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Abstract

Safety-Guaranteed Autonomy under Uncertainty

by

Donggun Lee

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Claire Tomlin, Co-chair

Professor Masayoshi Tomizuka, Co-chair

Reachability analyzes a dynamic system’s abilities to reach goals or maintain safety. This
analysis plays an essential role in various safety-critical applications. Previous reachability
theory characterizes the success or failure of reachability tasks. However, this does not tell
us the degree to which the goal will be achieved, or the safety will be maintained. Our new
reachability formulation aims to provide measures for each goal-reaching and safety.

This dissertation introduces three bodies of work. The first presents state-constrained
reachability problems that provide the goal-reaching or safety metrics, and the corresponding
Hamilton-Jacobi (HJ) frameworks. The HJ frameworks guarantee performance and safety
metrics for general nonlinear systems with non-convex constraints. Despite this advantage,
its computational complexity is exponential in the state dimension. Thus, it is not scalable
for high-dimensional systems. In order to alleviate this computational complexity, the
second presents efficient Hopf-Lax theory, which provides analytic solutions to HJ partial
differential equations (PDEs) for state-constrained reachability problems, and the third
presents reinforcement-learning approaches.
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Chapter 1

Introduction

Reachability analyzes dynamic systems’ abilities to reach goals or maintain safety. This
analysis has been widely used in applications, including air-traffic management [103], tracking
control [29], walking robots [83], multirobot safety control [105], aircraft safety control [79,
105, 99], motor control [109], and vehicle platooning [31].

We focus on optimal control or zero-sum game frameworks to deal with reachability.
Previous reachability theory deals with state-unconstrained problems. For example, consider
two previous reachability problems: the viability kernel and the reach-avoid problem. First,
given possibly multiple safety conditions, the viability kernel analyzes controls for the system
to satisfy all conditions at all times [8, 73]. In the optimal control framework solving the
viability kernel, the cost encodes the multiple conditions that must be satisfied. The optimal
cost for the viability kernel characterizes the success or failure of condition satisfaction.
However, this does not tell us the degree to which each condition is satisfied. For the second
example, in the reach-avoid problem, we analyze control signals under which the system
reaches the target while avoiding obstacles [74, 46]. Some previous literature formulates the
reach-avoid problem into another state-unconstrained optimal control problem. This analysis
provides an indicator to determine success or failure for the reach-avoid task. However, it
does not provide the distance measure of how close the system can reach the target while
avoiding obstacles.

We aim to formulate new reachability problems that do provide not only success or failure
indicators but also meaningful measures. This dissertation presents two state-constrained
reachability problems: state-constrained control-invariance problems (SCCIPs) relevant to
the viability kernel and state-constrained reach-avoid problems (SCRAPs) relevant to the
reach-avoid problem.

The SCCIP is a general version of the viability kernel [8, 73]. In SCCIP, among multiple
conditions that must be satisfied, we select one condition whose measure function becomes
the cost, and the other conditions are encoded in state constraints. The viability kernel does
not provide a measure for the selected condition. On the other hand, SCCIP provides a
quantitative measure of how much a particular condition has been satisfied or violated while
the other conditions remain satisfied.
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The SCRAP is a general version of the reach-avoid problem [74, 46]. In SCRAP, the
cost encodes the goal-reaching measure, and the other safety conditions are encoded in state
constraints. Although the reach-avoid problem does not measure how close the system can
reach the target while avoiding obstacles, SCRAP provides this distance measure.

This dissertation aims to find solutions for the state-constrained reachability problems
and guarantee safety and performance. Towards this goal, we first provide Hamilton-Jacobi
(HJ) analysis for the state-constrained reachability problems. The proposed HJ analysis
guarantees safety and performance metrics for the state-constrained problems even though
the dynamics are nonlinear systems and the state constraints non-convex. Despite this
advantage, its computational complexity is exponential in the state dimension. Thus, it is not
scalable for high-dimensional systems. In order to alleviate this computational complexity,
this dissertation presents two approaches: Hopf-Lax theory and reinforcement learning for
reachability.

Hopf-Lax theory finds analytic solutions to HJ partial differential equations (PDEs). The
theory assumes convex Hamiltonians in the costate space, which holds for all optimal control
problems except zero-sum games. In order to solve optimal-control problems, we first find a
relevant HJ PDE and then apply Hopf-Lax theory. In fact, Hopf-Lax theory provides either
an optimization or optimal control problem. In other words, we can solve the Hopf-Lax
formula instead of the given optimal control problem. The advantage of solving the Hopf-Lax
formula is that it has better convexity conditions than the given optimal control problem.
Thus, gradient-based methods can guarantee safety and performance for broader classes of
problems for Hopf-Lax formulae. Previously, Hopf-Lax theory has been developed for HJ
PDEs only relevant to state-unconstrained problems. This dissertation presents Hopf-Lax
theory relevant to state-constrained problems.

Finally, this dissertation presents a reinforcement learning framework for reachability
problems. Reinforcement learning approximately finds a solution to Bellman equations using
function approximators, such as deep neural networks. Unfortunately, extensive work in
reinforcement learning focuses on general sum problems but not reachability problems. We
find the relevant Bellman equations and apply them in reinforcement learning frameworks
based on HJ PDEs for reachability.

The contribution of this dissertation is three-fold.

1. We first deal with state-constrained reachability problems and provide the corresponding
HJ PDEs. There are two difficulties of dealing with state constraints in reachability.
First, gradients are not defined in infeasible state regions. Second, in the continuous-time
setting, control signals are infinite-dimensional. This is different from the discrete-time
setting, where control sequences are finite-dimensional. In this case, no numerical
optimization theory for finite-dimensional problems work.

2. We first find Hopf-Lax theory for HJ PDEs relevant to state-constrained optimal
control problems. We propose a general theorem in PDE theory that specifies sufficient
conditions under which two different first-order PDEs have the same solution. Based
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on the proposed theorem, we prove our Hopf-Lax formulae. We also provide numerical
algorithms.

3. We present a reinforcement learning framework for reachability problems. There is a
small portion of existing research dealing with reachability in reinforcement learning.
This dissertation presents a general reinforcement learning framework that can be
applied to other problems.

The organization of this dissertation is as follows. Chapter 2 introduces notations.
Chapter 3 deals with two state-constrained reachability problems (SCCIP and SCRAP)
and the corresponding HJ PDEs. Chapter 4 presents Hopf-Lax theory for the two state-
constrained reachability problems. Chapter 5 presents reinforcement learning for reachability.
Chapter 6 concludes the dissertation.
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Chapter 2

Nomenclature and Assumptions

The nomenclature and assumptions in this chapter are used in Chapter 3 and 4 that deal
with the continuous-time setting. In Chapter 5 dealing with the discrete-time setting, we use
independent nomenclature.

This dissertation deals with dynamic systems’ zero-sum games or optimal control problems.
Since we can consider optimal control problems as an example of zero-sum games by removing
a player’s contribution to problems, we generally present nomenclature and assumptions for
zero-sum games.

Consider a dynamical system:

ẋ(s) = f(s, x(s), α(s), δ(s)), s ∈ [t, T ], and x(t) = x, (2.1)

where (t, x) ∈ [0, T ]×Rn are the initial time and state, x : [t, T ]→ Rn is the state trajectory,
f : [0, T ]×Rn×A×D → Rn is the dynamics, A ⊂ Rma , D ⊂ Rmd are the control constraints,
α ∈ A(t), δ ∈ D(t) are the control signals, in each, player A controls α and player D controls
δ, and the sets of measurable control signals are

A(t) := {α : [t, T ]→ A | ∥α∥L∞(t,T )<∞},
D(t) := {δ : [t, T ]→ D | ∥δ∥L∞(t,T )<∞}.

(2.2)

In each zero-sum game, we consider Stackelberg games where one plays first and then the
other players later at each time. For player A and D, we have two Stackelberg games. If the
two Stackelberg games have the same cost, the unique Nash equilibrium exists.

For the two Stackelberg games, we use the following notations. H(t) is a set of non-
anticipative strategies for player D, and Z(t) is a set of non-anticipative strategies for player
A. The non-anticipative strategy outputs a control signal for the second player as a reaction
to the first player’s control signal without using the future information. The non-anticipative
strategy has been introduced by Elliott and Kalton [41]:

H(t) :={η : A(t)→ D(t) | ∀s ∈ [t, T ] and α, ᾱ ∈ A(t), if α(τ) = ᾱ(τ) a.e. τ ∈ [t, s],

then η[α](τ) = η[ᾱ](τ) a.e. τ ∈ [t, s]},
(2.3)
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Z(t) :={ζ : D(t)→ A(t) | ∀s ∈ [t, T ], δ, δ̄ ∈ D(t), if δ(τ) = δ̄(τ) a.e. τ ∈ [t, s],

then ζ[δ](τ) = ζ[δ̄](τ) a.e. τ ∈ [t, s]}.
(2.4)

In this dissertation, we use L = L(t, x, a, d) for stage costs, g = g(t, x) for terminal
costs, c = c(t, x) for state-constraint functions. For these functions, we assume the following
conditions.

Assumption 1 (Lipschitz continuity and compactness).

1. A and D are compact;

2. f = f(t, x, a, d) : [0, T ]×Rn×A×D → Rn is Lipschitz continuous in the state for each
(a, d) ∈ A×D:

∥f(t, x1, a, d)−f(t, x2, a, d)∥≤ Lf∥x1 − x2∥; (2.5)

3. the stage cost L = L(t, x, a, d) : [0, T ] × Rn × A ×D → R is Lipschitz continuous in
the state for each (a, d) ∈ A×D:

∥L(t, x1, a, d)−L(t, x2, a, d)∥≤ LL∥x1 − x2∥, (2.6)

and L is also bounded below;

4. A and D are compact and convex;

5. the terminal cost g = g(t, x) : [0, T ]× Rn → R is Lipschitz continuous in the state:

∥g(t, x1)− g(t, x2)∥≤ Lg∥x1 − x2∥; (2.7)

6. the state constraint c = c(t, x) : [0, T ]× Rn → R is Lipschitz continuous in the state:

∥c(t, x1)− c(t, x2)∥≤ Lc∥x1 − x2∥; (2.8)

7. the stage cost (L) and the terminal cost (g) are bounded below.
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Chapter 3

Hamilton-Jacobi Analysis for the
State-Constrained Reachability

The Hamilton-Jacobi (HJ) framework solves optimal control problems or zero-sum games,
including reachability problems. In two-player zero-sum games, one player’s control signal
minimizes a cost while satisfying a state constraint, while the second player’s control signal
tries either to maximize the cost or to violate the state constraint. An optimal control problem
may be considered a special case of the zero-sum game: a control signal that minimizes the
given cost while satisfying the constraint is to be determined. HJ analysis builds on dynamic
programming and viscosity theory [42]. Dynamic programming is a method to solve problems
by recursively breaking them down into sub-problems; viscosity theory provides a notion of
weak solutions for first-order PDEs to deal with the non-differentiability of the solution.

Various HJ methods have been developed for state-unconstrained problems and extended to
state-constrained problems. Specifically, various HJ frameworks deal with state-unconstrained
reachability problems, including the backward reachable tube [10, 73], viability kernel [8, 73],
and the reach-avoid problem [74, 46]. For state-constrained HJ PDEs, [97, 98] first introduced
a controllability assumption under which the optimal cost of the state-constrained problem
is the viscosity solution to the HJ PDE in the constraint set. [59, 47, 24, 48] extended
the viscosity theory in [97, 98] for variant state-constrained problems, which satisfy various
controllability assumptions. Unfortunately, these controllability assumptions do not hold in
practice.

Recent HJ works [4, 17, 16, 49, 36] utilize the epigraphical technique to handle general
state-constrained optimal control problems without the controllability assumptions [97, 98,
59, 47, 24, 48]. The epigraphical technique aims to find the epigraph of the optimal cost
for the state-constrained problem. These recent works augment a one-dimensional variable
into the state and consider a state-unconstrained problem in the higher-dimensional system
that encodes the state-constrained problem. Then, these works derive an HJ PDE for the
augmented problem whose optimal cost’s sub-zero-level set is the epigraph of the optimal cost
of the state-constrained problem. The HJ PDE for the augmented problems is well defined
in the entire augmented state space, even outside the constraint set; thus, standard viscosity
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Figure 3.1: Given initial time t, (a) shows the optimal cost ϑ for state-constrained problems
for each initial state x, and (b) shows the epigraph of ϑ which is characterized by another
value function V . V is defined in one-higher-dimensional space (t, x, z), and the epigraph of
ϑ is the sub-zero-level set of V .

theory [42] can be applied to characterize the augmented problem as the unique viscosity
solution to the HJ PDE. This dissertation presents the epigraphical technique for SCCIP
and SCRAP [69, 67].

Figure 3.1 explains the epigraphical technique for state-constrained optimal control or
zero-sum game problems. Suppose ϑ is the optimal cost for state-constrained problems for
each initial time t. In the infeasible region in x-space, ϑ is not defined, where gradients
cannot be defined. In the epigraphical technique, we aim to find continuous V in a one-higher
dimensional state space (x, z) so that the sub-zero-level set of V is the epigraph of the ϑ (gray
in Figure 3.1 (b)). We find an HJ PDE using the epigraphical technique for not ϑ but V .
Gradients of V are well defined in (x, z)-space in a weak sense, and we find the corresponding
HJ PDE for V .

The proposed HJ PDEs can deal with both time-varying and time-invariant dynamics,
cost, and state constraint. Furthermore, this chapter presents additional HJ PDEs equivalent
to the proposed HJ PDEs for the time-invariant case.

Organization

Chapter 3.1 presents HJ formulations for SCCIP. Chapter 3.2 presents HJ formulations for
SCRAP. Chapter 3.3 concludes this chapter.
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3.1 State-Constrained Control-Invariance Problems

This chapter is based on the work presented in [67], which is joint work with Claire Tomlin.
I would like to thank Margaret Chapman for the inspiration for the water reservoir control
problem.

This chapter presents SCCIP and provides the corresponding HJ PDE. Our analysis
considers two cases. First, time-varying case assumes time-varying costs, dynamics, and state
constraints. Second, time-invariant case assumes time-invariant costs, dynamics, and state
constraints. Also, this chapter provides and presents analysis for the optimal control signal
for each player, numerical algorithm to compute the proposed HJ PDE, as well as a practical
example.

Chapter 3.1.1 presents a mathematical formulation for SCCIP. Chapter 3.1.2 presents the
HJ PDEs for SCCIP in the time-varying and time-invariant cases. Chapter 3.1.3 presents
analysis for an optimal control signal based on the solution to the HJ PDEs. Chapter 3.1.4
presents a numerical algorithm to compute the solution to the HJ PDEs for SCCIP. Chapter
3.1.5 provides a practical example where our HJ formulation can be utilized.

3.1.1 Problem Definition

For the dynamical system (2.1), we define SCCIP as below.

State-constrained control-invariance problem (SCCIP): for given initial time and
state (t, x), solve

ϑ+
1 (t, x) := sup

η∈H(t)

inf
α∈A(t)

max
τ∈[t,T ]

∫ τ

t

L(s, x(s), α(s), η[α](s))ds+ g(τ, x(τ)), (3.1)

subject to c(s, x(s)) ≤ 0, s ∈ [t, τ ], (3.2)

where x solves (2.1) for (α, η[α]); and solve

ϑ−
1 (t, x) := inf

ζ∈Z(t)
sup

δ∈D(t)

max
τ∈[t,T ]

∫ τ

t

L(s, x(s), ζ[δ](s), δ(s))ds+ g(τ, x(τ)), (3.3)

subject to c(s, x(s)) ≤ 0, s ∈ [t, τ ], (3.4)

where x solves (2.1) for (ζ[δ], δ).
H(t) is a set of non-anticipative strategies for player D, and Z(t) is a set of non-anticipative

strategies for player A. For notations, see Chapter 2.
The difference between ϑ+

1 and ϑ−
1 is play order. In ϑ+

1 (t, x), at each time s ∈ [t, T ], player
A first plays α(s), and then player D reacts by following its own strategy η[α](s). Despite
this play order at each time, the choice of player D’s strategy comes first since it should be
chosen without information about player A’s control signal. In other words, player D first
chooses its strategy, and then player A chooses its control signal. In ϑ−

1 (t, x), at each time
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s, player D first plays δ(s), and then player A reacts with its strategy ζ[δ](s). Similarly to
ϑ+
1 (t, x), in ϑ−

1 (t, x), player A first chooses its strategy, and then player D chooses its control
signal.

SCCIP is relevant to many practical problems. For SCCIP, consider two water systems
where player A controls the water level of pond 1 that is connected to pond 2. Suppose player
D is precipitation. Player A needs to minimize the highest water level of pond 1 over time
while satisfying constraints for water level of pond 1 and 2 under the worst precipitation
assumption.

3.1.2 Hamilton-Jacobi PDEs for SCCIP

HJ PDE for SCCIP in time-varying case

In this chapter, we derive an HJ PDE for SCCIP (ϑ±
1 ). Unfortunately, for some initial time

and state (t, x), there is no control α (or strategy ζ) of player A that satisfies the state
constraint for all strategies η of player D (or control signal δ). In this case, ϑ±

1 (t, x) is infinity.
Thus, ϑ±

1 is neither continuous nor differentiable in (0, T )× Rn.
To overcome this issue, we utilize an additional variable z ∈ R to define continuous value

functions V ±
1 in (3.5) and (3.6) that combine the cost ϑ±

1 in (3.1) or (3.3), and the constraint
in (3.2) or (3.4). This method is called the epigraphical technique because the epigraph of
ϑ±
1 is the sub-zero level set of V ±

1 . This method has been utilized to handle state constraints
to solve other HJ problems [4, 69]. V ±

1 is well-defined in [0, T ]× Rn × R.

V +
1 (t, x, z) := sup

η∈H(t)

inf
α∈A(t)

J1(t, x, z, α, η[α]), (3.5)

V −
1 (t, x, z) := inf

ζ∈Z(t)
sup

δ∈D(t)

J1(t, x, z, ζ[δ], δ), (3.6)

where cost J1 : (t, x, z, α, δ)→ R is defined as follows:

J1(t, x, z, α, δ) := max
τ∈[t,T ]

max

{
max
s∈[t,τ ]

c(s, x(s)),

∫ τ

t

L(s, x(s), α(s), δ(s))ds+ g(τ, x(τ))− z
}
,

(3.7)

where x solves (2.1). Define the auxiliary state trajectory z solving

ż(s) = −L(s, x(s), α(s), δ(s)), s ∈ [t, T ], and z(t) = z. (3.8)

Then, (2.1) and (3.8) are the joint ODEs whose solution is the augmented state trajectories:
(x, z) : [t, T ]→ Rn+1[

ẋ(s)
ż(s)

]
=

[
f(s, x(s), α(s), δ(s))
−L(s, x(s), α(s), δ(s))

]
, s ∈ [t, T ],

[
x(t)
z(t)

]
=

[
x
z

]
. (3.9)
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Then, J1 in (3.7) becomes

J1 = max
τ∈[t,T ]

max
{

max
s∈[t,τ ]

c(s, x(s)), g(τ, x(τ))− z(τ)
}

= max
{

max
s∈[t,T ]

c(s, x(s)), max
τ∈[t,T ]

g(τ, x(τ))− z(τ)
}
.

(3.10)

The last equality is derived by the distributive property of the maximum operations.
Lemma 1 shows that ϑ±

1 can be found if V ±
1 are known. For initial time and state

(t, x) for which there is no control or strategy of player A such that the state constraint
(c(s, x(s)) ≤ 0, s ∈ [t, T ]) is satisfied for player D’s best control signal or strategy, V ±

1 (t, x, z)
is always greater than 0 for all z ∈ R. In this case, Lemma 1 implies that ϑ±

1 (t, x) is infinity.

Lemma 1 (Equivalence of two value functions). Suppose Assumption 1 holds. For all
(t, x) ∈ [0, T ]× Rn, ϑ+

1 ((3.1) subject to (3.2)), ϑ−
1 ((3.3) subject to (3.4)), V +

1 in (3.5), and
V −
1 in (3.6) have the following relationship.

ϑ±
1 (t, x) = min z subject to V ±

1 (t, x, z) ≤ 0. (3.11)

This implies that

ϑ+
1 (t, x) = sup

η∈H(t)

inf
α∈A(t)

max
τ∈[t,T ]

∫ τ

t

L(s, x(s), α(s), η[α](s))ds+ g(τ, x(τ)), (3.12)

subject to c(s, x(s)) ≤ 0, s ∈ [t, T ], (3.13)

where x solves (2.1) for (α, η[α]), and

ϑ−
1 (t, x) = inf

ζ∈Z(t)
sup

δ∈D(t)

max
τ∈[t,T ]

∫ τ

t

L(s, x(s), ζ[δ](s), δ(s))ds+ g(τ, x(τ)), (3.14)

subject to c(s, x(s)) ≤ 0, s ∈ [t, T ], (3.15)

where x solves (2.1) for (ζ[δ], δ).

Proof. See Appendix A.1.
The rest of this chapter focuses on the derivation of the corresponding HJ PDE for V ±

1 .
The HJ PDE is based on the principle of dynamic programming in Lemma 2.

Lemma 2 (Optimality condition). Fix (t, x, z) ∈ [0, T ] × Rn × R. Consider a small step
h > 0 such that t+ h ≤ T , V +

1 (3.5) has the following property:

V +
1 (t, x, z) = sup

η∈H(t)

inf
α∈A(t)

max
{

max
s∈[t,t+h]

c(s, x(s)), max
s∈[t,t+h]

g(x(s))− z(s), V +
1 (t+ h, x(t+ h), z(t+ h))

}
,

(3.16)

where (x, z) solves (3.9) for (α, η[α]). Similarly, for V −
1 (3.6),

V −
1 (t, x, z) = inf

ζ∈Z(t)
sup

δ∈D(t)

max
{

max
s∈[t,t+h]

c(s, x(s)), max
s∈[t,t+h]

g(x(s))− z(s), V −
1 (t+ h, x(t+ h), z(t+ h))

}
,

(3.17)

where (x, z) solves (3.9) for (ζ[δ], δ).
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Proof. See Appendix A.2.
Theorem 1 presents the corresponding HJ PDEs for V ±

1 in (3.5) and (3.6) using viscosity
theory. Intuitively, the HJ PDE in Theorem 1 is derived as h in Lemma 2 converges to zero.

Theorem 1. (HJ PDE for SCCIP) For all (t, x, z) ∈ [0, T ] × Rn × R, V ±
1 in (3.5) and

(3.6) is the unique viscosity solution to the HJ PDE:

max
{
c(t, x)−V ±

1 (t, x, z), g(t, x)− z − V ±
1 (t, x, z),

∂V ±
1

∂t
− H̄±(t, x, z,

∂V ±
1

∂x
,
∂V ±

1

∂z
)
}

= 0

(3.18)

in (0, T )× Rn × R, where H̄± : [0, T ]× Rn × R× Rn × R→ R

H̄+(t, x, z, p, q) := max
a∈A

min
d∈D
−p · f(t, x, a, d) + qL(t, x, a, d), (3.19)

H̄−(t, x, z, p, q) := min
d∈D

max
a∈A
−p · f(t, x, a, d) + qL(t, x, a, d), (3.20)

and

V ±
1 (T, x, z) = max{c(T, x), g(T, x)− z} (3.21)

on {t = T} × Rn × R.

Proof. See Appendix A.3.

HJ PDE for SCCIP in time-invariant case

We define the problem as time-invariant if the stage cost, terminal cost, dynamics, and state
constraints are all independent of time.

In this chapter, we convert ϑ±
1 ((3.1) subject to (3.2) and (3.3) subject to (3.4)) to a

fixed-terminal-time problem for the time-invariant case of SCCIP, which allows to utilize
methods for the fixed-terminal-time problems [4]. In the fixed-terminal-time problem, optimal
control signals of players have to be determined, but the terminal time does not need to be
specified but is given.

The conversion of SCCIP to a fixed-terminal-time problem by introducing a freezing
control signal µ : [t, T ]→ [0, 1] to the dynamics and a set of freezing control signals:

ẋ(s) = f(x(s), α(s), δ(s))µ(s), s ∈ [t, T ], x(t) = x, (3.22)

M(t) := {µ : [t, T ]→ [0, 1] | ∥µ∥L∞(t,T )<∞}. (3.23)

This freezing control signal controls the contribution of the two players to the system. For
example, µ(s) = 0 implies that the state stops at s, and the two players do not contribute to
the system. On the other hand, µ(s) = 1 allows the state evolves by the control signals of
the players. The maximum over τ operation in SCCIP can be replaced by the maximum over
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the freezing control signal if it eliminates contribution of the two players after the maximal
terminal time.

Addition to the non-anticipative strategies, the freezing control signal can be added as
follows. NA is a set of non-anticipative strategies for the freezing control to player A, and Z̃
is a set of non-anticipative strategies for player A to player D and the freezing control:

NA(t) := {νA : A(t)→M(t) | ∀s ∈ [t, T ], α, ᾱ ∈ A(t), if α(τ) = ᾱ(τ) a.e. τ ∈ [t, s],

then νA[α](τ) = νA[ᾱ](τ) a.e. τ ∈ [t, s]}, (3.24)

Z̃(t) := {ζ̃ : D(t)×M(t)→ A(t) | ∀s ∈ [t, T ], δ, δ̄ ∈ D(t), µ, µ̄ ∈M(t),

if δ(τ) = δ̄(τ), µ(τ) = µ̄(τ) a.e. τ ∈ [t, s], then ζ̃[δ, µ](τ) = ζ̃[δ̄, µ̄](τ) a.e. τ ∈ [t, s]}.
(3.25)

We present fixed-terminal-time problems as below:

ϑ̃+
1 (t, x) := sup

η∈H(t),νA∈NA(t)

inf
α∈A(t)

∫ T

t

L(x(s), α(s), η[α](s))νA[α](s)ds+ g(x(T )), (3.26)

subject to c(x(s)) ≤ 0, s ∈ [t, T ], (3.27)

where x solves (3.22) for (α, η[α], νA[α]);

ϑ̃−
1 (t, x) := inf

ζ̃∈Z̃(t)
sup

δ∈D(t),µ∈M(t)

∫ T

t

L(x(s), ζ̃[δ, µ](s), δ(s))µ(s)ds+ g(x(T )), (3.28)

subject to c(x(s)) ≤ 0, s ∈ [t, T ], (3.29)

where x solves (3.22) for (ζ̃[δ, µ], δ, µ).
After introducing the auxiliary variable z ∈ R, define cost J̃ by combining the cost and

the constraint of ϑ̃±
1 :

J̃(t, x, z, α, δ, µ) := max { max
s∈[t,T ]

c(x(s)), g(x(T ))− z(T )}, (3.30)

where (x, z) solves, for s ∈ [t, T ],[
ẋ(s)
ż(s)

]
=

[
f(x(s), α(s), δ(s))
−L(x(s), α(s), δ(s))

]
µ(s),

[
x(t)
z(t)

]
=

[
x
z

]
. (3.31)

Lemma 3 claims that the zero-sum games whose cost is J̃ are equivalent to V ±
1 in (3.5) and

(3.6), which corresponds to ϑ±
1 .

Lemma 3. Consider V ±
1 in (3.5) and (3.6), and J̃ in (3.30). For all (t, x, z) ∈ [0, T ]×Rn×R,

V +
1 (t, x, z) = sup

η∈H(t),
νA∈NA(t)

inf
α∈A(t)

J̃(t, x, z, α, η[α], νA[α]), (3.32)

V −
1 (t, x, z) = inf

ζ̃∈Z̃(t)
sup

δ∈D(t),
µ∈M(t)

J̃(t, x, z, ζ̃[δ, µ], δ, µ). (3.33)
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Proof. See Appendix A.4.

Corollary 1. (Equivalent fixed-terminal-time game to the time-invariant SCCIP)

ϑ±
1 ≡ ϑ̃±

1 , (3.34)

where ϑ+
1 is (3.1) subject to (3.2), ϑ−

1 is (3.3) subject to (3.4), ϑ̃+
1 is (3.26) subject to (3.27),

and ϑ̃−
1 is (3.28) subject to (3.29).

Proof. Let the right hand terms in (3.32) and (3.33) be denoted as W±
1 . By Corollary

5.3 in [4], ϑ̃±
1 (t, x) = min z subject to W±

1 (t, x, z) ≤ 0. This fact and Lemma 1 allow us to
conclude (3.34).

This corollary remarks that the free-terminal-time games (ϑ±
1 ) can be converted to fixed-

terminal-time games (ϑ̃±
1 ), in which only control signals and strategies have to be specified,

since the terminal time is fixed.
In Lemma 3, V ±

1 is converted to a fixed-terminal-time game, whose corresponding HJ
PDE has been investigated in [4]. This allows us to derive an HJ PDE for the time-invariant
SCCIP in Theorem 2.

Theorem 2. (HJ PDE for SCCIP in time-invariant case) Consider SCCIP for the
time-invariant case. For all (t, x, z) ∈ [0, T ] × Rn × R, V ±

1 in (3.5) and (3.6) is the unique
viscosity solution to the HJ PDE:

max
{
c(x)− V ±

1 (t, x, z),
∂V ±

1

∂t
−min {0, H̄±(x, z,

∂V ±
1

∂x
,
∂V ±

1

∂z
)}
}

= 0 (3.35)

in (0, T )×Rn ×R, where H̄+ and H̄− are defined in (3.19) and (3.20), respectively, without
the time dependency, and

V ±
1 (T, x, z) = max{c(x), g(x)− z} (3.36)

on {t = T} × Rn × R.

Proof. See Appendix A.5.
Note that the Hamiltonian H̄± in (3.35) is time-invariant.

We observe that the right two terms in the HJ PDE (3.18) max{g − z − V ±
1 ,

∂V ±
1

∂t
− H̄±}

become
∂V ±

1

∂t
−min{0, H̄±} in (3.35). Note that these two terms are not algebraically equal.

HJ PDE for SCCIP (optimal control setting)

In this chapter, we solve SCCIP in the optimal control problem setting: for given initial time
and state (t, x),

ϑ1(t, x) := inf
α∈A(t)

max
τ∈[t,T ]

∫ τ

t

L(s, x(s), α(s))ds+ g(τ, x(τ)), (3.37)



3.1. STATE-CONSTRAINED CONTROL-INVARIANCE PROBLEMS 14

subject to c(s, x(s)) ≤ 0, s ∈ [t, τ ], (3.38)

where x solves

ẋ(s) = f(s, x(s), α(s)), s ∈ [t, T ], and x(t) = x. (3.39)

Chapters 3.1.2 and 3.1.2 present the HJ PDEs for SCCIP in the zero-sum game setting. By
removing player D in the zero-sum game, we can get HJ PDEs for SCCIP in the optimal
control setting. Thus, Theorem 1 and 2 imply the following remark.

Remark 1. (HJ PDE for SCCIP in optimal control setting) Let V1 be the unique
viscosity solution to the HJ PDE:

max
{
c(t, x)−V1(t, x, z), g(t, x)− z − V1(t, x, z),

∂V1
∂t
− H̄(t, x, z,

∂V1
∂x

,
∂V1
∂z

)
}

= 0 (3.40)

in (0, T )× Rn × R, where H̄ : [0, T ]× Rn × R× Rn × R→ R

H̄(t, x, z, p, q) := max
a∈A
−p · f(t, x, a) + qL(t, x, a), (3.41)

and

V1(T, x, z) = max{c(T, x), g(T, x)− z} (3.42)

on {t = T} × Rn × R. Then,

ϑ1(t, x) = min z subject to V1(t, x, z) ≤ 0, (3.43)

where ϑ1 is (3.37) subject to (3.38).
If SCCIP is time-invariant, V1 is the unique viscosity solution to the HJ PDE:

max
{
c(x)− V1(t, x, z),

∂V1
∂t
−min {0, H̄(x, z,

∂V1
∂x

,
∂V1
∂z

)}
}

= 0 (3.44)

in (0, T )× Rn × R, where H̄ is defined in (3.41) with ignoring the time dependency, and

V1(T, x, z) = max{c(x), g(x)− z} (3.45)

on {t = T} × Rn × R.

3.1.3 Optimal Policy and Strategy

The optimal control signal or strategy for SCCIP specified by the HJ PDEs in Chapter 3.1.2.
This chapter utilizes the HJ PDEs in Theorem 1, and the method in this chapter can be
simply extended for the other HJ PDEs in Theorems 2, and Remarks 1.

Recall V ±
1 defined in (3.5), (3.6), and suppose V ±

1 is computed from the HJ PDEs in
Theorems 1.

Lemmas 3 imply the following remark.
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Remark 2 (Find ϑ±
1 from V ±

1 ). For initial time t = 0 and state x ∈ Rn,

(x∗(0), z∗(0)) = (x, ϑ±
1 (0, x)), (3.46)

where (x∗, z∗) is an optimal trajectory for V ±
1 .

With the initial augmented state (x∗(0), z∗(0)), the optimal control and strategy can be
found at (t, x∗(t), z∗(t)), and the optimal state trajectory is also updated by solving the ODE
(3.9).

Define H̃±
1 : A×D → R for a fixed (t, x, z) ∈ (0, T )× Rn × R

H̃±
1 (a, d) :=−DxV

±
1 (t, x, z) · f(t, x, a, d)

+DzV
±
1 (t, x, z)L(t, x, a, d),

(3.47)

thus

H̄+(t, x, z,DxV
+
1 , DzV

+
1 ) = max

a∈A
min
d∈D

H̃+
1 (a, d), (3.48)

H̄−(t, x, z,DxV
−
1 , DzV

−
1 ) = min

d∈D
max
a∈A

H̃−
1 (a, d), (3.49)

where H̄+ and H̄− are defined in (3.19) and (3.20), respectively. In this chapter, we omit
(t, x, z) to simplify notation. Using the notation with H̃±

1 (3.47), the HJ PDE (3.18) for V +
1

is equal to

max{c− V +
1 , g − z − V +

1 ,
∂V1
∂t

+

−max
a∈A

min
d∈D

H̃+
1 (a, d)} = 0. (3.50)

The HJ PDE implies that optimal control signal or strategy is determined by the gradient
information at the current time and state (t, x, z), but the past history of the state trajectory
and optimal control signals is not necessary. For example, in V +

1 , α∗(t) = a∗, δ∗[α∗](t) = d∗
where a∗ and d∗ are solutions to

max{c− V +
1 , g − z − V +

1 ,
∂V1
∂t

+

− H̃+
1 (a, d)} = 0. (3.51)

at (t, x, z). In other words, it is sufficient to specify optimal controls for player A and D in
(0, T ) × Rn × R to generate the optimal control signal or strategy. The maxmini solution
(a∗, d∗) for the Hamiltonian H̄+

V (maxa∈A mind∈D H̃
+
1 (a, d)) is certainly optimal, but there are

more solutions. Similarly, for V −
1 , any pair of (a∗, d∗) satisfying the corresponding HJ PDE

is optimal.
In the HJ PDE (3.50) (or (3.18)) for V ±

1 , we have three terms: c− V ±
1 , g − z − V ±

1 , or
∂V ±

1

∂t
− H̄±, and, at least, one of these terms is zero. By considering which term is bigger

or smaller among the three terms, all possible optimal controls for ϑ±
1 (V ±

1 ) is derived in
Remark 3.
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Although (a∗, d∗) satisfying the HJ PDE is optimal, we need to consider the order of
players: player A plays first in V +

1 but player D plays first in V −
1 . In V +

1 , we first find a set
of optimal control for player A, and then investigate a set of optimal control for player D
when player A applies its optimal control. On the other hand, in V −

1 , we first investigate a
set of optimal control for player D, and then find a set of optimal control for player A after
applying an optimal control of player D. Based on this argument, Remark 3 presents optimal
controls for V +

1 according to classification, and optimal controls for V −
1 can be analogously

extended.

Remark 3 (Optimal controls for V +
1 ). Fix (t, x, z) ∈ (0, T )× Rn × R.

Optimal controls for ϑ+
1 (V +

1 ) are the following:

1. Case 1: max{c− V +
1 , g − z − V +

1 } ≥ ∂V1

∂t

+ − H̄+

a∗ ∈ {a ∈ A |
∂V1
∂t

+

−min
d∈D

H̃+
1 (a, d) ≤ 0}, (3.52)

d∗ ∈ D; (3.53)

2. Case 2: max{c− V +
1 , g − z − V +

1 } < ∂V1

∂t

+ − H̄+

a∗ ∈ arg max
a∈A

min
d∈D

H̃+
1 (a, d), (3.54)

d∗ ∈ arg min
d∈D

H̃+
1 (a∗, d). (3.55)

3.1.4 Numerical Computation for the Hamilton-Jacobi PDE

In this chapter, we present a numerical algorithm based on level set methods [78] to compute
the solutions to the two HJ PDEs for SCCIP. Algorithm 1 deals with the HJ PDEs for SCCIP
((3.18), (3.35), (3.40), (3.44)). Level set methods have been utilized to solve a variety of HJ
formulations [79, 46, 69].

Algorithm 1 solves the HJ PDE (3.18) in two steps. At line 6 in Algorithm 1, we first

compute the HJ PDE (
∂V ±

1

∂t
− H̄±(t, x, z,

∂V ±
1

∂x
,
∂V ±

1

∂z
) = 0), and line 7 in Algorithm 1 replaces

V ±
1 by one of c(t, x), g(t, x)− z or itself to satisfy the HJ PDE (3.18).

For solving the HJ PDE at step 1, the Lax-Friedrichs scheme [37] is utilized on the temporal
discretization {t0 = 0, ..., tK = T} and the spatial discretization {(x0, z0), ..., (xN , zN)} ⊂
Rn × R:

V ±
1 (tk, xi, zi) = V ±

1 (tk+1, xi, zi)−∆k
ˆ̄H±(ϕ+

x , ϕ
−
x , ϕ

+
z , ϕ

−
z ), (3.56)

where ∆k = tk+1 − tk, (ϕ±
x , ϕ

±
z ) are numerical approximation for (

∂V ±
1

∂x
,
∂V ±

1

∂z
) (gradients with

respect to (x, z) at (tk+1, xi, zi)), and

ˆ̄H±(ϕ+
x , ϕ

−
x , ϕ

+
z , ϕ

−
z ) = H̄±(tk+1, xi, zi,

ϕ+
x + ϕ−

x

2
,
ϕ+
z + ϕ−

z

2
)− αx ·

ϕ+
x + ϕ−

x

2
− αz

ϕ+
z + ϕ−

z

2
,

(3.57)
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where Ĥ± are defined in (3.19) and (3.20), and αx = (αx1 , ..., αxn) (αxi
= max|DpiH̄

±|)
and αz(= max|DqH̄

±|) are dissipation coefficients for numerical viscosity, based on the
partial derivatives of H̄± [85]. The fifth-order accurate HJ WENO (weighted essentially
nonoscillatory) method [85] is used for the gradient ϕ±

x , ϕ
±
z . In (3.56), the first-order Euler

method is used for the temporal partial derivative, but higher-order methods, such as third-
order accurate TVD (total variation diminishing) Runge-Kutta (RK) [94] can be used. [85]
provided the empirical observation that level set methods are sensitive to spatial accuracy,
thus high-order scheme for spatial derivatives is desired, but high-order approximation for
temporal derivatives does not significantly increase the accuracy.

For the time-invariant SCCIP, line 9 in Algorithm 1 solves the HJ PDE (3.35) whose
Hamiltonian has the minimum with 0 operation. Then, line 10 in Algorithm 1 updates V ±

1

with the maximum between c and itself to satisfy the HJ PDE (3.35) without considering
g − z term.

For SCCIP in optimal control setting, Algorithm 1 also works with utilizing the correct
Hamiltonian H̄ (3.41) instead of H̄± ((3.19) and (3.20)).

Algorithm 1 Computing the solution V ±
1 or V1 to the HJ PDEs for SCCIP in the zero-sum

game and optimal control settings. This algorithm deals with the four HJ PDEs: (3.18),
(3.35), (3.40), and (3.44).

1: Input: the temporal discretization: {t0 = 0, ..., tK = T}, the spatial discretization:
{(x0, z0), ..., (xN , zN)}

2: Output: V ±
1 (or V1)

3: V ±
1 (or V1)(T, xi, zi)← max{c(T, xi), g(T, xi)− zi},∀i

4: for k ∈ {K − 1, ..., 0} do
5: case solving the HJ PDEs (3.18) or (3.40)

6: V ±
1 (or V1)(tk, xi, zi)← V ±

1 (or V1)(tk+1, xi, zi)−∆k
ˆ̄H±(or ˆ̄H)(ϕ+

x , ϕ
−
x , ϕ

+
z , ϕ

−
z ),∀i

7: V ±
1 (or V1)(tk, xi, zi)← max{c(tk, xi), g(tk, xi)− zi, V ±

1 (or V1)(tk, xi, zi)},∀i
8: case solving the HJ PDEs (3.35) or (3.44)
9: V ±

1 (or V1)(tk, xi, zi)← V ±
1 (or V1)(tk+1, xi, zi)
−∆k min{0, ˆ̄H±(or ˆ̄H)(ϕ+

x , ϕ
−
x , ϕ

+
z , ϕ

−
z )},∀i

10: V ±
1 (or V1)(tk, xi, zi)← max{c(tk, xi), V ±

1 (or V1)(tk, xi, zi)},∀i

3.1.5 Example

In this example, we solve a zero-sum game for two ponds, as shown in Figure 3.2. This
example is motivated by the water system in [26].

Precipitation on pond 1 increases the water level of pond 1, and pond 1 (player A) wants
to minimize the highest water level in the time horizon (1 s) by controlling amount of outflow
to pond 2. We assume that the water level increasing rate on pond 1 due to the precipitation
is unknown but bounded by 0 and 10 m/s. The precipitation is considered as player D. These
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15 m

5 m

1 m

𝑥"

𝑥#

pond 1

pond 2

Figure 3.2: Water system with two ponds.

numbers and units can be easily changed to realistic problems. We determine an optimal
control signal and strategy even in the worst behavior of player D.

In the water system, we have two states: x1 and x2 represent the water level of pond 1
and 2. The state trajectories are solving the following dynamics:

ẋ1(s) = δ(s)−
√

2gx1(s)α(s),

ẋ2(s) = 0.5
√

2gx1(s)α(s)− 0.5x2(s),
(3.58)

where α(s) ∈ A = [0, 1], δ(s) ∈ D = [0, 10], and g is the gravitational constant: 9.81 m/s2.
In the dynamics for x1, the first term δ is by the precipitation (player D), and the second
term

√
2gx1α is the water level decreasing rate by pond 1 (player A). The term

√
2gx1 is by

Bernoulli’s equation, and pond 1 controls the area of outflows (α) between 0 and 1. We set
the bottom area of pond 2 is twice bigger than pond 1, thus the dynamics for x2 contains
0.5
√

2gx1α. Also, we assume that pond 2’s water is used for drinking water, which causes a
decreasing rate 0.5x2.

The dynamics (3.58) is not Lipschitz at x1 = 0. To avoid this, we approximate
√

2gx1
with a sinusoidal function 4.82 sin(1.17x1) if x1 is less than 1. This sinusoidal-approximate
function has the same value and first derivative at x1 = 1:

√
2g ≃ 4.82 sin(1.17) and√

g/2 ≃ 4.82 ∗ 1.17 ∗ cos(1.17). The approximated (Lipschitz) dynamics are

ẋ1(s) = δ(s)−

{√
2gx1(s)α(s), x1(s) ≥ 1,

4.82 sin(1.17x1(s))α(s), x1(s) < 1,

ẋ2(s) =

{
0.5

√
2gx1(s)α(s), x1(s) ≥ 1,

2.41 sin(1.17x1(s))α(s), x1(s) < 1,
− 0.5x2(s),

(3.59)
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We solve the two zero-sum games: the upper value function is

ϑ+
1 (0, x1, x2),= sup

η∈H(0)

inf
α∈A(0)

max
τ∈[0,1]

x1(τ), (3.60)

subject to max{|x1(s)− 7.5|−7.5, |x2(s)− 3|−2} ≤ 0, (3.61)

where A = [0, 1], D = [0, 10], A(0) = {[0, 1] → A | ∥α∥L∞(0,1)< ∞}, D(0) = {[0, 1] →
D | ∥δ∥L∞(0,1)<∞}, H(0) is a set of non-anticipative strategies for player D (pond 2) as in
(2.3), and (x1, x2) solves (3.59) for (α, η[α]); and the lower value function is

ϑ−
1 (0, x1, x2),= inf

ζ∈Z(0)
sup

δ∈D(0)

max
τ∈[0,1]

x1(τ), (3.62)

subject to max{|x1(s)− 7.5|−7.5, |x2(s)− 3|−2} ≤ 0, (3.63)

where Z(0) is a set of non-anticipative strategies for player A (pond 1) as in (2.4), and (x1, x2)
solves (3.59) for (ζ[δ], δ). The state constraint implies that the water level of pond 1 has to
be between 0 and 15 m and the one of pond 2 is between 1 and 5 m. In these games, pond
1 (player A) wants to minimize the worst water level of pond 1 in the time horizon while
satisfying the state constraint for preventing flood in pond 1 and 2.

We will solve the HJ PDE (3.18) for V ±
1 corresponding to ϑ±

1 ((3.61) or (3.63)). We have
the Hamiltonian

H̄+(t, x, z, p, q) = max
a∈A

min
d∈D
−p1d+ 0.5p2x2

+

{
(p1 − 0.5p2)

√
2gx1a if x1 ≥ 1

(p1 − 0.5p2)4.82 sin(1.17x1)a if x1 < 1

=

{
−10p1 if p1 ≥ 0

0 if p1 < 0
+ 0.5p2x2

+


(p1 − 0.5p2)

√
2gx1 if

p1 − 0.5p2 ≥ 0

x1 ≥ 1

(p1 − 0.5p2)4.82 sin(1.17x1) if
p1 − 0.5p2 ≥ 0

x1 < 1

0 if p1 − 0.5p2 < 0

= H̄−(t, x, z, p, q) (3.64)

where x = (x1, x2) ∈ R2 and p = (p1, p2) ∈ R2. (3.64) implies

V +
1 ≡ V −

1 ≡ V ±
1 and ϑ+

1 ≡ ϑ−
1 ≡ ϑ±

1 . (3.65)

We use V ±
1 to denote the same value functions V +

1 and V −
1 .

The red curvature in Figure 3.3 (a) shows the zero-level set of V ±
1 (0, x1, x2), numerically

computed by Algorithm 1. This algorithm is programmed by utilizing the level set
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toolbox [78] and the helperOC toolbox [30] in Matlab, and this simulation is carried out
on a laptop with a 2.8 GHz Quad-Core i7 CPU and 16 GB RAM. Each of x1, x2, and z
axis has 81 discretization points, and the time interval [0, 1] is discretized with 201 points.
The computation time for V ±

1 is 237 s. In Figure 3.3 (a), the value of V ±
1 inside of the red

curvature is negative, on the other hand, the value outside of the curvature is positive.
This example is time-invariant, so both HJ PDEs in (3.18) and (3.35) can be utilized. In

this example, we solve the HJ PDE (3.18).
Lemma 1 describes how to compute ϑ±

1 from the zero-level set of V ±
1 , which is illustrated

in Figure 3.3. Figure 3.3 (a) illustrates the intersection of the zero-level set of V ±
1 and each

z-level plane, and Figure 3.3 (b) shows these intersections in the state space, (x1, x2): the
z-level sets on the zero-level set of V ±

1 . As illustrated in Figure 3.3 (b), the lower z-level is
achieved in the smaller region in (x1, x2). In this example, as z-level is increasing, the inner
area of the z-level set on the subzero-level set of V ±

1 is increasing and also converging at the
z-level of 15, which is the outer curvature in Figure 3.3 (b). For (x1, x2) outside of the outer
curvature indicated with z ≥ 15, there is no control signal or strategy for pond 1 (player
A) to satisfy the state constraint, which implies that ϑ±

1 (0, x1, x2) is infinity. On the other
hand, for (x1, x2) on a unique z-level set, the z-level is equal to ϑ±

1 . For example, the z-level
set of 6 is the only z-level set passing through (2.6, 2). In this case, ϑ±

1 (0, 2.6, 2) = 6. On
the other hand, for (x1, x2) on multiple z-level sets, the minimum value of z-level is ϑ±

1 . For
example, (0.05, 2) is on the z-level sets of any number greater than or equal to 4.5. In this
case, ϑ±

1 (0, 0.05, 2) is 4.5 since 4.5 is the minimum z-level that contains the point (0.05, 2).
Using the value function V ±

1 and ϑ±
1 , the method presented in Chapter 3.1.3 provides

a state trajectory and an optimal control and strategy for the two players (pond 1 and
the precipitation). Among multiple solutions for optimal control and strategy presented in
Remark 3, we choose

a∗ ∈ arg max
a∈A

min
d∈D

H̃+
1 (a, d),

d∗ ∈ arg min
d∈D

H̃+
1 (a∗, d),

(3.66)

which satisfies (3.52) to (3.55) since H̄+ = H̄− and H̃+
1 = H̃−

1 , where H̃±
1 is equal to

−∂V ±
1

∂x
· f +

∂V ±
1

∂z
L as defined in (3.47).

Figure 3.4 shows state trajectories for two different initial states: (x1, x2) = (10, 4) and
(2, 1.1). As shown in Figure 3.4 (a), for the initial state (10, 4), x2 hits the boundary of the
state constraint: x2(1) = 5, and x1 is maximized at t = 1. Since the initial water levels of the
two ponds are high, the precipitation (player D) tries to increase the water level of pond 1
for all time, but player A tries to balance the water levels of the two ponds. On the other
hand, for the initial state (2, 1.1), Figure 3.4 (b) shows that x2 strictly satisfies the state
constraint [1, 5]. x1 is maximized at t = 0.015 and increasing for the later time. Since the
initial water levels of the two ponds are low, the precipitation (player D) tries to violate
the state constraint by not increasing the water level of pond 1. However, player A tries to
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Figure 3.3: (a) The zero-level set of V ±
1 is shown in this figure. The value of V ±

1 inside of the
curvature is negative, but the value is positive outside. The blue planes are z-level planes of 4,
6, 8, 10, 12, 14, and 16. (b) The z-level sets are shown in (x1, x2)-space. The z-level sets for
z ≥ 15 are the same (the outer curvature). The z-level sets also show ϑ±

1 by Lemma 1. For
example, for (1.60, 2.85) on the z-level set of 4, ϑ±

1 is 4. On the other hand, consider (0.11, 2)
on multiple z-level sets from 4.22 to any greather levels, for which ϑ±

1 is the minimum z-level
that contains the point: ϑ±

1 (0.05, 2) = 4.22.

balance the two ponds’ water level so that all ponds have more water than the minimum
levels.

As discussed in Chapter 3.1.4, there are some numerical issues in Algorithm 1. First, we
observe that (3.66) provides a bang-bang control, thus the state trajectories are not smooth
as shown in Figure 3.4. This happens due to frequent sign change of the gradient along the
time horizon. Second, the numerical error on V ±

1 causes inaccurate ϑ±
1 by Lemma 1, which



3.2. STATE-CONSTRAINED REACH-AVOID PROBLEMS 22

0 0.2 0.4 0.6 0.8 1
8

10

12

14

4

4.5

5

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

1

1.2

1.4

1.6

(b)

Figure 3.4: State trajectories by applying an optimal control signal and strategy for two
players (pond 1 and the precipitation) where the initial states are (a) (x1, x2) = (10, 4) and
(b) (x1, x2) = (2, 1.1).

could potentially cause unsafety even though the violation of the state constraint might be
smaller for the smaller grid size. In practice, we suggest having a safety margin to the state
constraint: for example, use c(s, x(s)) + ϵ ≤ 0 for small ϵ > 0 instead of c(s, x(s)) ≤ 0.

3.2 State-Constrained Reach-Avoid Problems

This chapter is based on the work presented in [69], which is joint work with Alexander
Keimer, Alexandre Bayen, and Claire Tomlin.

The organization of this chapter is as follows. Chapter 3.2.1 introduces SCRAP. Chapter
3.2.2 proposes two HJ PDEs for SCRAP in time-varying and time-invariant cases. Chapter
3.2.3 presents optimal controls and strategies. Chapter 3.2.4 presents numerical algorithms
to compute the solution to the HJ PDE for SCRAP. Chapter 3.2.5 demonstrates an example
for SCRAP and the HJ analysis.

3.2.1 Problem Definition

State-constrained reach-avoid problem (SCRAP): for given initial time and state (t, x),
solve

ϑ+
2 (t, x) := sup

η∈H(t)

inf
α∈A(t)

min
τ∈[t,T ]

∫ τ

t

L(s, x(s), α(s), η[α](s))ds+ g(τ, x(τ)), (3.67)

subject to c(s, x(s)) ≤ 0, s ∈ [t, τ ], (3.68)
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where x solves (2.1) for (α, η[α]); and solve

ϑ−
2 (t, x) := inf

ζ∈Z(t)
sup

δ∈D(t)

min
τ∈[t,T ]

∫ τ

t

L(s, x(s), ζ[δ](s), δ(s))ds+ g(τ, x(τ)), (3.69)

subject to c(s, x(s)) ≤ 0, s ∈ [t, τ ], (3.70)

where x solves (2.1) for (ζ[δ], δ).

3.2.2 Hamilton-Jacobi PDEs for SCRAP

Chapter 3.2.2 presents two HJ PDEs for the time-varying and time-invariant cases. In
addition, this chapter presents two HJ PDEs for SCRAP and the time-invariant SCRAP in
the optimal control setting.

For SCRAP in the zero-sum game and optimal control settings, the corresponding HJ
PDEs have been presented in [69]. This chapter first presents this previous work and then
proposes HJ PDEs for the time-invariant version.

HJ PDE for SCRAP

This chapter provides an HJ formulation for SCRAP: solve ϑ+
2 in (3.67) subject to (3.68) and

ϑ−
2 in (3.69) subject to (3.70). For (t, x, z) ∈ [0, T ] × Rn × R, define the augmented value

functions corresponding to the upper and lower value functions (ϑ±
2 ):

V +
2 (t, x, z) := sup

η∈H(t)

inf
α∈A(t)

J2(t, x, z, α, η[α]), (3.71)

V −
2 (t, x, z) := inf

ζ∈Z(t)
sup

δ∈D(t)

J2(t, x, z, ζ[δ], δ), (3.72)

where cost J2 : (t, x, z, α, δ)→ R is defined as follows:

J2(t, x, z, α, δ) := min
τ∈[t,T ]

max

{
max
s∈[t,τ ]

c(s, x(s)),

∫ τ

t

L(s, x(s), α(s), δ(s))ds+ g(τ, x(τ))− z
}
,

(3.73)

where x solves (2.1) for (α, δ). Theorem 3 proved that, for all (t, x) ∈ [t, T ]× Rn,

ϑ±
2 (t, x) = min z subject to V ±

2 (t, x, z) ≤ 0, (3.74)

and V ±
2 are the unique viscosity solutions to the HJ PDEs in Theorem 4.

Theorem 3 (Equivalence of value functions). Suppose Assumption 1 holds. The SCRAP
costs ϑ±

2 and V ±
2 ((3.71) or (3.72)) satisfy for given (t, x) ∈ (0, T )× Rn

ϑ±
2 (t, x) = min z subject to V ±

2 (t, x, z) ≤ 0. (3.75)
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Proof. See Appendix B.1.
For the upper value function V +

2 , we consider a trajectory z+ : [t, T ] → R solving the
ODE {

ż+(s) = −L(s, x(s), α(s), η[α](s)), s ∈ [t, T ],

z+(t) = z.
(3.76)

Then, we have

V +
2 (t, x, z) := sup

η∈H(t)

inf
α∈A(t)

min
τ∈[t,T ]

max

{
max
s∈[t,τ ]

c(s, x(s)), g(τ, x(τ))− z+(τ)

}
. (3.77)

For the lower value function V −
2 , we consider a trajectory z− : [t, T ]→ R solving the ODE{

ż−(s) = −L(s, x(s), ζ[δ](s), δ(s)), s ∈ [t, T ],

z−(t) = z.
(3.78)

Then, we have

V −
2 (t, x, z) := inf

ζ∈Z(t)
sup

δ∈D(t)

min
τ∈[t,T ]

max

{
max
s∈[t,τ ]

c(s, x(s)), g(τ, x(τ))− z−(τ)

}
. (3.79)

With the augmented state (x, z), similar to Chapter 3.1.3, we utilize [74, 46] to find the
corresponding HJ PDE for V ±.

Theorem 4. (HJ PDE for SCRAP) For all (t, x, z) ∈ [0, T ]× Rn × R, V ±
2 in (3.71) and

(3.72) are the unique viscosity solutions to the HJ PDEs:

max
{
c(t, x)− V ±

2 (t, x, z),min {g(t, x)− z − V ±
2 (t, x, z), V ±

2,t − H̄±(t, x, z,DxV
±
2 , DzV

±
2 )}

}
= 0

(3.80)

in (0, T )× Rn × R, where H̄± are defined in (3.19) and (3.20), and

V ±
2 (T, x, z) = max{c(T, x), g(T, x)− z} (3.81)

on {t = T} × Rn × R.

If H̄+ ≡ H̄− in coincidence, V + ≡ V −.
We observe that the difference between the two types of HJ PDEs for V ±

1 and V ±
2 is that

the minimum operation in (3.80) for V ±
2 is replaced by the maximum operation in (3.18).

This is from the difference between ϑ±
1 for SCCIP and ϑ±

2 for SCRAP: ϑ±
1 in (3.1) and (3.3)

have maxτ operation, and ϑ±
2 in (3.67) and (3.69) have minτ operation.



3.2. STATE-CONSTRAINED REACH-AVOID PROBLEMS 25

HJ PDE for SCRAP in time-invariant case

Through similar analysis to that in Chapter 3.1.2, this chapter derives the HJ PDEs for the
time-invariant SCRAP. For SCCIP, the freezing control signal µ : [t, T ] → [0, 1] allows to
convert to the fixed-terminal-time problems by replacing the maximum over τ operation in
SCCIP to the supremum over the freezing control signal or strategy. Instead, SCRAP is
specified in terms of the minimum over τ operation, which will be replaced by the infimum
over the freezing control signal or strategy.

For the notations of the freezing control signal and relevant strategies, the same notations
in Chapter 3.1.2 is used. M is the set of freezing control signals

M(t) := {µ : [t, T ]→ [0, 1] | ∥µ∥L∞(t,T )<∞}. (3.82)

NA is a set of non-anticipative strategies for the freezing control to player A, and Z̃ is a set
of non-anticipative strategies for player A to player D and the freezing control:

NA(t) := {νA : A(t)→M(t) | ∀s ∈ [t, T ], α, ᾱ ∈ A(t), if α(τ) = ᾱ(τ) a.e. τ ∈ [t, s],

then νA[α](τ) = νA[ᾱ](τ) a.e. τ ∈ [t, s]}, (3.83)

Z̃(t) := {ζ̃ : D(t)×M(t)→ A(t) | ∀s ∈ [t, T ], δ, δ̄ ∈ D(t), µ, µ̄ ∈M(t),

if δ(τ) = δ̄(τ), µ(τ) = µ̄(τ) a.e. τ ∈ [t, s], then ζ̃[δ, µ](τ) = ζ̃[δ̄, µ̄](τ) a.e. τ ∈ [t, s]}.
(3.84)

Consider two fixed-terminal-time problems:

ϑ̃+
2 (t, x) := sup

η̃∈H̃(t)

inf
α∈A(t),µ∈M(t)

∫ T

t

L(x(s), α(s), η̃[α, µ](s))µ(s)ds+ g(x(T )), (3.85)

subject to c(x(s)) ≤ 0, s ∈ [t, T ], (3.86)

where x solves (3.22) for (α, η̃[α, µ], µ), and

ϑ̃−
2 (t, x) := inf

ζ∈Z(t),νB∈NB(t)
sup

δ∈D(t)

∫ T

t

L(x(s), ζ[δ](s), δ(s))νB[δ](s)ds+ g(x(T )), (3.87)

subject to c(x(s)) ≤ 0, s ∈ [t, T ], (3.88)

where x solves (3.22) for (ζ[δ], δ, νB[δ]).
Recall J̃ in (3.30) as below:

J̃(t, x, z, α, δ, µ) := max { max
s∈[t,T ]

c(x(s)), g(x(T ))− z(T )}. (3.89)

Following similar steps of the proof of Lemma 3, Lemma 4 can be proved.
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Lemma 4. Consider V ±
2 in (3.71) and (3.72). For all (t, x, z) ∈ [0, T ]× Rn × R,

V +
2 (t, x, z) = sup

η̃∈H̃(t)

inf
α∈A(t),
µ∈M(t)

J̃(t, x, z, α, η̃[α, µ], µ), (3.90)

V −
2 (t, x, z) = inf

ζ∈Z(t),
νB∈NB(t)

sup
δ∈D(t)

J̃(t, x, z, ζ[δ], δ, νB[δ]). (3.91)

By combining the HJ formulation for the fixed-terminal-time problems [4] and Lemma 4,
the HJ PDE for the time-invariant SCRAP is derived in Theorem 5. The proof for Theorem
5 is analogous to the proof for Theorem 2.

Theorem 5. (HJ PDE for SCRAP in time-invariant case) Consider SCRAP in the
time-invariant case. For all (t, x, z) ∈ [0, T ]×Rn×R, V ±

2 in (3.71) and (3.72) are the unique
viscosity solutions to the HJ PDEs:

max
{
c(x)− V ±

2 (t, x, z), V ±
2,t −max {0, H̄±(x, z,DxV

±
2 , DzV

±
2 )}

}
= 0 (3.92)

in (0, T )×Rn ×R, where H̄+ and H̄− are defined in (3.19) and (3.20), respectively, without
the time dependency, and

V ±
2 (T, x, z) = max{c(x), g(x)− z} (3.93)

on {t = T} × Rn × R.

In comparison between the HJ PDEs for SCRAP and its time-invariant version, min{g −
z − V ±

2 , V
±
2,t − H̄±} in (3.80) becomes V ±

2,t −max{0, H̄±} in (3.92). Note that the difference
between SCCIP and SCRAP leads to the difference in HJ PDEs for the time-invariant
problems: (3.35) has the term

∂V ±
1

∂t
−min{0, H̄±}, but (3.92) has the term V ±

2,t−max{0, H̄±}.

HJ PDE for SCRAP (optimal control setting)

In this chapter, we solve SCRAP in the optimal control setting: for given initial time and
state (t, x),

ϑ2(t, x) := inf
α∈A(t)

min
τ∈[t,T ]

∫ τ

t

L(s, x(s), α(s))ds+ g(τ, x(τ)), (3.94)

subject to c(s, x(s)) ≤ 0, s ∈ [t, τ ], (3.95)

where x solves (3.39). By removing the contribution of player D in Theorem 4 and 5, we
solve ϑ2 using the HJ PDEs in the following remark.
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Remark 4. (HJ PDE for SCRAP (optimal control setting)) Let V2 be the unique
viscosity solution to the HJ PDE:

max
{
c(t, x)− V2(t, x, z),min {g(t, x)− z − V2(t, x, z), V2,t − H̄(t, x, z,DxV2, DzV2)}

}
= 0

(3.96)

in (0, T )× Rn × R, where H̄ is defined in (3.41), and

V2(T, x, z) = max{c(T, x), g(T, x)− z} (3.97)

on {t = T} × Rn × R. Then,

ϑ2(t, x) = min z subject to V2(t, x, z) ≤ 0, (3.98)

where ϑ2 is (3.94) subject to (3.95).
If SCRAP is time-invariant, V2 is the unique viscosity solution to the HJ PDE:

max
{
c(x)− V2(t, x, z), V2,t −max {0, H̄(x, z,DxV2, DzV2)}

}
= 0 (3.99)

in (0, T )× Rn × R, where H̄ is defined in (3.41) without the time dependency, and

V2(T, x, z) = max{c(x), g(x)− z} (3.100)

on {t = T} × Rn × R.

3.2.3 Optimal Policy and Strategy

The optimal control signal or strategy for SCRAP specified by the HJ PDEs in Chapter 3.2.2.
Lemmas 4 imply the following remark.

Remark 5 (Find ϑ±
2 from V ±

2 ). For initial time t = 0 and state x ∈ Rn,

(x∗(0), z∗(0)) = (x, ϑ±
2 (0, x)), (3.101)

where (x∗, z∗) is an optimal trajectory for V ±
2 .

With the initial augmented state (x∗(0), z∗(0)), the optimal control and strategy can be
found at (t, x∗(t), z∗(t)), and the optimal state trajectory is also updated by solving the ODE
(3.76) or (3.78).

Define H̃±
2 : A×D → R for a fixed (t, x, z) ∈ (0, T )× Rn × R

H̃±
2 (a, d) :=−DxV

±
2 (t, x, z) · f(t, x, a, d) +DzV

±
2 (t, x, z)L(t, x, a, d), (3.102)

thus

H̄+(t, x, z,DxV
+
2 , DzV

+
2 ) = max

a∈A
min
d∈D

H̃+
2 (a, d), (3.103)
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H̄−(t, x, z,DxV
−
2 , DzV

−
2 ) = min

d∈D
max
a∈A

H̃−
2 (a, d), (3.104)

where H̄+ and H̄− are defined in (3.19) and (3.20), respectively. In this chapter, we omit
(t, x, z) to simplify notation. Using the notation with H̃±

2 (3.102), the HJ PDE (3.80) for V +
2

is equal to

max{c− V +
2 ,min{g − z − V +

2 ,
∂V2
∂t

+

−max
a∈A

min
d∈D

H̃+
2 (a, d)}} = 0. (3.105)

The HJ PDE implies that optimal control signal or strategy is determined by the gradient
information at the current time and state (t, x, z). In V +

2 , α∗(t) = a∗, δ∗[α∗](t) = d∗ where a∗
and d∗ are solutions to

max{c− V +
2 ,min{g − z − V +

2 ,
∂V2
∂t

+

− H̃+
2 (a, d)}} = 0. (3.106)

at (t, x, z). In other words, it is sufficient to specify optimal controls for player A and D in
(0, T ) × Rn × R to generate the optimal control signal or strategy. The maxmini solution
(a∗, b∗) for the Hamiltonian H̄+ (maxa∈A mind∈D H̃

+
2 (a, d)) is certainly optimal, but there are

more solutions.

Remark 6 (Optimal controls for V +
2 ). Fix (t, x, z) ∈ (0, T )× Rn × R.

Optimal controls for ϑ+
2 (V +

2 ) are the following:

1. Case 1: c− V +
2 ≥ V +

2,t − H̄+

a∗ ∈ {a ∈ A | V +
2,t −min

b∈B
H̃+

2 (a, b) ≤ 0}, (3.107)

b∗ ∈ B; (3.108)

2. Case 2: g − z − V +
2 ≥ V +

2,t − H̄+ ≥ c− V +
2

a∗ ∈ arg max
a∈A

min
b∈B

H̃+
2 (a, b), (3.109)

b∗ ∈ arg min
b∈B

H̃+
2 (a∗, b). (3.110)

3. Case 3: V +
2,t − H̄+ ≥ max{c− V +

2 , g − z − V +
2 }

a∗ ∈ A, (3.111)

b∗ ∈ {b ∈ B | V +
2,t − H̃+

2 (a∗, b) ≥ 0}. (3.112)

For ϑ−
2 and V −

2 , we can apply similar arguments to find the corresponding optimal controls
and strategies.
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Algorithm 2 Computing the solution V ±
2 or V2 to the HJ PDEs for SCRAP in the zero-sum

game and optimal control settings. This algorithm deals with the four HJ PDEs: (3.80),
(3.92), (3.96), and (3.99).

1: Input: the temporal discretization: {t0 = 0, ..., tK = T}, the spatial discretization:
{(x0, z0), ..., (xN , zN)}

2: Output: V ±
2 (or V2)

3: V ±
2 (or V2)(T, xi, zi)← max{c(T, xi), g(T, xi)− zi},∀i

4: for k ∈ {K − 1, ..., 0} do
5: case solving the HJ PDEs (3.80) or (3.96)

6: V ±
2 (or V2)(tk, xi, zi)← V ±

2 (or V2)(tk+1, xi, zi)−∆k
ˆ̄H±(or ˆ̄H)(ϕ+

x , ϕ
−
x , ϕ

+
z , ϕ

−
z ),∀i

7: V ±
2 (or V2)(tk, xi, zi)← max{c(tk, xi),min{g(tk, xi)− zi, V ±

2 (or V2)(tk, xi, zi)}},∀i
8: case solving the HJ PDEs (3.92) or (3.99)
9: V ±

2 (or V2)(tk, xi, zi)← V ±
2 (or V2)(tk+1, xi, zi)
−∆k max{0, ˆ̄H±(or ˆ̄H)(ϕ+

x , ϕ
−
x , ϕ

+
z , ϕ

−
z )},∀i

10: V ±
2 (or V2)(tk, xi, zi)← max{c(tk, xi), V ±

2 (or V1)(tk, xi, zi)},∀i

3.2.4 Numerical Computation

We can find a numerical algorithm by modifying Algorithm 1 in Chapter 3.1.4. Please see
Chapter 3.1.4 to find details.

3.2.5 Example

The HJ PDE in Theorem 4 can be numerically computed by Algorithm 2 This is programmed
in the level set method toolbox [78] and the helperOC toolbox [30] in Matlab. The
simulation is carried out on a desktop computer with a Core i7-5820K CPU and 128 GB
RAM.

For both the optimal control problem and the game, we demonstrate the same example:
vehicle lane-changing while avoiding obstacles as illustrated in Figure 3.5. In this problem,
the vehicle is two degree-of-motion (DOM) in a two dimensional space and starts at the first
lane. Two trucks (obstacles) are moving along the second lane to the right. Our vehicle
wants to make a right turn at the end of this road, thus needs to change its lane to the third
without collision with the two trucks. At the same time, our vehicle does not want to bother
the traffic on the first lane. If our vehicle cannot move away from the first lane in a short
time, it causes a traffic jam in the first lane. Thus, if the lane changing takes a little time,
our vehicle will stop reaching to the goal and keep the lane.
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Figure 3.5: Illustration of the lane-changing problem.
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Figure 3.6: Optimal control problem with 5 m/s obstacle velocity (vo = 5). ◦ represents the
vehicle at each time, � represents the goal, and the dotted line is the trajectory of the vehicle.
The terminal time is determined 0.47 (s).

Optimal control problem with state constraint

We design the state of the system x = (x1;x2) ∈ R2 where x1 and x2 are horizontal and
vertical position of the vehicle. The state trajectory x(·) follows the dynamics: for s ∈ [t, T ],

ẋ(s) :=

(
ẋ1(s)
ẋ2(s)

)
= α(s) :=

(
α1(s)
α2(s)

)
, s ∈ [t, T ], (3.113)

and x(t) = x is given, where α ∈ A(t) ⊂ R2. Also, the two trucks are horizontally moving
with the constant velocity vo.

We design the following optimal control problem:

inf
α∈A(0)

min
τ∈[0,0.7]

∫ τ

0

1ds+ 2∥x(τ)− xg∥2, (3.114)
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Figure 3.7: Optimal control problem with 10 m/s obstacle velocity (vo = 10). ◦ represents
the vehicle at each time, � represents the goal, and the dotted line is the trajectory of the
vehicle. The terminal time is determined 0.582 (s).

subject to c(s, x(s)) ≤ 0, s ∈ [0, τ ], (3.115)

where x solves (3.113) for α, x(0) = x = (1; 2.5) ∈ R2, and for (t, x) ∈ [0, T ]× Rn

c(t, x) = max{c0(x), c1(t, x), c2(t, x)}, (3.116)

c0(x) = max(−x1, |x2 − 1.5|−1.5),

c1(t, x) = −max(|x1 − vot− 1|−1.5, |x2 − 1.5|−0.25),

c2(t, x) = −max(|x1 − vot− 5|−1.5, |x2 − 1.5|−0.25),

c0 constraints our vehicle on the road, c1 and c2 are for the safety with respect to the two
trucks. The size of the trucks is 3 (m) by 0.5 (m), and the velocity is v0. This size can
be easily changed for realistic sizes. Later, we analyze the behavior of the vehicle for two
cases: v0 is 5 and 10 (m/s). In this problem, the stage cost L(t, x, a) = 1, the terminal cost
g(t, x) = 2∥x− xg∥, the time horizon T = 0.7, the goal position xg = (6; 0.5) ∈ R2, and
A = [1, 15]× [−5, 5] ⊂ R2.

The Hamiltonian in (3.41) is

H̄(t, x, z, p, q) =

{
−p1 + 5|p2|+q, p1 ≥ 0,

−15p1 + 5|p2|+q, p1 < 0,
(3.117)

where p = (p1; p2).
For numerical computations of the HJ PDE in Theorem 4, we discretize each state

coordinate by 81 grid points and time by ∆t = 0.002 satisfying the CFL condition [85].
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Using the toolbox [78] and [30], we approximate V accordingly. Then, we numerically find
ϑ(0, (1; 2.5)) taking advantage of Theorem 3.

By Chapter 3.2.3, the optimal state trajectory and control signal can be chosen by the
gradient of V .

ẋ∗(s) = α∗(s), ż∗(s) = −1, (3.118)

and x∗(0) = (1; 2.5), z∗(0) = ϑ(0, (1; 2.5)), where we denote α∗(s) = (α1∗(s);α2∗(s)), and

α1∗(s) =

{
1, ∂V2

∂t
(s, x∗(s), z∗(s)) ≥ 0,

15, ∂V2

∂x1
(s, x∗(s), z∗(s)) < 0,

(3.119)

α2∗(s) =

{
−5, ∂V2

∂x2
(s, x∗(s), z∗(s)) ≥ 0,

5, ∂V2

∂x1
(s, x∗(s), z∗(s)) < 0.

(3.120)

Figure 3.6 and 3.7 show the results of the optimal control problem for vo = 5 and vo = 10,
respectively. For vo = 5, the vehicle successfully changes the lane through the gap between the
two trucks and reaches the goal position in 0.47 s. For vo = 10, the vehicle also successfully
changes the lane but shows different behavior. It first waits for truck 1 moving forward and
making some space behind truck 1. Then, the vehicle moves behind truck 1 and heads to the
goal. The goal is reached in 0.582 s. It is observed that the vehicle cannot safely pass the
gap of the two trucks when their speed is fast.

In the simulation, the grid size in the time and the state is 351 and 813, respectively.
The computation times are 6.0 and 6.3 minutes for vo = 5 and 10, respectively. Since the
state-time space is discretized, the computational complexity is exponential in the dimension
of the state.

Zero-sum game problem with state constraint

We modify the example in Chapter 3.2.5: we assume that truck 1 does not want our vehicle
to achieve its lane change. Player A is our vehicle, and player B is truck 1. We additionally
add the horizontal position of the center of truck 1, x3, to the state: x := (x1;x2;x3).

For this problem, we design the following zero-sum game problem:

sup
β∈∆(0)

inf
α∈A(0)

min
τ∈[0,0.7]

∫ τ

0

1ds+ 2

∥∥∥∥(x1(τ)
x2(τ)

)
− xg

∥∥∥∥
2

, (3.121)

subject to c(s, x(s)) ≤ 0, s ∈ [0, τ ], (3.122)

where

ẋ1(s) = α1(s), (3.123)

ẋ2(s) = α2(s), (3.124)

ẋ3(s) = vo + δ[α](s), (3.125)
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Figure 3.8: Zero-sum two-player game problem with 5 m/s obstacle velocity (vo = 5). ◦
represents the vehicle at each time, � represents the goal, and the dotted line is the trajectory
of the vehicle. The terminal time is determined 0.576 (s).
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Figure 3.9: Zero-sum two-player game problem with 10 m/s obstacle velocity (vo = 10). ◦
represents the vehicle at each time, � represents the goal, and the dotted line is the trajectory
of the vehicle. The terminal time is determined 0.7 (s).

x(t) = x = (1; 2.5; 1), α(s) = (α1(s);α2(s)), and for (t, x) ∈ [0, T ]× Rn

c(t, x) = max{c0(x), c1(t, x), c2(t, x)}, (3.126)

c0(x) = max(−x1, |x2 − 1.5|−1.5),

c1(x) = −max(|x1 − x3|−1.5, |x2 − 1.5|−0.25),

c2(t, x) = −max(|x1 − vot− 5|−1.5, |x2 − 1.5|−0.25),
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c0 constraints our vehicle on the road, c1 and c2 constraints the safety with respect to the
two trucks. The two trucks are moving on the second lane with a constant velocity v0
along x1-axis. In this problem, L(t, x, a, b) = 1, g(t, x) = 2∥x− xg∥, T = 0.7, xg = (6; 0.5),
A ∈ [1, 15]× [−5, 5], B ∈ [−5, 5].

In this example, the upper and lower Hamiltonians in (3.19) and (3.20) are the same:
H̄± = H̄+ = H̄−.

H±(t, x, z, p, q) =

{
−p1 + 5|p2|−vop3 + 5|p3|+q, p1 ≥ 0,

−15p1 + 5|p2|−vop3 + 5|p3|+q, p1 < 0,
(3.127)

where p = (p1; p2; p3).
For numerical computations of the HJ PDE in Theorem 4, we discretize each state

coordinate by 61 grid points and time by ∆t = 0.002 satisfying the CFL condition [85].
Using the toolbox [78] and [30], we approximate V accordingly. Then, we numerically find
ϑ±(0, (1; 2.5; 1)) taking advantage of Theorem 3.

By Chapter 3.2.3, the strategies for each player can be chosen by the gradient of V ±
2 . For

convenience, we present the strategies for the upper value function V +.

ẋ∗(s) =
(
α1∗(s); α2∗(s); vo + β∗(s)

)
, ż∗(s) = −1, (3.128)

and x∗(0) = (1; 2.5; 1), z∗(0) = ϑ(0, (1; 2.5; 1)), where we denote α∗(s) = (α1∗(s);α2∗(s)), and

α1∗(s) =

{
1,

∂V ±
2

∂x1
(s, x∗(s), z∗(s)) ≥ 0,

15,
∂V ±

2

∂x1
(s, x∗(s), z∗(s)) < 0,

(3.129)

α2∗(s) =

{
−5,

∂V ±
2

∂x2
(s, x∗(s), z∗(s)) ≥ 0,

5,
∂V ±

2

∂x2
(s, x∗(s), z∗(s)) < 0.

(3.130)

δ∗[α∗](s) =

{
5,

∂V ±
2

∂x3
(s, x∗(s), z∗(s)) ≥ 0,

−5,
∂V ±

2

∂x3
(s, x∗(s), z∗(s)) < 0.

(3.131)

Figure 3.8 and 3.9 show the results of the two-player zero-sum game for vo = 5 and
vo = 10, respectively. For vo = 5, the vehicle changes the lane through the gap between the
two trucks and reaches its the goal position in 0.576 s. For vo = 10, the vehicle waits for truck
1 moving forward and then moves behind truck 1 to the goal. The goal is reached in 0.7 s.

We compare the optimal control problems and the games for each v0. For the both case
vo = 5 and vo = 10, the games have a higher terminal time for the optimal control problems.
This is reasonable as truck 1 bothers the goal of the vehicle in the game. In comparison to
the trajectories of the vehicle, for v0 = 5, the vehicle moves closer to truck 2 in the game
rather than in the optimal control problem. For v0 = 10, in the game, truck 1 slows down
its speed to bother the vehicle at the beginning. Particularly at t = 0.3, the vehicle already
passes behind truck 1 as shown in Figure 3.7 (d), but the vehicle still waits for truck 1 moving
forward as shown in Figure 3.9 (d).
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In the simulation, the grid size in the time and the state is 351 and 614, respectively. The
computation times are 183.1 and 182.7 minutes for vo = 5 and 10, respectively. This is about
29 times longer than the computation times for the optimal control problem (6.2 minutes).
This ratio (29) is similar to the ratio of the grid size: 614/813 = 26.1. Here, it is observed
that the computation time is exponentially increasing in the dimension of the state. For the
game problem, nearly 200 GB memory is used including RAM and swap memory. This huge
memory requirement leads to the intractability of the computation for the system whose
dimension is higher than four.

3.3 Computational Complexity

For both SCCIP and SCRAP, the HJ analysis deals with general nonlinear systems and non-
convex state constraints. The solution of HJ PDEs is numerically computed by the level-set or
fast marching methods [85], which require gridding on the state space. Because of the gridding,
HJ analysis suffers from computational complexity that grows exponentially in the system
dimension. In order to alleviate this issue there have been various approaches, including
optimization with approximation techniques [61, 86, 88, 107], control-barrier-function-based
methods [6, 33, 105, 99, 60], geometry-based formulation [87, 77, 25, 91, 15], temporal logic
[71, 43], Hopf-Lax theory [64, 56, 42, 12], and learning-based approaches [32, 101, 89, 45].

In the following two chapters, this dissertation presents two efficient methods. Chapter
4 presents a new Hopf-Lax theory for state-constrained problems. Chapter 5 presents a
reinforcement learning framework for reachability.
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Chapter 4

Hopf-Lax Theory

Hopf-Lax theory is inverse HJ analysis: given an HJ PDE, Hopf-Lax theory provides a
corresponding optimization problem called the Hopf-Lax formula [64, 56, 42, 12], as shown in
Figure 4.1. This formulation is valid where the Hamiltonian of HJ PDEs is convex. This
assumption does not generally hold for zero-sum games, so we deal with optimal control
settings in this chapter.

Similar to solving optimal control problems, Hopf-Lax formulae can be solved by numerical
optimization methods, such as convex optimization or nonlinear programming [19, 84, 51],
and do not require gridding the state space [38, 106, 34, 68]. The computational complexity of
Hopf-Lax formulae depends on numerical methods for convex programming, which is typically
polynomial in the state dimension [38]. Although solving Hopf-Lax formulae is more efficient
than solving HJ PDEs, HJ analysis provides more information than the Hopf-Lax formula.
HJ analysis provides a closed-loop control, but the Hopf-Lax formula provides an open-loop
control. Thus, the Hopf-Lax formula must be computed in real-time if the precomputed
open-loop control drives systems to unexpected states. For real-time computation, Hopf-Lax
theory can incorporate various computationally efficient convex-programming methods [19,
20] and approximation techniques, including receding horizon [39].

We can solve optimal control problems in two steps using Hopf-Lax theory. First, we derive
corresponding HJ PDEs and then Hopf-Lax formulae and compute a numerical solution for
the Hopf-Lax formulae. There are two advantages of solving Hopf-Lax formulae by numerical
optimization methods instead of the optimal control problem. First, Hopf-Lax formulae

optimal control problem HJ PDE
Hopf-Lax formula

(analytic solution to HJ PDEs)

new optimal control problem

HJ analysis
inverse 

HJ analysis

Figure 4.1: Hopf-Lax theory is inverse HJ analysis: given an HJ PDE, Hopf-Lax theory
provides a corresponding optimization problem.
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have broader convexity conditions than optimal control problems for some cases [12, 68].
Convexity is critical to guarantee optimality in the use of numerical optimization methods.
Second, Hopf-Lax formulae have lower-dimensional variables than optimal control problems
for some cases [12, 38, 34].

The above advantages allow Hopf-Lax theory to become an active research field to
accommodate various types of optimal control problems. Hopf-Lax theory has been first
developed for HJ PDEs, whose Hamiltonian has only costate-dependency, relevant to state-
unconstrained optimal control problems whose dynamics only have control-input-dependency
[12, 56]. Later, this theory was extended for HJ PDEs, whose Hamiltonian additionally has
time-and-state-dependency, which is relevant to the time-varying nonlinear system’s optimal
control problem [72, 38, 106, 34]. Furthermore, Hopf-Lax theory has been extended to HJ
PDEs, which are relevant to state-constrained problems [36, 68, 66]. [36] deals with HJ PDEs
whose Hamiltonian has only costate-dependency. This Hopf-Lax formula [36] is a solution to
a particular state-constrained problem, where the solution’s epigraph is the solution to the HJ
PDE corresponding the state-constrained problem. [68, 66] solve state-constrained problems
for nonlinear systems by presenting relevant Hopf-Lax formulae. Particularly, [66] presents
the Hopf-Lax formula for the SCRAP in a time-invariant case: cost functions, dynamics,
and state constraints are time-invariant. Note that the time-varying case refers to problems
whose cost functions, dynamics, and state constraints are time-varying.

Several Hopf-Lax formulae relevant to state-unconstrained problems have been rigorously
proved as the viscosity solution to the corresponding HJ PDEs [12, 106]. On the other hand,
no viscosity theory has been proved for the Hopf-Lax formulae relevant to state-constrained
problems [36, 68, 66].

Organization

This chapter presents Hopf-Lax formulae for three state-constrained problems. Chapters 4.1,
4.2, and 4.3 provide Hopf-Lax formulae for state-constrained general sum problems, SCCIP,
and SCRAP, respectively.

Notations

This paper uses the subscript of ∗ to denote optimality and superscript of ∗ to denote
Legendre-Fenchel transformation. For example, α∗ denotes an optimal control signal, and
H∗ denotes the Legendre-Fenchel transformation of a function H. H∗∗ = (H∗)∗ denotes the
Legendre-Fenchel transformation of the Legendre-Fenchel transformation of a function H.
The mathematical definition of the Legendre-Fenchel transformation will be introduced where
we define particular functions using the transformation.
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4.1 Hopf-Lax Formula for State-Constrained

General-Sum Problems

This chapter is based on the work presented in [65], which is joint work with Claire Tomlin.
This chapter presents a Hopf-Lax formula for state-constrained general-sum problems

(SCGSP). Our formulation convexifies SCGSP to the control space. Thus, the Hopf-Lax
formula is convex under the following conditions for the given SCGSP: (a) the dynamics are
affine in the state; (b) the stage and terminal cost, as well as the state constraints, are convex
in the state. Several gradient-based methods guarantee optimality for convex problems. The
Hopf-Lax formula allows us to find the optimal solution for the classes of problems satisfying
the above conditions even if SCGSP is non-convex.

The organization of this chapter is as follows. Chapter 4.1.1 presents SCGSP. Chapter 4.1.2
proposes the Hopf-Lax formula for SCGSP and presents a numerical algorithm to compute
an optimal state trajectory and control signal. Chapter 4.1.4 presents convexity conditions
for the Hopf-Lax formula. Chapter 4.1.5 provides a numerical example to demonstrate the
proposed Hopf-Lax formula.

4.1.1 State-Constrained Optimal Control Problem

Consider a state trajectory solving (2.1) in optimel control settings.

ẋ(s) = f(s, x(s), α(s)), s ∈ [t, T ], x(t) = x, (4.1)

where (t, x) are the initial time and state, and α(s) ∈ A for all s ∈ [t, T ]. We would like to
solve SCGSP for the dynamic system:

ϑ(t, x) := lim
ϵ→0

ϑϵ(t, x), (4.2)

where

ϑϵ(t, x) := inf
α

∫ T

t

L(s, x(s), α(s))ds+ g(x(T )) (4.3)

subject to c(s, x(s)) ≤ ϵ, s ∈ [t, T ], (4.4)

where x solves (2.1). Here, L : [t, T ] × Rn × A → R is the stage cost, g : Rn → R is the
terminal cost, f : [t, T ] × Rn × A → Rn is the system dynamics, c : [t, T ] × Rn → R is the
state constraint, and α ∈ A(t) is the control signal where A(t) is the set of admissible control
signals:

A(t) := {α : [t, T ]→ A | ∥α∥L∞(t,T )<∞}, (4.5)

and A is a compact subset in Rm. In practice, c(s, ·) represents unsafe regions at s ∈ [t, T ] so
that c(s, x) < 0 for x ∈ Rn away from the unsafe regions, c(s, x) = 0 for x on the boundary
of the unsafe regions, and c(s, x) > 0 for x in the unsafe regions.

Under Assumption 1, we first show the existence of ϑ(t, x) in (4.2).
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Lemma 5. Suppose Assumption 1 holds, ϑ(t, x) : [0, T ]× Rn → R ∪ {∞} exists.

Proof. If ϵ1 > ϵ2 > 0, ϑϵ1(t, x) ≤ ϑϵ2(t, x). Since ϑϵ is monotonically increasing as ϵ is
monotonically decreasing and converging to zero, the limit of ϑϵ exists in R ∪ {∞}.

4.1.2 Hopf-Lax formula and Optimal Control

Based on the Hopf-Lax formula [12], Chapter 4.1.2 proposes a convexifying formulation for
SCGSP, the Hopf-Lax formula. Chapter 4.1.2 builds up mathematical background to prove
the proposed formulation in Chapter 4.1.3.

The Hopf-Lax Formula for the State-Constrained Optimal Control Problem

Consider a control space transformation: for (s, x, a) ∈ [t, T ]× Rn × A,

b = −f(s, x, a) ∈ Rn, (4.6)

where f and A are the dynamics and the control constraint of the system, respectively. For
(s, x), define

B(s, x) := {−f(s, x, a) | a ∈ A}. (4.7)

B(s, x) is compact for all (s, x) since A is compact and f is Lipschitz as in Assumption 1.
Consider a state trajectory solving

ẋ(s) = −β(s), s ∈ [t, T ], x(t) = x,

β(s) ∈ co(B(s, x)), s ∈ [t, T ],
(4.8)

where “co” represents a convex-hull operation.
Based on this control space transformation, Theorem 6 proposes a Lax formula for SCGSP,

which is proved in Chapter 4.1.3.

Theorem 6. (The Hopf-Lax formula for SCGSP) Suppose Assumption 1 holds. For
initial time and state (t, x) ∈ [0, T ]× Rn, define

φ(t, x) := inf
β

∫ T

t

H∗(s, x(s), β(s))ds+ g(x(T )), (4.9)

subject to c(s, x(s)) ≤ 0, s ∈ [t, T ], (4.10)

where x solves (4.8), H : [0, T ]× Rn × Rn → R

H(t, x, p) := max
a∈A
−p · f(t, x, a)− L(t, x, a), (4.11)
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and H∗ is the Legendre-Fenchel transformation (convex conjugate) of H with respect to the
costate p:

H∗(t, x, b) := max
p

[p · b−H(t, x, p)]. (4.12)

Then,

ϑ(t, x) = φ(t, x) in [t, T ]× Rn. (4.13)

Mathematical Formulation and Optimal Control Analysis

Define

Lb(s, x, b) := min
a∈A

L(s, x, a) s.t. f(s, x, a) = −b. (4.14)

Lemma 6. Suppose Assumption 1 holds. Lb in (4.14) and H in (4.11) have the following
properties.

(Lb)∗(s, x, p) = H(s, x, p) in [0, T ]× Rn × Rn, (4.15)

(Lb)∗∗(s, x, b) = H∗(s, x, b) in [0, T ]× Rn × Rn, (4.16)

Dom(H∗(s, x, ·)) = co(B(s, x)). (4.17)

(Lb)∗ and H∗ are the Legendre-Fenchel transformations (convex conjugate) of Lb and H,
respectively, with respect to p for each (s, x). Dom(H∗(s, x, ·)) represents the domain of
H∗(s, x, ·), and co(B(s, x)) represents the convex hull of B(s, x).

Proof. See Appendix C.1.
(4.17) in Lemma 6 implies that the domain of H∗(s, x, ·) contains the domain of Lb(s, x, ·)

for each (s, x). Even though co(B(s, x)) is convex in b ∈ Rn, Dom(H∗(s, ·, ·)) = {(x, b) | b ∈
co(B(s, x))} is generally non-convex in (x, b) ∈ Rn × Rn for each s ∈ [t, T ].

We first state some properties regarding the Legendre-Fenchel transformations in Lemma
2.

Corollary 2 (Decomposition of control and stage cost). Suppose Assumption 1 holds. For
all (s, x) ∈ [0, T ]× Rn and b ∈ co(B(s, x)), there exists a finite bi ∈ B(s, x), ai ∈ A, γi ∈ R
such that

H∗(s, x, b) =
∑
i

γiL
b(s, x, bi) =

∑
i

γiL(s, x, ai), (4.18)

b =
∑
i

γibi, bi = −f(s, x, ai), (4.19)

where Lb(s, x, bi) = L(s, x, ai),
∑

i γi = 1, and γi ≥ 0. Note that A is the control constraint,
and B(s, x) is defined in (4.7).
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Consider any feasible control signal (β) and state (x) trajectories solving the dynamics (4.8).
Corresponding to β and x, Theorem 7 proposes a corresponding control signal (αϵ ∈ A(t))
and approximate state trajectory (xϵ) solving (2.1) such that ∥x − xϵ∥L∞(t,T )< ϵ, and the
difference of the corresponding costs in (4.3) and (4.9) is also bounded by ϵ.

Assume that β is Riemann integrable in (t, T ). For some δ > 0, consider a temporal
discretization: {t0 = t, ...tK = T} such that ∆tk := tk+1− tk < δ,∀k = 0, ..., K− 1. We define
a control signal αϵ ∈ A(t): for k = {0, ..., K − 1},

αϵ(s) = aki , s ∈
[
tk +

i−1∑
j=1

γkj ∆tk, tk +
i∑

j=1

γkj ∆tk

)
, (4.20)

where aki and γki are i-th control and coefficient in Corollary 2 for t = tk, x = x(tk), and
b = β(tk). We also define a state trajectory xϵ : [t, T ]→ Rn solving

ẋϵ(s) = f(s, xϵ(s), αϵ(s)), s ∈ (t, T ), xϵ(t) = x. (4.21)

Theorem 7 states that αϵ in (4.20) and xϵ in (4.21) are control signal and approximate state
trajectory that satisfy (4.22) and (4.23).

Theorem 7. Suppose Assumption 1 holds. For initial time and state (t, x) ∈ [0, T ] × Rn,
consider any feasible control signal β and state trajectory x solving (4.8). Assume that β
is Riemann integrable in [t, T ]. Then, for any ϵ > 0, there exists δ > 0 such that, for any
discretization {t0 = t, ..., tK = T} where |∆tk| < δ, k = 0, ..., K − 1: αϵ in (4.20) and xϵ in
(4.21) satisfy

∥x− xϵ∥L∞(t,T )< ϵ (4.22)

and ∣∣∣∣ ∫ T

t

H∗(s, x(s), β(s))ds+ g(x(T ))−
∫ T

t

L(s, xϵ(s), αϵ(s))ds− g(xϵ(T ))

∣∣∣∣ < ϵ. (4.23)

Proof. See Appendix C.3.

Remark 7 (Optimal control signal). The cost and state trajectory determined by a control
signal β in the Hopf-Lax formula is the same as the ones by the control signal αϵ (4.20) in
SCGSP, as ϵ converges to zero.

4.1.3 Proof of the Hopf-Lax Formula

This chapter proves Theorem 6 using mathematical background in Chapter 4.1.2.
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Proof of Theorem 6. (i) Define functions J and J̄ with the auxiliary variable z ∈ R: for
initial time t ∈ [0, T ], initial state x ∈ Rn, auxiliary variable z ∈ R, control signal α ∈ A(t),

J(t, x, z, α) := max

{
max
s∈[t,T ]

c(s, x(s)),

∫ T

t

L(s, x(s), α(s))ds+ g(x(T ))− z
}
, (4.24)

where x solves (2.1) for α; for initial time t ∈ [0, T ], initial state x ∈ Rn, auxiliary variable
z ∈ R, control signal β ∈ {β | β(s) ∈ co(B(s, x(s)))},

J̄(t, x, z, β) := max

{
max
s∈[t,T ]

c(s, x(s)),

∫ T

t

H∗(s, x(s), β(s))ds+ g(x(T ))− z
}
, (4.25)

where x solves (4.8) for β.
(ii) infα J(t, x, z, α) ≥ infβ J̄(t, x, z, β)

For any feasible state (x) and control (α) trajectories solving (2.1), define a control signal
(β):

β(s) = −f(s, x(s), α(s)) ∈ B(s, x(s)), s ∈ [t, T ].

Then, x and β solve ẋ(s) = −β(s) for s ∈ [t, T ] and x(t) = x. By Lemma 6, L(s, x(s), α(s)) =
Lb(s, x(s), β(s)) ≥ H∗(s, x(s), β(s)) for all s ∈ [t, T ]. This implies that

J(t, x, z, α) ≥ J̄(t, x, z, β) ≥ inf
β
J̄(t, x, z, β).

Since the above inequality holds for all any feasible x and α, we conclude infα J(t, x, z, α) ≥
infβ J̄(t, x, z, β).
(iii) infα J(t, x, z, α) ≤ infβ J̄(t, x, z, β)

For any feasible state (x) and control (β) trajectories solving (4.8), by Theorem 7, there
exists xϵ and αϵ solving (2.1) such that (4.21) and (4.20) hold for any ϵ > 0. Then,

J̄(t, x, z, β) ≥ J(t, x, z, αϵ)−max{1, Lc}ϵ
≥ V (t, x, z)−max{1, Lc}ϵ, (4.26)

where Lc is the Lipschitz constant for c in Assumption 1. Since (4.26) holds for any x, β
solving (4.8) and ϵ > 0, infβ J̄(t, x, z, β) ≥ infα J(t, x, z, α).
(iv) By Theorem 3.1 in [4],

ϑ(t, x) = min z subject to inf
α
J(t, x, z, α) ≤ 0, (4.27)

ϑ̄(t, x) = min z subject to inf
β
J̄(t, x, z, β) ≤ 0. (4.28)

By combining this with (ii) and (iii), we conclude ϑ ≡ ϑ̄.
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Remark 8.

1. The state-constrained optimal control problem (4.2) can be solved by the Hopf-Lax
formula in Theorem 6.

2. Corresponding to an optimal control signal β∗ for the Hopf-Lax formula, Theorem 7
provides an optimal control signal to SCGSP, as ϵ converges to 0. However, the limit
point of αϵ might not exist.

Numerical Algorithm

Algorithm 3 presents a numerical algorithm to compute an optimal state trajectory (x) and
a control signal (α) for the state-constrained problem (4.2) using the Hopf-Lax formula in
Theorem 6.

Algorithm 3 Computing optimal state trajectory (x) and control signal (α) for the state-
constrained problem (4.2) using the Hopf-Lax formula

1: Input: initial time t, initial state x
2: Output: the optimal state (x) and control (α) trajectories
3: Solve ϑ̄ in (4.9) subject to (4.10), and get x∗, β∗
4: On a temporal discretization: {t0 = t, ..., tK = T}, find (aki , b

k
i , γ

k
i ) solving (4.18) and

(4.19) for x = x∗(tk) and s = tk
5: Additionally discretize each temporal interval:

[tk, tk+1) =
⋃
i

[tk +
i−1∑
j=1

γkj∆tk, tk +
i∑

j=1

γkj∆tk) (4.29)

6: Design αϵ
∗ using aki by (4.20) and compute xϵ

∗ by solving the ODE (4.21)

We first numerically compute an optimal state trajectory (x∗) and a control signal (β∗)
for the Hopf-Lax formula in Theorem 6. Choice of methods to solve ϑ̄ in line 3 in Algorithm
3 is open to the users, such as gradient-based methods with temporal discretization [90] or
Pontryagin minimum principle [21]. Then, Theorem 7 is utilized to get a numerical optimal
state (xϵ) and control (αϵ) for the state-constrained problem (4.2), which corresponds line
4-6 in Algorithm 3. Note that, an additional temporal discretization on line 5 provides a
chattering control signal unless β∗(s) ∈ B(s, x∗(s)) for all s.

4.1.4 Convexity Analysis for the Hopf-Lax Formula

We call SCGSP convex if the stage and terminal cost are convex in the state and the control,
the control constraint is convex in the control, the dynamics are affine in the state and
control, and the state constraint is convex in the state. If SCGSP is convex, most temporal
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Table 4.1: Convexity conditions for SCGSP and the Hopf-Lax formula

the state-constrained
the Hopf-Lax formula

optimal control problem
formulation (4.3) subject to (4.4) (4.9) subject to (4.10)

costs
stage cost Lx(s, ·) is convex in x Lx(s, ·) is convex in x

L = Lx(s, x) + La(s, a) La(s, ·) is convex in a See Lemma 8
terminal cost

convex in x convex in x
g

constraints
control constraint

convex
no condition

A See Lemma 9
dynamics function

f = M(s)x+N(s)a+ C(s)
f = M(s)x+ φ(s, a)

f(s, x, a) See Lemma 8 and 9
state constraint

convex in x convex in x
c(s, ·)

discretization methods, such as Euler forward and backward discretization, higher-ordered
Runge-Kutta, provide a convex problem. Thus, gradient-based methods guarantees global
optimality. Pontryagin minimum principle is also sufficient for the global optimality for the
convex optimal control problem [55].

This chapter investigates conditions under which the Hopf-Lax formula is convex but the
given problem is non-convex.

Convexity Analysis for the Hopf-Lax Formula

For convexity analysis, we deal with the systems whose stage cost is in the following form:

L(s, x, a) = Lx(s, x) + La(s, a), (4.30)

where L is the stage cost of SCGSP (4.2). The convexity conditions for the state-constrained
problem ϑ are written in the third column of Table 4.1. The fourth column in Table 4.1
presents a sufficient convexity condition for the Hopf-Lax formula ϑ̄ ((4.9) subject to (4.10)).

We present Lemma 7 that will be used to derive a convexity condition of the stage cost
for the Hopf-Lax formula ((4.9) subject to (4.10)) in Lemma 8.

Lemma 7. Suppose (4.30) holds. Then,

H∗(s, x, b) = Lx(s, x) + (Ha)∗(s, x, b), (4.31)

where H∗ is defined in (4.12),

Ha(s, x, p) := max
a∈A
−p · f(s, x, a)− La(s, a), (4.32)
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(Ha)∗(s, x, b) := max
p
p · b−Ha(s, x, p). (4.33)

Proof. By (4.14),

Lb(s, x, b) = Lx(s, x) + (La)b(s, x, b),

where (La)b(s, x, b) = mina L
a(s, a) subject to f(s, x, a) = −b. By (Lb)∗ ≡ H by Lemma 6

and the definition of H in (4.11),

H(s, x, p) = −Lx(s, x) +Ha(s, x, p),

where Ha(s, x, p) = ((La)b)∗(s, x, p). Then,

H∗(s, x, b) = Lx(s, x) + (Ha)∗(s, x, b).

This shows that the stage cost of the Hopf-Lax formula (H∗) is decomposed into the control-
independent (Lx) and control-dependent ((Ha)∗) parts similar to the stage cost of the
state-constrained problem (4.2) (L) as in (4.30). One observation here is that the control-
independent stage cost of the Hopf-Lax formula (Lx) is exactly the same as that of the
state-constrained problem (Lx).

Corollary 3. If L(s, x, a) = Lx(s, x),

H∗(s, x, b) = L(s, x). (4.34)

Lemma 8 presents the convexity condition for the stage cost of the Hopf-Lax formula.

Lemma 8 (Convexity of the stage cost). Suppose Assumption 1 and (4.30) hold. If Lx(s, ·)
is convex in x ∈ Rn for each s ∈ [t, T ] and the dynamics are in the following form:

f(s, x, a) = M(s)x+ φ(s, a), (4.35)

where f is the dynamics in (4.4) and M(·) is a time-varying linear matrix, then

H∗(s, x, b) = Lx(s, x) + (H̄a)∗(s, b+M(s)x), (4.36)

where

H̄a(s, p) := max
a∈A

[−p · φ(s, a)− La(s, a)], (4.37)

and H∗(s, ·, ·) is convex in (x, b) for each s ∈ [t, T ].
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Note that H̄a(s, p) is independent on x and convex in p for each t.
Proof. By (4.32) and (4.33),

Ha(s, x, p) = −p · (M(s)x) + H̄a(s, p),

(Ha)∗(s, x, b) = max
b
p · (b+M(s)x)− H̄a(s, p)

= (H̄a)∗(s, b+M(s)x).

By Lemma 7,

H∗(s, x, b) = Lx(s, x) + (H̄a)∗(s, b+M(s)x).

Since (H̄a)∗(s, ·) is convex in b and b + M(s)x is affine in (x, b), (Ha)∗(s, ·, ·) is convex in
(x, b). Therefore, H∗(s, ·, ·) is convex in (x, b) for each s ∈ [t, T ] if Lx(s, ·) is convex in x for
each s ∈ [t, T ].

We define the control constraint of the Hopf-Lax formula in (x, b)-space: for s ∈ [t, T ],

B̄(s) := {(x, b) | b ∈ co(B(s, x))}, (4.38)

where B(s, x) is defined in (4.7).

Lemma 9 (Convexity of the control constraint). Suppose Assumption 1 and (4.35) holds.
Then B̄(s) in (4.38) is convex in (x, b) for each s ∈ [t, T ].

Proof. Consider (x1, b1), (x2, b2) ∈ B̄(s) and d ∈ [0, 1]. Since bi ∈ co(B(s, xi)) for i = 1, 2,
there exist a finite number of aij and γij ∈ [0, 1] (

∑
j γij = 1 for each i) such that

bi = −M(s)xi −
∑
j

γijφ(s, aij)

for each i = 1, 2. Using this, we have

db1 + (1− d)b2 = −M(s)(dx1 + (1− d)x2)−
∑
j

[dγ1,jφ(s, a1,j) + (1− d)γ2,jφ(s, a2,j)].

Since co({−φ(s, a) | a ∈ A} is a convex set,

d(b1 +M(s)x1) + (1−d)(b2 +M(s)x2) ∈ co({−φ(s, a) | a ∈ A}).

and

db1 + (1− d)b2 ∈ co(B(s, dx1 + (1− d)x2)).

Thus, B̄(s) is convex in (x, b).
Table 4.1 summarizes the convexity conditions for SCGSP ((4.3) subject to (4.4)) and

the Hopf-Lax formula ((4.9) subject to (4.10)). If the state-constrained problem is convex,
the Hopf-Lax formula is convex. Also, there is a class of problems in which the Hopf-Lax
formula is convex even though the state-constrained problem is non-convex.
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Remark 9 (Benefits of the Hopf-Lax formula). The proposed formulation converts non-
convexity in the control space to convex. For convex Hopf-Lax formula,

1. the control-dependent stage La(s, a) in (4.30) is not required to be convex in a ∈ A ⊂ Rm

for each s ∈ [t, T ],

2. the control-dependent dynamics φ(s, a) in (4.35) is not required to be affine in a ∈ A
for each s ∈ [t, T ],

3. the control constraint A in (4.4) is not required to be convex.

4.1.5 Numerical Example

We introduce an example for the Hopf-Lax formula and illustrate the benefits of the formula.
For numerical computation, a computer with a 2.8 GHz Quad-Core i7 CPU and 16 GB RAM
was used.

Formation control of multiple nonlinear vehicles

We introduce a 12D nonlinear example, a formation control for multiple agents whose
dynamics are nonlinear:

f(s, xl, αl(s)) = [xl(s, 2); αl(s, 1) cos(αl(s, 2)); xl(s, 4); αl(s, 1) sin(αl(s, 2))] (4.39)

where l ∈ {1, 2, 3} is the agent index, xl(s, 1) and xl(s, 2) are horizontal position and velocity
in the 2D space, xl(s, 3) and xl(s, 4) are vertical position and velocity in the 2D space, and
αl(s, 1) and αl(s, 2) are the magnitude of the acceleration and the angle of agent l, respectively,
at time s ∈ [t, T ]. For three agents, the dimension of the state is twelve, and the dimension
of the control is six.

We define a state-constrained optimal control problem where three agents approach the
goal point with the right-triangular-shaped formation:

inf
α

∫ 10

0

max

{∥∥∥∥ [x1(s, 1)
x1(s, 3)

]
−

[
x1,r(s, 1)
x1,r(s, 3)

] ∥∥∥∥
2

,

∥∥∥∥ [x2(s, 1)
x2(s, 3)

]
−
[
x1(s, 1)
x1(s, 3)

]
− dr

∥∥∥∥
2

,∥∥∥∥ [x3(s, 1)
x3(s, 3)

]
− h

([
x1(s, 1)
x1(s, 3)

]
,

[
x2(t, 1)
x2(t, 3)

])∥∥∥∥
2

}
ds (4.40)

subject to

{
(4.39), xl(0) = xl,

αl(s, 1) ∈ [−1, 3], αl(s, 2) ∈ [−π
6
, π
6
],

(4.41)

for s ∈ [0, T ], l = 1, 2, 3, where x1,r(s, 1) = 2s, x1,r(s, 3) = 0, dr = [−
√

3; 1] ∈ R2,
and, for w1, w2 ∈ R2, h : R2 × R2 → R2, h(w1, w2) = [1/2,

√
3/2;−

√
3/2, 1/2]w1 +

[1/2,−
√

3/2;
√

3/2, 1/2]w2. Agent 1 is the leader that tracks the reference trajectory x1,r,
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for which the first term of the state cost is designed. Agent 2 is following Agent 1 with
dr-offset, designed in the second term of the stage cost. Agent 3 is making the right-triangular
formation, for which the third term of the stage cost is designed.

By Remark 9, the optimal control problem is non-convex, but the Hopf-Lax formula is
convex.

By Corollary 3, the stage cost for the Hopf-Lax formula (H∗) is equal to the stage cost of the
given problem (L) since the control-dependent stage cost (La) in (4.30) is zero. To derive the
control constraint (co(B(s, x(s)))) for the Hopf-Lax formula, we use Lemma 6. Denote x(s) =
[x1(s); x2(s); x3(s)], β(s) = [β1(s); β2(s); β3(s)] and βl(s) = [βl(s, 1); βl(s, 2); βl(s, 3); βl(s, 4)],
l = 1, 2, 3. B(s, x(s)) in (4.7) is illustrated in the grey in Figure 4.2 (a). Then, co(B(s, x)) is
derived in the last five lines in (4.43) and also illustrated in Figure 4.2, the union of the grey
and the blue. Note that B(s, x(s)) is non-convex, but co(B(s, x(s))) is convex in b.

The Hopf-Lax formula in Theorem 6 provides the following optimal control problem:

inf
α

∫ 10

0

max

{∥∥∥∥ [x1(s, 1)
x1(s, 3)

]
−

[
x1,r(s, 1)
x1,r(s, 3)

] ∥∥∥∥
2

,

∥∥∥∥ [x2(s, 1)
x2(s, 3)

]
−
[
x1(s, 1)
x1(s, 3)

]
− dr

∥∥∥∥
2

,∥∥∥∥ [x3(s, 1)
x3(s, 3)

]
− h

([
x1(s, 1)
x1(s, 3)

]
,

[
x2(t, 1)
x2(t, 3)

])∥∥∥∥
2

}
ds

(4.42)

subject to



ẋl(s) = −βl(s), xl(0) = xl,

βl(s, 1) = −xl(s, 2), βl(s, 3) = −xl(s, 4),

−βl(s, 2)−
√

9− (βl(s, 4))2 ≤ 0,

βl(s, 2)−
√

1− (βl(s, 4))2 ≤ 0,
1

2
√
3
βl(s, 2) + βl(s, 4)− 3

4
≤ 0,

1
2
√
3
βl(s, 2)− βl(s, 4)− 3

4
≤ 0,

(4.43)

for s ∈ [0, 10], l = 1, 2, 3. For numerical optimization, we utilize Euler-forward discretization
and the interior-point method [19]. We denote a numerical optimal state sequence x∗[·]
and control sequence β∗[·] for the Hopf-Lax formula. Also, x∗[k] = [x1

∗[k]; x2
∗[k]; x3

∗[k]] and
β∗[k] = [β1

∗ [k]; β2
∗ [k]; β3

∗ [k]].
Algorithm 3 provides the numerical optimal control signal (αϵ

∗ : [0, 10] → R6) in (4.20)
and state trajectory (xϵ

∗ : [0, 10]→ R12) in (4.21). To numerically get αϵ
∗ in (4.20), we need

to find βl
i∗[k] ∈ Bl(tk, x

l
∗[k]) and γli[k] ∈ [0, 1] (l = 1, 2, 3) such that

βl
∗[k] = γl1[k]βl

1∗[k] + γl2[k]βl
2∗[k] (4.44)

for βl
∗[k] ∈ co(Bl(tk, x

l
∗[k])) as in Corollary 2. By substituting tk for s and xl

∗[k] for xl(s),
Figure 4.2 graphically illustrates two cases to find βl

i∗[k] and γli[k]: if βl
∗[k] is in Bl(tk, x

l
∗[k])

or not. For each case, the mathematical expression for βl
i∗ can be found in Figure 4.2. Then,

we can design

αϵl
∗ (s) =

{
αl
1∗[k], s ∈ [tk, tk + ∆tkγ

l
1[k]),

αl
2∗[k], s ∈ [tk + ∆tkγ

l
1[k], tk+1),

(4.45)
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Figure 4.2: The control constraint for the 12D formation control problem in Chapter 4.1.5.
l is the index of the agents in {1,2,3}. The equations of the two dotted lines for the
both figures are

√
3βl(s, 4) ± βl(s, 2) = 0. These figures illustrate how to find a finite

βl
i(s) satisfying the control decomposition in Corollary 2 for (s, xl(s)) by dividing into two

cases. (a) If βl(s) ∈ Bl(s, xl(s)), we do not need the control decomposition in Corollary
2. (b) If βl(s) /∈ Bl(s, xl(s)), there are multiple choices of βl

i∗(s). Among the choices, we

select βl
1(s) = [−xl(s, 2);−3

√
3

2
;−xl(s, 4);±3

2
] and find βl

2(s): the intersection of the red line
connecting βl(s) and βl

1(s), and one of the two dotted lines.

where αl
1∗[k] and αl

2∗[k] satisfy βl
1∗[k] = −f(tk, x

l
∗[k], αl

1∗[k]) and βl
2∗[k] = −f(tk, x

l
∗[k], αl

2∗[k]),
and finally compute xϵl

∗ solving (4.39) for αϵl
∗ for each agent.

Figure 4.3 demonstrates the numerical result computed by the Hopf-Lax formula and
Algorithm 3. In Figure 4.3 (a), the solid and dotted lines are state trajectories, which are
numerical solutions to the Hopf-Lax formula and the original state-constrained problem,
respectively, using the interior-point method. The two sets of trajectories are different for x
between 0 and 5, and then come together. Global optimality is guaranteed for the Hopf-Lax
formula with the cost of 5.6, but solving the non-convex state-constrained problem results in
the cost of 7.6. Figure 4.3 (b) shows the optimal state trajectories of each agent with the
formation at each second.

The computation time for Algorithm 3 is 152 s. On the other hand, it is not realistic to
numerically solve the HJ PDE in [4] using grid-based methods, such as the level-set method
and the fast marching method [93], due to their exponential complexity in computation when
the dimension of the state is more than five or six.
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Figure 4.3: The numerical results for the 12D formation control in Chapter 4.1.5 using the
Hopf-Lax formula and Algorithm 3. (a) The results of solving the state-constrained problem
and its Hopf-Lax formula are shown. The solid lines are globally optimal, but the dotted
lines are locally optimal. (b) The optimal state trajectories for all agents in the 2D-space are
shown with triangular formation at each second. (c) The optimal control signals for all agents
are shown. We observe that the control chattering is caused by the additional discretization
step in Algorithm 3.

Chattering Control Signal

A disadvantage of the proposed method is the chattering in the control signal caused by the
additional temporal discretization in line 6 in Algorithm 3, which is not desirable in practice.
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This additional discretization is not necessary if the given optimal control problem is convex
in the control. In this case, if a control signal for the Hopf-Lax formula is non-chattering,
Algorithm 3 provides a non-chattering control signal. Unfortunately, the chattering is
unavoidable for the non-convex problem in the control if the proposed method is utilized.

It has been observed that this chattering behavior of optimal control signals cannot be
avoided for some state-constrained problems, such as Fuller’s problem [23], and it is also hard
to find the corresponding conditions under which the chattering is unavoidable [21, 7, 108].
To avoid this chattering control for practical issues, some approximation methods have been
developed [23].

Cooperation with Closed-Loop Methods

As one of the open-loop control methods, the proposed method can cooperate with closed-loop
framework, such as model predictive control (MPC) [53]. MPC allows real-time computation
by considering a receding-horizon problem and accommodates estimation error, measurement
noise, and unexpected disturbances in practice.

4.2 Hopf-Lax Formula for State-Constrained

Control-Invariance Problems

This chapter is based on the work presented in [68], which is joint work with Claire Tomlin.
This chapter presents the Hopf-Lax formula for SCCIP. Hopf-Lax theory assumes convex

Hamiltonians, and the HJ PDE’s Hamiltonian relevant to the time-varying SCCIP is convex in
the costate space but the one to the time-invariant SCCIP is non-convex. Thus, this chapter
only presents the Hopf-Lax formula for the time-varying SCCIP. To prove the equivalence
between SCCIP and the Hopf-Lax formula, this paper first proposes a new viscosity result
that specifies sufficient conditions under which two different PDEs have the same solution,
and then applies this to the HJ PDEs for SCCIP and the Hopf-Lax formula. This proof
technique can generally apply to Hopf-Lax theory relevant to state-constrained optimal
control problems. Computational advantages of the Hopf-Lax formulation are then presented.
For SCCIP, the proposed Hopf-Lax formula convexifies the problem in the control-input
space.

The organization of this chapter is as follows. Chapter 4.2.1 defines SCCIP. Chapter
4.2.2 presents the HJ PDE whose solution’s sub-zero-level set is the epigraph of SCCIP. Our
Hopf-Lax formula is presented in Chapter 4.2.3, and Chapter 4.2.4 provides proofs. Chapter
4.2.4 proposes our new theorem in the viscosity theory, which is utilized to prove the Hopf-Lax
formulae for SCCIP. Chapter 4.2.5 presents convexity analysis for SCCIP and its Hopf-Lax
formula. Chapter 4.2.6 presents an example to demonstrate the utility and performance of
the proposed Hopf-Lax formula.
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4.2.1 State-Constrained Control-Invariance Problem

This chapter recalls SCCIP and the corresponding HJ PDE presented in Chapter 3.1.
In this chapter, we consider the state trajectory (x : [t, T ]→ Rn) in a time interval [t, T ]

solving the following ordinary differential equation (ODE):

ẋ(s) = f(s, x(s), α(s)), s ∈ [t, T ], and x(t) = x, (4.46)

where (t, x) are the initial time and state, s is time between t and T , f : [t, T ]×Rn×A→ Rn

is a dynamics function, A ⊂ Rm is the control set, α ∈ A(t) is the control signal, and we
denote the set of measurable control signals

A(t) := {α : [t, T ]→ A | ∥α∥L∞(t,T )<∞}. (4.47)

We assume that A is a compact subset in Rm.
State-constrained control-invariance problem (SCCIP): for given initial time and
state (t, x), solve

ϑ1(t, x) := inf
α∈A

max
τ∈[t,T ]

∫ τ

t

L(s, x(s), α(s))ds+ g(τ, x(τ)) (4.48)

subject to c(s, x(s)) ≤ 0, s ∈ [t, T ], (4.49)

where x solves (4.46), L : [t, T ] × Rn × A → R is the stage cost, g : R × Rn → R is the
terminal cost, f is the system dynamics as defined above, and c : [t, T ]×Rn → R is the state
constraint. The scalar function c can handle a number of state constraints. For example,
consider state constraints c1, ..., cl(s, x(s)) ≤ 0; c = max{c1, .., cl} encodes all state constraints
into a scalar constraint function. We would like to note that ϑ1(t, x) ∈ R ∪∞. This means
that, for initial time and state (t, x), if there does not exist a control signal α to satisfy the
state constraint (4.49), the optimal cost ϑ1 is ∞.

Assumption 1 guarantees the existence of a unique solution to the HJ PDEs, presented
in Chapter 4.2.2. In (4.49), the state constraint is satisfied in [t, T ], but we can replace this
interval with [t, τ ] [67], which does not change the optimal value. Consider an optimal control
signal that minimizes (4.48) subject to the state constraint (4.49) with [t, τ ]. If the optimal
value is finite, the state constraint has to be satisfied for all time in [t, T ]. Otherwise, the
time maximizer τ will choose the time when the state constraint is not satisfied so that the
optimal value becomes infinity.

4.2.2 Hamilton-Jacobi PDEs for SCCIP

This section reviews the previously presented HJ PDEs for SCCIP and SCRAP [67, 69], which
will be utilized to derive Hopf-Lax formulae in Chapter 4.2.3. For each problem, this section
presents two HJ PDEs, one for the time-varying case and a second for the time-invariant case.
The time-varying case features time varying cost functions, dynamics, and state constraints.
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Hamilton-Jacobi equation for SCCIP

[67] utilizes the epigraphical technique to derive an HJ PDE whose solution characterizes
the epigraph of the optimal cost (ϑ1) for the SCCIP. In this formulation, we first encode
the cost and constraint of the SCCIP into a state-augmented value function V1 (4.51) whose
sub-zero-level set is the epigraph of the optimal cost (ϑ1) for SCCIP:

epi(ϑ1(t, ·)) := {(x, z) | z ≥ ϑ1(t, x)}
= {(x, z) | V1(t, x, z) ≤ 0}.

(4.50)

Then, the dynamic programming principle is applied to derive the HJ PDE for V1.
Define the augmented value function V1 = V1(t, x, z) : [0, T ]× Rn × R→ R

V1(t, x, z) := inf
α∈A(t)

max
{

max
s∈[t,T ]

c(s, x(s)), max
τ∈[t,T ]

∫ τ

t

L(s, x(s), α(s))ds+ g(τ, x(τ))− z
}
,

(4.51)

where x solves (4.46), (t, x) are initial time and states, and z is a new scalar variable that
represents a value axis for the epigraph of ϑ1. Now, we will consider (x, z) as an augmented
state in V1.

V1 is continuous in (t, x, z)-space, and standard viscosity theory works for V1. Theorem 8
presents HJ PDEs for V1 and finds ϑ1 from V1.

Theorem 8 (HJ PDE for SCCIP). Suppose Assumption 1 holds. V1 in (4.51) is the unique
viscosity solution to the HJ PDE:

max

{
c(t, x)− V1(t, x, z), g(t, x)− z − V1(t, x, z),

∂V1
∂t
− H̄

(
t, x, z,

∂V1
∂x

,
∂V1
∂z

)}
= 0 (4.52)

in (0, T )× Rn × R, where H̄ : [0, T ]× Rn × R× Rn × R→ R

H̄(t, x, z, p, q) := max
a∈A

[−p · f(t, x, a) + qL(t, x, a)], (4.53)

where p and q represent the gradients ∂V1

∂x
and ∂V1

∂z
, and

V1(T, x, z) = max{c(T, x), g(T, x)− z} (4.54)

on {t = T} × Rn × R.
For the time-invariant case, the above HJ PDE (4.52) is simplified to

max

{
c(x)− V1(t, x, z),

∂V1
∂t
− H̄TI

1

(
x, z,

∂V1
∂x

,
∂V1
∂z

)}
= 0 (4.55)

in (0, T )× Rn × R, where

H̄TI
1 (x, z, p, q) := min {0, H̄(x, z, p, q)} (4.56)
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for (x, z, p, q) ∈ Rn ×R×Rn ×R, and H̄ is defined in (4.53). In (4.56), H̄ does not have the
time dependency for the time-invariant case.

Then,

ϑ1(t, x) = min z subject to V1(t, x, z) ≤ 0. (4.57)

Our Hopf-Lax formulae in Chapter 4.2.3 will assume convex Hamiltonians in the gradient
space. H̄ (4.53) is convex in (p, q), but H̄TI

1 (4.55) is not. Thus, Chapter 4.2.3 presents a
Hopf-Lax formula for time-varying SCCIP.

4.2.3 Hopf-Lax Formulae for SCCIP

For SCCIP, the HJ PDEs in Theorems 8 can be numerically solved by grid-based methods,
such as the level-set methods [85] and fast marching method [93]. These methods require
spatial and temporal discretization, which leads to exponential computational complexity in
the state’s dimension. Thus, it is intractable to utilize these grid-based methods for high-
dimensional systems [10]. This chapter provides more discussion about the computational
complexity in Chapter 4.3.6.

This chapter presents our main results to alleviate this computational complexity: Hopf-
Lax formulae for SCCIP in Chapter 4.2.3. The proof of our formulation will be presented in
Chapter 4.2.4.

Hopf-Lax formula for SCCIP

Define, for initial time and state (t, x) ∈ [0, T ]× Rn,

φ1(t, x) := inf
β

max
τ∈[t,T ]

∫ τ

t

H∗(s, x(s), β(s))ds+ g(τ, x(τ)), (4.58)

subject to


ẋ(s) = −β(s), s ∈ [t, T ]

β(s) ∈ co({−f(s, x(s), a) | a ∈ A}), s ∈ [t, T ]

x(t) = x,

c(s, x(s)) ≤ 0, s ∈ [t, T ]

(4.59)

where β : [t, T ] → Rn is a new measurable control signal, “co” is a convex-hull operator,
H : [0, T ]× Rn × Rn → R

H(s, x, p) := H̄(s, x, z, p,−1)

= max
a∈A

[−p · f(s, x, a)− L(s, x, a)],
(4.60)

where p is the costate with respect to x, H̄ is defined in (4.53), and H∗ : [0, T ]×Rn ×Rn →
R ∪ {∞}

H∗(s, x, b) := max
p∈Rn

[p · b−H(s, x, p)], (4.61)
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(
max
#∈ %,'
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#

%
+ 𝑔 𝑋 𝜏

Hamilton-Jacobi PDE 1
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𝜕𝑉!
𝜕𝑡
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subject to 𝑐 𝑋 𝑠 ≤ 0 subject to 𝑐 𝑋 𝑠 ≤ 0

Hamilton-Jacobi PDE 2

0 = max 𝑐 −𝑊!, 𝑔 − 𝑧 −𝑊!,
𝜕𝑊!
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,
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𝐻+ ≠ 𝐻+𝑊, but Theorem 10 implies 𝑉" ≡ 𝑊". Thus 𝜗" ≡ 𝜑".

𝜗" 𝑡, 𝑥 = min 𝑧		subject	to	𝑉" 𝑡, 𝑥, 𝑧 ≤ 0 𝜑" 𝑡, 𝑥 = min 𝑧		subject	to	𝑊" 𝑡, 𝑥, 𝑧 ≤ 0

Figure 4.4: Proof overview of Hopf-Lax theory for SCCIP

where b is a new control input, and H∗ is the Legendre-Fenchel transformation (the convex
conjugate) of H with respect to p ∈ Rn. b and p are dual variables. For each s, x, H∗ is finite
if b ∈ co({−f(s, x(s), a) | a ∈ A}) but, otherwise, is infinite.

Theorem 9. (Hopf-Lax formula for SCCIP) For all (t, x) ∈ [0, T ]× Rn,

ϑ1(t, x) = φ1(t, x), (4.62)

where ϑ1 is the optimal cost of SCCIP ((4.48) subject to (4.49)), and φ1 is the Hopf-Lax
formula for SCCIP ((4.58) subject to (4.59)).

4.2.4 Proof of Hopf-Lax Theory for SCCIP

Figure 4.4 shows a proof overview of Hopf-Lax theory for SCCIP. In this proof, we consider
two value functions: V1 is the value function whose sub-zero-level set is the epigraph of ϑ1,
and W1 is the one of φ1, where W1 will be defined in (4.73). We will prove ϑ1 ≡ φ1 by
showing that V1 and W1 are the same. This chapter later will show the two corresponding HJ
PDEs for V1 and W1 are different but V1 and W1 are the same. In this chapter, we propose a
general theorem in the viscosity theory that specifies sufficient conditions under which two
different first-order PDEs have the same solution. Using this theorem, we will prove V1 ≡ W1,
which concludes ϑ1 ≡ φ1.

Viscosity theory with sufficient condition under which two different PDEs have
the same solution

This chapter proposes a general theorem in viscosity theory to investigate the equivalence of
two first-order PDEs. We use a more general notation in this chapter.
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Consider time t ∈ [0, T ], a state that consists of x ∈ Rnx , z ∈ Rnz , and two first-order
PDEs:

0 = Fi

(
t, x, z,Xi(t, x, z),

∂Xi

∂t
(t, x, z),

∂Xi

∂x
(t, x, z),

∂Xi

∂z
(t, x, z)

)
(4.63)

in (0, T ) × Rnx × Rnz for i = 1, 2, and the terminal values for X1 and X2 are the same as
l = l(x, z) ∈ R:

X1(T, x, z) = X2(T, x, z) = l(x, z) ∀(x, z) ∈ Rnx × Rnz . (4.64)

We say that Xi = Xi(t, x, z) (i = 1, 2) is the viscosity solution of Fi if (i) Xi(T, x, z) =
l(x, z) and, (ii) for each smooth function U : (0, T )× Rnx × Rnz → R,

1. if Xi − U has a local maximum at a point (t0, x0, z0) ∈ (0, T ) × Rnx × Rnz and
(Xi − U)(t0, x0, z0) = 0,

Fi

(
t0, x0, z0,U(t0, x0, z0),

∂U

∂t
(t0, x0, z0),

∂U

∂x
(t0, x0, z0),

∂U

∂z
(t0, x0, z0)

)
≥ 0, (4.65)

2. if Xi − U has a local minimum at a point (t0, x0, z0) ∈ (0, T )× Rnx × Rnz and (Xi −
U)(t0, x0, z0) = 0,

Fi

(
t0, x0, z0,U(t0, x0, z0),

∂U

∂t
(t0, x0, z0),

∂U

∂x
(t0, x0, z0),

∂U

∂z
(t0, x0, z0)

)
≤ 0. (4.66)

For SCCIP, F1 refers to the HJ PDE (4.52), nx to n, nz to 1, and X1 to V1. F2 refers to the
HJ PDE (4.75) that will be introduced later in Chapter 4.2.4, X2 to W1 (4.73) also in Chapter
4.2.4. Also, l(x, z) refers to the terminal condition for V1 and W1: max{c(T, x), g(T, x)− z}.
For SCRAP, we have a similar notation matching rule with SCCIP.

In the notion of the viscosity theory, we present conditions under which the two different
PDEs F1 and F2 have the same solution. Define super-differentials and sub-differentials of Xi

(i = 1, 2) with respect to z: for each (t, x, z) ∈ [0, T ]× Rnx × Rnz , q ∈ ∂+z Xi(t, x, z) (i = 1, 2)
is a super-differential with respect to z, if

∂+z Xi(t, x, z) :=
{
q | lim sup

z̄→0

Xi(t, x, z + z̄)−Xi(t, x, z)− q · z̄
∥z̄∥

≤ 0
}
, (4.67)

and q ∈ ∂−z Xi(t, x, z) (i = 1, 2) is a sub-differential with respect to z, if

∂−z Xi(t, x, z) := {q | lim sup
z̄→0

Xi(t, x, z + z̄)−Xi(t, x, z)− q · z̄
∥z̄∥

≥ 0}. (4.68)

Theorem 10 states that if two different PDEs (F1 and F2) are the same in the super-differential
or sub-differential domains in z, the two PDEs’ solutions are the same.
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Theorem 10. Suppose each of the two first-order PDEs in (4.63) with the terminal value
(4.64) for i = 1, 2 has the unique solution (Xi). If, for all (t, x, z,X, r, p) ∈ [0, T ] × Rnx ×
Rnz × R× R× Rnx , q ∈ ∂+z X1(t, x, z) ∪ ∂−z X1(t, x, z),

F1(t, x, z,X, r, p, q) = F2(t, x, z,X, r, p, q) (4.69)

then X1 ≡ X2. Here, r, p, q are the costates with respect to t, x, and z, respectively.

Proof. See Appendix D.1.

Proof of the Hopf-Lax formula for time-vaying SCCIP

In this chapter, we utilize Theorem 10 to prove Theorem 9 for the time-varying SCCIP.
We first investigate the super-differentials and sub-differentials of Vi (i = 1, 2) with respect

to z.

Lemma 10 (Convexity of the value function in z). For each (t, x) ∈ [0, T ]× Rn, V1(t, x, ·)
(4.51) is convex in z ∈ R: for all z1, z2 ∈ R and θ ∈ [0, 1],

V1(t, x, θ1z1 + θ2z2) ≤ θ1V1(t, x, z1) + θ2V1(t, x, z2) (4.70)

for i = 1, 2.

Proof. See Appendix D.2.

Lemma 11. For all (t, x, z) ∈ [0, T ]× Rn × R and i = 1, 2,

∂−z V1(t, x, z) ⊂ [−1, 0], (4.71)

and if ∂+z V1(t, x, z) is not the empty set, the set of super-differentials with respect to z is a
singleton

∂+z V1(t, x, z) =
{∂V1
∂z

(t, x, z)
}
⊂ [−1, 0]. (4.72)

Note that V1 is defined in (4.51), respectively.

Proof. See Appendix D.3.
By applying the HJ analysis in Chapter 4.2.2, we have following results for the Hopf-Lax

formula for SCCIP (φ1 (4.58) subject to (4.59)). Combining (4.58) and (4.59), define a value
function in the augmented state space, W1 : [0, T ]× Rn × R→ R:

W1(t, x, z) = inf
β

max
{

max
s∈[t,T ]

c(s, x(s)), max
τ∈[t,T ]

∫ τ

t

H∗(s, x(s), β(s))ds+ g(τ, x(τ))− z
}
,

(4.73)
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where β(s) ∈ co({−f(s, x(s), a) | a ∈ A}), and “co” is the convex-hull operator. As shown in
[65],

Dom(H∗(s, x(s), ·)) = {b | H∗(s, x(s), b) <∞}
= co({−f(s, x(s), a) | a ∈ A}).

(4.74)

Thus, it is not necessary to add the control constraint in the infimum operation in (4.73)
since H∗ becomes the infinity out of the control constraint (4.74).

By Theorem 8, W1 is the unique viscosity solution to

max
{
c(t, x)−W1(t, x, z), g(t, x)− z −W1(t, x, z),

∂W1

∂t
− H̄W (t, x, z,

∂W1

∂x
,
∂W1

∂z
)
}

= 0

(4.75)

in (0, T )× Rn × R, where H̄W : [0, T ]× Rn × R× Rn × R→ R

H̄W (t, x, z, p, q) := max
b

[p · b+ qH∗(t, x, b)], (4.76)

where p and q represent the gradients ∂W1

∂x
and ∂W1

∂z
, H∗ is defined in (4.61), and

W1(T, x, z) = max{c(T, x), g(T, x)− z} (4.77)

on {t = T} × Rn × R. Then,

φ(t, x) = min z subject to W1(t, x, z) ≤ 0. (4.78)

Now, it is sufficient to prove V1 ≡ W1.
We will utilize Theorem 10 to prove V1 ≡ W1. F1 and F2 in Chapter 4.2.4 refer to

(4.52) and (4.75), respectively. Also, Lemma 12 analyzes the relationship between the two
Hamiltonians: H̄ (4.53) for V1 and H̄W (4.76) for W1.

Lemma 12. For (t, x, z, p, q) ∈ [0, T ]× Rn × R× Rn × R,

H̄(t, x, z, p, q) = H̄W (t, x, z, p, q) if q ≤ 0, (4.79)

where H̄ and H̄W are defined in (4.53) and (4.76), respectively.

Proof. See Appendix D.4.
Now, we are ready to conclude the proof of Theorem 9.

Proof of Theorem 9. Lemma 11 states that the sub-differentials and super-differentials of
V1(t, x, z) with respect to z are less than or equal to 0 for all (t, x, z). Thus, by combining
Theorem 10, Lemma 11 for i = 1, and Lemma 12, we prove V1 ≡ W1. By (4.57) and (4.78),
we conclude ϑ1 ≡ φ1.

The proof of Theorem 12 is very similar to the above argument in this chapter.
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4.2.5 Convexity analysis for SCCIP and its Hopf-Lax formula

We can solve SCCIP and Hopf-Lax formula by utilizing gradient-based methods and temporal
discretization. This chapter investigates convexity conditions under which gradient-based
methods guarantee optimality. For the temporal discretization, we can choose, for example,
the backward Euler method, Crank-Nicolson method, and high-order Runge-Kutta methods
[22]. For any discretization method, the convexity analysis in this Chapter 4.2.5 is valid. This
chapter utilizes the first-order forward Euler method.

We discretize the time interval to {t0 = 0, ..., tK = T} where ∆k := tk+1− tk. In the use of
the first-order Euler method, discretization error for optimal control problems becomes smaller
for smaller ∆k [18, 3]. For notation, the state at tk is x[k], and α[k] and β[k] are control
inputs at tk. In this paper, we use x to denote both a state trajectory in the continuous-time
setting (x(·)) and a state sequence in the discrete-time setting (x[·]). We apply the same
notation rule for α, β.

Consider the temporally discretized SCCIP:

ϑ1(0, x) ≃ min
x[·],α[·]

max
k′∈{0,...,K}

k′∑
k=0

L(tk, x[k], α[k])∆k + g(tk′ , x[k′]), (4.80)

subject to


x[k + 1]− x[k] = ∆kf(tk, x[k], α[k]), k ∈ {0, ..., K − 1},
α[k] ∈ A, k ∈ {0, ..., K − 1},
x[0] = x,

c(tk, x[k]) ≤ 0, k ∈ {0, ..., K}.

(4.81)

The temporal discretized SCCIP ((4.80)) subject to (4.81)) is convex in (x[·], α[·])-space if
Assumption 2 holds. Since a pointwise maximum of convex functions is convex, the cost in
(4.80) is convex if

∑k′

k=0 L(tk, x[k], α[k])∆k + g(tk′ , x[k′]) is convex for each k′. Thus, the first
two conditions in Assumption 2 are sufficient to have convex cost in (4.80). The other three
conditions are for convex constraints (4.81).

Assumption 2. (Convexity conditions for the temporally discretized SCCIP)

1. L(t, x, a) is convex in (x, a) for all t ∈ [0, T ],

2. g(t, x) is convex in x for all t ∈ [0, T ],

3. c(t, x) is convex in x for all t ∈ [0, T ],

4. f(t, x, a) is affine in (x, a) for all t ∈ [0, T ],

5. A is convex.
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We discretize the Hopf-Lax formula for SCCIP (φ1 in (4.58) subject to (4.59)) as following:

φ1(0, x) ≃ min
x[·],β[·]

max
k′∈{0,...,K}

k′∑
k=0

H∗(tk, x[k], β[k])∆k + g(tk′ , x[k′]), (4.82)

subject to


x[k + 1]− x[k] = −∆kβ[k], k ∈ {0, ..., K − 1},
β[k] ∈ co({−f(tk, x[k], a) | a ∈ A}), k ∈ {0, ..., K − 1},
x[0] = x,

c(tk, x[k]) ≤ 0, k ∈ {0, ..., K}.

(4.83)

Based on the above convexity analysis for the temporally discretized SCCIP in (x[·], β[·])-
space, it is sufficient to verify convexity conditions forH∗(t, x, b) and {(x, b) | b ∈ co({−f(t, x, a)
| a ∈ A})} in (x, b). [65] provides sufficient convexity conditions for this, as written below.

Lemma 13. Suppose 1) L(t, x, a) = Lx(t, x) + La(t, a), and Lx is convex in x for each
t ∈ [0, T ], 2) f(t, x, a) = M(t)x+La(t, a) for some matrix M(t) ∈ Rn×Rn. Then, H∗(t, x, b)
and {(x, b) | b ∈ co({−f(t, x, a) | a ∈ A})} are convex in (x, b).[65]

Combining Lemma 13 and the convexity analysis argument for SCCIP, we conclude
sufficient convexity conditions for the temporally discretized Hopf-Lax formula for SCCIP in
Assumption 3.

Assumption 3. (Convexity condition for the temporally discretized Hopf-Lax
formula for SCCIP)

1. L(t, x, a) = Lx(t, x)+La(t, a) for some Lx and La, and Lx is convex in x for all t ∈ [0, T ],

2. g(t, x) is convex in x for all t ∈ [0, T ],

3. c(t, x) is convex in x for all t ∈ [0, T ],

4. f(t, x, a) = M(t)x+ fa(t, a) for some M and fa for all t ∈ [0, T ].

Assumption 3 does not require 1) convex stage cost L in the control input a, 2) affine
dynamics f in the control input a, and 3) convex control set A. This is because the Legendre-
Fenchel transformation of Hamiltonian (H∗) is always convex in the control input a, and the
convex-hull operator (co) also convexifies control-input space. We would like to note that the
HJ analysis in Chapter 4.2.2 still needs to assume A is convex, as in Assumption 1.

Remark 10. The Hopf-Lax formula for SCCIP convexifies SCCIP in the control-input space.
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Figure 4.5: (a) shows a SCCIP problem setting that describes the target positions xrg and
constrained regions Sr, r = 1, ..., 4. (b)-(h) show optimal trajectories for the SCCIP problem
at each time, where the blue circles are the vehicles’ positions, and the black curves are
optimal state trajectories. The SCCIP cost is maximized at 1.1 s.

4.2.6 Numerical Example: robust formation control problem

This chapter provides one numerical example to demonstrate the Hopf-Lax formula for SCCIP.
The numerical algorithm for SCGSP in Chapter 4.1 can be used for SCCIP.

Consider a sixteen-dimensional system which consists of four four-dimensional vehicles:
xr(s) = (xr

1(s), x
r
2(s), x

r
3(s), x

r
4(s)) ∈ R4 refers to the r-th vehicle’s four-dimensional state

(r = 1, ..., 4) at time s, and x(s) = (x1(s), ..., x4(s)) ∈ R16 refers to the system state at s.
Each vehicle has two control inputs: αr(s) = (αr

1(s), α
r
2(s)) ∈ R2. The system dynamics is

ẋr
1(s) = xr

2(s), ẋr
2(s) = αr

1(s) cosαr
2(s),

ẋr
3(s) = xr

4(s), ẋr
4(s) = αr

1(s) sinαr
2(s),

(4.84)

where xr
1 and xr

2 (xr
3 and xr

4) are horizontal (vertical) position and velocity of the r-th vehicle,
αr
1 is the magnitude of acceleration, and αr

2 is the angle of the acceleration for r = 1, ..., 4.
As shown in Figure 4.5 (a), we would like to control the multi-vehicle system where the

r-th vehicle stays close to the point (xrg) at the interval s ∈ [0, 5] while maneuvering in the
r-th squared-shaped constrained region (Sr). We control the accelerations of the system
(4.84). Due to initial velocities, it is challenging to control the r-th vehicle to stay in Sr and
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close to xrg. For this problem, we solve

inf
α

max
τ∈[0,5]

max
r=1,...,4

∥(xr
1(τ), xr

3(τ))− xrg∥2 (4.85)

subject to


(4.84), αr(s) ∈ [−1, 1]× [−π

6
, π
6
],

x(0) = x,

(xr
1(s), x

r
3(s)) ∈ Sr, r = 1, ..., 4, s ∈ [0, 5],

(4.86)

where the target positions are following: x1g = (−1, 1), x2g = (1, 1), x3g = (1,−1), x4g = (−1,−1).
The stage cost L is zero, and the terminal cost g is maxr=1,...,4∥(xr

1(τ), xr
3(τ))− xrg∥2.

For this SCCIP, the Hamiltonian H in (4.60) becomes

H(s, x, p) =
4∑

r=1

−pr1xr2 − pr3xr4 + max

{
∥(pr2, pr4)∥2, |pr2|

√
3

2
+ |pr4|

1

2

}
, (4.87)

where xri is the name of the variable for which we substitute xr
i (s) (r = 1, ..., 4), pri is the

costate with respect to xri , p
r = (pr1, p

r
2, p

r
3, p

r
4) ∈ R4, and p = (p1, ..., p4) ∈ R16. H is convex

in p, and any supporting hyperplane for H can be written as b · p = 0 for some normal vector
b ∈ R16. Since the supporting hyperplane b · p = 0 passes through the origin for any b, the
Legendre-Fenchel transformation of the Hamiltonian becomes

H∗(s, x, b) =

{
0, br1 = −xr

2, b
r
3 = −xr

4, ∥(br2, br4)∥2 ≤ 1, |b4r|≤ 1
2 ,

∞, otherwise,
(4.88)

where b = (b11, b
1
2, ..., b

4
4) ∈ R16, and Dom(H∗(s, x, ·)) is analytically derived by (4.74). In

general, if the stage cost L is zero, H∗ becomes zero, which has been investigated in [65].
The Hopf-Lax formula for SCCIP in Theorem 8 is

inf
β

max
τ∈[0,5]

max
r=1,...,4

∥(xr
1(τ), xr

3(τ))− xrg∥2 (4.89)

subject to



ẋr(s) = −βr(s),

βr
1(s) = −xr

2(s), β
r
3(s) = −xr

4(s),

∥(βr
2(s), βr

4(s))∥2 ≤ 1, |βr
4(s)|≤ 1

2
,

x(0) = x,

(xr
1(s), x

r
3(s)) ∈ Sr, r = 1, ..., 4, s ∈ [0, 5],

(4.90)

where we get the second and third lines in (4.90) by substituting x(s) into x and β(s) =
(β1

1(s), ..., β4
4(s)) into b in (4.88).

Consider temporally discretized SCCIP and Hopf-Lax formula for SCCIP on any temporal
discretization {t0 = 0, ..., tK = 5} as in Chapter 4.2.5. The temporally discretized SCCIP is
non-convex, but the temporally discretized Hopf-Lax formula is convex since Assumption
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3 is satisfied. Thus, gradient-based methods provide an optimal solution for the proposed
Hopf-Lax formula for SCCIP.

For numerical computation of the Hopf-Lax formula, we discretize the temporal space to
{t0 = 0, ..., tK = 5} with ∆k = 0.1 (51 time steps). We utilize the interior-point method to
solve the temporally discretized Hopf-Lax formula for SCCIP [19]. The computation time is
108.5 s. This system is 16 dimensional with four vehicles, for which it is intractable to utilize
grid-based methods (such as the level-set method [85]) to solve the HJ PDEs (4.52).

As shown in Figure 4.5 (b)-(h), the four vehicles successfully stay in the constrained
regions and stay near their target positions (xrg). Within the time interval, the maximum
distance between xrg and the four vehicles is maximized at 1.1 s as shown in Figure 4.5 (d).
At this time, each distance between xrg and the r-th vehicle is 1.18, 0.43 0.42, and 1.16 m,
and the first vehicle shows the farthest distance among the four vehicles. Thus, the optimal
cost for SCCIP is 1.18. This means that the r-th vehicle stays near xrg with maintaining less
than 1.18 m distance within the time horizon while staying in Sr for all r = 1, ..., 4. The first
vehicle’s trajectory shown in Figure 4.5 (b)-(h) initially moves downward, with a velocity in
the -y-direction. Thus, in the solution found by SCCIP, the optimal control first decreases its
vertical speed to ensure that it remains in S1. Then, it heads towards x1g, in order to stay
close to x1g, as incentivized by the cost function.

This example shows an optimal-control analysis for SCCIP, and this can be additionally
utilized in decision-making for hardware specification. For example, consider designing
multiple mobile manipulators for which we attach a manipulator to each mobile robot
(vehicle). Each manipulator aims to perform some tasks at its target position xrg for all time
in [0, 5]. Our SCCIP analysis provides a guideline for choosing the manipulator’s workspace
that has to cover more than 1.18 m since all vehicles can be controlled to stay within 1.18
m-radius regions from xrg for all time in [0, 5].

4.3 Hopf-Lax Formula for State-Constrained

Reach-Avoid Problems

This chapter is based on the work presented in [68], which is joint work with Claire Tomlin.
In this chapter, we consider SCRAP for time-varying and time-invariant cases. In Chapter

3.2, we presented the HJ PDEs for SCRAP. Based on these HJ PDEs, we propose two
Hopf-Lax formulae for SCRAP into two cases: time-varying and time-invariant ones.

4.3.1 State-Constrained Reach-Avoid Problems

This chapter recalls SCRAP and the corresponding HJ PDEs presented in Chapter 3.2.
In this chapter, we consider the state trajectory (x : [t, T ]→ Rn) in a time interval [t, T ]

solving the following ordinary differential equation (ODE):

ẋ(s) = f(s, x(s), α(s)), s ∈ [t, T ], and x(t) = x, (4.91)
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where (t, x) are the initial time and state, s is time between t and T , f : [t, T ]×Rn×A→ Rn

is a dynamics function, A ⊂ Rm is the control set, α ∈ A(t) is the control signal, and we
denote the set of measurable control signals

A(t) := {α : [t, T ]→ A | ∥α∥L∞(t,T )<∞}. (4.92)

We assume that A is a compact subset in Rm.

State-constrained reach-avoid problem (SCRAP): for given initial time and state (t, x),
solve

ϑ2(t, x) := inf
α∈A

min
τ∈[t,T ]

∫ τ

t

L(s, x(s), α(s))ds+ g(τ, x(τ)) (4.93)

subject to c(s, x(s)) ≤ 0, s ∈ [t, τ ], (4.94)

where x solves (4.91). The description for L, g, f , c is the same as SCCIP. Also, for each
(t, x), ϑ2(t, x) ∈ R ∪∞. This means that if there is no feasible control signal to satisfy the
state constraint (4.94), then ϑ2(t, x) is the infinity.

For SCRAP, we also assume Assumption 1 holds, which guarantees the existence of the
unique solution to the HJ PDEs, presented in Chapter 4.3.2.

4.3.2 Hamilton-Jacobi Equations for SCRAP

This chapter addresses the previously presented HJ PDEs for SCRAP [69], which will be
utilized to derive Hopf-Lax formulae in Chapter 4.3.3. This chapter presents two HJ PDEs
for the time-varying (general) and time-invariant cases. In the time-varying case, cost
functions, dynamics, and state constraints are time-varying; in the time-invariant case, those
are time-invariant.

Hamilton-Jacobi equation for SCRAP

Similar to Chapter 4.2, the epigraphical techinique is utilized. We first define a state-
augmented value function V2 (4.95) that combines the cost (4.93) and the constraint (4.94)
of ϑ2 so that V2’s sub-zero-level set is the epigraph of the optimal cost ϑ2 for the SCRAP.
For (t, x, z) ∈ [0, T ]× Rn × R,

V2(t, x, z) := inf
α∈A(t)

min
τ∈[t,T ]

max
{

max
s∈[t,τ ]

c(s, x(s)),

∫ τ

t

L(s, x(s), α(s))ds+ g(τ, x(τ))− z
}
,

(4.95)

where x solves (4.91), (t, x) are initial time and states, and z is again the new variable that
represents a value axis for the epigraph of ϑ2.

Theorem 11 presents HJ PDEs for V2 and finds ϑ2 from V2.
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Theorem 11 (HJ PDE for SCRAP). Suppose Assumption 1 holds. V2 in (4.95) is the unique
viscosity solution to the HJ PDE:

max
{
c(t, x)−V2(t, x, z),min {g(t, x)− z − V2(t, x, z),

∂V2
∂t
− H̄(t, x, z,

∂V2
∂x

,
∂V2
∂z

)}
}

= 0

(4.96)

in (0, T )× Rn × R, where H̄ : [0, T ]× Rn × R× Rn × R→ R

H̄(t, x, z, p, q) := max
a∈A

[−p · f(t, x, a) + qL(t, x, a)], (4.97)

where p and q represent the gradients ∂V2

∂x
and ∂V2

∂z
, and

V2(T, x, z) = max{c(T, x), g(T, x)− z} (4.98)

on {t = T} × Rn × R.
For the time-invariant case, V2 is also the unique viscosity solution to HJ PDE:

max
{
c(x)− V2(t, x, z),

∂V2
∂t
− H̄TI

2 (x, z,
∂V2
∂x

,
∂V2
∂z

)
}

= 0 (4.99)

in (0, T )× Rn × R, where

H̄TI
2 (x, z, p, q) = max {0, H̄(x, z, p, q)} (4.100)

for (x, z, p, q) ∈ Rn × R× Rn × R, and

V2(T, x, z) = max{c(x), g(x)− z} (4.101)

on {t = T} × Rn × R.
Then,

ϑ2(t, x) = min z subject to V2(t, x, z) ≤ 0. (4.102)

Our Hopf-Lax formulae in Chapter 4.3.3 will assume convex Hamiltonians in the costate
space. H̄ (3.41) and H̄TI

2 (4.99) are convex in (p, q). Thus, Chapter 4.3.3 presents two
Hopf-Lax formulae for time-varying SCRAP and time-invariant SCRAP.

4.3.3 Hopf-Lax Formulae for SCRAP

This chapter presents our main results that provide efficient computation: Hopf-Lax formulae
for SCRAP. We first present the Hopf-Lax formula for the time-varying SCRAP, and then
the Hopf-Lax formula for the time-invariant SCRAP.
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Hopf-Lax formula for SCRAP

Define, for initial time and state (t, x) ∈ [0, T ]× Rn,

φ2(t, x) := inf
β

min
τ∈[t,T ]

∫ τ

t

H∗(s, x(s), β(s))ds+ g(τ, x(τ)), (4.103)

subject to


ẋ(s) = −β(s), s ∈ [t, T ],

β(s) ∈ co({−f(s, x(s), a) | a ∈ A}), s ∈ [t, T ],

x(t) = x,

c(s, x(s)) ≤ 0, s ∈ [t, τ ],

(4.104)

where the description for all variables is the same as in Chapter 4.2.3.

Theorem 12. (Hopf-Lax formula for SCRAP) For all (t, x) ∈ [0, T ]× Rn,

ϑ2(t, x) = φ2(t, x), (4.105)

where ϑ2 is the optimal cost of SCRAP ((4.93) subject to (4.94)), and φ2 is the Hopf-Lax
formula for SCRAP ((4.103) subject to (4.104)).

Proof of the Hopf-Lax formula for the time-varying SCRAP

By applying the HJ analysis in Chapter 4.2.2, we have following results for the Hopf-Lax
formula for SCRAP (φ2 (4.103) subject to (4.104)). Combining (4.103) and (4.104), define a
value function in the augmented state space, W2 : [0, T ]× Rn × R→ R:

W2(t, x, z) = inf
β

min
τ∈[t,T ]

max
{

max
s∈[t,τ ]

c(s, x(s)),

∫ τ

t

H∗(s, x(s), β(s))ds+ g(τ, x(τ))− z
}
,

(4.106)

where β(s) ∈ co({−f(s, x(s), a) | a ∈ A}), and “co” is the convex-hull operator. As shown in
[65],

Dom(H∗(s, x(s), ·)) = {b | H∗(s, x(s), b) <∞}
= co({−f(s, x(s), a) | a ∈ A}).

(4.107)

By Theorem 11, W2 is the unique viscosity solution to

max
{
c(t, x)−W2(t, x, z),min{g(t, x)− z −W2(t, x, z),

∂W2

∂t
− H̄W (t, x, z,

∂W2

∂x
,
∂W2

∂z
)}
}
= 0

(4.108)

in (0, T )× Rn × R, where H̄W : [0, T ]× Rn × R× Rn × R→ R

H̄W (t, x, z, p, q) := max
b

[p · b+ qH∗(t, x, b)], (4.109)
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where p and q represent the gradients ∂W2

∂x
and ∂W2

∂z
, H∗ is defined in (4.61), and

W2(T, x, z) = max{c(T, x), g(T, x)− z} (4.110)

on {t = T} × Rn × R. Then,

φ2(t, x) = min z subject to W2(t, x, z) ≤ 0. (4.111)

Now, it is sufficient to prove V2 ≡ W2.
Similar to Chapter 4.2, we utilize Theorem 10 to prove V2 ≡ W2. F1 and F2 in Chapter

4.2.4 refer to (4.96) and (4.108), respectively. Recall Lemma 12 as below.

Lemma 14. For (t, x, z, p, q) ∈ [0, T ]× Rn × R× Rn × R,

H̄(t, x, z, p, q) = H̄W (t, x, z, p, q) if q ≤ 0, (4.112)

where H̄ and H̄W are defined in (4.97) and (4.109), respectively.

Proof of Theorem 12. Lemma 11 states that the sub-differentials and super-differentials
of V2(t, x, z) with respect to z are less than or equal to 0 for all (t, x, z). Thus, by combining
Theorem 10, Lemma 11 for SCRAP, and Lemma 14, we prove V2 ≡ W2. By (3.11) and
(4.111), we conclude ϑ2 ≡ φ2.

The proof of Theorem 12 is very similar to the above argument in this chapter.

Hopf-Lax formula for the time-invariant SCRAP

Define, for the initial time and state (t, x) ∈ [0, T ]× Rn,

φTI
2 (t, x) := inf

β

∫ T

t

HTI*
2 (x(s), β(s))ds+ g(x(T )), (4.113)

subject to


ẋ(s) = −β(s), s ∈ [t, T ],

β(s) ∈ co({0} ∪ {−f(x(s), a) | a ∈ A}), s ∈ [t, T ],

x(t) = x,

c(x(s)) ≤ 0, s ∈ [t, T ],

(4.114)

where β : [t, T ] → Rn is a new measurable control signal, “co” is a convex-hull operator,
HTI

2 : Rn × Rn → R

HTI
2 (x, p) := H̄TI

2 (x, z, p,−1)

= max{0,max
a∈A

[−p · f(x, a)− L(x, a)]}, (4.115)

where p is the costate with respect to x, H̄TI
2 is defined in (4.100), and HTI∗

2 : Rn × Rn →
R ∪ {∞}

HTI*
2 (x, b) := max

p
[p · b−HTI

2 (x, p)], (4.116)

where b is a new control input, and HTI∗
2 is the Legendre-Fenchel transformation of HTI

2 with
respect to p.
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Theorem 13. (Hopf-Lax formula for the time-invariant SCRAP) Consider the
time-invariant SCRAP. For all (t, x) ∈ [0, T ]× Rn,

ϑ2(t, x) = φ2(t, x) = φTI
2 (t, x), (4.117)

where ϑ2 is the optimal cost of SCRAP ((4.93) subject to (4.94)), φ2 is the Hopf-Lax formula
for SCRAP ((4.103) subject to (4.104)), and φTI

2 is the Hopf-Lax formula for the time-invariant
SCRAP ((4.113) subject to (4.114)).

Proof of the Hopf-Lax formula for the time-varying SCRAP is very similar to the one for
the time-varying SCCIP.

Proof of the Hopf-Lax formula for the time-invariant SCRAP

By applying the HJ analysis in Chapter 4.3.3, we have following results for the Hopf-Lax
formula for the time-invaraint SCRAP (φTI

2 (4.113) subject to (4.114)). Combining (4.113)
and (4.114), define a value function in the augmented state space. WTI

2 : [0, T ]×Rn×R→ R:

WTI
2 (t, x, z) = inf

β

{
max
s∈[t,T ]

c(x(s)),

∫ T

t

HTI∗
2 (x(s), β(s))ds+ g(x(T ))− z

}
. (4.118)

In (4.118), we can omit the control constraint in (4.114): β(s) ∈ co({0} ∪ {−f(x(s), a) | a ∈
A}), since this control constraint is the domain of the control input β(s) for finite HTI∗

2 (x(s), ·).
Note that “co” is a convex-hull operator.

Lemma 15 (Domain of HTI∗
2 ). For all x ∈ Rn,

Dom(HTI∗
2 (x, ·)) = {b | HTI∗

2 (x, b) <∞}
= co({0} ∪ {−f(x, a) | a ∈ A}),

(4.119)

where HTI∗
2 is defined in (4.116).

Proof. See Appendix E.1.
By Proposition 3.4 in [4], WTI

2 is the unique viscosity solution to

max
{
c(x)−WTI

2 ,
∂WTI

2

∂t
− H̄TI

W (x, z,
∂WTI

2

∂x
,
∂WTI

2

∂z
)
}

= 0 (4.120)

in (0, T )× Rn × R, where H̄TI
W : Rn × R× Rn × R→ R

H̄TI
W (x, z, p, q) := max

b
[p · b+ qHTI∗

2 (x, b)], (4.121)

where HTI∗
2 is defined in (4.116), and p and q represent the gradients

∂WTI
2

∂x
and

∂WTI
2

∂z
. Then,

φTI
2 (t, x) = min z subject to WTI

2 (t, x, z) ≤ 0. (4.122)

Now, it is sufficient to show V2 ≡ WTI
2 . We will consider (4.99) as F1 in Theorem 10 and

(4.120) as F2 in Theorem 10.
Lemma 16 analyzes the relationship between H̄TI

2 (4.100) for V2 and H̄TI
W (4.121) for WTI

2 .
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Lemma 16. For (x, z, p, q) ∈ Rn × R× Rn × R,

H̄TI
2 (x, z, p, q) = H̄TI

W (x, z, p, q) if q ≤ 0, (4.123)

where H̄TI
2 and H̄TI

W are defined in (4.100) and (4.121), respectively.

Proof. See Appendix E.2.
Now, we are ready to conclude the proof of Theorem 13.

Proof of Theorem 13. Consider the HJ PDE for V2 in (4.99) as F1 in Theorem 10 and
the HJ PDE for WTI

2 in (4.120) as F2 in Theorem 10. Since Lemma 11 holds for i = 2 and
16 holds, Theorem 10 implies V2 ≡ WTI

2 . By Theorem 12, (4.102), and (4.122), we conclude
ϑ2 ≡ φ2 ≡ φTI

2 .

4.3.4 Convexity analysis for SCRAP and its two Hopf-Lax
formulae

This chapter provides convexity analysis for SCRAP and its Hopf-Lax formulae. This chapter
utilizes the first-order forward Euler method.

We discretize the time interval to {t0 = 0, ..., tK = T} where ∆k := tk+1− tk. In the use of
the first-order Euler method, discretization error for optimal control problems becomes smaller
for smaller ∆k [18, 3]. For notation, the state at tk is x[k], and α[k] and β[k] are control
inputs at tk. In this paper, we use x to denote both a state trajectory in the continuous-time
setting (x(·)) and a state sequence in the discrete-time setting (x[·]). We apply the same
notation rule for α, β.

This chapter presents convexity analysis for SCRAP, the Hopf-Lax formula for the time-
varying SCRAP, and the Hopf-Lax formula for the time-invariant SCRAP. The temporally
discretized SCRAP is

ϑ2(0, x) ≃ min
x[·],α[·],k′∈{0,...,K}

k′∑
k=0

L(tk, x[k], α[k])∆k + g(tk′ , x[k′]), (4.124)

subject to


x[k + 1]− x[k] = ∆kf(tk, x[k], α[k]), k ∈ {0, ..., K − 1},
α[k] ∈ A, k ∈ {0, ..., K − 1},
x[0] = x,

c(tk, x[k]) ≤ 0, k ∈ {0, ..., k′}.

(4.125)

The cost in (4.124) is generally non-convex in (x[·], α[·])-space since the pointwise minimum
operator over k′ is defined in a non-convex set: {0, ..., K}. Thus, a sufficient convexity
condition is that L and g are 0, as in Assumption 4. In this case, 0 is always a minimizer
k′. Thus no additional conditions are necessary for convexity of the temporally discretized
SCRAP.

Assumption 4. (Convexity condition for the temporally discretized SCRAP and
its Hopf-Lax formula)
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1. L ≡ g ≡ 0.

The temporally discretized Hopf-Lax formula for SCRAP ((4.103) subject to (4.104)) is
as follows:

φ2(0, x) ≃ min
x[·],β[·],k′∈{0,...,K}

k′∑
k=0

H∗(tk, x[k], β[k])∆k + g(tk′ , x[k′]), (4.126)

subject to


x[k + 1]− x[k] = −∆kβ[k], k ∈ {0, ..., K − 1},
β[k] ∈ co({−f(tk, x[k], a) | a ∈ A}), k ∈ {0, ..., K − 1},
x[0] = x,

c(tk, x[k]) ≤ 0, k ∈ {0, ..., k′}.

(4.127)

By the same argument for SCRAP, H∗ and g should be zero for the convexity of the discretized
Hopf-Lax formula for SCRAP in (x[·], β[·])-space. [65] proves that L ≡ 0 implies H∗ ≡ 0,
thus, Assumption 4 is also a sufficient condition for convexity of the temporally discretized
Hopf-Lax formula for SCRAP.

We discretize the Hopf-Lax formula for the time-invariant SCRAP (φTI
2 in (4.113) subject

to (4.114)).

φTI
2 (0, x) ≃ min

x[·],β[·]

K∑
k=0

HTI∗
2 (x[k], β[k])∆k + g(x(K)), (4.128)

subject to


x[k + 1]− x[k] = −∆kβ[k], k ∈ {0, ..., K − 1},
β[k] ∈ co({0} ∪ {−f(x[k], a) | a ∈ A}), k ∈ {0, ..., K − 1},
x[0] = x,

c(x[k]) ≤ 0, k ∈ {0, ..., K}.

(4.129)

We will prove that Assumption 5 is sufficient for the temporally discretized time-invariant
SCRAP to be convex in (x[·], β[·])-space. We will first show HTI∗

2 (x, b) and {(x, b) | b ∈
co({0} ∪ {−f(x, a) | a ∈ A})} are convex in (x, b). According to the definition of HTI

2

(4.115), HTI
2 does not have the state dependency since f and L do not have it. Thus, HTI∗

2

also does not have the state dependency and is always convex in b. Similariy, {(x, b) | b ∈
co({0}∪{−f(x, a) | a ∈ A})} does not have the state dependency and is convex in b. Finally,
the second and forth conditions in Assumption 5 implies the terminal cost and the state
constraint are convex.

Assumption 5. (Convexity condition for the temporally discretized Hopf-Lax
formula for the time-invariant SCRAP)

1. L(x, a) = L(a),

2. g(x) is convex in x,
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3. c(x) is convex in x,

4. f(x, a) = f(a).

Remark 11. SCRAP and its Hopf-Lax formula for the time-varying case are generally non-
convex. However, the Hopf-Lax formula for the time-invariant SCRAP is convex if Assumption
5 holds. Assumption 5 does not require any convexity conditions in the control-input space.

4.3.5 Numerical Algorithms

For the time-varying SCRAP, the numerical algorithm in Chapter 4.1 is similarly used. In
this chapter, we present a numerical algorithm for the time-invariant SCRAP.

Optimal State and Control Trajectories

Consider feasible state and control trajectories x and β for the Hopf-Lax formula for the
time-invariant SCRAP. Define a function, ϕβ : [t, T ]→ [t, T ] with respect to β:

ϕβ(s) := t+

∫ s

t

1{β(τ) ̸= 0}dτ, (4.130)

where

1{β(τ) ̸= 0} :=

{
1, β(τ) ̸= 0,

0, β(τ) = 0,
(4.131)

and the corresponding inverse function:

ϕ−1
β (s) := min τ subject to ϕβ(τ) = s. (4.132)

We consider state and control trajectories:

βc(s) :=

{
β(ϕ−1

β (s)), s ∈ [t, ϕβ(T )]

0, s ∈ (ϕβ(T ), T ],
(4.133)

ẋc(s) = −βc(s), s ∈ [t, T ], (4.134)

and xc(t) = x. βc is generated from β such that βc is bounded away from the zero vector
almost everywhere in [t, ϕβ(T )] and the zero vector almost everywhere in (ϕβ(T ), T ]. As
illustrated in Figure 4.6, Lemma 17 states the relationship between x and xc.

Lemma 17. For given initial time and state (t, x) ∈ [0, T ] × Rn, any state trajectory
x : [t, T ] → Rn and control trajectory β : [t, T ] → Rn solving (4.104), xc and βc in (4.133)
and (4.134) solve (4.104), and

xc(s) =

{
x(ϕ−1

β (s)), s ∈ [t, ϕβ(T )],

x(T ), s ∈ (ϕβ(T ), T ].
(4.135)
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time 

state

= 𝜙#$% 𝑡%
𝑡% 𝜙#$% 𝑡'𝑡' 𝑇

: x
: x*

Figure 4.6: Illustration of Lemma 17. Note that ϕβ(T ) = t2 in this illustration.

Proof. For s ∈ [t, ϕβ(T )],

xc(s) = x−
∫ s

t

β(ϕ−1
β (τ))dτ = x−

∫ ϕ−1
β (s)

t

β(τ)dτ

= x(ϕ−1
β (s)). (4.136)

For s ∈ (ϕβ(T ), T ], xc(s) = xc(ϕβ(T )) = x(T ). Therefore, (4.135) is proved.
By (4.136) and (4.133), for s ∈ [t, ϕβ(T )], xc(s), βc(s) satisfy (4.104). For s ∈ (ϕβ(T ), T ],

βc(s) = 0 and (4.104) is satisfied.
For any state trajectory x and control trajectory β solving (4.104), there exists γi(s), γ̄(s) ≥

0 and αi(s) ∈ A such that

β(s) = −
ī(s)∑
i=1

γi(s)f(x(s), αi(s)), (4.137)

ī(s)∑
i=1

γi(s) + γ̄(s) = 1, (4.138)

where ī(s) is the number of γi(s), since β(s) ∈ co({−f(x(s), a) | a ∈ A} ∪ {0}) for each
s ∈ [t, T ]. This analysis is illustrated in Figure 4.7.

Using (4.137) and (4.138), define state and control trajectories on a temporal discretization:
{t0 = t, ..., tK = T}. We denote ∆tk := tk+1 − tk. For each time interval [tk, tk+1), we
can make finer discrete time interval [tk,0 = tk, ..., tk,i = tk +

∑i
j=1 γj(tk)∆tk, ..., tk,̄i =

tk +
∑ī(tk)

j=1 γj(tk)∆tk, tk+1,0 = tk+1), where αj(tk) are defined in (4.137) and (4.138). Using
the finer temporal discretization, define state and control trajectories:

ẋϵ(s) = −βϵ(s), s ∈ [t, T ], xϵ(t) = x, (4.139)
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Figure 4.7: Illustration of Lemma 18. In this example, β(tk) = −γ1f(x(tk), µ1(tk)) −
γ2f(x(tk), µ2(tk)), where µ1(tk), µ2(tk) ∈ A and γ1 + γ2 < 1.

βϵ(s) =

{
−f(xϵ(s), αi(tk)), s ∈ [tk,i−1, tk,i),

0, s ∈ [tk,̄i, tk+1),
(4.140)

where αi(tk) is defined in (4.137). Note that βϵ is analogue to the velocity profile described
in Figure 4.7 (b) by switching x(tk) to xϵ(s), s ∈ [tk, tk+1]. Then, Lemma 18 states that xϵ

approximates x with ϵ-error bound.

Lemma 18. [65] For given initial time and state (t, x) ∈ [0, T ] × Rn, consider any state
trajectory x and control trajectory β solving (4.104). Suppose β is Riemann integrable in [t, T ].
Then, for any ϵ > 0, there exists δ > 0 such that, for any discretization {t0 = t, ..., tK = T}
where |∆tk| < δ, k = 0, ..., K − 1:

∥xϵ(s)− x(s)∥ ≤ ϵ, s ∈ [t, T ]. (4.141)

where xϵ solves (4.139).

Riemann integrability of β is a key assumption for Lemma 18 since β can be approximated
by a piecewise constant function. As illustrated Figure 4.7 (b), the Riemann sum of β(tk)
in [tk, tk+1] is the same as the sum of Riemann sum of −f(x(tk), αi(tk)) in [tk,i−1, tk,i] for all
i = 1, ..., ī by (4.137). By (4.137) and Lipschitz continuity of f , it can be proved that the
norm of the difference between the Riemann sum of β(tk) and xϵ in (4.139) is bounded below
by ϵ. The detail of this proof can be found in [65].

To combine Lemmas 17 and 18, with respect to state trajectory x and control trajectory
β solving (4.104), define feasible state and control trajectories solving (4.91):

ẋϵ
c(s) = f(xϵ

c(s), α
ϵ
c(s)), s ∈ [t, T ], xϵ

c(t) = x, (4.142)
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αϵ
c(s) :=

{
αi(tk), s ∈ [ϕβϵ(tk,i−1), ϕβϵ(tk,i)),

any a ∈ A, s ∈ [ϕβϵ(T ), T ],
(4.143)

where βϵ is defined in (4.140), ϕβϵ is defined in (4.130) for βϵ, and αi is defined in (4.137).
Then, we can approximate any feasible x solving (4.104) using xϵ

c.

Theorem 14. For given initial time and state (t, x) ∈ [0, T ] × Rn, consider any state
trajectory x and control trajectory β solving (4.104). Suppose Assumption 1 holds and β
is Riemann integrable in [t, T ]. Then, there exists δ > 0 such that, for any discretization
{t0 = t, ..., tK = T} where |∆tk| < δ, k = 0, ..., K − 1:

∥xϵ
c(ϕβϵ(s))− x(s)∥≤ ϵ, s ∈ [t, T ], (4.144)

where xϵ
c solves (4.142) and βϵ is defined in (4.140).

Proof. By Lemma 18, there exists δ > 0 such that |∆tk|< δ and ∥xϵ(s)−x(s)∥≤ ϵ, where
xϵ solves (4.139). By Lemma 17,

xϵ
c(ϕβϵ(s)) = xϵ(s), s ∈ [t, T ],

where xϵ
c solves (4.142) and βϵ is defined in (4.140). Therefore, we conclude (4.144).

Algorithm 4 provides a numerical algorithm for the optimal state and control trajectories
of the reach-avoid problem. We first utilize numerical optimization methods to compute
optimal state and control trajectories for the proposed Hopf-Lax formula to determine
β[t0], ..., β[tK ] over the temporal discretization {t0 = t, ..., tK = T}. For higher accuracy,
smaller maxk=0,...,K−1 ∆tk should be chosen. Using this, we numerically compute optimal
state and control trajectories xϵ

c and αϵ
c in (4.142) and (4.143).

Algorithm 4 Numerical algorithm for the time-invariant SCRAP using its time-invariant
Hopf-Lax formula

1: Input: the initial state, x; the initial time t; the terminal time T ; temporal discretization:
{t0 = t, ..., tK = T}

2: Output: the optimal control µϵ
∗, the optimal time s∗

3: solve x, β for the proposed Hopf-Lax formula using the temporal discretization
4: compute αi(tk) and γi(tk) in (4.137) and (4.138)
5: compute xϵ and βϵ in (4.139) and (4.140)
6: compute xϵ

c and αϵ
c in (4.142) and (4.143)

The computational complexity for the proposed Hopf-Lax formula using Algorithm
4 depends on the numerical optimization method to compute optimal state and control
trajectories for the proposed Hopf-Lax formula. For example, the computational complexity
using the interior-point method [19] is O(d2 log d), where d is the number of constraints. In
many examples, d is proportional to the dimension of the state n. Our method significantly
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Figure 4.8: (a) shows a SCRAP problem setting that describes the target position xg and
the six vehicles’ 2D positions. (b)-(h) show optimal trajectories for the SCRAP problem at
each time, where the blue circles are the vehicles’ positions, and the black curves are optimal
state trajectories. The SCRAP cost is minimized at 2.3 s.

reduces the computational complexity where the Hopf-Lax formula for the reach-avoid
problem provides a convex problem. Since the Hopf-Lax formula for the reach-avoid problem
is analogous to the Hopf-Lax formula for the state-constrained optimal control problem in
[65], the convexity conditions for the both formulae are the same: 1) g is convex, 2) f is linear
in the state, and 3) c is convex in the state, which does not require any condition regarding
the control. If the Hopf-Lax formula for the reach-avoid problem provides a non-convex
problem, our method with gradient-based methods provides a sub-optimal solution to the
reach-avoid problem.

4.3.6 Numerical Example

This chapter provides a numerical example to demonstrate the Hopf-Lax formulae for the
time-invariant SCRAP.

Consider a twelve-dimensional system which consists of six two-dimensional vehicles:
xr(s) = (xr

1(s), x
r
2(s)) ∈ R2 refers to the r-th vehicle’s two-dimensional state (r = 1, ..., 6) at

time s, and x(s) = (x1(s), ..., x6(s)) ∈ R12. Each vehicle has two control inputs: αr(s) =
(αr

1(s), α
r
2(s)) ∈ R2. The system dynamics is

ẋr
1(s) = αr

1(s) + 2, ẋr
2(s) = αr

2(s) + 1, (4.145)

where xr
1 and xr

2 are horizontal and vertical positions of the r-th vehicle at s, and αr
1(s) and

αr
2(s) are horizontal and vertical velocities.

As shown in Figure 4.8 (a), we would like to control the multi-vehicle system so that the
distance between the 2D center position of the six vehicles and the goal point is minimized
while maintaining the hexagonal formation with 0.1-error bound.

inf
α

min
τ∈[0,5]

∥∥∥∥x1(τ) + ...+ x6(τ)

6
− xg

∥∥∥∥
2

(4.146)
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subject to


(4.145), ∥αr(s)∥∞ ≤ 0.5, r = 1, ..., 6, s ∈ [0, 5],

x(0) = x,

∥xr(s)− x1(τ)+...+x6(τ)
6

− dr∥∞ ≤ 0.1, s ∈ [0, τ ],

(4.147)

where xg = (1, 0), and dr = 0.5(cos((r − 1)π/3), sin((r − 1)π/3)) is a vector for the r-th
vehicle that indicates the formation direction from the 2D center position of the six vehicles
(r = 1, ..., 6).

For this problem, we will derive the Hopf-Lax formula for the time-invariant SCRAP since
the temporally discretized Hopf-Lax formula for the time-varying SCRAP as in Chapter 4.3.4
is generally non-convex.

The Hamiltonian HTI
2 (x, p) (4.115) is

HTI
2 (x, p) = max{0,

6∑
r=1

[−2pr1 − pr2 + ∥pr1∥+∥pr2∥]}, (4.148)

where x = (x11, x
1
2, ..., x

6
2) ∈ R12, pri is the costate with respect to xri , p

r = (pr1, p
r
2) ∈ R2, and

p = (p1, ..., p6) ∈ R12. Since HTI
2 is a pointwise maximum of two convex functions in p, HTI

2 is
convex in p. Also, for all b ∈ R12, the supporting hyperplane of HTI

2 in p-space with respect
to the normal vector b crosses the origin. Thus,

HTI∗
2 (x, b) =

{
0, in Dom(HTI∗

2 (x, ·)),
∞, otherwise,

(4.149)

where b = (b1, ..., b6) = (b11, b
1
2, ..., b

6
1, b

6
2) ∈ R12. By Lemma 15, Dom(HTI∗

2 (x, ·)) = co({0} ∪
{−f(x, a) | a ∈ [−0.5, 0.5]12}) ⊂ R12 is analytically derived as follows.

Dom(HTI∗
2 (x, ·)) ={b | ∀r1, r2 ∈ {1, ..., 6},−2.5 ≤ br11 ,−1.5 ≤ br12 ,

3

5
br11 − br21 ≥ 0,

br11 −
3

5
br21 ≤ 0, br11 ≥ 5br22 , b

r1
1 ≤ br22 , b

r2
2 ≥ 3br12 , 3b

r2
2 ≤ br12 }. (4.150)

The Hopf-Lax formula for the time-invariant SCRAP in Theorem 13 is

inf
β

∥∥∥∥x1(5) + ...+ x6(5)

6
− xg

∥∥∥∥
2

(4.151)

subject to


ẋr(s) = −βr(s),

β(s) ∈ Dom(HTI∗
2 (x, ·)) in (4.150),

x(0) = x

∥xr(s)− x1(τ)+...+x6(τ)
6

− dr∥∞ ≤ 0.1, s ∈ [0, 5].

(4.152)

Consider temporally discretized SCRAP and Hopf-Lax formula on any temporal dis-
cretization {t0 = 0, ..., tK = 5} as in Chapter 4.3.4. The temporally discretized SCRAP is
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Figure 4.9: This figure shows the computation time of the time-invariant Hopf-Lax formula
with different numbers of vehicles. Each vehicle is two-dimensional.

non-convex, but the temporally discretized Hopf-Lax formula is convex since Assumption 5
is satisfied, which allows the proposed Hopf-Lax formula for the time-invariant SCRAP to
provide an optimal solution.

The computation time is 158.5 s. Figures 4.8 (b)-(h) show the optimal state (position)
trajectories of the multi-vehicle system. The distance between the center of the six vehicles
and the goal position xg is minimized at τ = 2.3 s, as shown in Figure 4.8 (e), and then the
center of the six vehicles moves away from the goal position.

This example demonstrates our method’s potential usefulness in multiple vehicle operations.
For example, the control a spacecraft system to get close to an object of interest, such as an
asteroid, and then the release of smaller exploration robots from the spacecraft to do more
detailed sensing of the asteroid. The SCRAP analysis provides the optimal control and the
time at which the exploration robots have to be released from the spacecraft.

Computation time

In this chapter, we compare the computation time of the Hopf-Lax formula for the time-
invariant SCRAP and the level-set method. We can easily change the number of vehicles.
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Figure 4.9 shows the computation time where the number of vehicles is 1 to 10. Since each
vehicle is two-dimensional, the state dimension varies from 2 to 20.

The level-set method requires spatial and temporal discretization, which leads to expo-
nential computational complexity in the state’s dimension. The level-set method handles
this problem if the number of vehicles is smaller than three. For numerical computation,
we discretize the temporal space with 51 points and each axis of the augmented state (x, z)
space with 61 points. The computation time is 26.9 seconds for the one-vehicle and 27.4
hours (9.86× 104 seconds) for the two-vehicle.

The level-set method provides a closed-loop control. Thus, offline computation is allowed
because a closed-loop control is robust to disturbances, measurement noise, and system
modeling errors in practice. On the other hand, our Hopf-Lax methods provide an open-loop
control, requiring real-time computation to be robust to the above factors.

Offline computation of the level-set method is intractable for high-dimensional systems
due to the exponential growth of computational complexity in the state dimension and
computing machines’ memory limits. However, our Hopf-Lax method computes a solution
even if the computation time might not meet real-time computation. For the three-vehicle
setting (6D), the level set method requires 160 terabytes of memories for a numerical solution
to the HJ PDE, where 51 temporal discretization points and 61 spatial discretization points
on each axis of (x, z) are used. It still requires 367.4 gigabytes if the number of spatial
discretization points on each axis is reduced by 21. On the other hand, our Hopf-Lax method
computes a solution even for a ten-vehicle setting (20D). In order to reduce the computation
time, the Hopf-Lax formula can be incorporated with approximation methods, such as the
receding-horizon technique [39, 53] for more efficient computation.

4.4 Conclusion

This chapter proposed the Hopf-Lax formulae for SCGSP, SCCIP, and SCRAP. The formulae
are the first to consider Hopf-Lax theory for HJ PDEs relevant to state-constrained problems.
In addition, this chapter introduces two numerical algorithms: one for time-varying settings
and the other for time-invariant settings. The Hopf-Lax formulae are posed in better convexity
conditions than the problems for all three problems. Thus, we can guarantee the optimality
for broader classes of problems.

Hopf-Lax theory allows us to deal with high-dimensional systems with efficient computation.
This is because of the computational complexity of polynomial in the state dimension. However,
Hopf-Lax theory provides open-loop control, although HJ analysis provides a closed-loop
control. Therefore, real-time computation is necessary in the real world, where we do not
have all the exact information, including states, dynamics, and environment. In order to
achieve real-time computation, this method can also cooperate with approximation methods,
including the receding horizon technique.

Our future directions are:

1. to find a method for an optimal control signal that has less chattering than our method;
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2. to extend our theory for infinite-horizon optimal control problems;

3. to extend the theory in this chapter to hybrid systems;

4. to derive Hopf-Lax theory for zero-sum games.
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Chapter 5

Reinforcement Learning for
Reach-Avoid Problems

This chapter is based on the work presented in [70], which is joint work with Jingqi Li,
Somayeh Sojoudi, and Claire Tomlin.

Ensuring the safety and performance of autonomous systems is essential for safety-critical
systems, such as autonomous driving [81], surgical robots [102], and air traffic control [58].
Some safe control tasks could be modeled as driving the system’s state to a target set in
the state space while satisfying certain safety constraints [10]. This is referred to as the
reach-avoid problem [100]. However, it is challenging to solve this problem under the presence
of uncertainty [40], such as modeling errors and environmental disturbances. One way to
accommodate this is to consider the reach-avoid problem under the worst-case scenario,
which could be formulated as a zero-sum game between the control inputs and an adversary,
accounting for the uncertainty or disturbance, with an objective to compromise the efforts of
control inputs[103].

In the general case, this problem is challenging because it requires solving a zero-sum game
with nonlinear dynamics, where the objective involves the worst-case performance instead
of an average or cumulative performance over time, as in most constrained reinforcement
learning (RL) papers [1, 35, 5]. Moreover, no future constraint violation is considered once
the state trajectory enters the target set in the reach-avoid zero-sum game. Since constrained
RL aims to learn a policy satisfying constraints at all times, it can only learn a conservative
sub-optimal policy for the reach-avoid zero-sum game.

A well-known approach to solving the reach-avoid zero-sum game is the Hamilton-Jacobi
(HJ) method [74, 46], in which one can design a value function such that the sign of the value
function evaluated at a state encodes the safety and performance information of that state.
In addition, reach-avoid games with multiple agents [92] and stochastic systems [104] have
also been studied. These methods provide a closed-loop control policy for the continuous-time
and finite-horizon zero-sum game setting, where an agent is required to reach a target set
safely within a given finite-time horizon.

However, there are two major limitations of existing work on HJ-based methods for
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finite-horizon reach-avoid games. Firstly, for complex or uncertain dynamical systems, it
is difficult to predict a sufficient time horizon to guarantee the feasibility of the finite-time
reach-avoid zero-sum game problem. This motivates the formulation of the infinite-horizon
reach-avoid zero-sum game, where we remove the requirement of reaching the target set
within a pre-specified finite horizon. The infinite-horizon reach-avoid game has been studied
in only a few prior works. Among these is [57], in which the reach-avoid problem without
an adversarial player is considered. We introduce the time-discount factor, a parameter
discounting the impact of future reward and constraints, to the design of a contractive
Bellman backup such that by annealing the time-discount factor to 1 they can obtain the
reach-avoid set. Empirical results in [57] suggest the potential of this method in solving the
infinite-horizon reach-avoid zero-sum games.

A second limitation is the computational complexity of classical HJ-based methods, which
are exponential in the dimension of the state space [11]. Several approaches have been
proposed in the literature to alleviate this. A line of work [75, 63, 96] formulate the reach-
avoid zero-sum games as polynomial optimization problems for which there is no need to grid
the entire state space. Another line of work on system decomposition, that is, decomposing a
high-dimensional control problem into low-dimensional problems, is also a promising direction
[27, 28]. Underapproximation of the reach-avoid set is proposed in [50] and an efficient
open-loop policy method is developed in [110]. Nevertheless, these approaches presume
certain structural assumptions about the dynamical systems and costs, which restrict their
application.

With the power of neural networks, deep RL has been proven to be a promising technique
for high-dimensional optimal control tasks [80, 95, 54], where a policy is derived to maximize
the accumulated reward at each time step. It has been shown in [82] that neural networks could
be leveraged to approximate the value function in high-dimensional optimal control problems
and therefore alleviate the curse of dimensionality of Hamilton-Jacobi reachability analysis.
For example, sinusoidal neural networks is proven to be a good functional approximator for
learning the value function of the backward-reachable-tube problem for high-dimensional
dynamical systems [9]. A deep reinforcement learning-based method is proposed in [45] to
learn a neural network value function for viability kernel, the set of initial states from which
a state trajectory could be maintained to satisfy pre-specified constraints. In particular, the
paper [45] designs a contractive Bellman backup and learns a conservative approximation to
the viability kernel. This method is further extended to solve the infinite-horizon reach-avoid
problem in [57].

In this chapter, we propose a new HJ-based method for the infinite-horizon reach-avoid
zero-sum game, and we develop a deep reinforcement learning method to alleviate the curse
of dimensionality in solving it. Our contributions are threefold. We first propose a new
value function for the reach-avoid zero-sum game, where the induced Bellman backup is
a contraction mapping and ensures the convergence of value iteration to the unique fixed
point. Subsequently, we analyze the designed value function by first proving its Lipschitz
continuity, and then show that the new value function could be adapted to compute the
viability kernel and the backward reachable set, that is, the set of states from which a state
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trajectory could be controlled to reach the given target set. Finally, we alleviate the curse
of dimensionality issue by proposing a deep RL algorithm, where we extend conservative
Q-learning [62] to learn the value function of the infinite-horizon reach-avoid zero-sum game.
We obtain upper and lower bounds for the learned value function. Our empirical results
suggest that a (conservative) approximation of the reach-avoid set can be learned, even with
neural network approximation.

Unlike the previous work [57] where the value function is discontinuous in general and
the reach-avoid set can only be obtained when the time-discount factor is annealing to
1, the proposed value function is Lipschitz continuous under certain conditions and can
exactly recover the reach-avoid set without annealing the time-discount factor. The obtained
reach-avoid set is agnostic to any time-discount factors in the interval [0, 1). In addition, this
new value function could be adapted to compute the viability kernel and backward reachable
set, which constitutes a unified theoretical perspective on reachability analysis concepts such
as reach-avoid set, viability kernel, and backward reachable set.

Chapter 5.1 presents a formulation for the infinite-horizon reach avoid problem. Chapters
5.2 - 5.3 present our main theoretical results with proofs provided in the Appendix. Chapter
5.4 presents a deep reinforcement learning algorithm. Chapter 5.5 illustrates our algorithm
in multiple experiments. Finally, Chapter 5.6 concludes this chapter.

We use an independent notation in this chapter. We denote the state of a system by
x ∈ Rn. u := {u0, u1, . . . } and d := {d0, d1, . . . } are control and disturbance sequences,
where ut ∈ U ⊆ Rm and dt ∈ D ⊆ Rℓ, respectively. We assume U and D to be compact sets.
ξu,dx (t) is the state trajectory evaluated at time t, which evolves according to the update rule

ξu,dx (0) = x,

ξu,dx (t+ 1) = f(ξu,dx (t), ut, dt), t ∈ Z+,
(5.1)

where Z+ is the set of all non-negative integers and the system dynamics f(·, ·, ·) : Rn×U×D →
Rn is assumed to be Lipschitz continuous in the state.

5.1 Problem Formulation

Many control problems involving safety-critical systems can be interpreted as driving the
system’s state to a specific region while satisfying certain safety constraints. This intuition
can be formalized by introducing the concept of target set as the set of desirable states to
reach as well as the concept of constraint set as the set of all the states complying with the
given constraints. The task is to design control inputs such that even under the worst-case
disturbance the system state trajectory hits the target set while staying in the constraint set
all times. We represent the target set and constraint set by T = {x ∈ Rn : r(x) > 0} and
C = {x ∈ Rn : c(x) > 0}, respectively, for some Lipschitz continuous and bounded functions
r(·) : Rn → R and c(·) : Rn → R.

At each time instance t ∈ Z+, the control input ut aims to move the state towards the
target set while staying inside the constraint set, whereas the disturbance dt attempts to
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drive the state away from the target set and the constraint set. In this work, we consider a
conservative setting, where at each time instance the control input plays before the disturbance.
We propose to account for this playing order by adopting the notion of non-anticipative
strategy :

Definition 5.1.1 (Non-anticipative strategy). A map ϕ : {ut}∞t=0 → {dt}∞t=0, where ut ∈ U
and dt ∈ D, ∀t ∈ Z+, is a non-anticipative strategy if it satisfies the following condition:
Let {ut}∞t=0 and {ūt}∞t=0 be two sequences of control inputs. Let {dt}∞t=0 = ϕ({ut}∞t=0)
and {d̄t}∞t=0 = ϕ({ūt}∞t=0). For all T ≥ 0, if ut = ūt, ∀t ∈ {0, 1, . . . , T}, then dt = d̄t,
∀t ∈ {0, 1, . . . , T}.

The intuition behind this non-anticipative strategy is that, given two sequences of control
inputs sharing the same values for the first T entries, the corresponding entries of the two
sequences of disturbance must also be the same, meaning the disturbance cannot use any
information about the future control inputs when taking its own action. We denote by Φ the
set of all non-anticipative strategies. Building upon the previous discussion on reach-avoid
zero-sum games, we are now ready to define the definition the reach-avoid set :

RA(T , C) :={x ∈ Rn : ∀ϕ ∈ Φ, ∃{ut}∞t=0 and T ≥ 0,

s.t., ∀t ∈ [0, T ], ξu,ϕ(u)x (T ) ∈ T ∧ ξu,ϕ(u)x (t) ∈ C},

where ‘s.t.’ is the abbreviation of the phrase ’such that’. As such, we formalize the problem
to be studied in this chapter below.

Problem 1 (Infinite-horizon reach-avoid game). Let T := {x ∈ Rn : r(x) > 0} and
C := {x ∈ Rn : c(x) > 0} be the target and the constraint set, respectively. Find the
reach-aviod set RA(T , C) and an optimal sequence of control inputs {ut}∞t=0 for each state in
RA(T , C) such that under the worst-case disturbance {dt}∞t=0 the state trajectory will reach
the target set without violating the constraints.

5.2 New Value Function for Infinite-horizon

Reach-Avoid Games

In this chapter, we address Problem 1 by introducing a new Lipschitz continuous value
function such that its sign evaluated at a state indicates whether that state can be driven
to the target set without violating constraints. To be more specific, we will show that the
super-zero level set of the designed value function recovers the reach-avoid set in Problem 1.
Subsequently, we derive a Bellman backup equation. The fixed-point iteration based on this
Bellman backup equation induces a unique fixed point solution, which will be proven to be
the designed value function (5.3). Finally, we will show that the designed value function is
Lipschitz continuous, which is a favorable property for HJ analysis [14].
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Suppose that a state trajectory reaches a target set T at time t, i.e., ξu,dx (t) ∈ T , while
being maintained within the constraint set C for all τ ∈ {0, 1, . . . , t} under an arbitrary
sequence of disturbances d = {dt}∞t=0. Let γ ∈ [0, 1) be the time-discount factor, which
discounts the impact of future reward and constraints. We observe that such a sequence of
control inputs u = {ut}∞t=0 should satisfy

max
u0

min
d0

max
u1

min
d1
· · ·max

ut

min
dt

min {γtr(ξu,dx (t)),

min
τ=0,...,t

γτc(ξu,dx (τ))} > 0.

Therefore, to verify the existence of a sequence of control inputs driving the state trajectory
to the target set safely from an initial state x0, it suffices to check the sign of the following
term:

max
u0

min
d0

max
u1

min
d1

. . . sup
t=0,...

min {γtr(ξu,dx (t)),

min
τ=0,...,t

γτc(ξu,dx (τ))}.
(5.2)

By using the notion of the non-anticipative strategy ϕ, we can simplify (5.2) to the term

inf
ϕ

max
u

sup
t=0,...,

min {γtr(ξu,ϕ(u)x (t)), min
τ=0,...,t

γτc(ξu,ϕ(u)x (τ))}.

This implies that a new value function for Problem 1 can be defined as

V (x) := inf
ϕ

max
u

sup
t=0,...

min {γtr(ξu,ϕ(u)x (t)),

min
τ=0,...,t

γτc(ξu,ϕ(u)x (τ))}, ∀x ∈ Rn.
(5.3)

The sign of the value function encodes some crucial safety information about each state, that is,
whether the state could be driven towards the target set while satisfying the given constraints.
More precisely, V (x) > 0 if for every disturbance strategy ϕ, there exist u = {ut}∞t=0 and

T <∞ such that ξ
u,ϕ(u)
x (T ) ∈ T and ξ

u,ϕ(u)
x (t) ∈ C for all t ∈ [0, T ]. Based on this intuition,

we characterize the relationship between the super-zero level set of the value function (5.3)
and the reach-avoid set next.

Theorem 15. Consider the value function V (x) defined in (5.3). For every γ ∈ [0, 1), it
holds that {x ∈ Rn : V (x) > 0} = RA(T , C).

We propose to compute the value function (5.3) using dynamic programming. To this
end, a contractive Bellman backup will be derived below.

Theorem 16. Let γ ∈ [0, 1) be the time-discount factor. Suppose U : Rn → R is a bounded
function. Consider the Bellman backup B[·] defined as,

B[U ](x) := min {c(x),max{r(x), γmax
u

min
d
U(f(x, u, d))}}. (5.4)

Then, (5.3) is the unique solution to the Bellman backup equation, i.e., V = B[V ], and
∥B[V1]−B[V2]∥∞≤ γ∥V1 − V2∥∞, for all bounded functions V1 and V2.
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With the Bellman backup (5.4), we define the value iteration as the following recursion,
starting from an arbitrary bounded function V (0)(·) : Rn → R,

V (k+1) := B[V (k)], ∀k ∈ Z+. (5.5)

Since the fixed-point iteration based method using a contraction mapping B will guarantee
the convergence to a fixed point within that bounded function space, the Bellman backup
(5.4) ensures the convergence of value iteration to (5.3), i.e., limk→∞ V (k) = V .

Once we obtain the value function (5.3), we can calculate the following Q function:

Q(x, u, d) := min {c(x),max{r(x), γV (f(x, u, d))}}, (5.6)

where V (x) = maxu mindQ(x, u, d). Given a state x ∈ Rn, we can find an optimal control
input and disturbance by u∗ = maxu mindQ(x, u, d) and d∗ = mindQ(x, u, d), respectively.
This provides a way to extract the optimal control and worst-case disturbance for Problem
1. Therefore, the proposed value function (5.3) constitutes a solution to Problem 1 in the
sense that one can find the reach-avoid set, the optimal sequence of control inputs, and the
worst-case sequence of disturbances.

In what follows, we characterize the Lipschitz continuity of the proposed value function
(5.3). We show that the Lipschitz continuity of the value function (5.3) could be ensured
under certain conditions on the dynamics and the time-discount factor.

Theorem 17 (Lipschitz continuity). Suppose that the bounded functions r(·) and c(·) are
Lr- and Lc-Lipschitz continuous, respectively. Assume also that the dynamics f(x, u, d) is
Lf -Lipschitz continuous in x, for all u ∈ U and d ∈ D. Let L := max(Lr, Lc). Then, V (x) is
L-Lipschitz continuous if Lfγ < 1.

Remark 12. It is known that the sample complexity of neural network approximation
could be improved if the function to be approximated is continuous [52]. Therefore, the
Lipschitz continuity of the value funtion (5.3) is a beneficial property yielding reliable empirical
performance when we deploy neural networks approximation to handle curse of dimensionality
as highlighted in Chapter 5.5.2.

5.3 Computing the Viability Kernel and the Backward

Reachable Set

In this chapter, we show that the designed value function (5.3) can be adapted to compute
the viability kernel [45] and the backward reachable set [9]. We first present the formal
definitions of these notions below.

We adopt the same definition of viability kernel as in [45], where the viability kernel is
defined with respect to a closed set C̄ = {x ∈ Rn : c(x) ≥ 0}, i.e., the closure of the constraint
set C, as

Ω(C̄) := {x ∈ Rn : ∀ϕ ∈ Φ, ∃u, s.t., ξu,ϕ(u)x (t) ∈ C̄,∀t ≥ 0},
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which contains all states x from which a state trajectory ξ
u,ϕ(u)
x can be drawn such that

ξ
u,ϕ(u)
x (t) ∈ C̄, ∀t > 0. This set is of importance when the control task is to make the system

satisfy some safety-critical constraints in real-world application [45].
The backward-reachable set [9] of a target set T = {x ∈ Rn : r(x) > 0} is defined as

R(T ) := {x ∈ Rn :∀ϕ ∈ Φ,∃u,∃t ≥ 0, s.t., ξu,ϕ(u)x (t) ∈ T },

which includes all states that can be driven towards the target set T in finite time. The
backward reachable set is a useful concept in reachability analysis [9] because it specifies the
set of states that can be controlled to reach a given target set. For instance, if an airplane is
in the backward reachable set of another one, then it indicates that the two planes could
collide with each other if they are not properly controlled.

In what follows, we show how the value function (5.3) can be adapted to compute the
viability kernel and backward-reachable set.

Proposition 1. Assume that r(x) = −1 for all x ∈ Rn. It holds that V (x) ≤ 0 for all x ∈ Rn.
In addition, V (x) = 0 if and only if x ∈ Ω(C̄).

Remark 13. The value function in Proposition 1 could serve as a control barrier function
[6], from which we can derive a policy keeping the system states within a given set of the
state space.

Similarly, we can compute the backward-reachable set by substituting particular constraint
functions into (5.3).

Proposition 2. Assume that c(x) = 1 for all x ∈ Rn. It holds that V (x) ≥ 0 for all x ∈ Rn.
In addition, V (x) > 0 if and only if x ∈ R(T ).

Given the above results, our method provides a new theoretical angle to computing the
reach-avoid set, viability kernel, and backward reachable set for infinite-horizon games, where
a common value function (5.3) can be adaptively used to compute multiple important sets
for safety-critical analysis.

5.4 Deep Reinforcement Learning Algorithm

In this chapter, we develop a deep RL algorithm, which alleviates the curse of dimensionality
issue for high dimensional problems. In particular, since the satisfaction of given safety
constraints is vital for safety-critical systems, we propose to extend conservative Q-learning
(CQL) [62] to Problem 1 and develop a deep RL algorithm for solving it, where the conservatism
is favorable due to the neural network approximation error. More precisely, we learn a value
function parameterized by a neural network which in theory is a lower bound of the value
function (5.3). The super-zero level set of the converged value function in CQL is a subset of
RA(T , C), i.e., a conservative approximation of RA(T , C).
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The reason why CQL manages to learn a value function lower bound (5.3) is that CQL
minimizes not only the Bellman backup error but also the value function itself at each
iteration [62]. Since the super-zero level set of the value function (5.3) is the reach-avoid set
RA(T , C), the super-zero level set of a function that is a lower bound of (5.3) is a subset of
RA(T , C).

Similar to prior works on Deep RL [80, 95, 62], we approximate the Q function (5.6) by a
neural network Qθ(x, u, d) : Rn × U ×D → R, where θ ∈ RM is the vector of parameters of
the neural network and M is the total number of parameters. We define the neural network
value function as Vθ(x) := maxu mindQθ(x, u, d), ∀x ∈ Rn. We adopt the CQL framework
[62] to learn the value function (5.3) by replacing the Bellman backup therein with (5.4).
With λ ≥ 0, we extend the loss function in [62] to the reach-avoid zero-sum game setting and
propose the following loss function L(θ) : θ ∈ RM → R for the neural network parameters:

L(θ) :=Ex∼µ[∥Vθ(x)−B[Vθ](x)∥22+λVθ(x)], (5.7)

where µ is the uniform distribution over a compact set X ⊆ Rn and the set X is subject to
user’s choice.

As suggested in [62], given a Bellman backup (5.4), its corresponding CQL Bellman
backup BCQL[·] can be derived as

BCQL[U ](x) := B[U ](x)− λ, (5.8)

where U : Rn → R is a bounded function and B[·] is the Bellman backup (5.4). One can
show that this Bellman backup is a contraction mapping by a similar reasoning as in the
proof of Theorem 16.

Given a bounded functional space, the fixed-point theorem [2] ensures that the value
iteration based on (5.8) will converge to a unique value function, which we refer to as VCQL(x).
We characterize the relationship between the nominal value function V (x) in (5.3) and its
conservative counterpart VCQL(x) below.

Theorem 18. Let V (x) and VCQL(x) be the nominal value function defined in (5.3) and
CQL value function, respectively. We have

V (x)− λ

1− γ
≤ VCQL(x) ≤ V (x)− λ, ∀x ∈ Rn. (5.9)

Theorem 18 implies that the value function learned by CQL would be a lower bound
of the true value function (5.3). However, the learned value function from CQL would still
be bounded, and it is not too pessimistic, i.e., no state will have a value going to negative
infinity. We remark here that the bounds in Theorem 18 are specialized for the reach-avoid
zero-sum game.

Building on the above results, we propose Algorithm 5, where we substitute the Bellman
backup in the algorithm of CQL [62] with (5.4). As in DQN [80], we adopt experience
replay in Algorithm 5, where we store the state transition ψt = (ξu,dx (t), ut, dt, ξ

u,d
x (t + 1))
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Algorithm 5 Conservative Reach-Avoid Deep Q-learning

1: Initialize the action-value function Qθ0(x, u, d) with random weights θ0. Select a stepsize
α > 0, the total number of iterations K, the batch size J , and the rollout horizon T

2: for k = 0,. . . , K do
3: Uniformly sample x ∈ X
4: Compute u and d such that ut ← arg maxu mindQθk(ξu,dx (t), u, d) and dt ←

arg mindQθk(ξu,dx (t), ut, d)
5: for t= 0,. . . , T do
6: Store ψt = (ξu,dx (t), ut, dt, ξ

u,d
x (t+ 1)) in Ψ

7: for j=1,. . . ,J do
8: Sample a transition ψj in Ψ
9: Set yj ← min{c(ξu,dx (j)),max{r(ξu,dx (j)), γmaxu mindQθk(ξu,dx (j), u, d)}}
10: θk+1 ← θk − α∇θ

(∑J
j=1 ((yj −Qθ(ξ

u,d
x (j), uj, dj))

2 + λQθ(ξ
u,d
x (j), uj, dj))

)

at each time step in a replay memory data-set Ψ = {ψ0, ψ1, . . . }. Subsequently, we apply
Q-learning updates to random samples from Ψ in step 10 of Algorithm 5. It is shown that
applying Q-learning to random samples drawn from experience replay could break down the
correlation between consecutive transitions and recall rare transitions, which leads to a better
convergence performance [80].

5.5 Experiments

In this chapter, we present experiments on Algorithm 5 and show that our method could
learn a (conservative) approximation to the reach-avoid set reliably even with neural network
approximation.

5.5.1 2D Experiment for Reach-Avoid Game

In this experiment, we compare the reach-avoid set learned by Algorithm 5 with the one
learned by tabular Q-learning, where we first grid the continuous state space and then run
value iteration (5.4) over the grid. We treat the reach-avoid set learned by tabular Q-learning
as the ground truth solution. We apply Algorithm 5 to learn neural network Q functions with
4 hidden layers, where each hidden layer has 128 neurons with ReLu activation functions.
This neural network architecture is chosen because empirically it provides sufficient model
capacity for approximating the true value function.

Let the target set and constraint set be T = {(x, y) ∈ R2 : 1 − (x2 + y2) > 0} and

C = {(x, y) ∈ R2 : 1 − (x−2)2

1.52
− y2 > 0}, respectively. We visualize the target set T and

the constraint set C in Figure 5.1. Consider the following discrete-time double integrator
dynamics, with the time constant ∆t = 0.02s:
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Figure 5.1: The target set and the constraint set in the 2D experiment

Figure 5.2: Comparison of the 2D reach-avoid set learned by tabular Q-learning and Algo-
rithm 5. The yellow area corresponds to the reach-avoid set.

[
x(t+ 1)
y(t+ 1)

]
=

[
x(t) + ∆ty(t)

y(t) + ∆t(u(t) + d(t))

]
(5.10)

where x(t) and y(t) are the position and velocity, respectively. The u(t) ∈ {−1, 1} and
d(t) ∈ {−0.5, 0.5} are the control action and disturbance at time t ∈ {0, 1, 2, . . . }, respectively.

We see in Figure 5.2 that the reach-avoid set learned by Algorithm 5 is similar to the
one computed by tabular Q-learning. An interesting observation is that, under different
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Figure 5.3: The avoidance area and the target area in the three-cart reach-avoid zero-sum
game experiment

time-discount factors, the reach-avoid sets computed by tabular Q-learning are somewhat
different. This could potentially be due to the numerical difficulty introduced by small
values of γ. To be more specific, from the definition of the value function (5.3), we see that
the powers of small constant γ ∈ [0, 1) decays to 0 faster than those for a large parameter
γ ∈ [0, 1), and this makes it difficult to distinguish zero from the product of the power of a
small constant γ and a bounded function term. Despite this numerical difficulty, it can be
observed that both tabular Q-learning and Algorithm 5 learn similar reach-avoid sets under
different time-discount factors γ ∈ [0, 1).

In addition, as we increase the CQL penalty λ, the reach-avoid set shrinks to a conservative
subset of the true reach-avoid set in both tabular Q-learning and Algorithm 5. For the same
λ, although subject to certain numerical errors, both of these methods yield similar results,
which empirically supports Theorem 18.

5.5.2 6D Experiment for Reach-Avoid Game

In this experiment, we consider a three-cart dynamical system, where the dynamics of each
cart is modeled as a double integrator. The carts move along different axes. The first cart
with the position x1(t) and velocity v1(t) moves vertically, while the second and the third
carts move along the upper and the lower horizontal lines in Figure 5.3, respectively.
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Figure 5.4: Visualization of reach-avoid sets under different CQL penalty weights λ, with
[x2, v2, x3, v3] = [−1, 1, 1,−1]. In the first row, the yellow area represents the reach-avoid set.
In the second row, we plot the value of each point in the corresponding plots in the first row.

Figure 5.5: The control and disturbance policies extracted from the neural network value
function learned by Algorithm 5 with λ = 0.0. The other four states are [x2, v2, x3, v3] =
[−1, 1, 1,−1]. The yellow and blue areas in the left plot correspond to the control inputs
with the values 1 and -1, respectively. The yellow and blue ares in the right plot correspond
to the disturbances with the values 0.5 and −0.5, respectively.

The task is to drive the first cart towards the yellow region in Figure 5.3 while keeping
the distance between every two cars at least 2. The target and the constraint sets can then
be formulated as T = {x ∈ R6 : 2 − |x1|> 0} and C = {x ∈ R6 : min{(x1 − 2)2 + x22, (x1 +
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Figure 5.6: Visualization of the learned viability kernel, with [x2, v2, x3, v3] = [1, 1,−1, 1]. In
the second subplot, the yellow area is the viability kernel. In the third subplot, the yellow
and blue areas correspond to the control inputs 1 and −1, respectively. In the fourth subplot,
the yellow and blue areas correspond to the disturbances 0.5 and −0.5, respectively.

Figure 5.7: Visualization of the learned backward reachable set, with [x2, v2, x3, v3] =
[0.6, 0.0, 0.7, 0.1]. In the second subplot, the yellow area is the backward reachable set.
In the third subplot, the yellow and blue areas correspond to the control actions 1 and −1,
respectively. In the fourth subplot, the yellow and blue areas correspond to the disturbance
action 0.5 and −0.5, respectively.

2)2 + x23} − 4 > 0}, respectively. The dynamics is
x1(t+ 1)
v1(t+ 1)
x2(t+ 1)
v2(t+ 1)
x3(t+ 1)
v3(t+ 1)

 =


x1(t) + ∆tv1(t)

v1(t) + ∆t(ut + dt)
x2(t) + ∆tv2(t)
v2(t) + 0.02∆t
x3(t) + ∆tv3(t)
v3(t) + 0.02∆t

 (5.11)

where ut ∈ {−1, 1} and dt ∈ {−0.5, 0.5} are the control input and disturbance, respectively.
The time-integration constant ∆t is equal to 0.02s. The time-discount factor γ is 0.99.

Due to the curse of dimensionality, tabular Q learning explained in the previous experiment
suffers numerical difficulties in this 6-dimensional experiment. In this subchapter, we apply
Algorithm 5 with the same neural network architecture as in Chapter 5.5.1. We plot the
learned reach-avoid set by projecting it onto a 2-dimensional plane. In Figure 5.4, we visualize
the reach-avoid set as well as the effect of the CQL penalty λ on the learned reach-avoid set.
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As the penalty λ increases, the volume of the reach-avoid set shrinks while the empirical
success rate improves. This suggests that a larger penalty λ induces a more conservative
estimation of the reach-avoid set and the policy.

We sample 1000 initial states in each of the three learned reach-avoid set in Figure 5.4,
and then collect the trajectories with maximum length 1000 time steps, under the control
and disturbance policies induced by the learned neural network value function. For the three
learned value functions, the portion of those 1000 trajectories under each of the three values
of λ that successfully reach the target set without violating the constraints are 85.4%, 88.4%,
and 91.3%. In addition, we randomly sample 10,000 points in the state space, and observe
that the ratios of points lying in the learned reach-avoid sets for λ = 0.01 and λ = 0.05 to
those for λ = 0.0 are 99.7% and 82.5%, respectively. However, note that the training epochs
taken to learn the three value functions are 1290, 1650, and 1470, respectively.

In Figure 5.5, we visualize the control and disturbance policies extracted from the Q
function of the neural network corresponding to λ = 0.0 in Figure 5.4. The two policies are
considered as to be reasonable because at most state, the control policy either drives the
agent towards the target set or prevent the violation of the constraint. Notice that there are
a few states, e.g., some points at the right lower corner of the disturbance law in Figure 5.5,
where they do not complement to each other. One possible reason is that we learn a local
optimal neural network Q function by minimizing the non-convex loss function (5.7).

5.5.3 6D Experiments on Learning Viability Kernel and
Backward Reachable Set

In this subchapter, we apply Algorithm 5 to learn viability kernel and backward reachable set
for the 6-dimensional dynamical system in Subchapter 5.5.2. The results empirically confirm
Propositions 1 and 2. In the following two experiments, the same neural network architecture
as in Chapter 5.5.2 does not yield satisfactory results and we conjecture that this is due to
the limited model capacity. As such, in this subchapter, we increase the model capacity by
adopting 4-layer neural networks with 256 neurons in each layer. We set the CQL penalty
parameter to be λ = 0.0.

We first consider learning the viability kernel where the constraint set is the same as the
one in Subchapter 5.5.2. The reward function is set to be r(x) = −1, for all x ∈ Rn. In the
first subplot of Figure 5.6, we visualize the learned value function. The value function is
non-positive, which is predicted by Proposition 2. We visualize the learned viability kernel in
the second subplot of Figure 5.6. We sample 1000 initial positions in the learned viability
kernel and simulate a trajectory for each of them with 600 steps. The portion of those
sampled points that can be maintained inside the constraint set is 79.2%.

Subsequently, we consider learning a backward reachable set by leveraging Proposition 2,
where the constraint function is set to be a constant function with the value 1. We consider
the target set T = {x ∈ R6 : min(2− |x1|, 1− |x2|, 1− |x3|) > 0}. We visualize the learned
value function and backward reachable set in Figure 5.7. As shown in Proposition 2, the value
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function is non-negative. We sample 1000 points in the obtained backward reachable set.
The portion of initial states that can be driven towards the target set within 600 simulation
steps is 70.0%.

It is observed that the empirical success rate of viability kernel is higher than backward
reachable set. There are multiple reasons behind it. First, the simulation horizon is not long
enough for an initial state to be driven towards the backward reachable set. In addition,
for backward reachable set, a single failure in control may push the trajectory away from
the target set in the future. However, for the viability kernel, multiple failures in control
are allowed if controls at the boundary of the viability kernel keep the trajectory inside the
constraint set.

We remark here that the high-dimensional experiments are challenging because there is a
lack of efficient methods to check the sufficiency of neural network model capacity and to
solve the non-convex optimization problem (5.7), which are common problems in deep RL
and on-going research directions in the deep RL community [44].

5.6 Conclusion

In this chapter, we investigate the infinite-horizon reach-avoid zero-sum game problem, in
which the goal is to learn the reach-avoid set in the state space and an associated policy
such that each state in the reach-avoid set could be driven towards a given target set while
satisfying constraints. We design a value function that offers several properties: 1) its super-
zero level set coincides with the reach-avoid set and the induced Bellman Backup equation is
a contraction mapping; 2) the value function is Lipschitz continuous under certain conditions;
and 3) the value function can be adapted to compute the viability kernel and backward
reachable set. We propose to alleviate the curse of dimensionality issue by developing a deep
RL algorithm. The provided theoretical and empirical results suggest that our method is
able to learn reach-avoid sets reliably even with neural network approximation errors.
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Chapter 6

Conclusion

This dissertation presents state-constrained reachability problems and provides three ap-
proaches to solve them: HJ analysis, Hopf-Lax theory, and reinforcement learning. The
dissertation demonstrates the impact of the state-constrained reachability problems in various
applications. In this dissertation, we focus on optimal control problems that are meaningful
in the real-world. For example, the state-constrained control-invariance problem provides
system design parameters, and the state-constrained reach-avoid problem provides the closest
distance between the system and the goal, both of which have use in real-world applications.
Aligned with this direction, for future work, I aim to provide a methodology that formulates
a correct optimal control problem or zero-sum game for other problems.

Regarding the theoretical contribution, the three approaches contribute to the evolution of
reachability theory by considering state-constrained problems that have not been considered
in most previous work. The proposed HJ analysis uses the epigraphical technique to deal
with general state-constrained reachability problems, and is the first analysis to do so within
the reachability community. The proposed Hopf-Lax theory first deals with HJ PDEs relevant
to state-constrained problems. The proposed reinforcement learning framework is applicable
for general optimal control or zero-sum game problems for which the dynamic programming
principle works.

Regarding theoretical guarantees, HJ analysis generally guarantees safety and performance
for nonlinear systems and non-convex state constraints. Hopf-Lax theory guarantees safety
and performance under sufficient conditions that do not require convexity in the control-input
space. On the other hand, the proposed reinforcement learning framework does not guarantee
safety and performance. Thus the reinforcement learning chapter only provides empirical
analysis.

Regarding computational efficiency, it is intractable to compute solutions to HJ PDEs for
high-dimensional systems numerically. On the other hand, the proposed Hopf-Lax theory
allows for efficient computation for a certain class of Hamilton-Jacobi equations. It gives
an open-loop control, so the real-time computation is necessary. Approximation methods,
such as the receding horizon technique, can be used here. While the reinforcement learning
framework introduced in the third part of this dissertation is less computationally efficient
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than the proposed Hopf-Lax theory, it provides a closed-loop control and thus can be used
offline. Overall, these two numerically efficient approaches provides approximations to help
alleviate the curse of dimensionality.

In the future, I am interested in developing efficient real-time methods for Hopf-Lax
theory and reinforcement learning techniques, and to pursue theoretical guarantees for these
methods.
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Appendix A

Proof for Section 3.1

A.1 Proof of Lemma 1

Proof.
(i) ϑ+

1 (t, x)− z ≤ 0⇒ V +
1 (t, x, z) ≤ 0

ϑ+
1 (t, x)− z ≤ 0 implies that, for all η ∈ H(t), there exists α ∈ A(t) such that

max
τ∈[t,T ]

∫ τ

t

L(s, x(s), α(s), η[α](s))ds+ g(τ, x(τ))− z ≤ ϵ (A.1)

and c(s, x(s)) ≤ 0 for s ∈ [t, τ ] for any small ϵ > 0, where x solves (2.1) for (α, η[α]). Thus,
for all η, there exists α such that J1(t, x, z, α, η) ≤ ϵ, which concludes V +

1 (t, x, z) ≤ 0. Note
that J1 is defined in (3.7).

(ii) V +
1 (t, x, z) ≤ 0⇒ ϑ+

1 (t, x)− z ≤ 0
Assumption 1 implies that, for any η ∈ H(t), there exists α ∈ A such that J1(t, x, z, α, η[α]) ≤

V +
1 (t, x, z). If V +

1 (t, x, z) ≤ 0, for any η ∈ H(t), there exists α such that maxs∈[t,τ ] c(s, x(s)) ≤
0 and

∫ τ

t
L(s, x(s), α(s), η[α](s))ds+g(τ, x(s))−z ≤ 0 for all τ ∈ [t, T ]. Thus, ϑ+

1 (t, x)−z ≤ 0.
(i) and (ii) concludes (3.11).
(iii) Let ϑ̃+

1 be the right hand term in (3.12) subject to (3.13). Then, the following
statement can be proved by analogous proofs in (i) and (ii).

ϑ̃+
1 (t, x) = min z subject to sup

η
inf
α

max{max
s∈[t,T ]

c(s, x(s)),

max
τ∈[t,T ]

g(τ, x(τ))− z(τ)} ≤ 0. (A.2)

By (3.10) and (3.11), we conclude ϑ+
1 (t, x) = ϑ̃+

1 (t, x).
(iv) The proof for V −

1 and ϑ−
1 is similar to that for V1+ and ϑ+

1 .
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A.2 Proof of Lemma 2

Proof. Consider (x, z) solving (3.9) for any (α, δ), and a small h > 0. (3.10) implies

J1(t, x, z, α, δ) = max
{

max
s∈[t,t+h]

c(s, x(s)), max
s∈[t,t+h]

g(s, x(s))− z(s),

max { max
s∈[t+h,T ]

c(s, x(s)), max
s∈[t+h,T ]

g(s, x(s))− z(s)}
}
. (A.3)

(i) For all α ∈ A(t) and η ∈ H(t), there exists α1 ∈ A(t), η1 ∈ H(t), α2 ∈ A(t + h),
η2 ∈ H(t+ h) such that

α(s) =

{
α1(s), s ∈ [t, t+ h],

α2(s), s ∈ (t+ h, T ],
(A.4)

η[α](s) =

{
η1[α](s), s ∈ [t, t+ h],

η2[α](s), s ∈ (t+ h, T ].
(A.5)

Then, we have

V +
1 (t, x, z) = sup

η1∈H(t)
η2∈H(t+h)

inf
α1∈A(t)

α2∈A(t+h)

J1(t, x, z, α, η[α])

= sup
η1∈H(t)

inf
α1∈A(t)

max
{

max
s∈[t,t+h]

c(s, x(s)), max
s∈[t,t+h]

g(s, x(s))− z(s),

sup
η2∈H(t+h)

inf
α2∈A(t+h)

max { max
s∈[t+h,T ]

c(s, x(s)), max
s∈[t+h,T ]

g(s, x(s))− z(s)}
}
. (A.6)

The last equality is deduced by combining (A.3) and that the first two terms of V +
1

(maxs∈[t,t+h] c(s, x(s)), maxs∈[t,t+h] g(s, x(s)) − z(s)) are independent of (α2, η2). (A.6) con-
cludes (3.16).

(ii) The proof for (3.17) is similar to (i).

A.3 Proof of Theorem 1

Proof. (i) At t = T , the definition of V ±
1 ((3.5) and (3.6)) implies (3.21).

(ii) For U ∈ C∞([0, T ] × Rn × R) such that V +
1 − U has a local maximum at (t0, x0, z0) ∈

(0, T )× Rn × R and (V +
1 − U)(t0, x0, z0) = 0, we will prove

max {c(t0, x0)− U0, g(t0, x0)− z0 − U0,

∂U

∂t
(t0, x0, z0)− H̄+(t0, x0, z0,

∂U

∂x
(t0, x0, z0),

∂U

∂z
(t0, x0, z0))} ≥ 0.

(A.7)



A.3. PROOF OF THEOREM 1 99

Suppose not. There exists θ > 0, a1 ∈ A such that

c(t, x)− U0 < −θ, g(t, x)− z − U0 < −θ, (A.8)

∂U

∂t
(t, x, z) +

∂U

∂x
(t, x, z) · f(t, x, a1, b)−

∂U

∂z
(t, x, z)L(t, x, a1, b) ≤ −θ (A.9)

for all b ∈ B and all points (t, x, z) sufficiently close to (t0, x0, z0): |t−t0|+∥x−x0∥+|z−z0|< h1
for small enough h1 > 0. Consider state trajectories x and z solving (3.9) for α1 ≡ a1, t = t0,
x = x0, z = z0, and any δ ∈ B(t0). By Assumption 1, there exists a small h such that
∥x(s)− x0∥+|z(s)− z0|< h1 − h (s ∈ [t0, t0 + h]), then,

c(s, x(s))− U0 < −θ, g(s, x(s))− z(s)− U0 < −θ, (A.10)

∂U

∂t
(s, x(s), z(s)) +

∂U

∂x
(s, x(s), z(s)) · f(s, x(s), a1, δ(s))

− ∂U

∂z
(s, x(s), z(s))L(s, x(s), a1, δ(s)) ≤ −θ (A.11)

for all s ∈ [t0, t0 + h] and δ ∈ B(t0).
Since V +

1 − U has a local maximum at (t0, x0, z0),

V +
1 (t0 + h, x(t0 + h), z(t0 + h))− V +

1 (t0, x0, z0)

≤U(t0 + h, x(t0 + h), z(t0 + h))− U(t0, x0, z0)

∫ t0+h

t0

∂U

∂t
(s, x(s), z(s))

+
∂U

∂x
(s, x(s), z(s)) · f(s, x(s), a1, η[α1](s))−

∂U

∂z
(s, x(s), z(s))L(s, x(s), a1, η[α1](s))ds ≤ −θh

(A.12)

for all η ∈ H(t0), according to (A.11). Lemma 2 implies

V +
1 (t0, x0, z0) ≤ sup

η∈H(t0)

max { max
s∈[t0,t0+h]

c(s, x(s)),

max
s∈[t,t+h]

g(x(s))− z(s), V +
1 (t0 + h, x(t0 + h), z(t0 + h))}. (A.13)

By subtracting U0 on the both sides in (A.13) and then applying (A.10) and (A.12), we have

0 ≤ max{−θ,−θ,−θh} < 0, (A.14)

which is contradiction. Thus, (A.7) is proved.
(iii) For U ∈ C∞([0, T ] × Rn × R) such that V +

1 − U has a local minimum at (t0, x0, z0) ∈
(0, T )× Rn × R and (V +

1 − U)(t0, x0, z0) = 0, we will prove

max {c(t0, x0)− U0, g(t0, x0)− z0 − U0,

∂U

∂t
(t0, x0, z0)− H̄+(t0, x0, z0,

∂U

∂x
(t0, x0, z0),

∂U

∂z
(t0, x0, z0))} ≤ 0,

(A.15)
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Since J1(t0, x0, z0, α) (3.7) is greater than the value at τ = t0,

J1(t0, x0, z0, α, η[α]) ≥ max {c(x0, x0), g(t0, x0)− z0}, (A.16)

for all α ∈ A(t0), η ∈ H(t0). By subtracting U0 on the both sides, and taking the supremum
over η and the infimum over α, sequentially, on the both side, we have

0 ≥ max {c(x0, x0)− U0, g(t0, x0)− z0 − U0}. (A.17)

The rest of the proof is to show

∂U

∂t
(t0, x0, z0)− H̄+(t0, x0, z0,

∂U

∂x
(t0, x0, z0),

∂U

∂z
(t0, x0, z0)) ≤ 0. (A.18)

Suppose not. For some θ > 0,

∂U

∂t
(t, x, z)+ max

b∈B

∂U

∂x
(t, x, z) · f(t, x, a, b)− ∂U

∂z
(t, x, z)L(t, x, a, b) ≥ θ (A.19)

for all a ∈ A and all points (t, x, z) sufficiently close to (t0, x0, z0): |t−t0|+∥x−x0∥+|z−z0|< h1
for small enough h1 > 0. Consider state trajectories x1 and z1 solving (3.9) for any α ∈ A(t0),
δ = η1[α], where

η1[α](s) ∈ arg max
b∈B

∂U

∂x
(s, x1(s), z1(s)) · f(s, x1(s), α(s), b)

− ∂U

∂z
(s, x1(s), z1(s))L(s, x1(s), α(s), b), (A.20)

t = t0, x = x0, and z = z0. Since there exists a small h > 0 such that ∥x1(s)−x0∥+|z1(s)−z0|<
h1 − h (s ∈ [t0, t0 + h]),

∂U

∂t
(s, x1(s), z1(s)) +

∂U

∂x
(s, x1(s), z1(s)) · f(s, x1(s), α(s), η1[α](s))

− ∂U

∂z
(s, x1(s), z1(s))L(s, x1(s), α(s), η1[α](s)) ≥ θ

(A.21)

for all s ∈ [t0, t0 + h]. By integrating (A.21) over s ∈ [t0, t0 + h], we have

U(t0 + h, x1(t0 + h), z1(t0 + h))− U(t0, x, z) ≥ θh. (A.22)

Since (A.22) holds for all α ∈ A(t0) and η ∈ H(t0),

sup
η∈H(t0)

inf
α∈A(t0)

U(t0 + h, x(t0 + h), z(t0 + h))− U(t0, x, z) ≥ θh, (A.23)

where x, z solve (3.9) for (α, η, t0, x0, z0).
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Since V +
1 − U has a local minimum at (t0, x0, z0),

sup
η∈H(t0)

inf
α∈A(t0)

V +
1 (t0 + h, x(t0 + h), z(t0 + h))− V +

1 (t0, x0, z0)

≥ sup
η∈H(t0)

inf
α∈A(t0)

U(t0 + h, x(t0 + h), z(t0 + h))− U(t0, x0, z0)

≥ θh (A.24)

according to (A.23). However, Lemma 2 implies

sup
η∈H(t0)

inf
α∈A(t0)

V +
1 (t0 + h, x(t0 + h), z(t0 + h)) ≤ V +

1 (t0, x0, z0), (A.25)

which contradicts (A.24).
(iv) The proof for the viscosity solution V −

1 is similar to (ii) and (iii) for V +
1 . Also, the

uniqueness follows from the uniqueness theorems for viscosity solutions, Theorem 4.2 in [13],
and the extension of Theorem 1 in [42].

A.4 Proof of Lemma 3

Proof. Set Ṽ +
1 and Ṽ −

1 be the right hand terms in (3.32) and (3.33), respectively. V +
1 are

V −
1 are defined in (3.5) and (3.6), respectively.

(i) In this proof, we utilize the following properties in [76, 66], presented as below.
Define a pseudo-time operator σµ : [t, T ]→ [t, T ] for a given µ ∈M(t) (defined in (3.23))

and the corresponding inverse operator:

σµ(s) =

∫ s

t

µ(τ)dτ + t; (A.26)

σ−1
µ (s) := min τ subject to σµ(τ) = s. (A.27)

Then,

σµ(σ−1
µ (s)) = s, s ∈ [t, σµ(T )], (A.28)

σ−1
µ (σµ(s)) = s, s ∈ Range(σ−1

µ ), (A.29)

where Range(σ−1
µ ) := {σ−1

µ (s) | s ∈ [t, σµ(T )]}.
Consider two state trajectories: (x, z) solving (3.9) for (α̃(σ−1

µ (·)), δ̃(σ−1
µ (·))) for s ∈

[t, σµ(T )]; (x̃, z̃) solving (3.31) for (α̃, δ̃, µ), and x(t) = x̃(t) = x. Then,

x(σµ(s)) = x̃(s), s ∈ [t, T ], (A.30)

g(x(σµ(T )))− z(σµ(T )) = g(x̃(T ))− z̃(T ). (A.31)

(A.30) is according to Lemma 4 in [79], and (A.31) is derived by combining two lemmas
(Lemma 4 and 6) in [79].
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(ii) Ṽ +
1 (t, x, z) ≥ V +

1 (t, x, z)
For small ϵ > 0, there exists η1 ∈ H(t) such that

V +
1 (t, x, z)− ϵ ≤ inf

α
max
τ∈[t,T ]

max { max
s∈[t,τ ]

c(x1(s)), g(x1(τ))− z1(τ)}, (A.32)

where (x1, z1) solves (3.9) for (α, η1[α]). Denote τ∗(α) is the maximizer of the right hand
term in (A.32) for each α ∈ A(t):

τ∗(α) := arg max
τ∈[t,T ]

max { max
s∈[t,τ ]

c(x1(s)), g(x1(τ))− z1(τ)}. (A.33)

Define a particular strategy νA,1 ∈ NA(t):

νA,1[α](s) :=

{
1, s ∈ [t, τ∗(α)],

0, s ∈ (τ∗(α), T ].
(A.34)

Consider a state trajectory (x̃1, z̃1) solving (3.31) for (α, η1[α], νA,1[α]). Then, we have

(x̃1, z̃1)(s) =

{
(x1, z1)(s), s ∈ [t, τ∗(α)],

(x1, z1)(τ∗(α)), s ∈ (τ∗(α), T ],
(A.35)

Since Ṽ +
1 has the supremum over (η, νA)-space operation,

Ṽ +
1 (t, x, z) ≥ inf

α
max { max

s∈[t,T ]
c(x̃1(s)), g(x̃1(T ))− z̃1(T )}

= inf
α

max { max
s∈[t,τ∗(α)]

c(x1(s)), g(x1(τ∗(α)))− z1(τ∗(α))}

≥ V +
1 (t, x, z)− ϵ. (A.36)

The second equality is according to (A.35), and the third inequality is by (A.32).
(iii) V +

1 (t, x, z) ≥ Ṽ +
1 (t, x, z)

Define Ãµ : A(t)→ A(t) and its psuedo inverse function Aµ : A(t)→ A(t):

(Ãµ(α))(s) :=

{
α(σµ(s)), s ∈ Range(σ−1

µ ),

any a ∈ A, s /∈ Range(σ−1
µ ),

(A.37)

(Aµ(α̃))(s) :=

{
α̃(σ−1

µ (s)), s ∈ [t, σµ(T )],

any a ∈ A, s ∈ (σµ(T ), T ],
(A.38)

Also, define D̃µ : H(t)→ H(t) and its psuedo inverse function Dµ : H(t)→ H(t):

(D̃µ(η))[α̃](s) =

{
η[Aµ(α̃)](σµ(s)), s ∈ Range(σ−1

µ ),

any b ∈ B, s /∈ Range(σ−1
µ ),

(A.39)
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(Dµ(η̃))[α](s) =

{
η̃[Ãµ(α)](σ−1

µ (s)), s ∈ [t, σµ(T )],

any b ∈ B, s ∈ (σµ(T ), T ].
(A.40)

These definitions satisfy the following properties:

(Ãµ(Aµ(α̃)))(s) = α̃(s),

(D̃µ(Dµ(η̃)))[α̃](s) = η̃[α̃](s),
for s ∈ Range(σ−1

µ ) (A.41)

(Aµ(Ãµ(α)))(s) = α(s),

(Dµ(D̃µ(η)))[α](s) = η[α](s),
for s ∈ [t, σµ(T )], (A.42)

{α = Aµ(α̃) | α̃ ∈ A(t)} = A(t),∀µ ∈M(t) (A.43)

{η = Dµ(η̃) | η̃ ∈ H(t)} = H(t),∀µ ∈M(t). (A.44)

Consider (x̃, z̃) solving (3.31) for (α̃, η̃[α̃], µ), (x, z) solving (3.9) for (Aµ(α̃), (Dµ(η̃))[Aµ(α̃)]),
and (x1, z1) solving (3.9) for (α, η[α]). Then, we have

sup
η̃∈H(t)

inf
α̃∈A(t)

max { max
s∈[t,T ]

c(x̃(s)), g(x̃(T ))− z̃(T )}

= sup
η̃∈H(t)

inf
α̃∈A(t)

max { max
s∈[t,σµ(T )]

c(x(s)), g(x(σµ(T )))− z(σµ(T ))}, (A.45)

= sup
η∈H(t)

inf
α∈A(t)

max { max
s∈[t,σµ(T )]

c(x1(s)), g(x1(σµ(T )))− z1(σµ(T ))}, (A.46)

≤V +
1 (t, x, z). (A.47)

(A.45) is by (A.30) and (A.31), and (A.46) is according to (A.43) and (A.44). Since the
above inequality holds for all µ, we substitute νA[α] for µ and take the supremum over νA on
the both sides, which concludes Ṽ +

1 (t, x, z) ≤ V +
1 (t, x, z).

By (ii) and (iii), we conclude V +
1 (t, x, z) = Ṽ +

1 (t, x, z).
(iv) V −

1 (t, x) = Ṽ −
1 (t, x)

Define B̃µ : B(t)→ B(t) and its pseudo inverse function Bµ : B(t)→ B(t):

(B̃µ(δ))(s) :=

{
δ(σµ(s)), s ∈ Range(σ−1

µ ),

any b ∈ B, s /∈ Range(σ−1
µ ),

(A.48)

(Bµ(δ̃))(s) :=

{
δ̃(σ−1

µ (s)), s ∈ [t, σµ(T )],

any b ∈ B, s ∈ (σµ(T ), T ],
(A.49)

Also, define C̃µ : Γ(t)→ Γ̃(t), where Γ̃(t) is defined in (3.25), and its pseudo inverse function
Cµ : Γ̃(t)→ Γ(t):

(C̃µ(γ))[δ̃, µ](s) =

{
γ[Bµ(δ̃)](σµ(s)), s ∈ Range(σ−1

µ ),

any a ∈ A, s /∈ Range(σ−1
µ ),

(A.50)
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(Cµ(γ̃))[δ](s) =

{
γ̃[B̃µ(δ), µ](σ−1

µ (s)), s ∈ [t, σµ(T )],

any a ∈ A, s ∈ (σµ(T ), T ].
(A.51)

These definitions satisfy the following properties: for any µ ∈M(t),

{δ = Bµ(δ̃) | δ̃ ∈ B(t)} = B(t), (A.52)

{γ = Cµ(γ̃) | γ̃ ∈ Γ̃(t)} = Γ(t). (A.53)

Consider (x̃, z̃) solving (3.31) for (γ̃[δ̃, µ], δ̃, µ), (x, z) solving (3.9) for (Cµ(γ̃)[Bµ(δ̃)],Bµ(δ̃)),
and (x1, z1) solving (3.9) for (γ[δ], δ).

Ṽ −
1 (t, x, z) = inf

γ̃∈Γ̃(t)
sup

δ̃∈B(t),µ∈M(t)

max { max
s∈[t,T ]

c(x̃(s)), g(x̃(T ))− z̃(T )}

= inf
γ̃∈Γ̃(t)

sup
δ̃∈B(t),µ∈M(t)

max { max
s∈[t,σµ(T )]

c(x(s)), g(x(σµ(T )))− z(σµ(T ))} (A.54)

= inf
γ∈Γ(t)

sup
δ∈B(t),µ∈M(t)

max { max
s∈[t,σµ(T )]

c(x1(s)), g(x1(σµ(T )))− z1(σµ(T ))}. (A.55)

(A.54) is by (A.30) and (A.31), and (A.55) is by (A.52) and (A.53). In the term in (A.55), µ
only controls the terminal time (σµ(T )), hence, the supremum over µ can be converted to
the maximum over τ , which concludes V −

1 (t, x, z) = Ṽ −
1 (t, x, z).

A.5 Proof of Theorem 2

Proof. The terminal value is derived by substituting T for t in (3.32) or (3.33):

V ±
1 (T, x, z) = max{c(T, x), g(T, x)− z} (A.56)

for all (x, z) ∈ Rn × R.
(i) [4] has presented the HJ equation for state-constrained problems, in which the terminal

time is fixed. By applying the HJ equation in [4] to V +
1 ,

0 = max {c(x)− V +
1 , V

+
1,t − H̃+

1 (x, z,
∂V +

1

∂x
,
∂V +

1

∂z
)}, (A.57)

where

H̃+
1 (x, z, p, q) := max

a∈A
min
b∈B

bd∈[0,1]

−p · f(x, a, b)bd + qL(x, a, b)bd. (A.58)

Since, for all a ∈ A, b ∈ B, the term −p · f(x, a, b)bd + qL(x, a, b)bd is minimized at bd = 0
or 1,

H̃+
1 (x, z, p, q) = max

a∈A
min {0,min

b∈B
−p · f(x, a, b) + qL(x, a, b)}. (A.59)
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Also, 0 does not depend on a, thus, the maximum over a operation can move into the
minimum operation:

H̃+
1 (x, z, p, q) = min{0, H̄+(x, z, p, q)}, (A.60)

where H̄+ is defined in (3.19). By applying (A.60) to (A.57), (3.35) is proved for V +
1 .

(ii) By applying [4] to V −
1 ,

0 = max {c(x)− V −
1 , V

−
1,t − H̃−

1 (x, z,
∂V −

1

∂x
,
∂V −

1

∂z
)}, (A.61)

where

H̃−
1 (x, z, p, q) := min

b∈B
bd∈[0,1]

max
a∈A
−p · f(x, a, b)bd + qL(x, a, b)bd. (A.62)

Since bd ∈ [0, 1] is non-negative,

H̃−
1 (x, z, p, q) = min

bd∈[0,1]
bd min

b∈B
max
a∈A

[−p · f(x, a, b) + qL(x, a, b)]

= min{0, H̄−(x, z, p, q)}, (A.63)

where H̄− is defined in (3.20). (A.61) and (A.63) prove (3.35) for V −
1 .
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Appendix B

Proof for Section 3.2

B.1 Proof of Theorem 3

Proof. We first prove that ϑ+
2 (t, x)− z ≤ 0⇔ V +

2 (t, x, z) ≤ 0.

1. ϑ+
2 (t, x)− z ≤ 0⇒ V +

2 (t, x, z) ≤ 0

By (3.77), for any admissible δ ∈ ∆(t),

ϑ+(t, x) ≥ inf
α∈A(t)

min
τ∈[t,T ]

∫ τ

t
L(s, x(s), α(s), η[α](s))ds+ g(τ, x(τ)) (B.1)

subject to c(s, x(s)) ≤ 0 (s ∈ [t, τ ]), where x solves (2.1) for α and η[α]. By ϑ+
2 (t, x)−z ≤

0 and (B.1),

0 ≥ inf
α∈A(t)

min
τ∈[t,T ]

max

{
max
s∈[t,τ ]

c(s, x(s)),

∫ τ

t
L(s, x(s), α(s), η[α](s))ds+ g(τ, x(τ))− z

}
.

(B.2)

Since (B.2) holds for all η ∈ H(t), V +
2 (t, x, z) ≤ 0.

2. V +
2 (t, x, z) ≤ 0⇒ ϑ+

2 (t, x)− z ≤ 0

By (3.77), for any admissible η ∈ H(t),

V +
2 (t, x, z) ≥ inf

α∈A(t)
min

τ∈[t,T ]
max

{
max
s∈[t,τ ]

c(s, x(s)),

∫ τ

t

L(s, x(s), α(s), η[α](s))ds+ g(τ, x(τ))− z

}
.

(B.3)

Since A is convex, there exists an admissible ᾱ ∈ A(t) that achieves the infimum of
the right term of (B.3) [4]. Also, by continuity of x(·) in t, there also exists τ̄ that
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minimizes the right term of (B.3) in time. Define x̄(·) solving (2.1) for ᾱ and η[ᾱ].
Then,

0 ≥
∫ τ̄

t

L(s, x̄(s), ᾱ(s), η[ᾱ](s))ds+ g(τ̄ , x(τ̄))− z, (B.4)

and c(s, x̄(s)) ≤ 0 for s ∈ [t, τ̄ ]. Since (B.4) holds for any η ∈ H(t), ϑ+(t, x)− z ≤ 0.

We will prove ϑ−
2 (t, x)− z ≤ 0⇔ V −

2 (t, x, z) ≤ 0.

3. ϑ−
2 (t, x)− z ≤ 0⇒ V −

2 (t, x, z) ≤ 0

For any small ϵ > 0, there exists ζ̄ ∈ Z(t) such that

ϑ−
2 (t, x) + ϵ > sup

δ∈D(t)

min
τ∈[t,T ]

∫ τ

t

L(s, x̄(s), ζ̄[δ](s), δ(s))ds+ g(τ, x̄(τ)) (B.5)

and c(s, x̄(s)) ≤ 0 for all s ∈ [t, τ ], where x̄(·) solves (2.1) with ζ̄[δ] and δ. Since
ϑ−(t, x)− z ≤ 0,

ϵ > sup
δ∈D(t)

min
τ∈[t,T ]

max

{
max
s∈[t,τ ]

c(s, x̄(s)),

∫ τ

t

L(s, x̄(s), ζ̄[δ](s), δ(s))ds+ g(τ, x̄(τ))− z

}
≥ V −

2 (t, x, z). (B.6)

Since (B.6) holds for any small ϵ > 0, 0 ≥ V −
2 (t, x, z).

4. V −
2 (t, x, z) ≤ 0⇒ ϑ−(t, x)− z ≤ 0

Since A is convex, A(t) is compact. Thus, there exists ζ̄ ∈ Z(t) that achieves the
minimum of V −

2 (t, x, z).

V −
2 (t, x, z) = sup

δ∈D(t)

min
τ∈[t,T ]

max

{
max
s∈[t,τ ]

c(s, x̄(s)),

∫ τ

t

L(s, x̄(s), ζ̄[δ](s), δ(s))ds+ g(τ, x̄(τ))− z

}
,

where x̄(·) solves (2.1) with ζ̄[δ] and δ. Since V −(t, x, z) ≤ 0, c(s, x̄(s)) ≤ 0 for s ∈ [t, τ ]
and

z ≥
∫ τ

t
L(s, x̄(s), ζ̄[δ](s), δ(s))ds+ g(τ, x̄(τ)) (B.7)

The right term in (B.7) is greater than or equal to ϑ−
2 (t, x), and we conclude ϑ−

2 (t, x)−z ≤
0.
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Appendix C

Proof for Section 4.1

C.1 Proof of Lemma 6

(i) Proof of (4.15) and (4.16)
A state-unconstrained problem

inf
α

∫ T

t

L(s, x(s), α(s))ds+ g(x(T )), (C.1)

where x solves (2.1), is equivalent to

inf
β

∫ T

t

Lb(s, x(s), β(s))ds+ g(x(T )), (C.2)

where x solves ẋ(s) = −β(s) and β(s) ∈ B(s, x(s)), defined in (4.7), for s ∈ [t, T ]. Since the
corresponding Hamiltonian for the two state-unconstrained problems is the same,

max
b∈B(s,x)

[p · b− Lb(s, x, b)] = H(s, x, p).

Hence, H ≡ (Lb)∗ and H∗ ≡ (Lb)∗∗ since Lb is semi lower-continuous in b for each (s, x) ∈
[t, T ]× Rn.
(ii) Proof of (4.17)
Case 1. b ∈ co(B(s, x))

There exist bi ∈ B(s, x) and γi ≥ 0 (
∑

i γi = 1) such that b =
∑

i γibi. Since H∗(s, x, ·) is
convex in b,

H∗(s, x, b) ≤
∑
i

γiH
∗(s, x, bi) <∞

since each of H∗(s, x, bi) is finite.

Case 2. b /∈ co(B(s, x))
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For two closed convex sets {b} and co(B(s, x)), the seperating hyperplane theorem [19]
implies that there exists a hyperplane (P : Rn → R): P (b′) := p′ · b′ + c such that P (b′) is
positive if b′ /∈ co(B(s, x)), otherwise, P (b′) is non-positive. By picking p = γp′ where γ ∈ R,

H∗(s, x, b) = max
p

min
b′

[p · (b− b′) + Lb(s, x, b′)]

≥ max
γ

min
b′
γp′ · (b− b′) + Lb(s, x, b′) =∞

since p′ · (b− b′) > 0 for all b′ ∈ co(B(s, x)).

C.2 Additional Lemma used in the proof of Theorem 7

In this appendix, we describe the below lemma that is used in the proof of Theorem 7.

Lemma 19. Suppose Assumption 1 holds. Given the initial state x ∈ Rn, there exists a
constant C > 0 such that

∥x(s)− x∥ ≤ C(s− t) (C.3)

for all s ∈ [t, T ], α ∈ A(t) where x solves (2.1).

Proof. The Lipschitz assumption for the dynamics and Gronwall’s inequality conclude the
proof.

C.3 Proof of Theorem 7

Proof.
Step 1. For a temporal partition t0 = t < ... < tK = T , consider a state trajectory
(x0 : [t, T ]→ Rn) solving

ẋϵ
0(s) = −β(tk), s ∈ [tk, tk+1)

for s ∈ [t, T ] and x0(t) = x. Since β is Riemann integrable, for all ϵ, there exists δ > 0 such
that |tk+1 − tk|< δ for all k and

∥x0 − x∥L∞(t,T )< ϵ. (C.4)

As δ converges to 0, ϵ converges to 0.
Since β(tk) is in co(B(tk, x(tk))), by Corollary 2, there exists bki ∈ B(tk, x(tk)), a

k
i ∈ A,

and γki such that

H∗(tk, x(tk), β(tk)) =
∑
i

γki L
b(tk, x(tk), bki ) =

∑
i

γki L(tk, x(tk), aki ), (C.5)
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β(tk) = ∑
iγ

k
i b

k
i , bki = −f(tk, x(tk), aki ), (C.6)

and
∑

i γ
k
i = 1 for k = 0, ..., K − 1.

Step 2. In each time interval [tk, tk+1), we construct a finer temporal discretization: [tk,0 =
tk, ..., tk,i, ..., tk,̄ik = tk+1), where tk,i = tk +

∑i
j=1 γ

k
j ∆tk and īk denotes the number of γki in

(C.5) for each k. Define a control input β1 : [t, T ]→ Rn:

β1(s) = bki+1, s ∈ [tk,i, tk,i+1),

where bki is defined in (C.5) and (C.6), and also define the corresponding state trajectory
(x1 : [t, T ]→ Rn) solving

ẋ1(s) = −β1(s) = f(tk, x(tk), aki+1)

for s ∈ [tk,i, tk,i+1), and x1(t) = x. Then, for k = 0, ..., K, x1(tk) = x0(tk), and for s ∈ [tk, tk+1),

∥x1(s)− x(s)∥ ≤ ∥x1(s)− x0(s)∥+∥x0(s)− x(s)∥

≤
∫ s

tk

∥−β1(τ) + β(tk)∥dτ + ϵ by (C.4)

≤ c1δ + ϵ, (C.7)

where c1 = maxk,i∥bki − β(tk)∥. c1 is bounded since x and A are bounded.
Step 3. We consider a control input α2 ∈ A(t)

α2(s) = aki+1, s ∈ [tk,i, tk,i+1), (C.8)

where aki is defined in (C.5) and (C.6). and the corresponding state trajectory (x2 : [t, T ]→ Rn)
solving

ẋ2(s) = f(s, x2(s), α2(s)), s ∈ [t, T ].

We have

∥x2(tk,i+1)− x1(tk,i+1)∥ ≤ ∥x2(tk,i)− x1(tk,i)∥+

∫ tk,i+1

tk,i

∥f(τ, x2(τ), aki+1)− f(tk, x(tk), aki+1)∥dτ

≤ ∥x2(tk,i)− x1(tk,i)∥+

∫ tk,i+1

tk,i

Lf ((τ − tk) + ∥x2(τ)− x2(tk,i)∥+ ∥x2(tk,i)− x1(tk,i)∥

+ ∥x1(tk,i)− x1(tk)∥+ ∥x1(tk)− x(tk)∥)dτ (C.9)

by Lipschitz of f .
By the way, for τ ∈ [tk,i, tk,i+1),

∥x2(τ)− x2(tk,i)∥ ≤ c2δ (C.10)
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for some c2 by Lemma 19, and

∥x1(tk,i)− x1(tk)∥ =

∥∥∥∥ i∑
j=1

f(tk, x(tk), akj )(tk,j − tk,j−1)

∥∥∥∥ ≤ c3δ (C.11)

for some c3 since f(tk, x(tk), akj ) is bounded.
Combining (C.10), (C.11), (C.7), and (C.9), we have

∥x2(tk,i+1)− x1(tk,i+1)∥+ δc4 + ϵ ≤ (1 + Lf (tk,i+1 − tk,i))(∥x2(tk,i)− x1(tk,i)∥+ δc4 + ϵ)
(C.12)

for some c4 > 0. By multiplying the both side of (C.12) for all k′ ≥ 0, i′ ≥ 0 such that
t ≤ tk′,i′ ≤ tk,i, we have

∥x2(tk,i)− x1(tk,i)∥

≤
[tk′,i′≤tk,i∏

k′,i′

(1 + Lf (tk′,i′ − tk′,i′−1))− 1

]
(δc4 + ϵ)

≤
[tk′,i′≤T∏

k′,i′

(1 + Lf (tk′,i′ − tk′,i′−1))− 1

]
(δc4 + ϵ)

≤
[
(1 +

LfT

m̄
)m̄ − 1

]
(δc4 + ϵ) (C.13)

for m̄ =
∑

k′,i′ 1 subject to t ≤ tk′,i′ ≤ T : the number of the discrete time points in [t, T ]. The
last inequality in (C.13) holds since ∏n

i=1xi ≤ (
∑n

i=1 xi/n)n for any positive xis and n ∈ N.
Note that m̄ → ∞ as δ → 0, and limm̄→∞(1 + LfT/m̄)m̄ = exp(LfT ) < ∞. Thus, (C.13)
implies

∥x2(tk,i)− x1(tk,i)∥ ≤ c5δ + c6ϵ for all tk,i ∈ [t, T ]. (C.14)

For s ∈ (tk,i, tk,i+1),

∥x2(s)− x1(s)∥ ≤∥x2(s)− x2(tk,i)∥+ |x2(tk,i)− x1(tk,i)∥+ ∥x1(tk,i)− x1(s)∥
≤c7δ + c8ϵ

for some c7, c8 > 0 by (C.10), (C.14), and (C.11) with little modification.
Step 4. We choose xϵ = x2 and αϵ = α2 for approximate state and control trajectories in
Theorem 7. To sum up Step 1 to Step 3,

∥xϵ(s)− x(s)∥ ≤ c9δ + c10ϵ, s ∈ [t, T ]. (C.15)

As δ → 0, ϵ→ 0 and ∥xϵ − x∥L∞(t,T )→ 0. This proves (4.22).
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Step 5. Define a discrete sum of H∗:

S(t) :=
K−1∑
k=0

H∗(tk, x(tk), β(tk))(tk+1 − tk).

Note that K denotes the index of the discrete time point for the terminal time: tK = T .
Since H∗(s, x(s), β(s)) is also Riemann integrable,∣∣∣∣∫ T

t

H∗(s, x(s), β(s))ds− S(t)

∣∣∣∣ < ϵ1 (C.16)

for some ϵ1 > 0, and limδ→0 ϵ1 = 0 where δ ≥ maxi ∆tk (k = 0, ..., K − 1).
By (C.5), (C.6), (C.15), and Lipschitz continuity of L in Assumption 1,∣∣∣∣∫ tk+1

tk

L(s, xϵ(s), αϵ(s))−H∗(tk, x(tk), β(tk))ds

∣∣∣∣
=

∣∣∣∣∑
i

∫ tk,i+1

tk,i

L(s, xϵ(s), aki+1)− L(tk, x(tk), aki+1)ds

∣∣∣∣
≤∆tkLL(c11δ + c12ϵ) (C.17)

for some c11, c12 > 0, where LL is the Lipschitz constant of L. Therefore,∣∣∣∣∫ T

t

L(s, xϵ(s), αϵ(s))ds− S(t)

∣∣∣∣ ≤ TLL(c11δ + c12ϵ). (C.18)

By (C.16), (C.18), (C.15), and Lipschitz continuity of g in Assumption 1,∣∣∣∣∫ T

t

H∗(s, x(s), β(s))ds+ g(x(T ))−
∫ T

t

L(s, xϵ(s), αϵ(s))ds− g(xϵ(T ))

∣∣∣∣ < c13δ + c14ϵ+ ϵ1,

where c13 = TLLc11 + Lgc9, c14 = TLLc12 + Lgc10, where Lg is the Lipschitz constant of g.
This proves (4.23).
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Appendix D

Proof for Section 4.2

D.1 Proof of Theorem 10

(i) The terminal values of X1 and X2 are the same.
(ii) Consider a smooth function U : (0, T )× Rn × R. If X1 − U has a local maximum at

(t0, x0, z0) ∈ (0, T )× Rn × R and (X1 − U)(t0, x0, z0) = 0,

F1

(
t0, x0, z0,U(t0, x0, z0),

∂U

∂t
(t0, x0, z0),

∂U

∂x
(t0, x0, z0),

∂U

∂z
(t0, x0, z0)

)
≥ 0, (D.1)

Since X1 − U has a local maximum at (t0, x0, z0),
∂U
∂z

(t0, x0, z0) is in ∂+z X1(t0, x0, z0). Then,
by (4.69),

F2

(
t0, x0, z0,U(t0, x0, z0),

∂U

∂t
(t0, x0, z0),

∂U

∂x
(t0, x0, z0),

∂U

∂z
(t0, x0, z0)

)
≥ 0, (D.2)

(iii) Consider a smooth function U : (0, T )× Rn × R. If X1 − U has a local minimum at
(t0, x0, z0) ∈ (0, T )× Rn × R and (X1 − U)(t0, x0, z0) = 0,

F1

(
t0, x0, z0,U(t0, x0, z0),

∂U

∂t
(t0, x0, z0),

∂U

∂x
(t0, x0, z0),

∂U

∂z
(t0, x0, z0)

)
≤ 0, (D.3)

Since X1 − U has a local minimum at (t0, x0, z0),
∂U
∂z

(t0, x0, z0) is in ∂−z X1(t0, x0, z0). By
(4.69),

F2

(
t0, x0, z0,U(t0, x0, z0),

∂U

∂t
(t0, x0, z0),

∂U

∂x
(t0, x0, z0),

∂U

∂z
(t0, x0, z0)

)
≤ 0, (D.4)

D.2 Proof of Lemma 10

(i) For all y1, y2, y3, y4 ∈ R,

max{y1 + y2, y3 + y4} ≤ max{y1, y3}+ max{y2, y4}. (D.5)
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(ii) Proof of (4.70) for V1.
Let

Jc(α, τ) := max
s∈[t,T ]

c(s, x(s)), (D.6)

Jr(α, τ) :=

∫ τ

t

L(s, x(s), α(s))ds+ g(τ, x(τ)). (D.7)

V1(t, x, θ1z1 + θ2z2) = inf
α∈A

max
τ∈[t,T ]

max {θ1Jc(α, τ) + θ2Jc(α, τ), θ1[Jr(α, τ)− z1] + θ2[Jr(α, τ)− z2]}

≤ inf
α∈A

max
τ∈[t,T ]

θ1max {Jc(α, τ), Jr(α, τ)− z1}+ θ2max {Jc(α, τ), Jr(α, τ)− z2}.

(D.8)

The first equality is according to the distributive property of the maximum operations,
and the second inequality is by (D.5). For α ∈ A, we use τ∗(α) to denote a maximizer of the
last term in (D.8). By the triangular inequality, we simplify (D.8) to

V1(t, x, θ1z1 + θ2z2) ≤ θ1V1(t, x, z1) + θ2V1(t, x, z2). (D.9)

The last inequality holds by the definition of V1 in (4.51).
(iii) Similar to (D.8),

V2(t, x, θ1z1 + θ2z2) ≤ inf
α∈A

min
τ∈[t,T ]

θ1max {Jc(α, τ), Jr(α, τ)− z1}+ θ2max {Jc(α, τ), Jr(α, τ)− z2}.

(D.10)

Since the the last term in (D.10) is greater than or equal to θ1V2(t, x, z1) + θ2V2(t, x, z2) by
the triangular inequality, we conclude the proof.

D.3 Proof of Lemma 11

(i) The proof of (4.71).
For z̄ ≥ 0, V1(t, x, z + z̄) ≤ V1(t, x, z), and by the distributive property of the maximum

operations,

V1(t, x, z + z̄) = inf
α∈A

max
τ∈[t,T ]

max
{

max
s∈[t,T ]

c(s, x(s)) + z̄,

∫ τ

t

L(s, x(s), u(s))ds+ g(τ, x(τ))− z
}
− z̄

≥ V1(t, x, z)− z̄.

Thus, for z̄ ≥ 0,

V1(t, x, z)− z̄ ≤ V1(t, x, z + z̄) ≤ V1(t, x, z), (D.11)
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and, by the same derivation, for z̄ ≤ 0,

V1(t, x, z) ≤ V1(t, x, z + z̄) ≤ V1(t, x, z)− z̄. (D.12)

Suppose there exists q > 0 in ∂−z V1(t, x, z). Then, there exists ϵ > 0 such that V1(t, x, z +
z̄) ≥ V1(t, x, z) + qz̄ for all z̄ ∈ [−ϵ, ϵ]. However, for z̄ ∈ (0, ϵ),

V1(t, x, z + z̄) > V1(t, x, z). (D.13)

This contradicts (D.11).
Suppose there exists q < −1 in ∂−z V1(t, x, z). Then, there exists ϵ > 0 such that

V1(t, x, z + z̄) ≥ V1(t, x, z) + qz̄ for all z̄ ∈ [−ϵ, ϵ]. However, for z̄ ∈ (−ϵ, 0),

V1(t, x, z + z̄) > V1(t, x, z)− z̄. (D.14)

This contradicts (D.12). Thus, q ∈ [−1, 0].
With the analogous derivation for V2, we conclude that ∂−z V2(t, x, z) ⊂ [−1, 0].
(ii) The proof of (4.72).
The convexity of Vi(t, x, z) (i = 1, 2) stated in Lemma 10 implies that ∂+z Vi(t, x, z) contains

a single superdifferential q if Vi(t, x, z) is locally affine in z, otherwise, ∂+z Vi(t, x, z) is the
empty set. If Vi(t, x, z) is locally affine in z, it is also differentiable in z. As z̄ converges to 0
in (D.11), we have ∂+z Vi(t, x, z) = {∂Vi

∂z
(t, x, z)} ⊂ [−1, 0].

D.4 Proof of Lemma 12

(i) Case 1: q = 0.

H̄(t, x,z, p, 0) = max
a∈A

[−p · f(t, x, a)] = max{p · b | b = −f(t, x, a), a ∈ A}. (D.15)

Since {−f(t, x, a) | a ∈ A} ⊂ co({−f(t, x, a) | a ∈ A}),

H̄(t, x, z, p, 0) ≤ H̄W (t, x, z, p, 0). (D.16)

On the other hand, let b∗ ∈ arg max[p·b | b ∈ co({−f(t, x, a) | a ∈ A})]. Since {−f(t, x, a) | a ∈
A} is compact, there exists a finite number of bi ∈ {−f(t, x, a) | a ∈ A} and θi ∈ [0, 1] such
that b∗ =

∑
i θibi and

∑
i θi = 1. Then,

H̄W (t, x, z, p, 0) =
∑
i

θip · bi ≤ max
i
{p · bi} ≤ max

b∈{−f(t,x,a) | a∈A}
[p · b] = H̄(t, x, z, p, 0).

(D.17)

The last inequality holds since all bis are in {−f(t, x, a) | a ∈ A}. By (D.16) and (D.17), we
have

H̄(t, x, z, p, 0) = H̄W (t, x, z, p, 0). (D.18)
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(ii) Case 2: q < 0.

H̄(t, x, z, p, q) = max
a∈A
−p · f(t, x, a) + qL(t, x, a) = −qH

(
t, x,−p

q

)
. (D.19)

Since H is convex in p for each (t, x) and lower semi-continuous in p, H∗∗ ≡ H, where ∗∗
indicates the Legendre-Fenchel transformation of the Legendre-Fenchel transformation. Thus,
we have

H̄W (t, x, z, p, q) = −q max
b∈co({−f(t,x,a) | a∈A})

[−p

q
· b−H∗(t, x, b)]

= −qH∗∗
(
t, x,−p

q

)
= −qH

(
t, x,−p

q

)
. (D.20)

By (D.19) and (D.20), we conclude

H̄(t, x, z, p, q) = H̄W (t, x, z, p, q). (D.21)

for all q < 0.
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Appendix E

Proof for Section 4.3

E.1 Proof of Lemma 15

This proof generalizes the proof of Lemma 1 [66], which is for the zero stage cost problem.
(i) For b ∈ B(x), b = −f(x, ā) for some ā ∈ A. Then,

HTI∗
2 (x, b) = max

p
−p · f(x, ā)−HTI

2 (x, p)

≤ max
p
−p · f(x, ā) + min

a∈A
p · f(x, a) + L(x, a)

<∞. (E.1)

The last inequality holds since mina∈A p · f(x, a) + L(x, a) ≤ p · f(x, ā) + L(x, ā) and L is
finite for a fixed x.

(ii) If b = 0,

HTI∗
2 (x, b) = max

p
−HTI

2 (x, p) ≤ 0 <∞. (E.2)

(iii) b ∈ co({0} ∪B(x))
There exists a finite set of θi ∈ [0, 1] (

∑
i θi ≤ 1), ai ∈ A such that b = −

∑
i θif(x, ai).

Since HTI∗
2 is convex in b,

HTI∗
2 (x, b) ≤

∑
i

θiH
TI∗
2 (x, bi) + (1−

∑
i

θi)H
TI∗
2 (x, 0) <∞

by (E.1) and (E.2).
(iv) b /∈ co({0} ∪B(x))
For the two convex sets {b} and co({0} ∪B(x)), by the separating hyperplane theorem

[19], there exists a hyperplane (P : Rn → R): P (b′) := p′ · b′ + c such that P (b) > 0 but
P (b′) < 0 for all b′ ∈ co({0} ∪B(x)). By picking p = dp′,

HTI∗
2 (x, b) ≥ max

d
min {dp′ · b,min

a∈A
dp′ · (b+ f(x, a)) + L(x, a)}.
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Since p′ · b > 0 and p′ · (b+ f(x, a)) > 0 for all a ∈ A, the maximum of the right term in
the above equation is attained at d =∞, thus, HTI∗

2 (x, b) =∞.

E.2 Proof of Lemma 16

(i) Case 1: q = 0.

H̄TI
2 (x, z, p, 0) = max{0, max

b∈B(x)
p · b}, (E.3)

where B(x) = co({−f(s, x(s), a) | a ∈ A}). Since B(x) ⊂ co({0} ∪B(x)),

H̄TI
2 (x, z, p, 0) ≤ H̄TI

W (x, z, p, 0). (E.4)

On the other hand, let b∗ ∈ arg maxb∈co({0}∪B(x)) p · b, then, there exists a finite number of
bi ∈ B(x) and θi ∈ [0, 1] such that b∗ =

∑
i θibi and

∑
i θi < 1. Thus, we have

H̄TI
W (x, z, p, 0) =

∑
i

θip · bi ≤ max{0,max
i
p · bi}

≤ H̄TI
2 (x, z, p, 0). (E.5)

Combining (E.4) and (E.5), we have

H̄TI
W (x, z, p, 0) = H̄TI

2 (x, z, p, 0). (E.6)

(ii) Case 2: q < 0.

H̄TI
2 (x, z, p, q) = −qmax

{
0, H

(
x,−p

q

)}
(E.7)

and, by the convexity of HTI
2 in p, HTI∗∗

2 ≡ HTI
2 , where ∗∗ indicates the Legendre-Fenchel

transformation of the Legendre-Fenchel transformation. Then,

H̄TI
W (x, z, p, q) = −qHTI

2

(
x,−p

q

)
. (E.8)

By combining (E.7), (E.8), and (4.100), we conclude the proof.
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