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Purpose: To accurately and efficiently reconstruct a continuous surface from noisy point clouds
captured by a surface photogrammetry system (VisionRT).
Methods: The authors have developed a level-set based surface reconstruction method on point
clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs
an implicit and continuous representation of the underlying patient surface by optimizing a regu-
larized fitting energy, offering extra robustness to noise and missing measurements. By contrast to
explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous
for subsequent surface registration and motion tracking by eliminating the need for maintaining
explicit point correspondences as in discrete models. The authors solve the proposed method with an
efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom
and human subject data with two sets of complementary experiments. In the first set of experiment, the
authors generated a series of surfaces each with different black patches placed on one chest phantom.
The resulting VisionRT measurements from the patched area had different degree of noise and missing
levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed
method to point clouds acquired under these different configurations, and quantitatively evaluated
reconstructed surfaces by comparing against a high-quality reference surface with respect to root
mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100
clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors
qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean
curvature distributions, against that of the surface extracted from a high-quality CT obtained from the
same patient.
Results: On phantom point clouds, their method achieved submillimeter reconstruction RMSE under
different configurations, demonstrating quantitatively the faith of the proposed method in preserving
local structural properties of the underlying surface in the presence of noise and missing measure-
ments, and its robustness toward variations of such characteristics. On point clouds from the human
subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw
point coordinate readings were missing. Within two comparable regions of interest in the chest area,
similar mean curvature distributions were acquired from both their reconstructed surface and CT
surface, with mean and standard deviation of (µrecon=−2.7×10−3 mm−1,σrecon= 7.0×10−3 mm−1)
and (µCT=−2.5×10−3 mm−1,σCT= 5.3×10−3 mm−1), respectively. The agreement of local geometry
properties between the reconstructed surfaces and the CT surface demonstrated the ability of the
proposed method in faithfully representing the underlying patient surface.
Conclusions: The authors have integrated and developed an accurate level-set based continuous
surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The
proposed method has generated a continuous representation of the underlying phantom and patient
surfaces with good robustness against noise and missing measurements. It serves as an important
first step for further development of motion tracking methods during radiotherapy. C 2015 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4933196]
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1. INTRODUCTION

Understanding motion and deformation of the internal anat-
omy is of great importance in radiotherapy. It helps to accu-
rately reconstruct delivered dose distribution and to generate
more accurate image basis for adaptive planning and delivery.
However, direct monitoring of internal motion remains a very
difficult task, due to limitations in spatiotemporal resolutions
in imaging development (e.g., 4D MRI and 4DCT) and other
factors such as concomitant dose considerations. Very often,
an indirect approach is taken where a most accessible surrogate
(or partial) measurement is used in combination with a model
that relates the internal anatomy to the surrogate. Examples
of such indirect monitoring include electronic portal imaging
(EPI),1 optical marker tracking,2 and fluoroscopic/cone-beam
computed tomography (CBCT)-based monitoring.3 Optical
monitoring has the benefit of radiation-free and enjoys high
frame rates. As an advancement from optical marker track-
ing, the development of photogrammetry techniques provides
a data-intensive yet noninvasive way for monitoring patient
external surface motion in real time. Such systems, exempli-
fied by VisionRT, determine 3D coordinate of points on the
patient surface based on measurements made from two or more
photographic images taken from different positions/angles. To
monitor motion and thoracic setup, chest skin surface is moni-
tored at 10 Hz and reconstructed. Potentially, such surface data
can be aligned to a reference data volume or longitudinally
to the measurement acquired at a preceding time to facilitate
setup and real-time monitoring.4,5

However, sensor properties, lighting conditions, and view
occlusions result in noise and patches of absent measurement
during photogrammetry acquisition and challenge the accurate
monitoring and interpretation of surface motion. Previous vali-
dation studies have revealed large registration errors in the or-
der of centimeters due to the poor quality of photogrammetry-
reconstructed surface, based on direct point cloud represen-
tation followed by the iterative closest point (ICP) matching
procedure6—an approach currently employed by the commer-
cial VisionRT system.

From a physics perspective, ICP registration between point
clouds implicitly assumes the existence of one-to-one corre-
spondence between (a majority of) members of the two point
clouds, which does not hold with randomly projected patterns
in VisionRT over time. Such model mismatch may be tolerated
when only very simple 1D respiratory surrogate is required,
because such random errors tend to “average out”—which is
the scenario of current clinical practice. As richer information
being extracted, the severity of this issue becomes more pro-
nounced: it is the major culprit for the large errors for rigid
alignment (five degrees of freedom).6 In the active pursuit of
even higher dimensional models of volumetric description of
internal anatomical geometry from surface information, regis-
tering inconsistent point clouds risks significantly misleading
results. To this end, an alternative and more robust surface
reconstruction method is needed.

Surfaces can be represented either explicitly or implic-
itly. The explicit approaches, such as parametrical surfaces7

and triangulated surfaces,8,9 often have requirements on data

dimensionality or regularity on the distribution of control
points, making their adoption challenging in handling noise
and tracking large deformations.10 The implicit surface repre-
sentations, on the other hand, usually embeds a surface into a
smooth scalar function and enjoys computational convenience
and topological flexibility,11,12 with a typical example being
the level set approach.13

We adopt the level set representation in this study and pro-
pose to reconstruct continuous instantaneous surfaces based
on the acquired point clouds from VisionRT by optimizing a
regularized fitting energy. The proposed method avoids build-
ing/maintaining explicit point correspondence and offers extra
robustness to noise and missing measurements. A narrowband
solving scheme is implemented to further improve the effi-
ciency. To the best of our knowledge, this is the first time a
surface reconstruction method has been applied toward point
clouds from VisionRT system, and it serves as an important
first step to facilitate the development of sophisticated high
dimensional models for motion tracking.

2. METHOD
2.A. Variational formulation of the weighted minimal
surface model

The level set method has been widely applied to surface
representation due to its flexibility and computational conve-
nience.14 As an implicit scheme, it offers a continuous repre-
sentation of underlying curves/surfaces and avoids construct-
ing explicit point correspondence for capturing and tracking
deformations. Specifically, a surface C is implicitly repre-
sented as the zero level set of its corresponding level set
function φ in a space that is one dimension higher. In this study,
given a point cloud P, we aim to construct a continuous surface
by optimizing the following regularized energy:10,15

E(φ(x))=

Ω

d(x)δ(φ(x))|∇φ(x)|dx, (1)

where φ(x) represents the level set function, δ is the Dirac delta
function, and d(x) is defined as a distance function to the point
cloud d(x) = dist(x,P). Note that {x:φ(x) = 0} = ∅ provides a
collection of trivial global minimum for the above objective.
In this study, we are only interested in finding local minimum
solutions that correspond to the minimal surface attached to
the point cloud and minimizing the energy in Eq. (1) with the
gradient descent method following the variational flow,

∂φ

∂t
= |∇φ|

(
∇d · ∇φ|∇φ| +d∇· ∇φ|∇φ|

)
. (2)

The evolution of the above PDE balances between the data fi-
delity attraction∇d ·(∇φ/|∇φ|) and the surface tension regular-
ization d∇·(∇φ/|∇φ|). The natural scaling of d will adaptively
increase the relative regularization weight on the low sampling
or missing region from the point cloud,15 which is desirable for
our application.
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2.B. Narrowband evolving scheme

The level set evolution is computationally expensive, with
evolution time step limited by the Courant–Friedrichs–Lewy
(CFL) condition. Given a d dimensional reconstruction task,
the complexity is O(nd) per time step, where n is the total
number of points on a regular spatial computation grid. Notice
that, however, the interface of interest is represented as the
zero level of the level set function, updating points within a
small neighborhood of the evolving interface would suffice.
In this study, we adopt a narrowband evolving scheme16 to
improve the efficiency. Specifically, we restrict computations
to be within a narrowband Ωw about the current zero level
set with width w, and we update the narrowband region at
each time step t asΩw = {x : |φ(x,t)| ≤ w/2}. This narrowband
scheme reduces the computational complexity from O(nd) to
O(wnd−1), since at each time step, we only need to calculate
the derivatives and update the level set function at those wnd−1

grid points within the narrowband region instead of the full
domain.

2.C. Implementation details

2.C.1. Point cloud padding

One typical point mesh captured by VisionRT system is
shown in Fig. 1(a), where an open upper surface of the patient
torso is captured. This open surface presents a challenge to the
level set optimization in Eq. (1), easily leading to annihilation
of the evolving surfaces (the trivial global minimum). As a
practical remedy, we artificially attach a flat point slab to define
the back boundary, normally at the couch level, as shown in
Fig. 1(b). This attachment has no impact on the front surface
reconstruction but provides the desired stability and robustness
to the level set evolution.

2.C.2. Distance function to the point cloud

The distance function d(x) to the point cloud P is obtained
by numerically solving the following Eikonal equation10 with
fast marching method:13,17

|∇d(x)| = 1, d(x)= 0, x ∈ P. (3)

A I. Surface reconstruction.

Input: padded point cloud P, multilevel number S, narrowband width w,
final grid r

Initialize φ0
S

as a rectangular bounding box enclosing point cloud at the
coarsest level
for s = S to 1 do

Ps← Evaluating P on grid r downscaled by 2s−1

Construct distance function on Ps by solving the Eikonal equation:
|∇ds(x)| = 1, ds(x)= 0,x ∈ Ps.
k ← 0
while |φk+1

s −φk
s | < tol do

Update narrowband: Ωw = {x : |φk
s (x)| ≤ w

2 }
Evolution within the updated narrowband Ωw:

φk+1
s =φk

s +∆t{|∇φk
s |(∇ds ·

∇φk
s

|∇φk
s |
+ds∇ ·

∇φk
s

|∇φk
s |
)}

end while
if s > 1 then φ0

s−1← Interpolate(φk+1
s )

end if
end for
Output: final reconstructed surface φ← φk+1

s

2.C.3. Initialization and multiresolution

Initialization is important in level-set based methods. A
good initialization can significantly speed up the convergence
and prevent undesirable local/global minima. In our surface
reconstruction task, an ideal initialization would be an outer
surface that tightly bounds the exterior of the point cloud.
Surface T = {x : d(x,P) = ϵ}, where ϵ is a small positive
number, serves as a good candidate. However, the existence
of multiple isolated regions (islands) due to occlusion in the
point cloud could render such initialization misleading. De-
tecting and tagging the region of the surface defined15 are
potentially useful, but such method is empirically sensitive to
the choice of relaxation parameters and its robustness depends
heavily on the sampling density of the point cloud. In this
study, we directly tackle this problem with a multiresolution
framework.10 Specifically, at the coarsest grid resolution, a
rectangular bounding box is placed to enclose the point cloud.
The reconstruction result of the coarser level is propagated as
the initialization for the finer-grid-level evolution. Algorithm I
presents implementation details of our proposed method.

F. 1. Point cloud padding scheme: (a) the original point mesh acquired by VisionRT; (b) a flat point slab is padded to define the back boundary.
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2.C.4. Parameter settings and computation complexity

Our surface reconstruction was implemented on a rectan-
gular grid size of 200×150×75. A two-level grid resolution
(S = 2) was used for the evolution. The coarse level was imple-
mented on a grid size of 40×30×15. Our narrowband evolving
scheme was implemented based on LSMLIB (http://ktchu.
serendipityresearch.org/software/lsmlib/), an open source
level set library. The narrowband width was set to w = 4 for
all experiments, with time step ∆t = 0.01. Our method was
tested with  2013b on Mac OS 10.9.4, running on a
macbook laptop with quad-core I7 2.3 GHz, 8GB RAM. The
total running time for reconstructing one surface was about
30 s, without using any specific code optimization for this
particular pilot study on methodology. The CT images used
in this study were acquired on the abdomen region with a
Philips Brilliance Big Bore 16-slice CT simulator. Imaging
parameters were FOV = 600 × 600 mm2, matrix size = 512
×512, and resolution= 1.17×1.17×2 mm3. Imaging protocols
in this study were approved by local Institutional Review
Board. The enrolled subject was provided informed consent
in accordance with institutional policy.

3. EXPERIMENTS AND RESULTS

To quantitatively evaluate the performance of the proposed
method especially on point clouds with noise and missing
measurements, we first made a series of static acquisitions on
one chest phantom under various configurations with different
black patches placed on the abdomen area. With the same
acquisition/lighting condition and time scale, we compared
the reconstructed surfaces under different testing configura-

tions against the reference surface reconstructed from phantom
without any patches, and quantitatively evaluated the recon-
struction accuracy with respect to root mean squared error
(RMSE).

We then tested the proposed method on clinical point clouds
captured from one patient during radiotherapy. In the absence
of ground-truth instantaneous surface, we assume that surface
extracted from high-quality CT provides a faithful represen-
tation of the geometric characteristics of the patient surface.
Note that CT acquisition is at a different time scale than the
3D optical measurement, if not at a completely different time
instance, so the two surfaces should not be compared on a
pointwise fashion. We assessed the geometric characteristics
by evaluating the local curvature behaviors on comparable re-
gions of interest (ROIs). In particular, we selected two compa-
rable ROIs around the chest area from our reconstructed sur-
faces and the CT surface, respectively, and compared the mean
curvature distributions within those two ROIs.

3.A. Surface reconstruction on phantom

The phantom configurations of the reference measurement
and testing measurements with different black patches are
shown in Fig. 2. Specifically, we used a chest phantom without
any artificial black patches and acquired a high-quality scan as
the reference surface. For different configurations, we placed
different black patches on the abdomen to simulate different
acquisition conditions, since VisionRT system has difficulties
in detecting those dark areas due to reflective conditions.
Figure 3 shows example point clouds captured under these
different configurations, where missing measurements usually
occurred at positions with black patches. We reconstructed 50

F. 2. Different measurement configurations of the chest phantom scans: (a) phantom configuration for the reference measurement, (b) phantom configuration
with black patch on the lower left side of the abdomen, (c) phantom configuration with two adjacent patches on the lower abdomen, and (d) phantom configuration
with two disjoint patches on the lower abdomen.

Medical Physics, Vol. 42, No. 11, November 2015
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F. 3. Example point clouds acquired under different phantom configurations. (a) Reference configuration, (b) lower-left-patch configuration, (c) adjacent-
double-patches configuration, and (d) disjoint-double-patches configuration.

surfaces from each of the testing configurations and compared
them against the reference surface reconstructed under the
reference configuration. We represented each reconstructed
surface as a height function in a Cartesian coordinates: z
= f (x,y) for the convenience of further evaluation. Example re-
constructed surfaces are compared in Fig. 4, where smooth and

continuous surfaces were reconstructed despite the presence of
different noise and missing measurement levels in their corre-
sponding point clouds. We quantitatively evaluated the recon-
struction accuracy by comparing the reconstructed surfaces
under different testing configurations against the reference re-
constructed surface based on RMSE. Specifically, on a regular

F. 4. Example reconstructed surfaces under different phantom configurations (represented as height functions). (a) Reference configuration, (b) lower-left-
patch configuration, (c) adjacent-double-patches configuration, and (d) disjoint-double-patches configuration.

Medical Physics, Vol. 42, No. 11, November 2015
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T I. Error statistics of the reconstructed surfaces under different testing
configurations.

Lower-left-
patch

configuration

Adjacent-
double-patches
configuration

Disjoint-
double-patches
configuration

RMSE (mm) 0.54 0.60 0.55
S.D. (mm) 0.50 0.55 0.57

grid with size m×n, we calculated RMSE and standard devi-
ation as the following: RMSE=


(1/mn)m

i

n
j e2

i, j and S.D.

=


(1/mn)m

i

n
j

(
ei, j−

((m
i

n
j ei, j

)
/mn

))2
, where ei, j is

the pointwise error defined as ei, j = zref(i, j)− ztest(i, j), with zref
and ztest being the height functions of the reconstructed refer-
ence and testing surface, respectively. The error statistics of
the reconstructed surfaces under different testing configura-
tions are reported in Table I. The reconstruction errors from
different configurations were all within 1 mm based on RMSE,
demonstratingquantitatively theabilityof theproposedmethod
in faithfully reconstructing underlying surfaces even under
noise and missing measurements.

3.B. Surface reconstruction on human subject

As shown in Fig. 5(a), missing measurements often occur
during VisionRT acquisition due to lighting conditions and/or

the presence of irregular patient body surface structure such
as dense hair. Figures 5(b)–5(d) illustrate the reconstruction
process of our proposed method on one example point cloud.
A bounding box was first placed and evolved at a coarse grid
level, whose result was used as the initialization for the fine
level evolution. The final surface reconstruction result was
shown in Fig. 5(d), where a smooth and continuous surface
was reconstructed.

For local geometric characteristic comparison between the
reconstructed surface and the CT surface, the local chest ROI
was also represented as a height function in a Cartesian coordi-
nates: z = f (x,y), as illustrated in Figs. 6(a) and 6(b). Numeri-
cally, we calculated the mean curvature value at each grid loca-
tion as k =

((
1+ f 2

y

)
f xx−2 f x f y f xy+

�
1+ f 2

x

�
f y y

)
/2
�
1+ f 2

x

+ f 2
y

)3/2
. The mean curvature distributions of this example

surface and CT surface are reported and compared in Figs. 6(c)
and 6(d). The empirical mean and standard deviation of those
two distributions are (µrecon = −2.7× 10−3 mm−1,σrecon = 7.0
× 10−3 mm−1) and (µCT = −2.5 × 10−3 mm−1,σCT = 5.3
× 10−3 mm−1), respectively. We further repeated the same
process on 100 snapshot point cloud measurements and thus
recovered 100 reconstructed surface ROIs. Figure 6(e)
illustrates the population distribution of the mean curvature
values from the 100 reconstructed surfaces, with (µpop=−2.7
×10−3 mm−1,σpop= 6.9×10−3 mm−1). The agreement among
these distributions demonstrates indirectly that the proposed
method faithfully captures the geometric properties of the
underlying surface.

F. 5. Example surface reconstruction process: (a) point cloud captured by the VisionRT system, (b) initialization at the coarse level, (c) evolution result at the
coarse level, and (d) final surface reconstruction result at the fine level.
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F. 6. Comparison of height functions and mean curvature distributions from human subject: (a) height function of the example reconstructed surface, (b)
height function of the CT skin surface, (c) mean curvature distribution from the example reconstructed surface, (d) mean curvature distribution from the CT skin
surface, and (e) mean curvature distribution from our 100 reconstructed surfaces.

4. DISCUSSION AND CONCLUSION

We have developed an accurate and reliable surface recon-
struction method by optimizing a regularized fitting energy
from point cloud measurements subject to noise and occlusion.
On phantom data, we have achieved submillimeter reconstruc-
tion accuracy under different configurations, demonstrating
quantitatively the faith of the proposed method in preserving
local structural properties of the underlying surfaces despite
the presence of noise and missing measurements. On point
clouds from human subject, the reconstructed instantaneous
surfaces have agreed well with patient surface extracted from
high-quality CT in its local geometric characteristics.

The reconstruction of a continuous representation of the
underlying patient surface from an unstructured (and possibly

randomly acquired) point cloud measurement eliminates the
explicit indexing of the point orders. For the further purpose of
dynamic motion monitoring and tracking, constructing corre-
spondence between continuous surfaces is a more amicable
and robust task18 than registering two point clouds that are
intrinsically misaligned in acquisition. Our method can be
naturally and conveniently extended to incorporate further reg-
ularizations such as learnt surface priors19,20 or surface normal
information.13

The computational burden of the PDE evolution and the
consequent inefficiency, due to the constraint imposed by
the CFL condition, is alleviated partially with the narrow-
band evolution scheme. Practically, the CFL condition can
be further relaxed without incurring numerical instability, yet
the upper bound of such relaxation required further testing

Medical Physics, Vol. 42, No. 11, November 2015
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with more extensive data set. Our current work does not
quite meet the rate for real-time application yet, but is still
useful for constructing dynamic shape libraries and under-
standing the manifold which captures the surface variations
from one’s respiration.20 We are also actively working on
GPU-based implementation and parallel computation21,22 for
further speedup.
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