative

and corresponding adaptive algorithm are stable, while for the method of adding DL to

signal covariance matrix no such adaptive algorithm is available.

To get more insight into problem (3.33), we expand the constraint

wT
e Φ′we = wT

e Φwe + λwT
e we. (3.34)

Define wT
e Φwe = ε1 and λwT

e we = ε2, to ensure the quadratic constraint is satisfied, it

must be true ε1 + ε2 ≤ ε. In other words, from the constraint wT
e Φ′we ≤ ε, two con-

straints wT
e Φwe ≤ ε and λwT

e we ≤ ε can be met. Consequently, if constraint wT
e Φ′we ≤ ε

is satisfied, not only is the constraint in our original optimization problem (3.17) satis-

fied, but also a new norm constraint on the weight vector we is introduced. The norm

constraint will introduce further robustness as shown in [26]. And λ can be considered

as a parameter which leverages constraint wT
e Φwe = ε1 and the norm constraint. In

conclusion, the diagonal loading to the matrix Φ facilitates robustness in the solution of

the original optimization problem (3.17).

3.5 Experiments

A speech recognition experiment is conducted on the Multichannel Overlap-

ping Numbers Corpus (MONC) to test the performances of various beamforming algo-
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(a) Loudspeaker and microphone place-

ment

(b) Experimental setup

Figure 3.5: MONC database experiment scenario

rithms. MONC is a multichannel speech database recorded in a moderately reverberant

8.2m*3.6m*2.4m rectangular room [136]. The recording scenario was designed to sim-

ulate three speakers seated around a 1.2m diameter circular meeting room table. The

loudspeakers (L1, L2, L3) were placed at 90◦ spacings at an elevation of 35cm. An

eight-element, 20cm diameter, circular microphone array was placed in the centre of the

table. An additional microphone was placed at the centre of the array. The loudspeaker

and microphone placement is illustrated in Fig.3.5(a). A photograph of the experimental

setup is included in Fig.3.5(b). The sampling rate for recording is 8kHz.

In applying the beamforming algorithms to the data from the MONC database,

the desired source is speaker L1, which is assumed to be a point source coming from the

location: angle 180◦, radius 70cm, height 35cm. We define the origin of the coordinates

to be the center of the circular microphone array, and define angle 0◦ to be the direction

of the 8th microphone. The angle increases counter clockwise, which means the 1st

microphone is in the direction of angle 45◦. Only microphones 1 to 8 are used in the

beamforming.

Speech recognition results using different beamforming algorithms are shown in

Fig.3.6. Five beamforming algorithms and one single microphone based approach are

compared. CentreMic means using single centre microphone’s signal for speech recog-

nition, without beamforming. DS, Frost, robFrost orig, robFrost Er and robFrost DL
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Figure 3.6: Speech recognition rate

represent conventional Delay-and-Sum beamforming, optimal Frost beamforming [19],

robust Frost beamforming with quadratic constraint (using original constraint matrix,

solved by Lagrangian method (3.19)), Er’s robust Frost beamforming with a set of lin-

ear constraints [137] and robust Frost beamforming with quadratic constraint (using

diagonally loaded constraint matrix) respectively. For the robFrost DL algorithm, both

the Lagrangian multiplier method and the iterative method yield identical experimental

results, hence only the results obtained by the Lagrangian method are shown in Fig.3.6.

20 taps is used for the broadband beamforming algorithms and the tap delay between

each two taps of the Frost structure is the sampling interval, i.e. 0.125ms. The con-

straint matrix of the robust Frost beamforming is calculated through integration over

the whole frequency band 0–4000Hz and the uncertainty region: angle 180 ± 3◦, height

35 ± 5cm, and radius 70 ± 3cm. s1, s1s2 and s1s2s3 represent three different scenarios

separately: only speaker s1 is speaking, both s1&s2 are speaking, and all three speakers

are speaking. For the proposed algorithm, the DL level λ is chosen to be 10−5 times

largest eigenvalue of Φ. From the experiments results, it is evident that the proposed

beamforming algorithm is significant better than the other algrithms.
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We also plot the beam pattern of different beamformers using one multichannel

sample sentence from the MONC database. Only speakers L1 and L2 are present in the

sample sentence. Fig.3.7 shows the beam pattern of various beamformers over angle θ

and frequency. It is apparent that the robust Frost beamforming with diagonal loaded

constraint matrix has the best combination of robustness in the look direction (180◦)

and good suppression in the interference direction (90◦).
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3.6 Appendix for Chapter 3

3.6.1 Eigenvalue Relationship

Suppose that the matrix P’s eigenvalue decomposition is UPΛPUT
P , and RXX’s

eigenvalue decomposition is URΛRUT
R . Then we get,

PRXXP = (UPΛPUT
P )(URΛRUT

R )(UPΛPUT
P ) (3.35)

Since UP and UR are unitary, UT
P UR is unitary. Let M = UT

P URΛRUT
R UP. M will have

the same eigenvalues as ΛR.

Since C(CTC)−1CT has K eigenvalues equal to 1 (the corresponding eigenvectors

are the column vectors of the constraint matrix C) and KJ − J eigenvalues equal to 0,

ΛP is a diagonal matrix with KJ− J ones and J zeros on the diagonal. Therefore PRXXP

has J zero eigenvalues whose corresponding eigenvectors are the column vectors of the

constraint matrix C. From ΛPMΛP, we just pick the first principle sub-matrix of matrix

M. By Cauchy’s interlacing theorem, ΛPMΛP has KJ− J nonzero eigenvalues σi whose

values are bounded between the smallest and largest eigenvalues (λmin and λmax) of RXX,

λmin ≤ σmin ≤ σmax ≤ λmax (3.36)
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(a) DS beamformer (a) Frost beamformer

(b) robust Frost beamformer (Eq. (3.19)) (c) Er’s robust Frost beamformer [137]

(d) robust Frost BF with DL constraint matrix

Figure 3.7: Beam pattern of various beamformers over angle θ and frequency bins. The
radius is fixed at 70cm and height fixed at 35cm. The look direction is 180◦ and the
interference direction is 90◦



4 Robust Adaptive Narrowband

Beamforming Algorithms

Data dependent adaptive beamformer has high resolution and interference rejec-

tion capability when the array steering vector is accurately known. However, it is known

to degrade severely if steering vector error exists. Motivated by recent work in robust

MVDR beamforming (RCB&DCRCB) [26], we develop variants of the constrained ro-

bust MVDR beamformer that attempts to limit the search in the underlying optimization

problem to a feasible set of steering vectors, thereby achieving improved performance.

The robustness against steering vector error is provided through a spherical uncertainty

set constraint, while a set of magnitude constraints are enforced on each element of the

steering vector to constrain the search in the space of feasible steering vectors in a better

fashion. By appropriately changing the variables, the optimization problem is modi-

fied such that the need for the magnitude constraints are avoided. We call this newly

developed approach as time delay based robust MVDR beamforming.

We also develop adaptive algorithms for the RCB and the time delay based ro-

bust MVDR beamformer. The adaptive algorithms have two updating steps. The first

step updates the steering vector estimation or the time delay estimation; the second step

updates the beamformer’s weight vector given an estimated steering vector. The devel-

oped algorithms are tested in the context of speech enhancement using a microphone

array.

73
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4.1 Introduction to Robust Narrowband Beamforming

Beamforming is widely used in array processing to enhance the desired signal

while suppressing interference signals and noise. The standard data independent beam-

formers such as the delay-and-sum (DS) beamformer is robust to the signal of interest

(SOI) steering vector errors, which may be due to look direction error, array sensor po-

sition error and small mismatches in the sensor responses. However, those beamformers

suffer from low resolution and high sidelobes, inducing degraded interference rejec-

tion capability. In contrast, data dependent adaptive beamformers such as the standard

MPDR beamformer, has high resolution and interference rejection capability when the

array steering vector is accurately known [20]. However, the performance of traditional

adaptive beamformer can degrade severely in practice when there exist SOI steering

vector errors. In such cases, the SOI might be mistaken as an interference signal and be

suppressed.

Many robust beamforming algorithms have been proposed to address this prob-

lem [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Derivative

constraint in the look direction is proposed in [22, 23]. Er and Cantoni proposed a robust

beamforming algorithm which restricts the error between the desired and actual beam

pattern of the array over a small spatial region around the array’s look direction, allow-

ing for uncertainty in the look direction [40]. Linearly constrained minimum variance

(LCMV) beamforming is proposed in [41, 42]. Bell proposed a Bayesian approach to ro-

bust adaptive beamforming in [24]. Norm constrained and white noise gain constrained

adaptive beamformer are studied in [21, 43, 44] and widely used thereafter. These beam-

formers use diagonal loading to improve robustness, however, how the diagonal loading

should be selected is not well justified.

Recently some new robust adaptive beamformers with theoretical background

have been proposed. Robust adaptive beamforming using worst-case performance op-

timization is proposed in [25, 45, 46]. The problem is formulated as minimizing a

quadratic function subject to infinitely many quadratic constraints, but is reduced to a

second-order cone programming problem which can be solved by interior point meth-

ods. Li and Stoica proposed the robust Capon beamformer (RCB) [47, 26, 48] where

a spherical uncertainty set constraint is enforced on the array steering vector. They
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also developed a doubly constrained robust Capon beamformer (DCRCB) [26] based

on RCB, wherein a norm constraint on the beamformer steering vector is added. A

comparison of these two beamformers is given in [49] and a geometrical explanation is

provided.

RCB and DCRCB solve the SOI cancellation problem by searching for the

MVDR beamformer with maximum energy output in a spherical uncertainty set. If

the true SOI steering vector exists in the spherical uncertainty set, RCB and DCRCB

is supposed to find that steering vector as the minimizer of a quadratic optimization

problem. However, the minimizer of the quadratic optimization problem may not be a

feasible steering vector. A feasible steering vector generally satisfies some geometrical

constraints and has a physical meaning. Not all the vectors in the spherical uncertainty

set have such physical meaning and are set to be valid steering vectors.

Motivated by the idea of searching for a valid steering vector, in this work, we

develop variants of robust MVDR beamformer that attempt to limit the search in the

underlying optimization problem to a feasible set of steering vectors thereby achieving

improved performance. The robustness to the steering vector error is provided through a

spherical uncertainty set constraint, while a set of magnitude constraints is enforced on

each element of the steering vector to constrain the search to the space of feasible steer-

ing vectors in a better fashion. By appropriately changing the variables, the optimization

problem is modified such that the need for the magnitude constraints are avoided.

We also develop adaptive algorithms for the RCB and the time delay based ro-

bust MVDR beamformer. The adaptive algorithms have two updating steps. The first

step updates the steering vector estimation or the time delay estimation; the second step

updates the beamformer’s weight vector given an estimated steering vector. The devel-

oped algorithms are tested in the context of speech enhancement using a microphone

array.

This chapter is organized as follows. Section 4.2 contains background material,

it has a quick review of the RCB and DCRCB algorithms and bring forward the problem

with RCB and DCRCB. Our proposed time delay based robust MVDR beamformer is

developed in section 4.3. Section 4.4 develops the adaptive algorithms for the RCB and

the time delay based robust MVDR beamformer. Simulations which compares the per-
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formance of various beamformers are given in section 4.5. Finally, section 4.6 presents

our conclusions.

The following notations are adopted throughout this chapter: (.)T denotes trans-

pose, (.)∗ denotes conjugate, (.)H for conjugate transpose, (.)−1 denotes inverse matrix,

(.)−T denotes inverse and transpose, ‖.‖ denotes L2 norm, |.| denotes modulus, ∇w(.) de-

notes gradient to variable w. I is the identity matrix, the size depends on the context.

Lower case alphabet denotes scalar, e.g. a; lower case boldface alphabet denotes vector,

e.g. a; and upper case alphabet denotes matrix, e.g. R.

4.2 Background

4.2.1 Standard MVDR Beamformer (MVDR)

The MVDR beamforming is also called Capon beamforming [20]. The problem

is formulated as minimizing the output energy of the beamformer while maintaining a

constant response in the look direction, i.e.

min
w

wHRw, s.t. wHa = 1. (4.1)

where R is the signal correlation matrix. a is the SOI steering vector. w is the beam-

former weight vector. The solution to this optimization problem is given by

w =
R−1a

aHR−1a
. (4.2)

4.2.2 Robust Capon Beamformer (RCB)

The Robust Capon Beamformer (RCB) is proposed in [47]. Suppose a0 is the

true SOI steering vector and a is the assumed look direction steering vector. a0 is as-

sumed to be in the vicinity of a. This can be expressed mathematically by the following

inequality

‖a0 − a‖2 ≤ ε, (4.3)

where ε is a bound controlling the uncertainty in the assumed look direction.
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The Capon beamforming problem can be reformulated as

max
σ2

σ2, s.t. R − σ2aaH ≥ 0. (4.4)

where R is the signal correlation matrix. σ2 is the signal power to be estimated.

Use the new formulation, one can write the RCB problem as

max
σ2,a

σ2, s.t. R − σ2aaH ≥ 0 and ‖a − a‖2 ≤ ε. (4.5)

Using the fact that, for any fixed a, the solution to (4.4) with regard to σ2 is obtained by

σ̂2 = 1/(aHR−1a) (4.6)

the optimization problem (4.5) can be written as

min
a

aHR−1a, s.t. ‖a − a‖2 ≤ ε. (4.7)

The solution can be found using Lagrange multiplier method as

â0 = ā − U(I + λΓ)−1UHā (4.8)

where R = UΓUH is the eigenvalue decomposition of R, and λ is the Lagrange multi-

plier. Once the SOI steering vector is estimated, the signal power can be estimated as

in (4.6) and the beamformer weight vector is easily obtained as in MVDR beamform-

ing (4.2).

One difficulty with this approach is that it tends to overestimate the signal power

σ2, because both the SOI power and the SOI steering vector are taken as unknowns in

problem (4.5). Thus, (σ2, a) and (σ2/α, α1/2a),∀α > 0 will give the same item σ2aaH.

Suppose (σ2
0, a0) is the true solution to be found, the formulation of (4.5) will prefer

the pair (σ2
0/α, α

1/2a0) if only α < 1 and α1/2a0 is still in the uncertainty set. By the

deduction above, we can be certain that the solution to (4.5) will make the inequality

constraint in (4.5) active, i.e. ‖â0 − a‖2 = ε. This problem is solved in [47] by a

normalization step such that ‖â0‖
2 = N, where N is the number of sensor elements.

4.2.3 Doubly Constrained Robust Capon Beamformer (DCRCB)

To avoid the signal power overestimation problem discussed above in sec-

tion 4.2.2, the doubly constrained robust Capon beamformer (DCRCB) is proposed [26].
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The problem is formulated in a similar way as in (4.7) except that an extra norm con-

straint on the steering vector a is added.

The problem is formulated as

min
a

aHR−1a, s.t. ‖a − a‖2 ≤ ε and ‖a‖2 = N (4.9)

The solution can be found using the Lagrange multiplier method

â = (N −
ε

2
)

U(I + λΓ)−1UHā
āHU(I + λΓ)−1UHā

(4.10)

where R = UΓUH is the eigenvalue decomposition of R, and λ is the Lagrange multi-

plier. Then the beamformer weight vector is easily obtained as in MVDR beamform-

ing (4.2).

In both RCB and DCRCB, the bound ε is chosen such that all possible SOI

steering vectors a0 are included in the uncertainty set described by (4.3). Also, it is

made clear in [26] that the choice of ε should be made as small as possible since when

ε is too large, the ability to suppress interferences degrades.

4.2.4 Problems with RCB and DCRCB

RCB and DCRCB solve the SOI cancellation problem by searching for the

MVDR beamformer with maximum energy output in a spherical uncertainty set. If

the true SOI steering vector exists in the spherical uncertainty set, RCB and DCRCB

are supposed to find that steering vector as the minimizer of the quadratic optimization

problem (4.7) or (4.9). However, the RCB (section 4.2.2) and DCRCB (section 4.2.3)

beamforming algorithms may fail because the optimum solution â to the optimization

problem (4.7) or (4.9) may not be a valid steering vector. A valid steering vector is

usually structured and is not any element in the constrained set (4.3). It usually satis-

fies some constraints and has a physical meaning. Not all the vectors in the spherical

uncertainty set (4.3) have such physical meaning and are valid steering vectors.

The following simple simulations illustrate the problems with RCB and DCRCB.

We assume a uniform linear array with 8 sensors and half-wavelength sensor spacing,

and there is spatially white Gaussian noise which keep the SNR at 30dB.
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The first example illustrates how RCB and DCRCB will be affected by the un-

certainty bound ε. Suppose there are two uncorrelated source signals: one SOI comes

from 0.5◦; one interference signal comes from 45◦, both signals have power level 1. The

assumed look direction is 0◦. Fig.4.1 and Fig.4.2 demonstrates the uncertainty bound

ε and the power estimate as a function of the uncertainty angle range θ. A larger un-

certainty angle range corresponds to a larger uncertainty in the look direction. With the

increase of the uncertainty angle range θ, the uncertainty bound ε increases, and the

power estimate of RCB and DCRCB increases as well. Since the SOI has a power level

of 1, the overestimation of power is evident for RCB and DCRCB, and the overestima-

tion increases with the increases of uncertainty bound. It is demonstrated that RCB has

better power estimation than DCRCB under large uncertainty bound, this is consistent

with the analysis and simulations shown in [26]. A further inspection of the estimated

steering vector by (4.8) and (4.10) shows that they are far from a valid steering vector

when the power overestimation is severe. The magnitude of each element of the esti-

mated steering vector is far from 1, while for a valid steering vector, the magnitude of

each element should always be 1. We will revisit this point in the following section.

The second example will illustrate that the power overestimation is not only

dependent on the uncertainty bound but also affected by the interference signals. The

experiment scenario is the same as above except that we add a second interference signal

which is injected into the array from −60◦. The second interference signal also has a

power level 1. Fig.4.3 shows the power estimate as a function of the uncertainty angle

range θ. Compared to Fig.4.2, the power overestimation for RCB and DCRCB is more

severe in this case.

The power overestimation problem is not significant when the uncertainty bound

ε is small. However, the problem becomes more serious with the increase of the uncer-

tainty bound. In a real application, there are many cases that have a large uncertainty

bound. For example, when using a microphone array for speech processing, given an

assumed look direction, it is reasonable to assume a look direction error of 5◦ to 10◦.

There are two ways to improve the performance of RCB and DCRCB under such

an environment. The first approach is to use a set of RCBs (or DCRCBs) with small

uncertainty bound ε to cover a large uncertainty range. Suppose the true SOI steering
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Figure 4.1: Uncertainty bound ε versus uncertainty angle range.

Figure 4.2: Power estimate versus uncertainty angle range, one interference signal.
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Figure 4.3: Power estimate versus uncertainty angle range, two interference signals.

vector falls into the uncertainty set of one of those RCBs (or DCRCBs). Such specific

RCB (or DCRCB) will have a good estimation of the SOI’s power and a significant

power output. Instead, other RCBs (or DCRCBs) which do not include the true SOI

steering vector in their uncertainty sets will have none or small power output. Thereby

we can choose the maximum power estimate from that set of RCBs (or DCRCBs) as the

final power estimate for the SOI. Since each of those RCBs (or DCRCBs) has a small

uncertainty bound ε, the power estimate will be more accurate than that of a single RCB

(or DCRCB) with a big uncertainty range. One shortcoming of this approach is that to

cover a large uncertainty range in a real application, we may need a large number of

RCBs (or DCRCBs). What’s more, the power overestimation problem will always exist

and we can never claim that we estimate the true steering vector.

The second approach to improve the performance of RCB and DCRCB under a

large uncertainty bound is to add extra constraints so that the solution is a valid steering

vector. By constraining the estimated steering vector to be a valid steering vector, the

robust MVDR beamformer is assured to attain the true SOI steering vector and obtain

an accurate power estimation. We will propose some methods using such constraints in
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the following section.

4.3 Magnitude Constrained Robust MVDR Beam-

former

A valid steering vector is usually structured and is not any element in the

constrained set (4.3). We develop variants of the constrained robust adaptive beam-

former that attempt to limit the search in the underlying optimization problem to a

feasible set of steering vectors thereby achieving improved performance. For an ar-

ray with identical omnidirectional sensors, a valid steering vector a can be expressed as

a = [e− jωτ1 , e− jωτ2 , ..., e− jωτN ]T for the far field sources. We observe that each element of

the the steering vector a has magnitude 1. Thereby we propose to enforce a set of mag-

nitude constraints on each element of the steering vector a based on RCB (4.7) thereby

making the search space smaller and more feasible. The new optimization problem can

be formulated as

min
a

aHR−1a, s.t. ‖a − a‖2 ≤ ε and |ak| = 1, k = 1..N (4.11)

where ak is the kth element of the steering vector a, i.e. a = [a1, a2, ..., aN]T . Unfor-

tunately, a closed form solution to this optimization problem is not available and an

optimization routine has to be utilized.

4.3.1 Time Delay Based Robust MVDR Beamformer (robMVDRtd)

By manipulating the variables, we can create a similar robust beamforming prob-

lem to problem (4.11). In particular, we use the form of the steering vector ai for a

specific frequency ωi as

ai = [e− jωiτ1 , e− jωiτ2 , ..., e− jωiτN ]T (4.12)

As |e jωiτk | ≡ 1, optimizing over the time delay variables τi ensures the magnitude con-

straint in (4.11) is automatically satisfied and thus can be omitted. The new robust

beamforming problem is formulated as

min
τ

aH
i R−1

i ai, s.t. |τk − τk| ≤ δk, k = 1..N (4.13)
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where Ri is the signal correlation matrix for frequency ωi. τ = [τ1, τ2, ..., τN]T , and

τ = [τ1, τ2, ..., τN]T is the assumed look direction time delay vector. δk, k = 1..N is a set

of bounds controlling the uncertainty in the look direction. The new problem (4.13) also

can only be solved by using an appropriate optimization routine.

We use a subspace trust region method which is based on interior-reflective New-

ton algorithm to find the solution to problem (4.13). We need the gradient and Hessian

of the objective function hi(τ) = aH
i R−1

i ai, where ai is specified by (4.12). It is straight-

forward to obtain gradient as

∇τhi = AR−T
i a∗i + A∗R−1

i ai (4.14a)

= real(A∗R−1
i ai) (4.14b)

where

A = (− jωi)


a1 0 · · · 0

0 a2 · · · 0
...

...
. . .

...

0 0 · · · aN


(4.15)

where ak is the kth element of the steering vector ai, i.e. ai = [a1, a2, ..., aN]T .

Also, the Hessian is obtained as

∇2
τhi = real((− jωi)diag(aH

i R−1
i )A + AR−T

i A∗) (4.16)

A simple simulation shows that this time delay based robust MVDR beamformer

can estimate the SOI steering vector and power accurately. The results are illustrated in

Fig.4.2 and Fig.4.3. This beamformer is denoted as robMVDRtd in the plots. All the

experiment scenarios are aforementioned.

In the context of broadband signals, for each frequency component of the signal

one has to solve a problem like (4.13) based on the specific frequency ωi. However,

the objective minimizer τ̂ is the true time delay from the SOI to each microphone el-

ement, which doesn’t depend on the frequency ωi. In other words, we want to find a

common minimizer to all the optimization problems (4.13) on various frequencies. This

is not automatic and has to be enforced. It can be achieved by combining the series of

beamforming problems on individual frequency bins into a single problem to provide
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robustness. The broadband beamforming problem can be formulated as

min
τ

∑
i

aH
i R−1

i ai, s.t. ‖τ − τ‖2 ≤ δ (4.17)

4.3.2 Angle Based Robust MVDR Beamformer (robMVDRangle)

The RCB (section 4.2.2), DCRCB (section 4.2.3) and robMVDRtd (sec-

tion 4.3.1) algorithms assume uncertainty in the steering vector, which takes both the

SOI look direction error and the array sensor’s position error into consideration. The

problem can be simplified when only SOI look direction error exists. For instance, in

the case of 2-dimensional space the sources’ incidence directions can be represented by

only one parameter θ. Hence, we can use v(θ) to substitute for the steering vector a

in (4.13). The new robust beamforming problem can be written as

min
θ

v(θ)HR−1v(θ), s.t. |θ − θ| ≤ ε (4.18)

where v(θ) = [e− jωτ1 , e− jωτ2 , ..., e− jωτN ]T , and τi, i = 1, ..,N is functions of θ based on

the geometry of the array. θ is the assumed look direction. ε is a bound controlling

the uncertainty in the assumed look direction. The problem (4.18) can be solved by

one dimensional numerical optimization algorithm such as the golden section search

method.

4.4 Adaptive Robust Beamforming

The beamforming algorithms we have discussed in the above sections are off-

line algorithms. In other words, they are batch algorithms. This means that to run the

algorithms, we need a batch of data to estimate the correlation matrix R and solve for

the weight vector w, then the weight vector w will be used to filter the batch of data. In

this section, we are going to develop the following online algorithms: adaptive robust

Capon beamformer and adaptive time delay based robust MVDR beamformer. The

weight vector w is updated upon every new data sample, which is more like LMS-based

adaptive filtering. That’s why we call these algorithms adaptive algorithms.
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4.4.1 Adaptive Robust Capon Beamformer

We now develop an adaptive algorithm for the robust Capon beamformer. This

adaptive algorithm can be separated into two adaptive steps, the first step is for updating

the steering vector estimation â, the second step is for updating the beamformer’s weight

vector w.

For simple notation, let Q denote R−1, then problem (4.7) can be written as,

min
a

aHQa, s.t. ‖a − a‖2 ≤ ε. (4.19)

Suppose a = ar + jai and a = ar + jai, where ar, ar and ai, ai are the real and

image parts of the steering vector a and a respectively. We can write Q = Qr + jQi

as well, where Qr and Qi are the real and image parts respectively. We construct new

concatenated real vectors and matrices.

ă = [aT
r aT

i ]T (4.20)

Q̆ =

Qr −Qi

Qi Qr

 (4.21)

Since Q is positive definite,

aHQa = real(aHQa) (4.22a)

= ăT Q̆ă (4.22b)

‖a − a‖2 = ‖ă − ă‖2 (4.23)

Hereby the problem (4.19) can be written as

min
ă

ăT Q̆ă, s.t. ‖ă − ă‖2 ≤ ε. (4.24)

This is a real optimization problem equivalent to the original complex optimization

problem. Let ăe = ă − ă, problem (4.24) can be written as

min
ăe

(ăe + ă)T Q̆(ăe + ă), s.t. ‖ăe‖
2 ≤ ε. (4.25)

Since Q is a Hermitian matrix, which implies Q̆ = Q̆T , thus problem (4.25) is equivalent

to

min
ăe

ăT
e Q̆ăe + 2ăT

e Q̆ă, s.t. ‖ăe‖
2 ≤ ε. (4.26)



86

This is a quadratic optimization problem with inequality norm constraint.

In [145], an iterative solution (also adaptive algorithm) was developed to solve an op-

timization problem in exactly the same format. The iterative solution can be written as

follows.

ăe,k+1 = P[(I − µQ̆)ăe,k − µQ̆ă] (4.27a)

P(ăe) =


ăe, ‖ăe‖ ≤

√
ε

ăe

√
ε

‖ăe‖
, ‖ăe‖ >

√
ε.

(4.27b)

where µ is a parameter controlling the convergence speed. To assure convergence, we

must choose 0 < µ < 2/(λ1 + λK), where λ1 and λK is the maximum and the minimum

eigenvalues of matrix Q̆ respectively. The corresponding adaptive algorithm is obtained

by substituting the instantaneous estimates of Q̆ into the algorithm (4.27).

After some tedious mathematical manipulations, we can render the iterative al-

gorithm (4.27) as the following iterative algorithm which operate on the original com-

plex vector variable.

ae,k+1 = P[(I − µQ)ae,k − µQa] (4.28a)

P(ae) =


ae, ‖ae‖ ≤

√
ε

ae

√
ε

‖ae‖
, ‖ae‖ >

√
ε.

(4.28b)

Although equation (4.27) and equation (4.28) show the same format, they are

actually different. Equation (4.27) operates on concatenated real vector variable while

equation (4.28) operates on complex vector variable.

The only little revision needed for applying the corresponding adaptive algo-

rithm is to provide the instantaneous estimation of Q, i.e. R−1. To lower the computa-

tion complexity, the inverse matrix lemma is used for updating R−1
k when every new data

sample is available, here k is the time stamp. For estimation of the correlation matrix Rk

at time k, we have,

Rk = αRk−1 + (1 − α)xkxH
k (4.29)

where α is the forgetting factor, xk is the new data sample at time k. Using inverse matrix

lemma, we can get

R−1
k =

1
α

R−1
k−1 −

1 − α
α2 u(I +

1 − α
α

xH
k u)−1uH (4.30)
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where u = R−1
k−1xk.

Thereby we get the adaptive algorithm for updating the steering vector estima-

tion â when every new data sample is available. We now develop the adaptive step for

updating beamformer’s weight vector w at every time stamp. Since we are assuming

the steering vector a is known in this step, we are actually developing an adaptive algo-

rithm for the standard MVDR beamforming problem (4.1). Similar to Frost’s process

for developing the Frost LMS beamformer [19], we do the following deduction.

Using complex gradient-descent optimization, at each time stamp k the weight

vector is updated as follows

wk+1 = wk − µ∇wH[wk] (4.31)

where H(w) = wHRw+Re{λH(wHa−1)} is the constrained cost function. Using complex

gradient, similar to [19], we can get

wk+1 = wk − µ[I − a(aHa)−1aH]Rwk + a(aHa)−1[1 − aHwk] (4.32)

The last term is not assumed to be zero. It is kept to prevent arithmetic inaccuracy from

accumulation and growth.

Define G = a(aHa)−1 and P = I − a(aHa)−1aH, the iterative equation can be

written as

wk+1 = P[wk − µRwk] + G (4.33)

By substituting the instantaneous estimation Rk = xkxH
k into equation (4.33), we get the

adaptive algorithm for updating w.

4.4.2 Adaptive Time Delay Based Robust MVDR Beamformer

Similar to what we have done for the RCB (section 4.4.1), we develop a two-step

adaptive algorithm for the time delay based robust MVDR beamformer. The first step

is for updating the time delay estimation τ̂, while the second step is for updating the

beamformer’s weight vector w.

We use complex gradient descent algorithm for adapting the time delay esti-

mation τ̂. The gradient for the narrowband objective function hi(τ) = aH
i R−1

i ai has
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been derived in equation (4.14). Its extension for broadband signal’s objective function

f (τ) =
∑

i aH
i R−1

i ai in problem (4.17) is quite straight forward,

∇τ f =
∑

i

∇τhi (4.34a)

=
∑

i

real(A∗R−1
i ai) (4.34b)

After we update the estimation of time delay τ̂ at every time stamp, the steering

vector ai can be easily acquired by equation (4.12). The adaptive step for updating

beamformer’s weight vector w at every time stamp can be derived in the same way as in

adaptive RCB beamformer (section 4.4.1).

4.5 Simulation

4.5.1 Beamforming Algorithms Notation

We use the following notation for each beamforming algorithm.

• OMVDR: the optimal MVDR beamformer which assumes we know the true SOI

steering vector

• MVDR: standard MVDR beamformer based on the assumed steering vector

• DS: conventional delay and sum beamformer

• RCB: robust Capon beamformer (section 4.2.2)

• DCRCB: doubly constrained robust Capon beamformer (section 4.2.3)

• robMVDRtd: time delay based robust MVDR beamformer (section 4.3.1, equa-

tion (4.13))

• robMVDRtdmultif: time delay based multi-frequency robust MVDR beamformer

(section 4.3.1, equation (4.17))

• robMVDRangle: angle based robust MVDR beamformer (section 4.3.2)

• adaptrobMVDR: adaptive robust Capon beamformer (section 4.4.1)
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• adaptrobMVDRtd: adaptive time delay based robust MVDR beamformer (sec-

tion 4.4.2)

4.5.2 Simulation Scenario

In this section, we provide numerical examples on speech enhancement using a

microphone array to compare the performances of various beamformers. We simulate

an 8 element uniform linear array with 4cm equal spacing between adjacent elements.

The sources, both the SOI and interference signals, are plane waves which exist in the

same plane as the linear array. In the experiments, we always assume the look direction

is the broadside of the array, i.e. 0◦. The uncertainty bound used in RCB, DCRCB (ε in

equation (4.7)) and robMVDRtd beamformer (δ in equation (4.13)) are calculated based

on the uncertainty range −8◦ to 8◦.

In the simulation, every source signal is a speech wave signal. The sampling rate

is 8kHz. Since we are discussing narrowband beamforming algorithms while speech is

a wideband signal, we use short time Fourier transform (STFT) to map the time domain

speech signal into frequency domain based on consecutive frames. Then the narrowband

beamforming algorithms are applied on every frequency bin. The frame length is 0.25s

(200 samples), with a step length of 0.125s (100 samples). A 256 points FFT is used

on each frame. The performance of various beamformers is measured by the cepstral

distance between the recovered signal’s spectrum and the original SOI’s spectrum. The

cepstral distance is used because it is a perceptual metric commonly used in speech

processing to measure distortion. Note that we ignore the experiments on angle based

robust MVDR beamformer (robMVDRangle) since its performance has been illustrated

and explained in [30].

4.5.3 Simulation with Batch Algorithms

Example 1

Fig.4.4 demonstrates the beamformers’ performance versus SNR (signal to white

noise ratio). Only one SOI and one interference signal exist in this experiment. The

interference signal and SOI have similar level of energy. The interference signal comes
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from direction 45◦. The assumed look direction is broadside, i.e. 0◦, while the true SOI

direction is 5◦, which means a 5◦ look direction error. There’s no sensor position error

in this experiment.

The OMVDR beamformer gives the optimal performance and bounds the per-

formance that can be attained by these class of adaptive beamformers. Our simulation

results clearly demonstrate that the proposed robMVDRtdmultif beamformer consis-

tently performs well and approximates the OMVDR beamformer. It outperforms the

conventional fixed DS beamformer and other adaptive beamformers such as MVDR,

RCB and DCRCB. The robMVDRtd beamformer has better performance than RCB and

DCRCB if the SNR is high; and has a little inferior performance compared to RCB if

the SNR is low.

The RCB and DCRCB demonstrate similar performance, and RCB is always a

little better among the two. RCB and DCRCB can suppress most of the interference

energy and perform better than DS beamformer. By a detailed inspection of the beam-

formers’ performance in every frequency bin, we find that the estimated steering vector

by RCB and DCRCB is close to the true SOI steering vector when it is in the low fre-

quency range. When it is in the high frequency range, the steering vector estimated by

RCB and DCRCB is far away from the true SOI steering vector. Actually, the magnitude

of each element of the estimated steering vector is far from 1. Of course, the estimated

steering vector is not a valid steering vector anymore. This explains why RCB and

DCRCB has inferior performance in high frequency range.

The performance of various beamformers can be certified by examining the

beampatterns in Fig.4.8 and Fig.4.9. Fig.4.8 and Fig.4.9 illustrates the magnitude beam

pattern of various beamformers on one sample data when there is only one interference

signal. This sample data is selected from the data set used to generate Fig.4.4. The

SNR is 37dB. The MVDR beamformer forms two deep nulls, one in the interference

direction, the other in the SOI direction, which implies SOI cancellation. The RCB and

DCRCB method can steer a null in the interference direction (45◦) at low frequency

range, while at middle to high frequency range, their beam patterns are similar to that of

DS beamformer. This can be explained by the choice of uncertainty bound ε. The bound

ε is chosen such that all possible SOI steering vectors a0 are included in the prescribed
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uncertainty set. This usually brings on a big value of ε at high frequency, which results

in many infeasible steering vectors being included in the uncertainty set (4.3). Thereby

the minimizer to the optimization problem (4.7) and (4.9) is no longer a valid steering

vector in the high frequency range. A close inspection of the estimated steering vector

by RCB and DCRCB at high frequency range confirms the above reasoning. The ele-

ment magnitudes of those steering vectors have been found to be far away from 1. The

robMVDRtd beamformer can put a deep null in the interference direction consistently

over all frequencies. It is evident that the beam pattern of the robMVDRtdmultif method

is close to that of the OMVDR beamformer.

Example 2

Fig.4.5 shows the beamformers’ performance versus SNR when two interference

signals exist. The second interference signal injects from direction −60◦. All the other

settings are the same as those of the aforementioned experiment.

The robMVDRtd beamformer demonstrates much better performance than RCB

and DCRCB under all different SNR level. But it is worse than the robMVDRtdmultif

beamformer. This is reasonable since robMVDRtd is not utilizing the information that

speech is broadband signal and processes each frequency bin independently. In those

frequency bins where the speech signal does not have high energy level, corresponding

to the vallies on speech spectrum, the local SNR is lower than the global averaged SNR,

thereby the robMVDRtd will have worse performance on those frequency bins. On the

contrary, the robMVDRtdmultif beamformer consider the broadband speech signal as

one integrated part and just solve one time delay τ across all the frequency bins, since

the time delay τ should be the same across all the frequencies for a broadband signal.

This is apparently more noise robust. What’s more, we can estimate and track the local

SNR in every frequency bin and only use those frequency bins with high local SNR to

update the time delay τ estimation in equation (4.17). This is especially useful if we

have a broadband signal and part of the spectrum is corrupted by a band limited noise.

We can use those frequency bins not being corrupted to estimate a time delay τ for

applying beamforming in all the frequencies.

The RCB and DCRCB demonstrate similar performance, and RCB is always
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a little better among the two. The performance of RCB and DCRCB is much worse

than that of robMVDRtd and robMVDRtdmultif beamformer and is close to that of DS

beamformer. Detailed inspection of the beamformers’ performance in every frequency

bin shows that the steering vector estimated by RCB and DCRCB is far away from

the true SOI steering vector. The magnitude of each element of the estimated steering

vector is far from 1. Comparing Fig.4.5 with Fig.4.4, we see that RCB and DCRCB

have much worse performance when there are two interference signals compared to the

single interference scenario. When there are two interferences, the correlation matrix R

has more signal components, thereby RCB and DCRCB have more freedom to minimize

the criterion function aHR−1a (equation (4.7)), this makes the estimated steering vector

to move even far away from a valid steering vector compared to the single interference

scenario.

The performance of various beamformers can be certified by examining the

beampatterns in Fig.4.10. Fig.4.10 illustrates the magnitude beam pattern of various

beamformers on one sample data when there exist two interference signals. This sample

data is selected from the data set used to generate Fig.4.5. RCB and DCRCB shows

a beam pattern similar to DS beamformer. The robMVDRtd beamformer can put a

deep null in the interference directions consistently over all frequencies. However, on

some frequency bins, the robMVDRtd beamformer partially suppresses the SOI. The

robMVDRtdmultif beamformer shows a beam pattern which is very close to that of the

OMVDR beamformre.

Example 3

Fig.4.6 demonstrates the beamformers’ performance versus SNR when there ex-

ist not only the look direction error, but also sensor position error. The displacement

error for each sensor is generated by an uniformly distributed random variable whose

maximum value is 3mm. Only one interference from 45◦ exists in this experiment.

Fig.4.7 demonstrates the beamformers’ performance versus SNR when there exist both

look direction error and sensor position error. Two interference speech from 45◦ and

−60◦ exist in this experiment.

By this example we show that the RCB, DCRCB, robMVDRtd and robMVDRt-
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(a) Output Energy (b) Cepstral distance

Figure 4.4: The performance of beamformers vs. SNR, only look direction error exists,
one interference.

dmultif beamformers are not sensitive to the sensor position error. The results shown in

Fig.4.6 and Fig.4.7 are very close to the results in Fig.4.4 and Fig.4.5.

4.5.4 Simulation with Adaptive Algorithms

We use computer simulations to demonstrate the performance of the adaptive

robust Capon beamformer (adaptrobMVDR) and the adaptive time delay based robust

MVDR beamforming (adaptrobMVDRtd). We assume two sources: the SOI direction

is 5◦, while the interference signal comes from 45◦. The look direction is the broadside

direction (0◦), which means a 5◦ look direction error. A Monte Carlo simulation of 20

independent runs was performed for different adaptation lengths. The data for testing

performance is 100 seconds long. The result shown in the following is the mean value of

those 20 independent Monte Carlo runs. (To be more specific: for every fixed adaptation

length, the same experiment is repeated 20 times based on random data selection. That

is, for every fixed adaptation length, we pick 20 segments of data of that fixed length

from the database, run a beamforming algorithm on those segments, get 20 weight vec-

tors, then test those 20 weight vectors on the test data, which is 100 seconds. We got

20 cepstral distances for each fixed adaptation length. The final results shown on the

performance plots are the mean value of those 20 passes.) The step size for adaptation,

i.e. the frame rate for adaptation is 2ms (16 samples under 8KHz sampling rate).
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(a) Output Energy (b) Cepstral distance

Figure 4.5: The performance of beamformers vs. SNR, only look direction error exists,
two interferences.

(a) Output Energy (b) Cepstral distance

Figure 4.6: The performance of beamformers vs. SNR, both look direction error and
sensor position error exist, one interference.
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(a) Output Energy (b) Cepstral distance

Figure 4.7: The performance of beamformers vs. SNR, both look direction error and
sensor position error exist, two interferences.

Figure 4.8: Beam pattern of the delay-and-sum beamformer over angle θ and frequency
bins. The look direction is 0◦.
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Result with adaptive RCB beamformer

The performance of the adaptive RCB beamformer versus different adaptation

lengths is illustrated in Fig.4.11. S1 is the desired signal. On the sub-figure (a) where

the energy output is illustrated, the line with legend S 1 (DS , and adaptiverobMVDR

respectively) denotes the energy of the desired source signal (the delay-and-sum beam-

former output, and the adaptive RCB beamformer output respectively). Sub-figure (b)

demonstrates the cepstral distance between the desired signal and the delay-and-sum

beamformer output (the adaptive RCB beamformer output respectively). Fig.4.11 il-

lustrates the performance of the adaptive RCB beamformer improves as the adaptation

goes on.

Result with adaptive time delay based robust MVDR beamformer

The performance of the adaptive time delay based robust MVDR beamformer

versus different adaptation lengths is illustrated in Fig.4.12. Compared with Fig.4.11,

the adaptive time delay based robust MVDR beamformer demonstrates a better perfor-

mance compared to the adaptive RCB beamformer for the same adaptation length.

4.6 Conclusions

We analyzed the RCB and DCRCB beamforming algorithms and demonstrated

that RCB and DCRCB may overestimate the SOI power since the estimated steering

vector may not be a valid steering vector. The problem becomes more serious when the

uncertainty bound is large. We proposed two solutions to this problem. One approach

is to use a set of RCBs (or DCRCBs) with small uncertainty bounds to cover a large

uncertainty range. The other approach is to enforce some extra constraints on the

optimization problem so that the solution is a valid steering vector. We developed

variants of the constrained robust MVDR beamformer that attempt to limit the search

in the underlying optimization problem to a feasible set of steering vectors thereby

achieving improved performance. The robustness against steering vector error was

provided through a spherical uncertainty set constraint, while a set of magnitude

constraints was enforced on each element of the steering vector to better constrain
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the search in the space of feasible steering vectors. By appropriately changing the

variables, the optimization problem was modified such that the need for the magnitude

constraints are avoided. Our numerical simulations demonstrated that our time delay

based robust MVDR beamformer performs better than RCB and DCRCB under large

uncertainty bounds. We also developed adaptive algorithms for the RCB and the time

delay based robust MVDR beamformer. The adaptive algorithms have two updating

steps. The first step updates the steering vector estimation or the time delay estimation;

the second step updates the beamformer’s weight vector given an estimated steering

vector. The adaptive time delay based robust MVDR beamformer performs better than

the adaptive RCB beamformer.
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(a) OMVDR beamformer (b) standard MVDR beamformer

(d) RCB beamformer (e) DCRCB beamformer

(f) robMVDRtd beamformer (e) robMVDRtdmultif beamformer

Figure 4.9: Beam pattern of various beamformers over angle θ and frequency bins. The
look direction is 0◦, the true SOI direction is 5◦, and the interference direction is 45◦.
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(a) OMVDR beamformer (b) standard MVDR beamformer

(d) RCB beamformer (e) DCRCB beamformer

(f) robMVDRtd beamformer (e) robMVDRtdmultif beamformer

Figure 4.10: Beam pattern of various beamformers over angle θ and frequency bins.
The look direction is 0◦, the true SOI direction is 5◦, one interference comes from 45◦,
another interference comes from −60◦.
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(a) Energy output (b) Cepstral distance

Figure 4.11: The performance of the adaptive RCB beamformer vs. adaptation length,
2ms step size

(a) Energy output (b) Cepstral distance

Figure 4.12: The performance of the adaptive robMVDRtd beamformer vs. adaptation
length, 2ms step size



5 Insights into the Frequency Domain

ICA/IVA Approach

Another class of promising multi-channel signal separation algorithms besides

beamforming is independent component analysis (ICA). ICA is a blind source sepa-

ration (BSS) technique which only utilizes the statistical independence between sev-

eral sources to separate them out from their mixtures [57, 58, 59, 60, 61, 62, 63, 64,

65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83]. For sep-

arating convolutive mixed source signals, the frequency domain ICA approach is of-

ten used because it simplifies the time domain convolutive mixing problem into the

instantaneous mixing ICA problem in each frequency bin. However, permutation prob-

lem across different frequency bins is an important problem that needs to be solved

before the frequency domain ICA approach can be used to separate mixed sources

in real applications [84, 72, 85, 86, 87, 88, 89, 90, 87, 91, 92, 93, 94, 95]. In-

dependent vector analysis (IVA) was proposed to circumvent the permutation prob-

lem [96, 97, 98, 99, 100, 101, 102, 103]. Instead of solving the mixing problem in

each frequency bin independently, IVA considers the frequency domain source signal

linked together as a vector source and attempts to resolve the mixing problem in the

frequency bins in an integrated manner.

In this work, we examine and provide insight into frequency domain ICA meth-

ods for source separation in reverberant environments. For the modeling of the source

signals, we develop the concept of a dynamic random process to model the source sig-

nals. It formalizes the concept of signals that are stationary in a frame but exhibit dy-

namics at the frame level. Frame dynamics is an important characteristic of these signals

and prove important to the success of the ICA methods. With suitable assumptions, the

101
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dynamic random process is stationary in the ensemble sense while a given realization

may in an engineering sense exhibit ‘non-stationarity’. We show for dynamic random

processes, the unconditional distribution of the source signal in each frequency bin is

a Gaussian scale mixture (GSM). The non-Gaussianity, which is critical to ICA, of the

source signal in each frequency bin is shown to be a direct consequence of the frame

dynamics. Furthermore, the independence between the unconditional distributions of

the source signals in each frequency bin is related to the independence of the frame

dynamics of the mixed time domain source signals. The GSM mathematical modeling

is extended to the vector random processes formed by stacking the different frequency

components of a source. This provides insights into the mathematical models suitable

for the frequency domain independent vector analysis (IVA) type approaches. A spe-

cial case of the distribution turns out to be the ‘spherical distribution’ employed in IVA

source modeling providing support to their use in source separation. Concentrating on

the bin-wise ICA methods, a significant contribution of this work is to show that sig-

nals modeled using GSM density can be separated using ICA even though they might

be dependent on each other as long as the the frame dynamics of the source signals are

different almost surely.

5.1 Introduction to the Frequency Domain ICA Ap-

proach

Ever since the frequency domain independent component analysis (ICA) ap-

proach was proposed [146, 147, 148, 84, 72, 91, 86, 87, 90, 83, 75, 78], it has been

widely used and has become a conventional blind source separation (BSS) approach for

de-mixing convolutive mixtures. It simplifies the time domain convolutive mixing prob-

lem by turning it into instantaneous mixing problem in each frequency bin. In this work,

we will focus on the discussion of the applicability of ICA algorithm in each frequency

bin – when can ICA separate the mixed source signals in each frequency bin.

For convolutive mixed blind source separation, Pham et al. argued that in the

frequency domain the source signal at each fixed frame and frequency is a Gaussian

signal, therefore ICA is not applicable [104]. Parra, Pham, and Choi et al. all proposed
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to utilize the non-stationarity of source signals for instantaneous mixing blind source

separation [105, 67, 106, 107, 66, 108, 109, 110]. In the frequency domain approach for

de-mixing convolutive mixtures, if Parra, Pham, and Choi et al.’s methods are applied

in each frequency bin to separate the mixed source signals therein, the source signals

in each frequency bin are implicitly assumed to be non-stationary. By simultaneously

diagonalizing several covariance matrices (second order statistics) at different times in

each frequency bin, the mixed source signals in each frequency bin are separated. How-

ever, the permutation problem stills need to be solved in order to obtain each source’s

spectrum for reconstructing the time domain source signal. One shortcoming of this

approach is the need for a large amount of data so that the covariance matrices in each

frequency bin can be estimated robustly (remember several covariance matrices have to

be estimated in each frequency bin). For instance, for convolutive mixed blind speech

signal separation more than 20 to 30 seconds of data is necessary to obtain satisfactory

results [105].

However, the conventional frequency domain ICA approach (Table 5.1) is

widely used and many experiments on convolutive mixing blind source separation

demonstrate good separation performance (assuming the permutation problem is cor-

rectly solved) no matter what kind of instantaneous mixing ICA algorithms is employed

in separating the mixed source signals in each frequency bin. For example, maximizing

neg-entropy (FastICA) algorithm, maximum likelihood algorithm, and Infomax algo-

rithm [58, 60, 61, 63, 62] have been tested in the frequency domain ICA approach and

all of them illustrate good separation results. An advantage of these ICA algorithms is

that their performance is not too sensitive to the amount of data. For example, in convo-

lutive mixing speech separation, a few seconds of data is enough to provide satisfactory

separation result.

In this work, we examine and provide insight into frequency domain ICA meth-

ods for source separation in reverberant environments. For the modeling of the source

signals, we develop the concept of a dynamic random process to model the source sig-

nals. It formalizes the concept of signals that are stationary in a frame but exhibit dynam-

ics at the frame level. Frame dynamics is an important characteristics of these signals

and prove important to the success of the ICA methods. With suitable assumptions, the
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dynamic random process is stationary in the ensemble sense while a given realization

may in an engineering sense exhibit ‘non-stationarity’. We show for dynamic random

processes, the unconditional distribution of the source signal in each frequency bin is a

Gaussian scale mixture (GSM). The non-Gaussianity, which is critical to ICA [57], of

the source signal in each frequency bin is shown to be a direct consequence of the frame

dynamics. Furthermore, the independence between the unconditional distributions of

the source signals in each frequency bin is related to the independence of the frame

dynamics of the mixed time domain source signals. The GSM mathematical modeling

is extended to the vector random processes formed by stacking the different frequency

components of a source. This provides insights into the mathematical models suitable

for the frequency domain independent vector analysis (IVA) type approaches. A spe-

cial case of the distribution turns out to be the ‘spherical distribution’ employed in IVA

source modeling providing support to their use in source separation. Concentrating on

the bin-wise ICA methods, a significant contribution of this work is to show that signals

modeled using GSM density can be separated using ICA even though they might be

dependent on each other as long as the the frame dynamics of the source signals are dif-

ferent almost surely. In particular, we show that Kurtosis and neg-entropy type measures

can be used to separate variance correlated GSM signals.

The rest of the chapter is organized as follows. Section 5.2 proposes the signal

model and analyzes the statistical distributions of the source signals in the frequency do-

main for both scalar and vector sources. First, the unconditional distribution of a single

source signal in the frequency domain is shown to be a GSM. Second, the unconditional

joint distribution of the multiple source signals is analyzed. Section 5.3 proves that the

ICA batch algorithms may separate mixed variance correlated GSM signals. Section 5.4

provides the analysis on the applicability of ICA/IVA online algorithms.

5.2 Signal Modeling

We consider a reverberant environment wherein N time domain source signals

si(t), i ∈ {1, ..,N} are measured after they are convolved with the corresponding channel

impulse response filters. Mathematically, the measured signal at the N sensors can be
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Table 5.1: The conventional frequency domain ICA approach

(1) Apply short time Fourier transform (STFT) on each time domain mixture based

on consecutive frames. Thus the convolutive mixing problem in the time domain is

transformed into an instantaneous mixing problem in each frequency bin.

(2) On each frequency bin, apply batch ICA algorithm (instantaneous mixing ICA)

to separate the source signals.

(3) Use appropriate permutation and scaling correction method to solve the permu-

tation and scaling ambiguity across all frequency bins, so that the spectrum of the

source signals can be recovered.

(4) Apply inverse discrete Fourier transform (DFT) on the recovered source spec-

trum and use overlap-and-save (or overlap-and-add) method to obtain the time do-

main signal.

represented as

x(t) =

P∑
τ=0

Atd(τ)s(t − τ) (5.1)

where

x(t) =


x1(t)
...

xN(t)

 Atd(τ) =


a11(τ) · · · a1N(τ)
...

. . .
...

aN1(τ) · · · aNN(τ)

 s(t) =


s1(t)
...

sN(t)


x(t) represents the N mixtures, Atd(τ), τ = 1, .., P are the matrices of mixing filters with

ai j(τ) representing the impulse response filter from source j to sensor i.

The conventional frequency domain ICA approach segments the sensor mea-

surements (data) into frames and applies the short time Fourier transform (STFT) on

the consecutive frames. This transforms the time domain convolutive mixing problem

(Eq. 5.1) into an instantaneous mixing problem in each frequency bin. The mixing prob-

lem in the kth frequency bin can be written as,

X(k, n) = A(k)S(k, n) (5.2)

where n ∈ {1, .., L} is the frame index, L is the total number of frames. S(k, n) =

[S 1(k, n), ..., S N(k, n)]T , where S i(k, n), k = 1, ..,K is the Discrete Fourier transform
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(DFT) coefficients of the time domain source signal si(t) at the nth frame. k is the fre-

quency bin index, K is the DFT length, i.e. the total number of frequency coefficients.

X(k, n) = [X1(k, n), ..., XN(k, n)]T , where Xi(k, n), k = 1, ..,K is the DFT of the time

domain mixture signal xi(t) at the nth frame. A(k), the fourier transform of the matrix

channels Atd(τ), is the N by N mixing matrix at the kth frequency bin. As a notational

convention we will use i for the source index, k for the frequency bin index, and n for

the frame index in this chapter. The steps of the conventional frequency domain ICA

approach are summarized in Table 5.1.

We now make some assumptions about the signals leading to the development

of signal models that are then employed to evaluate and understand frequency domain

methods. An assumption that is commonly made about speech to capture its dynamic

nature is that it is stationary at the frame level with the statistics changing from frame

to frame. The time varying nature of the signals was also identified to be a key attribute

contributing to the success of blind source separation methods [67, 106]. Motivated

by the piecewise stationary (quasi-stationary) models used in speech modeling, we first

start by making the following assumptions on a single realization of the source signal.

Assumption 1. (Block-stationary assumption) The time domain samples of each source

signal si(t) in a frame are a realization of a zero mean wide-sense stationary ergodic

random process.

Assumption 2. (Dynamic signal assumption) The statistics of each source signal si(t)

varies from frame to frame.

The above Assumptions 1 and 2 is equivalent to the quasi-stationary modeling

commonly used in speech processing. By Assumption 2, we explicitly emphasize the

dynamic nature of the signal model which turns out to play a significant role in the fre-

quency domain ICA approach. Strictly speaking, Assumptions 1 and 2 are not satisfied

for most real applications but are a reasonable mathematical model for analysis and for

garnering insight.

Lemma 1. [127, Ch.4] Under Assumption 1 and 2, for sufficiently long frame length,

S i(k, n) can be approximated as a zero mean circular complex Gaussian random vari-

able. Also, S i(k, n) is independent of S i(l, n) for k , l.
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This result is a direct consequence of applying the properties of the Fourier trans-

form of a stationary random process [127, Ch.4]. Using Lemma 1, the distribution of

S i(k, n) can be written as,

pS i(k,n)(z; n) = N(z; 0, γi(k, n)) (5.3)

N(·; 0, γi(k, n)) denotes a circular complex Gaussian distribution PDF (probability den-

sity function) with mean 0 and variance γi(k, n). The variance of S i(k, n), denoted

as γi(k, n), is dependent on the spectra at the nth frame and represents the dynamic

nature of the source signal. Defining Γi(n) = [γi(1, n), γi(2, n), · · · , γi(K, n)]T and

Σi(n) = diag(Γi(n)), the distribution of the spectral vector S i(n) , [S i(1, n), ..., S i(K, n)]T

for the ith source is given by

pS i(n)(z; n) = N(z; 0,Σi(n)) (5.4)

For further analytical tractability, an additional assumption on the frames can be

made which is described below.

Assumption 3. (In frame i.i.d. assumption) The time domain samples of each source

signal si(t) in a frame are a realization of a zero mean i.i.d. random process.

This assumption is made sparingly. With this additional assumption, Γi(n) =

Kξi(n) ·1 (where K is the DFT length, ξi(n) is the variance of the samples of the time do-

main signal si(t) in frame n, and 1 is a vector whose elements are all 1s). Consequently,

Σi(n) = Kξi(n) · I (I is the identity matrix) and the distribution in (5.4) is parameterized

by a single parameter ξi(n).

In order to characterize the ensemble of waveforms, additional assumptions are

needed on the temporal dynamics Γi(n). If we assume that Γi(n) is a deterministic time

series, then by Eq.(5.4) we have a nonstationary time series (see section 5.4 for the anal-

ysis of online ICA algorithms where Γi(n) is modeled as a deterministic time series).

Since batch ICA algorithms process a collection of frames one can employ time averag-

ing as is done in the context of cyclostationary processes to derive meaningful statistics.

However this is cumbersome and instead we model the spectral evolution as a random

process. This is a common approach in the development of speech recognition systems.

In speech recognition, a hidden Markov model (HMM) is widely used to capture the
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time varying statistics of speech. Motivated by this, we associated each frame with a

hidden state/latent variable. Since there is a one to one correspondence between the

states and the spectral dynamics Γi(n), assumptions typically on the states/latent vari-

ables result in assumptions on the spectral dynamics. Here, as in HMMs, we associate

a Markov chain with the spectral dynamics Γi(n).

Assumption 4. (variance assumption) The spectral dynamics Γi(n) is modeled as an

irreducible ergodic [149, Ch.15] Markov chain.

An irreducible ergodic Markov chain possesses an invariant (stationary) prob-

ability distribution [149, Ch.15]. Hence under Assumption 4, the state, i.e. Γi(n), has

a stationary distribution which in turn induces a stationary distribution on the observa-

tions, i.e. S i(n).

5.2.1 Source Signal’s Distribution in One Frequency Bin

In this subsection, the distribution of the ith source signal in the kth frequency

bin, i.e. S i(k, n), is analyzed. Instead of Assumption 4, one can make a simpler and

compatible assumption which is listed next.

Assumption 5. (variance assumption) The spectral dynamics Γi(n) is a stationary er-

godic vector random process.

Since we are interested in the distribution of S i(k, n), we need to only concern

ourselves with the temporal dynamics γi(k, n), i.e. the variance of the power spectrum

S i(k, n) at the nth frame and the kth frequency bin. With the above modeling assumption,

γi(k, n) is a stationary ergodic random process. One can then derive the form for the

distribution of S i(k, n).

Theorem 2. Under the block-stationary assumption (Assumption 1), the dynamic as-

sumption (Assumption 2), and the variance assumption (Assumption 5), the distribution

of the ith source signal in the kth frequency bin, i.e. S i(k, n), is a Gaussian scale mixture.

Proof. Assumption 5 results in the following consequences; a) the distribution of γi(k, n)

is independent of the frame index n, i.e. pγi(k,n)(r) = pγi(k)(r). b) The distribution of
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S i(k, n) in Eq.(5.3) is now interpreted as a conditional distribution conditioned on the

spectral parameter γi(k, n), i.e.

pS i(k,n)|γi(k,n)(z|r) = N(z; 0, r) (5.5)

As a result, the stationary distribution of the spectral component S i(k, n) is given

by averaging over the spectral parameter

pS i(k,n)(z) = Eγi(k,n)

{
pS i(k,n)|γi(k,n)(z|r)

}
=

∫
N(z; 0, r)pγi(k)(r)dr (5.6)

Based on the expression for the distribution, the PDF pS i(k,n)(z) is frame invariant

and so n will be dropped for notational simplicity. pS i(k)(z) will be used instead of

pS i(k,n)(z) and the distribution can be interpreted as a mixture of Gaussians. This is the

well known scale mixture of Gaussians model, or referred to as Gaussian scale mixtures

(GSM) [150, 151].

�

A similar problem has been considered in image processing [152, 153]. A

closely related signal model is the spherical invariant random process (SIRP) [154, 67]

where the conditional distribution can be more general zero mean distribution other

than Gaussian distribution. In [67], Parra et al. proved (for real random variables)

that the kurtosis of the unconditional distribution is larger than the kurtosis of the

conditional distribution unless the PDF pγi(k)(r) is a Dirac delta function (the uncon-

ditional/conditional distribution are named as ‘long term’/‘instantaneous’ distribution

in [67]). If Assumption 4 is used instead of Assumption 5, then pγi(k)(r) is a delta func-

tion if and only if the Markov chain γi(k, n), n = 1..L has a single absorbing state [149,

Ch.15]. For the GSM (Eq. (5.6)), using the kurtosis definition for complex variables

in [60], it can be shown that for the complex case the kurtosis of the PDF pS i(k)(z) is

larger than 0 (the kurtosis of a circular complex Gaussian random variable is 0) unless

the PDF pγi(r)(r) is a Dirac delta function. Hence the random variable S i(k) is in gen-

eral super-Gaussian. Note this conclusion is not dependent on the distribution of the

time domain source signal si(t) in each frame (Assumption 1). Even if the time domain

source signal si(t) in each frame follows a Gaussian distribution, the source signal in the

frequency domain S i(k) is still super-Gaussian unless the PDF pγi(r)(r) is a Dirac delta
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function. In summary, the non-Gaussianity of the unconditional distribution pS i(k)(z)

comes from the fact that the random process γi(k, n), n = 1..L is not constant (Assump-

tion 2).

To clarify the modeling, we note that in the literature the quasi-stationary model

is usually used with the point of view that the random process is non-stationary over the

long run. But here we see that under Assumption 5, the whole process is still a stationary

process at the frame level. To avoid confusion and to distinguish the model from non-

stationary signals, we use the terminology ‘dynamic random process’ for describing the

signal model which satisfies Assumption 1, 2 and 5. Even though the terminology ‘non-

stationarity’ has been used in these contexts, in Pham [106] and Parra [67] the authors

note that, “‘what makes the algorithms work’ is – strictly speaking – not the nonsta-

tionarity itself but rather the property that each realization of the source signals has a

time-varying envelope”. We will expand on this and show later that actually the source

signals should have different time-varying envelopes for the frequency domain ICA ap-

proach to be able to separate convolutive mixtures. We also note the ergodic assumption

is significant in the sense that it relates the time average to the ensemble average, thus

making the discussion in this work meaningful and applicable to one realization.

We discuss a few special examples here. If the time domain source signal si(t)

is a stationary random process, its time domain variance ξi(n) will be constant over n,

then in the kth frequency bin, γi(k, n) is constant over n. This means (the Markov chain

γi(k, n), n = 1..L has a single absorbing state if Assumption 4 is used) the unconditional

distribution pγi(k)(r) is a Dirac delta function, pγi(k)(r) = δ(r − α), α is a constant. Con-

sequently, the unconditional distribution pS i(k)(z) will be a zero mean circular complex

Gaussian distribution, pS i(k)(z) = N(z; 0, α). Our experiments on stationary time domain

source signals confirm that in each frequency bin the kurtosis of pS i(k)(z) is close to 0

regardless of the statistical distribution of the time domain source signal. Since ICA can

not separate mixed Gaussian source signals [57], the above discussion clarifies why the

conventional frequency domain ICA approach can not separate mixed stationary time

domain source signals. If the PDF pγi(k)(r) is the inverse Gamma distribution (which is

the conjugate prior to the Gaussian distribution), then pS i(k)(z) takes the form of the Stu-

dent’s t-distribution. For the general case where pγi(k)(r) is an arbitrary distribution over
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Table 5.2: The conventional frequency domain IVA approach

(1) Apply the short time Fourier transform (STFT) on each time domain mixture

based on consecutive frames. Thus the convolutive mixing problem in the time

domain is transformed into an instantaneous mixing problem in each frequency bin.

(2) Use batch algorithm based IVA to separate mixed spectral vectors in the fre-

quency domain and recover the spectrum of each source signal. Permutation prob-

lem is solved intrinsically.

(3) Apply inverse DFT on the recovered source spectrum to obtain the time domain

signal.

[0,+∞), the PDF pS i(k)(z) is a super-Gaussian distribution, which may be approximated

by a Laplacian distribution. This provides supports for the use of the super-Gaussian

distribution which is commonly used for frequency domain speech modeling [75].

5.2.2 Frequency Domain Spectral Vector’s Distribution

In this section we analyze the unconditional distribution of the spectral vector

S i(n). This is desired by the analysis of the frequency domain independent vector analy-

sis (IVA) approach. In the frequency domain ICA approach, correcting permutation (the

third step in Table 5.1) is critical to the recovery of each source signal’s spectrum and

thus the time domain source signal. IVA was proposed to circumvent the permutation

problem [96, 97, 98, 99, 100, 101, 102, 103]. Instead of solving the mixing problem in

each frequency bin independently, IVA considers the frequency domain source signal as

a vector source and attempts to resolve the mixing problem in the frequency bins in an

integrated manner. The procedure of the conventional frequency domain IVA approach

is listed in Table 5.2.

In Hiroe, Kim and Lee et al.’s paper [96, 97, 98, 99], ‘spherical distribution’

is employed empirically as the distribution for the K-dimensional vector source S i(n).

The PDF has the form p(z) = β f (||z||2), where β is a normalization factor, f (·) is an

appropriately chosen function depending on the statistical model being employed, e.g.

Laplacian distribution, and ||z||2 = (
∑

k |z(k)|2)1/2 is the 2-norm of the vector source. In
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this subsection we develop the vector GSM model which naturally leads to the ‘spherical

distribution’ as a special case for modeling the frequency domain vector source.

Similar to the analysis in the subsection 5.2.1, under Assumption 1, 2, and 5,

the distribution of Γi(n) is independent of the frame index n, i.e. pΓi(n)(r) = pΓi(r).

The distribution of S i(n) in Eq.(5.4) is now interpreted as a conditional distribution

conditioned on the spectral parameter Γi(n), i.e.

pS i(n)|Γi(n)(z|r) = N(z; 0, diag(r)) (5.7)

The PDF pS i(n)(z) can be derived,

pS i(n)(z) = EΓi(n)

{
pS i(n)|Γi(n))(z|r)

}
(5.8a)

=

∫
N(z; 0, diag(r))pΓi(r)dr (5.8b)

With the additional in-frame i.i.d. assumption (Assumption 3), Γi(n) = Kξi(n) ·1.

Because of the stationarity, the distribution of ξi(n) is independent of the frame index n,

i.e. pξi(n)(q) = pξi(q). The conditional distribution in Eq.(5.7) simplifies to

pS i(n)|ξi(n)(z|q) = N(z; 0,Kq · I) (5.9a)

=
1√

π(Kq)K
exp

−||z||22Kq

 (5.9b)

Therefore, the PDF pS i(n)(z) can be derived,

pS i(n)(z) = Eξi(n)

{
pS i(n)|ξi(n)(z|q)

}
(5.10a)

=

∫
1√

π(Kq)K
exp

−||z||22Kq

 pξi(q)dq (5.10b)

The above distribution is a stationary distribution and is not dependent on the

frame index n, and therefore it can be written as pS i
(z) by ignoring the frame index n.

It is evident the distribution of S i is a function of ||z||2, pS i
(z) = β f (||z||2), i.e. it takes

a ‘spherical distribution’ format. This supports the usage of ‘spherical distribution’ in

the IVA algorithms. Eq. (5.8) shows the PDF pS i
(z) can be interpreted as a mixture of

multivariate Gaussians. This is the well known scale mixture of Gaussians model, or

referred to as Gaussian scale mixtures (GSM) [150, 151, 155].

In summary, we have the following theorem.
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Theorem 3. Under the block-stationary assumption (Assumption 1), the dynamic as-

sumption (Assumption 2), and the variance assumption (Assumption 5), the uncondi-

tional/marginal distribution of the spectral vector S i(n) in the frequency domain is a

Gaussian scale mixture. With the additional in-frame i.i.d. assumption (Assumption 3),

it is a ‘spherical distribution’.

Depending on the distribution of ξi, pS i(n)(z) (Eq. (5.10)) may or may not have

a tractable closed-form expression. For instance, if pξi(q) is inverse Gamma distributed

(which is the conjugate prior to the Gaussian distribution), then pS i(n)(z) is the multi-

variate Student’s t-distribution. Palmer also derived a GSM format in [156] based on the

point of view that the time domain source signal is ‘piecewise stationary’ and “each win-

dow (the STFT window where the DFT is taken on) will contain a random size segment

of a given stationary state”. Note that our dynamic random process model (Assump-

tion 1, 2, and 5) is totally different from the so-called ‘piecewise stationary’ model used

in [156].

We now discuss the special case as we did in section 5.2.1. If the time domain

source signal si(t) is a stationary process, then its variance ξi(n) is constant over time.

This means, the unconditional distribution pξi(q) is a Dirac delta function, pξi(q) =

δ(q − α), α is a constant. Consequently, the unconditional/marginal distribution pS i(n)(z)

will be a Gaussian distribution, pS i(n)(z) = N(z; 0,Kα · I). Since Gaussian source signals

cannot be separated by independence analysis, the above discussion provides insight into

why the conventional frequency domain IVA approach cannot separate convolutively

mixed stationary time domain source signals.

5.2.3 Independence between the Scalar Source Signals in One Fre-

quency Bin

The previous subsections derived the unconditional/marginal distribution of a

source signal (scalar or vector) in the frequency domain. In the next we analyze the

independence between the multiple scalar source signals in one frequency bin by in-

specting their unconditional joint distributions. The following new assumptions are to

be used.
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Assumption 6. (joint stationary assumption) The spectral dynamics Γi(n) and Γ j(n),

i , j are jointly stationary [157, Ch.10] ergodic random processes.

This allows for obtaining joint stationary distributions without time averaging.

Assumption 6 implies the spectral dynamics in the kth frequency bin, γi(k, n) and γ j(k, n),

i , j are jointly stationary random processes. Note Assumption 5 is implied by Assump-

tion 6.

Assumption 7. (bin-wise conditional independence assumption) Under Assumption 1

and 2, the source signals in each frequency bin, S i(k, n) and S j(k, n), are independent

conditioned on the variances γi(k, n) and γ j(k, n) (i , j).

This can also be viewed as assuming that conditioned on the state sequence for

both the sources, the time domain samples of the sources for the frame are independently

generated.

Theorem 4. Under the block-stationary assumption (Assumption 1), the dynamic as-

sumption (Assumption 2), the joint stationary assumption (Assumption 6), and the bin-

wise conditional independence assumption (Assumption 7), the unconditional distribu-

tion of the multiple scalar source signals in the kth frequency bin, S i(k, n) and S j(k, n),

are independent if and only if the variance series γi(k, n) for the different source signals

are independent random processes.

Proof. Mathematically, Assumption 7 results in

pS i(k,n),S j(k,n)|γi(k,n),γ j(k,n)(zi, z j|ri, r j) = pS i(k,n)|γi(k,n)(zi|ri)pS i(k,n)|γi(k,n)(z j|r j) (5.11)

Therefore we can derive the unconditional joint distribution for the multiple

source signals in the kth frequency bin,

pS i(k,n),S j(k,n)(zi, z j) =

∫
pS i(k,n),S j(k,n),γi(k,n),γ j(k,n)(zi, z j, ri, r j)dridr j (5.12a)

=

∫
pS i(k,n),S j(k,n)|γi(k,n),γ j(k,n)(zi, z j|ri, r j)pγi(k,n),γ j(k,n)(ri, r j)dridr j

(5.12b)

=

∫
pS i(k,n)|γi(k,n)(zi|ri)pS i(k,n)|γi(k,n)(z j|r j)pγi(k,n),γ j(k,n)(ri, r j)dridr j

(5.12c)
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If γ1(ω, n) and γ2(ω, n) are independent random processes, i.e.

pγi(k,n),γ j(k,n)(ri, r j) = pγi(k,n)(ri)pγ j(k,n)(r j) (5.13)

Then Eq. (5.12) simplifies to

pS i(k,n),S j(k,n)(zi, z j) =

∫
pS i(k,n)|γi(k,n)(zi|ri)pγi(k,n)(ri)dri (5.14a)

·

∫
pS i(k,n)|γi(k,n)(z j|r j)pγ j(k,n)(r j)dr j (5.14b)

= pS i(k,n)(zi)pS j(k,n)(z j) (5.14c)

By Assumption 6, S i(k, n) and S j(k, n) are stationary random processes, hence the nota-

tion can be simplified by dropping the frame index n in Eq. (5.14).

pS i(k),S j(k)(zi, z j) = pS i(k)(zi)pS j(k)(z j) (5.15)

Therefore, S i(k) and S j(k) are independent.

If γi(k, n) and γ j(k, n) are not independent1,

pS i(k),S j(k)(zi, z j) , pS i(k)(zi)pS j(k)(z j) (5.16)

and S i(k) and S j(k) are not independent.

In conclusion, the unconditional distribution of the multiple source signals in

the kth frequency bin are independent if and only if the variance series γi(k, n) for the

different source signals are independent random processes.

�

Under the block-stationary assumption (Assumption 1), the dynamic assumption

(Assumption 2), and with the stronger in-frame i.i.d. assumption (Assumption 3), be-

cause γi(k, n) = Kξi(n),∀k ∈ {1, ..,K} (i ∈ {1, ..,N}), we can use the following simpler

assumption to substitute Assumption 6 and 7.

Assumption 8. (joint stationary assumption) The dynamics ξi(n) and ξ j(n), i , j are

jointly stationary ergodic random processes.
1One exception is that when both γi(k, n) and γ j(k, n) are constant over n, S i(k) and S j(k) will be

independent but both are Gaussians. In this case, ICA can not separate the mixed source signals because
of the Gaussianity even though they are independent.
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Assumption 9. (time domain independent sources assumption) Under Assumption 1

and 2, in each frame n, the time domain source signals si(t1) is independent of s j(t2)

conditioned on the variances ξi(n) and ξ j(n) (∀t1, t2 ∈ frame n, i , j).

Therefore we obtain the following corollary.

Corollary 5. Under the block-stationary assumption (Assumption 1), the dynamic as-

sumption (Assumption 2), the in-frame i.i.d. assumption (Assumption 3), the joint sta-

tionary assumption (Assumption 8), and the time domain independent sources assump-

tion (Assumption 9), the unconditional distribution of the multiple source signals in each

frequency bin are independent if and only if the variances of the multiple time domain

source signals are independent.

An experiment verifying this corollary is as follows: generate two dynamic ran-

dom processes with independent time domain white source signals (with Laplacian dis-

tribution in any fixed frame), and with the energy contours of the two time domain white

source signals being correlated. The mutual information between the two source signals,

i.e. S i(k, n) and S j(k, n), in each frequency bin is significant indicating that the source

signals in each frequency bin are not independent.

Theorem 4 and Corollary 5 illustrate the significance of the dynamic random-

ness of the time domain source signals in adopting the conventional frequency domain

ICA approach (Table 5.1). In summary, if the time domain source signals are dynamic

random processes and independent in each frame, and their variance series change inde-

pendently, then the unconditional joint distribution of the multiple source signals in each

frequency bin will be independent and non-Gaussian. Thereby the conventional fre-

quency domain ICA approach can be adopted to separate the convolutive mixed source

signals. However, if the variance series γi(ω, n) for the different source signals are not

independent, it is not clear if the conventional frequency domain ICA approach can

be employed to separate the convolutive mixed source signals. Many complex models

have been proposed to recover source signals when their variances are not indepen-

dent [158, 159, 160, 161]. However, they are more complex than instantaneous linear

mixing ICA model and are not consistent with the ordinary ICA model anymore.

In section 5.3.1, we will prove that give certain conditions, the conventional

frequency domain ICA approach can be employed to separate convolutive mixed source
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signals if only the variance random processes γi(k, n), n = 1..L for the different source

signals are not the same in each frequency bin.

5.2.4 Independence between the Frequency Domain Spectral Vec-

tors

Frequency domain IVA approach is supposed to separate the time domain con-

volutive mixtures based on the independence between the frequency domain spectral

vectors S i(n) and S j(n), i , j. In this subsection we analyze the independence between

the multiple frequency domain spectral vectors by inspecting their unconditional joint

distributions. This is very much along the same lines as before except the assumptions

are made on the spectral vectors. We need the following assumptions for analysis.

Assumption 10. (conditional independence assumption) Under Assumption 1 and 2,

for any fixed frame n, the source signals in the frequency domain S i(n) and S j(n), i , j,

are independent conditioned on the variances Γi(n) and Γ j(n).

Considering two time domain source signals si(t) and s j(t) (i , j), which maps

to the spectral vectors S i(n), and S j(n), n = 1..L respectively in the frequency do-

main. Under Assumption 6,
{
S i(n), S j(n)

}
, n = 1..L is a joint ergodic stationary process.

The PDF of the unconditional joint distribution of this stationary process is denoted as

pS i(n),S j(n)(zi, z j). Because of the stationarity, the dependence on the frame index n can be

dropped and we replace the notation pS i(n),S j(n)(zi, z j) with pS i,S j
(zi, z j), where S i can be

written as S i , [S i(1), ..., S i(K)]T .

In Theorem 4, we have seen that under certain assumptions S i(k) is independent

of S j(k) if and only if the the variance series γi(k, n), γ j(k, n), n = 1..L are independent

random processes. Following the same approach as used in proving Theorem 4, we can

prove S i(n) is independent of S j(n) if and only if the the variance series Γi(n),Γ j(n) are

independent random processes. Consequently we have the following theorem.

Theorem 6. Under the block-stationary assumption (Assumption 1), the dynamic as-

sumption (Assumption 2), the joint stationary assumption (Assumption 6), and the con-

ditional independence assumption (Assumption 10), the unconditional distribution of
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the spectral vectors S i(n) and S j(n) are independent if and only if the spectral dynamics

Γi(n),Γ j(n) are independent random processes.

Similar to section 5.2.3, we have the following corollary.

Corollary 7. Under the block-stationary assumption (Assumption 1), the dynamic as-

sumption (Assumption 2), the in-frame i.i.d. assumption (Assumption 3), the joint sta-

tionary assumption (Assumption 8) and the time domain independent sources assump-

tion (Assumption 9), the unconditional distribution of the spectral vectors in the fre-

quency domain are independent if and only if the variances of the time domain source

signals are independent.

5.3 Separability

5.3.1 ICA Batch Algorithm May Separate Variance Correlated

GSM Signals

Theorem 4 shows that under certain assumptions the unconditional distribution

of the multiple scalar source signals in the kth frequency bin are independent if and only

if the variance series γi(k, n), n = 1..L for the different source signals are independent

random processes. Now that raises an interesting question: Can a ICA batch algorithm

separate mixed source signals in one frequency bin even if the unconditional distribution

of the multiple source signals are not independent? The answer is affirmative as we show

in the next.

In Section 5.2.3, in each frequency bin the signal S i(k, n) was shown to have

density which could be modeled as a Gaussian scale mixture. Motivated by these obser-

vations, we propose the following signal model.

Assumption 11. We assume N source signals ui(n), i ∈ {1, ..,N}, where the distribution

of each of the time series is a Gaussian scale mixture (GSM).

A signal with a GSM density can be modeled as follows:

ui(n) = ri(n)ũi(n), i ∈ {1, ..,N} (5.17)
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Since the following discussion is not dependent on the time variable n, we drop the time

symbol n hereafter for notational simplicity. Then Eq. (5.17) can be written as,

ui = riũi, i ∈ {1, ..,N} (5.18)

where ri is a positive real random variable controlling the variance modulation, ũi is a

zero mean unit variance circular complex Gaussian random variable. ũis are assumed

to be independent from each other for i ∈ {1, ..,N}. ri is assumed to be independent of

ũ j for all i, j ∈ {1, ..,N}. ris however are not necessarily independent of each other.

Under Assumption 11, uis are variance dependent GSM random variables. Based

on the assumption, it is easy to show ui is zero mean, i.e. E{ui} = 0, and ui is uncorrelated

of u j for i , j, i.e. E{uiu∗j} = 0. Also, the real and imaginary parts of ui are uncorre-

lated and have equal variances. Since ũi is a zero mean unit variance circular complex

Gaussian random variable, and ũi is independent from each other for i ∈ {1, ..,N}, we

have

E{ũiũ∗j} =

 1, if i = j

0, otherwise
(5.19)

and

E{ũiũ j} = 0, ∀i, j ∈ {1, ..,N} (5.20)

Assumption 11 proposes a general signal model which may fit different applica-

tions. Note the signal model in Assumption 11 can be used to generate both temporally

dependent2, or temporally independent stationary random process. The source signals

S i(k, n), n = 1, .., L in each frequency bin k discussed in Section 5.2.3 can be generated

by the signal model proposed in Assumption 11. The variance series γi(k, n), n = 1..L

is related to ri. The condition that ri and r j are coherent3, i.e. ri ≡ r j, is equivalent

to say γi(k, n) = γ j(k, n), n = 1..L, i.e. the time series γi(k, n), n = 1..L is the same as

γ j(k, n), n = 1..L.

Without loss of generality, we can assume ui has unit variance. This is a com-

monly used assumption in ICA because of the scaling indeterminacy inherent in ICA.

2for a temporally dependent time series ui(n), n = 1, .., L, ui(n1) is dependent on ui(n2), n1 , n2
3In this paper, coherence means ri ≡ r j almost surely. That is, ri equals to r j with probability 1, or in

other words, ri and r j are allowed to be different on a set of measure zero.
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Since ũi is assumed to have unit variance, scaling of ui just means scaling of ri. The

non-Gaussianity of ui is not affected if we scale it. The non-Gaussianity of ui is solely

determined by the distribution of ri.

It is easy to see the source signals uis (i ∈ {1, ..,N}) in Assumption 11 are not

independent from each other if the ris (i ∈ {1, ..,N}) are not independent. A question we

now address is: Can ICA algorithms (like FastICA, maximum likelihood ICA, Infomax,

etc.) separate the mixed source signals uis given N instantaneous linear mixtures of uis?

ICA algorithms are designed for independent source separation and since the uis are

not independent, the answer is not clear. However, after a closer examination and some

analysis, we show that the answer to the above question is actually ‘Yes’.

In Hyvarinen, Karhunen and Oja’s book [81] and Comon’s work [57], they

discussed in detail the connection between non-Gaussianity and ICA. Without non-

Gaussianity, ICA would be impossible. By the central limit theorem, the distribution

of a sum of two or more independent non-Gaussian random variables tends to be closer

to Gaussian than any single one of the original random variables. Hence maximization

of non-Gaussianity is motivated as an ICA approach. Kurtosis is a commonly used mea-

sure of non-Gaussianity because of its simplicity. Therefore, maximization of Kurtosis

is developed as an ICA approach [81, 58, 60].

The kurtosis of a complex random variables y can be defined as [60],

kurt{y} = E{|y|4} − 2(E{|y|2})2 − |E{y2}|2 (5.21)

which is simplified to

kurt{y} = E{|y|4} − 2 (5.22)

if the real and imaginary parts of y are uncorrelated and have zero mean and equal vari-

ances, and the unit variance constraint (E{|y|2} = 1) is enforced. Note that the kurtosis

for zero mean unit variance circular complex Gaussian random variable is 0. The Kur-

tosis maximization criterion can be expressed in the form of the following optimization

problem,

max
w

kurt{y}, s.t. E{|y|2} = 1 (5.23)

In general, maximization of Kurtosis can not separate mixed dependent source

signals from their mixtures. However, we will prove it can separate the mixed source
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signals uis that satisfies Assumption 11 if only ri is not coherent with r j, i.e. ri . r j, for

any i, j ∈ {1, ..,N}, i , j.

Theorem 8. Assume N source signals u = [u1, .., uN]T which satisfy Assumption 11.

Given N instantaneous linear mixtures xi, i ∈ {1, ..,N}, x = [x1, .., xN]T , x = Au, where

A is a N×N mixing matrix, the kurtosis maximization criterion (Eq. (5.23)) can separate

the mixed source signals uis if only ri is not coherent with r j, i.e. ri . r j, for any

i, j ∈ {1, ..,N}, i , j.

Proof. Without loss of generality, we assume ui has unit variance for all i ∈ {1, ..,N} and

the data x has been whitened, i.e. E{xxH} equals identity matrix and the mixing matrix

A is orthogonal.

Let y = wHx = wHAu = qHu, where w is the weight vector used to estimate

a source and q = AHw. Since uis are uncorrelated and have unit variance, the con-

straint E{|y|2} = 1 is equivalent to ||q||2 = 1. Then the Kurtosis maximization problem

(Eq. (5.23)) can be rewritten as

max
q

h = E{|y|4} = E{|qHu|4}, s.t. ||q||2 = 1 (5.24)

We use the method of induction in the following proof. First consider the case

where N = 2, i.e. only two source signals. We have,

h = E{|y|4} = E{|q∗1u1 + q∗2u2|
4} (5.25)

After some manipulation and under Assumption 11, denoting pi = |qi|
2, i ∈ {1, ..,N}, the

Kurtosis maximization problem (Eq. (5.24)) can be written as,

max
p

h = 2pT Qp s.t.
∑

i

pi = 1, 0 6 pi 6 1, i ∈ {1, 2} (5.26)

where

p =

p1

p2

 Q =

 E{r4
1} E{r2

1r2
2}

E{r2
1r2

2} E{r4
2}

 (5.27)

It is easy to see Q is a positive definite matrix if the random variables r1, r2 are not

coherent, i.e. r1 . r2. Therefore, the function h is a convex function. Consequently,

the Kurtosis maximization problem (Eq. (5.24)) is expressed as maximizing a convex
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function on a simplex set (convex set). The maximum of such a problem is reached

on the boundaries of the convex set [162]. Therefore, the solution for the Kurtosis

maximization problem (Eq. (5.24)) is p = [p1, p2]T = [1, 0]T if E{r4
1} > E{r4

2}, and the

solution is p = [0, 1]T if E{r4
1} < E{r4

2}. In the case where E{r4
1} = E{r4

2}, the optimization

may either converge to p = [1, 0]T or p = [0, 1]T depending on initialization. After the

Kurtosis maximization problem (Eq. (5.23)) yields an estimate of the first source signal

u1 (assuming E{r4
1} > E{r4

2}), the other source signal can be obtained by utilizing the

fact that all source signals uis are uncorrelated. Adding the uncorrelatedness constraint

wi
Hwj = 0 for i , j, the source signals can be estimated in the deflationary (sequential)

or symmetric manner [81, 58, 60].

If the random variables r1, r2 are coherent, i.e. r1 ≡ r2, then the Q matrix is rank

deficient and the objective function h = 2E{r4
1} = 2E{r4

2} which is not dependent on

p = [p1, p2]T and the Kurtosis maximization criterion (Eq. (5.24)) can not separate the

mixed source signals uis.

Using the method of induction, suppose the theorem is satisfied for N source

signals, i.e. we are able to estimate one source using a linear combining set of weights

in the presence of N sources. We now show the same is possible in the case of N + 1

source signals. The objective function is,

h = E
{
|y|4

}
= E


∣∣∣∣∣∣∣
N+1∑
i=1

q∗i ui

∣∣∣∣∣∣∣
4 (5.28)

After some tedious manipulation and under Assumption 11, denoting pi = |qi|
2, i ∈

{1, ..,N + 1}, the Kurtosis maximization problem (Eq. (5.24)) can be written as,

max
p

h = 2pT Qp s.t.
N+1∑
i=1

pi = 1, 0 6 pi 6 1, i ∈ {1, ..,N + 1} (5.29)

where p = [p1, .., pN+1]T and Q is a (N + 1) × (N + 1) matrix whose element on the

ith row and jth column is E
{
r2

i r2
j

}
. Since for any non-zero vector v = [v1, .., vN+1]T ,

vT Qv = E
{(∑N+1

i=1 vir2
i

)2
}
> 0 if random variable ri is not coherent with r j, so Q is

a positive definite matrix. Thus the function h is a convex function. Consequently,

the Kurtosis maximization problem (Eq. (5.24)) is maximizing a convex function on

a simplex set (convex set) [162]. The maximum of such a problem is reached on the
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boundaries of the convex set. Without loss of generality, suppose the maximum of h is

reached on the boundary of the convex set where
∑N

i=1 pi = 1 and pN+1 = 0, the problem

reduces to the degenerate Kurtosis maximization problem with a mixture of N source

signals. Therefore, the proposed theorem also holds for a mixture with N + 1 source

signals.

�

Since Kurtosis has the disadvantage of being sensitive to outliers, neg-entropy

is proposed as a robust non-Gaussianity measure [81]. Neg-entropy is motivated by

a fundamental theorem from information theory: a Guassian random variable has the

largest entropy among all random variables with the same variance. Thereby, maximiz-

ing neg-entropy will select the most non-Gaussian direction in the mixtures and thus re-

cover one source signal. In practice, neg-entropy is usually approximated by a nonlinear

function E{G(y)} [81]. For complex signals, it takes the format E{G(|y|2)} [60] (where

G : R+ ∪ {0} → R is a smooth even function) so that the maximization of the objective

function is a well defined problem. For example, if G(y) = y2, then E{G(|y|2)} = E{|y|4}

which is the kurtosis measure.

The FastICA algorithm is developed based on neg-entropy maximization [81,

58, 60]. Assume N source signals, x is N-dimensional mixtures, w is N-dimensional

complex weight vector. Define J(w) = E{G(|wHx|2)}, the neg-entropy criterion results

in the following optimization problem,

min
w

J(w), s.t. E{|wHx|2} = 1 (5.30)

More than one source signals can be obtained by utilizing the fact that all source sig-

nals uis are uncorrelated. Adding the uncorrelatedness constraint wi
Hwj = 0 for i , j,

the source signals can be estimated in the deflationary (sequential) or symmetric man-

ner [81, 58, 60].

The FastICA algorithm is designed for independent signal separation. However,

we will show that it can separate the mixed source signals uis that satisfy Assumption 11.

Our approach is similar to the stability analysis in [81, 58, 60].

Theorem 9. Assume N source signals which satisfy Assumption 11 and have unit vari-

ance. Given N prewhitened mixtures xi, i ∈ {1, ..,N}, x = Au, where x = [x1, .., xN]T ,
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u = [u1, .., uN]T , and A is a N × N orthonormal mixing matrix, the local maxima (resp.

minima) of E{G(|wHx|2)} under the constraint E{|wHx|2} = 1 include those rows of A−1

such that the corresponding independent components uk satisfy

E
{
|u j|

2g(|uk|
2) + |u j|

2|uk|
2g′(|uk|

2) − |uk|
2g(|uk|

2)
}
< 0 (> 0, resp.), ∀ j , k (5.31)

where g(·) is the derivative of G(·) and g′(·) is the derivative of g(·).

Proof. Define J(w) = E{G(|wHx|2)} and denote q = AHw. Then we have J(q) =

E{G(|qHu|2)}. If wH coincides with one row of A−1, then q = [0, .., 0, v, 0, .., 0]T , where

v is a complex value with unit modulus (|v| = 1), a consequence of the phase ambiguity

inherent in complex ICA problems even though the variance of the estimated source is

constrained to be one. Then the stability of such q is analyzed by Taylor expansion.

We use the derivative with respect to the real and imaginary components of q

for the stability analysis. Suppose qi = qRi + IqIi, where qRi and qIi denotes the real and

imaginary parts of qi respectively, and I denotes the imaginary symbol. The gradient of

J(q) is,

∇J(q) =



∂
∂qR1

∂
∂qI1
...

∂
∂qRN

∂
∂qRN


J(q) = 2



E
{
<

{
u1(qHu)∗

}
g(|qHu|2)

}
E

{
=

{
u1(qHu)∗

}
g(|qHu|2)

}
...

E
{
<

{
uN(qHu)∗

}
g(|qHu|2)

}
E

{
=

{
uN(qHu)∗

}
g(|qHu|2)

}


(5.32)

where<{·} and ={·} denotes real and imaginary parts respectively. Define

JRi = E
{
<

{
ui(qHu)∗

}
g(|qHu|2)

}
JIi = E

{
=

{
ui(qHu)∗

}
g(|qHu|2)

} (5.33)

The Hessian of J(q) is defined as,

∇2J(q) = 2



∂JR1
∂qR1

∂JR1
∂qI1

· · ·
∂JR1
∂qRN

∂JR1
∂qIN

∂JI1
∂qR1

∂JI1
∂qI1

· · ·
∂JI1
∂qRN

∂JI1
∂qIN

...
...

. . .
...

...
∂JRN
∂qR1

∂JRN
∂qI1

· · ·
∂JRN
∂qRN

∂JRN
∂qIN

∂JIN
∂qR1

∂JIN
∂qI1

· · ·
∂JIN
∂qRN

∂JIN
∂qIN


(5.34)
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Without loss of generality, we analyze the stability of the point q = ve1, where

e1 = [1, 0, .., 0]T , and |v| = 1. v = vR + IvI , vR and vI are real and imaginary parts of

v respectively. Using Assumption 11 and the constraint that ui has unit variance, after

some tedious manipulations, we obtain,

∇J(q)|q=ve1 = 2



vRE
{
|u1|

2g(|u1|
2)
}

vIE
{
|u1|

2g(|u1|
2)
}

0
...

0


(5.35)

∇2J(q)|q=ve1 = 2

G1 2vRvIE
{
|u1|

4g′(|u1|
2)
}

0 0 · · · 0 0

2vRvIE
{
|u1|

4g′(|u1|
2)
}

G2 0 0 · · · 0 0

0 0 α2 0 · · · 0 0

0 0 0 α2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · αN 0

0 0 0 0 · · · 0 αN


(5.36)

where

G1 = E
{
|u1|

2g(|u1|
2) + 2v2

R|u1|
4g′(|u1|

2)
}

G2 = E
{
|u1|

2g(|u1|
2) + 2v2

I |u1|
4g′(|u1|

2)
}

α j = E
{
|u j|

2g(|u1|
2) + |u j|

2|u1|
2g′(|u1|

2)
}

Consider a small perturbation ε = [εR1, εI1, .., εRN , εIN]T at the point q = ve1,

εRi and εIi represent the real and imaginary parts of εi (which is complex) respectively.
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Take the Taylor expansion,

J(ve1 + ε)

= J(ve1) + εT∇J(ve1) +
1
2
εT∇2J(ve1)ε + o(||ε||2)

= J(ve1) + 2(εR1vR + εI1vI)E
{
|u1|

2g(|u1|
2)
}

+ ε2
R1E

{
|u1|

2g(|u1|
2) + 2v2

R|u1|
4g′(|u1|

2)
}

+ 4vRvIεR1εI1E
{
|u1|

4g′(|u1|
2)
}

+ ε2
I1E

{
|u1|

2g(|u1|
2) + 2v2

I |u1|
4g′(|u1|

2)
}

+
∑
j>1

E
{
|u j|

2g(|u1|
2) + |u j|

2|u1|
2g′(|u1|

2)
}

(ε2
R j + ε2

I j) + o(||ε||2)

(5.37)

Because of the constraint that each estimated source has unit variance

E{|wHx|2} = 1, we can derive ||q||2 = 1 (since the source signals uis are uncorrelated

and A is orthogonal). Hence ||ve1 + ε||2 = 1. Then we can get,

2(εR1vR + εI1vI) = −

N∑
i=1

(ε2
Ri + ε2

Ii) (5.38)

so (εR1vR + εI1vI)2 is o(||ε||2). Therefore we can get,

J(ve1 + ε)

= J(ve1) +
∑
j>1

E
{
|u j|

2g(|u1|
2) + |u j|

2|u1|
2g′(|u1|

2) − |u1|
2g(|u1|

2)
}

(ε2
R j + ε2

I j) + o(||ε||2)

(5.39)

If E
{
|u j|

2g(|u1|
2) + |u j|

2|u1|
2g′(|u1|

2) − |u1|
2g(|u1|

2)
}
< 0 (> 0, resp.), ∀ j > 1, then q =

ve1 is a maximum (resp. minimum) point.

�

Remark 1: If we further assume that ri is independent of r j, ∀i, j ∈ {1, ..,N},

i , j, in the signal model proposed in Assumption 11, then ui is independent of u j,

∀i, j ∈ {1, ..,N}, i , j. Therefore,

E
{
|u j|

2g(|uk|
2) + |u j|

2|uk|
2g′(|uk|

2) − |uk|
2g(|uk|

2)
}

(5.40a)

=E
{
|u j|

2
}

E
{
g(|uk|

2)
}

+ E
{
|u j|

2
}

E
{
|uk|

2g′(|uk|
2)
}
− E

{
|uk|

2g(|uk|
2)
}

(5.40b)

=E
{
g(|uk|

2) + |uk|
2g′(|uk|

2) − |uk|
2g(|uk|

2)
}

(5.40c)

This is exactly the same stability condition derived in [60] when each source is assumed

to be independent.
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Remark 2: For the special case where G(y) = 1
2y2, then g(y) = y and g′(y) = 1.

J(y) = E{G(|y|2)} is the kurtosis. Suppose E{r4
1} ≥ E{r4

j } for j , 1, then we have (recall

ui = riũi, E{|ui|
4} = 2E{r4

i }),

E
{
|u j|

2g(|u1|
2) + |u j|

2|u1|
2g′(|u1|

2) − |u1|
2g(|u1|

2)
}

= 2(E{r2
j r

2
1} − E{r4

1}) (5.41a)

≤ 2
√

E{r4
1}(E{r

4
j } − E{r4

1}) (5.41b)

≤ 0 (5.41c)

The first inequality in the above equation follows from Cauchy-Schwartz inequality.

Thereby q = ve1 is a stable stationary point of the optimization problem. This conclu-

sion is consistent with the result presented in Theorem 8.

Theorem 8 and 9 illustrate that the non-Gaussianity maximization criterion

(maximization of neg-entropy) can separate the mixed source signals uis modeled in

Assumption 11 if only the variance random variables ris are not coherent, i.e. ri . r j,

∀i , j. Since maximization of neg-entropy is equivalent to minimization of mutual in-

formation under the constraint that the estimates are uncorrelated [81], and because the

source signals uis are uncorrelated, it can be concluded that any ICA algorithm based

on mutual information minimization is able to separate the mixed source signals uis

modeled in Assumption 11 if only ri . r j, ∀i , j.

Summarizing the results from Section 5.2.1, 5.2.3, and 5.3.1, the following the-

orem can be drawn.

Theorem 10. Under the block-stationary assumption (Assumption 1), the dynamic as-

sumption (Assumption 2), the joint stationary assumption (Assumption 6), and the bin-

wise conditional independence assumption (Assumption 7), in the conventional fre-

quency domain ICA approach (table 5.1), the source signals in the kth frequency bin

can be separated by the ICA batch algorithms if only the variance series γi(k, n) is dif-

ferent from γ j(k, n) almost surely (i , j).

5.3.2 IVA Separability and Discussion

The stability analysis for IVA is much more complicated than that for ICA be-

cause of the vector variables involved. We analyze the stability conditions for IVA in
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section 6.2. Unfortunately, the mathematical formulas of the stability conditions are so

complicated that they do not give us any insight into the problem. Therefore we can

not discuss the separability of the frequency domain spectral vectors by IVA algorithms

as we do in ICA analysis (section 5.3.1). Instead, we will try to provide some intuitive

arguments.

In the frequency domain IVA algorithm, the separation of the mixed source sig-

nals in the kth frequency bin, i.e. the updating of the de-mixing weight vectors in the

kth frequency bin, is similar to that of the ICA algorithm in the kth frequency bin. The

following is the updating rule of the de-mixing weight vectors W(k) in the kth frequency

bin for the frequency domain IVA algorithm [96].

∆W(k) = µ
[
I − ψ∗

k
(Y(n))Y(k, n)H

]
W(k) (5.42)

where Y(t) is the vector outputs of the de-mixing system. The updating of all the de-

mixing weight vectors in different frequency bins are coupled through Y(t). However,

thinking in a sequential, suboptimal optimization approach, where the de-mixing weight

vectors in all other frequency bins have been fixed at the true separating solution and the

permutations have been aligned correctly except for the kth frequency bin, considering

the updating of the de-mixing weight vectors in the kth frequency bin. The updating is

similar to that of ICA algorithm in the kth frequency bin except the objective functions

are different, therefore the stability analysis in Theorem 9 should also apply here. By

the same argument as in section 5.3.1, the source signals in each frequency bin may

be separated if the variance series of different source signals in that frequency bin are

different.

Note a vector source signal’s components in different frequency bins may be

dependent on each other. In fact, this is exactly where the power of IVA comes from

and the reason why IVA can solve the permutation problem. IVA use the dependency

between a vector source signal’s components in different frequency bins to solve the per-

mutation problem. If there is no dependency between the vector source signal’s compo-

nents in different frequency bins, IVA degrades to the frequency domain ICA approach

and can not solve the permutation problem [96]. We can prove that the dependency

between a vector source signal’s components in different frequency bins, e.g. S i(k, n)

and S i(m, n), k , m, actually comes from the dependency between the random pro-
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cesses γi(k, n) and γi(m, n), n = 1..L following the recipe used in proving Theorem 4. In

speech processing, it is observed there are strong correlations between the variance se-

ries γi(k, n) for the neighboring frequency bins, and weak correlations for the frequency

bins that are far apart. A a consequence, there are strong dependencies for a spectral

vector’s components in the neighboring frequency bins and almost no dependency for

those in the frequency bins that are far apart [101]. In summary, the advantages of IVA

arise from the dependency between the variance series γi(k, n) and γi(m, n), n = 1..L,

k,m ∈ {1, ..,K}, k , m.

5.4 ICA or IVA Online (stochastic) Algorithms

In the previous sections, we discussed the applicability of the frequency domain

ICA (or IVA) approach. We verified under certain conditions the frequency domain

ICA (or IVA) approach can be applied to separate convolutively mixed source signals.

Actually, what we really discussed is the applicability of the batch algorithm based

ICA (or IVA) (the second step in Table 5.1 or Table 5.2). We have taken the point

of view of ‘dynamic random process’ and made the Assumption 1, 2 and 5. Under

those assumptions, the whole process is still a stationary process at the frame level

(page 110). The dynamic random process is stationary in the ensemble sense while

a given realization may in an engineering sense exhibit ‘non-stationarity’ (page 104).

However, if instead of Assumption 5, we make the following assumption,

Assumption 12. (deterministic variance assumption) The spectral dynamics Γi(n) is a

deterministic time series.

Then under Assumption 1, 2 and 12, the signal process in the frequency domain

S i(k, n) is actually a non-stationary process. Under such circumstances, batch algorithm

based ICA (or IVA) is not appropriate to be applied anymore (since batch algorithm is

only reasonable to be applied on stationary signal processing, otherwise you are implic-

itly inducing a stationary process from the underlying non-stationary process by time

averaging). Instead, online algorithm could be used on non-stationary signal process-

ing. Therefore, in this section, we discuss the application of the online ICA (or IVA)
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algorithm in the second step of Table 5.1 or Table 5.2 under the deterministic variance

assumption (Assumption 12).

5.4.1 On Applicability of ICA Online (Stochastic) Algorithm

Most of the previously mentioned ICA batch algorithms have their correspond-

ing online (stochastic) version [58, 63, 62]. Moreover, specific online ICA algorithms

have been developed for separating non-stationary source signals [163, 164, 165, 76,

106, 108].

We prove the following theorem 11 under Assumption 12. Note if the spectral

dynamics Γi(n) is assumed to be a deterministic time series, then the variance series

ξi(n), n = 1..L is implicitly assumed to be a deterministic time series. In [163], it is

proved that for its proposed stochastic ICA algorithm based on second order statistics

to be able to recover the source signals, γi(k, n)/γ j(k, n)(n = 1..L, i, j ∈ {1, ..,N}, i , j)

should not be constant over n. Theorem 11 in the following uses a more general proof

than the proof in [163] which is only based on second order statistics.

Theorem 11. Under the block-stationary assumption (Assumption 1), the dynamic as-

sumption (Assumption 2), the deterministic variance assumption (Assumption 12), and

the time domain independent sources assumption (Assumption 9), in the kth frequency

bin, if the variances satisfy γi(k, n) = αγ j(k, n), n = 1..L, (i, j ∈ {1, ..,N}, i , j), where α

is a constant, then the online (stochastic) algorithm based ICA is not eligible to recover

the source signals S i(k, n), S j(k, n), n = 1..L.

Proof. Without loss of generality, we assume only two time domain source signals s1(t)

and s2(t). Fixing the frame index n, S i(k, n), i ∈ {1, 2} follows Gaussian distribution by

Lemma 1 (Eq. (5.3)).

pS 1(k,n)(z; n) = N(z; 0, γ1(k, n)) (5.43a)

pS 2(k,n)(z; n) = N(z; 0, γ2(k, n)) (5.43b)

(5.43c)

Since the time domain source signal s1(t) is independent of s2(t) at the frame n, and

S 1(k, n), S 2(k, n) are functions of s1(t) and s2(t) respectively at frame n, then S 1(k, n)

should be independent of S 2(k, n) for any fixed n ∈ {1, .., L}.
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Supposing the mixing matrix in the kth frequency bin is A(k). The mixing system

can be expressed as,

x(k, n) = A(k)S (k, n) (5.44)

x(k, n) =

x1(k, n)

x2(k, n)

 S (k, n) =

S 1(k, n)

S 2(k, n)


where x(k, n) is the mixed signals.

Fixing n = n1. Supposing matrix Q(k) is the whitening matrix for the system at

the time point n1.

z(k, n1) = Q(k)x(k, n1) (5.45)

z(k, n) =

z1(k, n)

z2(k, n)


Then E{z(k, n1)zH(k, n1)} = I (I is the identity matrix) by the definition of whiten-

ing matrix. And we have,

E{z(k, n1)zH(k, n1)} = Q(k)A(k)E{S (k, n1)S H(k, n1)}A(k)HQ(k)H (5.46a)

= Q(k)A(k)

γ1(k, n1) 0

0 γ2(k, n1)

 A(k)HQ(k)H (5.46b)

= γ1(k, n1)Q(k)A(k)

α 0

0 1

 A(k)HQ(k)H (5.46c)

So we obtain,

γ1(k, n1)Q(k)A(k)

α 0

0 1

 A(k)HQ(k)H = I (5.47)

Because z(k, n) are linear transformation of Gaussians, z(k, n) will be Gaussians.

Since E{z(k, n1)zH(k, n1)} = I, z1(k, n1) is independent of z2(k, n1).

For any fixed time n = n2 (n2 , n1), define

z(k, n2) = Q(k)x(k, n2) (5.48)
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We can derive,

E{z(k, n2)zH(k, n2)} = Q(k)A(k)E{S (k, n2)S H(k, n2)}A(k)HQ(k)H (5.49a)

= Q(k)A(k)

γ1(k, n2) 0

0 γ2(k, n2)

 A(k)HQ(k)H (5.49b)

= γ1(k, n2)Q(k)A(k)

α 0

0 1

 A(k)HQ(k)H (5.49c)

=
γ1(k, n2)
γ1(k, n1)

· I (5.49d)

Since z(k, n) are Gaussian, z1(k, n2), z2(k, n2) are independent. This is true for any fixed

n2, so z1(k, n), z2(k, n) are independent for any n. It is easy to see that for any orthogonal

matrix U, elements of Uz(k, n) are independent (for fixed n). This means there are

multiple random processes which are independent based on different demixing matrices.

Therefore ICA can not be employed to recover the original source signals.

�

Under the block-stationary assumption (Assumption 1), the dynamic assumption

(Assumption 2), and with the stronger in-frame i.i.d. assumption (Assumption 3), be-

cause γi(k, n) = Kξi(n),∀k ∈ {1, ..,K} (i ∈ {1, ..,N}), we obtain the following corollary.

Corollary 12. Under the block-stationary assumption (Assumption 1), the dynamic as-

sumption (Assumption 2), the in-frame i.i.d. assumption (Assumption 3), the determin-

istic variance assumption (Assumption 12), and the time domain independent sources

assumption (Assumption 9), if the variances of the time domain source signals satisfy

ξi(n) = αξ j(n), i , j, then in the frequency domain ICA approach, online algorithm

based ICA is not eligible to recover the source signals in each frequency bin.

5.4.2 On Applicability of IVA Online (Stochastic) Algorithm

In this subsection, we discuss the applicability of the online IVA algorithm in the

second step of Table 5.2 under the deterministic variance assumption (Assumption 12).

Most of the previously mentioned batch algorithm based IVA algorithms have their cor-

responding online (stochastic) version [96, 97, 98, 99]. We prove the following theorem

under Assumption 12.
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Theorem 13. Under the block-stationary assumption (Assumption 1), the dynamic as-

sumption (Assumption 2), the deterministic variance assumption (Assumption 12), and

the time domain independent sources assumption (Assumption 9), in the frequency do-

main, if the variances satisfy γi(k, n) = α(k)γ j(k, n), n = 1..L, i, j ∈ {1, ..,N}, i , j,

where α(k) is a constant, then the online algorithm based IVA is not eligible to recover

the source signals S i(n), S j(n), n = 1..L, where S i(n) = [S i(1, n), ..., S i(K, n)]T (L is the

total number of frames, K is the DFT length, N is the number of sources).

Proof. Without loss of generality, we assume only two time domain source signals

s1(t) and s2(t). In the proof of Theorem 11, we have seen z1(k, n) is independent of

z2(k, n) under the condition γ1(k, n) = α(k)γ2(k, n) for any fixed n, where z(k, n) =

[z1(k, n), z2(k, n)]T is the whitened mixture in the kth frequency bin at frame n.

Fixing n, since S i(k, n) is functions of si(t), i ∈ {1, 2}, and s1(t) is independent of

s2(t) in frame n, S 1(k, n) is independent of S 2(m, n), ∀k,m. Under the block-stationary

assumption, S i(k, n) is independent of S i(m, n) by Lemma 1, ∀k , m. Because z1(k, n)

is a linear combination of S 1(k, n) and S 2(k, n) (i ∈ {1, 2},∀k), z1(k, n) is independent of

z2(m, n), ∀k , m. Therefore, z1(n) , [z1(1, n), ..., z1(K, n)]T is independent of z2(n) ,

[z2(1, n), ..., z2(K, n)]T .

For any orthogonal matrix U(k), we construct,

y(k, n) = U(k)z(k, n) (5.50)

y(k, n) =

y1(k, n)

y2(k, n)


Since zi(k, n) are Gaussians, it is easy to see y

i
(n) , [yi(1, n), ..., yi(K, n)]T , i ∈ {1, 2} are

Gaussians and y
1
(n) is independent of y

2
(n). This means there are multiple vector ran-

dom processes which are independent based on different demixing matrices. Therefore

IVA is not capable to recover the original frequency domain vector source signals. �

Under the block-stationary assumption (Assumption 1), the dynamic assumption

(Assumption 2), and with the stronger in-frame i.i.d. assumption (Assumption 3), be-

cause γi(k, n) = Kξi(n),∀k ∈ {1, ..,K} (i ∈ {1, ..,N}), we obtain the following corollary.
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Corollary 14. Under the block-stationary assumption (Assumption 1), the dynamic as-

sumption (Assumption 2), the in-frame i.i.d. assumption (Assumption 3), the determin-

istic variance assumption (Assumption 12), and the time domain independent sources

assumption (Assumption 9), if the variances of the time domain source signals satisfy

ξi(t) = αξ j(t), i , j, then in the frequency domain IVA approach, online algorithm based

IVA is not eligible to recover the source signals in the frequency domain.

5.5 Conclusion and Discussion

In this work, we provide insight into why frequency domain independent com-

ponent analysis (ICA) approach can separate convolutive mixed source signals. For the

modeling of the source signals, we develop the concept of a dynamic random process

to model the source signals. It formalizes the concept of signals that are stationary

in a frame but exhibit dynamics at the frame level. Frame dynamics is an important

characteristic of these signals and prove important to the success of the ICA based sep-

aration methods. With suitable assumptions, the dynamic random process is stationary

in the ensemble sense while a given realization may in an engineering sense exhibit

‘non-stationarity’. This modeling makes rigorous often used terminology such as time

varying envelope, quasi-stationary etc. We show for dynamic random processes, the

unconditional distribution of the source signal in each frequency bin is a Gaussian scale

mixture (GSM). The non-Gaussianity, which is critical to ICA [57], of the source sig-

nal in each frequency bin is shown to be a direct consequence of the frame dynamics.

Furthermore, the independence between the unconditional distributions of the source

signals in each frequency bin is related to the independence of the frame dynamics of

the mixed time domain source signals. The GSM mathematical modeling is extended to

the vector random processes formed by stacking the different frequency components of

a source. This provides insights into the mathematical models suitable for the frequency

domain independent vector analysis (IVA) type approaches. A special case of the dis-

tribution turns out to be the ‘spherical distribution’ employed in IVA source modeling

providing support to their use in source separation. Concentrating on the bin-wise ICA

methods, a significant contribution of the work is to show that signals modeled using
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GSM density can be separated using ICA even though they might be dependent on each

other as long as the the frame dynamics of the source signals are different.

When we discuss batch algorithm based ICA in each frequency bin, we make the

assumption that the source signals are ergodic stationary processes. Assumption 5 or 4

is made for this purpose. However, instead of using Assumption 5, we can also assume

the variance series γi(k, n) is a deterministic time series. Under such an assumption, the

source signals in each frequency bin are actually non-stationary random process, then

online (stochastic) ICA algorithms can be applied in each frequency bin to separate the

source signals. We discuss the applicability of the online ICA (or IVA) algorithm under

the deterministic variance assumption (Assumption 12).

Our inspiration in this work is drawn from speech processing. Consequently.

the terminologies used and the models are borrowed from the speech processing area.

However, the modeling idea is general and the results can be applied in many different

areas such as EEG or image processing among others.
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6 Stability Analysis of Complex

Maximum Likelihood ICA/IVA

In this work, we analyze the stability conditions for the complex maximum like-

lihood ICA/IVA.

6.1 Stability Analysis of Complex Maximum Likelihood

ICA

6.1.1 Complex Maximum Likelihood ICA

For convolutive mixing blind source separation problem, usually the frequency

domain ICA approach is employed, which simplifies the time domain convolutive mix-

ing problem by transforming it into instantaneous mixing problem in each frequency

bin. In each frequency bin, the instantaneous mixing system is a complex mixing sys-

tem, both the mixing matrix and the source signals therein are complex signals. In each

frequency bin, assuming an N by N linear instantaneous complex mixing system (N

sources, N sensors),

x = As (6.1)

x =


x1
...

xM

 A =


a11 · · · a1N
...

. . .
...

aN1 · · · aNN

 s =


s1
...

sN

 (6.2)

x is the observation vector. A is an unknown mixing matrix assumed to have full column

rank. s is a vector of latent variables which are assume to be non-Gaussian (or at most

136
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one is Gaussian) and mutually independent. The de-mixing system can be written as,

y = Wx (6.3)

where y =
[
y1, · · · , yN

]T is the outputs and W is a N by N de-mixing matrix. Assuming

source signals s are independent signals, ICA attempts to solve the BSS problem by

determining a de-mixing matrix W such that the outputs y approximate source signals

s under permutation and scaling ambiguity [81]. Most ICA algorithms try to find a de-

mixing matrix W so that the components in y are statistically as independent as possible.

The maximum likelihood ICA attempt to recover the source signals by minimiz-

ing the negative log-likelihood function [63].

` = − log | det(W)| −
N∑

k=1

log pk(yk) (6.4)

where pk(·) is the assumed PDF for the kth source signal. The adaptive natural gradient

updating rule for the demixing matrix is,

∆W = µ
[
I − ψ∗(y)yH

]
W (6.5)

where ψ(y) =
[
ψ1(y1), ..., ψN(yN)

]T , ψk(yk) = −
∂ log pk(yk)

∂yk
is the so called activation func-

tion [63].

6.1.2 Stability Analysis

Stability analysis of real signal ICA has been considered in [68, 71, 166, 167,

168]. Li analyzed the stability of complex maximum likelihood ICA using Wirtinger

calculus [169, 170, 171]. The stationary point of the updating rule (Eq. (6.5)) satisfies,

E
{
I − ψ∗(y)yH

}
= 0 (6.6)

It is easy to see the true separating solution Wo with which yi and y j are independent

is a solution of Eq. (6.6), because when yi and y j are independent the off-diagonal term

E
{
ψ∗i (yi)y∗j

}
= 0, i , j. The diagonal term is E

{
ψ∗i (yi)y∗i

}
= 1, which determines the

scaling of the recovered signals. To analyze the stability of the true separating solution

Wo, we need to determine the second order differential d2`. The stationary point is
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stable if and only if the expectation of d2` is positive to any small perturbations. Define

dZ , (dW)W−1.

d` = −tr(dZ) − tr(dZ∗) + ψT (y)dZy + ψH(y)dZ∗y∗ (6.7)

d2` = 2Re
{
yT dZT Φ(y)dZy + yT dZT Θ(y)dZ∗y∗ + ψT (y)dZdZy

}
(6.8)

where Φ(y) is a diagonal matrix with the ith diagonal element φi(yi) = −
∂ log pi(yi)
∂yi∂yi

, Θ(y)

is a diagonal matrix with the ith diagonal element θi(yi) = −
∂ log pi(yi)
∂yi∂y∗i

. At the stationary

point Wo (the true separating solution), we can simplify the expectation of d2` as,

E
{
d2`

}
=

∑
j>i


dz∗i j

dz∗ji
dzi j

dz ji



H H1(i, j) H2(i, j)

H∗2(i, j) H1(i, j)



dz∗i j

dz∗ji
dzi j

dz ji


+

∑
i

dz∗ii
dzii


H

H3(i)

dz∗ii
dzii

 (6.9a)

where

H1(i, j) =

β jδi 0

0 βiδ j

 H2(i, j) =

α jγi 1

1 αiγ j

 H3(i) =

 vi ui + 1

u∗i + 1 vi

 (6.10)

αi = E
{
y2

i

}
βi = E

{
|yi|

2
}

γi = E {φi(yi)} δi = E {θi(yi)}

ui = E
{
y2

i φi(yi)
}

vi = E
{
|yi|

2θi(yi)
}

To the end, the stability conditions are stated in the following theorem.

Theorem 15. [169] The true separating solution Wo is a stable stationary point of the

updating rule (6.5) if and only if

H1(i, j) H2(i, j)

H∗2(i, j) H1(i, j)

, i , j, i, j ∈ {1, ...,N} and H3(i), i ∈

{1, ...,N} is positive definite.

However, we will prove in the following that for complex ICA, Theorem 15

is often not complete. As we know, ICA analyzes a blind mixing system through the

criterion of independence between source signals. Generally, a complex ICA algorithm
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requires each recovered source signal satisfy a variance constraint (such as the variance

equals to 1) to avoid scaling ambiguity, but it does not specify the phase of the recovered

source signals. That is, supposing each of the recovered complex source signals is

multiplied by a unimodular scalar (this means a phase change), they are still independent

and this is still a valid solution of the complex ICA algorithm. For example, for the

complex maximum likelihood ICA, the assumed PDF pk(·) for the kth complex source

signal yk may be chosen as a Laplacian distribution pk(yk) = 1
2b exp

{
−
|yk |

b

}
(b is a scalar

controlling the variance of the distribution). It is easy to see this distribution is invariant

to any unimodular scalar multiplication on yk. There are many other formats of PDF

pk(yk) used in various applications, but usually they are invariant to unimodular scalar

multiplication. In summary, we conclude the loss function of the complex maximum

likelihood ICA (Eq. (6.4)) is invariant to any unimodular scalar multiplication to the

separating matrix W. Thereby, any minimizer Ŵ to the maximum likelihood ICA loss

function (Eq. (6.4)) is not unique, but is associated with a connected family of solutions

given by, [
Ŵ

]
=

{
Ŵρ|Ŵρ = diag(ρ) · Ŵ, ρ =

[
ρ1, ..., ρN

]T , ρi ∈ C, |ρi| = 1
}

(6.12)

where diag(ρ) denotes a diagonal matrix constructed by using the elements of ρ as the

diagonal elements of the matrix. A similar non-unique minimizer problem is consid-

ered in Constant Modulus based blind adaptive equalization (see [172] and references

therein).

Supposing wi· and dwi· denote the ith row of the matrix W and dW respectively,

the ith output yi = wi·x. As we know, if W is a stationary point of the ICA loss function

(Eq. (6.4)), diag(ρ) · W (|ρi| = 1) is also a stationary point of the loss function, and

`(W) = `(diag(ρ) · W). Consider a small perturbation dW = diag(ρ) · W − W, dwi· =

ρiwi· − wi· = (ρi − 1)wi·, where |ρi − 1| 6 ε, ε is a small number to make sure dwi· is a

small perturbation. Because |ρi| = 1 and |ρi − 1| 6 ε, we can have the approximation

ρi−1 ' πiJ, where πi is a small real number |πi| 6 ε, J is the symbol denoting imaginary

number. That is, ρi − 1 is a pure imaginary number. Because `(W) = `(W + dW) and

W is a stationary point, dW = diag(ρ) ·W −W represents a direction which keeps `(·)

constant and the second order variation d2` = 0. In summary, when dwi· = (ρi − 1)wi·,

ρi − 1 denotes a pure imaginary perturbation, then d2` = 0.
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By definition the perturbation term dZ , (dW)W−1, dW = (dZ)W. Supposing

all the elements of dZ is 0 except the ith diagonal elements dzii = πiJ (πi is a small real

number |πi| 6 ε and πiJ denotes a pure imaginary number), then dwi· = dziiwi·, and

d2` = 0. By Eq. (6.9) (recall all the elements of dZ is 0 except dzii),

E
{
d2`

}
=

dz∗ii
dzii


H

H3(i)

dz∗ii
dzii

 (6.13)

Thereby, H3(i) should have at least one zero eigenvalue. This phenomenon is caused

by the non-unique minimizer property of the ICA loss function, i.e. any minimizer Ŵ

to the ICA loss function (Eq. (6.4)) is not unique, but is associated with a connected

family of solutions. This phenomenon is not displayed in real signal ICA problem since

therein each minimizer is isolated. As a consequence, Theorem 15 should be revised as

following,

Theorem 16. The true separating solution Wo is a stable stationary point of the updat-

ing rule (6.5) if and only if

H1(i, j) H2(i, j)

H∗2(i, j) H1(i, j)

, i , j, i, j ∈ {1, ...,N} is positive definite

and the non-zero eigenvalue of H3(i), i ∈ {1, ...,N} is positive.

6.2 Stability Analysis of Complex Maximum Likelihood

IVA

6.2.1 Complex Maximum Likelihood IVA

IVA is proposed to solve the permutation ambiguity problem [96, 97, 98, 99].

IVA does not solve the mixing problem in each frequency bin independently, instead, it

considers the frequency domain source signal as a vector source and attempt to solve the

mixing problems in all frequency bins as a whole problem. Thereby, each vector source

signal’s components in all frequency bins are aligned together and the permutation am-

biguity across frequency domain is avoided.

Assuming an N by N time domain convolutive mixing system (N sources, N sen-

sors) and the total number of frequency bins is K. The time domain and the correspond-

ing frequency domain mixing system is expressed in Eq. 5.1 and Eq. 5.2 respectively.
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The IVA de-mixing system can be written as,

Y1(1, t)
...

Y1(K, t)
...

YN(1, t)
...

YN(K, t)



=



w11(1) 0
. . .

0 w11(K)

· · ·

w1N(1) 0
. . .

0 w1N(K)
...

. . .
...

wN1(1) 0
. . .

0 wN1(K)

· · ·

wNN(1) 0
. . .

0 wNN(K)





X1(1, t)
...

X1(K, t)
...

XN(1, t)
...

XN(K, t)



(6.14)

⇔ Y(t) = WX(t) (6.15)

⇔


Y1(t)
...

YN(t)

 =


W11 · · · W1N
...

. . .
...

WN1 · · · WNN



X1(t)
...

XN(t)

 (6.16)

where W is the whole separating matrix (demixing matrix). K is the total number of

frequency bins. Xi(t) = [Xi(1, t), ..., Xi(K, t)]T is the mixed signal’s spectrum at the ith

channel. Yi(t) = [Yi(1, t), ...,Yi(K, t)]T is the spectrum of the ith recovered source signal.

The maximum likelihood IVA attempts to recover the vector source signals by

minimizing the negative log-likelihood function.

` = − log | det(W)| −
N∑

k=1

log pk(Yk(t)) (6.17)

where pk(Yk(t)) is the assumed PDF for kth vector source signal Yk(t). The adaptive

natural gradient updating rule for the demixing matrix is,

∆W = µ

I −
∂

∂W

− N∑
k=1

log pk(Yk(t))


 W (6.18)

However, the updating rule for the whole separating matrix ∆W is difficult to express

in a simple formula. Hence we write the updating rule for the separating matrix in each

frequency bin ∆W(ω) instead of ∆W.

W(ω) ,


w11(ω) · · · w1N(ω)

...
. . .

...

wN1(ω) · · · wNN(ω)

 (6.19)
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The updating rule of ∆W(ω) is,

∆W(ω) = µ
[
I − ψ∗

ω
(Y(t))Y(ω, t)H

]
W(ω) (6.20)

where Y(ω, t) , [Y1(ω, t), ...,YN(ω, t)]T , ψ
ω

(Y(t)) = [ψ1ω(Y1(t)), ..., ψNω(YN(t))]T ,

ψkω(Yk(t)) = − ∂
∂Yk(ω,t) log pk(Yk(t)) is the so called activation function.

6.2.2 Stability Analysis

This section analyzes the stability conditions for the complex maximum likeli-

hood IVA. The stationary point of the updating rule (Eq. (6.20)) satisfies,

E
{
I − ψ∗

ω
(Y(t))Y(ω, t)H

}
= 0 (6.21)

It is easy to see the true separating solution Wo with which Yi(t) and Y j(t)

are independent is a solution of Eq. (6.21), because when Yi(t) and Y j(t) are inde-

pendent the off-diagonal term E
{
ψ∗iω(Yi(t))Y j(ω, t)∗

}
= 0, i , j. The diagonal term

is E
{
ψ∗iω(Yi(t))Yi(ω, t)∗

}
= 1, which determines the scaling of the recovered signals. To

analyze the stability of the true separating solution Wo, we need to determine the second

order differential d2`. The stationary point is stable if and only if the expectation of d2`

is positive to any small perturbations.

Define dZ , (dW)W−1.

d` = −tr(dZ) − tr(dZ∗) + ψT (Y(t))dZY(t) + ψH(Y(t))dZ∗Y(t)∗ (6.22)

d2` = 2Re
{
Y(t)T dZT Φ(Y(t))dZY(t) + Y(t)T dZT Θ(Y(t))dZ∗Y(t)∗ + ψT (Y(t))dZdZY(t)

}
(6.23)

where ψ(Y(t)) =
[
ψ11(Y1(t)), ..., ψ1K(Y1(t))), ..., ψN1(YN(t)), ..., ψNK(YN(t))

]T is a N · K

dimension vector, ψk j(Yk(t)) = − ∂
∂Yk( j,t) log pk(Yk(t)). At the true separating solution

point Wo, Φ(Y(t)) = ∂
∂Y(t)ψ(Y(t)) is a block diagonal matrix with the ith diagonal block

denoted by Φi(Y(t)) (the block has K dimensions), Θ(Y(t)) = ∂
∂Y∗(t)ψ(Y(t)) is also a

block diagonal matrix with the ith diagonal block denoted by Θi(Y(t)) (the block has K

dimensions).

Since W is a square block matrix with N·N blocks, each block is a K dimensional

diagonal matrix, by inverse of block matrix lemma, it is easy to see W−1 has the same
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structure as W. dW also has the same structure. Thereby dZ = (dW)W−1 has the

same structure as W, i.e. dZ is a square block matrix with N · N blocks, each block

is a K dimensional diagonal matrix. Let dzi j,k denotes the kth diagonal element of the

block of dZ at the ith row and the jth column. At a stationary point of the updating rule

(Eq. (6.20)), E
{
ψ∗iω(Yi(t))Yi(ω, t)∗

}
= 1. Combining the above mentioned properties,

after a lengthy derivation, we can simplify the expectation of d2` at the stationary point

Wo (the true separating solution),

E
{
d2`

}
=

∑
j>i



dzi j,1
...

dzi j,K

dz∗i j,1
...

dz∗i j,K

dz ji,1
...

dz ji,K

dz∗ji,1
...

dz∗ji,K



H

Q2(i, j)



dz∗i j,1
...

dz∗i j,K

dzi j,1
...

dzi j,K

dz∗ji,1
...

dz∗ji,K
dz ji,1
...

dz ji,K



+
∑

i



dzii,1
...

dzii,K

dz∗ii,1
...

dz∗ii,K



H

Q1(i)



dz∗ii,1
...

dz∗ii,K
dzii,1
...

dzii,K


(6.24)

Q1(i) =

P1(i) P2(i)

P∗2(i) P∗1(i)

 (6.25)

P1(i) =


E{|Yi(1, t)|2θi,11} · · · E{Yi(1, t)Y∗i (K, t)θi,1K}

...
. . .

...

E{Yi(1, t)Y∗i (K, t)θi,1K}
∗ · · · E{|Yi(K, t)|2θi,KK}

 (6.26)

where θi,kl is the kth row and the lth column element of Θi(Y(t)).

P2(i) =


E{Yi(1, t)2φi,11} + 1 · · · E{Yi(1, t)Yi(K, t)φi,1K}

...
. . .

...

E{Yi(1, t)Yi(K, t)φi,1K} · · · E{|Yi(K, t)|2φi,KK} + 1

 (6.27)
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where φi,kl is the kth row and the lth column element of Φi(Y(t)). P1(i) is Hermitian, P2(i)

is symmetrical, hence Q1(i) is Hermitian.

Q2(i, j) =


P3(i, j) P4(i, j) 0 IK

P∗4(i, j) P∗3(i, j) IK 0

0 IK P3( j, i) P4( j, i)

IK 0 P∗4( j, i) P∗3( j, i)


(6.28)

where IK denotes K dimension identity matrix.

P3(i, j) =


E{|Y j(1, t)|2}E{θi,11} · · · E{Y j(1, t)Y∗j (K, t)}E{θi,1K}

...
. . .

...

E{Y j(1, t)Y∗j (K, t)}
∗E{θi,1K}

∗ · · · E{|Y j(K, t)|2}E{θi,KK}

 (6.29)

P4(i, j) =


E{Y j(1, t)2}E{φi,11} · · · E{Y j(1, t)Y j(K, t)}E{φi,1K}

...
. . .

...

E{Y j(1, t)Y j(K, t)}E{φi,1K} · · · E{|Y j(K, t)|2}E{φi,KK}

 (6.30)

P3(i, j) is Hermitian, P4(i, j) is symmetrical, hence Q2(i, j) is Hermitian. To the end, the

stability conditions are stated in the following theorem.

Theorem 17. The true separating solution Wo is a stable stationary point of the up-

dating rule (6.20) if and only if Q2(i, j), i , j, i, j ∈ {1, ...,N} and Q1(i), i ∈ {1, ...,N} is

positive definite.

If the PDF pk(Yk(t)) (in Eq. 6.17) is assumed to be the commonly used spherical

distribution [96] (see section 5.2.2 for the insight in choosing spherical distribution),

because of the invariance of the spherical distribution to any unimodular scalar multipli-

cation on Yi(k, t), we can demonstrate that Q1(i) has K zero eigenvalues by the same ar-

gument as used in proving Theorem 16. Specifically, if pk(Yk(t)) = h exp {−K||Yk(t)||2},

we can induce directly that Q1(i) has K zero eigenvalues. Therefore, we have the fol-

lowing theorem,

Theorem 18. The true separating solution Wo is a stable stationary point of the updat-

ing rule (6.20) if and only if Q2(i, j), i , j, i, j ∈ {1, ...,N} is positive definite and the K

non-zero eigenvalues of Q1(i), i ∈ {1, ...,N} is positive.
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One weakness of the stability condition described in Theorem 18 is that the

mathematical formulas are so complicated that it does not give us any insight into into

the problem. We can not use the stability condition to guide the design of the right

assumed PDF pk(Yk(t)) (in Eq. 6.17). Theorem 18 can only be used to test whether a

given PDF pk(Yk(t)) is appropriate to be used for separating specific source signals. We

test the stability conditions on using pk(Yk(t)) = h exp {−K||Yk(t)||2} for speech signal

separation, and the experiment confirmed Q2(i, j) is positive definite and Q1(i) is semi-

positive definite with K zero eigenvalues. Therefore, pk(Yk(t)) = h exp {−K||Yk(t)||2} is

appropriate to be used in IVA for speech signal separation.



7 Combining Independent

Component Analysis with Geometric

Information

As a study on combing ICA and beamforming, in this work, we propose two

approaches for combining geometric information with ICA algorithm to solve permu-

tation problem under the scenario where a rough information about the direction of the

desired source is known. The first approach is a new blind extraction algorithm with a

soft quadratic geometric constraint. The desired source is guaranteed to be conveyed to

the output with little distortion by the quadratic constraint and the negentropy maximiza-

tion criterion is used to ensure that the other sources get suppressed at the output. The

second approach employs a quadratic geometric test as a post-processing step to pickup

the desired source after ICA processing. An advantage of the proposed two approaches

is that they do not require accurate knowledge of the number of sources in the mixtures

to recover the desired source, in contrast, other geometric ICA approaches usually fail

if the number of sources is not known accurately.

7.1 Introduction to the permutation problem

Independent component analysis (ICA) is a statistical method for extracting in-

dependent components from a group of mixtures [81]. For convolutive mixtures, fre-

quency domain ICA approach is mostly used since it simplifies the problem into instan-

taneous mixing problem in every frequency bin and can be solved therein by simple

instantaneous mixing ICA algorithms. However the intrinsic scaling and permutation

146
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ambiguities need to be addressed in applying the frequency domain ICA approach.

ICA assumes no knowledge about the mixing process except the independence

between sources. However, sometimes extra information is available and can be utilized

to aid the ICA process. For example, in microphone array speech processing, speech’s

temporal structure or geometric information with the array may be employed to solve the

permutation problem. Many recent works have been developed to combine ICA with

geometric information to solve the permutation problem [85, 86, 87, 88, 89, 91, 95].

In [85, 86], beam pattern of the ICA processor is utilized to figure out the directions of

the sources to solve the permutation problem. These methods become too complicated

and are not robust when the number of sources exceed 2. Parra and Alvino proposed the

geometrically constrained (or initialized) ICA algorithm [87], but accurate source num-

ber is required and correct permutation is not guaranteed. Knaak and Araki proposed an

ICA algorithm with a hard linear geometric constraint [88]. However, accurate source

number is mandatory for the algorithm to perform properly.

In microphone array speech processing, the geometry of the array and rough in-

formation about the direction of the desired signal may be known a priori, for instance,

the direction of the desired signal may be assumed to be the broadside direction for a lin-

ear array, or be acquired by some direction of arrival (DOA) estimation algorithms [1].

In this work, we propose two approaches for combining DOA information of the desired

source with ICA algorithm to solve the permutation problem. The first approach is a new

blind extraction algorithm with a soft quadratic geometric constraint. Given a rough es-

timate of the direction of the desired source, the proposed algorithm will extract the

desired source from the mixed signals. The quadratic constraint restricts the weighted

square error between the desired and actual response of the processor over a small spatial

uncertainty region chosen to deal with look direction uncertainty. Thereby the desired

source is guaranteed to be conveyed to the output with little distortion and the negen-

tropy maximization criterion is used to ensure that the other sources get suppressed at

the output. This method solves the permutation problem in the frequency domain ICA

approach since the desired signal is extracted consistently across all the frequency bins.

The second approach employs a quadratic geometric test as a post-processing step to

pickup the desired source after ICA processing. In every frequency bin, the ICA algo-
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rithm separates instantaneously mixed source signals, then the quadratic geometric test

will pick up the desired source. An advantage of the proposed two approaches is that

they do not require accurate knowledge of the number of sources in the mixtures to re-

cover the desired source, in contrast, other geometric ICA approaches usually fail if the

number of sources is not known accurately.

In section 7.2.1 and 7.2.2, we describe the complex FastICA algorithm and the

linear constrained ICA algorithm. Section 7.3 discusses the proposed two approaches

combining ICA with geometric information. The simulation results and discussion are

presented in Section 7.4.

7.2 Background

7.2.1 Complex FastICA

Hyvarinen and Oja proposed a fast fixed point algorithm (FastICA) for solving

the real variable instantaneous mixing ICA problem [58]. FastICA maximizes the ne-

gentropy of the output yi, i = 1..N, subject to the constraints that all the yi, i = 1..N are

uncorrelated and have unit variances. Bingham and Hyvarinen extended it to complex

variables and developed a complex FastICA algorithm [60]. The mathematical problem

to be solved is,

min
w j, j=1..N

N∑
j=1

JG(w j), s.t. E{(wH
k x)(wH

j x)∗} = δ jk

where δ jk = 1 for j = k and 0 otherwise. w j is M-dimensional complex weight vector. x

is the observation vector. The contrast function is defined as,

JG(w) = E{G(|wHx|2)} (7.1)

where G : R+ ∪ {0} → R is a smooth even function. For example, G(z) = log(a + z) is a

good choice for speech separation task.

When the observed data x is preliminary whitened, Bingham derived the fixed-
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point algorithm for one unit,

w+ = E{x(wHx)∗g(|wHx|2)}

− E{g(|wHx|2) + |wHx|2g′(|wHx|2)}w

w =
w+

‖w+‖

(7.2)

To estimate N independent components, we can either use a deflation scheme

based on Gram-Schmidt decorrelation, or estimate all the independent components si-

multaneously and use a symmetric decorrelation [60].

7.2.2 ICA with a Linear Geometric Constraint

Knaak, Araki and Makino studied the similarities between adaptive beamform-

ing and ICA, and proposed a geometrically constrained ICA algorithm (CICA) [88].

CICA combined a linear look direction constraint with the ICA criterion. It is claimed

that the CICA converges to the right solution as long as its look direction is closer to the

target signal than to the jammer signal. Knaak developed the look direction constrained

ICA algorithm based on Bingham’s complex FastICA. The problem to be solved is for-

mulated mathematically as follows.

arg min
w

E{G(|wHx|2)} ≡ arg min
t

E{G(|tHz|2)} (7.3a)

s.t. wHa = tHVa = 1. (7.3b)

where wH = tHV , w is the weight vector for original observed data x, and t is the

weight vector for the sphered data z. V is the sphering matrix determined by principle

component analysis (PCA). a is the estimated steering vector for the desired source. The

algorithm is initialized with the MVDR beamformer (section 4.2.1) on the sphered data,

t0 = Va (7.4)

Knaak developed the solution to the above optimization problem based on Bing-

ham’s Newton-type iterative algorithm. The Newton solution is projected onto the linear

constraint (7.3b) after each iteration.

tk+1new =
tk+1

|tH
k+1Va|
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7.3 Combine ICA with Geometric Information

7.3.1 ICA with Quadratic Geometric Constraint

One shortcoming of the CICA algorithm is that it requires accurate knowledge of

the number of the sources in the mixtures. Also the performance of the CICA algorithm

depends heavily on the initialization of the weight vector. A careful chosen initialization

weight vector ensures the algorithm converge to the desired source. However, such ini-

tialization weight vector is available only when the source number is accurately known

and the PCA preprocessing is properly done based on that.

Assuming a M sensor, N source system. When the PCA preprocessing is per-

formed based on accurate source number, we effectively have a mixing system with

a square mixing matrix, i.e. M′ = N, where M′ is the effective sensor number. As

is known, ICA is closely related to beamforming [85, 86, 88]. When all the original

sources have similar variances, the MVDR beamformer t0 (7.4) on the sphered data

is close to the optimum ICA solution because of the limited free spatial dimensions.

Thereby, the CICA is inclined to converge to the right solution. However, when the PCA

preprocessing is performed based on an overestimated source number, we are effectively

working on a mixing system with more sensors than sources, i.e. M′ > N. In this case,

there is enough free spatial dimensions in the weight vector such that the MVDR beam-

former t0 (Eq.(7.4)) on the sphered data is far from the right solution (Here we assume

the estimated steering vector a is close to but not exactly the true steering vector for the

desired source since DOA error always exists in real applications). Thereby, the CICA

algorithm may not converge to the right solution and it may amplify an undesired source

and suppress the desired source. Furthermore, the CICA algorithm fails when the PCA

preprocessing is performed based on underestimated source number. These drawbacks

are confirmed in the experiments. Another possibility is to initialize the CICA algorithm

with the Delay-and-Sum beamformer. However, experiments show that this still can not

ensure the CICA algorithm to converge to the right solution consistently.

In this section, we propose a new ICA algorithm with a quadratic geometric con-

straint which combines the geometric information of the array with the ICA criterion.

Instead of using a hard linear constraint as in CICA algorithm, here we propose to use a
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soft quadratic constraint which can accommodate uncertainty in the look direction infor-

mation. In [142], a quadratic constraint is used to ensure the robustness of the adaptive

beamformer in the look direction. The quadratic constraint restricts the weighted square

error between desired and actual beam pattern of the beamformer over a small spatial

region chosen to deal with look direction uncertainty. This error item can be written as,

e2 =

∫ θ+∆θ

θ−∆θ

f (θ)
∣∣∣wHa(θ, ω) − wH

d a(θ, ω)
∣∣∣2 dθ

= (w − wd)H
∫ θ+∆θ

θ−∆θ

f (θ)a(θ, ω)a(θ, ω)Hdθ(w − wd)

= (w − wd)HΦ(w − wd),

with Φ =

∫ θ+∆θ

θ−∆θ

f (θ)a(θ, ω)a(θ, ω)Hdθ.

θ is the assumed look direction, ∆θ is a measure of uncertainty in the assumed look

direction, f (θ) is a spatial weighting function, ω is a fixed frequency and a(θ, ω) is the

array steering vector. Φ is a positive definite constraint matrix which can be calculated

by either mathematical integration or by numerical techniques. w is the beamformer’s

weight vector of interest. wH
d a(θ, ω) is the desired response in the direction θ, and it is

expressed as the inner product between a desired beamformer’s weight vector wd and

steering vector a(θ, ω) to simplify computation. Generally, Delay-and-Sum beamformer

is used as the desired beamformer because of its robustness in the look direction. Then

the quadratic constraint is written as,

(w − wd)HΦ(w − wd) ≤ ε

We propose to combine this quadratic constraint with the negentropy maximiza-

tion criterion. The new optimization problem is stated as,

min
w

E{G(|wHx|2)}, s.t. (w − wd)HΦ(w − wd) ≤ ε (7.6)

The quadratic constraint will ensure the solution of interest has a flat response close to 1

in the uncertainty region. When the desired source lies in the uncertainty region, it will

be conveyed to the output with little distortion. The negentropy maximization criterion

then will suppress the undesired sources to ensure distribution of the output be as far
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as possible from the Gaussian distribution. In other words, maximizing the negentropy,

as an ICA criterion, will converge to recover one of the N sources, while the quadratic

geometric constraint will ensure it converge to recover the desired source. The little dis-

torted conveyance of the desired source to the output is an attractive attribute. It avoids

the scaling ambiguity intrinsic in ICA. This is most useful for frequency domain ICA

approach, enabling proper scaling in every frequency bin and escaping the re-scaling

headache in conventional frequency domain ICA approach. Define

w̃ = Φ1/2(w − wd)

f (w̃) = E{G(|(Φ−1/2w̃ + wd)Hx|2)}.

Problem (7.6) can be written as,

min
w̃

f (w̃), s.t. ‖w̃‖2 ≤ ε

We use the following iterative conjugate complex gradient and projection method to

solve the above optimization problem (see [142] and refs therein), where µ is a step size

parameter.

w̃k = P[w̃k−1 − µOw̃ f (w̃)]

P(w̃) =


w̃, ‖w̃‖ ≤

√
ε

w̃
√
ε

‖w̃‖ , ‖w̃‖ >
√
ε.

7.3.2 Use Geometric Test as Post-processing to ICA

The second approach for combining ICA with geometric information is to em-

ploy a quadratic geometric test as a post-processing step to pick up the desired source

after ICA processing. In every frequency bin, the ICA algorithm separates instanta-

neously mixed source signals, then the quadratic geometric test will pick up the desired

source.

Assuming a M sensor, N source system. Suppose the estimated source number

is N′ (N′ is not necessary to be N but should satisfies N′ > N). Suppose the ICA weight

vectors are wi, i = 1, ..,N′. We can calculate a set of response scores, wH
i Φwi, i = 1, ..,N′

(Φ is defined in sec.7.3.1) based on a rough direction information of the desired source.
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Because of the similarity between ICA and beamforming, the ICA weight vector which

recover the desired source should have a response close to 1 around the desired source’s

direction, while other ICA weight vectors should have a response close to 0 around that

direction. Consequently, one of the response scores should be close to 1 while others

should be close to 0. We will pick the ICA weight vector which yields the biggest

response score to recover the desired source.

7.4 Simulation

We provide examples on microphone array speech processing to compare the

performances of various algorithms. The image method is used to generate artificial

room impulse response. Simulated room dimension is [8, 5, 3.5]m. We simulate an 8

element uniform linear array with 4cm inter-microphone spacing. The sources, both

the signal of interest (SOI) and interference signals, are plane waves which exist in

the same plane as the linear array. In the experiments, it is always assumed the look

direction is the broadside direction of the array, i.e. 0◦. Every source signal is a speech

wave signal. The frequency domain ICA approach is employed. We use short time

Fourier transform (STFT) to map the time domain signals into frequency domain based

on consecutive frames. The ICA algorithms are applied on every frequency bin. The

frame length is 0.3s (240 samples), with a step length of 0.125s (100 samples). A 256

points FFT is used on each frame. The performance of various algorithms is measured

by the average performance factor across all frequency bins and the cepstral distance

between the recovered signal’s spectrum and the original desired source’s spectrum.

The performance factor is defined as,
∑

i
|pi |

max j |p j |
− 1, where p = wHA, A is the mixing

matrix on one frequency bin. The performance factor measures the degree the algorithm

enhances the desired source and suppresses interference signals on one frequency bin.

The cepstral distance is used because it is a perceptual metric commonly used in speech

processing to measure distortion. Not only does it account for the interference and

noise level, but it also detects spectrum shape distortion. Thereby, both permutation and

scaling problem are taken into consideration by a single metric.

We use the following notation for each algorithm.
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• QCICA: ICA with quadratic geometric constraint (sec.7.3.1)

• ICA qcpostproc: Use geometric test as post-processing (sec.7.3.2)

• FastICA: FastICA with random initialization (sec.7.2.1)

• FastICA DSinit: FastICA with Delay-and-Sum beamformer as initialization.

• OICA: optimum ICA, the permutation problem is solved manually assuming we

know the correct permutation.

• CICA: ICA with linear geometric constraint (sec.7.2.2)

Example 1

There are two sources for this scenario, one is the desired source, the other is the

interference signal. The desired source and the interference signal comes from direction

5◦ and 45◦ respectively. The assumed look direction is broadside, i.e. 0◦, which means

a 5◦ look direction error. Fig.7.1 demonstrates the performance of various algorithms

versus SNR (signal to white noise ratio).

Assuming the number of sources is known accurately. The FastICA algorithm

uses PCA as a preprocessing to make the mixing matrix square. When the FastICA

algorithm use a random initialization, the performance is bad. This is caused by the

different permutation in different frequency bins. To give an example, we observe 60

wrong permutations in a total of 128 frequency bins in one sample experiment. When

the FastICA algorithm uses the delay-and-sum beamformer weight vector as the initial-

ization, the performance improves but it is still not good enough as some frequency bins

may still be subject to the permutation problem. The CICA use PCA preprocessing as

well. It shows better performance than FastICA DSinit. When the PCA preprocessing

is not done properly with the right source number, the CICA algorithm was found to

totally fail. The OICA corrects the permutation problem manually and can be taken as

a baseline for the ICA algorithms. The proposed QCICA use all 8 channels in the op-

timization and the delay-and-sum beamformer weight vector is used for initialization.

It does not use PCA preprocessing. Its performance is close to OICA’s performance.

We observe that the proposed ICA qcpostproc has almost the same performance as the

OICA algorithm.
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Figure 7.1: The performance of various ICA algorithms vs. SNR (2 sources)

Example 2:

In this example, the scenario is the same as in Example 1 except that the as-

sumed source number is 3. In other words, the number of sources is overestimated.

Consequently, PCA preprocessing will employ 3 dimensions. Fig.7.2 demonstrates the

performance versus SNR. The experiment results illustrate the performances of QCICA

and ICA qcpostproc are not affected much by the wrong information about the number

of sources while CICA fails under such scenario.

Example 3:

Fig.7.3 demonstrates the performances versus SNR when two interference

signals exist. The second interference signal comes from direction −60◦. The number

of sources is known accurately. All the other settings are the same as those in Example

1. Similar to Example 2, if the assumed source number is wrong (in this case, we

assume 4 sources), the experiment results are shown in Fig.7.4. The experiment results

are consistent with the those shown in Example 1 and 2.
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Figure 7.2: The performance of various ICA algorithms vs. SNR (2 sources exist, as-
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Figure 7.3: The performance of various ICA algorithms vs. SNR (3 sources)
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Figure 7.4: The performance of various ICA algorithms vs. SNR (3 sources exist, as-
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8 Conclusion

Compared with single channel speech processing, multi-microphone based

speech processing methods are capable of high interference suppression in noisy envi-

ronments because of their spatial filtering capability. Despite the many years of develop-

ment of antenna array processing techniques in radar or sonar applications, microphone

array speech processing brings up new challenges because of its specific characteristics.

Therefore, new array processing algorithms for speech are desired. This dissertation de-

velops novel microphone array speech processing methods in a variety of configurations

and also analyzes and provides insights into existing popular techniques.

Although speech’s special characteristics poses new challenges in microphone

array processing, it may also provide specific opportunities which are not available in

general signal processing. In this work, we consider DOA estimation for multiple speech

signals based on only two microphones. Utilizing speech’s specific properties such as

the sparsity in the time-frequency domain and the sinusoidal modeling, we propose a

two microphone based DOA estimation technique for multiple speech sources using the

generalized mixture decomposition clustering algorithm. Voiced speech is sparse in the

frequency domain and can be represented by sinusoidal tracks via sinusoidal modeling

which provides high local SNR. By utilizing the inter-channel phase differences (IPD)

between the dual channels on the sinusoidal tracks, the source localization of the mixed

multiple speech sources is turned into a clustering problem on the IPD vs. frequency

plot. The generalized mixture decomposition algorithm (GMDA) is used to cluster the

groups of points corresponding to multiple sources and thus estimate the DOA of the

sources. Experiments illustrate the proposed GMDA algorithm with the Laplacian noise

model can estimate the number of sources accurately and exhibits smaller DOA esti-

mation error than the baseline histogram based DOA estimation algorithm in various
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scenarios including reverberant and additive white noise environments. Experiments

suggest that appropriate power thresholding can be a simple and good approximation to

the sinusoidal modeling, for the purpose of selecting time-frequency points with high

local SNR, with slight loss in performance.

Data dependent adaptive beamformers have high resolution and interference re-

jection capability when the array steering vector is accurately known. However, the

performance of the traditional adaptive beamformer can degrade severely in practice

when there exist SOI steering vector errors. This problem should be addressed before

the adaptive beamforming algorithms can be applied to process real world speech data.

We compare and analyze recent developments in the academic world of adaptive beam-

forming. Experiments illustrate the performance of the Frost beamformer (optimum

solution) can degrade severely when the steering vector errors exist, however, the Frost

LMS algorithm is robust to the look direction error when the adaptation does not go

through too many iterations. Motivated by these observations, we analyze the effect that

the signal incidence angle has on the convergence rate of the Frost LMS beamforming

weight vector. Our analysis confirms that the Frost LMS algorithm is robust to the look

direction error when the adaptation does not go through too many iterations.

We develop a robust broadband adaptive beamforming algorithm which com-

bines the robustness of the DS beamforming in the look direction with the high inter-

ference rejection capability of the conventional adaptive beamforming algorithm. A

quadratic constraint is employed to deal with the uncertainty in the look direction. In

order to address the ill-conditioning associated with the constraint matrix, a diagonal

loading (DL) is added to the constraint matrix thereby ensuring a robust solution to the

quadratic constraint beamforming problem. The advantage of adding DL to constraint

matrix is that the constraint matrix is only determined by the geometry of the array

thereby allowing the DL level to be chosen offline. This is superior to adding DL to

the signal covariance matrix where the DL level has to be chosen online. It is shown

that the diagonal loading is equivalent to an additional norm constraint without intro-

ducing it explicitly. We also develop an iterative algorithm (and corresponding adaptive

algorithm) to solve for the robust beamformer coefficients. The developed algorithm is

applied to the problem of beamforming using microphone arrays for speech recognition
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and shown to be superior to existing algorithms.

Motivated by recent work in robust MVDR beamforming (RCB&DCRCB) [26],

we develop variants of the constrained robust MVDR beamformer that attempt to limit

the search in the underlying optimization problem to a feasible set of steering vectors

thereby achieving improved performance. The robustness against steering vector error

is provided through a spherical uncertainty set constraint, while a set of magnitude con-

straints is enforced on each element of the steering vector to better constrain the search

in the space of feasible steering vectors. By appropriately changing the variables, the

optimization problem is modified such that the need for the magnitude constraints are

avoided. We also develop adaptive algorithms for the RCB and the time delay based

robust MVDR beamformer. The adaptive algorithms have two updating steps. The first

step updates the steering vector estimation or the time delay estimation; the second step

updates the beamformer’s weight vector given an estimated steering vector. The devel-

oped algorithms are tested in the context of speech enhancement using a microphone

array.

Another class of promising multi-channel signal separation algorithms besides

beamforming is independent component analysis (ICA). For separating convolutively

mixed source signals, the frequency domain ICA approach is often used because it sim-

plifies the time domain convolutive mixing problem into the instantaneous mixing ICA

problem in each frequency bin. We examine and provide insights into the frequency do-

main ICA methods for source separation in reverberant environments. For the modeling

of the source signals, we develop the concept of a dynamic random process to model

the source signals. It formalizes the concept of signals that are stationary in a frame

but exhibit dynamics at the frame level. Frame dynamics is an important characteristics

of these signals and prove important to the success of the ICA methods. With suitable

assumptions, the dynamic random process is stationary in the ensemble sense while a

given realization may in an engineering sense exhibit ‘non-stationarity’. We show for

dynamic random processes, the unconditional distribution of the source signal in each

frequency bin is a Gaussian scale mixture (GSM). The non-Gaussianity, which is critical

to ICA, of the source signal in each frequency bin is shown to be a direct consequence

of the frame dynamics. Furthermore, the independence between the unconditional dis-
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tributions of the source signals in each frequency bin is related to the independence of

the frame dynamics of the mixed time domain source signals. The GSM mathematical

modeling is extended to the vector random processes formed by stacking the different

frequency components of a source. This provides insights into the mathematical models

suitable for the frequency domain independent vector analysis (IVA) type approaches.

A special case of the distribution turns out to be the ‘spherical distribution’ employed in

IVA source modeling providing support to their use in source separation. Concentrating

on the bin-wise ICA methods, a significant contribution of the work is to show that sig-

nals modeled using GSM density can be separated using ICA even though they might be

dependent on each other as long as the the frame dynamics of the source signals are dif-

ferent almost surely. We also analyze the stability conditions of the complex maximum

likelihood ICA/IVA.

Lastly, in an attempt to make the best of ICA and beamforming methods, we

propose two approaches for combining DOA information of the desired source with

ICA algorithm to solve the permutation problem. The first approach is a new blind ex-

traction algorithm with a soft quadratic geometric constraint. The quadratic constraint

restricts the weighted square error between the desired and actual response of the proces-

sor over a small spatial uncertainty region chosen to deal with look direction uncertainty.

Thereby the desired source is guaranteed to be conveyed to the output with little distor-

tion and the negentropy maximization criterion is used to ensure that the other sources

get suppressed at the output. The second approach employs a quadratic geometric test

as a post-processing step to pickup the desired source after ICA processing. In every

frequency bin, the ICA algorithm separates instantaneously mixed source signals, then

the quadratic geometric test will pick up the desired source. An advantage of the pro-

posed two approaches is that they do not require accurate knowledge of the number of

sources in the mixtures to recover the desired source, in contrast, other geometric ICA

approaches usually fail if the number of sources is not known accurately.
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